
ABE for Circuits with poly(λ)-sized Keys from LWE

Valerio Cini and Hoeteck Wee

NTT Research, Sunnyvale, CA, USA

Abstract. We present a key-policy attribute-based encryption (ABE) scheme for circuits based on the Learning
With Errors (LWE) assumption whose key size is independent of the circuit depth. Our result constitutes the first
improvement for ABE for circuits from LWE in almost a decade, given by Gorbunov, Vaikuntanathan, and Wee
(STOC 2013) and Boneh, et al. (EUROCRYPT 2014) – we reduce the key size in the latter from poly(depth, λ) to
poly(λ). The starting point of our construction is a recent ABE scheme of Li, Lin, and Luo (TCC 2022), which
achieves poly(λ) key size but requires pairings and generic bilinear groups in addition to LWE; we introduce new
lattice techniques to eliminate the additional requirements.

1 Introduction

In key-policy attribute-based encryption (ABE) [SW05,GPSW06], ciphertexts ct are associated with an attribute x ∈
{0, 1}ℓ and a message µ and keys sk with a predicate f , and decryption returns µ when x satisfies f (i.e, f(x) = 0).
We require security against unbounded collusions, so that an adversary that sees a ciphertext along with secret keys
for an arbitrary number of predicates learns nothing about µ as long as x satisfies none of these predicates. The
fundamental goals in attribute-based encryption are two-fold: (i) to build expressive schemes that support a large
class of policies and functions; and (ii) to obtain efficient instantiations based on widely-believed intractability of
basic computational problems.

In 2013, Gorbunov, Vaikuntanathan, and Wee gave the first construction of ABE for circuits [GVW13]. The scheme
relies on the Learning with Errors (LWE) assumption, and for depth d, size s circuits over ℓ-bit inputs where ℓ and d
are fixed at set-up, achieves public key and ciphertext size ℓ ·poly(d, λ) and key size s ·poly(d, λ). This was followed
shortly by an improvement of Boneh, Gentry, Gorbunov, Halevi, Nikolaenko, Segev, Vaikuntanathan, and Vinayaga-
murthy, henceforth BGGHNSVV14, reducing the key size to poly(d, λ) [BGG+14]. These works demonstrated for
the first time the power of lattices not just for expressive computation like in fully homomorphic encryption (FHE)
[Gen09,BV11], but also in conjunction with strong security properties, taking lattice and LWE-based cryptogra-
phy far beyond just post-quantum security and FHE and enabling a broad range of cryptographic feasibility results
over the past decade: reusable garbled circuits [GKP+13], fully homomorphic signatures [GVW15b], constrained
pseudorandom functions [BV15], predicate encryption [GVW15a], laconic function evaluation [QWW18,CDG+17],
correlation-intractable hashing and thus SNARGs for P [PS19,?,CJJ22], and many more.

In spite of this flurry of activities extending the BGGHNSVV14 techniques in myriad and innovative ways, there
has been virtually no efficiency improvement to the BGGHNSVV14 ABE for circuits in the past decade. That is, until
a recent clever and surprising work of Li, Lin, and Luo, LLL22 for short, further reducing the key size down to poly(λ)
[LLL22] independent of circuit depth, but at the cost of additionally requiring pairings and generic bilinear groups.
LLL22 crucially relies on techniques introduced in an earlier work of Agrawal and Yamada on optimal broadcast
encryption with poly-logarithmic parameters [AY20]. Motivated by follow-up works to the latter in [AWY20,Wee22],
two natural questions are whether we can replace the use of generic bilinear groups in LLL22 with either a falsifiable
assumption like k-Lin, or with a post-quantum analogue such as evasive LWE [Wee22,Tsa22].

1.1 Our Results

In this work, we take a leap forward and completely eliminate the use of pairings and generic bilinear group model
in LLL22. That is, we obtain an ABE for circuits with poly(λ) key size under the LWE assumption:

Reference Assumption |ct| |sk| |mpk|

GVW13 [GVW13] LWE ℓ · d2+1/δ s · d2+2/δ ℓ · d2+2/δ

BGGHNSVV14 [BGG+14] LWE ℓ · d2+1/δ d2+1/δ ℓ · d2+2/δ

LLL22 [LLL22] LWE + bilinear GGM ℓ · d2+1/δ 1 ℓ · d2+2/δ

this work LWE ℓ · d2+1/δ 1 ℓ · d2+2/δ

Fig. 1. Comparison with prior KP-ABE for circuits of size s and depth d, ignoring factors polynomial in λ. The quantities |ct|, |sk|
refer to the cryptographic overhead beyond transmitting x and f in the clear. In all of these schemes, the running time for
encryption is ℓ · poly(d, λ) and that for key generation is s · poly(d, λ).

Theorem 1 (informal). Assuming the hardness of n-dimensional LWE with sub-exponential modulus-to-
noise ratio 2n

δ

, there exists an attribute-based encryption (ABE) scheme for circuits whose key size is independent
of the circuit depth. For depth d circuits over ℓ-bit inputs, we have

|mpk| = Oλ(ℓ · d2+2/δ), |ct| = Oλ(ℓ · d2+1/δ), |sk| = Oλ(1).

where Oλ(·) hides factors at most λ3. The scheme achieves selective security against unbounded collusion.

Our security proof uses a number of new ingredients, including (i) correlated LWE secrets, (ii) pseudorandom public
keys, (iii) trapdoor sampling with an approximate trapdoor. While the latter two techniques are not new to the LWE
literature, this is the first time they are used to improve asymptotic efficiency in ABE. We are optimistic that our
techniques will find further applications in lattice-based ABE and beyond, as has been the case for the BGGHNSVV14
techniques.

As an immediate corollary, we obtain improved reusable garbled circuits. A garbling scheme [Yao86,BHR12]
allows us to encode an arbitrary circuit C into a garbled circuit Ĉ , and an input x into a garbled input x̂, so that
Ĉ, x̂ reveal C(x) and nothing else about C or x; in a reusable garbling scheme [GKP+13], security should hold
even given multiple garbled inputs x̂1, x̂2, . . ., etc. Instantiating the prior framework for reusable garbling schemes
in [GKP+13,BGG+14] with our ABE scheme, we obtain reusable garbling schemes where the garbled circuit incurs
only an additive poly(λ) overhead, independent of the circuit depth.

Concurrent work. A concurrent and independent work of Hsieh, Lin, and Luo [HLL23] constructs ABE for circuits
where both master public key, secret keys and ciphertext have size independent of circuit depth. The scheme is
proven (very) selectively secure against unbounded collusion under LWE and additionally evasive circular LWE
assumptions, a stronger variant of the recently proposed evasive LWE assumption [Wee22,Tsa22].

2 Technical Overview

We begin with an overview of the LLL22 construction, which follows the following two-step blue-print (first devel-
oped in the context of pairing-based ABE):

– First, a 1-key secure ABE for circuits with key size Oλ(1) using LWE and pairings; here-in lies the main technical
and conceptual novelty of the LLL22 construction.

– Next, they achieve many-key security (i.e., security against unbounded collusion) by randomizing the secret
keys “in the exponent”; this step is essentially the same as in [AY20] and crucially relies on the generic bilinear
group model.

Our construction follows the same high-level blue-print. First, we construct a 1-key secure ABE for circuits with key
size Oλ(1) using just LWE: we simply replace the pairing-based building block in LLL22 with an existing LWE-based
one. The main technical novelty of this work lies in carrying out the second step without pairings, and then, more
notably, proving many-key security using just LWE.

