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Abstract

In this paper, we study multi-party non-interactive key exchange (NIKE) in the fine-grained
setting. More precisely, we propose three multi-party NIKE schemes in three computation models,
namely, the bounded parallel-time, bounded time, and bounded storage models. Their security is
based on a very mild assumption (e.g., NC1 ⊊ ⊕L/poly) or even without any complexity assumption.
This improves the recent work of Afshar, Couteau, Mahmoody, and Sadeghi (EUROCRYPT 2023)
that requires idealized assumptions, such as random oracles or generic groups.

Additionally, we show that all our constructions satisfy a natural desirable property that we
refer to as extendability, and we give generic transformations from extendable multi-party NIKE to
multi-party identity-based NIKEs in the fine-grained settings.

Keywords: Multi-party non-interactive key exchange, fine-grained cryptography, complexity
assumptions, identity-based cryptography.

1 Introduction
1.1 Background
Constructing non-interactive key exchange (NIKE) stands as one of the central focuses in cryptography.
NIKE serves as a fundamental building block that enables a group of parties to simultaneously release
a single message (i.e., the public key), and then securely agree on a session key in the presence of any
potential adversaries with the public keys. Existing two-party NIKE schemes are constructed based on
various cryptographic assumptions. These include well-established assumptions such as the Diffie-Hellman
assumption [14], Learning With Errors [20], and assumptions related to the factoring [17], and more
exotic ones such as the existence of generic groups [31, 27] and algebraic groups [18]. The only known
candidate of three-party NIKE is proposed by Joux based on the bilinear Diffie-Hellman assumption
over pairings [24]. When it comes to multi-party NIKE involving more than four parties, all known
candidates (against polynomial-time adversaries) are in the world of “obfustopia”, where obfuscation
exists [9]. This rises a natural question of whether it is possible to construct multi-party NIKE from
much more established assumptions.
Multi-party NIKE based on mild assumptions. Very recently, Afshar et al. [2] provided an
affirmative answer to the above question by introducing np-party NIKE schemes for any constant np in the
random oracle model and Shoup’s ((np/2− 1)-linear) generic group model (i.e., the idealized multilinear
map model where the number of groups is np/2). These schemes are in the context of fine-grained
cryptography [13], where adversaries can only have limited resources and honest users do not possess
more resources than adversaries. One of the main motivations of fine-grained cryptography is to have
security based on very mild assumptions or even no assumptions at all. Hence, the use of random oracles
or generic groups makes their work less desirable.
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Our Goal: Can we construct a fine-grained multi-party NIKE without idealized assumptions,
such as random oracles and generic groups?

We take a closer look at the fine-grained setting. Essentially, there are different ways to restrict users’
and adversaries’ computing power. It can be in the terms of running time (e.g., [28, 7]), parallel-running
time (i.e., circuit depths) (e.g., [21, 13]), or storage (e.g., [29, 15]). The multi-party NIKE of Afshar
et al. was treated in the bounded time model. In their scheme, an honest user runs in time O(λnp−1)
(respectively, O(λ)) and secure against adversaries running in time o(λnp) in the random oracle model
(respectively, o(λ2) in the Shoup’s (np/2− 1)-linear generic group model). Although the assumptions of
the random oracle and generic group model are already considered weak for multi-party NIKE schemes,
they still fall into the worlds of “minicrypt” (the random oracle model), “cryptomania” (the generic group
model), or even “obfustopia” (the multi-linear generic group model) when dealing with a large number of
parties. This raises another question whether we can have multi-party NIKE even if we are in, say, the
Pessiland, where one-way function does not exist.

An independent and concurrent recent work by Couteau et al. [6] introduced a 4-party NIKE
protocol with a quadratic gap between users and adversaries (with honest users running in time O(λ) and
secure against adversaries running in time o(λ2)), assuming the existence of exponential secure injective
pseudorandom generators (PRGs) and the sub-exponential hardness of computational Diffie-Hellman
problem (CDH). Their results can also be extended to a 6-party NIKE under PRGs and CDH in bilinear
groups, as well as to a 6-party NIKE (respectively, 9-party NIKE) with honest users running in time
O(λ) and secure against adversaries running in time o(λ1.5) under PRGs and CDH without pairings
(respectively, with pairings). They further showed that their 4-party protocol is secure in Maurer’s
generic group model with a smaller gap between users and adversaries (with honest users running in time
O(λ) and secure against adversaries running in time o(λ1.6)), assuming the existence of non-uniformly
exponential secure injective pseudorandom generators.

1.2 Our Contributions
We revisit multi-party NIKE in the fine-grained settings and propose constructions in the bounded
parallel-time, bounded time, and bounded storage models based on very mild fine-grained complexity
assumptions or even no assumption. More precisely:

• In the bounded parallel-time model, we construct an np-party NIKE for any constant np computable
in AC0[2] and secure against adversaries in NC1 (i.e., circuits with logarithmic-depth and polynomial-
size). Clearly, the honest users consume less resources than adversaries, since AC0[2] ⊊ NC1 [30, 32].
Similar to prior works in the same setting (e.g., [13, 12]), our security is based on the worst-case
assumption NC1 ⊊ ⊕L/poly, which is widely believed to hold. All existing NC1-fine-grained schemes
are based on NC1 ⊊ ⊕L/poly [13, 12, 4, 34, 16, 33]. According to Barrington, ⊕L/poly is the class
of languages with polynomial-sized branching programs and NC1 languages have polynomial-sized
branching programs of constant width [5]. Hence, this assumption holds if there exists one language
having only branching programs of super-constant width. It would be quite surprising if this does
not hold.

• In the bounded time model, we construct an np-party NIKE for any constant np computable in
Õ(λnp+k−1) and secure against adversaries with running time Õ(λnp+k). The underlying assumption
is the average-case Zero-k-Clique hypothesis for any constant k > 2, which is exactly the one
used in [25] for constructing fine-grained two-party NIKE. It is also wildly used in the fine-grained
complexity to derive conditional lower bounds for other problems (e.g., [1, 10, 26, 3]). Note that no
known approach for this assumption is faster than essentially λk, and the worst-case Zero-k-Clique
hypothesis for any constant k does not appear to imply P ̸= NP [25].

• In the bounded storage model (BSM) [11], we extend the two-party NIKE in [11] to an np-party
NIKE for any constant np. The resulting scheme is unconditionally secure against adversaries
with memory bounds O(λnp+1) and each user consumes O(λnp) bits of memory. Also, the total
communication cost between the parties (i.e., the total size of the public keys in this case) is O(λ).
This is also a crucial evaluation criterion.

While our construction in the bounded time model is proposed in the plain model, where no trusted
public parameter is exploited, the constructions in the bounded parallel-time model and BSM mentioned
above are instantiated in the uniformly random string (URS) model, where there exists a URS accessible
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Multi-Party IB-NIKE Sec. A.2⇐= (Restricted) BPRF Sec. A.3⇐= Extendable Multi-Party NIKE

Figure 1: Overview of our approaches in constructing IB-NIKE in the fine-grained setting.

to all parties and adversaries. It is important to note that this model is weaker than the common reference
string model, since the URS is generated in a “nothing up my sleeve” manner, ensuring that it contains
no hidden information or trapdoors. Moreover, the URS model is strictly implied by the random oracle
model, as one can use a hash function modeled as a random oracle to generate the URS.
Extension to multi-party identity-based NIKE (IB-NIKE). We further show that our NIKEs
can be transformed into IB-NIKEs for any constant number of parties. Notice that such IB-NIKEs
can be trivially constructed from NIKE by including NIKE public keys of all users in the IB-NIKE key
for each identity. However, our construction of IB-NIKE is significantly better than this trivial one,
since the identity-space of IB-NIKE is much larger. If the underlying NIKE supports a super constant,
say polynomial, number of users, then our IB-NIKEs can support an exponentially large identity-space.
Indeed, for our results in the bounded storage model, making the number of users super-constant does
not spoil the security proof since it is based on no assumption. Similarly, our results in the bounded time
model can also support a super-constant number of users if we make the underlying assumption stronger,
i.e., Zero-k-Clique assumption for super-constant k, which however, may imply P ̸= NP [25].

Our transformation contains several intermediate steps, as described figuratively in Figure 1. Specifi-
cally, we follow the technique in [23] to show that in the fine-grained settings, bit-fixing pseudorandom
functions (BPRFs) can be converted into multi-party IB-NIKEs, and then provide a generic construction
of BPRF from any NIKE with a nice and natural property we call extendability, which is satisfied by all
our constructions (and indeed also ones in previous works [24, 2]) except for ones in the multilinear maps.
Here we note that our multi-party NIKE in the bounded parallel-time model only satisfies restricted
extendability and can only be converted into a restricted version of BPRF. Nonetheless, this restricted
version is sufficient for achieving multi-party IB-NIKE. We refer the reader to Appendix A for the full
details.
Practical implications. Our constructions do not only rely on weak assumptions and have low
computational complexity, but also have the following practical implications.

Our constructions in the bounded (parallel-)time setting are well-suited for systems where attacks
are only meaningful if they can succeed quickly. For instance, users can use the shared key to protect
messages valuable for a short period and can be either published or deleted later. Another application is
the generation of message authentication codes (MACs) using the shared key. It prevents adversaries from
forging MACs within the time it takes for an honest user to compute the MAC. This ensures security
by allowing the system to reject users who have timed out while attempting to generate MACs. More
specifically, let n = log λ. In the bounded parallel time model, the parallel running-time of each party is
about 3n, while any adversary with parallel running-time O(n) cannot break it. Then we can let the
parties re-share the session key with period, say 10n, if we use it as the key of a MAC. Also, we can
use it to transmit messages (e.g., verification codes) that can be published after a time of 10n. In the
bounded time model, assuming that the number of parties is 3, the running-time of each party can be
about λ5 log λ, while any adversary with running-time O(λ6) cannot break it. The applications are similar
to the above. The construction in BSM also finds direct applications in scenarios where a high-speed
broadcast channel generates URSs that are too large for an adversary to store. Moreover, as mentioned
in [13], combining fine-grained primitives with standard ones immediately yield hybrids secure against
restricted adversaries under weak assumptions (or no assumption) and secure against polynomial time
adversaries under stronger assumptions.

1.3 Technical Details

Multi-party NIKE based on NC1 ⊊ ⊕L/poly. We now give technical details on how we construct our
fine-grained multi-party NIKE in the bounded parallel-time model. All the adversaries we consider in
this part are in NC1. Similar to previous works [13, 12, 4, 34, 16, 33], we exploit the indistinguishability
of two specific distributions ZeroSampλ and OneSampλ outputting λ× λ matrices with rank λ− 1 and
full rank respectively. It is implied by NC1 ⊊ ⊕L/poly.
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Our starting point is to utilize the fine-grained hash proof system proposed in [16] to construct an
NIKE via the technique proposed in [22]. Roughly we can let the projection and the statement of the
hash proof system serve as the public keys in a two-party NIKE and let the parties share the proof with
the (secret) verification key and the witness respectively. Security is guaranteed by the smoothness of the
hash proof system. To extend it to a multi-party one, the first problem we must address is that the key
pairs are vectors generated by different types of algorithms. When more parties are involved, it is unclear
how to combine a bunch of vectors to generate a session key.

A straw-man solution is to extend the vectors to matrices. Taking the three-party case as an example,
the public keys of the parties P1, P2, and P3 are generated as R1M, MR2, and MR3 respectively,
where M $← ZeroSampλ is the public parameter and Ri’s are the random secret matrices in {0, 1}λ×λ.
The parties can share R1MR2MR3 with certain entropy. However, unfortunately, it does not satisfy
correctness. Specifically, R1MR2MR3 is indeed computable by P1 and P2 with their secret matrices,
while it is not computable by P3 due to the lack of knowledge on R2M. To address this issue, we need to
additionally publish R2M. Nevertheless, this change will result in too much leakage on R2, compromising
the security proof.

To overcome the technical hurdles mentioned above, we exploit the power of symmetric matrices.
Specifically, we make the public parameter symmetric by computing M̃ = M⊤M, and generate M̃Ri

and Ri as the public/secret key pair for each party, where Ri
$← SymRλ and SymRλ is the uniform

distribution over symmetric matrices in {0, 1}λ×λ. The shared key is in the form of R1M̃R2 · · · M̃Rn.
Thanks to the symmetry of the matrices, each party knows both M̃Ri and RiM̃ = R⊤

i M̃⊤ = (M̃Ri)⊤,
enabling each party able to compute the shared key, ensuring correctness.

Since the secret keys are not uniformly random in {0, 1}λ×λ now, we can no longer rely on the
smoothness of the fine-grained hash proof system to prove security. To find a counterpart compatible
with symmetric matrices, we define two new distributions D0 and D1:

{M̃R : R $← SymRλ}︸ ︷︷ ︸
=D0

and {M̃R + Iλ : R $← SymRλ}︸ ︷︷ ︸
=D1

,

where M̃ = M⊤M for the public parameter M $← ZeroSampλ and Iλ is the identity matrix. We then
prove the indistinguishability of D0 and D1 by proposing a new technique to leverage the symmetry and
the indistinguishability of the matrices. For more details, we refer the reader to Section 3.

A nice property of the above distribution is that the last column and row vector in a matrix in D0
(respectively, D1) must be in (respectively, outside) the span of M̃. Hence, by embedding a random bit
into the secret key of one party via vectors in the kernel of M̃ ∈ ZeroSampλ and switching the distributions
of public keys of other parties between D0 and D1 in a flexible way, we can prove that the right-bottom
entry of the shared matrix is uniformly random in the view of an NC1 adversary. By running the scheme
in multiple times in parallel, they can share a session key with any polynomial size, without increasing
the complexity of the circuits’ depth.

