
Noname manuscript No.
(will be inserted by the editor)

Construction of quadratic APN functions with
coefficients in F2 in dimensions 10 and 11

Yuyin Yu1 · Jingchen Li1 · Nadiia
Ichanska2 · Nikolay Kaleyski2

Received: date / Accepted: date

Abstract Yu et al. described an algorithm for conducting computational
searches for quadratic APN functions over the finite field F2n , and used this
algorithm to give a classification of all quadratic APN functions with coeffi-
cients in F2 for dimensions n up to 9. In this paper, we speed up the running
time of that algorithm by a factor of approximately n×2n

n3 . Based on this result,
we give a complete classification of all quadratic APN functions over F210 with
coefficients in F2. We also perform some partial computations for quadratic
APN functions over F211 with coefficients in F2 , and conjecture that they form
6 CCZ-inequivalent classes which also correspond to known APN functions.

Keywords Boolean functions, Almost Perfect Nonlinear, ortho-derivative,
Quadratic functions

1 Introduction

Let n be a positive integer. We denote by F2n the finite field with 2n elements,
and by F⋆

2n its multiplicative group; we will refer to n as the dimension of
the finite field. A mapping F : F2n → F2n is called an (n, n)-function. An
(n, n)-function F is said to have differential uniformity δ(F) if

δ(F) = max
a∈F⋆

2n
,b∈F2n

#∆F (a, b),

where ∆F (a, b) = {x ∈ F2n : F (x + a) + F (x) = b}, and #S is the cardinal-
ity of a set S. If δ(F) ≤ d for some positive integer d, then we say that F
is differentially d-uniform. From the point of view of cryptography, where
(n, n)-functions are frequently used as so-called substitution boxes, or S-boxes,

1. College of Mathematics and Information Science, Guangzhou University, Guangzhou
(yuyuyin@163.com; lijingchen0702@qq.com)
2. Department of Informatics, University of Bergen (Nadiia.Ichanska@uib.no; Niko-
lay.Kaleyski@uib.no)

2

in the design of symmetric block ciphers, it is desirable for δ(F) to be as low
as possible since this indicates a better resistance to differential cryptanalysis.
It is easy to see that δ(F) is always even and can not be equal to zero, and
therefore the lowest value of δ(F) is 2. If δ(F) = 2, then F is called almost
perfect nonlinear (APN). Consequently, APN functions provide the best
possible resistance to differential attacks, and have attracted significant at-
tention from researchers for this reason. However, as a “side effect” of their
cryptographic strength, APN functions tend to have little obvious structure or
properties that can be used to construct or characterize them. Finding APN
functions is thus not an easy task, and it becomes even more challenging to
find functions that combine APN-ness with other desirable properties. Ideally,
one would have a classification of all APN functions for a given dimension
n, but this is an extremely challenging task, even if only functions from some
particular subclass are considered. The vast majority of known APN functions
are quadratic, and most of the literature on APN functions concerns primarily
quadratic APN functions. Considering quadratic functions all of whose coef-
ficients belong to F2 further simplifies the classification problem, although it
does remain very hard. The last results in this direction are from 2020 [26]
where a classification of quadratic APN functions over F2n with coefficients
in F2 is performed for n ≤ 9, and it is shown that applying the approach
described in that work to dimensions beyond 9 is infeasible. In this paper, we
improve the method from [26], which significantly speeds up the computation
and allows us to obtain a complete classification for n = 10 and some partial
results for n = 11; based on these, we also conjecture the exact form of the
classification for n = 11.

We now give a brief survey of previous classifications and searches for APN
functions. Edel et al. [17] found over F210 the first quadratic APN function that
is CCZ-inequivalent [15] to any power function. Brinkmann and Leander [5]
showed that when n < 6, all APN functions on F2n are CCZ-equivalent to
power functions, and the APN functions listed in [18] already contain all APN
power functions for n = 4 and n = 5. Dillon et al. [6] first listed 13 CCZ-
inequivalent quadratic APN functions on F26 , while Edel [16] proved that
Dillon’s list in fact includes all CCZ-inequivalent classes of quadratic APN
functions over F26 .

When n = 7, Dillon et al. [6] listed 15 CCZ-inequivalent quadratic APN
functions on F27 , while Edel and Pott [18] expanded this number to 16. Yu et
al. [28] found another 471 new CCZ-inequivalent classes. Kalgin and Idrisova
[19] found another new APN function and showed that all quadratic APN
functions on F27 are included in these 488 CCZ-inequivalent classes.

When n = 8, Dillon et al. [6] listed 11 CCZ-inequivalent quadratic APN
functions on F28 , while Edel and Pott [18] expanded this number to 22. Yu et
al. [27][28] found 8157 new CCZ-inequivalent classes by using a computational
search based on a matrix representation of quadratic functions1. Weng et al.

1 The eprint version [27] was updated with additional computational results after the
publication of the journal version [28], hence why we cite both versions

3

[23] found 10 new ones. Taniguchi [21] found 2 new ones, and Budaghyan et al.
[7] found yet another new one. Further, Beierle et al. [1][2] found 12921 new
CCZ-inequivalent APN functions using a computational approach based on
so-called self-equivalences. Yu and Perrin [25] found another 5412 new APN
functions and conjectured that the total numer would exceed 50000. Conse-
quently, Beierle et al. [4] found 6368 new APN functions. Up to now, there are
32893 known classes of CCZ-inequivalent quadratic APN functions over F28 .

Yu et al. [26] described an improvement of the algorithm from [28] in the
case when the functions have coefficients in F2, and gave a classification of all
quadratic APN functions with coefficients in F2 for dimensions up to 9. Beierle
et al. [1][2] found 35 CCZ-inequivalent quadratic APN functions on F29 using
the self-equivalence approach.