2

2.1 BGGHNSVV14 ABE

We begin with the BGGHNSVV14 ABE scheme, which achieves Oλ(d
2+1/δ)-sized keys from LWE. Let A ∈ Zn×ℓ·m

q

be a matrix where m = O(n log q). Given A and a circuit f : {0, 1}ℓ → {0, 1} of depth d, we can derive
[BGG+14,GSW13] a matrix Af ∈ Zn×m

q such that for any x ∈ {0, 1}ℓ, we can compute a low-norm matrix HA,f,x

satisfying

(A− x⊗Gn,q) ·HA,f,x = Af − f(x) ·Gn,q, (1)

where Gn,q ∈ Zn×m
q is the gadget matrix [MP12] and ∥HA,f,x∥ ≤ mO(d).

BGGHNSVV14 ABE. The scheme is as follows, omitting error terms in the ciphertext:

mpk = A0 ← Zn×m
q ,b← Zn

p ,A← Zn×ℓ·m
q .

ct = (

c0︷ ︸︸ ︷
s ·A0,

c2︷ ︸︸ ︷
s · b⊤ + µ · ⌊q/2⌋,

c3︷ ︸︸ ︷
s · (A− x⊗Gn,q)), s← Zn

q .

sk = k⊤
f ← DZ2m,τ s.t. [A0 | Af] · k⊤

f = b⊤.

Decryption computes an approximation to µ · ⌊q/2⌋ for f(x) = 0 as follows:

c2 −
≈ s·[A0|Af]︷ ︸︸ ︷

[c0 | c3 ·HA,f,x] ·k⊤
f .

Parameters and efficiency. For correctness, we need the modulus-to-noise ratio to be at least mO(d) to accommo-
date the blow-up from multiplication by HA,f,x; this means that q ≥ mO(d) (for correctness) and 2n

δ ≥ mO(d) (for
LWE hardness). In order to simulate secret keys in the security reduction, we will also require ∥kf∥ ≈ τ ≥ mO(d).
This means that the key size is at least 2m log τ ≥ d2+1/δ bits. Indeed, it suffices to take

n = Oλ(d
1/δ), log q = Oλ(d),

which yields key size O(n · (log q)2) = Oλ(d
2+1/δ).

2.2 1-Key Security withOλ(1)-sized Keys from LWE

As a warm-up to our main result, we describe a 1-key secure ABE scheme with Oλ(1)-sized keys based on LWE.
The idea is to start with the LLL22 ABE scheme1 with Oλ(1)-sized keys and (i) replace the underlying pairing-based
building block with a LWE-based one, and (ii) omit secret key randomization “in the exponent”, which is not needed
for 1-key security.

Overview. The construction uses modulus switching [BV11,BTVW17] along with the LWE assumption over two
different moduli:

– a large modulus q along with a modulus-to-noise ratio at least mO(d), as in BGGHNSVV14;
– a small modulus p ≤ 2O(λ) such that q/p ≳ mO(d).

The ciphertext contains s · (A − x ⊗ Gn,q) as before, except s is gaussian with norm smaller than p. During
decryption, we will first compute s ·Af ·d⊤ where d ∈ {0, 1}m is a fixed low-norm vector and round that to obtain⌊

s ·Af · d⊤ mod q
⌉
p
≈ s ·

⌊
Af · d⊤⌉

p
mod p,

1 This refers to the many-key secure scheme in LLL22. LLL22 does not explicitly describe a 1-key secure ABE scheme with Oλ(1)
key size from LWE and pairings.

3

as long as s has sufficiently small norm. Here, we use ⌊·⌉p to denote entry-wise rounding from Zq to Zp.
Next, we use an inner product functional encryption (IPFE) scheme to (approximately) compute the inner product

[
s | µ

]
·

[⌊
Af · d⊤⌉

p

⌊p/2⌋

]
= s ·

⌊
Af · d⊤⌉

p
+ µ · ⌊p/2⌋ mod p.

The ABE secret key is then an IPFE secret key kf for the above computation. Concretely, using the LWE-based IPFE
in [ALS16] with ”constant-sized keys”, the key kf has size poly(λ, log p) = Oλ(1).

1-key secure ABE. The scheme is as follows2, omitting error terms in the ciphertext:

mpk = B0 ← Zn0×O(n0·log p)
p ,B1 ← Zn0×O(n·log p)

p ,b← Zn0
p ,A← Zn×ℓ·m

q ,d← {0, 1}m.

ct = (

c0︷ ︸︸ ︷
s0 ·B0,

c1︷ ︸︸ ︷
s0 ·B1 + s ·Gn,p,

c2︷ ︸︸ ︷
s0 · b⊤ + µ · ⌊p/2⌋,

c3︷ ︸︸ ︷
s · (A− x⊗Gn,q)),

s0 ← Zn0
p , s← DZn,χ.

sk = k⊤
f ← DZO(n0·log p),τ s.t. B0 · k⊤

f = b⊤ +

b⊤
f :=︷ ︸︸ ︷

B1 ·G−1
n,p(

⌊
Af · d⊤⌉

p
) .

Decryption computes an approximation to µ · ⌊p/2⌋ as follows:

c2 −

≈ s0·(b⊤+b⊤
f)︷ ︸︸ ︷

c0 · k⊤
f +

≈ s0·b⊤
f +s·⌊Af ·d⊤⌉

p︷ ︸︸ ︷
c1 ·G−1

n,p(
⌊
Af · d⊤⌉

p
)︸ ︷︷ ︸

≈ s·⌊Af ·d⊤⌉
p
+µ·⌊p/2⌋

−

≈ s·⌊Af ·d⊤⌉
p︷ ︸︸ ︷⌊

c3 ·HA,f,x · d⊤⌉
p
.

Proving 1-key security. We provide a very brief sketch of “weakly selective” 1-key security, where the adversary
fixes the single key query f and the challenge attribute x before seeing mpk. Since the security proof for our main
result uses very different ideas, it is fine for the reader to skip this proof sketch. The proof strategy here is similar
to that in LLL22 (along with ideas from [Agr17,QWW18,ALS16]). The reduction samples a random gaussian kf and
programs b to be B0 · k⊤

f − b⊤
f . We can then use the decryption equation (plus noise flooding) to rewrite c2 as a

function of c0, c1, c3 and kf , that is

c2 ≈ c0 · kf + c1 ·G−1
n,p(

⌊
Af · d⊤⌉

p
)−

⌊
c3 ·HA,f,x · d⊤⌉

p
+ µ · ⌊p/2⌋

Using the fact that

c3 ·HA,f,x · d⊤ ≈ s · (A− x⊗Gn,q) ·HA,f,x · d⊤ = s ·Af · d⊤ − f(x) · s ·Gn,q · d⊤

and that f(x) = 1, security then boils down to showing pseudorandomness of

(s0 ·B0, s0 ·B1 + s ·Gn,p︸ ︷︷ ︸
mod p

, s ·Gn,q · d⊤, s · (A− x⊗Gn,q)︸ ︷︷ ︸
mod q

),

given mpk. This follows from invoking LWE twice: first over modulus p to replace s0 · [B0 | B1] with random, and
then over modulus q to replace s · [Gn,q · d⊤ | A− x⊗Gn,q] with random.

