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Abstract

Aaronson, Atia, and Susskind [AAS20] established that efficiently mapping between quantum
states |ψ⟩ and |ϕ⟩ is computationally equivalent to distinguishing their superpositions 1√

2
(|ψ⟩+

|ϕ⟩) and 1√
2
(|ψ⟩ − |ϕ⟩). We generalize this insight into a broader duality principle in quantum

computation, wherein manipulating quantum states in one basis is equivalent to extracting their
value in a complementary basis. In its most general form, this duality principle states that for a
given group, the ability to implement a unitary representation of the group is computationally
equivalent to the ability to perform a Fourier subspace extraction from the invariant subspaces
corresponding to its irreducible representations.

Building on our duality principle, we present the following applications:

• Quantum money, which captures quantum states that are verifiable but unclonable, and
its stronger variant, quantum lightning, have long resisted constructions based on con-
crete cryptographic assumptions. While (public-key) quantum money has been con-
structed from indistinguishability obfuscation (iO)—an assumption widely considered too
strong—quantum lightning has not been constructed from any such assumptions, with
previous attempts based on assumptions that were later broken. We present the first con-
struction of quantum lightning with a rigorous security proof, grounded in a plausible and
well-founded cryptographic assumption. We extend Zhandry’s construction from Abelian
group actions [Zha24] to non-Abelian group actions, and eliminate Zhandry’s reliance on
a black-box model for justifying security. Instead, we prove a direct reduction to a com-
putational assumption – the pre-action security of cryptographic group actions. We show
how these group actions can be realized with various instantiations, including with the
group actions of the symmetric group implicit in the McEliece cryptosystem.

• We provide an alternative quantum money and lightning construction from one-way ho-
momorphisms, showing that security holds under specific conditions on the homomor-
phism. Notably, our scheme exhibits the remarkable property that four distinct security
notions—quantum lightning security, security against both worst-case cloning and average-
case cloning, and security against preparing a specific canonical state—are all equivalent.

• Quantum fire captures the notion of a samplable distribution on quantum states that are
efficiently clonable, but not efficiently telegraphable, meaning they cannot be efficiently
encoded as classical information. These states can be spread like fire, provided they
are kept alive quantumly and do not decohere. The only previously known construction
relied on a unitary quantum oracle, whereas we present the first candidate construction of
quantum fire in the plain model.
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1 Introduction

Let |ψ0⟩ , |ψ1⟩ be two orthogonal quantum states, and let |ϕ+⟩ be proportional to |ψ0⟩ + |ψ1⟩ and
|ϕ−⟩ be proportional to |ψ0⟩−|ψ1⟩. The Swap Complexity of |ψ0⟩ and |ψ1⟩ is the size of the smallest
circuit that maps |ψ0⟩ to |ψ1⟩ and vice versa. Meanwhile, the Distinguishing Complexity of |ϕ+⟩
and |ϕ−⟩ is the size of the smallest circuit that accepts |ϕ+⟩ and rejects |ϕ−⟩. A fundamental result
of Aaronson, Atia, and Susskind [AAS20] establishes that the swap complexity of |ψ0⟩ and |ψ1⟩
is essentially equivalent to the distinguishing complexity of |ϕ+⟩ and |ϕ−⟩. This duality principle,
known as the “AAS duality”, has emerged as a simple yet powerful tool in quantum complexity
theory and cryptography.

In this work, we ask: Can the AAS equivalence be extended to the more general context of many
quantum states and multidimensional subspaces? We give an affirmative answer to this question.
First, we extend the notion of the swap complexity to a notion of “representation complexity”:
given a subspace, V , spanned by states |ψ1⟩ , . . . , |ψk⟩, and a (potentially non-Abelian) group G, a
representation of G on the subspace V is a homomorphism from G to the unitaries acting on the
subspace (or, roughly, it is a collection of unitaries {Ug}g∈G acting on V which satisfies the group
operations of G).1 Its Representation Complexity is the size of the smallest circuit that implements
the representation, that is, by mapping

|g⟩ ⊗ |ψi⟩ 7→ |g⟩ ⊗ Ug |ψi⟩ .

When restricting to groups that have an efficient quantum Fourier transform (including all
Abelian groups, all constant-sized or polynomal-sized non-Abelian groups, and several important
exponential-sized non-Abelian groups), we show that the representation complexity is essentially
equivalent to the complexity of implementing a Fourier subspace extraction, or in other words,
performing a partial measurement of the invariant subspaces preserved by the representation (i.e.,
its irreducible representation subspaces) and extracting the quantum state encoded in each such
subspace (see Section 1.2 for more discussion on subspace extraction). For Abelian groups, this
simplifies to a full projective measurement, and in particular, for the swapping representation of
AAS, this is a measurement between |ϕ+⟩ and |ϕ−⟩. Thus the AAS duality is recovered by setting
G = Z2. We additionally prove an approximate notion of this duality, where the circuit only has to
approximately map between states.2

1.1 Applications to Cryptography

In cryptography, the AAS duality has proven quite fruitful. Cryptographic security properties come
in two types: “search” type properties which stipulate the hardness of computing a specific unknown
quantity, and “decision” type properties which stipulate the hardness of distinguishing between two
distributions. The AAS duality has played a crucial role in establishing the equivalence between
certain search-type and decision-type properties, leading to a number of significant results [Yan22,
HMY23, KMNY24, MW24, HKNY24, MYY24].

We show that our new duality theorem is useful for cryptography beyond the AAS setting, by
giving novel results for quantum money.

Quantum Money from Group Actions. Quantum money [Wie83] uses the no-cloning prin-
ciple to generate unforgeable banknotes. These banknotes are quantum states that can be verified

1For instance, in [AAS20], the representation of G = Z2 on the subspace spanned by |ψ0⟩ and |ψ1⟩ maps the sole
non-identity element of Z2 to the unitary swapping |ψ0⟩ for |ψ1⟩.

2While our approximate duality theorem works for all groups, it achieves weaker error bounds for general groups.
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but cannot be cloned. A central problem has been to construct quantum money that can be publicly
verified by anyone, and yet only the mint can create new banknotes. This is called public-key quan-
tum money [Aar09].3 Quantum lightning posits a stronger security notion for public-key quantum
money, with a collision-resistance property that ensures that even the mint can only ever create
one copy of each banknote [Zha21].

A long-standing challenge for public-key quantum money is to derive security from concrete
computational assumptions (and in particular, assumptions that do not bake the unclonability
of the banknotes directly into the assumption). The only prior scheme with such a proof is an
instantiation of [AC12] using indistinguishability obfuscation (iO), as suggested by [BDS23] and
proved in [Zha21]. However, iO is a powerful cryptographic tool whose quantum security is still
uncertain. Moreover, no existing unbroken scheme has been shown to have such a security proof
for the stronger security notion of quantum lightning.

Recently, [Zha24] gave a plausible construction of quantum money and quantum lightning from
Abelian group actions. A group action consists of a group G, a set X, and a binary operation
∗ : G×X → X, denoted g∗x = y. This operation respects the group structure: g∗(h∗x) = (gh)∗x.
An Abelian group action is a group action where G is Abelian.4 Unfortunately, the security of the
scheme of [Zha24] requires both a computational assumption and an idealized modeling of group
actions as a black box.

Using our duality principle, we show how to generalize this construction to work with non-
Abelian group actions. This shift is not merely a superficial adjustment—it significantly improves
on the framework in two critical ways:

1. It allows us to prove the hardness of our quantum money and lightning scheme in the standard
model, using only a concrete assumption on the group action. This assumption also identifies
an interesting potential source of hardness for non-Abelian group actions. Very roughly, for
non-Abelian groups, in addition to a group action g ∗ (h ∗ x) = (gh) ∗ x, we can also define
a “pre-action” g ◦ (h ∗ x) = (hg−1) ∗ x, or more generally a “bi-action” (g0, g1) ⊛ (h ∗ x) =
(g0hg

−1
1 ) ∗ x. Our assumption states that it is hard via a quantum query to distinguish a

random action from a random bi-action. Importantly, this problem only makes sense for non-
Abelian group actions, as actions and pre-actions are identical in the Abelian case. Thus, the
quantum money result requires us to use the full power of our non-Abelian generalization of
the duality.

2. The shift to non-Abelian groups opens up the possibility for potentially more varied instan-
tiations of the group actions. In particular, we explain how to instantiate our quantum
money scheme on (a significant generalization of) the symmetric group action implicit in the
McEliece cryptosystem [McE78].

Theorem 1.1 (informal). There is a public-key quantum money and quantum lightning scheme
for any (non-Abelian) cryptographic group action, such that the money/lightning scheme is secure
if the group action is preaction-secure.

To the best of our knowledge, this represents the first (unbroken) quantum lightning scheme
with a standard-model security proof based on a computational assumption that does inherently
include unclonability.

3When it is otherwise clear from context, we will refer to public key quantum money as simply “quantum money”.
4Abelian groups are those for which all the elements commute: gh = hg ∀g, h ∈ G.
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Quantum Money from One-way Homomorphisms. A one-way (group) homomorphism is
a function, f(h), that is group homomorphic5 and efficiently computable, but computationally
intractable to invert.6 A one-way homomorphism can be seen as an instance of a group action,
with the domain group acting on the codomain as g∗f(h) = f(gh). However, unlike in the previous
case above, the preactions for this action (i.e., g ◦ f(h) = f(hg−1)) are as efficiently computable as
the action itself, so security cannot be shown as before. Nevertheless, we give sufficient conditions
on the one-way homomorphism such that the resulting quantum lightning scheme is secure.

We note that unlike our construction above from group actions that are pre-action secure—for
which we give concrete instantiations that can be implemented in practice—we do not know if
any instantiations of homomorphic functions satisfy these security conditions. But we observe
that a one-way group homomorphism is essentially a group action where the computational Diffie-
Hellman (CDH) problem is easy but yet discrete logarithms are still hard. While CDH is quantumly
equivalent to discrete logarithms for Abelian groups [MZ22], this equivalence does not seem to
follow for non-Abelian groups. Strangely, it is a hypothetical security failure for group actions
which gives rise to plausible instantiations for quantum lightning and quantum fire (see more on
the construction of quantum fire below).

We concede the disadvantage of this construction as compared to the concrete one above from
preaction security, but we note that it has some unique properties that the other does not. Specifi-
cally, by leveraging our duality principle we are able to prove the remarkable fact that four distinct
quantum money security notions—namely, the collision-resistance of quantum lightning security,
the hardness of both worst-case cloning and average-case cloning, and the hardness of preparing
the uniform superposition over the image of the homomorphism—are all identical. Thus for any
particular instantiation of the one-way homomorphism, it is sufficient to prove any one of these
security notions in order to get the other three.

Quantum Fire. Quantum fire refers to a collection of efficiently samplable quantum states that
can be efficiently cloned, but cannot be efficiently telegraphed.7 That is, despite the ability to make
an unbounded number of copies of a quantum fire state, there is no way to efficiently encode it as
classical information from which it can later be recovered. Much like a flame can be easily spread
from a single source as long as it is kept alive, quantum fire can be cloned from a single quantum
state as long as it is kept coherently in quantum storage.

The concept of quantum fire was first introduced in the work of Nehoran and Zhandry [NZ23],
where it was shown to be essential for solving the key exfiltration problem. However, it was
not formally defined or named in that work. [NZ23] provided a secure construction of quantum
fire relative to a unitary quantum oracle, but this oracle construction relied on an inherently
inefficient computation and baked clonability into the oracle itself. Consequently, it does not
provide a pathway for instantiation in the standard model. It has not even been clear if any

5That is, it is a homomorphism between two groups G and H, such that f(gh) = f(g) · f(h) for all g, h ∈ G.
6Note that Shor’s algorithm [Sho94] allows efficiently inverting group homomorphosms when the domain and

codomain groups are Abelian. Thus, these results inherently require non-Abelian groups, and hence our general-
ized duality.

7Note that while the no-cloning theorem prohibits cloning general quantum states, this prohibition does not
apply to quantum states chosen from an orthogonal set. The same applies to the no-telegraphing theorem, which
prohibits sending general quantum states through a classical channel without pre-shared entanglement. States from
an orthogonal set can clearly be telegraphed by measuring them in this basis and later recreating them accordingly.
Such states can be cloned in a similar fashion. In other words, any states chosen from an orthogonal set can be
both cloned and telegraphed information-theoretically, but these tasks are not necessarily both efficient. In fact, it
was shown in [NZ23] that there are likely to be state families where cloning is efficient and yet telegraphing is not.
Quantum fire is the cryptographic primitive that samples such states efficiently.
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classical oracle could allow efficient cloning of quantum states that are inherently quantum (and
thus not telegraphable).

Inspired by the duality principle, we give a plausible candidate construction of quantum fire
relative to a one-way group homomorphism. Remarkably, despite the similarity to the construction
of quantum lightning from group homomorphisms, where the states are unclonable, the states in
this scheme are inherently clonable, and efficiently so. Nevertheless, there is no apparent way to
telegraph the states efficiently. Moreover, it is straightforward to define a classical oracle that
gives a candidate one-way group homomorphism. Thus, we obtain a candidate construction of
quantum fire with conjectured security relative to a classical oracle, improving upon the unitary
oracle construction of [NZ23].8

1.2 The Duality

Fourier Subspace Extraction. A major stepping stone towards our duality theorem is the idea
of a Fourier subspace extraction. Every group representation preserves some set of invariant sub-
spaces {Wλ}λ∈[n].9 A course Fourier measurement10 of the representation is, roughly, a projection
onto these subspaces. We get a classical label λ indicating the subspace we have projected onto,
as well as a collapsed state, |ψ⟩, within the subspace Wλ. A fine Fourier measurement further
measures within each of those subspaces, in a basis that depends on the algorithm. For instance,
if {|ψλ

j ⟩}j∈dim(Wλ) is a basis for Wλ, we get outcomes λ and j, and collapse our state to |ψλ
j ⟩.11 In

either case, the state after the measurement is still within the subspace.
In some applications, we care about the coherent information encoded within each subspace.

That is, it is not enough to know which collapsed state |ψλ
j ⟩ we received. We want to have, in

our hands, the coherent superposition that appeared in the subspace. That is, if the original state
was

∑
j∈[dim(Wλ)]

αj |ψλ
j ⟩, we want to extract the full superposition

∑
j αj |j⟩. This transformation,

which we call a subspace extraction, extracts the full state coherently from the subspace.12

If implemented näıvely, Fourier measurements do not suffice for this task. They either do not
recover the information about where the state was within each subspace (in the case of course
Fourier measurement), or they recover it in a collapsed form (in the fine case). In our work, we
consider the stronger notion of a “Fourier subspace extraction”, an operation that measures the
subspace and coherently recovers the encoded state.

8Note that, as observed in [NZ23], an unconditional security proof relative to such a classical oracle would require
proving a classical oracle separation between the complexity classes QMA and QCMA, a major open problem of
Aharonov and Naveh [AN02], which, despite recent progress, has evaded resolution.

9That is, these subspaces are invariant under all of the unitaries Ug corresponding to each group element g ∈ G.
In some cases, the only invariant subspace may be the full Hilbert space, in which case we say that it is irreducible,
but this is not generically the case. We consider here only invariant subspaces which are irreducible, and do not break
down further into smaller invariant subspaces.

10Often called weak Fourier sampling in many contexts
11To simplify the notation, we assume here that there is no multiplicity, or degeneracy, in the irreducible represen-

tations. We will see later how to handle multiplicity.
12Note that such extraction is not generally an efficient transformation for arbitrary subspaces.
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Duality. We show that the implementations of representations and the implementations of their
Fourier subspace extractions are essentially computationally dual to each other.

Theorem 1.2 (Duality, informal). Let G be a group13 and let F : G→ U(H) be a representation
of G. Then the following are equivalent:

• F has an efficient implementation, i.e. |g⟩ ⊗ |ψ⟩ 7→ |g⟩ ⊗ F(g) |ψ⟩.

• F has an efficient Fourier subspace extraction, i.e. |ψλ
i,j⟩ 7→ |ϕλi ⟩ |λ, j⟩.

Further Discussion of Fourier Subspace Extraction. In the above discussion, we have
glossed over the possibility of degeneracy, in which the representation acts identically on several
different invariant subspaces Wλ

1 ,W
λ
2 , . . . ,W

λ
m. Such subspaces are degenerate in the sense that

a course Fourier measurement produces the same outcome, λ, on all of them. Thus we have an
additional index, i, that runs over this multiplicity of λ.

We write a Fourier subspace extraction as an isometry |ψλ
i,j⟩ 7→ |ϕλi ⟩ |λ, j⟩, where for each λ and

i, the states {|ψλ
i,j⟩}j are a basis for the subspace Wλ

i , and the state |ϕλi ⟩ is an arbitrary “junk”
state that is left behind after measuring λ and extracting j.

In order for it to be an extraction of j, rather than a measurement of j, it is crucial that
this leftover state has no dependence on j. Consider a superposition

∑
j∈[dim(Wλ

i )]
αj |ψλ

i,j⟩ over the
subspaceWλ

i . Performing this isometry yields
∑

j αj |ϕλi ⟩ |λ, j⟩ = |ϕλi ⟩ |λ⟩⊗
∑

j αj |j⟩, which extracts
the original superposition into a quantum state on the last register with those exact amplitudes. If
the leftover junk state had depended on j, for instance if we instead had |ψλ

i,j⟩ 7→ |ϕλi,j⟩ |λ, j⟩, then
this would not extract the state properly. We would instead get

∑
j αj |ϕλi,j⟩ |λ, j⟩, where the last

register is still entangled with the rest of the state, and thus has not been extracted. This is the
difference between a measurement of j and an extraction of j.

We observe that since these leftover junk states |ϕλi ⟩ are independent of j—that is, they do not
depend on which state we started from within the subspace Wλ

i —we can see that these states are
instead characteristic of the subspace Wλ

i itself. That is, the Fourier subspace extraction collapses
each subspace Wλ

i to a single distinct quantum state |ϕλi ⟩, which we therefore call the “archetype”
states of these subspaces. Despite appearing to be just the “junk” that is left behind during the
Fourier subspace extraction, these archetype states are in fact quite useful.

For instance, the existence of these archetype states allows us to use a swap test to distinguish
whether two quantum states are in the same subspace or different subspaces. Consider two states
|ψλ

i1,j1
⟩ ∈Wλ

i1
and |ψλ

i2,j2
⟩ ∈Wλ

i2
that live in subspaces corresponding to the same λ, but potentially

different such subspaces (that is, Wλ
i1

and Wλ
i2

are potentially different), and suppose that we
wanted to test whether they in fact belong to the same subspace (that is, if i1 = i2). The ability
to perform the representation does not in general allow us to measure i. Intuitively, this is because
both these states behave identically under the representation. A Fourier measurement/sampling
of these states would give us only λ, or both λ and j, but not i. So how can we test if they
are in the same subspace? This is in general not possible from such a measurement. However,
Fourier subspace extraction is more powerful than Fourier measurement and gives us this ability.
Performing a Fourier subspace extraction on both states gives us |ϕλi1⟩ |λ⟩ |j1⟩ for the first state

13Technically, we do need some constraints on the group. We need it to have efficient implementations of a quantum
Fourier transform and of its irreducible representations. Note however, that this is a very wide class of groups, and
includes, at the very least, all Abelian groups, as well as many important non-Abelian groups. Moreover, every
fixed-size group is technically efficient (whether Abelian or not), so this condition is important only for some families
of groups whose sizes grow exponentially.
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and |ϕλi2⟩ |λ⟩ |j2⟩ for the second state. Now we can ignore and discard the last register—the one
that indicates which state we had within each subspace—and perform a swap test only on the first
register, that is between the archetype states that characterize the subspaces. This turns out to be
a crucial tool in the security proof of our quantum lightning construction.

The Special Case of Abelian Groups. Abelian groups have the special property that all of
the (irreducible) invariant subspaces are one-dimensional. Since the “quantum state” extracted
by the Fourier subspace extraction in this case is one-dimensional, it is actually just a complex
phase. We can see that the corresponding isometry simplifies to |ψλ

i ⟩ 7→ |ϕλi ⟩ |λ⟩, where we have
absorbed the phase into |ϕλi ⟩. This is computationally equivalent to the isometry |ψλ

i ⟩ 7→ |ψλ
i ⟩ |λ⟩

(by copying λ and uncomputing), which we can see is just the course Fourier measurement for the
representation—that is, a projective measurement onto the subspaces Wλ. We therefore get the
following simplified duality for Abelian groups as a special case, a duality between the efficiency
of implementing the representation and that of performing a Fourier measurement,14 a projective
measurement on the subspaces spanned by its invariant states.15

Corollary 1.3 (Duality for Abelian Groups, informal). Let G be an Abelian group and let F :
G→ U(H) be a representation of G. Then the following are equivalent:

• F has an efficient implementation, i.e. |g⟩ ⊗ |ψ⟩ 7→ |g⟩ ⊗ F(g) |ψ⟩.

• F has an efficient Fourier measurement, i.e. |ψλ
i ⟩ 7→ |ψλ

i ⟩ |λ⟩.

1.3 Related Work

Quantum Money, Lightning, etc. There have been several attempts at constructing public-
key quantum money [Aar09, FGH+12, AC12, Zha21, KSS22, AGKZ20, KLS22, LMZ23, Zha24].
Unfortunately, a number of them later turned out to be broken [LAF+09, CPDDF+19, Rob21,
LMZ23]. In order to gain confidence in constructions, it is therefore important to give security proofs
under computational assumptions that have received significant scrutiny from the cryptographic
community. Here, the best we currently have are:

• Quantum money from hidden subspaces [AC12], which was proved secure assuming quantum-
resistant indistinguishability obfuscation (iO) in [Zha21]. Unfortunately, while candidates for
quantum-resistant iO are known, their status is still very much open. This scheme also only
achieves quantum money, but not quantum lightning.

• Quantum money from random walks [FGH+12, LMZ23], which was shown to be secure under
strong quantum “knowledge” assumptions. Such assumptions are not “falsifiable”, and there
is some doubt about the plausibility of such assumptions [Zha24].

• Quantum money from Abelian group actions [Zha24], which is proven secure under an as-
sumption plus in an idealized model of group actions as a black box.

We provide a scheme whose quantum lightning security we prove in the plain model (i.e. without
making idealized model assumptions) from a plausible and falsifiable computational assumption.
We hope that our work motivates further study of the cryptographic uses of non-Abelian group
actions, and in particular, of the hardness of preactions.

14Note that because representations of Abelian groups have only one-dimensional representations, there is no
distinction between the course/weak and the fine/strong versions of Fourier measurement/sampling. Thus, we refer
to it as simply Fourier measurement.