We note that [33] has shown the existence of a public-coin algorithm (denoted by RandSampλ in this
work, see Figure 3) with the output distribution being identical to ZeroSampλ and OneSampλ with “half-
half” probability. Therefore, we can use this algorithm to generate a public parameter indistinguishable
from the original one, resulting in a fine-grained multi-party NIKE in the URS model.
Multi-party NIKE based on Zero-k-Clique. Our construction in the bounded time model, which is
based on the Zero-k-Clique hypothesis, extends the one presented in [25]. In the construction in [25], two
parties exchange lists containing ℓ instances of the Zero-k-Clique problem, out of which

√
ℓ instances

have solutions. The expectation is that there would be exactly a single instance in common having a
solution, allowing the parties to share the index of this instance by brute forcing searching among the√

ℓ instances. The Zero-k-Clique hypothesis says that finding the correct solution among the ℓ instances
requires essentially solving all instances, ensuring security.

To extend this construction to a multi-party setting, a natural approach is to let all parties exchange
their lists of instances, and share the common indices of the instances with one solution. The primary
challenge lies in the rapid increase in the error probability of correctness as the number of users increases.
To address this issue, we increase the number of instances with solutions for each party and allow users
to share the sum of the overlapping part. For a rigorous analysis of correctness, we exploit a set of
indicators in a tricky manner. Each indicator, denoted by index i, equals 1 if the ith random index chosen

4



by the last party is also chosen by all other parties, and 0 otherwise. Without loss of generality, we
assume that the indices chosen by the last party are genuinely independent, while those chosen by each
of the other parties are independent but conditioned on that they are all distinct. The former guarantees
the independence of these indicators, and the latter ensures that each indicator equals 1 with a high
probability. By computing the probability that all indicators are equal to 0, we obtain the small error
probability.

Our reduction of security aims to find the correct solution among ℓ instances of the Zero-k-Clique
problem by making use of an adversary that can recover the shared key. To simulate the view of the
adversary, which consists of the transcript (i.e., the public keys) among different parties, the reduction
splits the list into multiple ones with a solution in the same location, and plants ℓ(np−1)/np solutions into
the list. Then the reduction can extract the index of the solution by using the common indices in the
shared key. Specifically, our security proof introduces a generalized splitting algorithm with a binary tree
structure, which splits one instance into multiple ones having the same number of solutions as the split one.
By introducing additional checking procedures we can proceed the proof without security loss potentially
caused by the generalized splitting algorithm. When employing the Goldreich-Levin extractor [19] for
privacy amplification, letting each party compress the shared indices by summing them up, as mentioned
earlier, ensures that the running time of the Goldreich-Levin reduction remains acceptable.

To ensure a sufficient gap between users and adversaries, many more details need to be considered,
including the number of solutions to be planted into instances during the simulation. We omit the details
and refer the reader to Section 4 for details.
Multi-party key exchange in the bounded storage model. Recall that in the BSM, all parties
and the adversary have access to a long URS. When the URS becomes unavailable, all parties broadcast
public keys and share a session key with no additional interaction. The state-of-the-art NIKE (with
public discussion) in this model is the two-party construction proposed in [11]. Each party stores a
set of bits in the URS, and these bits are indexed in a way that they are (approximately) pairwise
independent. Once the URS disappears, the parties exchange the indices and save the bits in common.
It is crucial that the indices in the intersection are also pairwise independent so that the shared bits
have high entropy. This allows the parties to apply privacy amplification. To ensure efficiency in terms
of memory and communication, the parties utilize strongly 2-universal hash functions to represent the
pairwise independent indices.

We apply the security analysis to the multi-user setting by proving that the intersection of multiple
sets of pairwise independent indices are also pairwise independent. While this is a somewhat natural
generalization, it has not been rigorously treated before, as far as we know. To ensure correctness, we
need to guarantee that this intersection is sufficiently large so that all parties can share a session key
of a certain size, which reflects one of the main bulk of our contribution in this part. Indeed, even in
the two-party setting as in [11], only the expected size of the secret key was shown. We introduce a
set of indicators in a similar way to our Zero-k-Clique based construction. The main difference is that
we only prove that these indicators are pairwise independent rather than completely independent and
provide a lower bound of their sum. This is done by simultaneously exploiting the independence between
all sets and the pairwise independence of elements within each set, and applying a theorem implied by
Chebyshev’s Inequality and Markov’s Inequality. Here notice that this argument holds only when the set
of indices chosen by one of the parties are perfectly pairwise independent and may repeat. Fortunately,
this only makes the sum smaller and hence does not affect our result.

We would like to highlight that in [2], Chernoff bound is used in an elegant way for proving the
correctness of a fine-grained multi-party NIKE. Compared to their approach, ours offers conceptual
simplicity by defining the indices differently, eliminating the need for a chain of Chernoff bounds, and is
more general, in the sense that it works for pairwise-independent indices rather than only for completely
independent ones.
Extendability and IB-NIKE. Without considering the steps for privacy amplification, the sharing
procedures of all our constructions (as well as the multi-party NIKEs in [2]) involve combining the
secret key with public keys of other users sequentially. Each intermediate value, termed as a “local
key”, essentially represents a shared key (without privacy amplification) amongst a subgroup of all
parties. We refer to this inherent property as extendability. With this property, one can easily extend the
shared (local) key amongst a certain group of parties to a larger group by simply combining it with the
public keys of newly joined parties, without the need to re-run the entire sharing procedure. Besides its
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independent interest, we observe that such a property provides us a “multilinear map-like” structure: the
public keys can be viewed as group elements, and together with a local key, they form a “multilinear
Diffie-Hellman-like” tuple. By carefully combining this insight with the technique introduced by Boneh
and Waters [8], which constructs BPRFs using multilinear maps, we obtain a generic construction of
BPRFs from multi-party NIKEs with extendability. Ultilizing existing generic techniques [8, 23], we
subsequently achieve fine-grained multi-party IB-NIKEs from BPRFs.

2 Preliminaries

Notations. In this paper, algorithms are modeled as functions or (streaming) word-RAMs. A function
represents a circuit with a specified domain and range, and we measure its complexity by its depth (i.e.,
the parallel running time). A word-RAM has access to memory and registers, each holding one word. Its
running time is measured in the number of basic operations (e.g., addition, subtraction, multiplication,
bit-shifting, and memory access). A word-RAM is a streaming one if it receives inputs in a streaming
manner and its local memory is measured in bits.

We write a $← A(b) (respectively, a = A(b)) to denote the random variable output by a probabilistic
(respectively, deterministic) algorithm A on input b. By x $← S we denote the process of sampling an
element x from a set or distribution S uniformly at random. By negl we denote an unspecified negligible
function.

By x ∈ {0, 1}n we denote a column vector with size n, by xi we denote the ith element of a vector x.
By [n] we denote the set {1, · · · , n}, by [t1, t2] we denote the set {t1, t1 + 1, · · · , t2}, and by MSBk(x) we
denote the most significant k bits in (the bit string representing) x. By log n we mean ⌈log n⌉. For some
set or sequence S, by xS we denote the sequence of all bits in x with indices (ordered lexicographically)
in S. For a matrix A, we denote the set {x |Ax = 0} by Ker(A). By In we denote an identity matrix in
{0, 1}n×n. By 0 we denote a zero vector or matrix.

By H(x) we denote the Shannon entropy of a random variable x with alphabet X defined as

H(x) = −
∑
x̂∈X

Pr[x = x̂] log Pr(x = x̂).

By H(x|y) we denote the conditional entropy of x conditioned on a random variable y with alphabet Y
defined as

H(x|y) =
∑
ŷ∈Y

H(x|y = ŷ).

By I(x; y) we denote the mutual information of x and y defined as

I(x; y) = H(x)−H(x | y),

which is the reduction of the uncertainty of x when y is learned. By E[x] and Var[x] we denote the
expected value and variance of the variable x. By ∆(x, y) we denote the total variation distance of two
random variables x, y with alphabets X and Y defined as

∆(x, y) = 1
2

∑
x̂∈X ∪ŷ∈Y

|Pr[x = x̂]− Pr[y = ŷ]|.

A sequence of random variables x1, · · · , xq with alphabet X is said to be independent if for any x̂1, · · · , x̂q ∈
X , we have

Pr[∧q
i=1xi = x̂i] =

q∏
i=1

Pr[xi = x̂i].

If we only require that
Pr[xi = x̂i ∧ xj = x̂j ] = Pr[xi = x̂i] · Pr[xj = x̂j ]

holds for any 1 ≤ i < j ≤ q, then the sequence is said to be pairwise independent.
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2.1 Fine-Grained Multi-Party NIKE
In this section, we define fine-grained multi-party NIKE and multi-party key exchange in the BSM. In
the following, a circuit (respectively, word-RAM) family is a family of (possibly randomized) circuits
(respectively, word-RAMs) with respect to all security parameters λ ∈ N denoted as {fλ}λ∈N. For brevity,
we refer to it as {fλ}.

We now define the multi-party NIKE and its security. We require that the users be in C1 and
the adversaries be in C2. In this work, C1 and C2 represent classes of circuit families in the bounded
parallel-time model, and represent classes of word-RAM families in the bounded time model. In the BSM,
C1 refers to a class of streaming word-RAM families with bounded storage, which receive inputs in a
streaming manner and store the outputs.

Definition 2.1 (Multi-party non-interactive key exchange). A C1-np-party non-interactive key exchange
scheme (NIKE) consists of two algorithm families NIKE = {Genλ, Shareλ} ∈ C1 such that

• Genλ on input urs ∈ {0, 1}n for some n = n(λ) outputs a public key pk and a secret key sk.
• Shareλ is a deterministic algorithm that on input a set of public keys (pki)i∈[np], an index i, and a

secret key ski outputs key ∈ Kλ, where i ∈ [np] and Kλ is the session key space.
ϵ-correctness is satisfied if for all λ ∈ N, all i, j ∈ [np], we have

Pr[Shareλ(i, ski, (pki)i∈[np]) = Shareλ(j, skj , (pki)i∈[np])] ≥ 1− ϵ

where (pki, ski) $← Genλ(urs) for all i ∈ [np].
C2-ϵ-security (respectively, C2-ϵ-weak security) is satisfied if for any adversary A = {advλ} ∈ C2 and

all sufficiently large λ ∈ N, we have

|Pr[1 $← advλ((pki)i∈[np], key)]− Pr[1 $← advλ((pki)i∈[np], key′)]| ≤ ϵ

(respectively, Pr[key $← advλ((pki)i∈[np])] ≤ ϵ)

where (pki, ski) $← Genλ(urs) for all i ∈ [np], key = Shareλ(1, sk1, (pki)i∈[np]), and key′ $← Kλ.
(ma, ϵ, θ)-security in the BSM is satisfied if for any function f : {0, 1}n → {0, 1}ma , we have

∃E : Pr[E] ≥ 1− ϵ and I(key; (f(urs), (pki)i∈[np])|E) ≤ θ,

where urs $← {0, 1}n, (pki, ski) $← Genλ(urs) for all i ∈ [np], and key = Shareλ(1, sk1, (pki)i∈[np]).

Remark on the BSM. Here we note that the security in the BSM captures the situation where all
parties have access to urs and the adversary is allowed to apply any (potentially unbounded) storage
function f with an output length limit of ma and store information on urs. Afterwards, urs becomes
inaccessible, and all parties broadcast public keys, which are typically required to be short, and share
a session key in a non-interactive way. Notice that we consider the traditional BSM [11] rather the
streaming BSM proposed by Dodis, Quach, and Wichs [15]. In the streaming BSM, the parties are
allowed to communicate interactively with perhaps multiple rounds of long messages.
Extendability of Multi-Party NIKE. We now define a property of multi-party NIKE called extend-
ability. Roughly, the extendability of a multi-party NIKE says that the sharing procedure involves an
algorithm termed as Combineλ, which sequentially combines a user’s secret key with other public keys,
and the intermediate value produced by Combineλ, referred to as a local key, can be used to derive the
shared key by using another algorithm Extractλ.

Definition 2.2 (Extendability). A C1-np-party non-interactive key exchange scheme NIKE = {Genλ,
Shareλ} ∈ C1 satisfies ϵ-extendability if there exists two deterministic algorithm families {Combineλ,
Extractλ} ∈ C1 such that there exists an event E such that Pr[E] ≥ 1− ϵ, and conditioned on E, for any
V ⊆ [np], V ′ ⊆ V, j ∈ V, and i′ ∈ V ′, we have

Combineλ(localkeyV′ , {pki}i∈V\V′) = Combineλ(skj , {pki}i∈V\{j})

and Extractλ(localkey[np], pknp) = Shareλ(1, sk1, (pki)i∈[np])

where (pki, ski) $← Genλ for every i ∈ [np], localkeyV′ = Combineλ(ski′ , {pki}i∈V′\{i′}) and localkey[np] =
Combineλ(sk1, {pki}i>1).
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We also give the definition of restricted extendability, which requires that Combineλ only generates
the local key of the users with consecutive indices.

Definition 2.3 (Restricted extendability). ϵ-restricted extendability is defined in exactly the same way
as ϵ-extendability except that the set V ⊆ [np] is restricted to V = [t1, t2] ⊆ [np] for any t1, t2 ∈ [np] and
V ′ is restricted to V ′ = [s1, s2] for any s1, s2 ∈ [np] such that t2 ≥ s2 ≥ s1 ≥ t1.

3 Fine-Grained Multi-Party NIKE based on NC1 ⊊ ⊕L/poly
In this section, we propose a fine-grained multi-party NIKE running in AC0[2] and secure against NC1

based on NC1 ⊊ ⊕L/poly. All arithmetic computations are over GF (2) in this section.

3.1 Background on the NC1-Fine-Grained Setting
We recall and define sampling procedures in NC1, along with several lemmata.
Function families. We now recall the definitions of NC1 circuits, AC0[2] circuits, and ⊕L/poly circuits.
Note that AC0[2] ⊊ NC1 [30, 32].

Definition 3.1 (NC1). The class of (non-uniform) NC1 function families is the set of all function families
F = {fλ} for which there is a polynomial p(·) and constant c such that for each λ, fλ can be computed
by a (randomized) circuit of size p(λ), depth c log(λ), and fan-in 2 using AND, OR, and NOT gates.

Definition 3.2 (AC0[2]). The class of (non-uniform) AC0[2] function families is the set of all function
families F = {fλ} for which there is a polynomial p(·) and constant c such that for each λ, fλ can be
computed by a (randomized) circuit of size p(λ), depth c, and unbounded fan-in using AND, OR, NOT,
and PARITY gates.