2 The secret key kf has a similar structure to the IPFE secret key in [ALS16], but with a different distribution.

4

2.3 Our ABE Scheme

In order to achieve many-key security (i.e., security against unbounded collusion), we first modify the secret key
distribution, replacing B0 · k⊤

f = b⊤ + b⊤
f with

[B0 | Bf] · k⊤
f = b⊤, (2)

where Bf ∈ Zn0×n0 log p
p is defined analogously to b⊤

f , except with a wider matrix D ∈ {0, 1}m×n0 log p in place
of d⊤ ∈ {0, 1}m×1. As in BGGHNSVV14, we will embed the gadget matrix Gn0,p into Bf in the security proof. In
fact, we need to make two more modifications for the security proof:

(i) s0 is gaussian (with norm slightly smaller than that of s), so that we can correlate s0 and s in the security proof;
(ii) we replace (2) with

[B0 | Bf | In0] · k⊤
f = b⊤,

where kf ∈ ZO(n0 log p); this allows us to simulate secret keys given just an approximate trapdoor [BTVW17],
namely a low-norm Rf such that Bf ≈ B0 ·Rf +Gn0,p (where ≈ captures an error term arising from the use
of ⌊·⌉p rounding).

Setting parameters as in our 1-key secure ABE with n0 = Oλ(1), log p = Oλ(1) (plus some minor tweaks to account
for additional noise flooding), we obtain key size O(n0 · (log p)2) = Oλ(1).

Our final ABE scheme. Our ABE scheme is as follows:

mpk = B0 ← Zn0×O(n0·log p)
p ,B1 ← Zn0×O(n·log p)

p ,b← Zn0
p ,A← Zn×ℓ·m

q ,D ∈ {0, 1}m×O(n0 log p).

ct = (

c0︷ ︸︸ ︷
s0 ·B0,

c1︷ ︸︸ ︷
s0 ·B1 + s ·Gn,p,

c2︷ ︸︸ ︷
s0 · b⊤ + µ · ⌊p/2⌋,

c3︷ ︸︸ ︷
s · (A− x⊗Gn,q)),

s0 ← Dn0

Z,χ0
, s← Dn

Z,χ.

sk = k⊤
f ← DZO(n0 log p),τ s.t.

[
B0 |

Bf :=︷ ︸︸ ︷
B1 ·G−1

n,p(⌊Af ·D⌉p) | In0

]
· k⊤

f = b⊤.

Decryption computes an approximation to µ · ⌊p/2⌋ as follows:

c2 −

≈ s0·[B0|Bf |In0]︷ ︸︸ ︷[
c0 | c1 ·G−1

n,p(⌊Af ·D⌉p)− ⌊c3 ·HA,f,x ·D⌉p | 0n0×n0

]
·k⊤

f .

Proof overview. Our proof strategy is very different from that in LLL22.

Step 1. First, we correlate s0, s by setting s = s0 ·W+ t where t is a random gaussians and W a low-norm matrix.
This allows us to rewrite the ciphertext as:

ct = (s0 ·B0, s0 · (B1 +W ·Gn,p) + t ·Gn,p, s0 · b⊤ + µ · ⌊p/2⌋,
s0 ·W · (A− x⊗Gn,q) + t · (A− x⊗Gn,q)).

Looking ahead, our goal is to invoke LWE to replace s0 · [B0 | b⊤] with random. Towards this goal, we need to:

– account for the leakage on s0 in s0 · (B1 +W ·Gn,p) and in s0 ·W · (A− x⊗G);
– simulate key generation queries without knowing a trapdoor for B0.

5

Step 2. We replace A with a pseudorandom matrix such that W ·(A−x⊗Gn,q) = E where E is a random gaussian
matrix. This essentially follows from the LWE assumption with a low-norm W as the secret and E as the error term:
concretely, we sample W = [In0

|W0] and replace A with[
W0 · Ã+E

−Ã

]
+ x⊗Gn1,q.

Note that t completely masks any leakage about W in s. Combined with noise flooding, this allows us to eliminate
the term s0 ·W · (A− x⊗Gn,q) = s0 ·E in the challenge ciphertext.

Step 3. We program B1 = B0 ·R−W ·Gn,p where R is random low-norm. Then, we can write

Bf = B1 ·G−1
n,p(⌊Af ·D⌉p)

= B0 ·R ·G−1
n,p(⌊Af ·D⌉p)−W · ⌊Af ·D⌉p

≈ B0 ·R ·G−1
n,p(⌊Af ·D⌉p)− ⌊W ·Af ·D⌉p

= B0 ·R ·G−1
n,p(⌊Af ·D⌉p)− ⌊W · (A− x⊗Gn,q) ·HA,f,x ·D+ f(x) ·W ·Gn,q ·D⌉p

≈ B0 ·R ·G−1
n,p(⌊Af ·D⌉p)− ⌊E ·HA,f,x ·D⌉p − f(x) · ⌊W ·Gn,q ·D⌉p.

We now set D so that ⌊W ·Gn,q ·D⌉p = Gn0,p (by setting Gn,q ·D =

[q
p ·Gn0,p

0(n−n0)×m0

]
). This means that we can

write
Bf = B0 ·Rf −Ef − f(x) ·Gn0,p,

where both Rf = R ·G−1
n,p(⌊Af ·D⌉p) and Ef ≈ ⌊E ·HA,f,x ·D⌉p have low norm. Now, following [BTVW17],

observe that: [
B0 | Bf | In0

]
·

 Rf

−I
−Ef

 = f(x) ·Gn0,p.

Since f(x) = 1, this yields a gadget trapdoor which we can use to answer secret key queries (instead of a trapdoor
for B0).

Step 4. At this point, we can rewrite the ciphertext as

ct = (s0 ·B0, s0 ·B0 ·R+ t ·Gn,p, s0 · b⊤ + µ · ⌊p/2⌋,
t · (A− x⊗Gn,q)).

We can then use the LWE assumption to replace s0 · [B0 | b⊤] with random, thereby perfectly hiding the message
µ.

3 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. r) and boldface upper case for matrices (e.g. R). For
integral vectors and matrices (i.e., those over Z), we use the notation ∥r∥, ∥R∥ to denote the maximum absolute
value over all the entries. We use v ← D to denote a random sample from a distribution D, as well as v ← S to
denote a uniformly random sample from a set S. We use ≈s and ≈c as the abbreviation for statistically close and
computationally indistinguishable. We denoted byDZm,χ the (centered) discrete Gaussian distribution over Zm with
parameter χ, i.e., the distribution over Zm where for all x, Pr[x] ∝ e−π·(x2

1+···+x2
m)/χ2

.

6

3.1 Attribute-based encryption

Syntax. A key policy attribute-based encryption (KP-ABE) scheme for some class F consists of four algorithms:

– Setup(1λ,F)→ (mpk,msk). The setup algorithm gets as input the security parameter 1λ and class description
F . It outputs the master public key mpk and the master secret key msk.

– Enc(mpk,x,µ) → ctx. The encryption algorithm gets as input mpk, an input x and a message µ ∈ {0, 1}λ. It
outputs a ciphertext ctx. Note that x is public given ctx.

– KeyGen(mpk,msk, f) → skf . The key generation algorithm gets as input mpk,msk and f ∈ F . It outputs a
secret key skf . Note that f is public given skf .

– Dec(mpk, skf , f, ctx,x)→ µ. The decryption algorithm gets as input skf and ctx along with mpk. It outputs a
message µ.

Correctness. For all inputs x and f with f(x) = 0 and all µ ∈ {0, 1}λ, we require

Pr

Dec(mpk, skf , ctx) = µ :
(mpk,msk)← Setup(1λ,F)
skf ← KeyGen(mpk,msk, f)
ctx ← Enc(mpk,x,µ)

 = 1− negl(λ).