15The invariant subspaces are one-dimensional, and are thus individual quantum states.
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Comparison to the Duality of Aaronson, Atia, and Susskind. [AAS20] show that there
is a duality between, on the one hand, swapping between two orthogonal states, and on the other
hand, measuring the positive and negative superpositions of the two states. As a representation, this
“swapping” operation, together with the identity, is a representation of Z2. The invariant subspaces
of this representation are the positive and negative superpositions, with eigenvalues +1 and −1.
Our duality theorem precisely yields the duality theorem from [AAS20] as a special case when
applied to Z2, and recovers the same circuits, showing that our results are a proper generalization.

Theorem 1.2 extends far beyond Z2, and even beyond Abelian groups, to many of the non-
Abelian groups that are important for cryptography. We expect our duality theorem to be appli-
cable to many more settings in quantum cryptography and complexity theory. Our applications to
building quantum money, lightning, and fire are just a few demonstrations of the usefulness of our
theorem and techniques, and demonstrate the usefulness of considering this quantum duality in its
full non-Abelian generalization.

2 Preliminaries

2.1 Quantum preliminaries

A register R is a named finite-dimensional Hilbert space. When two registers appear next to each
other, as in AB, this refers to the tensor product space of A and B. We write tr(·) to denote the
trace, and trB(·) to denote the partial trace over a register B. We denote by ∥X∥1 = tr(|X|) the
trace norm, where |X| =

√
XX†. For a vector space V , we write GL(V ) to denote the general

linear group from V to itself, i.e. invertible square matrices. For two matrices in GL(V ), we define
the Hilbert-Schmidt inner product as follows.

Definition 2.1 (Hilbert-Schmidt inner product). Let A,B ∈ GL(R), then we define the Hilbert-
Schmidt inner product between A and B to be

⟨A,B⟩ = 1

dim(R)
tr
[
AB†

]
.

This implies a norm in the natural way: ∥A∥ =
√
⟨A,A⟩.

2.2 Representation Theory

Definition 2.2 (Representation). Let G be a finite group. Then a function F : G 7→ GL(R) is a
representation of G if the following holds for all group elements g, h ∈ G:

F(g)F(h) = F(gh) .

The vector space R is called a representation space of G. We note that representations need not
be defined over Hilbert spaces (they can be defined over any vector space), but we will only ever
consider representations that output unitaries in Hilbert spaces. We use the notation dim(F) to
denote the dimension of the representation space R.

We will also need a notion of a function being “almost” a representation. The following is the
definition of ϵ-approximate representation (in Hilbert-Schmidt norm), taken from [GH16].

9



Definition 2.3 (ϵ-approximate representation [GH16]). Let G be a group, and F : G 7→ U(R) be
a function taking group elements to unitaries over R. F is a ϵ-approximate representation if the
following holds:

E
g,h∈G

[
Re
〈
F(g)†F(h),F(g−1h)†

〉]
≥ 1− ϵ .

Here Re is the real component.

We use the following additional definition of an ϵ-close representation, which is the notation of
being close to an exact representation of a group, up to an isometry V .

Definition 2.4 (ϵ-close representation). Let G be a group and F : G 7→ U(R) be a function taking
group elements to unitaries over R. We say that F is ϵ-close to a representation of G if there exists
a representation of G, G : G 7→ U(R′) and an isometry V : R 7→ R′ such that

E
g∈G

∥∥∥F(g)− V †G(g)V
∥∥∥2 ≤ ϵ .

We will also need some definitions and facts from character theory. A reference for these can
be found in, e.g. [S+77].

Definition 2.5 (Irreducible representation). A representation ϱ : G 7→ GL(R) is an irreducible
representation of G if for all subspaces W ⊆ R, ϱ(g)W ̸⊆ W . We sometimes refer to R as the
irreducible representation of G. Irreducible representations are often called “ irreps”.

Definition 2.6 (Dual of a group). The dual of a group G, denoted Ĝ, is the set of all irreducible
representations of G, up to equivalence by a unitary transformation. For an Abelian group, Ĝ will
itself have a group structure, but this is not generally the case for non-Abelian groups.

Lemma 2.7 (Size of the dual). The size of the dual, Ĝ, of a group is equal to the number of
conjugacy classes of G. In particular, for a finite group G, Ĝ is also finite.

Definition 2.8 (Character). Let F : G 7→ GL(R) be a representation of G. We define the character
of F to be

χF (g) = tr[F(g)] .

Definition 2.9 (Inner product of characters). Let χF and χG be two characters, then we define
their inner product to be

⟨χF |χG⟩ =
1

|G|
∑
g∈G

χF (g)χ
†
G(g) .

Lemma 2.10 (Irreps are norm 1). For every irreducible representation of a group G, the following
holds

⟨χϱ|χϱ⟩ = 1 .

Lemma 2.11 (Decomposition into irreps). Let F be a representation of a group G with represen-
tation space R, and let dϱ be ⟨χF , χϱ⟩. Then the following holds:

R ≃
⊕
ϱ

W
⊕dϱ
ϱ .

10



Where Wϱ is the irreducible representation space of ϱ. Furthermore, the decomposition into W⊕dϱ

is unique, the decomposition into further subspaces depends on the choice of basis. Furthermore in

the basis of
⊕

ϱW
⊕dϱ
ϱ , F(g) looks like: ∑

ϱ

ΠWϱϱ(g)ΠWϱ .

Here ΠWϱ is the projector onto Wϱ.

Definition 2.12 (Manifestations and multiplicity of an irreducible representation). The manifes-
tations16 of an irreducible representation ϱ within a representation F , are the subspaces Wϱ that
are irreducible representation spaces of ϱ. The number of of manifestations of ϱ in F , is its mul-
tiplicity, which we denote as nFϱ (or nϱ when F is clear from context). The direct sum of all the
manifestations of ϱ is the course Fourier subspace, also known as the isotypic component of ϱ.

Definition 2.13 (Right/left regular representation). The left regular representation of a group G
is the following function.

L(h) =
∑
g∈G
|hg⟩⟨g| .

The right regular representation of a group G is the following function.

R(h) =
∑
g∈G
|gh−1⟩⟨g| .

Lemma 2.14. For all groups G and all irreducible representations of G, the following holds

⟨χL|χϱ⟩ = dim(ϱ) .

and similarly for the right regular representation.

Using this fact, together with the fact that the character of the right (or left) regular represen-
tation is equal to |G| at the identity, and 0 elsewhere, we have:

Lemma 2.15. Let G be a finite group, then the following holds.∑
ϱ∈Ĝ

dim(ϱ)2 = |G| .

Definition 2.16 (Plancherel measure). The Plancherel measure is a probability distribution over
irreducible representations of a group G. The Plancherel measure of an irreducible representation
ϱ is given by

µ(ϱ) =
dim(ϱ)2

|G|
.

We can see that this corresponds to selecting an irreducible representation according to its
“weight” in the sum of Lemma 2.15. A concept we will be interested in is the maximum Plancherel
measure of any irreducible representation of the group. For example, for the symmetric group,
upper and lower bounds are given by the following lemma.

16It is common to refer to the different irreducible representation subspaces Wϱ
i on which the representation F acts

as irrep ϱ as “copies” of of the irreducible representation. We prefer the word “manifestations” to avoid confusion
later with the notion of copies of a state due to cloning.
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Lemma 2.17 (Plancherel measure of the symmetric group [VK85]). The following inequalities hold
for constants c0 = 0.2313 and c1 = 2.5651

e−
c1
2

√
n
√
n! ≤ max

λ∈irrep(Sn)
dim(ϱλ) ≤ e−

c0
2

√
n
√
n! .

Thus, the maximum Plancherel measure of an irreducible representation of the symmetric group,
Sn, is e

−c0
√
n, which is negligible in n.

Lemma 2.18 (Schur orthogonality relations [Iss05]). Let ϱ, σ ∈ Ĝ be irreducible representations of
G. Then we have that: ∑

g∈G
ϱ(g)∗ij σ(g)kℓ =

|G|
dim(ϱ)

δϱσδikδjℓ .

2.2.1 Quantum Fourier Transform

Now we define the quantum Fourier transform in general.

Definition 2.19 (Quantum Fourier transform). Let dϱ be the dimension of ϱ for every irreducible
representation of a group G. The quantum Fourier transform over a general group G is the following
unitary transformation

QFTG =
∑
g∈G

∑
ϱ∈Ĝ,

i,j∈[dϱ]

√
dϱ
|G|

ϱ(g)j,i |ϱ, i, j⟩⟨g| .

Its inverse is

QFT†
G =

∑
g∈G

∑
ϱ∈Ĝ,

i,j∈[dϱ]

√
dϱ
|G|

ϱ(g−1)i,j |g⟩⟨ϱ, i, j| .

We will often refer to either one as the quantum Fourier transform over G, and it will be clear
from context which one we mean.

We note that for Abelian groups, every irreducible representation is dimension 1, so the sum
over i, j goes away, and we recover the usual Abelian quantum Fourier transform.

Definition 2.20 (Fourier basis states). For a group G, let {|Lϱij⟩}ϱ∈Ĝ, i,j∈[dϱ], where |Lϱij⟩ :=√
dϱ
|G|
∑

g∈G ϱ(g
−1)i,j |g⟩, be the basis recovered by applying QFT†

G to {|ϱ, i, j⟩}
ϱ∈Ĝ, i,j∈[dϱ]. We call

this the (left-regular) Fourier basis of G.

2.3 Fourier Measurements

2.3.1 Coarse Fourier Measurement

Definition 2.21 (Coarse Fourier measurement). The coarse Fourier measurement17 is the mea-
surement of the subspaces corresponding to the irreducible representations, but not the basis of the
subspaces. Formally, for a group G and representation R, the coarse Fourier measurement is given
by the POVM {

Π
W

⊕dϱ
ϱ

}
ϱ∈irrep(G)

.

Here the decomposition into unique subspaces W
⊕dϱ
ϱ is given by Lemma 2.11.

Performing a measurement using the coarse Fourier measurement to produce a random irre-
ducible representation label is known in the literature as weak Fourier sampling.
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2.3.2 Fine Fourier Measurement

Definition 2.22 (Fine Fourier measurement). Let G be a finite group and F be a representation of
that group. Let Wϱ be an irreducible representation of G, let dϱ = ⟨χF |χϱ⟩, and {|ψϱ

i,j⟩}i∈[dim(ϱ)],j∈[dϱ]

be a basis for the subspace W
⊕dϱ
ϱ . Then the fine Fourier measurement17 is given by the POVM

{|ψϱ
i,j⟩⟨ψ

ϱ
i,j |}ϱ,i,j .

Performing a measurement using the fine Fourier measurement (for any choice of basis) is known
in the literature as strong Fourier sampling.

2.3.3 Fourier Subspace Extraction

For our purposes, we require a stronger notion than Fourier measurement. We introduce a stronger
notion called Fourier subspace extraction. Unlike Fourier measurement which measures and outputs
a classical value for each irreducible representation space Wϱ

i , Fourier subspace extraction extracts
a coherent quantum state out of each Wϱ

i , maintaining the original superposition within Wϱ
i but

expressing it in the standard basis.

Definition 2.23 (Fourier subspace extraction). Let G be a finite group and F be a representation
of that group. A Fourier subspace extraction is a coarse projective measurement {Πϱ}ϱ∈Ĝ—where

each Πϱ projects onto W
⊕dϱ
ϱ :=

⊕
i∈[nϱ]

Wϱ
i , the union of the manifestations of ϱ—and a subspace

extraction within each subspace Wϱ
i . Specifically, let each Wϱ

i have basis {|ψϱ
ij⟩}j∈[dim(ϱ)]. Then a

Fourier subspace extraction implements a unitary

M : |ψϱ
i,j⟩ |0⟩ 7→ |ϕ

ϱ
i ⟩ |ϱ, j⟩ ,

for some orthonormal set of “ archetype” states {|ϕϱi ⟩}ϱ∈Ĝ, i∈[nϱ]
.18

2.4 Group Actions

A group action is a representation of a group that appears often in the field of cryptography.
Formally, it is define as follows

Definition 2.24 (Group action). A group action consists of a family of groups G = (Gλ)λ, a family
of sets X = (Xλ)λ, and a binary operation ∗ : Gλ ×Xλ 7→ Xλ satisfying the following properties

• Identity: Let id ∈ G be the identity element, then 0 ∗ x = x for all x ∈ Xλ.

• Representation: For all g, h ∈ Gλ and x ∈ Xλ, gh ∗ x = g ∗ (h ∗ x).

We sometimes require the following additional properties.

• Efficiently computable: There is a quantum polynomial-time algorithm that on input 1λ

outputs a description of Gλ and an element xλ ∈ Xλ. The binary operation ∗ is also com-
putable by a quantum polynomial-time algorithm.

17 The literature often refers to course and fine Fourier measurements as weak and strong Fourier sampling,
respectively. We prefer to use the course and fine terminology, capturing how coarse- or fine-grained the decomposition
of the space, but we will use the terms interchangeably.

18Note that the form of the archetype states does not matter. The only requirement is that they are orthonormal
so thatM is an isometry. That is, ⟨ψϱ

ij | ψ
σ
kℓ⟩ = δϱσδikδjℓ.
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• Efficiently recognizable: There is a quantum polynomial-time algorithm such that for any
λ and string y, the algorithm accepts with probability at least 2/3 if y ∈ Xλ and rejects with
probability at least 2/3 if y ̸∈ Xλ.

• Transitive: There is exactly one orbit. That is, for any two elements x, y ∈ Xλ, exists a
g ∈ Gλ such that y = g ∗ x.

• Semiregular: (also called “free”) There are no fixed points. That is, for every g ∈ Gλ and
y ∈ Xλ, g ∗ x = x implies that g = id.

• Regular: Regular group actions are both transitive and semiregular. That is, for every y ∈
Xλ, there is exactly one g ∈ Gλ such that y = g ∗ xλ.

Later in the paper, we will describe additional properties of group actions that will be useful in
proving security of cryptographic primitives constructed from group actions.

Definition 2.25 (Orbits of a group action). The orbit of an element x ∈ X is the set of elements
accessible from x by acting with G:

Orb(x) = {y | ∃g ∈ G s.t. y = g ∗ x} .

One important property of group actions is they are representations on the Hilbert space
spanned by the elements of X .

Definition 2.26 (Group Action Representation). A group action of G defines a representation of
G by the following unitary:

F(h) |g ∗ x⟩ = |hg ∗ x⟩ .

Note that this representation is a direct sum of left-regular representations on the different orbits
of the group action.

2.5 Quantum Money and Quantum Lightning

Now we define public-key quantum money and quantum lightning. Both primitives have the similar
syntax, with differences in how their key generation works.

Definition 2.27 (Public-key quantum money [Aar09]). A public-key quantum money scheme is a
triple of efficient quantum algorithms S = (KeyGen,Mint,Ver) where

• KeyGen takes as input the security parameter 1λ and outputs a private/public key pair (sk, pk),

• Mint(sk) outputs a pair (s, |$s⟩) where s is a string representing a serial number and |$s⟩ is a
quantum state representing a banknote,19 and

• Ver takes as input the public key pk, a serial number s, and an alleged banknote σ, and either
accepts or rejects.

A public-key quantum money scheme S satisfies correctness if for all λ,

Pr

[
Ver(pk, s, |$s⟩) accepts : (sk, pk)← KeyGen(1λ)

(s, |$s⟩)← Mint(sk)

]
≥ 1− negl(λ) .

19We will refer to these states interchangeably as either quantum money states or banknotes.
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Definition 2.28 (Quantum money security). A public-key quantum money scheme S satisfies
ϵ-quantum-money security if for all efficient adversaries A, the success probability of A in the
counterfeit security game (Algorithm 1) is at most ϵ(λ).

Algorithm 1 (Public-key Quantum Money Counterfeit Security Game).

1. Generate (sk, pk)← KeyGen(1λ), (s, |$s⟩)← Mint(sk) and send (pk, s, |$s⟩) to the adver-
sary.

2. Adversary returns two registers AB in some potentially entangled state σAB.

3. Run Ver(pk, s, σA) and Ver(pk, s, σB). If either check rejects, then reject, otherwise accept.

In place of full public-key quantum money schemes, we will often make use of quantum money
mini-schemes, simpler objects that can be upgraded to public-key quantum money schemes using
digital signatures [AC12]. Because of this effective equivalence, when it is clear from context, we
will also often refer to quantum money mini-schemes as public-key quantum money.

Definition 2.29 (Quantum money mini-scheme [AC12]). A quantum money scheme is a pair of
efficient quantum algorithms S = (Mint,Ver) where

• Mint(1λ) outputs a pair (s, |$s⟩) where s is a string representing a serial number and |$s⟩ is
the banknote, and

• Ver takes as input a serial number s and an alleged banknote σ, and either accepts or rejects.

The security is similar to that of full public-key quantum money setting:

Algorithm 2 (Quantum Money Mini-Scheme Counterfeit Security Game).

1. Run (s, |$s⟩)← Mint(1λ) and send (s, |$s⟩) to the adversary.

2. Adversary returns two registers AB in some potentially entangled state σAB.

3. Run Ver(s, σA) and Ver(s, σB). If either check rejects, then reject, otherwise accept.

Definition 2.30 (Quantum money mini-scheme security). A quantum money mini-scheme scheme
S satisfies ϵ-quantum-money security if for all efficient adversaries A, the success probability of A
in the counterfeit security game (Algorithm 2) is at most ϵ(λ).

Quantum lightning is a stronger security guarantee on quantum money in which not even the
mint can produce two banknotes for the same serial number [Zha21].
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Algorithm 3 (Quantum Lightning Counterfeit Security Game).

1. On input 1λ, adversary returns a serial number s and two registers AB in some potentially
entangled state σAB.

2. Run Ver(s, σA) and Ver(s, σB). If either check rejects, then reject, otherwise accept.

Definition 2.31 (Quantum lightning security [Zha21]). A quantum money mini-scheme scheme
S satisfies ϵ-quantum-lightning security if for all efficient adversaries A, the success probability of
A in the counterfeit security game (Algorithm 3) is at most ϵ(λ).

In each of the definitions, when ϵ is a negligible function in λ, we say the scheme satisfies
“strong” security.

3 Duality Theorem

In this section we present our main theorem, a computational duality between implementing a
group representation and implmenting a Fourier subspace extraction. We first present the exact
case in Section 3.1. Then, in Section 3.2, we show how to generalize it to the case of approximate
representations and Fourier subspace extractions.

3.1 Exact Case

Theorem 3.1. Let G be a finite group with an efficient quantum Fourier transform. Let F :
G → U(H) be a unitary representation of G, which decomposes into irreducible representations
{(ϱ, V ϱ

i )}ϱ∈Ĝ,i∈[nϱ]
. Then the following are equivalent:

1. There exists a quantum circuit, CF , of size sF , that implements the representation F . That
is, it implements the unitary

|g⟩ ⊗ |ψ⟩ 7→ |g⟩ ⊗ F(g) |ψ⟩

for all g ∈ G and all |ψ⟩ ∈ H.

2. There exists a quantum circuit, CM, of size sM, and 20 a quantum circuit, CR, of size sR,
where

• CM implements a Fourier subspace extraction,M, on the Fourier subspaces {V ϱ
i }ϱ∈Ĝ,i∈[nϱ]

.

That is, CM implements a coarse projective measurement {Πϱ}ϱ∈Ĝ—where each Πϱ

projects onto V ϱ :=
⊕

i∈[nϱ]
V ϱ
i , the union of the manifestations21 of ϱ—and a subspace

20For groups that that have an efficiently implementable representation theory—that is, they have efficient im-
plementations of both the quantum Fourier transform as well as for each irrep—the condition of having this second
circuit is already satisfied, and can be dropped so as to have a direct relationship between CF and CM. We include
this condition in order to capture a larger class of groups, including groups that have use in our applications, as well
as to get a more fine-grained relationship between the complexities.

21We refer to the different invariant subspaces V ϱ
i on which the representation F acts as irrep ϱ as “manifestations”

of ϱ. We do not use the word “copies” to avoid confusion later with the notion of copies of a state due to cloning.
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extraction within each subspace V ϱ
i . Specifically, let each V ϱ

i have basis {|ψϱ
ij⟩}j∈[dim(ϱ)].

Then CM implements
M : |ψϱ

i,j⟩ |0⟩ 7→ |ϕ
ϱ
i ⟩ |ϱ, j⟩ ,

for some orthonormal set of “archetype” states {|ϕϱi ⟩}ϱ∈Ĝ, i∈[nϱ]
.22

• CR implements the irreducible representations {ϱ}
ϱ∈Ĝ given an arbitrary catalytic state

|χϱ⟩ ∈ V ϱ. That is CR implements23

|χϱ⟩ |g⟩ ⊗ |ψ⟩ 7→ |χϱ⟩ |g⟩ ⊗ ϱ(g) |ψ⟩

Going from Item 1 to Item 2, we have that sM and sR are both O(sF + sQFT), where sQFT

is the circuit complexity of implementing the quantum Fourier transform of G. In the other
direction, we have that sF = O(sM + sR).

Remark 3.2. In the special case in which the group is Abelian, all the irreducible representations
are 1-dimensional, so Item 2 above simplifies to a full projective measurement in the Fourier basis of
the representation (the basis of states that are fixed by the representation). Moreover, the quantum
Fourier transform for Abelian groups can always be implemented efficiently. Thus we get as a
special case that for Abelian groups, the representation is directly dual to a Fourier measurement.

Remark 3.3. As an even more special case, the duality theorem of [AAS20] is the case in which
G ∼= Z2.

Proof of Theorem 3.1.
1 ⇒ 2: Suppose that Item 1 is true. That is, we have a circuit of size s that implements the
representation F . Let ϱ : G → U(H) be an irrep of G of dimension dϱ and multiplicity nϱ in
F , and let V ϱ

1 , . . . , V
ϱ
nϱ be the manifestations of the irrep ϱ in F . For each subspace V ϱ

i , take
{|ψϱ

ij⟩}j∈[dim(ϱ)] to be a basis for the subspace such that the corresponding irrep unitary ϱ(g) sends

|ψϱ
ij⟩ to

∑
k∈[dim(ϱ)] ϱ(g)kj |ψ

ϱ
ik⟩.

24

Suppose we have a basis state |ψϱ
ij⟩ on which we want to perform the Fourier subspace extraction

to produce |ϕϱi ⟩ |ϱ, j⟩ (for some set of “archetype” states |ϕϱi ⟩).25 We begin by preparing the the
uniform superposition over the group 1√

|G|

∑
g∈G |g⟩ in an ancilla register and then, controlled on

that register, apply the promised circuit CF for implementing F to our state.