By the year 2022, a total of 20 CCZ-inequivalent quadratic APN instances
over F210 have been identified. Besides the functions equivalent to monomials,
15 quadratic CCZ-inequivalent APN instances over F210 given by [10], [11],
[12], [20], and [21]. Recent progress has been achieved in [2], in which 5 new
APN instances were found in dimension 10 (the look-up tables of these 5 APN
instances are available in [3]). Shortly thereafter, Lijing Z. et al. [29] reported
4 CCZ- inequivalent APN instances over F210 . Budaghyan et al. [8] obtained 6
previously unknown classes of APN functions by adding 5, 6, or 7 terms with
coefficients in F22 to x3, x9, or x33. They verified that none of these functions
are CCZ-equivalent to a permutation by using SboxU [22].

Many scholars have also studied how to construct infinite families of quadratic
APN polynomials over F2n . Readers can refer to [14] for a comprehensive sum-
mary on the state of knowledge of APN functions.

In this paper, we concentrate on quadratic homogeneous functions

F (x) =
∑

0≤i<j≤n−1

ci,jx
2i+2j ,

over F2n where ci,j ∈ F2, and we investigate when they are APN. We speed
up the algorithm in [26] by a factor of approximately n×2n

n3 times. Based on
this result, we were able to conduct an exhaustive search in dimension 10.
After running 22 Magma [30] scripts in parallel for about 100 days on F210 , we
have obtained 29088 quadratic homogeneous APN functions with coefficients
in F2. Using the differential spectra of their ortho-derivatives [13], these APN
functions can be divided into 3 CCZ-inequivalent classes corresponding to the
functions x3, x9 and x3 + Tr(x9), where the trace function Tr : F2n → F2 is

defined by Tr(x) =
∑n−1

i=0 x2i for x ∈ F2n . Using the equivalence algorithm
from [9], we show that any two of these functions having the same differential
spectrum of the ortho-derivative are CCZ-equivalent to each other. Thus, all
quadratic APN functions over F210 with coefficients in F2 fall into these three
CCZ-equivalence classes. However, we found a shorter representative x513 +
x192 + x96 + x48 + x33 + x18 + x12 for x3 +Tr(x9). This relates to Problem 1
proposed in [26], namely: given an (n, n)-function F , find a function G CCZ-
equivalent to it having the shortest possible number of terms in its polynomial

4

representation. Based on this, we can confirm that any quadratic APN function
over F2n with coefficients in F2 is CCZ-equivalent to a function having no more
than n terms with non-zero coefficients for all dimensions n up to 10.

When n = 11, a complete classification does not appear to be feasible, but
we perform a partial search and find 6 CCZ-inequivalent quadratic APN func-
tions with coefficients in F2. These functions are all CCZ-equivalent to known
ones. We conjecture that these are the only 6 CCZ-inequivalent quadratic APN
functions over F211 with coefficients in F2.

2 Preliminaries

We introduce some notions and results which will be useful in the sequel.
We say that an (n, n)-function A is affine if for any x, y, z ∈ F2n we have

A(x) + A(y) + A(z) = A(x + y + z). If an affine function satisfies A(0) = 0,
then we say that it is linear.

Definition 1 Let F and F ′ be two functions from F2n to F2n . We say that F
and F ′ are EA-equivalent (Extended affine equivalent) if we can write F ′ as

F ′(x) = A1(F (A2(x))) +A3(x),

where A1 and A2 are affine permutations of F2n , and A3 is an affine function
over F2n .

We say that F and F ′ are CCZ-equivalent (Carlet-Charpin-Zinoviev
equivalent) [15], if there exists an affine permutation of F2n × F2n , or equiva-
lently F22n , which maps GF onto GF ′ , where GF = {(x, F (x)) : x ∈ F2n} is
the graph of F .

Definition 2 We denote by Fn a maximal subset of F∗
2n such that x ∈ Fn

implies x2k /∈ Fn for any 1 ≤ k ≤ n− 1.

Later in the paper, we will introduce an equivalence relation which we call
“cyclic equivalence” between the elements of F∗

2n . A set Fn will then be a set
of representatives from the equivalence classes induced by this relation on F∗

2n .

Definition 3 [28] Let B ∈ Fm
2n be a vector B = (η0, η1, . . . , ηm−1) where

ηi ∈ F2n for 0 ≤ i ≤ m − 1. Then Span(B) = Span(η0, η1, . . . , ηm−1) is
the subspace spanned by {η0, η1, . . . , ηm−1} over F2. The dimension of this
subspace is denoted by Rank(B) = Rank(η0, η1, . . . , ηm−1), and is referred to
as the rank of B over F2.

Suppose {α0, α1, . . . , αn−1} is a basis of F2n over F2, and ηi =
∑n−1

j=0 λi,jαj

for 0 ≤ i ≤ m − 1, with λi,j ∈ F2 for 0 ≤ i, j ≤ n − 1. We define an m-by-
n matrix Λ ∈ Fm×n

2 by Λ[i, j] = λi,j , so that each row of Λ contains the
coordinates of ηi with respect to the basis. Then the rank of B is equal to the
rank of Λ.

5

While the above is true for any basis, we will assume throughout the rest
of the paper that {α0, α1, . . . , αn−1} is a normal basis. This allows us to ex-
ploit the diagonal properties of QAMs described below, and simplifies some
computations.

Definition 4 [28] Let H ∈ Fm×k
2n with 1 ≤ m, k ≤ n. We say that H is

proper if every nonzero F2-linear combination of the m rows of H has rank
at least k − 1.

