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Abstract
Approximate nearest neighbor search (ANNS), also known as
vector search, is an important building block for varies appli-
cations, such as databases, biometrics, and machine learning.
In this work, we are interested in the private ANNS problem,
where the client wants to learn (and can only learn) the ANNS
results without revealing the query to the server. Previous pri-
vate ANNS works either suffers from high communication
cost (Chen et al., USENIX Security 2020) or works under
a weaker security assumption of two non-colluding servers
(Servan-Schreiber et al., SP 2022). We present Panther, an
efficient private ANNS framework under the single server
setting. Panther achieves its high performance via several
novel co-designs of private information retrieval (PIR), secret-
sharing, garbled circuits, and homomorphic encryption. We
made extensive experiments using Panther on four public
datasets, results show that Panther could answer an ANNS
query on 10 million points in 23 seconds with 318 MB of
communication. This is more than 6× faster and 18× more
compact than Chen et al..

1 Introduction

The k-nearest neighbors search (k-NNS) is a fundamen-
tal problem in the fields of machine learning, data min-
ing, and pattern recognition. Given a database of multi-
dimensional points, k-NNS aim to find the top-k closest
points to a query point. k-NNS has numerous applications,
such as recommendation systems [6, 43], image recogni-
tion [23], anomaly detection [8], and Retrieval-Augmented
Generation (RAG) [18, 24] in large language models. In
the case of large high-dimensional databases where ex-
act k-NNS could be prohibitively expensive, the problem
is often relaxed to approximated nearest neighbors search
(ANNS), which allows the top-k closest neighbors to be
returned with a high probability rather than exactly. Com-
pared to exact k-NNS, there exist several more efficient algo-
rithms [17, 22, 26, 28–30, 34, 42, 44, 46, 50] for ANNS.

Normally, ANNS algorithms require knowing the database
and the query point in clear to proceed. However there exist
scenarios where both the database server and the query client
are reluctant to reveal their sensitive data to each other. Ex-
amples include genome similarity search [3] and fingerprint
recognition [19]. To this end, it would be promising if one can
propose private ANNS services based on secure multi-party
computation (MPC).

A considerable amount of researches have been conducted
along this line. Some of them [3,39,41,52] use a full database
distance computation, thus are only practical for small or
low-dimensional databases. Some works [38] try to increase
efficiency at the cost of extra information leakage. Another
popular choice is to build the system under a multi-server
setting [10, 36, 40, 47], where the client’s privacy only holds
if the servers do not collude. They adopt such setting because
the complexity of MPC could be greatly reduced given extra
non-colluding assumption. However, for clients looking for
private ANNS services, systems under such security assump-
tion could be less convincing than the single server ones.

In USENIX Security 2020, Chen et al. [9] propose the
milestone framework SANNS that scales to a database of 10
million entries in the singe server setting. However, SANNS
relies on several secure computation techniques with high
communication overhead, such as distributed oblivious RAM
(DORAM) [12] and garbled circuits [48]. As a result, SANNS
requires several gigabytes of communication per query, which
is not deployable over realistic network connections (Section
8.3, [36]).

After carefully examining the problem, we find two reasons
that make it difficult to design an efficient single server private
ANNS: 1) One of the best practice in ANNS is to divide the
database into several clusters, so that the top-k distance com-
putations are only required for some close clusters, avoiding
the full database scan. Retrieving points in those close clusters
is trivial in plaintext, but it needs to be done obliviously in
MPC, requiring the expensive DORAM. 2) Computing top-k
is one of the most challenging algorithms in MPC. Generally
there are two kinds of MPC primitives, secret-sharing [15]
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and garbled circuits. Using the former for top-k computation
will incur too many communication rounds, and the latter
(which was used in SANNS) will incur high communication.
These two difficulties are hard to circumvent, an evidence is
that SANNS is still the state-of-the-art, more than four years
after its publication.

1.1 Our Contributions

This work focuses on an efficient pipeline for addressing
the private ANNS problem in the single server setting. By a
deep co-design of private information retrieval (PIR), secret-
sharing, garbled circuits, and homomorphic encryption (HE),
we successfully designed a system Panther that is scalable to
datasets with tens of millions of samples, and is much more
efficient than previous works. Our contributions in this work
are four-fold:

• We design a novel "shuffle-and-reveal" protocol that
enables us to solve the points retrieval problem with effi-
cient batch PIR instead of distributed ORAM, reducing
the communication cost of this step by 93%∼ 97%. We
also propose efficient methods for post-processing the
PIR results (they are homomorphic ciphertexts in special
format) to make them compatible for subsequent MPC
operations, which are nontrivial and could be of broader
interest.