1√
|G|

∑
g∈G
F(g) |ψϱ

ij⟩ ⊗ |g⟩

=
1√
|G|

∑
g∈G

∑
k

ϱ(g)kj |ψϱ
ik⟩ ⊗ |g⟩

=
∑
k

|ψϱ
ik⟩ ⊗

1√
|G|

∑
g∈G

ϱ(g)kj |g⟩

22Note that the form of the archetype states does not matter. The only requirement is that they are orthonormal
so thatM is an isometry.

23Note that the when going from a representation to a Fourier subspace extraction, we end up with an imple-
mentation of CR that uses the catalytic states, but in the other direction, it is sufficient to have a circuit CR that
implements the the irrep controlled on its irrep label, that is, |ϱ⟩ |g⟩ ⊗ |ψ⟩ 7→ |ϱ⟩ |g⟩ ⊗ ϱ(g) |ψ⟩.

24Technically, any basis of V ϱ
i works fine, and we just need to unitarily transform the irrep unitary ϱ(g) accordingly

in our minds. However, it is convenient to consider a similar basis for all the subspaces V ϱ
i corresponding to ϱ, so

that we can write ϱ(g) in terms of its matrix elements ϱ(g)ij in the same way across all of them.
25We consider only basis states |ψϱ

ij⟩ without loss of generality because the general case follows from linearity.
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Inverting the group element in the last register gives

→
∑
k

|ψϱ
ik⟩ ⊗

1√
|G|

∑
g∈G

ϱ(g)kj |g−1⟩

=
∑
k

|ψϱ
ik⟩ ⊗

1√
|G|

∑
g∈G

ϱ(g−1)kj |g⟩

=
1√
dϱ

∑
k

|ψϱ
ik⟩ ⊗ |L

ϱ
kj⟩ ,

where |Lϱkj⟩ is the jth basis vector of the kth manifestation of the irrep ϱ in the left regular
representation of G. If we now perform a quantum Fourier transform on the second register, we
get

1√
dϱ

∑
k

|ψϱ
ik⟩ ⊗ |ϱ, k, j⟩ .

Reordering and regrouping the registers gives us(
1√
dϱ

∑
k

|ψϱ
ik⟩ ⊗ |k⟩

)
|ϱ, j⟩ = |ϕϱi ⟩ |ϱ, j⟩

We can now measure the register containing ϱ to get the label of the irrep containing our state.
Note that within subspace V ϱ

i , this is a subspace extraction that extracts out |j⟩—the state in the
standard basis corresponding to whichever state inside V ϱ

i we started with26 —and leaves behind
the archetype state |ϕϱi ⟩ :=

1√
dϱ

∑
k |ψ

ϱ
ik⟩⊗ |k⟩. Interestingly, observe that in this case, the reduced

state on the first register of the archetype state for subspace V ϱ
i is the fully mixed state on V ϱ

i .
This is not necessarily the case, however, for a general Fourier subspace extraction, which may have
any form of archetype state (as long as they form an orthonormal basis for the Fourier subspace
extraction to be an isometry).

Note that now that we have a circuit CM implementing the Fourier subspace extraction,
we can easily implement CR as well. Say we are given as input the state |χϱ⟩ |g⟩ |ψ⟩, con-
sisting of a catalytic state, |χϱ⟩ ∈ V ϱ, indicating the irrep ϱ ∈ Ĝ to compute, a group ele-
ment g ∈ G, and a state |ψ⟩ on which to compute ϱ(g). Write |ψ⟩ =

∑
j∈[dim(ϱ)] αj |j⟩ and

|χϱ⟩ =
∑

i∈[nϱ], j′∈[dim(ϱ)] βij′ |ψ
ϱ
ij′⟩. We start by performing the Fourier subspace extraction on

|χϱ⟩, by running CM, to get
∑

i∈[nϱ], j′∈[dim(ϱ)] βij′ |ϕ
ϱ
i ⟩ |ϱ, j′⟩. Rearranging the registers, we have,

altogether, ∑
i∈[nϱ], j,j′∈[dim(ϱ)]

αjβij′ |j′⟩ |g⟩ |ϕϱi ⟩ |ϱ⟩ |j⟩ .

26Note that the state that is extracted in the last register does not depend on which basis we chose for V ϱ
i before.

In fact, our choice was only a mathematical choice and did not actually affect the computation in any way. What
determined the basis we got at the output was really our choice of the vectors |Lϱ

kj⟩ for the left regular representation,
and these are determined simply by which quantum Fourier transform we chose to implement. Interestingly, with a
Fourier subspace extraction, since all the information about the original state within subspace V ϱ

i is extracted into
a single register in the standard basis, we do not have to decide on a basis ahead of time! We can convert a Fourier
subspace extraction in one basis to one in another basis after the fact by applying a unitary to the resulting extracted
register.
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We now uncompute the Fourier subspace extraction on the last three registers by running C†
M.

(Note that these are not the same registers that we extracted. We are reversing the Fourier subspace
extraction in order to inject the state |ψ⟩ into the Fourier subspace V ϱ where it had never been
before!) This gives ∑

i∈[nϱ], j,j′∈[dim(ϱ)]

αjβij′ |j′⟩ |g⟩ |ψϱ
ij⟩ .

Now we can run CF on the last two registers to compute the full representation F , giving∑
i∈[nϱ], j,j′∈[dim(ϱ)]

αjβij′ |j′⟩ |g⟩ F(g) |ψϱ
ij⟩

=
∑

i∈[nϱ], j,j′,k∈[dim(ϱ)]

αjβij′ ϱ(g)kj |j′⟩ |g⟩ |ψϱ
ik⟩ ,

where we use the fact that F acts as ϱ on each of the V ϱ
i ’s. If we now perform another Fourier

subspace extraction on the last register, we get∑
i∈[nϱ], j,j′,k∈[dim(ϱ)]

αjβij′ ϱ(g)kj |j′⟩ |g⟩ |ϕϱi ⟩ |ϱ⟩ |k⟩ ,

which we rearrange as ∑
i∈[nϱ], j,j′,k∈[dim(ϱ)]

αjβij′ ϱ(g)kj |ϕϱi ⟩ |ϱ⟩ |j
′⟩ |k⟩ |g⟩ ,

and we finally uncompute the Fourier subspace extraction on the first three registers, giving∑
i∈[nϱ], j,j′,k∈[dim(ϱ)]

αjβij′ ϱ(g)kj |ψϱ
ij′⟩ |k⟩ |g⟩

=
∑

i∈[nϱ], j′∈[dim(ϱ)]

βij′ |ψϱ
ij′⟩ |g⟩

∑
j,k∈[dim(ϱ)]

αj ϱ(g)kj |k⟩

=
∑

i∈[nϱ], j′∈[dim(ϱ)]

βij′ |ψϱ
ij′⟩ |g⟩

∑
j∈[dim(ϱ)]

αj ϱ(g) |j⟩

= |χϱ⟩ ⊗ |g⟩ ⊗ ϱ(g) |ψ⟩ ,

This process has therefore sent |χϱ⟩ ⊗ |g⟩ ⊗ |ψ⟩ to |χϱ⟩ ⊗ |g⟩ ⊗ ϱ(g) |ψ⟩, performing the irrep ϱ
on our input state |ψ⟩, as desired.

2 ⇒ 1: Suppose that Item 2 is true. Then we have an circuit CM implementing the Fourier
subspace extractionM, which performs both a projective measurement {Πϱ}ϱ∈Ĝ, where Πϱ projects

onto subspace V ϱ, the (possibly empty) union of some set of subspaces V ϱ
1 , . . . , V

ϱ
nϱ—where each

V ϱ
i has dimension dim(ϱ) and is spanned by some basis {|ψϱ

ij⟩}j∈[dim(ϱ)]—and a subspace extraction
on each subspace V ϱ

i :

M : |ψϱ
ij⟩ 7→ |ϕ

ϱ
i ⟩ |ϱ⟩ |j⟩

for some orthonormal set of archetype states |ϕϱi ⟩.
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We would like to perform F , the representation defined by each ϱ ∈ Ĝ having manifestations
V ϱ
1 , . . . , V

ϱ
nϱ . We receive as input a state of the form |g⟩ |ψ⟩, with the first register containing a

group element g ∈ G for which we would like to implement its representation F(g), and the second
register containing a quantum state |ψ⟩ on which we would like to perform the representation.

Write |ψ⟩ in the basis of the |ψϱ
ij⟩’s as |ψ⟩ =

∑
ϱ,i,j α

ϱ
ij |ψ

ϱ
ij⟩. We start by applying the promised

circuit CM for implementingM on |ψ⟩ to get

|g⟩ ⊗M|ψ⟩ = |g⟩ ⊗
∑

ϱ∈Ĝ,i∈[nϱ],j∈[dim(ϱ)]

αϱ
ij |ϕ

ϱ
i ⟩ |ϱ⟩ |j⟩ .

Now, we use the promised circuit CR for implementing the irreps of G, applying it27 to perform
ϱ(g) on the last register:

|g⟩ ⊗
∑

ϱ∈Ĝ,i∈[nϱ],j∈[dim(ϱ)]

αϱ
ij |ϕ

ϱ
i ⟩ |ϱ⟩ ⊗ ϱ(g) |j⟩

= |g⟩ ⊗
∑

ϱ∈Ĝ,i∈[nϱ],j∈[dim(ϱ)]

αϱ
ij |ϕ

ϱ
i ⟩
∑
k∈[dϱ]

|ϱ⟩ ⊗ ϱ(g)kj |k⟩

= |g⟩ ⊗
∑

ϱ∈Ĝ,i∈[nϱ],j∈[dim(ϱ)]

αϱ
ij

∑
k∈[dϱ]

ϱ(g)kj |ϕϱi ⟩ |ϱ⟩ |k⟩ .

We now use C†
M to uncompute the Fourier subspace extraction on the last three registers,

producing

|g⟩ ⊗
∑

ϱ∈Ĝ,i∈[nϱ],j∈[dim(ϱ)]

αϱ
ij

∑
k∈[dϱ]

ϱ(g)kj |ψϱ
ik⟩

= |g⟩ ⊗
∑

ϱ∈Ĝ,i∈[nϱ],j∈[dim(ϱ)]

αϱ
ij F(g) |ψ

ϱ
ij⟩

= |g⟩ ⊗ F(g)
∑

ϱ∈Ĝ,i∈[nϱ],j∈[dim(ϱ)]

αϱ
ij |ψ

ϱ
ij⟩

= |g⟩ ⊗ F(g) |ψ⟩ .

We can see that this successfully implements the representation F(g).

From Theorem 3.1, we get the following interesting corollary, which may be of independent
interest. It allows us to implement a representation of a group G by using a circuit for implementing
a different representation of the same group G, as long as the representation we want shares irrep
subspaces with the representation we have (or breaks them down further).

27In Theorem 3.1, we allow controlling either on a register containing a description of the irrep label or on a
catalytic state |χϱ⟩ ∈ V ϱ. In the first case, we can use it directly because we have a register containing a description
of the irrep ϱ. In the latter case, one might worry that we no longer have a state in V ϱ, since the archetype state
|ϕϱ

i ⟩ is not guaranteed to be in V ϱ or have any particular form. We can always uncompute the Fourier subspace
extraction to get back the original state which is in fact in the correct subspace V ϱ, but of course this gets rid of
the extracted state we need to perform the irrep on. One might worry that no-cloning would prevent us from having
access to both at the same time. Fortunately, this is not the case: the no-cloning principle is not an issue here. We
can swap out the register containing |j⟩ and swap in a new register containing an arbitrary state |τ⟩—really, any
state works—and uncompute the Fourier subspace extraction to inject |τ⟩ into the subspace V ϱ. This would allow
us to apply CR, after which we can reverse this process, recover and discard |τ⟩, and proceed as before.
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Corollary 3.4. Given the ability to efficiently implement a representation F : G 7→ U(H) that
breaks H into some set of irrep subspaces {V ϱ

i }ϱ∈Ĝ,i∈[nϱ]
, we can implement any other representation

of the same group that acts on the same irrep subspaces (or further subdivisions of those subspaces),
as long as we can implement the irreps of the new representation.

Main Idea. This results from a double application of Theorem 3.1. Once in the forward direction
on the first representation to get a Fourier subspace extraction on the subspaces, and then once in
the backwards direction to get an implementation of the second representation.

3.2 Approximate Case

Here we present an approximate duality theorem, in that the conditions of Item 1 and Item 2
have to hold approximately. This demonstrates its robustness. In order to prove an approximate
version of the duality theorem, we will need the following theorem from [GH16] about approximate
representations.

Theorem 3.5 (Gowers-Hatami [GH16]). Let G be a finite group, ϵ ≥ 0 and F : G 7→ U(R) be an ϵ-
approximate representation of G. Then there exists a register R′ of dimension d′ = (1+O(ϵ)) dim(R)
and an isometry V : R 7→ R′ and an exact representation G : G 7→ U(R′) such that

E
x∈G

∥∥∥F(x)− V †G(x)V
∥∥∥2 ≤ 2ϵ .

Where the norm ∥·∥ is implied by the dimension-normalized Hilbert-Schmidt inner product ⟨A,B⟩ =
tr[AB†]/ dim(R).

Remark 3.6. While the matter of approximate representations has been extensively studied in
mathematics and quantum computer science, the idea of an approximate measurement into irre-
ducible representations has not been studied as much. In particular, the idea of weak (or strong)
Fourier sampling is typically used in algorithms for solving problems in groups. For these kinds
of problems, there is a well defined measurement that one can try to approximate. However in
our case, as works from representation theory note [GH16, KK82], there may be vector spaces that
admit approximate representations, but for which no exact representation exists. This raises the
question of what a measurement into an invariant subspace should look like. [GH16] proposes a
lemma pertaining to “approximately invariant subspaces”, but it uses a notion of Fourier transform
that is different from the quantum Fourier transform that we often consider. Here we propose a
notion of approximate measurement onto an invariant subspace inspired by the result of [GH16],
and use it in our duality result.

Consider the following approximate versions of Theorem 3.1.

Theorem 3.7 (Approximate duality, forward direction). Let G be a finite group with a Fourier
transform that can be implemented with a circuit of size sQFT. Let F : G 7→ U(R) be an ϵ-
approximate representation of G with a circuit implementation of size sF , with R being an n-
qubit register. Then there exists a register R′ with n + 1 qubits, an exact group representation
G : G 7→ U(R′) and an isometry V mapping R to R′ such that for the Fourier decomposition
R′ =

⊕
ϱ∈ Ĝ, i∈[nϱ]

V ϱ
i and basis {|ψϱ

i,j⟩}ϱ∈ Ĝ, i∈[nϱ], j∈[dim(ϱ)]
of G as in Item 2 from Theorem 3.1,

there is a circuit C of size O(sF + sQFT), and a set of archetype states {|ϕϱi ⟩}ϱ∈ Ĝ, i∈[nϱ]
, such that

1

dim(R′)

∑
ϱ∈Ĝ, i∈[nϱ]
j∈[dim(ϱ)]

Re ⟨ϕϱi | ⊗ ⟨ϱ, j|V CV
† |ψϱ

i,j⟩ ≥ 1− ϵ .
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That is, we get an ϵ-approximate Fourier subspace extraction.

Proof. We let C be the same circuit as in the exact case, first preparing the state 1√
|G|

∑
g∈G |g⟩,

and applying the representation F(g) controlled on that register to the state. We also let the
archetype states be |ϕϱi ⟩ =

1√
dϱ

∑
k∈[dϱ] |ψ

ϱ
i,k⟩ ⊗ |k⟩ as in the exact case, where dϱ := dim(ϱ). We

can compute the quantity from the theorem statement as:

1

dim(R′)

∑
ϱ,i,j

Re ⟨ϕϱi | ⟨ϱ, j|V CV
† |ψϱ

i,j⟩

=
1

dim(R′)

∑
ϱ,i,j

Re ⟨ϕϱi | ⟨ϱ, j| (V ⊗ id)(id⊗QFT) ·
∑
g∈G
F(g)⊗ |g−1⟩⟨g−1| · (id⊗QFT†)(V ⊗ id)† |ψϱ

i,j⟩ |0⟩

=
1

dim(R′)

∑
ϱ,i,j

Re
1√
dϱ

∑
k

⟨ψϱ
i,k| ⟨L

ϱ
k,j | (V ⊗ id) ·

∑
g∈G
F(g)⊗ |g−1⟩⟨g−1| · (id⊗QFT†)(V ⊗ id)† |ψϱ

i,j⟩ |0⟩

=
1

dim(R′)

∑
ϱ,i,j

Re
1√
dϱ

∑
k

⟨ψϱ
i,k| ⟨L

ϱ
k,j | (V ⊗ id) ·

∑
g∈G
F(g)⊗ |g−1⟩⟨g−1| · (V ⊗ id)† |ψϱ

i,j⟩
1√
|G|

∑
g′∈G
|g′⟩

=
1

dim(R′)

∑
ϱ,i,j

Re
1√
dϱ

∑
k

⟨ψϱ
i,k| ⟨L

ϱ
k,j | (V ⊗ id) ·

 1√
|G|

∑
g∈G
F(g)⊗ id

 · (V ⊗ id)† |ψϱ
i,j⟩ |g

−1⟩

=
1

dim(R′)

∑
ϱ,i,j

Re
1√
|G|

∑
g∈G

1√
dϱ

∑
k

⟨ψϱ
i,k| ⟨L

ϱ
k,j | (V ⊗ id) · (F(g)⊗ id) · (V ⊗ id)† |ψϱ

i,j⟩ |g
−1⟩

=
1

dim(R′)

∑
ϱ,i,j

Re
1√
|G|

∑
g∈G

1√
dϱ

∑
k

⟨ψϱ
i,k| ⟨L

ϱ
k,j | (V F(g)V

† ⊗ id) |ψϱ
i,j⟩ |g

−1⟩

=
1

dim(R′)

∑
ϱ,i,j

Re
1√
|G|

∑
g∈G

1√
dϱ

∑
k

⟨ψϱ
i,k|V F(g)V

† |ψϱ
i,j⟩ ⟨L

ϱ
k,j | g

−1⟩

=
1

dim(R′)

∑
ϱ,i,j

Re
1√
|G|

∑
g∈G

1√
dϱ

∑
k

⟨ψϱ
i,k|V F(g)V

† |ψϱ
i,j⟩

√
dϱ
|G|

∑
h∈G

ϱ(h−1)∗k,j ⟨h | g−1⟩ (1)

=
1

dim(R′)

∑
ϱ,i,j

Re
1

|G|
∑
g∈G

∑
k

ϱ(g)∗k,j ⟨ψ
ϱ
i,k|V F(g)V

† |ψϱ
i,j⟩

=
1

dim(R′)

∑
ϱ,i,j

Re
1

|G|
∑
g∈G
⟨ψϱ

i,j | G(g)
†V F(g)V † |ψϱ

i,j⟩ (2)

= E
g∈G

1

dim(R′)

∑
ϱ,i,j

Re ⟨ψϱ
i,j | G(g)

†V F(g)V † |ψϱ
i,j⟩

= E
g∈G

1

dim(R′)
Re tr

[
G(g)†V F(g)V †

]
(3)

= E
g∈G

Re
〈
F(g), V †G(g)V

〉
(4)

= 1− 1

2
E

g∈G

∥∥∥F(g)− V †G(g)V
∥∥∥2 (5)

≥ 1− ϵ .
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Here the first line is expanding out the definition of the circuit as a quantum Fourier transform,
controlled F ,28 and then an inverse quantum Fourier transform. (There is also rearrangement of
registers, but this is implicit in order to simplify notation.) The second and third lines applies
the inverse Fourier transform to the |0⟩ state, which represents the trivial irrep of G, as well as to
the ⟨ϱ, k, j| (commuting it past the V , which acts only on the first register). The line labeled 1
expands the definition of |Lϱk,j⟩, and line 2 uses the fact that G exactly performs the representation

on the basis of the states |ψϱ
i,j⟩. Line 3 uses the fact that the states |ψϱ

i,j⟩ form a complete basis
for R′. Line 4 uses the definition of the Hilbert Schmidt inner product, line 5 uses the fact that
∥A−B∥ =

√
2− 2Re ⟨A,B⟩, and the last line uses the bound from Theorem 3.5.

We note that this part of the duality theorem preserves the error between the representation
and the measurement.

Remark 3.8. The forward direction could equivalently be phrased as follows: Let F be 2ϵ-close
to an exact representation G under isometry V , then there is an implementation of ϵ-approximate
Fourier subspace extraction up to V with a circuit whose size of O(sF + sQFT + n).

We can also show the other direction, albeit with (we believe) sub-optimal error scaling.

Theorem 3.9 (Approximate duality, reverse direction). Let G be a finite group. Let R and R′

be two registers with an isometry V mapping R to R′, and let G be an exact representation on R′.
Say that we have a circuit CM of size sM which implements an ϵ-approximate Fourier subspace
extraction in R, satisfying

1

dim(R′)

∑
ϱ,i,j

Re ⟨ϕϱi | ⊗ ⟨ϱ, j| (V ⊗ id)M(V † ⊗ id) |ψϱ
i,j⟩ ⊗ |0⟩ ≥ 1− ϵ .

Also assume that we have a circuit of size sR implementing the irreducible representations of G.
Then there exists a circuit of size O(sM + sR) which implements a map F of G on R, that is
2ϵ-close to G, i.e. one satisfying

E
g∈G

∥∥∥V F(g)V † − G(g)
∥∥∥2 ≤ 2ϵ .

Proof. The implementation of F will be identical to the one from Theorem 3.1. In particular, F(g)
will first apply M to measure ϱ and extract j, then apply ϱ(g) to the register containing j, and
finally it will un-computeM.

We can proceed by evaluating the average difference between V F(g)V † and G(g) under the
Hilbert-Schmidt norm.

E
g∈G

∥∥∥V F(g)V † − G(g)
∥∥∥2 = E

g∈G
⟨V F(g)V † − G(g), V F(g)V † − G(g)⟩

= E
g∈G

1

dim(R′)
tr
[
V F(g)V †V F†(g)V † + G(g)G(g)† − V F†(g)V †G†(g)− G(g)V F(g)V †

]
= 2− E

g∈G

1

dim(R)′
tr
[
V F(g)V †G†(g) + G(g)V F†(g)V †

]
(6)

Here we note that the implementation of F(g) is always unitary, and V †V = id, so the first two
terms are the the identity on R′. Now we lower bound the second term. We begin by writing it as
two times the real component of a trace, and expand the definitions of G and F .