Security Definition. For a stateful adversary A, we define the advantage function

AdvABE
A (λ) := Pr

b = b′ :

x∗ ← A(1λ)
(mpk,msk)← Setup(1λ,F)
(µ0,µ1)← AKeyGen(mpk,msk,·)(mpk)
b← {0, 1}; ctx∗ ← Enc(mpk,x∗,µb)
b′ ← AKeyGen(mpk,msk,·)(ctx∗)

− 1

2
,

with the restriction that all queries f that A sent to KeyGen(mpk,msk, ·) satisfy f(x∗) = 1. An ABE scheme is
selectively secure if for all PPT adversaries A, the advantage AdvABE

A (λ) is a negligible function in λ.

3.2 Lattices background

Learning with Errors. Given n,m, q, χe ∈ N, the LWEn,m,q,χe assumption states that

(A, s ·A+ e) ≈c (A, c),

where
A←Zn×m

q , s←Zn
q , e←DZm,χe

, c←Zm
q .

An analog assumption holds when the secret s itself is chosen from a Gaussian distribution [ACPS09]. When s←DZn,χe ,
we refer to such assumption as the sLWEn,m,q,χe

assumption.
We recall existing results from the literature useful for our construction and security proof.

Lemma 1 (Noise Flooding [GKPV10]). Let n ∈ N. For any real χ > ω(
√
log n), and any c ∈ Zn, it holds

SD(DZn,χ,DZn,χ + c) ≤ ∥c∥/χ. In particular, if χ ≥ λω(1) · ∥c∥, one has DZn,χ ≈s DZn,χ + c.

Lemma 2 (Leftover Hash Lemma [HILL99]). For m ≥ (n+ 1) · log q + 2 · λ the distribution of (A,u = A · x)
for uniform and independent A← Zn×m

q and x← {0, 1}m is statistically indistinguishable from uniformly random.

Lemma 3 (Norm of Gaussian [GPV08]). For all χ ≥ 1 and k ≥ 2,

Pr[|x| ≥ χ
√
k | x←DZ,χ] ≤ 2−k.

Therefore, if H←DZm×m′ ,χ then ∥H∥ ≤ λχ
√
m ·m′ except that with probability negligible in λ.

7

Trapdoor and preimage sampling [MP12,GPV08]. Let n, q ∈ Z,

gq = (1, 2, 4, . . . , 2⌈log q⌉−1) ∈ Z⌈log q⌉.

The gadget matrix Gn,q is defined as the diagonal concatenation of gq n times. Formally, Gn,q = gq ⊗ In ∈
Zn×n·⌈log q⌉. For any t ∈ Z, the function G−1

n,q : Zn×t
q → {0, 1}n·⌈log q⌉×t expands each entry a ∈ Zq of the input

matrix into a column of size ⌈log q⌉ consisting of the bit-representation of a. For any matrix A ∈ Zn×t
q it holds that

Gn,q ·G−1
n,q(A) = A mod q. We refer to the gadget matrix simply as G when parameters n and q are clear from

the context.
Let n,m, q ∈ N and consider a matrix A ∈ Zn×m

q . For all V ∈ Zn×m′

q we let A−1(V, τ) denote the random
variable whose distribution is the Discrete Gaussian DZm×m′ ,τ conditioned on A ·A−1(V, τ) = V mod q.

Lemma 4 (TrapdoorGeneration and Sampling [Ajt96,GPV08,MP12]). There exists a pair of probabilistic polynomial-
time algorithms:

– SamplePre(A,T,V, τ) that givenA and anyT such thatA·T = G, τ ≥ 2·m·
√
n · log q ·∥T∥ andV ∈ Zn×m′

q ,
outputs a sample from A−1(V, τ). We call T a τ -trapdoor forA.

– TrapGen(1n, q,m) that for all m ≥ m0 = m0(n, q) = O(n log q), outputs (A,TA) s.t. A ∈ Zn×m
q is within

statistical distance 2−n from uniform and TA is a τ -trapdoor forA where τ = O(
√
n · log q · log n).

Homomorphic Computation on Matrices. We recall basic homomorphic computation on matrices used in BG-
GHNSVV14 as captured in (1):

Theorem 2 ([BGG+14,GSW13]). There exist efficient deterministic algorithms EvalF and EvalFX such that for all
n, q, ℓ ∈ N, and for any sequence of matrices A = (A1, . . . ,Aℓ) ∈ (Zn×n·⌈log q⌉)ℓ, for any depth-d Boolean circuit
f : {0, 1}ℓ → {0, 1} and for every x = (x1, . . . , xℓ) ∈ {0, 1}ℓ,3 the following properties hold.

– TheoutputsAf = EvalF(A, f) andHA,f,x = EvalFX(A, f,x) arematrices inZn×(n·⌈log q⌉)
q andZ(ℓ·n·⌈log q⌉)×(n·⌈log q⌉),

– It holds that ∥HA,f,x∥ ≤ (n · log q)O(d),
– It holds that

(A− x⊗Gn,q) ·HA,f,x = Af − f(x) ·Gn,q mod q.

We will call this the “key equation” for matrix evaluation.

For a proof of this theorem, we refer the reader to [BCTW16, Fact 3.4].

3.3 Rounding Function and Properties

We define a “rounding” function ⌊·⌉p : Zq → Zp, where q ≥ p ≥ 2, as

⌊x⌉p = ⌊(p/q) · x̄⌉ mod p,

where x̄ ∈ Z denote an arbitrary integer congruent to x modulo q. We extend ⌊·⌉p component-wise to vectors and
matrices overZq . It can be seen that the definition of ⌊·⌉p is independent of the choice of x̄. Indeed, if x̄′ = x̄+k·q ∈ Z,
for k ∈ Z, i.e., x̄′ = x̄ mod q, then one has

⌊(p/q) · x̄′⌉ = ⌊(p/q) · (x̄+ k · q)⌉ = ⌊(p/q) · x̄+ p · k︸︷︷︸
∈Z

⌉ = ⌊(p/q) · x̄⌉+ p · k = ⌊(p/q) · x̄⌉ mod p,

as claimed. Next, we state some properties of the rounding function used in [LLL22].

Lemma 5 (Properties of ⌊·⌉p).

1. For any a,b ∈ Zm
q , ∃e ∈ Zm with ∥e∥ ≤ 2 such that ⌊a+ b mod q⌉p = ⌊a⌉p + ⌊b⌉p + e mod p.

3 In order to support NOT gates, an additional constant 1 should be actually concatenated to the attribute x.

8

2. For any u ∈ Zm,V ∈ Zm×k
q , ∃e ∈ Zk with ∥e∥ ≤ m · ∥u∥ such that ⌊u ·V mod q⌉p = u · ⌊V⌉p + e mod p.

Proof. Property (1) follows from (2) by taking u = [1, 1], and V =

[
a
b

]
. It remains to prove property (2). Let V̄

denote the integer vector whose entry equals that of V. We have

⌊u ·V mod q⌉p =
⌊
(p/q) · u · V̄

⌉
= (p/q) · u · V̄ + f mod p,

where f ∈ Qk with ∥f∥ ≤ 1/2. On the other hand

u · ⌊V⌉p = u ·
⌊
(p/q) · V̄

⌉
= u ·

(
(p/q) · V̄ + F

)
= (p/q) · u · V̄ + u · F mod p,

where F ∈ Qm×k , with ∥F∥ ≤ 1/2. We obtain that

⌊u ·V mod q⌉p = (p/q) · u · V̄ + f

= (p/q) · u · V̄ + f +
(
u · ⌊V⌉p − (p/q) · u · V̄ + u · F

)
= u · ⌊V⌉p + f − u · F︸ ︷︷ ︸

e

mod p.