Definition 5 [28] Let H be an n×n matrix defined on F2n . Then H is called
a QAM (quadratic APN matrix) if:
i) H is symmetric and the elements in its main diagonal are all zeros;
ii) H is proper, i.e. every nonzero linear combination of the n rows (or, equiv-
alently, columns, due to H being symmetric) of H has rank n− 1.

Theorem 1 [26] Let F (x) =
∑

0≤t<i≤n−1

ci,tx
2i+2t be a quadratic homogeneous

(n, n)-function. Define an n × n matrix CF by CF [t, i] = CF [i, t] = ci,t for
0 ≤ t < i ≤ n− 1 and CF [i, i] = 0 for 0 ≤ i ≤ n− 1. Finally, take

H = M t
αCFMα.

Then

H[u+ 1, v + 1] = H[u, v]2 (1)

(with the indices taken modulo n) for 0 ≤ u, v ≤ n− 1 if and only if ci,t ∈ F2

for 0 ≤ t < i ≤ n− 1.

Intuitively, when the coefficients of the function all belong to F2, the values
in H have the property that, as we go down any diagonal, each subsequent
value on that diagonal is simply the square of the previous value. Thus, know-
ing a single value of H gives us knowledge of the values on its entire diagonal.

Proposition 1 [26] Suppose F1 ∈ F2n [x] is a homogeneous quadratic APN
function with coefficients in F2, and H is its corresponding QAM. Let H ′ be
the matrix defined by H ′[i, j] = H[i, j]2 for 0 ≤ i, j < n. Then H ′ is also a
QAM, and its corresponding function F2 ∈ F2[x] is EA-equivalent to F1.

According to [24], two quadratic APN functions are CCZ-equivalent if and
only if they are EA-equivalent. In order to categorize our functions into dis-
tinct EA-equivalence classes (and thus distinct CCZ-classes), we computed the
values of the differential spectra of the ortho-derivatives [13] for each function,
and then applied the algorithm from [9] to every pair of functions having the
same ortho-derivative differential spectrum. First, let us recall the definition
of the ortho-derivative.

Definition 6 [13] Let F : F2n → F2n be a quadratic APN function, and let
x · y denote a scalar product, that is, a symmetric bivariate function on F2n

6

such that x 7→ a · x is a non-zero linear form for any a ∈ F∗
2n . Then the ortho-

derivative of F is the unique function πF : F2n → F2n such that πF (0) = 0,
πF (a) ̸= 0 if a ̸= 0, and such that

πF (a) ·
(
F (x+ a) + F (x) + F (a) + F (0)

)
= 0 (2)

for all a ∈ F∗
2n and all x ∈ F2n .

According to [13], if two quadratic APN functions are EA-equivalent, then
their ortho-derivatives are affine equivalent, which implies that their ortho-
derivatives must have the same extended Walsh spectra and differential spec-
tra. Thus, if the ortho-derivatives of two quadratic APN functions have differ-
ent extendedWalsh spectra or differential spectra, then they are EA-inequivalent.
It is known that the Walsh and differential spectra of the ortho-derivatives
are very efficient for distinguishing between CCZ-inequivalent quadratic APN
functions. Since they can be computed very quickly, doing so as a first step be-
fore applying an equivalence algorithm can significantly speed up the process
of categorizing a set of functions into CCZ-equivalence classes.

3 A faster method to determine QAM

According to the definition of QAM (See Definition 5), if an n× n matrix H
is QAM, then every nonzero linear combination of the n rows of H has rank
n− 1. Note that there are 2n − 1 nonzero linear combinations of the n rows of
H. In this section, we will investigate how to reduce the data to be tested for
determining quadratic APN functions with coefficients in F2.

3.1 Reducing the data to be tested

We will prove that about 2n

n nonzero linear combinations of the n rows of H
need to be tested for determining quadratic APN functions with coefficients in
F2. Intuitively, we already know that “going down diagonals” in H results in
all values getting squared; and so, the values in two adjacent rows are simply
squares of each other, implying that any two adjacent rows have the same
rank.

Theorem 2 Let H ∈ Fn×n
2n , and H[u, u] = 0, H[u, v] = H[v, u], H[u+ 1, v +

1] = H[u, v]2 (with the indices taken modulo n) for 0 ≤ v, u ≤ n− 1. Then

Rank(

n−1∑
u=0

λuH[u, :]) = Rank(

n−2∑
u=0

λuH[u+ 1, :] + λn−1H[0, :]), (3)

where (λ0, λ1, . . . , λn−1) ∈ Fn
2\{0}, and H[u, :] is the u− th row of H.

7

Proof According to the properties of H, we have

Span(

n−2∑
u=0

λuH[u+ 1, :] + λn−1H[0, :]) = Span((

n−1∑
u=0

λuH[u, :])2)

which implies that

Rank(

n−2∑
u=0

λuH[u+ 1, :] + λn−1H[0, :]) = Rank((
∑n−1

u=0 λuH[u, :])2

= Rank((
∑n−1

u=0 λuH[u, :])

Example 1 Let n = 5, define

H =

0 a b b8 a16

a 0 a2 b2 b16

b a2 0 a4 b4

b8 b2 a4 0 a8

a16 b16 b4 a8 0

 ∈ F5×5
25 .

(i) Let (λ0, λ1, . . . , λn−1) = (1, 0, 0, 0, 0). Then

H[0, :]2 = (0, a2, b2, b16, a) and H[1, :] = (a, 0, a2, b2, b16),

which implies that

Span(H[0, :]2) = Span(H[1, :]).

Therefore, we have

Rank(H[1, :]) = Rank(H[0, :]2) = Rank(H[0, :]).