Definition 3.3 (⊕L/poly). ⊕L/poly is the set of all boolean function families F = {fλ} for which there
is a constant c such that for each λ, there is a non-deterministic Turing machine Mλ such that for each
input x with length λ, Mλ(x) uses at most c log(λ) space, and fλ(x) is equal to the parity of the number
of accepting paths of Mλ(x).

We now recall the definitions of four sampling procedures {LSampλ, RSampλ, ZeroSampλ, OneSampλ}
in Figure 2. Note that the output of ZeroSampλ is always a matrix of rank λ − 1 and the output of
OneSampλ is always a matrix of full rank [13].

LSampλ:
For all i, j ∈ [λ] and i < j:

ri,j
$← {0, 1}

Return
1 r1,2 · · · r1,λ−1 r1,λ

0 1 · · · r2,λ−1 r2,λ

...
...

. . .
...

...
0 0 · · · 1 rλ−1,λ

0 0 · · · 0 1



RSampλ:
For i = 1, · · · , λ− 1

ri
$← {0, 1}

Return
1 0 · · · 0 r1
0 1 · · · 0 r2
...

...
. . .

...
...

0 0 · · · 1 rλ−1
0 0 · · · 0 1



ZeroSampλ:
R0

$← LSampλ ∈ {0, 1}λ×λ

R1
$← RSampλ ∈ {0, 1}λ×λ

Return R0Mλ
0 R1 ∈ {0, 1}λ×λ

OneSampλ:
R0

$← LSampλ

R1
$← RSampλ

Return R0Mλ
1 R1 ∈ {0, 1}λ×λ

Figure 2: Definitions of LSampλ, RSampλ, ZeroSampλ, and OneSampλ. By Mλ
0 and Mλ

1 we denote the

λ× λ matrices Mλ
0 =

(
0 0

Iλ−1 0

)
and Mλ

1 =
(

0 1
Iλ−1 0

)
respectively.

Lemma 3.4 (Lemma 3 in [16]). For all λ ∈ N and all M ∈ ZeroSampλ, it holds that Ker(M) = {0, k}
where k is a vector such that k ∈ {0, 1}λ−1 × {1}.
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Lemma 3.5 (Lemma 4.3 in [13]). If NC1 ⊊ ⊕L/poly, for any {advλ} ∈ NC1 and all sufficiently large λ,
we have

|Pr[advλ(M) = 1|M $← ZeroSampλ]
−Pr[advλ(M) = 1|M $← OneSampλ]| ≤ negl(λ).

Here, we follow [16, 34, 33] to adhere to the stronger notion of NC1 ⊊ ⊕L/poly mentioned in the
second paragraph of Remark 3.1 in [13] for the sake of simplicity. One can easily see that if we only
assume the infinitely-often version of NC1 ⊊ ⊕L/poly, which holds only for an infinitely large number of
values of λ, then our scheme, given later, satisfies infinitely-often security.

Next, we recall a sampling algorithm RandSampλ that is implicitly defined in [33] and presented in
Figure 3. Additionally, an inverse algorithm RandSamp−1

λ is introduced. Roughly, as proven in [33], the
distribution of (F||s) ∈ {0, 1}λ(λ−1) × {0, 1}λ generated by RandSampλ(u) for u $← {0, 1}λ(λ+1)/2 is the
same as ZeroSampλ (respectively, OneSampλ) if s is in (respectively, outside) the span of F, which happens
with half probability. Hence, RandSampλ is indistinguishable from ZeroSampλ against NC1 adversaries.
One advantage of using RandSampλ is that it solely relies on public coins for matrix generation, and
these public coins can be easily reconstructed from the matrices using RandSamp−1

λ . This will help us
generate the public parameter of our construction given later by making use of a URS (i.e., u), rather
than generating it by using OneSampλ or ZeroSampλ with secret randomness.

RandSampλ(u ∈ {0, 1}λ(λ+1)/2):
Parse u = (r, s) ∈ {0, 1}λ(λ−1)/2 × {0, 1}λ

Parse r = (ri,j)1≤i<j≤λ and set

F =



r1,2 r1,3 · · · r1,λ−1 r1,λ

1 r2,3 · · · r2,λ−1 r2,λ

0 1 · · · r3,λ−1 r3,λ

...
...

. . .
...

...
0 0 · · · 1 rλ−1,λ

0 0 · · · 0 1


Return F||s ∈ {0, 1}λ×λ

RandSamp−1
λ (M ∈ {0, 1}λ×λ):

Parse M = F||s where

F =



r1,2 r1,3 · · · r1,λ−1 r1,λ

1 r2,3 · · · r2,λ−1 r2,λ

0 1 · · · r3,λ−1 r3,λ

...
...

. . .
...

...
0 0 · · · 1 rλ−1,λ

0 0 · · · 0 1


Abort if M does not conform to the form
Set r = (ri,j)1≤i<j≤λ

Return u = (r, s) ∈ {0, 1}λ(λ+1)/2

Figure 3: The definition of RandSampλ and RandSamp−1
λ .

Lemma 3.6 (Lemma 6 in [33]). If NC1 ⊊ ⊕L/poly, for any {advλ} ∈ NC1, we have

|Pr[advλ

(
RandSampλ(u)

)
= 1|u $← {0, 1}λ(λ+1)/2]
−Pr[advλ(M) = 1|M $← ZeroSampλ]| ≤ negl(λ)

for all sufficiently large λ ∈ N.

3.2 Our Construction
In this subsection, we give our construction of multi-party NIKE.
Core lemma. Before giving our construction, we define an algorithm SymRλ outputting uniformly
random symmetric matrices, and then propose a core lemma upon which we will heavily rely later.

Lemma 3.7 If NC1 ⊊ ⊕L/poly holds, then for any {advλ} ∈ NC1, any sufficiently large λ ∈ N, and any
polynomial n = n(λ) in λ, we have:

|Pr[advλ

(
M̃, (M̃Ri)i∈[n])

)
= 1]− Pr[advλ

(
M̃, (M̃Ri + Iλ)i∈[n]

)
= 1]| ≤ negl(λ)

where M $← ZeroSampλ, M̃ = M⊤M and R1, · · · , Rnp
$← SymRλ.
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SymRλ:

Output a matrix R ∈ {0, 1}λ×λ given by Rij =
{

a random bit, if i ≤ j

Rji, if i > j

Figure 4: The definitions of SymRλ.

Proof. Let λ ∈ N be any sufficiently large security parameter. Let M $← ZeroSampλ, M′ $← OneSampλ,
M̃ = M⊤M, and M̃′ = M′⊤M′. Since the multiplication of two matrices can be performed in NC1,
according to Lemma 3.5, we immediately have |Pr[advλ(M̃) = 1]− Pr[advλ(M̃′) = 1]| ≤ negl(λ), i.e.,

|Pr[advλ

(
M̃, (M̃Ri)i∈[n]

)
= 1]− Pr[advλ

(
M̃′, (M̃′Ri)i∈[n]

)
= 1]| ≤ negl(λ), (1)

|Pr[advλ

(
M̃′, (M̃′Ri + Iλ)i∈[n]

)
= 1]− Pr[advλ

(
M̃, (M̃Ri + Iλ)i∈[n]

)
= 1] ≤ negl(λ), (2)

where R1, · · · , Rnp
$← SymRλ.

Recall that any M′ ∈ OneSampλ is of full rank and has an inverse matrix M′−1. Hence, M̃′ = M′⊤M′

also has an inverse matrix M̃′−1 = M′−1M′−1⊤ and is of full rank. Furthermore, since M̃′−1 is a
symmetric matrix, for all i ∈ [np], the following distributions are identical:

(Ri + M̃′−1)i∈[n] and (Ri)i∈[n],

where R1, · · · , Rn
$← SymRλ. Hence, the following two distributions are also identical:(

M′, (M̃′Ri)i∈[n]

)
and

(
M̃′, (M̃′(Ri + (M̃′)−1))i∈[n]) = (M̃′Ri + I)i∈[n]

)
.

Combining this with Equations (1) and (2), Lemma 3.7 immediately follows.

Construction. We now give our construction of multi-party NIKE NCNIKE in the bounded parallel-time
model in Figure 5.

Genλ(urs ∈ {0, 1}λ(λ+1)/2):
M = RandSampλ(urs)

M̃ = M⊤M
sk = R $← SymRλ, pk = M̃R
Return (pk, sk)

Shareλ(i, ski, (pkj)j∈[np]):

Parse (pkj)j∈[np] = (Pj)j∈[np] and ski = Ri

K = (
∏

j<i
P⊤

j )Ri(
∏

j>i
Pj)

Let key be the bottom-right bit of K
return key

Figure 5: Definition of NCNIKE = {Genλ, Shareλ}.

Theorem 3.8 If NC1 ⊊ ⊕L/poly holds, then for any constant np, NCNIKE is an AC0[2]-np-NIKE with
0-correctness (i.e., perfect correctness) and NC1-negl(λ)-security.

Proof. Correctness. First we note that {Genλ, Shareλ} are computable in AC0[2] since they only
involve operations including multiplication of a constant number of matrices and sampling random bits.
Let (Pi = MRi, Ri)i∈[np] be np public/secret key pairs generated by Genλ. For all i ∈ [np], we have
P⊤

i = (M̃Ri)⊤ = R⊤
i M̃⊤ = RiM̃. Moreover, for any i ∈ [np], we have∏

j<i

P⊤
j Ri

∏
j>i

Pj =
∏
j<i

(RjM̃)Ri

∏
j>i

Pj = R1
∏

1<j≤i

(M̃Rj)
∏
j>i

Pj = R1
∏
j>1

Pj .

Therefore, for all i, i′ ∈ [np], we have

Shareλ(i, ski, (pkj)j∈[np]) = Shareλ(j, skj , (pkj)j∈[np]) = key,
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Games G0, G1 , G2 , G3 , G4

M = RandSampλ(urs) where urs $← {0, 1}λ(λ+1)/2 M $← ZeroSampλ , M̃ = M⊤M

Ri
$← SymRλ for i = 1, · · · , np

Pi = M̃Ri for i = 1, · · · , np P1 = M̃R1, Pi = M̃Ri + Iλ for i = 2, · · · , np

K = R1P2 · · ·Pn K = (R1 + m · µ ·m⊤)P2 · · ·Pn

Set key as the bottom-right bit of K key $← {0, 1}

Return (urs, (pki = Pi)i∈[np], key) to advλ

Output whatever advλ outputs

Figure 6: The challengers in G0, G1, G2, G3, and G4 for the proof of Theorem 3.8. m is the non-zero
vector in Ker(M̃).

where key is the bottom-right bit of R1
∏

j>1 Pj , completing the proof of correctness.

Security. Let λ be the security parameter and A = {advλ} ∈ NC1 be any adversary against the security
of NCNIKE. We prove the security of NCNIKE via a sequence of hybrid games as in Figure 6.
G0. This is the original security game where advλ receives urs $← {0, 1}λ(λ+1)/2, (pki)i∈[k] where
(pki, ski) $← Genλ(urs) for all i ∈ [np], and key = Shareλ(1, sk1, (pk)i∈[np]), and outputs a bit β.
G1. G1 and G0 only differ in the way that M is generated, namely, M is generated by ZeroSampλ rather
than RandSampλ in G1.
Lemma 3.9 |Pr[Gadvλ

1 ⇒ 1]− Pr[Gadvλ
0 ⇒ 1]| ≤ negl(λ).

Proof. We construct an adversary B0 = {advb0
λ} ∈ NC1 in the game described in Lemma 3.6 as follows.

On receiving M sampled as M = RandSampλ(urs) where urs $← {0, 1}λ(λ+1)/2 or M $← ZeroSampλ,
advb0

λ sets urs = RandSamp−1
λ (M), samples R1

$← SymRλ, sets P1 = M̃R1, computes K = R1
∏

i>1 Pi,
and sets key as the bottom-right bit of K. Next it sends (urs, (Pi)i∈[np], key) to advλ. When advλ returns
β ∈ {0, 1}, advb0

λ returns β as well.
First we note that all operations in advb0

λ are NC1, since advb0
λ only samples random bits, computes

multiplication of a constant number of matrices, and runs advλ. Moreover, when M is generated as
M = RandSampλ(urs) where urs $← {0, 1}λ(λ+1)/2 (respectively, M $← ZeroSampλ), the view of advλ is
identical to its view in G0 (respectively, G1). Hence, the advantage of advb0

λ is

|Pr[Gadvλ
1 ⇒ 1]− Pr[Gadvλ

0 ⇒ 1]|,

which is negligible according to Lemma 3.6, completing this part of proof.

G2. G2 and G1 only differ in the way that P2, · · · , Pn are generated, namely, Pi is generated as
Pi = M̃Ri + Iλ where Ri

$← SymRλ for i = 2, · · · , n in G2.
Lemma 3.10 |Pr[Gadvλ

2 ⇒ 1]− Pr[Gadvλ
1 ⇒ 1]| ≤ negl(λ).

Proof. We construct an adversary B1 = {advb1
λ} ∈ NC1 in the game described in Lemma 3.7 as follows.

On receiving M̃ = M⊤M, where M $← ZeroSampλ, and Pi = M̃Ri or Pi = M̃Ri + Iλ, where Ri
$←

SymRλ, for i = 2, · · · , np, advb1
λ sets urs = RandSamp−1

λ (M), samples R1
$← SymRλ, sets P1 = M̃R1,

computes K = R1
∏n

i=2 Pi, and sets key as the bottom-right bit of K. Next it sends (urs, (Pi)i∈[np], key)
to advλ. When advλ returns β ∈ {0, 1}, advb1

λ returns β as well.
First we note that all operations in advb1

λ are NC1, since advb1
λ only samples random bits, computes

multiplication of a constant number of matrices, and runs advλ. Moreover, when Pi is generated as
Pi = M̃Ri (respectively, Pi = M̃Ri + Iλ) for all i ∈ [np]\{1}, the view of advλ is identical to its view in
G1 (respectively, G2). Hence, the advantage of advb1

λ is

|Pr[Gadvλ
2 ⇒ 1]− Pr[Gadvλ

1 ⇒ 1]|,
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which is negligible according to Lemma 3.7, completing this part of proof.