Observe that e is an integer vector since it is the difference of two integer vectors modulo p. Next, we bound ∥e∥:

∥e∥ = ∥f − u · F∥
≤ ∥f∥+ ∥u · F∥
≤ 1/2 + (1/2) ·m · ∥u∥
≤ m · ∥u∥,

where in the last inequality we have used that ∥u∥ ≥ 1, as otherwise u = 0, and the claim is trivial. ⊓⊔

4 ABE for Circuits withOλ(1)-sized Keys

In this section, we prove Theorem 1. We refer to Section 2 for an overview of the scheme4 and the security proof.

Construction. Let the ABE Π = (Setup,Enc,KeyGen,Dec) for the family Fℓ,d,s of circuits of depth d and size s
over ℓ-bit inputs be defined as follows:

– Setup(1λ, 1d, 1ℓ): Sample

(B0,TB0
)←TrapGen(1n0 , 1m0 , p),B1←Zn0×m1

p ,B2←Zn0×λ
p ,A←Zn1×ℓ·m2

q ,

and let D := G−1
n1,q

([q
p ·Gn0,p

0(n1−n0)×m0

])
∈ Zm2×m0 .

Set mpk = (B0,B1,B2,A,D), and msk = TB0
. Return (mpk,msk).

4 The parameters (n1,m2) here correspond to (n,m) in the overview, and we replaced b⊤
2 with a matrix B2 so that we can

directly encrypt messages in {0, 1}λ.

9

– Enc(mpk,x,µ ∈ {0, 1}λ): Sample

s0←DZn0 ,χ0 , s←DZn1 ,χ3 , e0←DZm0 ,χ0 , e1←DZm1 ,χ2 , e2←DZλ,χ0
, e3←DZℓ·m2 ,χ3

.

Compute

c0 := s0 ·B0 + e0 modp,
c1 := s0 ·B1 + s ·Gn1,p + e1 modp,
c2 := s0 ·B2 + µ · ⌊p/2⌋+ e2 modp,
c3 := s · (A− x⊗Gn1,q) + e3 modq.

Output ctx := (c0, c1, c2, c3).

– KeyGen(mpk,msk, f): Compute Af = EvalF(A, f) and

Bf := B1 ·G−1
n1,p(⌊Af ·D⌉p) ∈ Zn0×m0

p .

Sample

Kf ← SamplePre([B0 | Bf | In0],

 TB0

0m0×m0

0n0×m0

 ,B2, τ),

i.e., [B0 | Bf | In0
] ·Kf = B2. Output skf = (Kf).5

– Dec(mpk, skf , f, ctx,x): ComputeAf = EvalF(A, f) andHA,f,x = EvalFX(A, f,x). Parse ctx = (c0, c1, c2, c3).
Output ⌊

2
p ·

(
c2 −

[
c0 | c1 ·G−1

n1,p(⌊Af ·D⌉p)− ⌊c3 ·HA,f,x ·D⌉p | 0n0×n0

]
·Kf

)⌉
∈ {0, 1}λ. (3)

Parameters. We have 4 gaussian parameters:

≈∥e0∥,∥s0∥,∥e2∥︷ ︸︸ ︷
χ0 ≤

≈∥W∥,∥E∥︷ ︸︸ ︷
χ1 ≤

≈∥e1∥︷ ︸︸ ︷
χ2 ≤

≈∥s∥,∥e3∥︷ ︸︸ ︷
χ3 .

where W,E are introduced in the security proof.
The parameters requirements can be compactly specified as:

m0 ≥ O(n0 log p) trapdoor generation (Lemma 4)

2n
δ
0 ≥ p/χ0, χ0 ≥ O(n0 + λ) sLWEn0,p,χ0 hardness (H6 ≈c H7)

2(n1−n0)
δ

≥ q/χ1, χ1 ≥ O(n1 + λ) sLWEn1−n0,q,χ1 hardness (H0 ≈c H1)

χ3 ≥ χ0 · χ1 · poly(ℓ,m2, λ) · λω(1) noise flooding (H1 ≈s H2,H5 ≈s H6)

χ2 ≥ χ0 · poly(m2, λ) · λω(1) noise flooding (H5 ≈s H6)

m0 ≥ (n0 + 1) · log p+ 2λ LHL (H2 ≈s H3)

τ ≥ poly(m2, ℓ, λ) · p/q ·B · χ1 trapdoor generation (H3 ≈s H4)

p ≥ poly(λ) · χ0 + (p/q ·B · χ3 + χ2 + χ3) · poly(m2, ℓ, λ) · τ correctness

We bound the adversarially chosen parameters d, ℓ by λω(1).6 Taking λ1 = λω(1), and additionally bounding
each of p/q ·B and the poly(ℓ,m2, λ) terms by λ1, we can set

5 Note that it suffices for correctness to output skf = (K0
f), where K0

f ∈ Z2m0×λ correspond to the top 2m0 rows of Kf , so
that [B0 | Bf] ·K0

f ≈ B2. Decryption would then compute c2 −
[
c0 | c1 ·G−1

n1,p(⌊Af ·D⌉p)− ⌊c3 ·HA,f,x ·D⌉p
]
·K0

f

in place of (3).
6 This is also the case in [LLL22]. In particular, the key sizes require multiplicative factors in poly(log d, log ℓ).

10

m0 = n0 · ⌈log p⌉, m1 = n1 · ⌈log p⌉, m2 = n1 · ⌈log q⌉,
χ0 = χ1 = λ1, χ2 = λ3

1, χ3 = λ4
1,

τ = λ3
1,

p = λ9
1, n0 = O(log λ1)

1/δ,

q = B · λ8
1 = λ

O(d)
1 , n1 = O(logB + log λ1)

1/δ = O(d · log λ1)
1/δ,

(4)

where in the last line, we use B := m
O(d)
2 ≤ λ

O(d)
1 .

Efficiency. Our ABE scheme achieves

|mpk| = O(ℓ · (n1 · log q)2), |ct| = O(ℓ · n1 · (log q)2 + λ · log p), |sk| = O(n0 · λ · (log p)2).

This yields the following parameter sizes (in bits) for our ABE scheme:

|mpk| = Oλ(ℓ · d2+2/δ), |ct| = Oλ(ℓ · d2+1/δ), |sk| = Oλ(1).

where Oλ(·) hides factors polynomial in λ (bounded by λ3). Here, we use n0 = O(λ), n1 = O(d1/δ · λ), log p =
O(λ), log q = O(d·λ), where we do optimize on the dependency on d but not onλ. In comparison, the BGGHNSVV14
ABE achieves the same |mpk|, |ct| but with |sk| = Oλ(d

2+1/δ).
The running time for encryption is ℓ ·poly(d, λ) and that for key generation is s ·poly(d, λ) where s is the circuit

size for f .

Theorem 3 (Correctness). LetΠ be theKP-ABE construction described above, with parameters set as in Eq. (4). Then,
Π is correct.