Similarly, we have

Rank(H[1, :]) = Rank(H[2, :]) = Rank(H[3, :]) = Rank(H[4, :]).

(ii) Let (λ0, λ1, . . . , λn−1) = (1, 1, 0, 0, 0), Similiarly as in (i), we have

Span((H[0, :] +H[1, :])2) = Span(H[1, :] +H[2, :]).

Therefore,

Rank(H[0, :] +H[1, :]) = Rank(H[1, :] +H[2, :])

= Rank(H[2, :] +H[3, :])

= Rank(H[3, :] +H[4, :])

= Rank(H[4, :] +H[1, :]).

8

Based on Theorem 2 and Example 1, we can conclude that only about 2n

n
nonzero linear combinations need to be tested. We will give an exact number
in the following.

Two elements a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) ∈ Fn
2 are called

cyclically equivalent if a = (bk, bk+1, . . . , bk+n−1) (with the indices taken
modulo n) for some k. We will refer to this equivalence relation as cyclic
equivalence. Let St for t = 0, 1, . . . ,K for some positive integer K be all
equivalence classes of F2n under cyclic equivalence, so that S0, S1, . . . , SK is
the partition (quotient set) of F2n induced by cyclic equivalence. According to
Theorem 2, we can get the following corollary.

Corollary 1 Let S0 = {0}, and S0, S1, . . . , SK be the quotient set induced by
cyclic equivalence. Suppose H is the same as in Theorem 2, then K nonzero
linear combinations of the n rows of H are enough to determine whether it is
QAM.

Proof In fact, only one element from each St (1 ≤ t ≤ K) needs to be consid-
ered in order to test the APN property of H. According to Theorem 2, for any
cyclically equivalent elements a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) ∈
Si, we must have

Rank(

n−1∑
u=0

auH[u, :]) = Rank(

n−1∑
u=0

buH[u, :]).

Note thatK ≈ 2n

n . Thus, we can reduce the computation time by a factor of
about n−1

n , however, the exact speed up heavily depends on how we implement
the algorithm. For example, suppose we must compute Rank(H[0, :]+H[1, :]),
Rank(H[0, :] +H[1, :] +H[2, :]) and Rank(H[0, :] +H[1, :] +H[2, :] +H[3, :]),
then H[0, :] + H[1, :] would be calculated 3 times. Avoiding such redundant
computations is a key factor in speeding up the computation.

3.2 Gaussian elimination

The most time-consuming part of the algorithm in [26] is testing the QAM
property of a given matrix. According to Definition 3 and Definition 5, we have
two ways to speed up that algorithm, one is to reduce the data that needs to
be tested, which is what we have done in Section 3.1; the other is to speed up
the computation of rank, which is what we want to do in the following.

Based on the definition of rank (See Definition 3), ifB = (η0, η1, . . . ηm−1) ∈
Fm
2n , then Rank(B) is the dimension of Span(B). Therefore, the time complex-

ity of computing Rank(B) is O(2n) by generating Span(B). However, if we
expand B as a m×n matrix Λ ∈ Fm×n

2 , and then calculate the rank of Λ, the
time complexity is O(nm2). This is the second improvement in our paper.

9

3.3 Algorithm to determine QAM

Considering Sections 3.1 and 3.2 we give a faster algorithm to enumerate all
QAMs. The core of the procedure is the function IsQAM(), which is given in
pseudocode in Algorithm 1 along with some auxiliary functions necessary for
its implementation. The implementation incorporates the ideas for speeding
up the computation described in Sections 3.1 and 3.2.

The IsQAM(H) function takes a matrix H and decides whether it is a
QAM by computing the rank of linear combinations of its rows. As discussed
in Section 3.1, only certain linear combinations need to be considered, which
reduces the computation time. The linear combinations are stored in the ar-
ray RC (short for “row combinations”). This allows us to avoid redundant
additions by reusing linear combinations that have already been computed;
for example, if one linear combination that we need to test is H[1, :] +H[2, :]
and another is H[1, :] +H[2, :] +H[4, :], then the latter can be obtained from
the former (which is stored in RC) by simply adding the fourth row of H to
it, without having to recompute the sum H[1, :] +H[2, :].

We need to determine which rows of H need to be summed with which
entries of RC in order to obtain all linear combinations that need to be checked.
In order to do this, we first need to compute a list of representatives Fn of
the elements of F∗

2n with respect to cyclic equivalence. This is done using the
getCyclicEquivalenceRepresentatives() function and is stored in the array CR
(short for “cyclic representatives”) so that the representatives are in ascending
order. We note that every element (a0, a1, . . . , an−1) can be identified with the

integer
∑n−1

i=0 ai × 2i ∈ Z2n . The sets Si forming the quotient set of F∗
2n with

respect to cyclic equivalence can thus be seen as sets of integers, and in the
algorithm we select the smallest integer within each set as its representative.

The binary expansion of the representatives precisely corresponds to the
linear combinations of rows of H that need to be tested. If

∑n−1
i=0 ai × 2i is

one such representative, it corresponds to the linear combination
∑n−1

i=0 H[i, :].
Thus, computing Fn is useful both for reducing the number of guesses for the
first unknown in H (that is, the first level of the depth-first search), as well
as for implementing the verification of the necessary conditions for H to be a
QAM.

In order to avoid redundant additions when computing the linear combi-
nations of the rows, we compute an array of indices ID[i, j] for i ∈ {1, 2},
j ∈ {1, 2, . . . ,K}. These indices describe how the linear combinations of the
rows of H should be iteratively computed in order to avoid redundant com-
putations. The linear combinations themselves are stored in the RC array,
which is initialised at the beginning of the computation as containing only the
zero vector, i.e. RC[1] is the zero vector. Subsequent linear combinations are
computed as RC[t+ 1] = RC[ID[1, t] + 1] +H[ID[2, t], :] for t = 1, 2, . . . ,K.