G3. G3 is exactly the same as G2 except that when generating K, we replace R1 by (R1 + m · µ ·m⊤).
Here, µ $← {0, 1} and m ∈ {0, 1}λ−1 × {1} is the non-zero vector in Ker(M̃), which must exist according
to Lemma 3.4.

Lemma 3.11 Pr[Gadvλ
3 ⇒ 1] = Pr[Gadvλ

2 ⇒ 1].

Proof. First we note that the distribution of R1 + m · µ ·m⊤ is uniform in SymRλ for R1
$← SymRλ,

since m · µ ·m⊤ is a symmetric matrix. Moreover, we have P1 = M̃(R1 + m · µ ·m⊤) = M̃R1. Then
Lemma 3.11 immediately follows from that the view of advλ in G3 is identical to its view in G2.

G4. G4 is exactly the same as G3 except that the challenger sets the session key key as a random bit.

Lemma 3.12 Pr[Gadvλ
4 ⇒ 1] = Pr[Gadvλ

3 ⇒ 1].

Proof. First we note that P2 = M̃R2 + Iλ in G3 and G4. Assuming that
∏i

j=2 Pj = M̃Si + Iλ for some
2 ≤ i < np and some Si ∈ {0, 1}λ×λ, we have

i+1∏
j=2

Pj = (M̃Si + Iλ)Pi+1 = M̃SiPi+1 + Pi+1

= M̃SiPi+1 + M̃Ri+1 + Iλ = M̃(SiPi+1 + Ri+1) + Iλ,

namely, we have
∏i+1

j=2 Pj = M̃Si+1 + Iλ for Si+1 = SiPi+1 + Ri+1.
Then by mathematical induction, we have

∏np
j=2 Pj = M̃Snp + Iλ for some Snp ∈ {0, 1}λ×λ, i.e.,

the rightmost column vector in
∏np

j=2 Pj is in the form of M̃sk + eλ for some sk ∈ {0, 1}λ and eλ =
(0, · · · , 0, 1)⊤. Moreover, since the last bit in m is 1 according to Lemma 3.4, the bottom vector of
R1 + m · µ ·m⊤ must be in the form of r⊤

1 + µ ·m⊤, where r⊤
1 denotes the bottom vector in R1. Let key

be the bottom-right bit of K in G2. We have

key = (r⊤
1 + µ ·m⊤)(M̃sk + eλ) = r⊤

1 (M̃sk + eλ) + µ ·m⊤M̃sk︸ ︷︷ ︸
=0

+µ ·m⊤eλ︸ ︷︷ ︸
=1

.

Since µ is a random bit and advλ obtains no information on µ except for key, key is a random bit in the
view of advλ as well, completing this part of proof.

Games H0, H1 , H2 , H3

M $← ZeroSampλ M = RandSampλ(urs) where urs $← {0, 1}λ(λ+1)/2 , M̃ = M⊤M

Ri
$← SymRλ for i = 1, · · · , np

P1 = M̃R1, Pi = M̃Ri + Iλ for i = 2, · · · , np Pi = M̃Ri for i = 2, · · · , np

K = (R1 + m · µ ·m⊤)P2 · · ·Pn K = R1P2 · · ·Pn

Set key $← {0, 1}
Return (urs, (pki = Pi)i∈[np], key) to advλ

Output whatever advλ outputs

Figure 7: The challengers in H0, H1, H2, and H3 for the proof of Theorem 3.8. m is the non-zero vector
in Ker(M̃⊤).

We now do all the previous steps in the reverse order as in Figure 7. Note that the view of the
adversary in H0 (respectively, H3) is identical to its view in G4 (respectively, the honest game where key
is a random bit). By using the above arguments in a reverse order, we have the following lemma.
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Lemma 3.13 |Pr[Hadvλ
3 ⇒ 1] = Pr[Hadvλ

0 ⇒ 1]| ≤ negl(λ).

Putting all the above together, Theorem 3.8 immediately follows.

Extension to IB-NIKE. We can also show that our construction satisfies 0-restricted extendability (see
Definition 2.3), and thus can be converted into a restricted BPRF, which in turn implies a multi-party
IB-NIKE in the bounded parallel-time model. Similar argument can also be made for our constructions
in the bounded time model and the BSM, while those constructions further satisfy (full) extendability
(see Definition 2.2) and can be converted into full-fledged BPRFs. We refer the reader to Appendix A for
the full details.

4 Fine-Grained Multi-Party NIKE based on Zero-k-Clique
In this section, we propose a fine-grained multi-party NIKE based on Zero-k-Clique. All algorithms and
adversaries in this section are modeled as word-RAMs with O(log λ)-bit words. The resulting scheme is
computable in Õ(λnp+k−1) and secure against Õ(λnp+k) for any constant number np of parties.

4.1 Zero-k-Clique Problem and Its Properties
We now introduce the Zero-k-Clique problem, which is the set of k-partite graphs with weighted edges.
Each graph is said to have a solution if there is a k-clique (i.e., a complete subgraph) where the sum of
edge weights within the clique is 0. Below by weight(v, u) any two nodes v and u in a graph we denote
the weight between (v, u).

Definition 4.1 (Zero-k-Clique-R problem). Let λ ∈ N be the security parameter. For k > 2, a Zero-k-
Clique-R problem Pk,R is the set of all k-partite graphs with λ nodes in each partition and the weight
of each edge being in ZR. Each graph with k partitions P1, · · · ,Pk is required to be complete, namely,
there is an edge between two nodes v ∈ Pi and u ∈ Pj if and only if i ̸= j. (v1, · · · , vk) ∈ P1 × · · · ×Pk is
said to be a solution of I if for each vi, vj ∧ i ̸= j, we have

∑
i∈[k]

∑
j∈[k]∧i ̸=j weight(vi, vj) ≡ 0 mod R.

For any Pk,R, we define two distributions D0[R] and D1[R]. D0[R] (respectively, D1[R]) is the uniform
distribution over the instances in Pk,R having no solutions (respectively, having a single solution).

The Zero-k-Clique-R hypothesis says that it is easy to verify a solution of a random instance in the
Zero-k-Clique problem and difficult to find a solution given a random instance.

Definition 4.2 (Strong Zero-k-Clique-R hypothesis and range R = λck). For any constant c > 1, λ ∈ N,
and R = λck, the strong Zero-k-Clique-R hypothesis holds if

• there exists an algorithm Verify with running time O(λk(1−δ)) for some constant δ > 0 such that
Verify(I, w) = 1 if I has a solution for an arbitrary witness w of an instance I with one solution,

• for any algorithm A with running time O(λk(1−δ)) for some constant δ > 0, Pr[advλ(I) = w] ≤ 1
100

where I $← D1[R] and w is an arbitrary witness of the instance I with one solution.

Remark. Below when mentioning the strong Zero-k-Clique hypothesis, we are always referring to the
strong Zero-k-Clique hypothesis with k > 2 and R = λck.

Theorem 4.3 (Theorem 15 in [25]). If the strong Zero-k-Clique-R hypothesis holds, then for every
probabilistic word-RAM family {advλ} with running time O((ℓ(λ)T (λ))1−δ) for some constant δ > 0, we
have

Pr[advλ((Ij)ℓ(λ)
j=1) = i] ≤ ϵ,

where Ii
$← D1[R] for i $← [ℓ(λ)], Ij

$← D0[R] for all j ∈ [ℓ(λ)]\{i}, ℓ(λ) = λΩ(1), ϵ ≤ 1/200, and
T (λ) = λk.

Next we recall a word-RAM family {Generateλ} such that Generateλ(R, k, b) produces an instance of
the Zero-k-Clique-R problem drawn from a distribution of total variance distance at most 2λk/R from
Db[R] defined in [25] as in Figure 8.

Theorem 4.4 (Theorem 14 in [25]). If the strong Zero-k-Clique-R hypothesis holds, then we have
∆(Generateλ(R, k, b),Db[R]) ≤ 2λk/R, for all b ∈ {0, 1}, where Generateλ runs in time O(λ2).
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Generateλ(R, k, b):

Generate I ∈ Pk,R with partitions P1, · · · ,Pk such that weight(vi, vj) $← ZR for all i ̸= j, all vi ∈ Pi,
and all vj ∈ Pj

If b = 0, return I

Otherwise, sample i, j $← [k] ∧ i ̸= j, v1
$← P1, · · · , vk

$← Pk and set weight(vi, vj) =
−Σ(i′,j′ )̸=(i,j)weight(vi′ , vj′ )
Return I

Figure 8: Definition of Generateλ [25].

The following corollary follows immediately from Theorem 4.4.

Corollary 4.5 If the strong Zero-k-Clique-R hypothesis holds, we have

∆((Ij
i )j∈[ℓ],i∈[np], (Dbj

i
[R])j∈[ℓ],i∈[np]) ≤

∑
j∈[ℓ],i∈[np]

∆(Ij
i ,Dbj

i
[R]) = 2ℓnpλk/R,

where Ij
i

$← Generateλ(R, k, bj
i ), bj

i ∈ {0, 1} for all i ∈ [np] and j ∈ [ℓ], ℓ = λΩ(1), and any constant np.

We now recall a theorem given in [25]. Roughly, it says that there exists a word-RAM family {Splitλ}
such that for an instance I of the Zero-k-Clique-R problem with one solution, Splitλ(I) outputs two
slightly smaller instances that both have solutions in O(λk(1−δ)) time for some constant δ > 0.

Theorem 4.6 (Theorem 16 in [25]). If the strong Zero-k-Clique-R hypothesis holds, then there exists
a word-RAM family {Splitλ} with running time O(λk(1−δ)) for some constant δ > 0 such that

• ∆((Îi
1, Îi

2), (D0[
√

R]×D0[
√

R])) ≤
(

k
2
)
·4(k

2)·3λk/
√

R for all i ∈ [
(

k
2
)
] where I $← D0[R], (Îj

1 , Îj
2)j∈[(k

2)]
$←

Splitλ(I).
• ∆((Îi

1, Îi
2), (D1[

√
R] × D1[

√
R])) ≤

(
k
2
)
· 4(k

2) · 3λk/
√

R for some i ∈ [
(

k
2
)
] where I $← D1[R],

(Îj
1 , Îj

2)j∈[(k
2)]

$← Splitλ(I).

4.2 Construction

Generalized splitting algorithm. Before giving our construction, we propose generalized splitting
algorithms {np-Splitλ}. Each splitting algorithm takes an instance I and an integer L = log np as input
and generates

(
k
2
)np lists of instances in time O(λk(1−δ)) for some constant δ > 0, where the number of

the solutions for each instance remains unchanged.

np-Splitλ(I, L):
Return Splitλ(I) if L = 1
Set L = L− 1 and run (It

1, · · · , It
2L )t∈[m]

$← np-Splitλ(I, L)

For each t ∈ [m] and each i ∈ [2L], run (Îj×t
2i−1, Îj×t

2i )
j∈[(k

2)]
$← Splitλ(It

i )

Return (Îj
1 , · · · , Îj

2L+1 )
j∈[m·(k

2)]

Figure 9: The construction of np-Splitλ. By m we denote the number of lists, which is initialized with
(

k
2
)
.

Let {Splitλ} be the word-RAM family from Theorem 4.6.

Theorem 4.7 If the strong Zero-k-Clique-R hypothesis holds, we have

∆((Îi
1, · · · , Îi

np
),D0[ np

√
R]np) ≤ (2np − 1) ·

(
k

2

)
· 4(k

2) · 3λk/
np
√

R
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for all i ∈ [
(

k
2
)np ] where (Îj

1 , · · · , Îj
np

)j∈[m]
$← np-Splitλ(I) for I $← D0[R], and

∆((Îi
1, · · · , Îi

np
),D1[ np

√
R]np) ≤ (2np − 1) ·

(
k

2

)
· 4(k

2) · 3λk/
np
√

R

for some i ∈ [
(

k
2
)np ] where (Îj

1 , · · · , Îj
np

)j∈[m]
$← np-Splitλ(I) for I $← D1[R].

Proof. We first note that since np-Splitλ runs Splitλ for only a constant number of times, its running time
is asymptoticly the same as Splitλ, i.e., O(λk(1−δ)). Let I $← D0[R]. For all j ∈ [

(
k
2
)
], we have

∆((Îj
1 , Îj

2), (D0[
√

R]×D0[
√

R])) ≤
(

k

2

)
4(k

2)3λk/
√

R,

where (Îj
1 , Îj

2)j∈[(k
2)]

$← np-Splitλ(I, 1), according to Theorem 4.6. For L > 1, let It
i

$← D0[ 2L−1√
R] for each

t ∈ [m] and i ∈ [2L]. By Theorem 4.6, we have

∆((Îj×t
2i−1, Îj×t

2i ), (D0[ 2L√
R]×D0[ 2L√

R])) ≤
(

k

2

)
4(k

2)3λk/
2L√

R,

where (Îj×t
2i−1, Îj×t

2i )j∈[(k
2)]

$← Splitλ(It
i ) for all j ∈ [

(
k
2
)
]. Since the sequence It

1, · · · , It
2L are independent

for each t ∈ [m], and np-Splitλ runs Splitλ for 2L−1 times, by a union bound, we have

∆((Îj
1 , · · · , Îj

2L+1),D0[ 2L√
R]2

L+1
) ≤ 2L−1

(
k

2

)
4(k

2)3λk/
2L√

R

for each j ∈ [m
(

k
2
)
]. Therefore, for each i ∈

(
k
2
)np , we have

∆((Îi
1, · · · , Îi

np
),D0[ np

√
R]np) ≤∆((Îi

1, · · · , Îi
2log np ),D0[ 2log np√

R]2
log np )

≤
2log np−1∑

i=0
2i

(
k

2

)
4(k

2)3λk/
2i+1√

R

≤(2np − 1)
(

k

2

)
4(k

2)3λk/
np
√

R.