28Technically, we control on g−1, but this is just so that we can use the left-regular Fourier transform, rather than
the right-regular one. This is not essential, but it slightly simplifies the notation.
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E
g∈G

Re
2

dim(R′)
tr
[
V F(g)V †G†(g)

]
= E

g∈G

2

dim(R′)
Re
∑
ϱ,i,j

⟨ψϱ
i,j |V F(g)V

†G(g) |ψϱ
i,j⟩

= E
g∈G

2

dim(R′)
Re

∑
ϱ,i,j,k

ϱ(g)†k,j ⟨ψ
ϱ
i,j |V F(g)V

† |ψϱ
i,k⟩ .

Now, we expand out the definition of F . This yields the following state.

E
g∈G

2

dim(R′)
Re

∑
ϱ,i,j,k

ϱ(g)†k,j ⟨ψ
ϱ
i,j |VM

†ϱ(g)MV † |ψϱ
i,k⟩

= E
g∈G

2

dim(R′)
Re

∑
ϱ,i,j,k
ϱ′,a,b

ϱ(g)†k,j(⟨ϕ
ϱ′
a | ⊗ ⟨ϱ′, b|)(V ⊗ id)MV † |ψϱ

i,k⟩ ⟨ψ
ϱ
i,j |VM

†ϱ(g)(V † ⊗ id) |ϕϱ′a ⟩ |ϱ′, b⟩

= E
g∈G

2

dim(R′)
Re

∑
ϱ,i,j,k
ϱ′,a,b,c

ϱ(g)†k,jϱ
′(g)c,b(⟨ϕϱ

′
a | ⊗ ⟨ϱ′, b|)(V ⊗ id)MV † |ψϱ

i,k⟩ ⟨ψ
ϱ
i,j |VM

†(V † ⊗ id) |ϕϱ′a ⟩ |ϱ′, c⟩

= E
g∈G

2

dim(R′)
Re

∑
ϱ,i,j,k
ϱ′,a,b,c

ϱ(g)†k,jϱ
′(g)c,b(⟨ϕϱ

′
a | ⊗ ⟨ϱ′, b|)(V ⊗ id)MV † |ψϱ

i,k⟩ ⟨ψ
ϱ
i,j |VM

†(V † ⊗ id) |ϕϱ′a ⟩ |ϱ′, c⟩

=
2

dim(R′)
Re

∑
ϱ,i,j,k
ϱ′,a,b,c

E
g∈G

[
ϱ(g)†k,jϱ

′(g)c,b

]
(⟨ϕϱ′a | ⊗ ⟨ϱ′, b|)(V ⊗ id)MV † |ψϱ

i,k⟩ ⟨ψ
ϱ
i,j |VM

†(V † ⊗ id) |ϕϱ′a ⟩ |ϱ′, c⟩

=
2

dim(R′)
Re

∑
ϱ,a,i,j,k

1

dim(ϱ)
(⟨ϕϱ′a | ⊗ ⟨ϱ, j|)(V ⊗ id)MV † |ψϱ

i,k⟩ ⟨ψ
ϱ
i,j |VM

†(V † ⊗ id) |ϕϱa⟩ |ϱ, k⟩

= Re
2

dim(R′)
tr

∑
ϱ,i,j,k

1

dim(ϱ)
id⊗ |ϱ, j⟩⟨ϱ, k| (V ⊗ id)MV † |ψϱ

i,k⟩⟨ψ
ϱ
i,j |VM

†(V † ⊗ id)


= Re

2

dim(R′)
tr

∑
ϱ,i,j,k

1

dim(ϱ)
id⊗ |ϱ, j⟩⟨ϱ, k|MV † |ψϱ

i,k⟩⟨ψ
ϱ
i,j |VM

†


= Re

2

dim(R′)

∑
ϱ,i,j,k

1

dim(ϱ)
⟨ϕϱi | ⊗ ⟨ϱ, k| (V ⊗ id)MV † |ψϱ

i,k⟩⟨ψ
ϱ
i,j |VM

†(V † ⊗ id) |ϕϱi ⟩ ⊗ |ϱ, j⟩

≥ Re
2

dim(R′)

∑
ϱ,i

1

dim(ϱ)

∑
j

⟨ϕϱi | ⊗ ⟨ϱ, j| (V ⊗ id)MV † |ψϱ
i,j⟩

2

≥ Re
2

dim(R′)

∑
ϱ,i,j

⟨ϕϱi | ⊗ ⟨ϱ, j| (V ⊗ id)MV † |ψϱ
i,j⟩

≥ 2(1− ϵ)
≥ 2− 2ϵ .

Here, we insert identity matrices between ϱ andM, and we use the definition of the inner product.
Then, we use the Schur orthogonality relations to cancel the terms where ϱ ̸= ϱ′ or (k, j) ̸= (c, b).
Then we use the definition of the trace, and the cyclic property. Finally, since V ⊗ id) commutes
with id⊗|ϱ, j⟩⟨ϱ, k|, we can move it to the other side using the cyclic property. Then we use the fact
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that |ϕϱi ⟩⟨ϕ
ϱ
i |⊗|ϱ, j⟩⟨ϱ, k| ⪯ id⊗|ϱ, j⟩⟨ϱ, k|, together with the cyclic property of the trace. Finally, we

apply Cauchy Schwarz twice on the sum over j and k, and the assumption about the performance
ofM on an average state from V †R′.

Plugging this back into Equation (6), we get the following upper bound on the average distance
between G and F :

E
g∈G

∥∥∥V F(g)V † − G(g)
∥∥∥2 ≤ 2− E

g∈G

1

dim(R)′
tr
[
V F(g)V †G†(g) + G(g)V F†(g)V †

]
≤ 2− (2− 2ϵ)

≤ 2ϵ ,

as desired.

Unlike in Theorem 3.1, we do not show how to recover an efficient approximate implementation
of the irreducible representations ofG, but rather we assume that they are efficiently implementable.
We note that while in the forward direction (Theorem 3.7), our duality theorem preserves the
inner product error from the approximate representation, we are not able to prove a perfectly
tight approximate duality because the reverse direction (Theorem 3.9) yields a different notion of
approximate representation, i.e. being close (up to an isometry) to a real representation. Applying
the definition of ϵ-approximate representation directly would not yield the same ϵ as we started with
in the reverse direction. Note that if we had defined the forward direction in the same way, using
the result of [GH16], we would get a perfect duality, but the notion of approximate representation
from Definition 2.3 is more widely used. We leave it as an open question whether an ϵ-approximate
representation can be recovered in the reverse direction.

Comparison with [AAS20]. We comment on how our approximate duality (Theorems 3.7
and 3.9) relates to the approximate duality theorem from [AAS20, Theorem 2]. Let |x⟩ and |y⟩ be
two orthogonal quantum states and U be a unitary such that

⟨y|U |x⟩ = a

⟨x|U |y⟩ = b .

Unlike in the general case of Theorem 3.7, in this case, the fact that |x⟩ and |y⟩ are orthogonal
implies that there exists a unitary Û in the same register such that Û exactly swaps |x⟩ and |y⟩.
As a representation of Z2, we thus have the efficient ϵ-close representation F : g 7→ Ug and an exact
representation G : g 7→ Ûg. We then have the following:

E
g∈Z2

∥∥∥Ug − Ûg
∥∥∥2 = 1

2

(
∥id− id∥2 +

∥∥∥U − Û∥∥∥2)
=

1

2
⟨U − Û , U − Û⟩

=
1

4
tr[(U − Û)(U − Û)†]

=
1

4

(
4− tr[UÛ †]− tr[ÛU †]

)
= 1− 1

4
Re (2a+ 2b)

= 1− Re (a+ b)

2
=: 2ϵ .
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Here we use the fact that tr[UÛ †] = ⟨x|U |y⟩ + ⟨y|U |x⟩ = a + b since Û exactly swaps |x⟩ and
|y⟩, and similarly for tr[ÛU †]. LetM be the measurement implied by the forward direction of the
approximate duality (the Fourier subspace extraction simplifies to a binary projective measurement
for the case of Z2). This is an approximate distinguishing measurement between the states |ψ⟩ =
|x⟩+|y⟩√

2
and |ϕ⟩ = |x⟩−|y⟩√

2
(i.e. the states corresponding to the two one-dimensional irreducible

representations of G), and we calculate the bias below. We assume here without loss of generality
that the probability of accepting |ψ⟩ is higher than the probability of accepting |ϕ⟩, and that |0⟩⟨0|
corresponds to the accept outcome. If these are not the case, then the roles of |ψ⟩ and |ϕ⟩ or 0 and
1 can be swapped.

|(id⊗ ⟨0|)M|ψ⟩|2 − |(id⊗ ⟨0|)M|ϕ⟩|2 = |(id⊗ ⟨0|)M|ψ⟩|2 −
(
1− |(id⊗ ⟨1|)M|ϕ⟩|2

)
= |(id⊗ ⟨0|)M|ψ⟩|2 + |(id⊗ ⟨1|)M|ϕ⟩|2 − 1

≥ 1

2
(|(id⊗ ⟨0|)M|ψ⟩|+ |(id⊗ ⟨1|)M|ϕ⟩|)2 − 1

≥ 2

(
1

2
(Re (id⊗ ⟨0|)M|ψ⟩+Re (id⊗ ⟨1|)M|ϕ⟩)

)2

− 1

≥ 2

(
1

2
+

Re(a+ b)

4

)2

− 1

= 2

(
1

4
+

Re(a+ b)

4
+

Re(a+ b)2

16

)
− 1

=
Re(a+ b)

2
+

Re(a+ b)2

8
− 1

2
.

Here we note that the error bound is much weaker than the tight bound proved in [AAS20]. While
our approximate duality theorem is tight with respect to the Hilbert-Schmidt inner product, it
does not necessarily recover an optimal distinguishing measurement. The bound in [AAS20] in fact
modifies modifies the circuit to get a tighter bound, and we comment on this more later.

In the other direction, assume that we have a measurement that accepts |ψ⟩ with probability
p and |ϕ⟩ probability p −∆. Then we can first construct a measurement that applies the original
measurement, copies the result over, and un-computes the measurement. For this measurement,
we have the following:

Re(id⊗ ⟨0|)M|ψ⟩ = √p .

and similarly
Re(id⊗ ⟨1|)M|ϕ⟩ =

√
1− (p−∆) .

Note that in this case Theorem 3.9 works up to any unitary applied to |ψ⟩ and |ϕ⟩, since they are
still orthogonal and thus are a basis for some exact representation of Z2. So we can always pick
a unitary on the first register such that the archetype states are exactly the residual states of M
after measuring. Then we have the following bound on the condition of Theorem 3.9:

1− ϵ = 1

2

(√
p+

√
1− p+∆

)
≥
√

1 + ∆

2
.

Here we minimize this expression over p by setting p = 1+∆
2 . Let U be the unitary we implement

when applying Theorem 3.9 and Û be the unitary that swaps |x⟩ and |y⟩. Combined with our
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calculation before, we have the following

E
g∈Z2

∥∥∥Ug − Ûg
∥∥∥2 = 1− Re(a+ b)

2
≤ 2

(
1−

√
1 + ∆

2

)
.

Here a and b are ⟨x|U |y⟩ and ⟨y|U |x⟩ respectively. Rearranging terms, we have that

Re(a+ b)

2
≥ 2

√
1 + ∆

2
− 1 ≥ ∆ .

The reason we are able to get a tighter duality in this case is because we can alter the measure-
ment before hand so that the real component becomes the same as the absolute value, where as to
do the same in the forward direction requires modifying the unitary in a way that depends on the
group element, and thus would need to be written into the implementation of the duality theorem
itself.

Thus, we recover a non-tight version of the approximate duality from [AAS20]. As noted before,
in order to get a tighter bound, the approximate duality of [AAS20] analyzes a slightly different
algorithm, in which instead of controlling the swap on the positive superposition between |0⟩ and
|1⟩, the control qubit is initialized as 1√

2
(|0⟩ + eiθ |1⟩), with an arbitrary phase that depends on a

and b. In our case, this corresponds to initializing the control register with a state that differs from
the uniform positive superposition on the group (i.e. the trivial irrep). Specifically, each group
element would receive a phase that depends on the Hilbert Schmidt inner product between the
ϵ-close representation and some exact representation on g (since we have the freedom to alter the
isometry and unitary, we can take any exact representation). This does not work näıvely, in part
because it would seem to require computing an exponential number of complex phases (in the size
of the binary representation of the group), but we suspect that such a strategy may be possible in
order to get a tighter bound. Since this is not necessary for our case, we leave it to future work.

Remark 3.10. One might wonder what would happen if we proved a similar theorem, but instead
starting from the result of [KK82]. Here, the definition of ϵ-approximate is with respect to the
operator norm, but there is no need for an isometry in the resulting exact representation. However,
the stricter requirements on this approximate representation make it hard to apply to “approximate
adversaries” in the way that we would want. In particular, an adversary that breaks some game
with inverse polynomial probability might succeed with very high probability in some cases, but 0
in others. This means that the result of [KK82] does not help us transform these adversaries into
other useful adversaries.

4 Quantum Lightning From Non-Abelian Group Actions

We generalize the construction of quantum money / lightning of [Zha24] to general group actions.
This allows us to instantiate the construction from a potentially much wider class of group action
instantiations. Generalizing to non-Abelian groups, specifically, also allows us to show a security
reduction from a concrete computational assumption in the plain model.29 (See Section 4.3 for a
discussion of the assumption.) Below, we present a quantum money construction from non-Abelian
group actions.

29By contrast, [Zha24] is only able to show a security reduction in the black-box setting of generic group actions.

27



4.1 The Quantum Lightning Construction

Let G be a group with an efficient quantum Fourier transform and a negligible maximum Plancherel
measure (that is, each irrep ϱ of G has dimension at most dϱ := dim(ϱ) ≤

√
|G| ·negl(log |G|)). For

example, we can takeG to be the dihedral groupD2n or the symmetric group Sn. Let ∗ : G×X → X
be a semiregular group action of G on some set X, and let x ∈ X be a fixed starting element in
the set. We build a our quantum lightning scheme as follows:

Mint: To mint a quantum bank note, the mint begins with a copy of the starting element of
the group x ∈ X in a quantum register B, in tensor product with the uniform superposition of all
elements of the group.30

1√
|G|

∑
g∈G
|g⟩A |x⟩B .

The mint then applies the group action, controlled on register A, yielding the following quantum
state:

1√
|G|

∑
g∈G
|g⟩A |g ∗ x⟩B .

The mint inverts the group element in register A to get:

1√
|G|

∑
g∈G
|g−1⟩A |g ∗ x⟩B =

1√
|G|

∑
g∈G

∑
ϱ∈Ĝ

i,j∈[dϱ]

√
dϱ
|G|

ϱ(g−1)ij |Lϱji⟩A |g ∗ x⟩B

=
1√
|G|

∑
ϱ∈Ĝ

i,j∈[dϱ]

|Lϱji⟩A

√
dϱ
|G|

∑
g∈G

ϱ(g−1)ij |g ∗ x⟩B ,

where |Lϱab⟩ :=
√

dϱ
|G|
∑

h∈G ϱ(h−1)ab |h⟩ is the Fourier basis state of the left-regular representation.
The mint then applies the quantum Fourier transform on A, yielding the following state:

1√
|G|

∑
ϱ∈Ĝ

i,j∈[dϱ]

|ϱ, j, i⟩A

√
dϱ
|G|

∑
g∈G

ϱ(g−1)ij |g ∗ x⟩B . (7)

The mint then measures A in the computational basis to get an irrep label ϱ ∈ Ĝ, as well as two
Fourier indices i, j ∈ [dϱ]. The residual state on register B becomes:

|$ϱij⟩ :=

√
dϱ
|G|

∑
g∈G

ϱ(g−1)ij |g ∗ x⟩ .

Output ϱ as the serial number, and |$ϱij⟩ as the quantum money state. This completes the descrip-
tion of Mint.

Lemma 4.1. The set possible money states {|$ϱij⟩}ϱ∈Ĝ, i,j∈[dϱ] is orthonormal. That is ⟨$ϱij | $σkℓ⟩ =
δϱσδikδjℓ.

30This can be attained by performing the inverse quantum Fourier transform on the trivial irrep label of the group.
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Proof. This follows straightforwardly from Schur orthogonality relations (Lemma 2.18) and the fact
that the group action is semiregular (that is, g ∗ x = h ∗ x only if g = x). We have:

⟨$ϱij | $
σ
kℓ⟩ =

√
dϱdσ

|G|
∑

g,h∈G
ϱ(g−1)∗ijσ(h

−1)kℓ ⟨g ∗ x |h ∗ x⟩

=

√
dϱdσ

|G|
∑
g∈G

ϱ(g−1)∗ijσ(g
−1)kℓ

=

√
dϱdσ

|G|
· |G|
dϱ
δϱσδikδjℓ

= δϱσδikδjℓ .

Lemma 4.2. The serial number—that is, the irrep label ϱ—produced by the Minting is sampled
according to the Plancherel measure of ϱ in G. That is, for all ϱ ∈ Ĝ,

Pr
[
ϱ = σ

∣∣ (σ, |$σij⟩)← Mint()
]
=

d2ϱ
|G|

.

Proof. We note that can write Equation (7) as:

1√
|G|

∑
ϱ∈Ĝ

i,j∈[dϱ]

|ϱ, j, i⟩A |$
ϱ
ij⟩B .

where the |$ϱij⟩’s are orthonormal by Lemma 4.1. We can see directly that the probability of

measuring any triplet of (ϱ, j, i) in register A is exactly 1
|G| . Furthermore, since for each ϱ ∈ Ĝ, i

and j both run over [dϱ], ϱ appears in d2ϱ such triplets. The total probability of the mint outputting

serial number ϱ is therefore
d2ϱ
|G| , which is the Plancherel measure of ϱ.

Lemma 4.3. For each ϱ ∈ Ĝ and each i ∈ [dϱ], the set {|$ϱij⟩}j∈[dϱ] spans a manifestation, V ϱ
i,x, of

irrep ϱ in the group action representation A(h) =
∑

g∈G |hg ∗ x⟩⟨g ∗ x|.
Proof. Applying A(h) to |$ϱij⟩ gives us:

A(h) |$ϱi,j⟩ =

√
dϱ
|G|

∑
g∈G

ϱ
(
g−1
)
ij
|hg ∗ x⟩

=

√
dϱ
|G|

∑
g′=hg∈G

ϱ
(
(g′)−1h

)
ij
|g′ ∗ x⟩

=

√
dϱ
|G|

∑
g∈G

(
ϱ
(
g−1
)
ϱ (h)

)
ij
|g ∗ x⟩

=

√
dϱ
|G|

∑
g∈G

∑
k∈[dϱ]

ϱ
(
g−1
)
ik
ϱ (h)kj |g ∗ x⟩

=
∑
k∈[dϱ]

ϱ(h)kj
∑
g∈G

ϱ(g−1)ik |g ∗ x⟩

=
∑
k∈[dϱ]

ϱ(h)kj |$ϱik⟩ .
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We can see that A(h) acts exactly as the irrep ϱ on the space spanned by the money states
{|$ϱij⟩}j∈[dϱ]. They must therefore span the same manifestation V ϱ

i,x of irrep ϱ in A(h).

Corollary 4.4. For all ϱ ∈ Ĝ and i, j ∈ [dϱ], the money state |$ϱij⟩ is in the subspace V ϱ
x =⊕

i∈[dϱ] V
ϱ
i,x corresponding to irrep ϱ of the group action representation starting from x. Moreover,

if the group action has multiple orbits, then the full isotypic component of ϱ is V ϱ =
⊕

y∈Orb(A) V
ϱ
y

where y runs over the set of orbits of the group action, choosing an element from each orbit arbi-
trarily.

Ver: To verify, we begin by measuring that the state has support only on the set X. We then
repeat essentially the same process as for minting, but starting with the claimed banknote in the
second register, rather than |x⟩. Suppose we want to verify a state |¥ϱ⟩ with claimed serial number
ϱ, we prepare the uniform superposition over group elements, perform the group action on |¥ϱ⟩ in
superposition, and then measure the control register in the Fourier basis. That is, we perform a
course Fourier measurement on |¥ϱ⟩ and check if it has the claimed label.

Suppose that |¥ϱ⟩ is a valid state for label ϱ. That is |¥ϱ⟩ =
∑

i,j∈[dϱ] αij |$ϱij⟩ for some coeffi-
cients αij . This gives the following:

1√
|G|

∑
g∈G
|g⟩ |¥ϱ⟩ = 1√

|G|

∑
g∈G
|g⟩

∑
i,j∈[dϱ]

αij |$ϱij⟩

group−−−−→
action

1√
|G|

∑
g∈G
|g⟩

∑
i,j,k∈[dϱ]

αij ϱ(g)kj |$ϱik⟩

=
∑

i,j,k∈[dϱ]

αij
1√
|G|

∑
g∈G

ϱ(g)kj |g⟩ |$ϱik⟩

invert−−−→
g

∑
i,j,k∈[dϱ]

αij
1√
|G|

∑
g∈G

ϱ(g)kj |g−1⟩ |$ϱik⟩

=
∑

i,j,k∈[dϱ]

αij
1√
|G|

∑
g∈G

ϱ(g−1)kj |g⟩ |$ϱik⟩

=
∑

i,j,k∈[dϱ]

αij√
dϱ
|Lϱkj⟩ |$

ϱ
ik⟩

Now if we perform a course (left-regular) Fourier basis measurement on the first register (perform
a Fourier transform and measure the irrep label) we get the correct serial number ϱ. Now we have
two options: we can further perform a fine Fourier basis measurement to get k and j, collapsing the
quantum money state to a new state |$′ϱ⟩ =

∑
i∈[dϱ] α

′
ik |$

ϱ
ik⟩ with different weights on the same set

{|$ϱab⟩}a,b∈[dϱ] of basis states, but nevertheless still a valid quantum money state. Or, alternatively,
we can refrain from measuring k and j and simply uncompute the whole process, which, in the case
that verification passed with certainty, recovers the original state |¥ϱ⟩.
Remark 4.5. Note that states of the form

∑
i,j∈[dϱ] αij |$ϱij⟩ are not the only states that pass verifi-

cation. If we denote |$ϱij ∗ x⟩ :=
√

dϱ
|G|
∑

g∈G ϱ
(
g−1
)
ij
|g ∗ x⟩ as the quantum money state produced

by beginning with starting set element x ∈ X, then states of the form |$ϱij ∗ y⟩ for all y ∈ X and
i, j ∈ [dϱ] (and their superpositions) also pass verification. Thus they are also valid quantum money
states, despite not being the result of the minting process, and must be considered in the security
arguments.
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4.2 Variations on the construction

Here, we describe some possible variations of the above scheme.