To calculate the index array ID, we observe that if CR[t] =
∑n

i=1 ai×2i−1,
then RC[t+ 1] =

∑n
i=1 aiH[i, :]. When constructing ID, we thus ensure that

CR[t] = CR[ID[1, t]] + 2ID[2,t]−1, which implies RC[t + 1] = RC[ID[1, t] +
1] +H[ID[2, t], :].

10

For every linear combination of the rows, we need to check whether it has
rank n− 1. To do so, after calculating the value of RC[t+ 1], we expand it to
an n × n matrix over F2, then transform it to row echelon form by Gaussian
elimination method, from which we can get the rank of RC[t+ 1].

In summary, we first select the smallest representative element in each
cyclic equivalence set, and then establish an iterative relationship between
these representative elements. This iterative relationship satisfies the following
two properties: first, it allows us to test only one representative element in
each cyclic equivalence set, which reduces the amount of data that needs to
be tested; second, when calculating the sum of any k + 1 rows of H, only one
row addition needs to be done, which avoids redundant row additions.

For clarity, we give an example to show what happens when running
IsQAM(n,H) in Algorithm 1.

Example 2 Let n = 5, and H be the same as in Example 1. We have RC[1] =
(0, 0, 0, 0, 0), CR = getCyclicEquivalenceRepresentatives(n) = (1, 3, 5, 7, 11, 15, 31),
IDlen = 7, and

ID = GetIndices(n) =

(
0 1 1 2 2 4 6
1 2 3 3 4 4 5

)
.

Firstly, RC is used to store the nonzero linear combinations of the 5 rows of H
which need to be checked. Based on RC[t+1] = RC[ID[1, t]+1]+H[ID[2, t], :],
we have

RC[2] = RC[1] +H[1, :] = H[1, :],

RC[3] = RC[2] +H[2, :] = H[1, :] +H[2, :],

RC[4] = RC[2] +H[3, :] = H[1, :] +H[3, :],

RC[5] = RC[3] +H[3, :] = H[1, :] +H[2, :] +H[3, :],

RC[6] = RC[3] +H[4, :] = H[1, :] +H[2, :] +H[4, :],

RC[7] = RC[5] +H[4, :] = H[1, :] +H[2, :] +H[3, :] +H[4, :],

RC[8] = RC[7] +H[5, :] = H[1, :] +H[2, :] +H[3, :] +H[4, :] +H[5, :].

Note that for any 1 ≤ t ≤ IDlen, only one addition is needed to calculate
RC[t+1]. Furthermore, we check whether the Rank of RC[t+1] equals n− 1
in each iteration of the loop.

Next, we will discuss the correspondence between RC[t+ 1] and CR[t] for

any 1 ≤ t ≤ IDlen. Note that if CR[t] =
∑5

i=1 ai × 2i−1 7→ (a1, a2, a3, a4, a5),
then RC[t+ 1] =

∑n
i=1 aiH[i, :]. For example

CR[1] = 1 7→ (1, 0, 0, 0, 0) 7→ RC[2] = H[1, :],

CR[2] = 3 7→ (1, 1, 0, 0, 0) 7→ RC[3] = H[1, :] +H[2, :],

CR[3] = 5 7→ (1, 0, 1, 0, 0) 7→ RC[4] = H[1, :] +H[3, :],

CR[4] = 7 7→ (1, 1, 1, 0, 0) 7→ RC[5] = H[1, :] +H[2, :] +H[3, :],

CR[5] = 11 7→ (1, 1, 0, 1, 0) 7→ RC[6] = H[1, :] +H[2, :] +H[4, :],

CR[6] = 15 7→ (1, 1, 1, 1, 0) 7→ RC[7] = H[1, :] +H[2, :] +H[3, :] +H[4, :],

CR[7] = 31 7→ (1, 1, 1, 1, 1) 7→ RC[8] = H[1, :] +H[2, :] +H[3, :] +H[4, :] +H[5, :].

11

In a word, the smallest element from each cyclic equivalence set is saved in
CR in ascending order. According to Corollary 1, we only need to calculate
the rank of the nonzero linear combinations of the 5 rows of H correspond to
CR[t](1 ≤ t ≤ 7). We also note that St ⊂ Fn

2 in Corollary 1. If all elements in
St are converted to integers, then CR[t] is the smallest element from this set.

Finally, we will explain why we need ID = GetIndices(n) in our program.
The ID stores some subscripts, which record how to iteratively obtain elements
with larger subscripts from elements with smaller subscripts in ID. We need to
generate CR first by CR = getCyclicEquivalenceRepresentatives(n), then
search for the iterative relationship between the preceding and following el-
ements in CR which satisfies CR[t] = CR[ID[1, t]] + 2ID[2,t]−1(2 ≤ t ≤ 7).
Based on the correspondence between RC[t+ 1] and CR[t] (1 ≤ t ≤ 7) which
have been listed above, we can obtain the ID with RC[t+ 1] = RC[ID[1, t] +
1]+H[ID[2, t], :] for any 1 ≤ t ≤ 7 after adding the initial values of ID[1, 1] and
ID[2, 1]. For example, CR[4] = 7 = CR[ID[1, 4]]+2ID[2,4]−1 = CR[2]+23−1 =
3 + 4 implies RC[5] = RC[ID[1, 4] + 1] +H[ID[2, 4], :] = RC[2] +H[3, :].