Let I $← D1[R]. For some j ∈ [
(

k
2
)
], we have

∆((Îj
1 , Îj

2), (D1[
√

R]×D1[
√

R])) ≤
(

k

2

)
4(k

2)3λk/
√

R,

where (Îj
1 , Îj

2)j∈[(k
2)]

$← np-Splitλ(I, 1), according to Theorem 4.6. For L > 1, let It
i

$← D1[ 2L−1√
R] for all

t ∈ [m] and all i ∈ [2L]. By Theorem 4.6, for some j ∈ [
(

k
2
)
], we have

∆((Îj×t
2i−1, Îj×t

2i ), (D1[ 2L√
R]×D1[ 2L√

R])) ≤
(

k

2

)
4(k

2)3λk/
2L√

R,

where (Îj×t
2i−1, Îj×t

2i )j∈[(k
2)]

$← Splitλ(It
i ). Since all It

1, · · · , It
2L are independent for all t ∈ [m], and np-Splitλ

runs Splitλ 2L−1 times, by a union bound, we have

∆((Îj
1 , · · · , Îj

2L+1),D1[ 2L√
R]2

L+1
) ≤ 2L−1

(
k

2

)
4(k

2)3λk/
2L√

R

for some j ∈ [m
(

k
2
)
]. Therefore, for some i ∈

(
k
2
)np , we have

∆((Îi
1, · · · , Îi

np
),D1[ np

√
R]np) ≤∆((Îi

1, · · · , Îi
2log np ),D1[ 2log np√

R]2
log np )

≤
2log np−1∑

i=0
2i

(
k

2

)
4(k

2)3λk/
2i+1√

R

≤(2np − 1)
(

k

2

)
4(k

2)3λk/
np
√

R.
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Our construction. We now present our construction of fine-grained multi-party NIKE TNIKE based on
the Zero-k-Clique hypothesis in Figure 10.

Genλ(⊥):
Sample a random subset S ⊂ [ℓ] such that |S| = q

For all j ∈ [ℓ]
Ij = Generateλ(R, k, 1) if j ∈ S and Ij = Generateλ(R, k, 0) otherwise

Return (pk = (Ij)j∈[ℓ], sk = S)

Shareλ(i, ski, (pkj)j∈[np]):

Parse (pkt = (Ij
t )j∈[ℓ])t∈[np], ski = Si.

For t ∈ [np]\{i}, T = ∅
For every s ∈ Si, check by brute forcing whether Is

t has one solution
If the check passes, T = T ∪ {s}

Si = Si ∩ T
Return key =

⊕|Si|
j=1 sj for all sj ∈ Si if |Si| ≥ 1 and abort otherwise

Figure 10: Construction of time TNIKE = {Genλ, Shareλ}.

Let C1 (respectively, C2) be the set of all word-RAM families such that for each F = {fλ} ∈ C1
and each λ ∈ N, fλ runs in time Õ(ℓλ2 + qλk) (respectively, Õ(ℓλk)), where ℓ = λΩ(1) and q < ℓ. Let
ϵ1 = (1− ( q

ℓ )np−1)q + 2ℓnpλk/R and

ϵ2 ≤ 201/200 + ℓ(2np − 1)
(

k

2

)
4(k

2)3λk/R− (1− q − 1
ℓ

)np + 2np(q − 1 + ℓ)λk/R.

We have the following theorem.

Theorem 4.8 If the strong Zero-k-Clique-R hypothesis holds, then for any constant np, TNIKE is a
C1-np-NIKE with ϵ1-correctness and C2-ϵ2-weak security.

Proof. Complexity. Recall that Generateλ runs in time O(λ2), and the check by brute forcing takes
time O(λk). Since all parties run Generateλ for ℓ times and run check for q times, its total running time
is Õ(ℓλ2 + qλk).
Correctness. We first prove that the probability that the protocol aborts is at most (1 − ( q

ℓ )np−1)q.
Without loss of generality, we assume that the variables in Snp are independently sampled from [ℓ] with

replacement. Defining the indictor Yx such that Yx =
{

1 x ∈ ∩np−1
i=1 Si

0 otherwise
. For any x $← [ℓ] we have

Pr[Yx = 1] = Pr[x ∈ S1 ∩ · · · ∩ Snp−1] = Pr[x ∈ S1] · · ·Pr[x ∈ Snp−1] = (q/ℓ)np−1

i.e., Pr[Yx = 0] = 1− (q/ℓ)np−1. Moreover, for x1, · · · , xq
$← [ℓ] for any q, we have

Pr[Yx1 = 1 ∧ · · · ∧ Yxq
= 1] = Pr[x1, · · · , xq ∈ ∩

np−1
i=1 Si]

=
np−1∏
i=1

Pr[x1, . . . , xq ∈ Si] (∵ independence of S1, · · · Snp−1)

=
np−1∏
i=1

(Pr[x1 ∈ Si] · · ·Pr[xq ∈ Si]) (∵ independence of {xj}j∈[q])

= Pr[x1 ∈ ∩
np−1
i=1 Si] · · ·Pr[xq ∈ ∩

np−1
i=1 Si] = Pr[Yx1 = 1] · · ·Pr[Yxq

= 1].

Hence, {Yxj
}j∈[q] are independent.
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Since the intersection of S1, · · · ,Snp only becomes larger when variables in Snp are sampled with
non-replacement, the probability that ∩np

i=1Si = ∅ (i.e., which is the probability that some user aborts) is
no larger than

Pr[∧q
i=1Yxi

= 0] =
q∏

j=1
Pr[Yxj

= 0] = (1− (q

ℓ
)np−1)q.

Moreover, the np parties agree on the same key without aborting occurs if and only if | ∩np
i=1 Si| > 0

and no instance generated by Generateλ(R, k, 0) has a solution, which happens with probability

Pr[∧q
i=1Yxi = 0] + ∆((Ij

i )j∈[ℓ],i∈[np], (Dbj
i
[R])j∈[ℓ],i∈[np]),

where Ij
i

$← Generateλ(R, k, bj
i ) and bj

i is the i’th index in Sj . Since Pr[∧q
i=1Yxi

= 0] = (1− ( q
ℓ )np−1)q, and

∆((Ij
i )j∈[ℓ],i∈[np], (Dbj

i
[R])j∈[ℓ],i∈[np]) = 2ℓnpλk/R

according to Corollary 4.5, the total error probability on correctness is ϵ1 = (1− ( q
ℓ )np−1)q + 2ℓnpλk/R.

C2-ϵ-weak security. Let λ be the security parameter, and A = {advλ} ∈ C2 be any adversary against
the C2-ϵ-weak security of TNIKE. The proof proceeds via a sequence of hybrid games as in Figure 11.

Games G0, G1 , G2 , G3 , G4

Sample random {Si}i∈[np] ⊂ [ℓ], each |Si| = q

Sample random {Si}i∈[np] ⊂ [ℓ], each |Si| = q − 1, and i∗ $← [ℓ]

Let (sk1, · · · , sknp ) = (S1, · · · ,Snp )

For each i ∈ [np], ski = Si ∪ {i∗}, if |ski| < q, abort

For each i ∈ [np]
For s ∈ [ℓ], If s ∈ ski, Is

i = Generateλ(R, k, 1), else Is
i = Generateλ(R, k, 0)

For s ∈ [ℓ], if s ∈ ski, Is
i

$← D1[R], else Is
i

$← D0[R]

For each s ∈ [ℓ], if s = i∗, Îs $← D1[Rnp ], else Îs $← D0[Rnp ]
For each s ∈ [ℓ], (Is

1 , · · · , Is
np ) $← np-Splitλ(Îs, log np)

For each i ∈ [np] and s ∈ [ℓ], If s ∈ Si, Is
i = Generateλ(R, k, 1)

Let (pki = (Ij
i )j∈[ℓ])i∈[np] and T =

⋂np
i=1 ski

Return (pki)i∈[np] to advλ and get key from advλ

If key =
⊕|T |

i=1 ti for all ti ∈ T then output 1 and 0 otherwise

Figure 11: The challengers in G0, G1, G2, G3, and G4.

G0. This is the original security game where advλ receives (pki)i∈[np] where (pki, ski) $← Genλ(⊥) for all
i ∈ [np], and outputs a session key key.
G1. G1 and G0 only differ in the way that (Ij

i )i∈[np],j∈[ℓ] are generated, namely, every instance Ij
i in pki is

generated as Ij
i

$← D0[R] (or Ij
i

$← D1[R]) rather than Ij
i

$← Generateλ(R, k, 0) (or Ij
i

$← Generateλ(R, k, 1))
for all i ∈ [np] and j ∈ [ℓ].

Lemma 4.9 |Pr[Gadvλ
1 ⇒ 1]− Pr[Gadvλ

0 ⇒ 1]| ≤ 2npℓλk/R.

This lemma follows immediately from Corollary 4.5.
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G2. G2 and G1 differ in the way that (ski)i∈[np] are generated, namely, for each i ∈ [np], ski = {i∗} ∪ Si

where i∗ $← [ℓ], Si ⊂ [ℓ], and |Si| = q − 1, and aborts if |ski| < q rather than ski = Si where Si ⊂ [ℓ] and
|Si| = q.

Lemma 4.10 |Pr[Gadvλ
2 ⇒ 1]− Pr[Gadvλ

1 ⇒ 1]| ≤ 1− (1− (q − 1)/ℓ)np .

Proof. We define Bad as the event that G2 aborts. Note that Bad does not occur as long as we avoided the
index with one solution when planting q − 1 indices in each list. Let sj

i be the jth variable in Si, for each
i ∈ [np] and j ∈ [q − 1], we have Pr[Bad] = 1−

∏np
i=1 Pr[s1

i ̸= i∗ ∧ · · · ∧ sq−1
i ̸= i∗] ≤ 1− (1− (q − 1)/ℓ)np .

Since the view of advλ is identical to its view in G1 when Bad does not occur in G2. Hence, we have

|Pr[Gadvλ
2 ⇒ 1]− Pr[Gadvλ

1 ⇒ 1]| ≤ Pr[Bad] ≤ 1− (1− (q − 1)/ℓ)np ,

completing this part of proof.

G3. G3 and G2 only differ in the way that {Is
i }i∈[np],s∈Si

are generated, namely, for each i ∈ [np] and each
s ∈ Si, Is

i
$← Generateλ(R, k, 1) rather than Is

i
$← D1[R].

Lemma 4.11 |Pr[Gadvλ
3 ⇒ 1]− Pr[Gadvλ

2 ⇒ 1]| ≤ 2np(q − 1)λk/R.

This lemma follows immediately from Corollary 4.5.
G4. In G4, (Ij

i )i∈[np] are generated by np-Splitλ(Îj , log np) for all j instead.
Here, note that np-Splitλ returns m =

(
k
2
)np instance lists every time, and we can check the correctness

of each instance in the list by brute forcing. When ℓ is polynomial in λ, the time required to check
by brute forcing a single instance is polynomially smaller than the time needed to solve the entire list
instance. We will need to check m of these instances by brute forcing, one for each of the m produced
np lists. When ℓ/m = λ−Ω(1), the total time required for all the checks by brute forcing is polynomially
smaller than the time needed to solve a single list instance. Therefore, we only focus on the instance list
which is verified by this check.

Lemma 4.12 |Pr[Gadvλ
4 ⇒ 1]− Pr[Gadvλ

3 ⇒ 1]| ≤ ℓ(2np − 1)
(

k
2
)
4(k

2)3λk/R.

By Theorem 4.7 and a union bound, Lemma 4.12 immediately follows.

Lemma 4.13 Pr[Gadvλ
4 ⇒ 1] ≤ 1/200.

Proof. We construct an adversary B = {advbλ} in the game described in Theorem 4.3 as follows.
advbλ runs in exactly the same way as the challengers in G4 except that (Î1, · · · , Îℓ) is generated by

its own challenger as Îi∗ $← D1[Rnp ] for i∗ $← [ℓ] and Îj $← D0[Rnp ] for all j ∈ [ℓ]\{i∗}. When advλ returns
key, advbλ computes T =

⋂np
i=1 Si and returns i∗ = key ⊕

⊕|T |
i=1 ti.

Recall that np-Splitλ runs in time time Õ(λk). Since advbλ runs np-Splitλ for ℓ times, Generateλ for
np · q times, and check for

(
k
2
)np times, its total running time is Õ(ℓλk + npqλ2 +

(
k
2
)np

λk) = Õ(ℓλk).
Since the view of advλ is identical to its view in G4, the advantage of advbλ is exactly Pr[Gadvλ

4 ⇒ 1],
which is no more than 1/200, according to Theorem 4.3.

Putting all the above together, we have

Pr[Gadvλ
0 ⇒ 1] ≤ 201/200 + ϵsplit − (1− q − 1

ℓ
)np + 2np(q − 1 + ℓ)λk/R,

where ϵsplit = ℓ(2np − 1)
(

k
2
)
4(k

2)3λk/R, completing the proof of Theorem 4.8.

Example with asymptotic complexity. Let ℓ = λnp , q = λnp−1 log λ, and R = λnpk. We have

ϵ1 ≤ (1− (q

ℓ
)np−1)q + 2ℓnpλk

R
= (1− (λnp−1 log λ

λnp
)np−1)λnp−1 log λ + 2npλnp+k

λnpk
,

which approaches
e− log2np−1 λ + O(1/λknp−k−np) = O(1/λknp−k−np)
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when λ is sufficiently large, and
ϵ2 ≤ 1/200 + Õ(λk+np−knp−1).

In this case, the scheme is computable within time Õ(λnp+k−1) and secure against adversaries with
running time Ω̃(λnp+k). When np is fixed, setting k = 3 provides better bounds in our instantiation.
Concrete examples. We now give a concrete example of the parameters. Let ℓ = 221, np = 3, and k = 3,
since 0 < 1− (1− q−1

ℓ )np − 1
λ3 < 16/100 and ϵsplit + 2np(q− 1 + ℓ)λk/R < 1/200, we have ϵ1 < 2.87× 10−6

and ϵ2 ≤ 1
200 + 16

100 + 1
200 < 1

5 .