Membership check. The set X may be a collection of sparse strings. In this case, a quantum
money adversary may try to forge with fake banknotes that have support outside of X. If the
group action supports membership testing for X, it is natural to also have the verifier check that
a supposed banknote has support on X. Such a check is used in [Zha24] to analyze the security
of their construction. For may group actions, however, such a membership check is not efficiently
feasible. In the case in which the group still acts compatibly (or approximately so) on elements
outside of X which cannot be distinguished from X, then this can be treated as the group action
having additional orbits. In Section 4.3.3, we show an example of how to handle such a group
action.

Irrep check. It may be useful to insist that the serial number of the banknote corresponds to
an irrep with certain properties. Notably, we will consider adding checks on the dimension of the
irrep, assuming the dimension is efficiently computable. For example, we may insist that banknotes
come from irreps of dimension at least 2.

For such irrep checks, in order to ensure correctness, we need to ensure that the mint always
produces irreps with the given property. If such irreps are at least inverse-polynomially dense
according to the Plancherel measure, we can have the mint keep minting banknotes until it produces
one with the given property.

The following lemma shows that the irreps of size at least 2 are dense for all non-Abelian groups.
Thus, for any non-Abelian group action, we can insist on valid banknotes having irrep dimension
at least 2. We will make this assumption in the security analysis of our scheme in the following
subsections.

Lemma 4.6. For any non-Abelian G, let d be the dimension of a random irrep sampled according
to the Plancherel measure. Then Pr[d ≥ 2] ≥ 1/2.

Proof. The 1-dimensional irreps are in bijection with the quotient of the commutator subgroup
G/[G,G]. Since |[G,G]| ≥ 2 for non-Abelian groups, |G/[G,G]| ≤ |G|/2. The probability of
sampling any given 1-dimensional irrep according to the Plancherel measure is 1/|G|. Over all
≤ |G|/2 such irreps, the probability of sampling any 1-dimensional irrep is at most 1/2. This
means the probability sampling an irrep of dimension 2 or higher is at least 1/2.

4.3 Security from pre-action secure group actions

In this subsection we give a security proof from cryptographic group actions that are pre-action-
secure, which we define here. A pre-action on a group action is an operation that on input x, g∗x ∈
X computes h ◦ (g ∗ x) := gh−1 ∗ x for some h ∈ G.31 That is, it prepends a group element h−1

on the right of g, as if h−1 had acted before g had acted. While for Abelian group actions,
this is equivalent to the group action itself (up to inverting h), for non-Abelian groups, this is
not generically efficient. Note, however that a preaction is itself a group action, as it satisfies
compatibility—that is, h1 ◦ (h2 ◦ (g ∗ x)) = (h1h2) ◦ (g ∗ x). And moreover, the preaction of a
preaction is the original group action.

We introduce both a search-type assumption and a decision-type assumption, that constitute
different levels of preaction security. The search-type assumption, preaction hardness, requires

31We assume here, as before, that the action is semiregular, so that this is well-defined.
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that it is computationally hard to perform a preaction. The decision-type assumption, preaction
indistinguishability, requires that it is hard to tell when a preaction has been performed. In both
cases, the preactions are defined relative to a predetermined and fixed starting element x ∈ X.

Assumption 1 (Preaction Hardness). Given g∗x, and h for random g, h← G, it is hard to output
gh−1 ∗ x. That is, for all QPT adversaries, A,

Pr
[
z = gh−1 ∗ x : x← X, g, h← G, z ← A(x, g ∗ x, h)

]
≤ 1

|G|
+ ϵ

Algorithm 4 (Preaction Indistinguishability Security Game).

1. Challenger samples b ∈ {0, 1} and two uniformly random group elements h1, h2 ← G.

2. Adversary sends a register A to the challenger.

3. If b = 0, the challenger applies the action of h1 to A. Otherwise, the challenger applies
both the action of h1 and the preaction of h2 to A. Send A back to the adversary.

4. Adversary outputs b′ and wins if b′ = b.

Assumption 2 (Preaction Indistinguishability). It is hard to distinguish whether a preaction has
been performed. Formally, no adversary can win at the preaction indistinguishability security game
(Algorithm 4) with advantage greater than ϵ. That is, if we write the action of the challenger in

Step 3 as Fh1,h2

b : g ∗ x 7→ h1 g h
−b
2 ∗ x. Then for all QPT adversaries, A, that make a single

query32 to F, ∣∣∣Pr [0← AF
h1,h2
0 : h1, h2 ← G

]
− Pr

[
0← AF

h1,h2
1 : h1, h2 ← G

]∣∣∣ ≤ ϵ
Note that when b = 0, Fh1,h2

b performs a group action for a random group element h1, and when
b = 1, it performs both a random bi-action—that is, a random group action with h1 and a random
group pre-action with h2.

Definition 4.7. We say that a group action of group Gλ on set Xλ with starting element x is
ϵ-preaction secure if both Assumption 1 and Assumption 2 hold for the group action against any
QPT adversary with advantage ϵ. We say that the group action is preaction secure if it is negl(λ)-
preaction secure for any negligible function negl.

Remark 4.8. Classically, distinguishing preactions in one round is information-theoretically im-
possible. This is because both cases—with or without a preaction—send the element to a uniformly
random element in its orbit. Interestingly, as we will see, this is not the case for quantum distin-
guishers, since they are allowed to query Fh1,h2

b on superpositions of elements.

32We could in general define multi-round security game for preaction indistinguishability, in which Steps 2 and
3 are repeated. Preaction security defined this way would be a stronger assumption, and may be useful for other
settings. However, we do not formally define the stronger version as we are able to prove security from this weaker
assumption, which gives a stronger security guarantee, and is more likely to hold for a larger class of group actions.
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Remark 4.9. For Abelian group actions, breaking preaction hardness is trivial, since the preaction
is equal to the action. On the other hand, for this same reason, preaction indistinguishability is
information-theoretically impossible: since the preaction is equal to the action, both cases—with or
without a preaction—end up performing a uniformly random group action.

Because of Remark 4.9, preaction security is a security notion that only makes sense for non-
Abelian group actions. Moreover, the security proof for our quantum money scheme makes explicit
use of the properties of representations of non-Abelian groups to prove the reduction.

In fact, for quantum adversaries and non-Abelian group actions, preaction indistinguishability
is a stronger assumption than preaction hardness:

Theorem 4.10. Let (G,X, ∗, x) be a semiregular single-orbit group action of a non-Abelian group
G acting on set X. Then if the group action satisfies preaction indistinguishability with advantage
ϵ, then it also satisfies preaction hardness with advantage O(ϵ).

Proof sketch. We defer the proof of Theorem 4.10 to Section 4.3.2 because it makes use of the
quantum money construction of Section 4.3.1. The main idea is that preactions are themselves a
representation of the group, with the Fourier indices exchanging roles relative to their roles for the
group action. Thus for semiregular single-orbit group actions, the ability to perform preactions
allows us to measure in which manifestation of the irrep a state lies via the duality theorem
(Theorem 3.7), with distinguishing error ϵ on average for a random group element. We can then
distinguish if a preaction has occurred by testing if it has moved us to a different manifestation of
the irrep.

Therefore, when working with non-Abelian group actions that are semiregular and single-orbit,
it suffices for preaction security to consider only the decision-type assumption of the indistinguisha-
bility of preactions.

4.3.1 Construction.

Let (G,X, x) be a semiregular single-orbit group action satisfying the requirements of Section 4.1.
The quantum money/lightning construction follows the framework of Section 4.1. We show below
that if the group action is preaction secure, then the quantum money construction satisfies lightning
security.

4.3.2 Security

Let |$ϱij⟩ ∝
∑

g∈G ϱ(g
−1)ij |g ∗ x⟩ be the quantum money states minted by the scheme. We show

a tight connection between the ability to perform preaction (i.e. breaking preaction hardness,
Assumption 1) and performing a “right representation” on the quantum money state, that is,
coherently mapping the quantum money state as |$ϱij⟩ 7→

∑
k∈[dim(ϱ)] ϱ(h

−1)ik |$ϱkj⟩ on input h← G.
This right representation treats the span of the same vector across the different manifestations of ϱ
as a single invariant irrep subspace. In other words, it is to the standard group action representation
what the right-regular representation is to the left-regular representation. We say that an adversary
can perform the right representation with advantage ϵ if it can perform a unitary with Hilbert-
Schmidt inner product at least 1

|G| + ϵ with the ideal right representation.

Lemma 4.11. Any adversary that performs a preaction x, g∗x, h 7→ gh−1∗x with advantage ϵ for a
fixed starting element, x ∈ X, and random g, h← G, can be used to perform a right representation,
|$ϱij⟩ 7→

∑
k∈[dim(ϱ)] ϱ(h

−1)ik |$ϱkj⟩ with the same advantage ϵ. Similarly any adversary that performs
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a right representation with advantage ϵ. can be used to perform a preaction with the same advantage
ϵ.

Proof. Consider an adversary that performs preactions with advantage ϵ, and consider what hap-
pens in the ideal case, in which the preaction is performed exactly. We start with the money
state

|$ϱij⟩ ∝
∑
g∈G

ϱ(g−1)ij |g ∗ x⟩ .

We perform a preaction with h to get

→
∑
g∈G

ϱ(g−1)ij |gh−1 ∗ x⟩

=
∑
g∈G

ϱ(h−1g−1)ij |g ∗ x⟩

=
∑
g∈G

k∈[dim(ϱ)]

ϱ(h−1)ikϱ(g
−1)kj |g ∗ x⟩

=
∑

k∈[dim(ϱ)]

ϱ(h−1)ik
∑
g∈G

ϱ(g−1)kj |g ∗ x⟩

∝
∑

k∈[dim(ϱ)]

ϱ(h−1)ik |$ϱij⟩ .

Let U =
∑

h,ϱ,i,k,j |h⟩⟨h| ⊗ ϱ(h−1)i,k |$ϱk,j⟩⟨$
ϱ
i,j | be the unitary that performs the right repre-

sentation controlled on a group element h. We can therefore rewrite it as U =
∑

h,g |h⟩⟨h| ⊗
|gh−1 ∗ x⟩⟨g ∗ x|.

Now suppose that the adversary performs preactions with advantage ϵ. That is, it performs some
Ũ =

∑
h,g |h⟩⟨h|⊗|ψ(h, g ∗ x)⟩⟨g ∗ x| where the probability of success is 1

|G|2
∑

h,g ⟨gh−1 ∗ x |ψ(h, g ∗ x)⟩ =
1
|G| + ϵ. Then we have that, by the definition of the Hilbert-Schmidt inner product,〈

U, Ũ
〉
=

1

|G|2
∑
h,g

⟨gh−1 ∗ x |ψ(h, g ∗ x)⟩ = 1

|G|
+ ϵ .

Conversely, consider an adversary that performs the right representation with advantage ϵ.

That is, it performs some operator Ũ such that
〈
U, Ũ

〉
= 1

|G| + ϵ, where U =
∑

h,ϱ,i,k,j |h⟩⟨h| ⊗
ϱ(h−1)i,k |$ϱk,j⟩⟨$

ϱ
i,j | is the ideal unitary that performs the right representation.

Consider what happens when the ideal unitary is run on |g ∗ x⟩. We start by writing |g ∗ x⟩ in
the basis of the quantum money states {|$ϱij⟩}ϱ∈Ĝ, i,j∈[dim(ϱ)]

:

|g ∗ x⟩ ∝
∑
ϱ∈Ĝ

i,j∈[dim(ϱ)]

ϱ(g)ji |$ϱij⟩ .
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Now we perform the right representation to get

→
∑
ϱ∈Ĝ

i,j∈[dim(ϱ)]

ϱ(g)ji
∑

i′∈[dim(ϱ)]

ϱ(h−1)i,i′ |$ϱi′j⟩

=
∑
ϱ∈Ĝ

i,i′,j∈[dim(ϱ)]

ϱ(g)jiϱ(h
−1)i,i′ |$ϱi′j⟩

=
∑
ϱ∈Ĝ

i′,j∈[dim(ϱ)]

ϱ(gh−1)j,i′ |$ϱi′j⟩

∝ |gh−1 ∗ x⟩ .

If instead we run Ũ on |g ∗ x⟩, and measure in the computational basis, we get the correct preaction
with probability

1

|G|2
∑

h,g∈G
⟨h| ⊗ ⟨gh−1 ∗ x| Ũ |h⟩ ⊗ |g ∗ x⟩ = 1

|G|2
∑

h,g∈G
⟨h| ⊗ ⟨g ∗ x|U †Ũ |h⟩ ⊗ |g ∗ x⟩

=
〈
Ũ , U

〉
=

1

|G|
+ ϵ .

Therefore, pre-action hardness of the group action (Assumption 1) is equivalent to the hardness
of performing the right representation on the money states to map one manifestation of an irrep
to another manifestation of the same irrep.

Corollary 4.12. For a group action to be δ-preaction secure, at most a fraction 1
|G| + δ of the

Plancherel measure of G can be on irreps of dimension 1.

Proof sketch. If a fraction at least 1
|G| + δ of the Plancherel measure falls on 1-dimensional irreps,

then the right representation can be simulated to advantage δ by a left representation (that is,
the original group action representation), and so by Lemma 4.11, would break preaction hardness
(Assumption 1).

Remark 4.13. By Corollary 4.12, we see that for any preaction-secure group action, the event
of sampling a multi-dimensional irrep from the Plancherel measure happens with overwhelming
probability, strengthening Lemma 4.6, which states that it happens with probability at least 1

2 for
general non-Abelian group actions. We can therefore always assume that the quantum money state
sampled by the minting algorithm lies in a multi-dimensional irrep. We will assume therefore for
the rest of the section that the quantum money verification rejects such 1-dimensional irreps.

Corollary 4.14. An adversary for preaction hardness with advantage ϵ can be used to perform a
right-Fourier measurement on the quantum money state with that outputs the correct index i of
the manifestation of ϱ with advantage ϵ. That is, it can be used to measure i for quantum money
state |$ϱij⟩ ∝

∑
g∈G ϱ(g

−1)ij |g ∗ x⟩.

Proof sketch. From Lemma 4.11, we can use the preaction hardness adversary to perform a 1 −
( 1
|G| + ϵ)-close right representation on the quantum money state. By Theorem 3.7, we get a right-

Fourier subspace extraction that, for a uniformly random quantum money state |$ϱi,j⟩, measures
the correct i with advantage at least ϵ.

35



We now show the following lemma which completes the proof of Theorem 4.10, showing that
preaction indistinguishability implies preaction hardness for non-Abelian group actions.

Lemma 4.15. An adversary that can perform a right-Fourier measurement on the quantum money
state with advantage ϵ can be used to break preaction indistinguishability (Assumption 2) with
advantage ϵ

2 .

Proof. Assume at first that we have a perfect such adversary for performing right-Fourier mea-
surements. We start by using it to measure i on a uniformly random quantum money state |$ϱij⟩,
which can be prepared by running the minting algorithm (which by Lemma 4.2 produces ϱ sampled
according to the Plancharel measure and i and j sampled uniformly from [dim(ϱ)]). We then apply
the challenger given by Assumption 2 to get

→
∑
g∈G

ϱ(g−1)ij |h1gh−b
2 ∗ x⟩

=
∑
g∈G

ϱ
(
h−b
2 g−1h1

)
ij
|g ∗ x⟩

=
∑
g∈G

k,ℓ∈[dim(ϱ)]

ϱ
(
h−b
2

)
ik
ϱ
(
g−1
)
kℓ
ϱ (h1)ℓj |g ∗ x⟩

=
∑

k,ℓ∈[dim(ϱ)]

ϱ
(
h−b
2

)
ik
ϱ (h1)ℓj

∑
g∈G

ϱ
(
g−1
)
kℓ
|g ∗ x⟩

=
∑

k,ℓ∈[dim(ϱ)]

ϱ
(
h−b
2

)
ik
ϱ (h1)ℓj |$

ϱ
kℓ⟩ (8)

Suppose that b = 1. Then when averaged over all pairs of group elements, h1 and h2, this gives

1

|G|2
∑

h1,h2∈G

∑
k,k′,ℓ,ℓ′∈[dim(ϱ)]

ϱ (h2)
∗
ik ϱ (h1)

∗
ℓj ϱ (h2)ik′ ϱ (h1)ℓ′j |$

ϱ
kℓ⟩⟨$

ϱ
k′ℓ′ |

=
1

|G|2
∑

k,k′,ℓ,ℓ′∈[dim(ϱ)]

∑
h1∈G

ϱ (h1)
∗
ℓj ϱ (h1)ℓ′j

∑
h2∈G

ϱ (h2)
∗
ik ϱ (h2)ik′ |$

ϱ
kℓ⟩⟨$

ϱ
k′ℓ′ |

=
1

dim(ϱ)2

∑
k,k′,ℓ,ℓ′∈[dim(ϱ)]

δℓℓ′δkk′ |$ϱkℓ⟩⟨$
ϱ
k′ℓ′ |

=
1

dim(ϱ)2

∑
k,ℓ,∈[dim(ϱ)]

|$ϱkℓ⟩⟨$
ϱ
kℓ| ,

where the second equality follows from the Schur orthogonality relations (Lemma 2.18). This
is the fully mixed state over the isotypic component of ϱ—that is, over the union of all of the
manifestations of irrep ϱ.

Now with probability 1 − 1
dim(ϱ) ≥

1
2 (since dim(ϱ) ≥ 2), we get that k ̸= i. That is, with

probability at least 1
2 , the quantum money state has moved to a different manifestation of the irrep

ϱ, and measuring it again will confirm this.
If instead b = 0, then k = i with certainty (as ϱ((h02))ik = ϱ(id)ik = δik ∀ϱ ∈ Ĝ, h2 ∈ G). So

we output b′ = 1 if k ̸= i and 0 otherwise. This gives a distinguishing advantage of at least 1
2 ,

breaking Assumption 2.
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Now suppose that the adversary has advantage ϵ. In the case where there is no preaction,
the adversary will always measure the same i, even if they perform a Fourier measurement that is
noisy, as long as they perform a unitary transformation. This is because when there is no preaction,
it will never change the manifestation. In the case when the adversary performs a right Fourier
measurement with advantage ϵ, they will have probability at least ϵ(1− 1

dim(ϱ)) chance of measuring

a different manifestation label (ϵ from the measurement inaccuracy, and the other term from the
probability that the manifestation actually moved). Thus, they break preaction indistinguishability

with probability ϵ
(
1− 1

dim(ϱ)

)
≥ ϵ

2 .

We can now complete the proof of Theorem 4.10 by combining Lemmas 4.11 and 4.15 and Corol-
lary 4.14.

We now turn to the quantum lightning security of the scheme. We argue that any adversary who
has two copies of the quantum money state can use them to break preaction indistinguishability
(Assumption 2). We therefore get a secure quantum lightning scheme from any group action that
satisfies the syntactic requirements and is preaction-secure.

Focusing on the archetype states. For the analysis, before we proceed, it will be useful to
consider a proxy for the quantum money states. The money states lie in a potentially large subspace,
which is harder to analyze, so it is useful to instead focus on the archetype state that appears after
performing a Fourier subspace extraction, which is a unique state that characterizes each such
subspace.

Suppose we have a quantum money state |$ϱij⟩. We perform a Fourier subspace extraction using
Theorem 3.1, and get

|$ϱij⟩
FSE−−−→ |ϕϱi ⟩ |ϱ⟩ |j⟩ =

(
1√
dϱ

∑
k

|$ϱik⟩ ⊗ |k⟩

)
|ϱ⟩ |j⟩

Observation 4.16. We observe that the archetype state |ϕϱi ⟩ in the first register is unaffected by
applying the group action:

|$ϱij⟩
action by h−−−−−−−→

∑
ℓ

ϱ(h)ℓj |$ϱiℓ⟩
FSE−−−→ |ϕϱi ⟩ |ϱ⟩

(∑
ℓ

ϱ(h)ℓj |ℓ⟩

)

On the other hand, applying the corresponding preaction performs the (inverted) irrep ϱ onto
the set of archetype states {|ϕϱi ⟩}i∈[dim(ϱ)] for the different manifestations of ϱ:

|$ϱij⟩
preaction by h−−−−−−−−−→

∑
ℓ

ϱ(h−1)iℓ |$ϱℓj⟩
FSE−−−→

(∑
ℓ

ϱ(h−1)iℓ |ϕϱℓ ⟩

)
|ϱ⟩ |j⟩

Proposition 4.17. Suppose that the group action used in the quantum money construction (Sec-
tion 4.3.1) is ϵ-preaction secure. Then no QPT adversary can produce a quantum state on two
registers such that the probability of measuring both registers in the same irreducible representation
subspace ϱ is greater than 2 dim(ϱ)ϵ/(1 + dim(ϱ)).

Proof. Assume for the sake of contradiction that an adversary for quantum lightning, A, can
prepare a quantum state on two registers, both of which pass verification. By definition, the
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verifier projects onto V ϱ. Since we have shown that |$ϱi,j⟩ is a basis for V ϱ, the states produced by
A must be supported on states of the form

|$ϱij⟩ ⊗ |$
ϱ
kℓ⟩ where |$ϱij⟩ =

√
dim(ϱ)

|G|
∑
g∈G

ϱ(g−1)ij |g ∗ x⟩

for some ϱ ∈ Ĝ such that 1 < dim(ϱ). We show that this adversary can be used to break Assump-
tion 2. Let Fb be the challenger given in the assumption, which either applies a random action and
random pre-action (b = 1), or just applies a random action (b = 0).

To demonstrate the idea, we first assume that i = k, that is, that the two registers initially lie
in the same Fourier subspace of ϱ. We will see later how to handle the more general case. Suppose
that we take only one of the two registers and apply Fb. We get (see Equation (8))∑

r,s∈[dim(ϱ)]

ϱ
(
h−b
2

)
ir
ϱ (h1)sj |$

ϱ
rs⟩ =

{∑
s∈[dim(ϱ)] ϱ (h1)sj |$

ϱ
is⟩ b = 0∑

r,s∈[dim(ϱ)] ϱ
(
h−1
2

)
ir
ϱ (h1)sj |$

ϱ
rs⟩ b = 1

Then if b = 0 (i.e. the challenger did not apply a pre-action), the state remains in the same
Fourier subspace with certainty, and so a swap test between the archetype states produced by
performing a Fourier subspace extraction on both registers will succeed with probability 1, and we
output b′ = 0.