4 Algorithm and experimental results

We will explain how to generate QAMs with the function IsQAM(n,H) in
Algorithm 1.

4.1 Algorithm

The basic idea of the algorithm is to perform a depth-first search over all
possible instantiations of the matrix H, verifying the necessary conditions for
being a QAM at every step, and backtracking if they are violated. For the first
unknown value in H, we can restrict our guesses to elements from Fn. For
subsequent unknowns, we have to consider all possible values from F∗

2n . Recall
from the discussion above that knowing one value of H immediately allows us
to deduce the values of all other entries on its diagonal. Thanks to this, the
matrix has relatively few degrees of freedom, which makes the entire search
feasible.

For clarity, we describe the algorithm for the specific case of n = 5. The
same principle naturally extends to an arbitrary dimension n.

Suppose H is the same as in Example 1. According to Proposition 1, we
only need to consider a ∈ F5. Then we can get Algorithm 2. We recall that
Fn and F∗

2n are defined in Definition 2.
Algorithm 2 is a special case of the algorithm in [26], except for Line

5. Algorithm 2 can be easily generalized to any n, and we will call them
Algorithm 2 for n = k (k = 7, 8, 9, 10, 11) to denote such algorithms in the
following. According to the results of Sections 3.1 and 3.2. Algorithm 2 for
n is approximately n×2n

n3 times faster than the algorithm in [26]. Running
Algorithm 2 for n = 7, 8, 9 on a computer with an Intel Core i7-7700 CPU

12

Input: A positive integer n, and a symmetric matrix H ∈ Fn×n
2n with H[u, u] = 0,

and H[u+ 1, v + 1] = H[u, v]2 for 1 ≤ u, v ≤ n;
Output: If H is QAM, return true; otherwise, return false.

1 function IsQAM(n,H):
2 ID=GetIndices(n);
3 IDlen=NumberOfColumns(ID);
4 RC=[ZeroVector]; // ZeroVector = (0, 0, . . . , 0) ∈ Fn

2n

5 for t ∈ [1..IDlen] do
6 rc=RC[ID[1,t]+1]+H[ID[2,t]];

7 Expand rc ∈ Fn
2n to MA ∈ Fn×n

2 ;
8 if GaussRank(MA) < n− 1 then
9 return false; // Caclculate the rank of MA with the Gaussian elimination method

10 end
11 Append rc to RC; // RC[t + 1] = RC[ID[1, t] + 1] + H[ID[2, t]]

12 end
13 return true;
14 end function

15 function GetIndices(n): // Return ID with CR[t] = CR[ID[1, t]] + 2ID[2,t]−1

16 CR = getCyclicEquivalenceRepresentatives(n);
17 len = #CR;

18 Initialize ID ∈ Z2×len with 0;
19 ID[1, 1] = 0; ID[2, 1] = 1;
20 for t ∈ [2..len] do
21 e = CR[t];

22 Select j ∈ [1..n] with 2j−1 < e ≤ 2j ;

23 Select i ∈ [1..len] with CR[i] == e− 2j−1; // We can always find such i since in Line

32 we select the smallest element in each cyclic equivalent class

24 ID[1, t] = i; ID[2, t] = j; // CR[t] = CR[ID[1, t]] + 2ID[2,t]−1

25 end
26 return ID;
27 end function

28 function getCyclicEquivalenceRepresentatives(n): // Return the smallest element in each

cyclic equivalent class

29 CR=[];
30 NZ=[t : t ∈ [1..2n − 1]];
31 while true do
32 e = NZ[1]; // Select the smallest element in NZ

33 Append e to the end of CR;
34 k = e;
35 for i ∈ [1..n] do
36 Delete k from NZ; // Delete any element cyclic equivalent with e

37 k = 2× k;
38 if k > 2n then
39 k = k − 2n + 1;
40 end

41 end
42 if NZ is empty then
43 break;
44 end

45 end
46 return CR;
47 end function

Algorithm 1: Determine whether H is QAM

13

1 for a ∈ F5 do

2 if

(
0 a
a 0

)
is proper then

3 for b ∈ F∗
25

do

4 if

0 a b
a 0 a2

b a2 0

 is proper then

5 if IsQAM(5,H) then
6 Generate APN from H.
7 end

8 end

9 end

10 end

11 end

Algorithm 2: Generate APN functions on F25

at 3.6G GHz, it takes 14.5 seconds, 25 minutes and 4 days respectively to
reproduce the results of the algorithm in [26]. Running Algorithm 2 for n = 10
on a server with an Intel Xeon 8336C 32C/64T CPU at 2.3 GHz, 22 Magma
scripts in parallel, it takes about 100 days to get 29088 quadratic homogeneous
APN functions with coefficients in F2. By computing the differential spectra of
the ortho-derivative method [13] and then applying the equivalence algorithm
from [9], these APN functions can be divided into 3 CCZ-inequivalent classes,
all of which correspond to known APN functions. These are listed in Table 1.

Table 1 CCZ-inequivalent representatives for all quadratic APN functions with coefficients
in F2 for n = 10

x3

x9

x513 + x192 + x96 + x48 + x33 + x18 + x12

Despite not finding any new functions over F210 , however, we found a
shorter representative for x3 + Tr(x9). We can thus state that the CCZ-
equivalence class of any quadratic APN functions over F2n for n ≤ 10 with
coefficients in F2. It was observed in [26] that any quadratic APN function
F1 with coefficients in F2 appears to be CCZ-equivalent to a quadratic APN
function F2 with at most n non-zero coefficients in F2n for n ≤ 9. We see that
the conjecture is true for n = 10.