Full security. While TNIKE only satisfy weak security, we can extend it to one with C2-4 · ϵ2-security via
privacy amplification by the Goldreich-Levin extractor [19]. Before giving our fully secure construction,
we recall the Chebyshev bound as below.

Theorem 4.14 (Chebyshev bound). For any ϵ > 0, b ∈ {0, 1} and q ∈ N, and let {xi}i∈[q] be
pairwise-independent, 0/1-random variables such that

Pr[xi = b] ≥ 1
2 + ϵ

for all i ∈ [q]. Let x =
{

1 if Σq
i=1xi ≥ q

2
0 if Σq

i=1xi < q
2

. Then

Pr[x ̸= b] ≤ 1
4ϵ2q

.

Let C1 (respectively, C2) be the set of all word-RAM families such that for each F = {fλ} ∈ C1
and each λ ∈ N, fλ runs in time Õ(T1(λ)) (respectively, Õ(T2(λ))) for any constant np ≥ 2, k ≥ 3. Let
ϵ = 1/λo(1) and TNIKE = (Genλ, Shareλ) be a C1-np-NIKE that satisfies C2- ϵ

4 -weak security with the
secret key size log(λΩ(1)), we construct TNIKE∗ = (Gen∗

λ, Share∗
λ) satisfying C2-ϵ-security as in Figure 12.

Theorem 4.15 If TNIKE is a C1-np-NIKE with C2- ϵ
4 -weak security and |sk| = log(λΩ(1)), then TNIKE∗

is a C1-np-NIKE with C2-ϵ-security.

Gen∗
λ(⊥):

(pk, sk) $← Genλ(⊥)
v $← {0, 1}|sk|

Return (pk∗ = (pk, v), sk∗ = sk)

Share∗
λ(i, sk∗

i , (pk∗
j )j∈[np]):

Parse pk∗
j = (pkj , vj) for all j ∈ [np]

key = Shareλ(i, sk∗
i , (pkj)j∈[np]))

Return key∗ = key · vnp

Figure 12: Definition of TNIKE∗ = {Gen∗
λ, Share∗

λ} with C2-ϵ-security.

Proof. Let Q(λ) = |sk|, m = 2Q(λ)/ϵ, and A = {advλ} ∈ C2 be any adversary breaking the C2-ϵ-security
of TNIKE∗. We construct an adversary B = {bλ} ∈ C2 breaking the C2- ϵ

4 -weak security of TNIKE.
Firstly, bλ chooses log(m) pairs (σ1, r1), · · · , (σlog(m), rlog(m)) $← {0, 1} × {0, 1}|sk|. Then, for every

nonempty subset X ⊆ [log(m)], bλ computes rX = ⊕i∈X ri and σX = ⊕i∈X σi. For every i ∈ [Q(λ)], bλ

runs
keyX

i = σX ⊕ advλ({pki}i∈[np], rX ⊕ ei),

where ei denotes the Q(λ)-bit string with 1 in the i’th position and 0 everywhere else, and sets key∗
i as

the majority of keyX
i . Finally, bλ outputs key∗ = key∗

1|| · · · ||key∗
m. Let

S = {key
∣∣ Pr[advλ({pki}i∈[np], vnp) = key] > 1/2 + ϵ/2}.

A quick calculation yields |S| > 2Q(λ)−1ϵ. Since {σi}i∈[log(m)] are sampled uniformly at random, we have

Pr[(σi = ri · key)i∈[log(m)]] = 1/m.
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Notice that the set {rX }X ⊆[log(m)] are pairwise independent, the probability that the majority of bits is
incorrect is

Pr[(key∗
i ̸= keyi)

∣∣(σj = key · rj)j∈[log(m)] ∧ (key ∈ S)] ≤ 4
mϵ2 ,

for each i ∈ [Q(λ)] by chebyshev bound. Putting all these together we have

Pr[bλ({pki}i∈[np]) = key] ≥Pr[key ∈ S] · Pr[bλ({pki}i∈[np]) = key
∣∣key ∈ S]

= ϵ

2 Pr[∀i ∈ [Q(λ)], (key∗
i = keyi)

∣∣key ∈ S]

= ϵ

2(1− Pr[∃i ∈ [Q(λ)] s.t. key∗
i ̸= keyi

∣∣key ∈ S])

≥ ϵ

2(1− Q(λ)
m

Pr[key∗
i ̸= keyi

∣∣(σj = key · rj)j∈[log(m)] ∧ key ∈ S])

≥ ϵ

2(1− 4Q(λ)
(mϵ)2 ) = ϵ

2 −
2Q(λ)
m2ϵ

.

Assuming Q(λ) > 2, the probability that bλ succeeds is at least ϵ
4 . Since advλ runs in time Õ(T2(λ))

and m = log λΩ(1)λo(1), {bλ} runs in time Õ(log(λΩ(1)) ·m · T (λ)) = Õ(T2(λ)), completing the proof of
Theorem 4.15.

Extension to IB-NIKE. Similar to our construction in the bounded parallel-time model given in
Section 3.2, we can show that our construction in this section satisfies extendability (see Definition 2.2),
and thus can be converted into a BPRF and an IB-NIKE in the same fine-grained setting. We refer the
reader to Appendix A for the full details.

5 Multi-Party Key Exchange in the Bounded Storage Model
In this section, we extend the two-party NIKE in the BSM [11] to a multi-party one. All algorithms
in this section are considered as streaming word-RAMs except for the storage function applied by the
adversary, which can be any unbounded function with limited output size.

5.1 Our Construction

Pairwise independence. We first recall the definitions of uniformly and approximately pairwise
independence, (approximately) strongly 2-universal hash function family, and 2-universal hash function
family, and recall their instantiations in Figure 13. 1

Definition 5.1 (Uniform pairwise independence). A sequence of random variables x1, · · · , xq with
alphabet Y are uniformly pairwise independent if for any 1 ≤ i < j ≤ q and any ŷ1, ŷ2 ∈ Y, we have
Pr[xi = ŷ1 ∧ xj = ŷ2] = 1/|Y|2.

Definition 5.2 (Approximate pairwise independence [35, 11]). A sequence of random variables x1, · · · , xq

with alphabet Y are approximate pairwise independent if for any 1 ≤ i < j ≤ q and any distinct ŷ1, ŷ2 ∈ Y ,
we have Pr[xi = ŷ1 ∧ xj = ŷ2] = 1/|Y|(|Y| − 1).

Definition 5.3 (Strongly 2-universal hash function family). A set H of functions with domain X and
range Y is said to be a strongly 2-universal hash function family if for any distinct x1, x2 ∈ X , h(x1) and
h(x2) are uniformly pairwise independent for h $← H.

Definition 5.4 (Approximate strongly 2-universal hash function [35, 11]). The definition of approximate
strongly 2-universal hash function family is exactly the same as Definition 5.3 except that we replace
“uniformly pairwise independent” by “approximate pairwise independent”.

Definition 5.5 (2-universal hash function family). A setH of functions with domain X and range Y is said
to be a 2-universal hash function family if for any distinct x1, x2 ∈ X , we have Pr[g(x1) = g(x2)] ≤ 1/|Y|,
where g $← H.
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Fn = {f(x) = a1 · x + a0 | a0, a1 ∈ GF (n)}
Hn = {h(x) = a1 · x + a0 | a0, a1 ∈ GF (n) ∧ a0 ̸= 0}
Gλ,r = {g(x) = MSBr(a · x) | a ∈ GF (2λ)}

Figure 13: The definitions of Fn, Hn, and Gλ,r. In this figure, all operations involved in f and h
(respectively, g) are within the field GF (n) (respectively, GF (2λ)). One can see that the outputs of any
function in Hn with distinct inputs must be all distinct.

Lemma 5.6 ([11, 35]). For any finite field GF (n) and any λ, r ∈ N, Fn (respectively, Hn) is a strongly
2-universal hash function family (respectively, approximate strongly 2-universal hash function family),
and Gλ,r is a 2-universal hash function family.

In the rest part of this whole section, we say that a sequence of variables (ui)i∈Zq
is generated by Hn

if it is generated as ui = h(xi) for all i ∈ Zq and some distinct x1, · · · , xn ∈ GF (n), where h $← Hn.
Parameters. Next we follow [11] to define several parameters. Let λ ∈ N be the security parameter and
np be the number of parties. Let ma, n be integers such that ma < n. We define q, ϵ1, ϵ2, and θ satisfying
the following equations:

• δ = min{0.9453, 1
n (n−ma − log 1

ϵ1
)},

• ρ such that Hb(ρ) + ρ log 1
δ + 1

n = δ,
• λ = q

2 · (
q
n )np−1 = ⌊(ρϵ2

2 − ρ2−ρn log 1
δ −2)−1⌋,

• r = ⌊log θ + ρλ/2− 1⌋,
where Hb is the binary entropy function defined as Hb(ρ) = −ρ log ρ− (1− ρ) log(1− ρ). As noted in [11],
when n >> ma, we have δ = 0.9453, ρ = 1/3, λ ≈ 3/ϵ2, and r ≈ λ/6.

Before giving our construction, we recall following two theorems. The first one is the main theorem in
[11] for privacy amplification, and the second one is a direct combination from Chebyshev’s Inequality
and Markov’s Inequality.

Theorem 5.7 ([11]). Let λ ∈ N and GF (n) be a finite field. Let A be any adversary with the memory
bound ma < n, s = (si)i∈[λ] be a sequence of approximately pairwise independent variables generated by
Hn, urs, z, and g be random variables such that urs $← {0, 1}n, z = A(urs), g $← Gλ,r, and key = g(urss).
There exists a security event E such that

∃E : Pr[E] ≥ 1− ϵ1 − ϵ2 and I(key; g, z, s|E) ≤ θ.2

Theorem 5.8 For any n ∈ N, let (ti)i∈[n] be a sequence of pairwise independent variables. Then for any
a > 0, we have

Pr[|
n∑

i=1
ti −

n∑
i=1

E[ti]| ≥ a] ≤
∑n

i=1 Var[ti]
a2 .

Construction. Let Hn be the approximately strongly 2-universal hash function family, and Gλ,r be the
2-universal hash function family, as defined in Figure 13. Let C1 be the class of streaming word-RAM
families with memory bounds 4 log n + λ + q, where q = n np

√
2λ
n . Our construction of multi-party NIKE

in the BSM is defined as in Figure 14.

Theorem 5.9 BSMKE is a C1-np-NIKE with 2
λ -correctness and (ma, ϵ1 + ϵ2, θ)-security in the BSM.

Proof. Complexity. First we note that each Pi∈[np] consumes 4 log n + λ + q bits of memory to store q
bits in urs, a strong universal hash function in Gλ,r, and at most two strongly 2-universal hash functions
in Hn for comparison at any point in the protocol.
Correctness. To prove correctness, it is sufficient to prove that the probability that the protocol aborts
is at most 2

λ .
1The approximate pairwise independence and approximate 2-universal hash function family are defined in [35, 11] in an

implicit way.
2The original theorem asserts that I(key; g|z, s, E) ≤ θ, while their proof clearly implies our version.
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Genλ(urs ∈ {0, 1}n):

Set pki = (hi, gi) where hi
$← Hn and gi

$← Gλ,r

Set ski = ursSi where Si is the set of all bits in urs with indices in (hi(j))j∈[q]

Return (pki, ski)

Shareλ(i, ski, (pkj)j∈[np])

Remove bits in |ski| with indices not in S1 ∩ · · · ∩ Snp by computing (hi(j))i∈[np],j∈[q] for all i in a
streaming manner
Abort the whole protocol if |ski| < λ

Return key = gnp (ski)

Figure 14: The definition of BSMKE. Recall that for any set S, ursS denotes the sequence of all bits in
urs with indices (ordered lexicographically) in S.

Without loss of generality, we assume that hnp is randomly sampled from the strongly 2-universal hash

function family Fn instead (see Figure 13). Defining the indictor Yi as Yi =
{

1 xi = hnp(i) ∈ ∩
np−1
l=1 Sl

0 otherwise
,

we have

Pr[Yi = 1] = Pr[xi ∈ ∩
np−1
l=1 Sl] =

np−1∏
l=1

Pr[xi ∈ Sl] = ( q

n
)np−1,

and for any i ̸= j, we have

Pr[Yi = 1 ∧ Yj = 1] = Pr[xi, xj ∈ ∩
np−1
l=1 Sl]

=
np−1∏
l=1

Pr[xi, xj ∈ Sl] (∵ independence of S1, · · · ,Snp−1)

=
np−1∏
l=1

(Pr[xi ∈ Sl] · Pr[xj ∈ Sl]) (∵ pairwise independence of xi and xj)

= Pr[xi ∈ ∩
np−1
l=1 Sl] · Pr[xj ∈ ∩

np−1
l=1 Sl] = Pr[Yi = 1] · Pr[Yj = 1],

i.e., Yi and Yj are pairwise independent.
Moreover, we have

E[Yi] = Pr[Yi = 1] · 1 + Pr[Yi = 0] · 0 = Pr[Yi = 1] = ( q

n
)np−1,

E[Y 2
i ] = Pr[Y 2

i = 1] · 1 + Pr[Y 2
i = 0] · 0 = Pr[Y 2

i = 1] = E[Yi],

Var[Yi] = E[Y 2
i ]− E[Yi]2 ≥ E[Yi] = ( q

n
)np−1.

According to Theorem 5.8, we have

Pr
[
|Yi · q − E[Yi] · q| ≥

E[Yi] · q
2

]
≤ 4

qE[Yi]
,

i.e., Pr
[
Yi · q ≤

E[Yi] · q
2 = λ

]
≤ 4

qE[Yi]
= 2

λ
.

Since the number of indices shared by the parties when hnp
$← Hn must be more than that when hnp

$← Fn,
the probability the protocol aborts is at most 2

λ , completing this part of proof.
Security. Let f : {0, 1}n → {0, 1}ma be any storage function applied by the adversary. Let (hi, gi)i∈[np]
be the honestly generated public keys. Let u = (ui)i∈[q] be the sequence such that ui = hnp(i) if there are
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indices i1, · · · , inp−1 satisfying h1(i1) = · · · = hnp−1(inp−1) = hnp(i) and ui = ⊥ otherwise, and let S be
the set of all indices of ui restricted to ui ≠ ⊥, i.e., s = uS be the sequence u restricted to ui ≠ ⊥. We
have the following lemma.