If b = 1, then with probability 1 − 1
dim(ϱ) ≥

1
2 (since dim(ϱ) ≥ 2), the resulting state is in

a different Fourier subspace. In this case, the swap test between the archetype states fails with
probability 1

2 , in which case we output b′ = 1. Thus, in this case, we output 1 with probability at
least 1

4 . The overall success probability is therefore 1
2 + 1

8 = 5
8 , breaking Assumption 2.

However, the initial states need not lie in the same initial Fourier subspace, so instead we
give the following algorithm that sandwiches an application of F between two applications of the
symmetric subspace projector. Formally, consider the following algorithm.

Algorithm 5. Adversary for pre-action indistingiuishability given a two-register state, both
with support on the same irrep ϱ.

Input: Two quantum registers that are in valid money states for ϱ and a query to the blackbox
Fh1,h2

b given by Assumption 2.

1. Perform Fourier subspace extraction on the two halves of the input.

2. Perform a swap test between the two registers containing the archetype states produced.

3. Uncompute the Fourier subspace extraction on both halves of the state.

4. Query Fh1,h2

b on the first register.

5. Perform Fourier subspace extraction on both halves of the state.

6. Perform a second swap test between the two registers containing the archetype states
produced.

7. If the results of both the first and second swap tests agree, output b′ = 0 (“no preaction”).

8. If the results of the two swap tests disagree, output b′ = 1 (“preaction”).
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Case 1: b = 0 (there is no preaction). We first claim that in the case where there is no
preaction, the algorithm outputs “no preaction” with probability 1. In order to argue this, we
analyze the case when the adversary measures the symmetric subspace in the first measurement
after performing the Fourier subspace extraction , and argue that un-computing the subspace
extraction, applying Fh1,h2

0 , and then performing Fourier subspace extraction always maps us back

into the symmetric subspace on the first register. Since Bh1,h2
0 is a unitary, this will imply that it is

block diagonal in Πsym and Πasym. In this case, all sums will go from 0 to dim(ϱ)− 1, so we drop
the summands.

Recall that the symmetric subspace is equal to the span of |ψ⟩⊗2, for |ψ⟩ =
∑

i,j αi |ϕϱi ⟩, so we
can write the state after measuring the symmetric subspace as being in the span of:∑

i,k

αiαk |ϕϱi ⟩ ⊗ |ϕ
ϱ
k⟩

⊗∑
j,ℓ

βj,ℓ |ϱ, ϱ, j, ℓ⟩ .

Inverting the Fourier subspace extraction, we get the following state∑
i,k,j,ℓ

αiαkβj,ℓ |$ϱi,j⟩ ⊗ |$
ϱ
k,ℓ⟩ .

Then, after applying Fh1,h2
0 to the first register of this state, we have the following.∑

i,j,k,ℓ

∑
s

αiαkβj,ℓϱ(h1)s,j |$ϱi,s⟩ ⊗ |$
ϱ
k,ℓ⟩ .

Then after performing subspace extraction on both registers, we end up with the following state∑
i,j,k,ℓ

∑
s

αiαkβj,ℓϱ(h1)s,j
(
|ϕϱi ⟩ ⊗ |ϕ

ϱ
k⟩
)
⊗ |ϱ, ϱ, s, ℓ⟩

=
∑
i,k

αiαk

(
|ϕϱi ⟩ ⊗ |ϕ

ϱ
k⟩
)
⊗
∑
j,s,ℓ

βj,ℓϱ(h1)s,j |ϱ, ϱ, s, ℓ⟩

=
∑
i,k

αiαk

(
|ϕϱi ⟩ ⊗ |ϕ

ϱ
k⟩
)
⊗
∑
s,ℓ

∑
j

(βj,ℓϱ(h1)s,j) |ϱ, ϱ, s, ℓ⟩ .

Setting β′s,ℓ =
∑

j βj,ℓϱ(h)s,j , we get that we are still in the symmetric subspace within the first
register. Since this applied to any setting of coefficients, the unitary transformation that composes
steps 2, 3 and 4 preserves the symmetric and anti-symmetric subspaces. Thus, if the first mea-
surement has either outcome, the second measurement on step 6 will have the same outcome with
probability 1, and the adversary will output ‘no preaction’ with probability 1.

Case 2: b = 1 (there is a preaction). We perofrm a similar analysis in the case where there is
a pre-action, but now we will need to consider both subspaces. This is because we need to prove
that the unitary that the adversary implements in steps 3 through 5 maps every vector from the
symmetric subspace to something with high overlap with the anti-symmetric subspace, and vice
versa. Starting with the symmetric subspace, we have the same starting state after inverting the
Fourier subspace extraction. ∑

i,k,j,ℓ

αiαkβj,ℓ |$ϱi,j⟩ ⊗ |$
ϱ
k,ℓ⟩ .
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After applying F, we will end up with the following state∑
i,k,j,ℓ,r,s

αiαkβj,ℓϱ(h
−1
2 )i,rϱ(h1)s,j |$ϱr,s⟩ ⊗ |$

ϱ
k,ℓ⟩ .

After performing Fourier subspace extraction, we end up with the following state.∑
i,k,j,ℓ,r,s

αiαkβj,ℓϱ(h
−1
2 )i,rϱ(h1)s,j

(
|ϕϱr⟩ ⊗ |ϕ

ϱ
k⟩
)
|ϱ, ϱ, s, ℓ⟩

=

∑
r,k

(∑
i

αiϱ(h
−1
2 )i,r

)
αk |ϕϱr⟩ ⊗ |ϕ

ϱ
k⟩

⊗∑
s,ℓ

∑
j

βj,ℓϱ(h1)s,j

 |ϱ, ϱ, s, ℓ⟩
=

(∑
r

α′
r |ϕϱr⟩

)
⊗

(∑
k

αk |ϕϱk⟩

)
⊗
∑
s,ℓ

∑
j

βj,ℓϱ(h1)s,j

 |ϱ, ϱ, s, ℓ⟩ .
Here in the final line we define α′

r =
∑

i αiϱ(h
−1
2 )i,r. We can then write out the following expression

for the inner product of the first two registers with their swap.

FSWAP =

(∑
r

(α′
r)

† ⟨ϕϱr |

)
⊗

(∑
k

α†
k ⟨ϕ

ϱ
k|

)
SWAP

(∑
r′

α′
r′ |ϕ

ϱ
r′⟩

)
⊗

(∑
k′

αk′ |ϕϱk′⟩

)
=
∑
r,k

(
(α′

r)
† ⟨ϕϱr |

)
⊗
(
α†
k ⟨ϕ

ϱ
k|
)
SWAP

(
α′
k |ϕ

ϱ
k⟩
)
⊗ (αr |ϕϱr⟩)

=
∑
r,k

(
(α′

r)
†α†

kαrα
′
k

)
.

Now we analyze a single term in the sum. Since α′ itself is a sum of more elements, this will make
the equations more managable.

(α′
r)

†α†
kα

†
rα

′
k =

∑
i,i′

α†
iϱ(h

−1
2 )†i,rα

†
kαrα

′
iϱ(h2)

−1
i′,k

= α†
kαr

∑
i,i′

α†
iαi′ϱ(h

−1
2 )†i,rϱ(h

−1
2 )i′,k .

Now, computing an average over group elements and adding back in the sum over r and k, we have
the following:

∑
r,k

α†
kαr

∑
i,i′

α†
iαi′ E

h2∈G
ϱ(h−1

2 )†i,rϱ(h
−1
2 )i′,k =

1

dim(ϱ)

(∑
r

α†
rαr

)(∑
i

α†
iαi

)

=
1

dim(ϱ)
.

Here we use the fact that ⟨$ϱab | $
ϱ
cd⟩ =

dim(ϱ)
|G|

∑
h∈G ϱ(h

−1)∗a,bϱ(h
−1)c,d = δacδbd (Lemma 2.18) to

cancel out the terms for which r ̸= k and i ̸= i′, and then we use the fact that αi come from a
normalized quantum state. To complete the proof, the probability that the swap test accepts on
the state is given by

1

2
(1 + FSWAP) =

1

2
+

1

2 dim(ϱ)
.
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This means that every vector in the symmetric state gets mapped to a vector with overlap
1/2+1/2 dim(ϱ) with the anti-symmetric state. Thus, if the first swap test returned the symmetric
subspace, the second one returns the symmetric subspace with this probability.

Now, we need to analyze the anti-symmetric subspace. Similar to before, we take a basis for
the anti-symmetric subspace and analyze what happens. There is a simple basis described by the(
dim(ϱ)

2

)
vectors of the form

1√
2

(
|$ϱi,j⟩ ⊗ |$

ϱ
k,ℓ⟩ − |$

ϱ
k,j⟩ ⊗ |$

ϱ
i,ℓ⟩
)
.

Going through the same steps, after applying F, now with a pre-action, we have the following state

1√
2

∑
r,s

(
ϱ(h−1

2 )i,rϱ(h1)s,j |$ϱr,s⟩ ⊗ |$
ϱ
k,ℓ⟩ − ϱ(h

−1
2 )k,rϱ(h1)s,j |$ϱr,s⟩ ⊗ |$

ϱ
i,ℓ⟩
)
.

Now we can examine the probability that a state starting from the symmetric subspace is still in
the symmetric subspace (and that a state starting from the anti-symmetric subspace is still in the
anti-symmetric subspace) after the Fourier subspace extraction and swap test. When we perform
Fourier subspace extraction, we have the following state

|ψi,j,k,ℓ⟩ =
1√
2

∑
r,s

(
ϱ(h−1

2 )i,rϱ(h1)s,j |ϕϱr⟩ ⊗ |ϕ
ϱ
k⟩ − ϱ(h

−1
2 )k,rϱ(h1)s,j |ϕϱr⟩ ⊗ |ϕ

ϱ
i ⟩
)
⊗ |ϱ, ϱ, s, ℓ⟩

=
1√
2

∑
r

(
ϱ(h−1

2 )i,r |ϕϱr⟩ ⊗ |ϕ
ϱ
k⟩ − ϱ(h

−1
2 )k,r |ϕϱr⟩ ⊗ |ϕ

ϱ
i ⟩
)
⊗
∑
s

ϱ(h1)s,j |ϱ, ϱ, s, ℓ⟩ .

Since the operations up until now were unitary, we can write every state in the anti-symmetric
subspace as a linear combination of vectors of this form.

∑
i,j,k,ℓ αi,j,k,ℓ |ψi,j,k,ℓ⟩. We need to

compute the inner product between this state and the swapped version of this state, which we can
compute as
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E
h2∈G

 ∑
i,j,k,ℓ

i′,j′,k′,ℓ′

αi,j,k,ℓα
†
i′,j′,k′,ℓ′ ⟨ψi,j,k,ℓ|SWAP |ψi′,j′,k′,ℓ′⟩


= E

h2∈G

[
1

2

∑
i,k,k′,i′

∑
r,r′

(
ϱ(h−1

2 )∗i′,r ⟨ϕϱr | ⊗ ⟨ϕ
ϱ
k′ | − ϱ(h

−1
2 )∗k′,r ⟨ϕϱr | ⊗ ⟨ϕ

ϱ
i′ |
)

(
ϱ(h−1

2 )i,r′ |ϕϱk⟩ ⊗ |ϕ
ϱ
r′⟩ − ϱ(h

−1
2 )k,r′ |ϕϱi ⟩ ⊗ |ϕ

ϱ
r′⟩
)∑

j,ℓ

αi,j,k,ℓα
†
i′,j,k′,ℓ

]

= E
h2∈G

[
1

2

∑
i,k,k′,i′

∑
r,r′

(
ϱ(h−1

2 )∗i′,rϱ(h
−1
2 )i,r′ ⟨ϕϱr |ϕ

ϱ
k⟩ ⟨ϕ

ϱ
k′ |ϕ

ϱ
r′⟩ − ϱ(h

−1
2 )∗i′,rϱ(h

−1
2 )k,r′ ⟨ϕϱr |ϕ

ϱ
i ⟩ ⟨ϕ

ϱ
k′ |ϕ

ϱ
r′⟩

− ϱ(h−1
2 )∗k′,rϱ(h

−1
2 )i,r′ ⟨ϕϱr |ϕ

ϱ
k⟩ ⟨ϕ

ϱ
i′ |ϕ

ϱ
r′⟩+ ϱ(h−1

2 )∗k′,rϱ(h
−1
2 )k,r′ ⟨ϕϱr |ϕ

ϱ
i ⟩ ⟨ϕ

ϱ
i′ |ϕ

ϱ
r′⟩
) (
βi,k,k′,i′

) ]
= E

h2∈G

[
1

2

∑
i,k,k′,i′

(
ϱ(h−1

2 )∗i′,kϱ(h
−1
2 )i,k′ − ϱ(h−1

2 )∗i′,iϱ(h
−1
2 )k,k′

− ϱ(h−1
2 )∗k′,kϱ(h

−1
2 )i,i′ + ϱ(h−1

2 )∗k′,iϱ(h
−1
2 )k,i′

)
βi,k,k′,i′

]
=
∑
i,k

1

2
βi,k,k,i

(
E

h2∈G

[∣∣ϱ(h−1
2 )i,k

∣∣2 + ∣∣ϱ(h−1
2 )k,i

∣∣2] ) .
In the first equality, the swap only affects the first two registers, so the final two indices must be
the same to survive the inner product. In the third equality, we use the fact that ⟨ϕϱa |ϕϱb⟩ = δab.
In getting to the final line, we use the fact that the i indices are never equal to the k indices, by
the fact that we are in the anti-symmetric group. Combining this with the fact from before that∑

h∈G ϱ(h
−1)∗a,bϱ(h

−1)c,d = δc,dδb,d, we can remove the two negative terms when averaging over the
group elements. Using the same fact, we have that for the remaining terms, we have

1

|G|
∑
h2∈G

∣∣ϱ(h−1
2 )i,k

∣∣2 + 1

|G|
∑
h2∈G

∣∣ϱ(h−1
2 )k,i

∣∣2 = 2

dim(ϱ)
.

Since the βi,k,k,i sum to 1 (as they are again the norm of the original vectors), the probability that
the swap test succeeds on the second try is exactly

1

2
+

1

2

( 1

dim(ϱ)

)
.

Now, we have shown that in the case when there is a pre-action, for all states, the probability that
the second swap test succeeds is given by

1

2
+

1

2 dim(ϱ)
.

Since the adversary accepts whenever the results are different, the adversary outputs “preaction”
with probability at least

1

2
− 1

2 dim(ϱ)
.
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This is also the distinguishing advantage, as we showed that in the case where there is no pre-action,
the adversary outputs “no pre-action” with probabiliy 1.

If the adversary starts with a state that is 2 dim(ϱ)ϵ/(dim(ϱ) + 1) close to the tensor product
space of ϱ, they can first simply measure the irrep label of both states, and conditioned on getting
ϱ for both run this test. If the probability they measure ϱ for both is at least the given probability,
then their distinguishing advantage will be at least ϵ.

4.3.3 Generalizing to Intransitive Group Actions

Previously, we assumed that the group action was transitive. That is, it had a single orbit, such that
every element of the set X can be reached from a single starting point x ∈ X. In this subsection,
we generalize to the case in which the group action is intransitive. This means that the space
is divided up into multiple orbits, with each orbit operating as a new manifestation of the whole
representation space.

Note that the construction does not need to change for intransitive group actions. We can
still have a fixed starting element x, whose orbit will be used by the minting algorithm to mint
banknotes. However, for the proof, we can no longer assume that the two registers produced by the
adversary have support on the same orbit—the orbit of x. The adversary may in general attempt
to mint banknotes with supports on different orbits.

We comment on how the security of the previous section generalizes to the intransitive setting.

Intransitive Preaction Security. We modify the definitions of preaction security to the intran-
sitive case. Let (G,X, ∗, x) be an intransitive group action.

Assumption 3 (Intransitive Preaction Hardness). Given x, g∗x, and h for a fixed starting element,
x ∈ X, and random g, h ← G, it is hard to output gh−1 ∗ x. That is, there exists an ϵ > 0 such
that for all QPT adversaries, A,

Pr
[
z = gh−1 ∗ x : x← X, g, h← G, z ← A(x, g ∗ x, h)

]
≤ 1

|G|
+ ϵ

Assumption 4 (Intransitive Preaction Indistinguishability). It is hard to distinguish whether a
preaction has been performed relative to a set of prefixed starting points. Let O1, . . . ,Om be the
orbits of the group action and let x1, . . . , xm be representatives from each orbit (xi ∈ Oi). Let

Fh1,h2

b : g ∗ xi 7→ h1 g h
−b
2 ∗ xi, for b ∈ {0, 1} and h1, h2 ∈ G. Then there exists an ϵ > 0 such

that for all QPT adversaries, A, that make a single query to Fh1,h2

b ,

Pr
[
b′ = b : h1, h2 ← G, b← {0, 1}, b′ ← AF

h1,h2
b

]
≤ 1

2
+ ϵ

Note that when b = 0, the challenger Fh1,h2

b performs a group action for a random group element
h1, and when b = 1, it performs both a random group action with h1 and a random group pre-action
with h2.

Definition 4.18. We say that a group action of group Gλ on set Xλ with starting element x
is ϵ-preaction secure if both Assumption 3 and Assumption 4 hold for the group action against
any QPT adversary with advantage ϵ. We say that the group action is preaction secure if it is
negl(λ)-preaction secure for any negligible function negl.

We also need an additional technical assumption, which says that it is hard to find “bad” orbits.
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Assumption 5 (Intractable bad irreps). We say that a group action has δ-intractable bad irreps
if any QPT adversary has probability at most δ of producing an x ∈ X and an irrep ϱ such that
(1) dim(ϱ) > 1, but (2)ϱ only has a single manifestation in the representation of G acting on the
orbit Oi containing x.

Note that if all orbits Oi are in bijection with G, then the representation of G acting on Oi will
have dim(ϱ) manifestations of each irrep ϱ. However, if some orbit contains an element x such that
g ∗ x = x for some g, then the number of manifestations of ϱ may be smaller. Assumption 5 says
that it is hard to find such an irrep and representative of such an orbit.

Proposition 4.19. Suppose that the group action used in the quantum money construction (Sec-
tion 4.3.1) is ϵ-intrasitive preaction secure and has δ-intractable bad irreps. Then no QPT adversary
can produce a quantum state on two registers such the probability of measuring both in the same
irreducible subspace is greater than 2ϵ+ δ.

Proof. First, assume that the adversary does not sample a state in an intractable bad orbit. Since
the probability is upper bounded by δ, this increase the probability that they measure a state in
the same irreducible subspace by δ.

Similar to the proof of Proposition 4.17, we assume for the sake of contradiction that the
adversary has an δ probability of measuring two states in the same irreducible representation.
Then we consider the same algorithm, Algorithm 5, for distinguishing a black-box that performs a
pre-action from a black-box that does not perform a pre-action.

First, let |$ϱ,xi,j ⟩ be the money state that corresponds to irrep label ϱ, manifestation i, basis
vector j, and starting element x. Further let |ϕϱ,xi ⟩ be the archetype state corresponding to irrep
ϱ, manifestation i and starting element x.

Case 1: b = 0 (there is no preaction). We begin by analyzing the performance of Algorithm 5
in the case when b = 0, first in the case where the symmetric subspace accepts and then the case
when it fails. Then we can write every state in the symmetric subspace as follows for some choice
of αx

i and βj,ℓ. ∑
i,k,x,y

αx
i α

y
k |ϕ

ϱ,x
i ⟩ ⊗ |ϕ

ϱ,y
k ⟩ ⊗

∑
j,ℓ

βj,ℓ |ϱ, ϱ, j, ℓ⟩ .

Here we note that this encompasses the case when the states span multiple orbits (indexed by
starting elements x and y). Then after inverting the Fourier subspace extraction, we get the
following state ∑

i,k,j,ℓ,x,y

αx
i α

y
jβj,ℓ |$

ϱ,x
i,j ⟩ ⊗ |$

ϱ,y
k,ℓ⟩ .

Then after applying the black box (recall that b = 0) to the first register, we have the following∑
i,k,j,ℓ,x,y

∑
s

αx
i α

y
jβj,ℓϱ(h1)s,j |$

ϱ,x
i,s ⟩ ⊗ |$

ϱ,y
k,ℓ⟩ .

After performing Fourier subspace extraction again, we get the following state, following the logic
in Proposition 4.17. ∑

i,k,x,y

αx
i α

y
k |ϕ

ϱ,x
i ⟩ ⊗ |ϕ

ϱ,y
j ⟩ ⊗

∑
s,ℓ,j

(βj,ℓϱ(h1)s,j) |ϱ, ϱ, s, ℓ⟩ .

Thus, we measure a state in the symmetric subspace. Furthermore, since the symmetric subspace
is perfectly mapped back to the symmetric subspace under the black box, if the first symmetric
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subspace measurement outputs the anti-symmetric subspace, the black box will keep the state in the
anti-symmetric subspace. Thus, in the case that the b = 0, the algorithm accepts with probability
1.

Case 2: b = 1 (there is a preaction). We first start in the case when the symmetric subspace
projector accepts. In this case, we can write the state after the projector accepts, similarly to
before as ∑

i,k,x,y

αx
i α

y
k |ϕ

ϱ,x
i ⟩ ⊗ |ϕ

ϱ,y
k ⟩ ⊗

∑
j,ℓ

βj,ℓ |ϱ, ϱ, j, ℓ⟩ .

After applying the black box (this time with a pre-action), we have the following state∑
i,k,x,y,r,s

αx
i α

y
kβj,ℓϱ(h

−1
2 )i,rϱ(h1)s,j |ϕϱ,xr ⟩ ⊗ |ϕ

ϱ,y
k ⟩ ⊗ |ϱ, ϱ, s, ℓ⟩

=
∑

r,k,x,y

(∑
i

αx
i ϱ(h

−1
2 )i,r

)
αy
k |ϕ

ϱ,x
r ⟩ ⊗ |ϕ

ϱ,y
k ⟩ ⊗

∑
s,ℓ

∑
j

βj,ℓϱ(h1)s,j

 |ϱ, ϱ, s, ℓ⟩
(∑

r,x

α′x
r |ϕϱ,xr ⟩

)
⊗

∑
k,y

αy
k |ϕ

ϱ,y
k ⟩

⊗∑
s,ℓ

∑
j

βj,ℓϱ(h1)s,j

 |ϱ, ϱ, s, ℓ⟩ .
We can then write the expression for the fidelity of this state and the swapped version if the state
as follows.

FSWAP =
∑

r,k,x,y

((
α′x
r

)†
(αx

r )
† (αy

k

)† (
α′y
k

))
Here the only difference from before is that the inner product also enforces that the orbits (x and
y) are the same between the left and right. Expanding each α′ as before, we get the following
expression for the fidelity of the state with its swap.∑

r,k,x,y

(
αy
k

)†
(αx

r )
†∑

i,i′

(αx
i )

† αy
i′ϱ(h

−1
2 )†i,rϱ(h

−1
2 )i′,k .