Proof. Fix x, f such that f(x) = 0. The bulk of the proof lies in showing that[
c0

∣∣∣ c1 ·G−1
n1,p(⌊Af ·D⌉p)− ⌊c3 ·HA,f,x ·D⌉p

∣∣∣ 0n0×n0

]
= s0 ·

[
B0 | Bf | In0

]
+ e′f,x mod p (5)

where ∥e′f,x∥ is small. Correctness then follows readily from the fact that

c2 − (s0 · [B0 | Bf | In0
] + e′f,x) ·Kf = µ · ⌊p/2⌋+ e2 − e′f,x ·Kf mod p

To prove Eq. (5):

– First, we have that

c1 ·G−1
n1,p(⌊Af ·D⌉p) = (s0 ·B1 + s ·Gn1,p + e1) ·G−1

n1,p(⌊Af ·D⌉p)

= s0 ·B1 ·G−1
n1,p(⌊Af ·D⌉p) + s ·Gn1,p ·G−1

n1,p(⌊Af ·D⌉p)

+ e1 ·G−1
n1,p(⌊Af ·D⌉p)

≈ s0 ·B1 ·G−1
n1,p(⌊Af ·D⌉p) + s · ⌊Af ·D⌉p mod p.

– Second, using the key equation

(A− x⊗Gn1,q) ·HA,f,x = Af mod q,

11

as f(x) = 0, we have

⌊c3 ·HA,f,x ·D⌉p = ⌊(s · (A− x⊗Gn1,q) + e3) ·HA,f,x ·D⌉p
= ⌊s · (A− x⊗Gn1,q) ·HA,f,x ·D+ e3 ·HA,f,x ·D⌉p
= ⌊s ·Af ·D+ e3 ·HA,f,x ·D mod q⌉p
= ⌊s ·Af ·D⌉p + ⌊e3 ·HA,f,x ·D⌉p + ε

≈ ⌊s ·Af ·D⌉p
= s · ⌊Af ·D⌉p + es

≈ s · ⌊Af ·D⌉p mod p,

where the fifth equality uses that ⌊s ·Af ·D⌉p = s · ⌊Af ·D⌉p + es, with ∥es∥ ≤ n1 · ∥s∥.
– We deduce that

c1 ·G−1
n1,p(⌊Af ·D⌉p)− ⌊c3 ·HA,f,x ·D⌉p ≈ s0 ·

=Bf︷ ︸︸ ︷
B1 ·G−1

n1,p(⌊Af ·D⌉p) modp.

– We conclude that Eq. (5) holds with

e′f,x = [e0 | e1 ·G−1
n1,p(⌊Af ·D⌉p)− ⌊e3 ·HA,f,x ·D⌉p − ε− es | −s0],

where, using Lemma 3, we have that with overwhelming probability in λ

∥e′f,x∥ ≤ λ · √m0 · χ0 ∥e0∥
+m1 · λ ·

√
m0 · χ2 ∥e1 ·G−1

n1,p(⌊Af ·D⌉p)∥

+
p

q
· ℓ ·m2 ·m2 · λ ·

√
ℓ ·m2 · χ3 ·mO(d)

2 ∥⌊e3 ·HA,f,x ·D⌉p∥

+2 ∥ε∥
+n1 · λ ·

√
n1 · χ3 ∥es∥

+λ · √n0 · χ0 ∥s0∥

It follows that the norm of the final error term is, with overwhelming probability in λ, bounded by

∥e2∥+ ∥e′f,x ·Kf∥ ≤ λ ·
√
λ · χ0

+ λ · (2 ·m0 + n0)
2 · τ ·

(
λ ·
√
m0 · χ0

+m1 · λ ·
√
m0 · χ2

+
p

q
· ℓ ·m2 ·m2 · λ ·

√
ℓ ·m2 · χ3 ·mO(d)

2

+ 2

+ n1 · λ ·
√
n1 · χ3

+ λ ·
√
n0 · χ0

)
,

where we have used that ∥Kf∥ ≤ λ ·
√
(2 ·m0 + n0) · n0 · τ and that e′f,x is a vector of length 2 ·m0 + n0. Since

p ≥ poly(λ) · χ0 + (p/q ·B · χ3 + χ2 + χ3) · poly(m2, ℓ, λ) · τ,

the theorem follows. ⊓⊔

12

Hybrid mpk ct trapdoor for skf justification

H0

(B0,TB0)←TrapGen(1n0 , 1m0 , p)
B1←Zn0×m1

p

B2←Zn0×λ
p

A← Zn1×(ℓ·m2)
q

c0 ≈ s0 ·B0

c1 ≈ s0 ·B1 + s ·Gn1,p

c2 ≈ s0 ·B2 + µ · ⌊p/2⌋
c3 ≈ s · (A− x∗ ⊗Gn1,q)

TB0

H1 A =

[
W0 · Ã+E

−Ã

]
+ x∗ ⊗Gn1,q ↓ ↓ sLWEn1−n0,ℓ·m2,χ1,q

H2 ↓ s = s0 ·W + t ↓ noise flooding (Lemma 1)

H3 B1 = B0 ·R−W ·Gn1,p ↓ ↓ LHL (Lemma 2)

H4 ↓ ↓

 Rf

−Im0

−Ef

 SamplePre (Lemma 4)

H5 B0 ← Zn0×m0
p ↓ ↓ TrapGen (Lemma 4)

H6 ↓ c1 = c0 ·R+ t ·Gn1,p + e′
1

c3 = t · (A− x∗ ⊗Gn1,q) + e′
3

↓ noise flooding (Lemma 1)

H7 ↓ c0 ← Zm0
p , c2 ← Zλ

p ↓ sLWEn0,m0+λ,χ0,p

Fig. 2. Summary of our security proof. ↓ denotes the same as the previous hybrid. We omit the noise terms in H0. In H1, we
introduce W = [In0 |W0].

Theorem 4 (Security). LetΠ be the KP-ABE construction described above, with parameters set as in Eq. (4). Then,Π
is selectively secure assuming sLWEn0,m0+λ,χ0,p and sLWEn1−n0,ℓ·m2,χ1,q .

Proof. Consider the following sequence of hybrids, summarized in Fig. 2:

– H0: This is identical to the real security game.
– H1: This is the same as H0, except for the following modification to A in mpk:
• let x∗ the challenge attribute provided by the adversary,
• sample W0←DZn0×(n1−n0),χ1

and set W = [In0 |W0],
• sample Ã←Z(n1−n0)×ℓ·m2

q and E←DZn0×ℓ·m2 ,χ1
,

• set

A :=

[
W0 · Ã+E

−Ã

]
+ x∗ ⊗Gn1,q mod q.

By sLWEn1−n0,ℓ·m2,χ1,q , the distribution of A in H1 is computationally indistinguishable to the one in H0. The
reduction works as follows:
• it receives the sLWE instance (Abot,Atop) ∈ Z(n1−n0)×ℓ·m2

q × Zn0×ℓ·m2
q ,

• it obtains x∗ from the adversary A,
• computes B0, B1, and B2 as in H0, and sets

A :=

[
Atop

−Abot

]
+ x∗ ⊗Gn1,q mod q.

• it answers KeyGen queries using TB0
,

• whenever the adversaryA produces (µ0,µ1), it samples b← {0, 1}, s0←DZn0 ,χ0 , s←DZn1 ,χ3 , e0←DZm0 ,χ0 ,
e1←DZm1 ,χ2

, e2←DZλ,χ0
, e3←DZℓ·m2 ,χ3

, and outputs

ct = (s0 ·B0 + e0, s0 ·B1 + s ·Gn1,p + e1, s0 ·B2 + µb · ⌊p/2⌋+ e2, s · (A− x∗ ⊗Gn1,q) + e3).

Observe that

13

• if (Abot,Atop) is a uniform random instance, the view of A is identical to H0;
• if (Abot,Atop) is a structured sLWEn1−n0,ℓ·m2,χ1,q instance, the view of the adversary A is identical to H1.

We conclude that H0 ≈c H1.