4.2 Further observation

There are only 3 CCZ-inequivalent APN functions among the 29088 quadratic
homogeneous APN functions on F210 , which implies that a huge number of
these functions are CCZ-equivalent to each other. Therefore, it is meaningful

14

to exclude some CCZ-equivalent functions in our algorithm. Note that in Al-
gorithm 2 a ∈ F5 while b ∈ F∗

25 , and #F∗
25 ≈ #F5 × 5. Thus, it could make

sense to restrict b ∈ F5 if doing a partial search. The pseudocode for such a
partial search is given below as Algorithm 3. As before, we only describe the
algorithm for the concrete case of n = 11; however, it naturally generalizes to
any dimension n.

Generally, restricting the range of values for the left half of the first row’s
elements to Fn in Algorithm 2 for n, then running it on a computer with an
Intel Core i7-7700 CPU at 3.6G GHz, we can get Table 2 . Inspired by Table
2, column 2 means that it takes 0.047 second to get 4 quadratic homogeneous
APN functions on F26 , others are similar, and these functions contain all CCZ-
inequivalent quadratic APN functions with coefficients in F2 on F2n for n =
6, 7, 8, 9, 10.

Table 2 Time and APN functions

n 6 7 8 9 10
time 0.047s 0.375s 27.142s 582.781s 45 hours
count 4 78 142 26 45

Inspired by Table 2, we consider the case for n = 11. For clarity, let’s
briefly introduce the process of the algorithm. Let H11 ∈ F11×11

211 . According
to the definition of QAM and Theorem 1, if H11 is the corresponding QAM of
a quadratic APN function with coefficients in F2, then we must have

H11[1, :] = [0, a, b, c, d, e, e64, d128, c256, b512, a1024],

for some a, b, c, d, e ∈ F211 .
Assuming that a, b, c, d, e are unknown variables, let’s investigate how to

assign them to make H11 be QAM. A full search using algorithm 2 is unfor-
tunately not feasible, so we instead

1 for a, b, c, d, e ∈ F11 do
2 if The k-th order submatrix of the upper left corner of H11 is proper for

k = 2, 3, 4, 5, 6 then
3 if IsQAM(11, H11) then
4 Generate APN from H11.
5 end

6 end

7 end

Algorithm 3: Partial search for APN functions on F211

Algorithm 3 can also be generalized to any n, and we will call it Algorithm
3 for n for short. We have realized it with Magma, and Table 2 is the results
of Algorithm 3 for n = 6, 7, 8, 9, 10.

15

Algorithm 3 for n = 11 is about 114 times faster than Algorithm 2 for
n = 11. For n = 11, running 15 Magma scripts in parallel on a server with
an Intel Xeon 8336C 32C/64T CPU at 2.3 GHz for 12 days, we can obtain 29
APN functions. According to the differential and Walsh spectra of their ortho-
derivatives, there are at least 6 CCZ-inequivalent classes among these func-
tions, and these functions are all CCZ-equivalent to the known APN classes
listed in Table 3. Unfortunately, none of the currently available algorithms for
testing CCZ- or EA-equivalence can be applied to the these functions to get
a complete classification of the 29 functions. We leave this as a problem for
future work.

Table 3 CCZ-inequivalent representatives from the partial search for n = 11

x3

x5

x9

x17

x33

x3 +Tr(x9)

Nonetheless, we conjecture that Table 3 contains all CCZ-inequivalent
quadratic APN functions with coefficients in F2 on F211 , since Algorithm 3
for n = 6, 7, 8, 9, 10 can generate all CCZ-inequivalent quadratic APN func-
tions with coefficients in F2 on F2n for n = 6, 7, 8, 9, 10.

5 Conclusion

We have introduced an algorithm which can speed up the algorithm in [26] by
a factor of approximately n×2n

n3 times. With this algorithm, we performed an
exhaustive search in dimension 10 and obtained that there are only 3 CCZ-
inequivalent quadratic APN functions with coefficients in F2, all of which cor-
respond to previously known APN functions. We have also found a shorter
representative x513+x192+x96+x48+x33+x18+x12 for x3+Tr(x9), meaning
that any quadratic APN function over F2n with n ≤ 10 and with coefficients in
F2 is CCZ-equivalent to a function with at most n terms with non-zero coeffi-
cients. If we perform a partial search by restricting the values of elements in the
matrix to a smaller set, we find 6 CCZ-inequivalent quadratic APN functions
with coefficients in F2 over F211 , and they are all CCZ-equivalent to known
ones. We used the differential and Walsh spectra of the ortho-derivatives to
split the functions into classes that are guaranteed to be CCZ-inequivalent
to each other, and in the case of n = 10 we used the equivalence algorithm
from [9] to verify that the functions within each of these classes are pairwise
CCZ-equivalent. In the case of n = 11, we find 29 quadratic APN functions
with coefficients in F2, which can be divided into 6 classes according to the
differential and Walsh spectra of their ortho-derivatives. While it is not possi-
ble to verify that the functions within each of these classes are CCZ-equivalent

16

to each other using currently available tools, we can see that there are at least
6 CCZ-equivalence classes represented by these functions; and based on the
accuracy of the Walsh and differential spectra of the ortho-derivatives as in-
variants, we can conjecture that there are precisely 6 CCZ-equivalence classes
among these functions.

6 Acknowledgements

Yuyin Yu is supported by the National Key R&D Program of China (Grant
No. 2021YFB3100200) and the GuangDong Basic and Applied Basic Research
Foundation (Grant No. 2021A1515011904).

References

1. C. Beierle, M. Brinkmann, G. Leander. Linearly self-equivalent APN permutations in
small dimension. IEEE Transactions on Information Theory, vol. 67, no. 7, pp. 4863–4875,
2021.