Computing the average over the group and applying Lemma 2.18, we get the following quantity∑
r,k,x,y

(
αy
k

)†
(αx

r )
†∑

i,i′

(αx
i )

† αy
i′ E
h2∈G

[
ϱ(h−1

2 )†i,rϱ(h
−1
2 )i′,k

]

=
1

dim(ϱ)

∑
x,y

(∑
r

(αx
r )

† (αy
r)

)(∑
i

(αx
i )

† (αy
i )

)

≤ 1

dim(ϱ)

√√√√∑
x,y

(∑
r

(αx
r )

† (αy
r)

)
·
∑
x,y

(∑
i

(αx
i )

† (αy
i )

)

=
1

dim(ϱ)
.

Here after applying the Schur orthogonality rules, we apply Cauchy-Schwarz and then use the fact
that both terms in the square roots are the norm of the original vector, so they are 1. To complete
the proof, we note that the probability that the swap test succeeds is given by

1

2
(1 + FSWAP) =

1

2
+

1

2 dim(ϱ)
.
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Now we proceed with the analysis in the case that the symmetric subspace measurements outputs
the anti-symmetric subspace. We can similarly write the anti-symmetric subspace on the first
register as the span of the following vectors (and analyzing the action of the rest of the algorithm
on those vectors will imply the action on every state in the anti-symmetric subspace).

1√
2

(
|$ϱ,xi,j ⟩ ⊗ |$

ϱ,y
k,ℓ⟩ − |$

ϱ,y
k,j⟩ ⊗ |$

ϱ,x
i,ℓ ⟩
)
.

Here we require that δx,yδi,k = 0 (i.e. that at least one of the pairs is different). Similar to before we
can write out the state after applying the black box (now with a pre-action), and then the Fourier
subspace extraction as follows

|ψx,y
i,j,k,ℓ⟩ =

√
12
∑
r,s

(
ϱ(h−1

2 )i,rϱ(h1)s,j |ϕϱ,xr ⟩ ⊗ |ϕ
ϱ,x
k ⟩ − ϱ(h

−1
2 )k,rϱ(h1)s,j |ϕϱ,yr ⟩ ⊗ |ϕ

ϱ,x
i ⟩
)
⊗ |ϱ, ϱ, s, ℓ⟩

=
1√
2

∑
r

(
ϱ(h−1

2 )i,r |ϕϱ,xr ⟩ ⊗ |ϕ
ϱ,y
k ⟩ − ϱ(h

−1
2 )k,r |ϕϱ,yr ⟩ ⊗ |ϕ

ϱ,x
i ⟩
)
⊗
∑
s

ϱ(h1)s,j |ϱϱ, s, ℓ⟩ .

Now, in a same fashion as before we can write every state in the anti-symmetric subspace as a
linear combination of these basis vectors as

∑
i,j,k,ℓ,x,y α

x,y
i,j,k,ℓ |ψ

x,y
i,j,k,ℓ⟩. We then need to compute

the inner product between this state and the state after swapping with itself, averaged over all
group elements. We get the following

E
h2∈G

 ∑
i,j,k,ℓ,x,y

i′,j′,k′,ℓ′,x′,y′

(
αx,y
i,j,k,ℓ

)† (
αx′,y′

i′,j′,k′,ℓ′

)
⟨ψx,y

i,j,k,ℓ| SWAP |ψx′,y′

i′,j′,k′,ℓ′⟩


= E

h2∈G

[
1

2

∑
x,y,x′,y′

∑
i,k,i′,k′

∑
r,r′

(
ϱ(h−1

2 )∗i′,r ⟨ϕϱ,xr | ⊗ ⟨ϕ
ϱ,y
k′ | − ϱ(h

−1
2 )∗k′,r ⟨ϕϱ,yr | ⊗ ⟨ϕ

ϱ,x
i′ |
)

(
ϱ(h−1

2 )i,r′ |ϕϱ,y
′

k ⟩ ⊗ |ϕ
ϱ,x′

r′ ⟩ − ϱ(h
−1
2 )k,r′ |ϕϱ,x

′

i ⟩ ⊗ |ϕϱ,y
′

r′ ⟩
)∑

j,ℓ

αx,y
i,j,k,ℓ

(
αx′,y′

i′,j′,k′,ℓ′

)†]

= E
h2∈G

[
1

2

∑
x,y,x′,y′

∑
i,k,i′,k′

∑
r,r′

(
ϱ(h−1

2 )∗i′,rϱ(h
−1
2 )i,r′) ⟨ϕϱ,xr |ϕ

ϱ,y′

k ⟩ ⟨ϕ
ϱ,y
k′ |ϕ

ϱ,x′

r′ ⟩

− ϱ(h−1
2 )∗i′,rϱ(h

−1
2 )k,r′ ⟨ϕϱ,xr |ϕ

ϱ,x′

i ⟩ ⟨ϕϱ,yk′ |ϕ
ϱ,y′

r′ ⟩

− ϱ(h−1
2 )∗k′,rϱ(h

−1
2 )i,r′ ⟨ϕϱ,yr |ϕ

ϱ,y′

k ⟩ ⟨ϕ
ϱ,x
i′ |ϕ

ϱ,x′

r′ ⟩

+ ϱ(h−1
2 )∗k′,rϱ(h

−1
2 )k,r′ ⟨ϕϱ,yr |ϕ

ϱ,x′

i ⟩ ⟨ϕϱ,xi′ |ϕ
ϱ,y′

r′ ⟩
)(

βx,y,x
′,y′

i,k,k′,i′

)]
.

= E
h2∈G

[ ∑
x,y,x′,y′

∑
i,k,i′,k′

(
(ϱ(h−1

2 )i′,k)
∗ϱ(h−1

2 )i,k′δx,y′δy,x′ − ϱ(h−1
2 )∗i′,iϱ(h

−1
2 )k,k′δx,x′δy,y′

− ϱ(h−1
2 )∗k′,kϱ(h

−1
2 )i,i′δx,x′δy,y′ + ϱ(h−1

2 )∗k′,iϱ(h
−1
2 )k,i′δx,y′δy,x′

)
(βx,y,x

′,y′

i,k,i′,k′ )

]

=
∑
x,y

∑
i,k

1

2
βx,y,y,xi,k,k,i

(
E

h2∈G

[∣∣ϱ(h−1
2 )i,k

∣∣2 + ∣∣ϱ(h−1
2 )k,i

∣∣2]) .
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In the first equality, we note that the swap only affects the first two registers, so the final two must
be the same to survive the inner product, as before. Then we use the fact that the inner product
of the states ⟨ϕϱ,xa |ϕϱ,yb ⟩ = δx,yδa,b. Finally, we use the fact that in the anti-symmetric states, we
can not have both the orbits and the manifestations be the same (as noted in the description of
the basis states). This allows us to apply the Schur orthogonality relations and remove the two
negative terms when we average over the group elements.

Now, we can apply the same equality that we noted before to bound this by 2
dim(ϱ) , again

noting that the βx,y,y,xi,k,k,i correspond to a normalized vector. Thus, the probability that the swap
test succeeds is bounded from above by the following

1

2
+

1

2 dim(ϱ)
.

At this point, we have completed the analysis of the probability that the state passes the second test.
In particular, when there is no preaction, the pre-action distinguisher outputs “no preaction” with
probability 1, and if there is a preaction the distinguisher outputs preaction with probability at least
1
2−

1
2 dim(ϱ) . Thus, if the adversary instead starts with a state that has probability dim(ϱ)ϵ/(dim(ϱ)+

1) ≤ 2ϵ of being measured in the tensor product of two copies of the irreducible space of ϱ that
are not intractable bad irreps, they can first measure the state and then apply this distinguisher
to break the preaction indinstinguishability with probability ϵ. Adding in the probability (δ) that
the adversary measures a intractable bad irrep, we get the desired bound.

With this proposition, we have shown that the construction of quantum lightning is secure if
instantiated with a ϵ-preaction secure group action (as in Definition 4.18) that has negl-intractable
bad irreps. In the next section, we will provide groups that might meet these conditions, providing
the first instantiations of quantum lightning in the plain model from plausible assumptions.

4.4 Instantiations

Here, we discuss some plausible instantiations of our quantum money scheme. Our main focus
will be on symmetric group actions. First, we note that symmetric group actions have a negligible
maximum Plancherel measure [VK85], a necessary condition for having a secure quantum lightning
scheme and for our pre-action security assumption to hold. Symmetric groups also admit an efficient
quantum Fourier transform [Bea97], a necessary condition for the efficiency of our protocol. This
makes symmetric group actions a natural candidate for instantiating our scheme.

Graph Isomorphism. Given a graph (V,E) with |V | = n, the symmetric group Sn acts on
(V,E) by permuting the verticies.

Note that the discrete logarithm problem on graphs is exactly the Graph Isomorphism problem.
Graph Isomorphism can be solved in (classical) quasi-polynomial time [Bab16]. However, it is still
conceivable that there is no polynomial-time algorithm, giving a plausible candidate group action.

We also would like Sn to act regularly. If (V,E) has a trivial automorphism group, then Sn
acts semiregularly on the orbit of (V,E). “Most” graphs have trivial automorphism groups [LM17].
Unfortunately, it is in general presumably hard to identify the orbit of a graph (V,E), since this
would solve the graph isomorphism problem for (V,E). We therefore appeal to our generalization to
intransitive group actions in Section 4.3.3. Therefore, even if there are multiple orbits, our security
proof still works.
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Permuting Matrices. The symmetric group Sn acts on the set of n × n symmetric matrices
via σ ∗M = σ ·M · σT . That is, permute the rows and columns of M by σ. This is in fact a
generalization of the graph isomorphism group action, using the adjacency matrix of the graph.

McEliece Cryptosystem. The McEliece cryptosystem [McE78] contains an implicit group ac-
tion. Here, we have the symmetric group acting on matrices, though the operation is quite different.
Let F be a field and m > n be integers. Then consider the set Rn,m of row-reduced matrices in
Fn×m. Then Sm acts on Rn,m, with σ ∗M →M ′ where M ′ is the result of:

• First permute the columns of M according to σ.

• Then row-reduce the result.

Note that the McEliece cryptosystem uses the orbit of a specific matrix M that has good error
correcting properties. The original proposal in [McE78] is to use binary Goppa codes. This original
proposal has so far resisted (quantum) cryptanalysis efforts.

Note that we do not need any specific properties of M , allowing us to use basically any matrix
M . Thus, even if the McEliece cryptosystem is broken, we still get a plausible quantum money
candidate.

As for regularity, for a sufficiently wide matrix and/or sufficiently large field F, Sm will act
semiregularly on the orbit of “most” matrices, as shown in the lemma below. As with the Graph
Isomorphism case, we do not expect to be able to identify the orbits of typical matrices, so we
instead appeal to our generalization to non-transitive matrices.

Lemma 4.20. Let m ≥ 2n + 1. Consider sampling M such that (1) the left n × n matrix is
the identity, and (2) the right n × (m − n) matrix is uniform. Then except with probability p :=
m2n2|F|−1 + (m!)|F|−n, Sm will act semiregularly on the orbit of M . In particular, if |F| = mω(1),
then p is negligible.

Proof. Fix a permutation σ ∈ Sm other than the identity. We bound the probability that σ ∗M =
M .

Let us first suppose that the right n× (m− n) sub-matrix of M contains all distinct and non-
zero entries. Since the entries are uniform and independent, this occurs with probability at most
[mn(mn− 1) +mn]|F|−1 = m2n2|F|−1.

Now consider permuting the columns of M according to σ. Denote the result by M ′. Let M ′′

then be the result of row-reducing M ′. We now consider three cases:

• Suppose σ(i) = i for all i ≤ n, meaning σ does not permute the first n columns. In this case,
M ′′ = M ′. Since the columns are distinct by our conditions on M and σ is not the identity,
we have that M ′ ̸=M . Thus, in this case σ ∗M ̸=M .

• σ(i) > n for all i > n. In other words, σ separately permutes the first n entries and permutes
the remaining m − n entries. In this case, M ′ is obtained from M by permuting the right
n× (m− n) sub-matrix, and M ′′ is obtained from M ′ by simply permuting some of the rows
of M ′. In other words, M ′′ is obtained from M by permuting the rows and columns of the
right n× (m−n) sub-matrix. As long as the entries of this sub-matrix are distinct, any such
permutation of rows and columns will not preserve the matrix.

• σ(i) ≤ n for some i > n. In this case, M ′′ ̸= M ′. Let D ∈ Fn×n be the matrix such that
M ′′ = D−1 ·M ′. Then we know that D is not the identity.
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We now focus on the last case above. If the first n columns of M ′ are not full rank, then
M ′′ ̸= M . So suppose that the first n columns of M ′ are full rank. This means that D is exactly
the first n columns of M ′. If M ′′ =M , we then have that D ·M =M ′. In other words, if we take
the first n columns of M ′ (which is just a permuted version of M), and multiply this with M , we
get exactly M ′.

Moreover, since we are in the case σ(i) ≤ n for some i > n, this also means that σ(j) > n for
some j ≤ n. Thus at least one of the columns of D came from the right n× (m− n) sub-matrix of
M .

Since m ≥ 2n + 1, there will be some column i such that i > n and σ(i) > n. In other words,
this column is not among the first n in either M nor in M ′. This column is therefore independent
of D. Let v denote the vector of elements in this column.

For M ′′ = D ·M ′ to be equal to M , we need that D · v is among the original columns of M .
There are two possibilities:

• σ(i) ̸= i. In this case, let w be the σ(i)-th column of M . Then M ′′ =M implies D · · · v = w.
Since v is random and independent of D,w, this occurs with probability |F|−n.

• σ(i) = i. In this case, M ′′ =M implies that D · · · v = v. Fix a v such that all the entries of v
are non-zero. Since v came from the right sub-matrix ofM and we are assuming all the entries
there are non-zero, we can assume that v satisfies this property. Now consider sampling D.
D contains some columns that are fixed (those that were originally among the first n in M)
and some that are random (those that were not among the first n in M). Moreover, at least
one of the columns is random, since one of the rows came from the right sub-matrix of M .
Since v is non-zero in all positions, it particular it is non-zero in some position corresponding
to a random column of D. Thus, D · v is a random vector. The probability D · v = v over the
choice of D is therefore at most |F|−n.

Therefore, the probability that there exists some σ such that σ ∗M =M is at most the sum of

• The probability that the right n× (m− n) sub-matrix contains non-distinct entries, which is
upper bounded by m2n2|F|−1

• For each σ ∈ Sn, |F|−n.

Thus, the overall probability that there exists some σ is at most m2n2|F|−1 +m!|F|−n.

4.5 Dual-Mode One-way Homomorphisms

In the previous sections, we gave a construction of quantum money/lightning when the group
action is easy but its corresponding preaction is hard. In other words, for any group element g,
encoded by the group action as g ∗ x, we could only act on g from the left to get hg ∗ x, but not
from the right to get gh−1 ∗ x. In this section, we explore how the construction of Section 4.1
changes if we explicitly allow acting on the encoded group element from both sides. In this case,
we have two different but related representations of the same group—one for the action and one
for the preaction. One important difference is that this allows verification to recover both of the
fine Fourier indices (compare with the hardness of recovering i in Lemma 4.15).

In fact, we will see that when we allow the encoding to be a homomorphism, we get the surprising
but useful property that four different notions of security are all identical, including the hardness
of worst-case cloning, average cloning, minting a collision (i.e., breaking lightning security), and
preparing the specific uniform superposition state corresponding to the trivial irrep.

We begin by giving a useful security definition for one-way homomorphisms:
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Definition 4.21. An injective (but not surjective) homomorphism P : G → H33 is a dual-mode
one-way homomorphism if there exists a fooling function S : G → H34 such that they satisfy the
following properties:

• Efficiency: There is a QPT algorithm to efficiently compute P . There are also efficient
QPT algorithms for computing the group operations on G and H.35

• Statistical Distance: Let HP be the image of P and HS be the image of S. Then HS is
sufficiently far from HP . Specifically we require that,36

Pr[P (g)S(h) ∈ HP | g, h← G] ≤ 1− 1

poly(λ)

• Indistinguishability: It is hard to distinguish the images of P and S. Formally, for all
QPT adversaries A,

Pr

A(h) = b

∣∣∣∣∣∣∣
b← {0, 1} g ← G

h←

{
P (g) b = 0

S(g) b = 1

 ≤ 1

2
+ negl(λ)

• Inaccessibility: It is hard to sample an element of H \HP . Formally, for all QPT adver-
saries A,

Pr
[
h ∈ H \HP

∣∣∣ h← A(1λ)
]
≤ negl(λ)

Remark 4.22. Note that while we do not explicitly require P to be one-way, this is implied by the
definition: any adversary for inverting P can be used to break the indistinguishability security.

Remark 4.23. Combined with statistical distance, inaccessibility provides that the fooling function
S is hard to compute even in the forward direction. In a cryptographic implementation we would
sample a key pair of a public key pk and secret key sk, which would allow computing P and S,
respectively (though we omit this in the definition for generality and simplicity). In other words,
in the security game, S is a “secret” function that only the challenger knows. This is why we call
it a dual-mode one-way homomorphism: the is a public mode P that is publicly computable, and a
private mode S that is only privately computable but mimics P to the public.

33Technically, it is a family of homomorphisms, {Pλ : Gλ → Hλ}λ∈N but we omit the security parameter in the
notation for succinctness.

34We refer to P and S as the “public” and “secret” transformations, respectively. S may itself be a homomorphism
but it need not be. Notice that we do not require S to be efficiently computable.

35In general, the algorithms for computing P and the group operations need only be approximately correct. More-
over, because of the inaccessibility condition, we only the algorithm for group operations on H to be correct and
homomorphic on the image of P .

36This condition prevents P being a fooling function for itself. Note that it is equivalent to the condition that
Pr[S(h) /∈ HP | h ← G] ≥ 1

poly(λ)
. Or in other words, that |HS \HP |/|HS | ≥ 1

poly(λ)
in the case where S is injective

(which it need not be). The reason we prefer to write the statistical distance condition in this way is that if the
promised algorithm, A, for group operations on H is randomized, we can take the probability to also be over this
randomness.

Pr[u ∈ HP | u← A(P (g), S(h)), g, h← G] ≤ 1− 1

poly(λ)
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Observation 4.24. We can build a plausible candidate dual-mode one-way homomorphism from
any group action for which the computational Diffie-Hellman problem (CDH) is easy but the Discrete
Logarithm problem (DLog) is hard.37 Note that cryptographers typically would like CDH to be hard,
since it allows for justifying the security of more varied protocols. Our construction therefore gives
a “win-win” result, showing that in any group action for which DLog is hard, either (1) the more
useful CDH problem is actually also hard, or (2) we obtain a plausible candidate dual-mode one-
way homomorphism and hence a plausible quantum lightning scheme based on DLog. This win-win
result is remeniscent of win-win results in [Zha21], though the details are entirely different.

Main idea. We give the informal idea here but we leave a formal construction of dual-mode one-way
homomorphisms from group actions to future work. Suppose we have a group G which acts on
set X. Assume that the CDH problem is easy, and let A be the CDH adversary, which takes two
elements a ∗ x, b ∗ y ∈ X and outputs ab ∗ x if x = y, and behaves arbitrarily if x ̸= y. We set
H to be the set X with the “group operation” defined by A.38 Let x, y ∈ X be two set elements
in different orbits of the group G, and let P (g) = g ∗ x and S(g) = g ∗ y. Statistical distance
comes from the fact that x and y are in different orbits.39 Indistinguishability would come from
the hardness of deciding if two elements are in the same orbit (one example being the hardness
of the graph isomorphism problem). Inaccessibility would arise from the hardness of sampling a
valid set element outside the orbit of any known elements.40 Although we argue that these are
reasonable assumptions, we do not know if any specific instantiations of group actions satisfy these
requirements. We leave finding concrete instantiations of dual-mode one-way homomorphisms to
future work.

The lack of concrete instantiation of a dual-mode one-way homomorphism is a certainly dis-
advantage (as opposed to our construction from preaction security in Section 4.3.1, to which we
give concrete candidate instatiations in Section 4.4). However, we believe that our construction
from dual-mode one-way homomorphism is interesting in its own right. For instance, we have the
property that four different security definitions—including average-case and worst-case cloning, as
well as quantum lightning security—are all equivalent. To the best of our knowledge, this is the
first plausible quantum money construction to have this useful property.

4.5.1 Quantum Money Construction

Let G be a group satisfying the requirements in Section 4.1, and let (P, S) be a dual-mode one-way
homomorphism from G to H. We build a quantum lightning scheme, (Mint,Ver) as follows:

Mint(1λ) → (σ, |$σ⟩): Consider the group action of G on H that comes from left-multiplying an
element h ∈ H by the image of a group element g ∈ G under P , with the starting element x ∈ H
being the identity element of H. That is, we have the group action g ∗ y 7→ P (g) y for any y ∈ H.

37Note that such a group action is only possible for non-Abelian groups, since CDH and DLog are known to be
computationally equivalent for Abelian groups [MZ22], further demonstrating the necessity of non-Abelian-ness in
our generalizations.

38Since the adversary may act arbitrarily when x ̸= y, this is not exactly a group operation. That is, it only defines
a group operation on elements within the same orbit, but this will be sufficient for our purposes.

39Depending on the CDH adversary, the roles of x and y may need to be reversed in order to formally satisfy the
statistical distance property. If the CDH adversary, when run on a random element of the orbit of x and a random
element of the orbit of y, is more likely to produce an element of the orbit of x then we switch the roles. In other
words, we set P (g) = g ∗ y and S(g) = g ∗ x. In any case, one of the two choices suffices.

40This can be argued in the generic group model [Zha24].
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Observe that because our starting element is the identity of H, we have an efficiently computable
preaction as well, by multiplying in the same way on the right.

Minting follows from the construction in Section 4.1, and produces a serial number σ ← ϱ
denoting the measured irrep, and quantum money state |$ϱ⟩ =

∑
i,j∈[dϱ] αij |$ϱij⟩, where

|$ϱij⟩ :=

√
dim(ϱ)

|G|
∑
h∈G

ϱ
(
h−1

)
ij

∣∣ P (h) 〉
Ver(σ, |£⟩) → {accept, reject}: We follow the framework in Section 4.1 to verify under the two
group actions (the action and the preaction) consisting of the left and right group operations on the
encoded element. Note that within the image of P , this verification accepts any state of the original
minted form, as well as states that are of that form, but that are shifted by an element of the center
of G. In the security analysis, we show that these are the only states that pass verification.