– H2: This is the same as H1, except for the following modification to s in the challenge ciphertext:

• sample t←DZn1 ,χ3 and set

s := s0 ·W + t.

Recall that in H1, we have s←DZn1 ,χ3 . By noise flooding (Lemma 1), we have

(s0,W, s) ≈s (s0,W, s0 ·W + t),

as long as

χ3 ≥ n0 ·
√
n0 · χ0 ·

√
n0 · n1 · χ1 · λω(1).

We conclude that H1 ≈s H2. Observe that we can now rewrite (c1, c3) in the challenge ciphertext in H2 as
follows:

c1 = s0 ·B1 + (s0 ·W + t) ·Gn1,p + e1

= s0 · (B1 +W ·Gn1,p) + t ·Gn1,p + e1 mod p,

and

c3 = (s0 ·W + t) · (A− x∗ ⊗Gn1,q) + e3

= t · (A− x∗ ⊗Gn1,q) + s0 ·E+ e3 mod q,

where we used that

W · (A− x∗ ⊗Gn1,q) = [In0
|W0] ·

[
W0 · Ã+E

−Ã

]
= E mod q.

– H3: This is the same as H2, except for the following modification to B1 in mpk:

• sample R←{0, 1}m0×m1 ,
• set B1 := B0 ·R−W ·Gn1,p mod p.

Since R is sampled uniformly and m0 ≥ (n0 + 1) · log p+ 2 · λ, indistinguishability (H2 ≈s H3) follows from
the leftover hash lemma (Lemma 2). Notice that we can now rewrite c1 in the challenge ciphertext in H3 as

c1 = s0 · (B1 +W ·Gn1,p) + t ·Gn1,p + e1

= s0 ·B0 ·R+ t ·Gn1,p + e1 mod p.

– H4: This is the same as H3, except for the following modification to KeyGen queries:

• recall the key equation

(A− x⊗Gn1,q) ·HA,f,x = Af − f(x) ·Gn1,q mod q,

and that a valid adversary can only make KeyGen queries for functions f for which f(x∗) = 1. Using these
facts, one has that

14

Bf = B1 ·G−1
n1,p(⌊Af ·D⌉p)

= (B0 ·R−W ·Gn1,p) ·G−1
n1,p(⌊Af ·D⌉p)

= B0 ·R ·G−1
n1,p(⌊Af ·D⌉p)︸ ︷︷ ︸

Rf

−W · ⌊Af ·D⌉p

= B0 ·Rf −W · ⌊((A− x∗ ⊗Gn1,q) ·HA,f,x∗ + f(x∗) ·Gn1,q) ·D⌉p
= B0 ·Rf −W · ⌊((A− x∗ ⊗Gn1,q) ·HA,f,x∗ +Gn1,q) ·D⌉p
= B0 ·Rf − ⌊W · ((A− x∗ ⊗Gn1,q) ·HA,f,x∗ +Gn1,q) ·D⌉p −EW

= B0 ·Rf −

W · (A− x∗ ⊗Gn1,q)︸ ︷︷ ︸
E

·HA,f,x∗ ·D+W ·Gn1,q ·D

p

−EW

= B0 ·Rf −

E ·HA,f,x∗ ·D︸ ︷︷ ︸
E′

+W ·Gn1,q ·D

p

−EW

= B0 ·Rf − ⌊W ·Gn1,q ·D⌉p − (⌊E′⌉p +EW +E+)︸ ︷︷ ︸
Ef

= B0 ·Rf −
⌊
q

p
·Gn0,p

⌉
p

−Ef

= B0 ·Rf −Gn0,p −Ef mod p,

where in the second-to-last equality we have used the definition of W and D.

• compute Tf :=

 Rf

−Im0

−Ef

 and observe that [B0 | Bf | In0
] ·Tf = Gn0,p.

• compute
Kf ← SamplePre([B0 | Bf | In0

],Tf ,B2, τ),

to answer KeyGen queries. By the properties of SamplePre (Lemma 4), this works as long as

τ ≥ 2 · (2 ·m0 + n0) ·
√
n0 · log p · ∥Tf∥

= O(m2
0 · (∥Rf∥+ ∥Ef∥)),

where

∥Rf∥ = ∥R ·G−1
n1,p(⌊Af ·D⌉p)∥

≤ m1,

and

∥Ef∥ = ∥⌊E′⌉p +EW +E+∥
≤ ∥⌊E′⌉p∥+ ∥EW∥+ ∥E+∥
≤ ∥⌊E ·HA,f,x∗ ·D⌉p∥+ n1 ·

√
n0 · n1 · λ · χ1 + 2

≤ p

q
· λ ·

√
n0 · ℓ ·m2 · χ1 · ℓ ·m2 ·mO(d)

2 ·m2 + n1 ·
√
n0 · n1 · λ · χ1 + 2.

Therefore, since τ ≥ poly(m2, ℓ, λ) · p/q · B · χ1 satisfies such constraint, we have that H3 ≈s H4. Notice that
the reduction does not use TB0

anymore.

15

– H5: This is the same as H4, except for the following modification to B0 in mpk:
• sample B0←Zn0×m0

p instead of (B0,TB0
)←TrapGen(1n0 , 1m0 , p).

By the properties of the TrapGen algorithm (Lemma 4), the distribution of B0 is statistically indistinguishable
between H4 and H5. Therefore, H4 ≈s H5.

– H6: This is the same as H5, except for the following modification to c1, c3 in the challenge ciphertext:
• sets

c1 := c0 ·R+ t ·Gn1,p + e′1 mod p,

c3 := t · (A− x∗ ⊗Gn1,q) + e′3 mod q,

for t←DZn1 ,χ3
, e′1←DZm1 ,χ2

, and e3←DZm2 ,χ3
.

First, recall that in H5, we have

c1 = (

c0︷ ︸︸ ︷
s0 ·B0 + e0) ·R+ t ·Gn1,p + e1 − e0 ·R mod p,

c3 = t · (A− x∗ ⊗Gn1,q) + s0 ·E+ e3 mod q,

where the boxed terms are the terms in H5 that will be modified in H6. By noise flooding (Lemma 1), we have

(e0,R, e1 − e0 ·R) ≈s (e0,R, e′1),

(s0,E, s0 ·E+ e3) ≈s (s0,E, e′3).

as long as

χ2 ≥ m0 ·
√
m0 · χ0 · λω(1), and

χ3 ≥ n0 ·
√
n0 · χ0 ·

√
n0 · ℓ ·m2 · χ1 · λω(1).

We conclude that H5 ≈s H6.
– H7: This is the same as H6, except for the following modification to c0, c2 in the challenge ciphertext:
• sample

c0←Zm0
p , c2←Zλ

p .

Recall that in H6, we have

[c0 | c2] = s0 · [B0 | B2] + [e0 | e2] + [0 | µb · ⌊p/2⌋].

where s0←DZn0 ,χ0
, e0←DZm0 ,χ0

, e2←DZλ,χ0
. To show that H6 ≈c H7, we rely on sLWEn0,m0+λ,χ0,p. The

reduction works as follows:
• it parses B = [B0 | B2] ∈ Zn0×(m0+λ)

p and c̃ = [c̃0 | c̃2] ∈ Zm0+λ
p obtained from the sLWEn0,m0+λ,χ0,p

instance,
• it obtains x∗ from the adversary A,
• it samples R← {0, 1}m0×m1 , E← DZn0×ℓ·m2 ,χ1

, W0 ← DZn0×(n1−n0),χ1
, and computes A,B1 in mpk as

in H6, while using B0, B2 obtained from the sLWE instance,
• it answers KeyGen queries using Tf (which can be computed starting from R,E) as in H6,
• whenever the adversaryA produces (µ0,µ1), it samples b←{0, 1}, t←DZn1 ,χ3 , e′1←DZm1 ,χ2 , e′3←DZm2 ,χ3 ,

and outputs

ct = (c̃0, c̃0 ·R+ t ·Gn1,p + e′1, c̃2 + µb · ⌊p/2⌋, t · (A− x∗ ⊗Gn1,q) + e′3).