Lemma 5.10 s is generated by Hn.

Proof. Let x̂1, x̂2 be any distinct elements in GF (n). Due to approximately pairwise independence, we have
Pr[hnp(i) = x̂1 ∧ hnp(j) = x̂2] = 1

n(n−1) for all i, j ∈ [q], and Pr[∃il, jl : hl(il) = x̂1 ∧ hl(jl) = x̂2] = q(q−1)
n(n−1)

for all l ∈ [np − 1]. Hence, for any i, j ∈ Zq, we have

Pr[ui = x̂1 ∧ uj = x̂2] = Pr[∃(il, jl)l∈[np−1] : h1(i1) = · · · = hnp−1(inp−1) = x̂1 = hnp(i)∧
h1(j1) = · · · = hnp−1(jnp−1) = x̂2 = hnp(j)]

= Pr[hnp(i) = x̂1 ∧ h1(j) = x2] ·
np∏

l=1
Pr[∃il, jl : hl(i1) = x̂1 ∧ hl(jl) = x̂2]

= 1
n(n− 1) ·

( q(q − 1)
n(n− 1)

)np−1
,

and

Pr[ui ̸= ⊥ ∧ uj ̸= ⊥] = Pr[∃(il, jl)l∈[np−1] : h1(i1) = · · · = hnp−1(inp−1) = hnp(i)∧
h1(j1) = · · · = hnp−1(jnp−1) = hnp(j)]

=
np∏

l=1
Pr[∃il, jl : hl(il) = hnp(i) ∧ hl(jl) = hnp(j)] =

( q(q − 1)
n(n− 1)

)np−1
,

i.e.,
Pr[ui = x1 ∧ uj = x2|ui ̸= ⊥ ∧ uj ̸= ⊥] = Pr[ui = x̂1 ∧ uj = x̂2]

Pr[ui ̸= ⊥ ∧ uj ̸= ⊥] = 1
n(n− 1) .

Hence, the distribution of (ui, uj) is identical to that of (hnp(i), hnp(j)), conditioned on neither of them
being ⊥. Moreover, for each l ∈ S\{i, j} we have ul = hnp(l) where hnp can be determined by ui

and uj . Hence, the distribution of (ui)i∈S is identical to that of (hnp(i))i∈S , completing the proof of
Lemma 5.10.

Combining the above lemma with Theorem 5.7, there exists an event E such that Pr[E] ≥ 1− ϵ1 − ϵ2
and I(key; gnp , z, s|E)) ≤ θ, where urs $← {0, 1}n, z = f(urs), and key = gnp(urss). Moreover, since s is
determined by {hi}i∈[np] and the public keys (pki)i∈[np] between all parties consist only of {hi, gi}i∈[np],
which contains no more information on key than s, we have

I(key; (z, (pki)i∈[np]|E) = I(key; gnp , z, s|E) ≤ θ.

Putting all the above together, Theorem 5.9 immediately follows.

Example with asymptotic complexity. Let n = λnp+1, ma = λnp+1/2, ϵ1 = 1/λnp , ϵ2 = 1/
√

λ. We
have r = O(λ). In this case, each Pi∈[np] consumes about q = n np

√
2λ
n = O(λnp) bits of memory and the

communication cost, i.e., the total size of the public keys, is O(λ).
Concrete example. We now give a concrete example of the system based on the data given in [11].
Assume that that all users have access to a 40 Gbit/s broadcast channel used for 2× 105 seconds (about
two days), we have n = 8.6×1015. Let ma = 4.5×1015. With θ = 10−20 and error probabilities ϵ1 = 10−20

and ϵ2 = 10−2, the parameters are δ = 0.476, p = 0.077, λ = 1.3× 107, and r = 5.0× 105. Except with
probability about 10−3, Eve knows less than 10−20 bits about the 61 KByte session key. To share λ bits
in a 3-party protocol, each party consumes about 1.2 × 1013 bits of memory, and the communication
consist of about 3.9× 107 bits in total.
Extensions. Similar to our constructions in previous sections, our construction in the BSM can also be
converted into a BPRF and a multi-party IB-NIKE. We refer the reader to Appendix A for the details.
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A Fine-Grained Multi-Party IB-NIKE and BPRF
In this section, we propose multi-party IB-NIKE schemes in the fine-grained settings. We first give
the definitions of fine-grained multi-party IB-NIKE and BPRF, and then give a generic construction of
multi-party IB-NIKE based on BPRF. Next we present a generic construction of BPRF from multi-party
NIKE with an additional property we refer to as extendability, which is satisfied by all our multi-party
NIKE schemes. In this whole section, we only focus on IB-NIKE for a constant number with a larger and
constant-size identity space of parties, and BPRF with constant-size input space.

A.1 Definitions
We now give the definitions of IB-NIKE and BPRF in the fine-grained settings.

Definition A.1 (Identity-based non-interactive key exchange). A C1-np-identity-based non-interactive
key exchange (IB-NIKE) consists of three algorithm families IB-NIKE = {IBSetupλ, IBExtractλ, IBShareλ}
∈ C1 such that:

• IBSetupλ on input urs ∈ {0, 1}n for some n = n(λ) outputs a master secret key ibmsk.
• IBExtractλ is a deterministic algorithm that on input a master secret key ibmsk and an identity

id ∈ IDλ, where IDλ is the identity space with constant size, outputs a secret key ibskid for id.
• IBShareλ is a deterministic algorithm that on input a list I ⊆ IDλ consisting of np identities and a

secret key ibskid for id ∈ I outputs a shared key ibshk ∈ Kλ for I, where Kλ is the shared key space.
We assume that the identities in I are always lexicographically ordered.

ϵ-correctness is satisfied if for all λ ∈ N, all list of np distinct identities I ⊆ IDλ, all idi, idj ∈ I, we
have

Pr[IBShareλ(ibskidi , I) = IBShareλ(ibskidj , I)] ≥ 1− ϵ,

where ibskidi
= IBExtractλ(ibmsk, idi) and ibskidj

= IBExtractλ(ibmsk, idj) for urs $← {0, 1}n and ibmsk $←
IBSetupλ(urs).
C2-ϵ-security is satisfied if for any adversary A = {advλ} ∈ C2, all sufficient large λ ∈ N, and any list

of np distinct identities I∗ ⊆ IDλ, we have

|Pr[1 $← advλ(ibshk, (ibskid)id∈IDλ\I∗)]
−Pr[1 $← advλ(ibshk′, (ibskid)id∈IDλ\I∗)]| ≤ ϵ,

where ibmsk $← IBSetupλ(urs), urs $← {0, 1}n, ibshk = IBShareλ(ibskid∗ , I∗), ibshk′ $← Kλ, id∗ ∈ I∗, and
ibskid = IBExtractλ(ibmsk, id) for any id ∈ IDλ.

(ma, ϵ, θ)-security in the BSM is satisfied if for any function f : {0, 1}n → {0, 1}ma and any list of np
distinct identities I∗ ⊆ IDλ, we have

∃E : Pr[E] ≥ 1− ϵ and I(ibshk; (f(urs), (ibskid)id∈IDλ\I∗)|E)) ≤ θ,

where urs $← {0, 1}n, ibskid = IBExtractλ(ibmsk, id) for ibmsk $← IBSetupλ(urs), and ibshk = IBShareλ(ibskid, I∗)
for some id ∈ I∗.

We now define two types of sets

Sx̂,ℓinp = {x = (xi)i∈[ℓinp] ∈ {0, 1}ℓinp | ∀i : xi = x̂i ∨ x̂i = ⊥}

for any x̂ = (x̂i)i∈[ℓinp] ∈ ({0, 1,⊥})ℓinp , and

Tx,ℓinp = {x̂ ∈ {0, 1,⊥}ℓinp | all x̂ such that x /∈ Sx̂,ℓinp}

for any x ∈ {0, 1}ℓinp , and give the definition of BPRF and its restricted version, both of which can be
converted into multi-party NIKEs as we will show later, as below. Here we note that BPRF in the
fine-grained setting is of independent interest, since it also generically implies broadcast encryption with
constant users in the fine-grained setting, using the technique in [8].

Definition A.2 (Bit-fixing pseudorandom functions). A C1-ℓinp-bit-fixing pseudorandom function (BPRF)
consists of four algorithm families BPRF = {Setupλ, Evalλ, Constrainλ, CEvalλ} ∈ C1 such that
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• Setupλ on input urs ∈ {0, 1}n for some n = n(λ) outputs a master secret key msk.
• Evalλ is a deterministic algorithm that on input a master secret key msk and a preimage x ∈ {0, 1}ℓinp

outputs an image y ∈ Y.
• Constrainλ is a deterministic algorithm that on input a master secret key msk and a string x̂ outputs

a constrained key bfkx̂ ∈ CKλ, where CKλ is the constrained key space.
• CEvalλ is a deterministic algorithm that on input a constrained key bfkx̂ and a preimage x ∈ Sx̂,ℓinp

outputs an image y ∈ Y.
ϵ-correctness is satisfied if for all x̂ ∈ ({0, 1,⊥})ℓinp and all x such that x ∈ Sx̂,ℓinp , we have

Pr[CEvalλ(bfkx̂, x) = Evalλ(msk, x)] ≥ 1− ϵ,

where bfkx̂ = Constrainλ(msk, x̂) for urs← {0, 1}n and msk $← Setupλ(urs).
C2-ϵ-security is satisfied if for any adversary A = {advλ} ∈ C2, all sufficiently large λ ∈ N, and any

x ∈ {0, 1}ℓinp , we have

|Pr[1 $← advλ(y, {bfkx̂}x̂∈Tx,ℓinp
)]− Pr[1 $← advλ(y′, {bfkx̂}x̂∈Tx,ℓinp

)]| ≤ ϵ,

where urs $← {0, 1}n, msk $← Setupλ(urs), y $← Evalλ(msk, x), y′ $← Y, and bfkx̂ = Constrainλ(msk, x̂) for
all x̂ ∈ Tx,ℓinp .

(ma, ϵ, θ)-security in the BSM is satisfied if for any function f : {0, 1}n → {0, 1}ma and any x ∈ {0, 1}ℓinp ,
we have

∃E : Pr[E] ≥ 1− ϵ and I(y; (f(urs), {bfkx̂}x̂∈Tx,ℓinp
)|E)) ≤ θ,

where urs $← {0, 1}n, msk $← Setupλ(urs), bfkx̂ = Constrainλ(msk, x̂) for all x̂ ∈ Tx,ℓinp , and y =
Evalλ(msk, x).

Definition A.3 (Restricted bit-fixing pseudorandom functions.). A C1-ℓinp-restricted bit-fixing pseudo-
random function (restricted BPRF) is defined in exactly the same way as C1-ℓinp-BPRF except that we
require that x̂ ∈ {⊥}t1−1 ∪ {0, 1}t2−t1+1 ∪ {⊥}ℓinp−t2 for all t1, t2 ∈ [ℓinp].

A.2 Constructions of Multi-Party IB-NIKE
In this section, we give our constructions of multi-party IB-NIKE in the bounded parallel-time model,
bounded time model, and BSM respectively. These constructions are similar to that in [23], with the
distinction that the underlying BPRF can be a restricted BPRF and are built in the fine-grained setting.
Construction in the bounded parallel-time model. Let NCBPRF = {Setupλ, Evalλ, Constrainλ, CEvalλ}
be an AC0[2]-np-restricted BPRF with URS length n and image space Y for some constant np, and some
n = n(λ). Let mp be any constant. Our NCIB-NIKE = {IBSetupλ, IBExtractλ, IBShareλ} with identity
space {0, 1}np/mp and URS length n is defined as in Figure 15.

Theorem A.4 If NCBPRF satisfies ϵ1-correctness and NC1-ϵ2-security, then NCIB-NIKE in Figure 15 is
an AC0[2]-mp-IB-NIKE with 2 · ϵ1-correctness and NC1-ϵ2-security.

Proof. Complexity. First note that {IBSetupλ, IBExtractλ, IBShareλ} are computable in AC0[2] since
they run Constrainλ and CEvalλ for a constant of times.
Correctness. For any list of mp distinct identities I∗ ⊆ {0, 1}np/mp and any i, j ∈ [mp], by the
ϵ1-correctness of NCBPRF, we have

Pr[CEvalλ(bfki, I∗) = Evalλ(ibmsk, I∗)] ≥ 1− ϵ1

and Pr[CEvalλ(bfkj , I∗) = Evalλ(ibmsk, I∗)] ≥ 1− ϵ1,

where ibmsk $← Setupλ(urs) for urs $← {0, 1}n and bfki = Constrainλ(ibmsk, x̂i) for x̂i ∈ {0, 1,⊥}np and any
i ∈ [mp]. Therefore by a union bound, we have

Pr[CEvalλ(bfki, I∗) = CEvalλ(bfkj , I∗)] ≥ 1− 2ϵ1,

i.e., Pr[IBShareλ(ibskidi
, I∗) = IBShareλ(ibskidj

, I∗)] ≥ 1− 2ϵ1,
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IBSetupλ(urs):

Return ibmsk $← Setupλ(urs)

IBExtractλ(ibmsk, id):
For i ∈ [mp]

bfki = Constrainλ(ibmsk, x̂i) where x̂i = (⊥(i−1)np/mp , id,⊥(mp−i)np/mp )
Return ibskid = (bfki)i∈[mp]

IBShareλ(ibskid, I):
Parse I = {idi}i∈[mp] and ibskid = (bfki)i∈[mp]

Return ibshkI = CEvalλ(bfki∗ , (idi)i∈[mp]) where i∗ ∈ [mp] s.t. idi∗ = id

Figure 15: Construction of NCIB-NIKE = {IBSetupλ, IBExtractλ, IBShareλ}.

where ibskidi
= IBExtractλ(ibmsk, idi) for ibmsk $← IBSetupλ(urs) and any i ∈ [mp].