4.5.2 Security Analysis

Theorem 4.25. If (P, S) is a secure dual-mode one-way homomorphism for Gλ, then (Mint,Ver)
is a secure quantum lightning scheme.

Proof. Let C be an adversary for the quantum lightning scheme, which outputs a state on two
registers which both pass verification for the same serial number ϱ. We will show that it can be
used to break the dual-mode one-way homomorphism.

Specifically, we will show that we can use C to break either the inaccessibility security or the
indistinguishability security of the dual-mode one-way homomorphism.

Claim 4.26. We can assume without loss of generality that the output of C is a tensor product
and that the states both have the form |$ϱij⟩, where

|$ϱij⟩ :=

√
dim(ϱ)

|G|
∑
g∈G

ϱ
(
g−1
)
ij

∣∣ P (g) 〉
for some i, j ∈ [dim(ϱ)].

Proof. We begin by observing that if the quantum money state had non-negligible support on
H\HP , then we can measure to get an element outside of the image of P and break the inaccessibility
security of the dual-mode one-way homomorphism. Therefore, up to negligible error, we can assume
that they both have support only on the image of P . Furthermore, we can assume that both have
the same i and j, since we can perform a Fourier subspace extraction twice on each state—both
on the action and on the preaction—to get the corresponding i and j, and then change them to
match. This gives us a tensor product state |$ϱij⟩ ⊗ |$

ϱ
ij⟩.

We now show how to break indistinguishability security. We consider one of the copies, setting
aside the other copy for now.

Suppose we get as input an element z ∈ H that is either a in the image of P , that is z = P (h),
or the image of S, z = S(h), for group element h ∈ Gλ. We left-multiply the quantum money state
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by z. If it is in the image of P , then we get

z · |$ϱij⟩ =

√
dim(ϱ)

|G|
∑
g∈G

ϱ
(
g−1
)
ij

∣∣ P (h)P (g) 〉
=

√
dim(ϱ)

|G|
∑
g∈G

ϱ
(
g−1
)
ij

∣∣ P (hg) 〉
=

√
dim(ϱ)

|G|
∑
g∈G

ϱ
(
g−1h

)
ij

∣∣ P (g) 〉
=

√
dim(ϱ)

|G|
∑

g∈G,k∈[dim(ϱ)]

ϱ
(
g−1
)
ik
ϱ (h)kj

∣∣ P (g) 〉
=

∑
k∈[dim(ϱ)]

ϱ (h)kj

√
dim(ϱ)

|G|
∑
g∈G

ϱ
(
g−1
)
ik

∣∣ P (g) 〉
=

∑
k∈[dim(ϱ)]

ϱ (h)kj |$
ϱ
ik⟩

If it is in the image of S, then we similarly get

z ∗ |$ϱij⟩ =

√
dim(ϱ)

|G|
∑
g∈G

ϱ
(
g−1
)
ij

∣∣ S(h) ∗ P (g) 〉
=

√
dim(ϱ)

|G|
∑
g∈G

ϱ
(
g−1
)
ij

∣∣ S̃(hg) 〉
=

∑
k∈[dim(ϱ)]

ϱ (h)kj

√
dim(ϱ)

|G|
∑
g∈G

ϱ
(
g−1
)
ik

∣∣ S̃(g) 〉
where S̃ is some function implied by S that is guaranteed by the statistical distance property of
Definition 4.21 to have at least inverse polynomial support outside of the image of P .41

We finally perform a Fourier subspace extraction and swap test with the copy that was set
aside. If z was in the image of P , then the swap test will certainly pass. Otherwise, we observed
that the two tested states will have orthogonal support that is at least inverse polynomial (since
S̃ is far from P ), and the swap test will fail with probability 1− 1

poly(λ) . This therefore breaks the
indistinguishability security of the dual-mode one-way homomorphism.

4.5.3 Worst-case to Average-case Reduction for Cloning

Remarkably, the problem of cloning any specific (worst-case) money state in this construction can
be reduced to that of producing two copies of an an average case money state, and therefore to
cloning an average-case state. Moreover, all of these are equivalent to the problem of preparing the
trivial irrep state (that is, the positive uniform superposition over the image of P ).

41Note that this does not break inaccessibility security, since in this case we are given z which is itself already
outside the image of P .
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Theorem 4.27 (Worst-case to Average-case Cloning Reduction and Money/Lightning Equiv-
alence). For the quantum money/lightning scheme defined in Section 4.5.1, the following are
equivalent:

1. There exists an efficient worst-case cloner that clones all valid money states |$ϱij⟩.

2. There exists an efficient average-case cloner that clones an average-case money state |$ϱij⟩,
where ϱ is sampled according the the Plancherel measure of ϱ in the group.

3. There exists an efficient lightning adversary that produces two copies of the same money state
|$ϱij⟩, where ϱ is sampled according the the Plancherel measure of ϱ in the group.

4. There exists an efficient preparation device that prepares the trivial irrep state |$I⟩, that is,
the positive uniform superposition over image of the homomorphism P .

In other words, all four tasks (worst-case cloning, average-case cloning, sampling state doublets,
and trivial irrep state preparation) are computationally equivalent.

Proof. It can be seen directly that 1 ⇒ 2 (since cloning in the worst case trivially implies doing
so in the average case), and that 2 ⇒ 3 (using the Mint function to mint a state and then using
the cloner to clone it). So it remains to show that 3 ⇒ 4 and that 4 ⇒ 1. We start by showing
that 4 ⇒ 1, and then 3 ⇒ 4 will follow from applying the same process in reverse on the doublet
produced by the lightning adversary.

Suppose that we had a quantum money state with irrep label ϱ that we would like to clone:

|$ϱij⟩ =

√
dim(ϱ)

|G|
∑
h∈G

ϱ
(
h−1

)
ij

∣∣ P (h) 〉
We run the trivial irrep state preparation adversary to prepare the positive uniform superposition
over the image of P :

|$I⟩ = 1√
|G|

∑
g∈G

∣∣ P (g) 〉
We left multiply the first register (the money state) by the inverse of the second register (the

trivial irrep state), producing

|$ϱij⟩ ⊗ |$
I⟩ →

√
dim(ϱ)

|G|
∑
h∈G

ϱ
(
h−1

)
ij

∣∣ P (g−1h)
〉
⊗ 1√

|G|

∑
g∈G

∣∣ P (g) 〉
=

√
dim(ϱ)

|G|
∑
h∈G

ϱ
(
h−1g−1

)
ij

∣∣ P (h) 〉⊗ 1√
|G|

∑
g∈G

∣∣ P (g) 〉
=

√
dim(ϱ)

|G|
∑

k∈[dim(ϱ)]

∑
h∈G

ϱ
(
h−1

)
ik
ϱ
(
g−1
)
kj

∣∣ P (h) 〉⊗ 1√
|G|

∑
g∈G

∣∣ P (g) 〉
=

1√
dim(ϱ)

∑
k∈[dim(ϱ)]

√
dim(ϱ)

|G|
∑
h∈G

ϱ
(
h−1

)
ik

∣∣ P (h) 〉⊗√dim(ϱ)

|G|
∑
g∈G

ϱ
(
g−1
)
kj

∣∣ P (g) 〉
=

1√
dim(ϱ)

∑
k∈[dim(ϱ)]

|$ϱik⟩ ⊗ |$
ϱ
kj⟩ (9)

We now have two states that are both valid quantum money states for irrep label ϱ.
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Observation 4.28. If we would like both registers to be exact copies of the original state in tensor
product, we can do that as well.

Proof of Observation 4.28. We apply a left Fourier measurement on the left register (that is, a
Fourier measurement corresponding to left action by plaintext group elements) and a right Fourier
measurement on the right register (corresponding to right action), to produce

1

dim(ϱ)3/2

∑
k,ℓ,m∈[dim(ϱ)]

|$ϱiℓ⟩ ⊗ |L
ϱ
ℓk⟩ ⊗ |L

ϱ
km⟩ ⊗ |$

ϱ
mj⟩

QFT−−−→ 1

dim(ϱ)3/2

∑
k,ℓ,m∈[dim(ϱ)]

|$ϱiℓ⟩ ⊗ |ϱ, ℓ, k⟩ ⊗ |ϱ, k,m⟩ ⊗ |$
ϱ
mj⟩

Now note that the registers containing k are in the pure state 1√
dim(ϱ)

∑
k∈[dim(ϱ)] |k⟩ |k⟩, in tensor

product with the rest of the state. Replace these registers with the state |j⟩ |i⟩ to get

1

dim(ϱ)

∑
ℓ,m∈[dim(ϱ)]

|$ϱiℓ⟩ ⊗ |ϱ, ℓ, j⟩ ⊗ |ϱ, i,m⟩ ⊗ |$
ϱ
mj⟩

Now uncompute the two Fourier subspace extractions we have just performed to get |$ϱij⟩⊗ |$
ϱ
ij⟩ as

desired.

We now continute with the proof of Theorem 4.27 and show that 3 ⇒ 4. Given a doublet pair
of quantum money states for the same irrep label, we show how to prepare the trivial irrep state
|$I⟩ = 1√

|G|

∑
g∈G

∣∣ P (g) 〉. This doublet produced by the lightning adversary will be a state on

two registers that passes verification, of the form42∑
i,j,k,ℓ∈[dim(ϱ)]

αi,j,k,ℓ |$ϱij⟩ ⊗ |$
ϱ
kℓ⟩

As above, we can use Fourier subspace extractions to convert this to the state |$ϱij⟩ ⊗ |$
ϱ
ij⟩ or

even to the state 1√
dim(ϱ)

∑
k∈[dim(ϱ)] |$

ϱ
ik⟩ ⊗ |$

ϱ
kj⟩. By reversing the process described above, from

Equation (9) backwards, we then recover the state |$ϱij⟩ ⊗ |$I⟩, where the second register is the
trivial irrep state, as desired.

So cloning an average-case state is as hard as cloning a worst case state, both of which are
as hard as preparing the positive uniform superposition over the image of the homomorphism
(the trivial irrep state). Moreover, quantum money security and quantum lightning security are
equivalent for this scheme.

Remark 4.29. Note that a task that is absent from Theorem 4.27 is the ability to prepare any
quantum money state given its irrep label (ie. its serial number). An adversary for this task
would clearly imply one for all four of the tasks mentioned in Theorem 4.27, but it is not clear
if the opposite is true. That is, an adversary that breaks the quantum money/lightning scheme
nevertheless might not be able to prepare specific money states on command (only at random). In
section Section 5, we take advantage of precisely this gap to propose a new quantum cryptographic
primitive: quantum fire.

42This is assuming the inaccessibility security of the dual-mode one-way homomorphism, which is what prevents
the state from having non-negligible support outside the image of P .

55



5 Quantum Fire: Quantum States that are Clonable but Untele-
graphable

In this section, we introduce a new quantum cryptographic primitive, “quantum fire”, a crypto-
graphic version of the clonable-but-untelegraphable states introduced by [NZ23]. Much like fire is
an entropic state of matter that is hard to spark on command, but easy to spread around as long
as it is kept alive, quantum fire is a quantum state that is hard to prepare but easy to clone as long
as it is maintained in coherent quantum form. More specifically, a quantum fire state, |ϕi⟩, comes
from a collection {|ϕi⟩}i of states that

• Efficiently sparked: there is an efficient sparking algorithm that outputs a random |ϕi⟩,
from some distribution over i,

• Efficiently clonable: there is an efficient cloner that maps one copy of |ϕi⟩ to two copies,

• Un-telegraphable: no efficient adversary can encode |ϕi⟩ into a classical string that can
later be revived back into |ϕi⟩.

We also allow an efficiently verifiable version, in which we have the additional property,

• Verifiable: there is a verification algorithm that takes a label i as well as a claimed state
|ϕ′i⟩, and outputs whether |ϕ′i⟩ is a valid quantum fire state.43

Quantum fire has been demonstrated to exist relative to a quantum oracle in [NZ23]. However,
until now, no plausible construction in the plain model was known. Even the task of finding quan-
tum states that are efficiently clonable without an oracle—but not trivial enough to be described
classically—has been a challenge. We give the first candidate construction of quantum fire in the
plain model. We challenge the cryptographic community to find either a proof of its security from
reasonable assumptions or to break it. We further challenge the community to find and propose
other reasonable candidate constructions for quantum fire. Much like the 15-year challenge of find-
ing reasonable constructions of public-key quantum money has led to a variety of new techniques for
proving unclonability, we expect the task of finding candidate quantum fire constructions to prove to
be a challenging task and to require new and specialized techniques for showing untelegraphability.

5.1 Definition

Quantum fire was implicit in the oracle construction of [NZ23], but no official definition was given.
We give a definition of quantum fire as follows:

Definition 5.1 (Quantum Fire). A quantum fire scheme consists of four quantum algorithms S =
(KeyGen,Spark,Clone,Ver) where

• KeyGen(1λ) takes as input the security parameter 1λ and outputs a private/public key pair
(sk, pk),

• Spark(pk) takes the public key and outputs a serial number s and a quantum fire state |ϕs⟩,
which we refer to as a flame,

43In the general case, the verification algorithm for the quantum fire state may allow a larger space of states than
those that would be produced by the sparking algorithm. In this case the cloning algorithm and the telegraphing
adversary must output any state(s) that pass verification.
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• Clone(pk, s, |ϕs⟩) takes as input the public key pk, a serial number s, and a flame |ϕs⟩, and
outputs two registers AB in some potentially entangled state σsAB,

• Ver(pk, s, σ) takes as input the public key pk, a serial number s, and an alleged flame σ, and
either accepts or rejects.44

A quantum fire scheme S satisfies correctness if for all λ, sparking is correct

Pr

[
Ver(pk, s, |ϕs⟩) accepts

∣∣∣∣ (sk, pk)← KeyGen(1λ)
(s, |ϕs⟩)← Spark(pk)

]
≥ 1− negl(λ) ,

and cloning is correct

Pr

Ver(pk, s, ·) accepts both registers of σsAB

∣∣∣∣∣∣
(sk, pk)← KeyGen(1λ)
(s, |ϕs⟩)← Spark(pk)

σsAB ← Clone(pk, s, |ϕs⟩)

 ≥ 1− negl(λ) .

Untelegraphability [NZ23] of quantum fire means that it is hard to encode a flame as a classical
encoding which can later be brought back. That is, once the flame is extinguished, it is gone. We
model this as a pair of adversaries. The first is tasked with deconstructing the flame into a classical
message, and the second must use the deconsructed classical message to reconstruct the state.45

Algorithm 6 (Quantum Fire Telegraphing Security Game).

1. Challenger generates (sk, pk) ← KeyGen(1λ), (s, |ϕs⟩) ← Spark(sk) and send (pk, s, |ϕs⟩)
to adversary A.

2. Adversary A returns a classical encoding of the flame c ∈ {0, 1}∗.

3. Challenger passes c ∈ {0, 1}∗ to adversary B.

4. Adversary B returns a claimed quantum state σ.

5. Challenger runs Ver(pk, s, σ) and outputs the result.46

Definition 5.2 (Quantum fire security). A quantum fire scheme S satisfies ϵ-quantum-fire security
if for all pairs of efficient adversaries A and B, the success probability of A in the Telegraphing
Security Game (Algorithm 6) is at most ϵ(λ).

We require that Spark and Clone are efficient (QPT) algorithms. Ver may be an efficient public
verification, an efficient private verification, or an inefficient verification, leading to three differ-
ent kinds of quantum fire (publicly verifiable quantum fire, privately verifiable quantum fire, and
statistically verifiable quantum fire).

44Ver may not exist for unverifiable quantum fire, or it may require the secret key sk for secretly verifiable quan-
tum fire.

45Note that the two adversaries should not be entangled, as this allows them to teleport the state. Furthermore,
maintaining any entanglement implies having to store a quantum register, which is what telegraphing aims to avoid.

46In the case of unverifiable quantum fire, the challenger verifies the telegraphing by measuring in a basis containing
the valid flame |ϕs⟩.
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5.2 Construction

Let G and H be two groups, and let f : G → H be an injective homomorphism between them,
which we assume to be one-way. LetHf be the image of f . Let F : G→ U(H) be the representation
of G which acts as F(g) |h⟩ = |f(g) · h⟩. Let the set of quantum fire labels (or serial numbers) be
Ĝ, the set of irreps of G, and for each ϱ ∈ Ĝ, we let valid flames be any state in isotypic component
of irrep ϱ, that is, any state of the form

|ϕϱij⟩ =
∑
g∈G

ϱ(g−1)ij |f(g)⟩

We further assume that there is an efficient algorithm to prepare a uniform superposition over
the image group Hf : |Φ⟩ =

∑
h∈Hf

|h⟩, or a quantum state that approximates it.47

Verification and Sparking. Verification is the same as verification for the quantum money
construction of Section 4.1: we perform a course Fourier measurement to produce the irrep label ϱ
and compare with the claimed quantum fire label. Likewise, to spark a quantum fire state—that
is, to prepare a fire state with a random label—run the same verification process on the identity
element of H, which samples the irrep label ϱ according to the Plancherel measure of G.

Cloning. We are given a quantum fire state |ϕϱij⟩ with label ϱ, and we would like to output two
such fire states, both of which pass verification for the same label ϱ.

We first prepare |Φ⟩ =
∑

h∈Hf
|h⟩, a uniform superposition over the image group Hf . Together

with the fire state, we now have the overall state

|ϕϱij⟩ ⊗ |Φ⟩ =
∑
g∈G
h∈Hf

ϱ(g−1)ij |f(g)⟩ |h⟩

Since f is injective, and therefore bijective between G and Hf , we can reindex the sum over h
as

=
∑

g,h∈G
ϱ(g−1)ij |f(g)⟩ |f(h)⟩

Both registers contain an element of H. We apply the inverse group operation of the second

47Supposedly, this image group is known to all parties, while the specific mapping between G and Hf could be
arbitrary.
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register into the first register on the left to get

→
∑

g,h∈G
ϱ(g−1)ij |f(h)−1 · f(g)⟩ |f(h)⟩

=
∑

g,h∈G
ϱ(g−1)ij |f(h−1 · g)⟩ |f(h)⟩

=
∑

g,h∈G
ϱ(g−1 · h−1)ij |f(g)⟩ |f(h)⟩

=
∑

g,h∈G
k∈[dim(ϱ)]

ϱ(g−1)ikϱ(h
−1)kj |f(g)⟩ |f(h)⟩

=
∑

k∈[dim(ϱ)]

∑
g∈G

ϱ(g−1)ik |f(g)⟩
∑
h∈G

ϱ(h−1)kj |f(h)⟩

=
∑

k∈[dim(ϱ)]

|ϕϱik⟩ ⊗ |ϕ
ϱ
kj⟩

This produces two quantum fire states that both pass verification for the same original label ϱ.
While not necessary, if we wish, we could even force the two new fire states to have the same i and
j values as the original, and in doing so disentangle them. We simply perform a Fourier subspace
extraction on both states from both the left and right side to extract out the new i and j values,
replace them with the old i and j, and uncompute48 to get the tensor product:

|ϕϱij⟩ ⊗ |ϕ
ϱ
ij⟩

Untelegraphability. We have shown above that these states are efficiently clonable. In order
for the construction to be a secure quantum fire scheme, the states must also be untelegraphable.
That is, there must be no way to deconstruct the states into a classical message that can later be
reconstructed back into the quantum state, or at least one that properly passes verification. We
leave as an open problem to find sufficient conditions on the one-way homomorphism that would
allow showing untelegraphability in the plain model.

Remark 5.3. The untelegraphability of such a scheme is known to be difficult to prove even relative
to a classical oracle: Nehoran and Zhandry [NZ23] show the security of their implicit quantum fire
scheme relative to a unitary quantum oracle. Unfortunately, they also show that the same quantum
fire construction leads to a unitary oracle separation between the complexity classes clonableQMA
and QCMA, and therefore between QMA and QCMA. As generalization of this, they observe that
any provably secure and public-key quantum fire scheme relative to a classical oracle will likely lead
to a classical oracle separation between QMA and QCMA, an major longstanding open problem of
Aharonov and Naveh [AN02] that remains unresolved despite recent progress.

Observation 5.4. We observe that while one-wayness may not be a sufficient condition for un-
telegraphability, is a necessary condition. This is because if we can invert the homomorphism—and
we can also perform a quantum Fourier transform on the group—then we can telegraph the state
as the classical description of ϱ, i, and j.

48See Observation 4.28 for more details on how to do this.
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Proof sketch. Suppose, for instance, that we can invert f perfectly. Then we can do the following.
Alice starts with a quantum fire state |ϕϱij⟩ =

∑
g∈G ϱ(g

−1)ij |f(g)⟩ and inverts f to get∑
g∈G

ϱ(g−1)ij |f(g)⟩ |g⟩ .

She now uncomputes f(g) in the first register to get∑
g∈G

ϱ(g−1)ij |g⟩ ,

which is the left-regular Fourier basis state |Lϱi,j⟩. Taking the quantum Fourier transform of this
state then yields |ϱ⟩ |i⟩ |j⟩, which is a classical string that Alice can send to Bob. Bob can then
invert this process to recover |ϕϱij⟩.

The notion of quantum fire was featured implicitly in the work of Nehoran and Zhandry [NZ23],
where they show that such an object exists relative to a unitary quantum oracle. Their construction
uses two oracles: a (quantumly accessible) random oracle, which serves effectively as a verification
oracle, and a unitary oracle, which is used for cloning the resulting states. Unfortunately, the
scheme of [NZ23] offers little hope of leading to a plain-model instantiation. This is because, as
they note, the unitary implemented by the unitary cloning oracle is one that cannot be implemented
efficiently.

One approach to strengthen their result is to give a construction from classical functionality.
A priori, however, it is not even clear that any classical functionality can bestow clonability on a
state that cannot be encoded classically. To the best of our knowledge, every known method of
efficiently cloning quantum states first passes through the classical description of the states, copies
this classical description, and then recovers two clones of the quantum state from the classical
descriptions. However, this automatically means that such states are efficiently telegraphable—they
can be stored as their classical descriptions. How can we clone a quantum state (using efficient
classical functionality) without ever going through a classical description?

We answer this question here by giving a proof of concept that this kind of cloning is in fact
possible, along with a framework for using it to construct quantum fire with conjectured security.
An interesting aspect of our cloning procedure is that the quantum states of the two registers
inherently become entangled during the course of the procedure, and only become disentangled at
the end. Furthermore, it requires applying a controlled group operation between the two registers.
These aspects together give intuition for why this cloning procedure is untelegraphable: controlled
operations and more general entangling procedures cannot occur over a classical channel.
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