Observe that
• if (B, c̃) is a structured sLWEn0,m0+1,χ0,p instance, the view of the adversary A is identical to H6;
• if (B, c̃) is a uniform random instance, the view of A is identical to H7.

16

We conclude that H6 ≈c H7.

Since the message µb and the challenge bit b are perfectly hidden in H7, this concludes the proof. ⊓⊔

Remark 1 (ciphertext pseudorandomness). In fact, we can prove a stronger property, namely that the challenge ci-
phertext is pseudorandom; this is also the case for the BGGHNSVV14 ABE. To do this, we need to show that (c1, c3)
in H7 are pseudorandom. This requires introducing the following additional hybrids:

– H8: use TB0 to simulate secret keys.
– H9: replace c1 with a random c1 ← Zm1

p . We have H8 ≈s H9 via the leftover hash lemma (Lemma 2).
– H10: replace A with a random A← Zn1×(ℓ·m2)

q . We have H9 ≈c H10 from sLWE as in H0 ≈c H1.
– H11: replace c3 with a random c3 ← Zℓm2

q . We have H10 ≈c H11 from sLWE (with t as the LWE secret).

4.1 Reusable Garbled Circuits

Goldwassser et al. [GKP+13], with improvements from Boneh et al. [BGG+14], showed that starting from (i) an ABE
scheme for Fℓ,d,s with mpk, ciphertext and key sizes P (ℓ, d, s), C(ℓ, d, s),K(ℓ, d, s), and (ii) the LWE assumption
(used for FHE), we can construct a reusable garbling scheme for Fℓ,d,s in the CRS model where

– the CRS has size P (ℓ′, d′, s′);
– the garbled input has size ℓ′ + poly(λ) · C(ℓ′, d′, s′);
– the garbled circuit has size s+ poly(λ) ·K(ℓ′, d′, s′);

where ℓ′ = ℓ+ poly(λ, d), d′ = d · poly(λ), s′ = s · poly(λ, d). Here, ℓ′ is the size of a FHE encryption of x ∈ {0, 1}ℓ
and d′, s′ correspond to the depth and the size of the circuit performing FHE homomorphic evaluation of f plus
symmetric-key decryption. Combined with our ABE scheme, we have the following corollary:

Corollary 1 (Reusable garbling scheme). Assuming the hardness of LWE with 2n
δ

modulus-to-noise ratio, we have
a reusable garbling scheme for Fℓ,d,s in the CRS model where

– the CRS has size Oλ(ℓ · d2+2/δ),
– the garbled input has size Oλ(ℓ · d2+1/δ), and
– the garbled circuit has size s+Oλ(1).

Acknowledgements. We would like to thank Huijia (Rachel) Lin for helpful discussions about LLL22, as well as
the FOCS reviewers for meticulous and constructive feedback. This work was completed while V.C. was at AIT. He
was funded by the Austrian Science Fund (FWF) and netidee SCIENCE grant P31621-N38 (PROFET).

References

ACPS09. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 595–
618. Springer, Berlin, Heidelberg, August 2009. 7

Agr17. Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions and attacks. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 3–35. Springer, Cham, August 2017. 4

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th ACM STOC, pages 99–108.
ACM Press, May 1996. 8

ALS16. Shweta Agrawal, Benoı̂t Libert, and Damien Stehlé. Fully secure functional encryption for inner products, from stan-
dard assumptions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
333–362. Springer, Berlin, Heidelberg, August 2016. 4

AWY20. Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast encryption from LWE and pairings in the
standard model. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 149–178.
Springer, Cham, November 2020. 1

17

AY20. Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings and LWE. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 13–43. Springer, Cham, May 2020. 1, 2

BCTW16. Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee. Targeted homomorphic attribute-based encryption.
In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 330–360. Springer, Berlin,
Heidelberg, October / November 2016. 8

BGG+14. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikuntanathan, and
Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled cir-
cuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556.
Springer, Berlin, Heidelberg, May 2014. 1, 2, 3, 8, 17

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu, George Danezis,
and Virgil D. Gligor, editors, ACM CCS 2012, pages 784–796. ACM Press, October 2012. 2

BTVW17. Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained PRFs (and more) from
LWE. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 264–302. Springer,
Cham, November 2017. 3, 5, 6

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In Rafail
Ostrovsky, editor, 52nd FOCS, pages 97–106. IEEE Computer Society Press, October 2011. 1, 3

BV15. Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from standard lattice assumptions -
or: How to secretly embed a circuit in your PRF. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 1–30. Springer, Berlin, Heidelberg, March 2015. 1

CDG+17. Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Polychroniadou. Laconic
oblivious transfer and its applications. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume
10402 of LNCS, pages 33–65. Springer, Cham, August 2017. 1

CJJ22. Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In 62nd FOCS, pages 68–79. IEEE
Computer Society Press, February 2022. 1

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, 41st ACM STOC,
pages 169–178. ACM Press, May / June 2009. 1

GKP+13. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich. Reusable garbled
circuits and succinct functional encryption. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM
STOC, pages 555–564. ACM Press, June 2013. 1, 2, 17

GKPV10. Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the learning with errors
assumption. In Andrew Chi-Chih Yao, editor, ICS 2010, pages 230–240. Tsinghua University Press, January 2010. 7

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained access control
of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACMCCS 2006, pages
89–98. ACM Press, October / November 2006. Available as Cryptology ePrint Archive Report 2006/309. 1

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic construc-
tions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008. 7,
8

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 75–92. Springer, Berlin, Heidelberg, August 2013. 3, 8

GVW13. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 545–554. ACM Press, June 2013. 1, 2

GVW15a. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from LWE. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer,
Berlin, Heidelberg, August 2015. 1

GVW15b. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from standard
lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477. ACM Press, June 2015. 1

HILL99. Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from any one-way
function. SIAM Journal on Computing, 28(4):1364–1396, 1999. 7

HLL23. Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of unbounded depth from lattices:
Garbled circuits of optimal size, laconic functional evaluation, and more. In FOCS, 2023. 2

LLL22. Hanjun Li, Huijia Lin, and Ji Luo. ABE for circuits with constant-size secret keys and adaptive security. In Eike Kiltz
and Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 680–710. Springer, Cham, November
2022. 1, 2, 8, 10

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In David Pointcheval
and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer, Berlin, Heidelberg,
April 2012. 3, 8

18

PS19. Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 89–114. Springer, Cham,
August 2019. 1

QWW18. Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications. In Mikkel Thorup, editor,
59th FOCS, pages 859–870. IEEE Computer Society Press, October 2018. 1, 4

SW05. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 457–473. Springer, Berlin, Heidelberg, May 2005. 1

Tsa22. Rotem Tsabary. Candidate witness encryption from lattice techniques. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 535–559. Springer, Cham, August 2022. 1, 2

Wee22. Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In Orr Dunkelman and Ste-
fan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 217–241. Springer, Cham, May / June
2022. 1, 2

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages 162–167. IEEE
Computer Society Press, October 1986. 2

19

	ABE for Circuits with poly()-sized Keys from LWE