2. C. Beierle, G. Leander. New Instances of Quadratic APN Functions. IEEE Transactions
on Information Theory, vol. 68, no. 1, pp. 670-678, 2022.

3. Beierle C., and Leander G.: New instances of quadratic APN functions in small dimension.
Version 2.1, dataset, Zenodo, 2021, doi: 10.5281/zenodo.4738942.

4. C. Beierle, G. Leander, L. Perrin. Trims and extensions of quadratic APN functions.
Designs, Codes and Cryptography, vol. 90, pp. 1009–1036, 2022.

5. Brinkmann M., Leander G.: On the classification of APN functions up to dimension five,
Designs, Codes and Cryptography,vol. 49, no.1-3, pp. 273 - 288, 2008.

6. K. Browning, J. F. Dillon, M. McQuistan. APN polynomials and related codes. Special
volume of Journal of Combinatorics, Information and System Sciences, vol. 34, pp. 135-
159, 2009..

7. L. Budaghyan, M. Calderini, C. Carlet, R.S. Coulter, I. Villa. Constructing APN func-
tions through isotopic shifts. IEEE Transactions on Information Theory, vol. 66, no. 8,
pp. 5299–5309, 2020.

8. Budaghyan L., Ivkovic I., Kaleyski N.: Triplicate functions, Cryptography and Commu-
nications, 15: 35–83, 2023.

9. Ivkovic I, Kaleyski N.: Deciding and reconstructing linear equivalence of uniformly dis-
tributed functions. Cryptology ePrint Archive. 2022.

10. Budaghyan L., Carlet C.: Classes of quadratic APN trinomials and hexanomials and
related structures, IEEE Trans. Inf. Theory, vol. 54, no. 5, pp. 2354-2357, 2008.

11. Budaghyan L., Carlet C., Leander G.: Two classes of quadratic APN binomials inequiv-
alent to power functions, IEEE Transactions on Information Theory, vol. 54, no. 9, pp.
4218-4229, 2008.

12. Budaghyan L., Helleseth T., and Kaleyski N.: A new family of APN quadrinomials,
IEEE Transactions on Information Theory, vol. 66, no. 11, pp. 7081–7087, Nov. 2020.

13. A. Canteaut, A. Couvreur, L. Perrin. Recovering or Testing Extended-Affine Equiva-
lence. IEEE Transactions on Information Theory, vol. 68, no. 9, pp. 6187-6206, 2022.

14. C. Carlet. Boolean functions for cryptography and coding theory. Cambridge ; New
York, NY : Cambridge University Press, 2020.

15. Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for
DES-like cryptosystems, Designs, Codes and Cryptography, 15(2):125-156, 1998.

16. Y. Edel. Quadratic APN functions as subspaces of alternating bilinear forms. In: Pro-
ceedings of the Contact Forum Coding Theory and Cryptography III, Belgium 2009, pp.
11–24, 2011.

17

17. Y. Edel, G. Kyureghyan, A. Pott. A new APN function which is not equivalent to a
power mapping. IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 744-747,
2006.

18. Y. Edel, A. Pott. A new almost perfect nonlinear function which is not quadratic.
Advances in Mathematics of Communications, vol. 3, no. 1, pp. 59–81, 2009.

19. K. Kalgin, V. Idrisova. The classifcation of quadratic APN functions in 7 variables and
combinatorial approaches to search for APN functions. Cryptography and Communica-
tions, vol. 15, pp. 239–256, 2023.

20. Gold R.: Maximal recursive sequences with 3-valued recursive cross correlation func-
tions, IEEE Transactions on Information Theory, vol. IT-14, no. 1, pp. 154–156, Jan.
1968.

21. H. Taniguchi. On some quadratic APN functions. Designs, Codes and Cryptography,
vol. 87, no. 9, pp. 1973–1983, 2019.

22. Perrin L.: How to take a function apart with SboxU, The 5th International Workshop
on Boolean Functions and their Applications (BFA 2020) (2020).

23. G. Weng, Y. Tan, G. Gong. On quadratic almost perfect nonlinear functions and their
related algebraic object, in Proc. Int. Workshop Coding Cryptogr. (WCC), 2013.

24. S. Yoshiara. Equivalence of quadratic APN functions. Journal of Algebraic Combina-
torics, vol. 35, pp. 461-475, 2012.

25. Y. Yu, L. Perrin. Constructing more quadratic APN functions with the QAM method.
Cryptography and Communications, vol. 14, no. 6, pp. 1359-1369, 2022.

26. Y. Yu, N. Kaleyski, L. Budaghyan, Y. Li. Classification of quadratic APN functions
with coefficients in F2 for dimensions up to 9. Finite Fields and Their Applications, vol.
68, Art. no. 101733, 2020.

27. Y. Yu, M. Wang, Y. Li. A matrix approach for constructing quadratic APN functions.
IACR Cryptol. ePrint Arch., Tech. Rep. 2013/007, 2013.

28. Y. Yu, M. Wang, Y. Li. A matrix approach for constructing quadratic APN functions.
Designs, Codes and Cryptography, vol. 73, pp. 587-600, 2014.

29. Lijing Z., Haibin K., Yanjun L., Jie P., Deng T.: Constructing new APN functions
through relative trace functions, IEEE Transactions on Information Theory, vol. 68, no.
11, pp. 7528–7537, Nov. 2022.

30. W. Cannon, John amd Bosma, C. Fieker, and A. Steel, Handbook Magma Functions,
2nd ed. 2014. [Online]. Available: https://www.math.uzh.ch/sepp/magma-2.20.4-cr/