Security. Let λ be the security parameter and A = {advλ} ∈ NC1 be any adversary against the
NC1-security of NCBPRF. For any x ∈ {0, 1}np , we construct B = {advbλ} ∈ NC1 against the security of
BPRF as follows.

On receiving (y, {bfkx̂}x̂∈Tx,np
) where bfkx̂ = Constrainλ(msk, x̂) for all x̂ ∈ Tx,np and y $← Evalλ(msk, x)

or y $← Y where msk $← Setupλ(urs) for urs $← {0, 1}n, advbλ returns ibshk = y and {bfkx̂}x̂∈Tx,np
to advλ.

On receiving b ∈ {0, 1} from advλ, advbλ forwards b to its challenger.
First we note that all operations in advbλ are in NC1, since advbλ does not execute any additional

operations except running advλ. Moreover, when y $← Evalλ(msk, x) (respectively, y $← Y) for any
x ∈ {0, 1}np where msk $← Setupλ(urs) for urs $← {0, 1}n, the view of advλ is identical to its view in the
security game for NCIB-NIKE when ibshk is honestly generated (respectively, generated as a randomness).
Hence, the advantage of advbλ in breaking the security of NCBPRF is the same as the advantage of advλ

in breaking the security of NCIB-NIKE, completing the proof of Theorem A.4.

Construction in the bounded time model and BSM. Let C1 and C2 be the set of all word-RAM
families such that for each F1 = {f1

λ} ∈ C1 and F2 = {f2
λ} ∈ C2 and each λ ∈ N, f1

λ runs in time Õ(T1(λ))
and f2

λ runs in time Õ(T2(λ)). Let mp be any constant. Our construction in the bounded time model
TIB-NIKE with URS length n is defined in exactly the same way as NCIB-NIKE (see Figure 15) except
that the underlying NCBPRF is replaced by a C1-np-BPRF with URS length n and image length ℓ for
some constant np, some ℓ, and some n = n(λ). Notice that for our instantiation of C1-np-BPRF given
later in Appendix A.3, we have n = 0, i.e., the IB-NIKE is in the plain model.

Moreover, let C′
1 be the class of streaming word-RAM families with memory bounds mu. Let mp

′ be
any constant. Our construction in the BSM BSIB-NIKE with URS length n′ is defined in exactly the same
way as NCIB-NIKE (see Figure 15) except that the underlying NCBPRF is replaced by a C′

1-np-BPRF with
URS length n′ and image length ℓ′ for some constant np, some ℓ′, and some n′ = n′(λ). We have the
following theorems.

Theorem A.5 If TBPRF is a C1-np-BPRF with ϵ1-correctness and C2-ϵ2-security, then TIB-NIKE is a
C1-mp-IB-NIKE with 2 · ϵ1-correctness and C2-ϵ2-security.

Theorem A.6 If BSBPRF is a C′
1-np-BPRF with ϵ′

1-correctness and (ma, ϵ′, ϵ′
2)-security in the BSM,

then BSIB-NIKE is a C′
1-mp

′-IB-NIKE with 2 · ϵ′
1-correctness and (ma, ϵ′, ϵ′

2)-security in the BSM.

The proof of Theorems A.5 and A.6 are very similar to that of Theorem A.4 and thus we omit the
details.

A.3 BPRF from Multi-Party NIKE with Extendability
In this section, we instantiate (restricted) BPRF based on our multi-party NIKE with (restricted)
extendability, and then show that all our multi-party NIKE schemes satisfy extendability.

29



Restricted BPRF in the bounded parallel-time model. Let NCNIKE = {Genλ, Shareλ} be an
AC0[2]-np-NIKE with shared key space Kλ and URS length n for some constant np, and some n = n(λ)
satisfying restricted ϵ1-extendability with associated algorithm families {Combineλ, Extractλ} and NC1-ϵ2-
security. Our NCBPRF = {Setupλ, Evalλ, Constrainλ, CEvalλ} is defined as in Figure 16.

Setupλ(urs):

(pknp , sknp ) $← Genλ(urs)

(pki,β , ski,β) $← Genλ(urs) where i ∈ [np − 1], β ∈ {0, 1}
Return msk = ((pki,β , ski,β)i∈[np−1],β∈{0,1}), (pknp , sknp ))

Evalλ(msk, x):
Parse msk = ((pki,β , ski,β)i∈[np−1],β∈{0,1}), (pknp , sknp )) and x = (xi)i∈[np−1]

Return y = Shareλ(1, sk1,x1 , ((pki,xi
)i∈[np−1], pknp ))

Constrainλ(msk, x̂):
Parse msk = ((pki,β , ski,β)i∈[np−1],β∈{0,1}), (pknp , sknp )) and x̂ = (x̂i)i∈[np−1]

Let V = {i ∈ [np − 1] | x̂i ̸= ⊥}, j ∈ V
localkey = Combineλ(skj,x̂j , {pki,x̂i

}i∈V\{j})
Return bfkx̂ = (localkey,V, {pki,β}i∈[np−1]\V,β∈{0,1}, pknp )

CEvalλ(bfkx̂, x):
Parse bfkx̂ = (localkey,V, {pki,β}i∈[np−1]\V,β∈{0,1}, pknp ) and x = (xi)i∈[np−1]

localkey∗ = Combineλ(localkey, {{pki,xi
}i∈[np−1]\V , pknp})

Return y = Extractλ(localkey∗, pknp )

Figure 16: Construction of NCBPRF = {Setupλ, Evalλ, Constrainλ, CEvalλ}.

Theorem A.7 NCBPRF is an AC0[2]-(np − 1)-restricted BPRF with ϵ1-correctness and NC1-ϵ2-security.

Proof. Complexity. First we note that the constructions are computable in AC0[2] since they only run
Genλ and Shareλ for a constant number of times.
Correctness. Let t1, t2 ∈ [np − 1]. For any x̂ = (x̂i)i∈[np−1] ∈ {⊥}t1−1 ∪ {0, 1}t2−t1+1 ∪ {⊥}np−1−t2 , we
have V = [t1, t2]. Moreover, for any j ∈ [np − 1], according to the ϵ1-restricted extendability of NCNIKE,
there exists some event E such that Pr[E] ≥ 1− ϵ1 and conditioned on E, we have

localkey∗ = Combineλ(sk1,x1 , {{pki,xi
}1<i≤np−1, pknp})

where urs $← {0, 1}n, (pki, ski) $← Genλ(urs) for i ∈ [np], (pki,β , ski,β) $← Genλ(urs), and localkey∗ =
Combineλ(localkey, {{pki,xi

}i∈[np−1]\V , pknp}) for localkey = Combineλ(ski′ , {pki}i∈V\{i′}) for any i′ ∈ V.
Thus for any x = (xi)i∈[np−1] ∈ {0, 1}np−1 such that xi = x̂i ∨ x̂i = ⊥ for all i ∈ [np − 1], and according to
the ϵ1-restricted extendability of NCNIKE, we have

Pr[CEvalλ(bfkx̂, x) = Evalλ(msk, x)]
= Pr[CEvalλ(bfkx̂, x) = Evalλ(msk, x)|E] Pr[E] + Pr[CEvalλ(bfkx̂, x) = Evalλ(msk, x), E]
≥Pr[Extractλ(localkey∗, pknp) = Shareλ(1, sk1,x1 , ((pki,xi

)i∈[np−1], pknp))|E] Pr[E]
= Pr[E] ≥ 1− ϵ1

where urs $← {0, 1}n, msk $← Setupλ(urs), and bfkx̂ = Constrainλ(msk, x̂).
Security. Let λ be the security parameter, and A = {advλ} ∈ NC1 be any adversary against the
NC1-security of NCNIKE. For any x ∈ {0, 1}np−1, we construct an adversary B = {advbλ} ∈ NC1 against
the security of NCNIKE as follows.
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On receiving ((pki)i∈[np], key) where urs $← {0, 1}n, (pki, ski) $← Genλ(urs) for i ∈ [np], and key =
Shareλ(1, sk1, (pki)i∈[np]) or key $← Kλ, advbλ firstly samples (pk′

i, sk′
i) $← Genλ(urs) for every i ∈ [np − 1].

Then advbλ sets pki,β =
{

pki if xi = β

pk′
i if xi ̸= β

and bfkx̂ = (localkey,V, ((pki,β)i∈[np−1]\V,β∈{0,1}, pknp)) for any

x̂ ∈ Tx,np−1 where localkey = Combineλ(ski′,x̂i′ , {pki,x̂i
}i∈V\{i′}) for some i′ ∈ V such that ski′,x̂i′ is sampled

by advbλ. Then advbλ returns y = key and {bfkx̂}x̂∈Tx,np−1 to advλ. When advλ finally returns b ∈ {0, 1},
advbλ forwards b to its challenger.

First we note that all operations in advbλ are in NC1, since advbλ runs Genλ for a constant number of
times. Moreover, when y = Shareλ(1, sk1, (pki)i∈[np]) (respectively, y $← Kλ) where (pki, ski) $← Genλ(urs)
for i ∈ [np] and urs $← {0, 1}n, the view of advλ is identitcal to its view in the security game for NCBPRF
when y is honestly generated (respectively, generated as a randomness). Hence, the advantage of advbλ in
breaking the security of NCNIKE is the same as the advantage of advλ in breaking the security of BPRF,
completing the proof of Theorem A.7.

BPRF in the bounded time model and BSM. Let C1 and C2 represent the set of all word-RAM
families such that for each F1 = {f1

λ} ∈ C1 and F2 = {f2
λ} ∈ C2 and each λ ∈ N, f1

λ runs in time Õ(T1(λ))
and f2

λ runs in time Õ(T2(λ)). Our construction in the bounded time model TBPRF is defined in exactly
the same way as in Figure 16 except that the underlying NCNIKE is replaced by TNIKE, which is a
C1-np-NIKE with shared key space Kλ and URS length n satisfying ϵ1-extendability and C2-ϵ2-security
for some constant np, and some n = n(λ). When the underlying TBPRF is instantiated by our NIKE
TNIKE (see Figure 12), we have n = 0.

Moreover, let C′
1 represent the set of streaming word-RAM families with memory bounds mu. Our

construction in the BSM BSBPRF is defined in exactly the same way as in Figure 16 except that the
underlying NCNIKE is replaced by BSNIKE, which is a C′

1-np-NIKE with shared key space K′
λ and URS

length n′ satisfying ϵ′
1-extendability and (ma, ϵ′, ϵ′

2)-security in the BSM for some constant np, some ℓ′,
and some n′ = n′(λ).

Theorem A.8 TBPRF is a C1-(np − 1)-BPRF with ϵ1-correctness and C2-ϵ2-security.

Theorem A.9 BSBPRF is a C′
1-(np − 1)-BPRF with ϵ′

1-correctness and (ma, ϵ′, ϵ′
2)-security.

The proof of Theorem A.8 and Theorem A.9 are very similar to that of Theorem A.7 and thus we
omit the details.

A.4 Extendability of Our Multi-Party NIKEs
We now argue that our multi-party NIKE in the bounded parallel-time model satisfies restricted ex-
tendability, and our multi-party NIKEs in the bounded time model and bounded storage model satisfy
extendability.

We first recall that NCNIKE (see Figure 5) satisfies 0-correctness, TNIKE∗ = {Genλ, Shareλ} (see
Figure 12) satisfies ((1 − ( q

ℓ )np−1)q + 2ℓnpλk/R)-correctness, and BSMKE (see Figure 14) satisfies 2
λ -

correctness. Then we have the following theorem.

Theorem A.10 NCNIKE (see Figure 5) satisfies 0-restricted extendability, TNIKE∗ = {Genλ, Shareλ}
(see Figure 12) satisfies (2ℓnpλk/R + (1− ( q

ℓ )np−1)q)-extendability, and BSMKE (see Figure 14) satisfies
2
λ -extendability.

We define the combining and extracting algorithm families {NCCombineλ, NCExtractλ}, {TCombineλ,
TExtractλ}, {BSMCombineλ, BSMExtractλ} for NCNIKE, TNIKE, and BSMKE respectively as in Figure 17.
Then Theorem A.10 follows immediately from the analysis of complexity and proofs of correctness for
NCNIKE, TNIKE, and BSMKE (see Theorems 3.8, 4.8 and 5.9). Indeed, one can easily see that for
each scheme, the combining and extracting algorithms are exactly the intermediate steps of the sharing
algorithm.
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NCCombineλ(localkey, {pki}i∈V):
Parse localkey = R, {pki}i∈V = {{Pj}j∈[t1,s1−1] ∪ {Pj}j∈[s2+1,t2]}

Return localkey′ = (
∏s1−1

j=t1
P⊤

j )R(
∏t2

j=s2+1Pj)

NCExtractλ(localkey, pknp ):

Return key, which is the bottom-right bit of localkey

TCombineλ(localkey, {pkj}j∈V):

Parse localkey = S and {pkj = ((It
j)t∈[ℓ], vj)}j∈V

For j ∈ V, T = ∅
For every s ∈ S, check by brute forcing whether Is

j has one solution
If the check passes, T = T ∪ {s}

S = S ∩ T
Return localkey = S

TExtractλ(localkey, pknp ):

Parse localkey = S and pknp = ((Ij
np )j∈[ℓ], vnp )

If |S| < 1 abort

Else return key = (
⊕|S|

j=1 sj) · vnp for all sj ∈ S

BSMCombineλ(localkey, {pkj}j∈V):

Parse localkey = ursS and {pkj = (hj , gj)}j∈V

Let Si be the set of all bits in urs with indices in (hi(j))j∈[q]

Remove bits in |ursS | with indices not in
⋂

j∈V Sj by computing (hi(j))i∈[np],j∈[q]
for all i in a streaming manner
Return localkey = ursS

BSMExtractλ(localkey, pknp ):

Parse localkey = ursS and pknp = (hnp , gnp )
Abort the whole protocol if |ursS | < λ

Return key = gnp (ursS)

Figure 17: Constructions of {NCCombineλ, NCExtractλ}, {TCombineλ, TExtractλ}, and
{BSMCombineλ, BSMExtractλ}. Recall that for any set S, ursS denotes the sequence of all bits
in urs with indices (ordered lexicographically) in S.
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