• We propose a mixed-primitive top-k approach paired
with a carefully designed selection network to optimize
the top-k selection process, reducing the communication
cost by 86%∼ 90%.

• We carefully design the encoding of homomorphic ci-
phertexts used in PIR and distance computation, enabling
us to use a smaller HE parameter to mitigate the privacy
issues related to HE noises, increasing the speed of HE
calculations by 2∼ 10×.

• We introduce Panther, a fully implemented end-to-end
framework for secure ANNS. We made extensive evalu-
ations on the datasets SIFT-1M, Deep1B-1M, Deep1B-
10M and Amazon, which are popularly used as bench-
marks in the ANNS literature. Results show that Panther
is 6× faster than the state-of-the-art method [9] with the
same accuracy, and the communication cost is reduced
by more than one order of magnitude.

2 Preliminaries

In this section, we briefly introduce some building blocks that
are used in Panther. The summary of the frequent notation
used in this paper is summarized in Table 1.

Notation Description

C client

S server

n number of data points in the dataset

d dimensionality of the data points

k number of retrieved data points as answer

N polynomial modulus degree in BFV scheme

p plaintext modulus in BFV scheme

q ciphertext modulus in BFV shceme

x̂ a polynomial

x⃗ a vector

x⃗[i] the i-th component of x⃗

x⃗[i: j] ⟨⃗x[i], x⃗[i+1], ..., x⃗[ j]⟩
x⃗[: j] ⟨⃗x[1], x⃗[2], ..., x⃗[ j]⟩
Π secure protocol

JxK additive secret-shared value x

ℓ bitwidth

Table 1: Summary of frequent notations.

2.1 Cryptographic Primitives
2.1.1 Additive secret sharing

Throughout this manuscript, we use 2-out-of-2 additive secret
sharing schemes over the ring Z2ℓ . An ℓ-bit (ℓ ≥ 2) value x
is additively shared as JxKc and JxKs, where JxKc is a random
share of x held by client and JxKc is a random share of x held by
server. To reconstruct the value x, we compute the modulo ad-
dition, i.e., x≡ JxKc + JxKs mod 2ℓ. For a real value x̃ ∈R, we
first encode it as a fixed-point value x= ⌊x̃2 f ⌋ ∈ [−2ℓ−1,2ℓ−1)
under a specified precision f > 0 before secretly sharing it.
For a boolean value z∈ {0,1}, we use JzKB

c and JzKB
s to denote

the shares of z such that z = JzKB
c ⊕ JzKB

s . Also we omit the
subscript and only write JxK or JzKB when the ownership is
irrelevant from the context.

2.1.2 Garbled circuit

Garbled circuit is a technique proposed by [49] to achieve
general secure two-party computation for boolean circuits.
Essentially, one party, called garbler, generates truth tables for
gates of the circuit in an encrypted format that can be evaluate
by the other party, called evaluator. The major advantage
of garbled circuit is constant round for network interaction,
which is beneficial for deep circuits, such as min/max and
sorting.

2.1.3 Lattice-based additive homomorphic encryption

A homomorphic encryption (HE) of x enables computing the
encryption of F(x) without the knowledge of the decryption
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key. In this work, we use HE based on Ring Learning with Er-
rors (RLWE), specifically, the BFV scheme [16]. The scheme
has a set of public parameters HE.pp= {N,q, p}.

We leverage the following functions.

• KeyGen. Generate the RLWE key pair (sk,pk) where
the secret key sk ∈ AN,q and the public key pk ∈ A2

N,q.

• Encryption. We write RLWE
N,q,p
pk (m̂) to denote the

RLWE ciphertext of m̂ ∈ AN,p under the key pk. An
RLWE ciphertext is given as polynomials tuple (b̂, â) ∈
A2

N,q.

• Addition (⊞). Given two RLWE ciphertexts ct0 =
(b̂0, â0) and ct1 = (b̂1, â1) that encrypts m̂0 ∈ AN,p and
m̂1 ∈AN,p respectively, the operation ct0⊞ct1 computes
the RLWE tuple (b̂0 + b̂1 mod q, â0 + â1 mod q) which
can be decrypted to m̂0 + m̂1 mod p.

• Constant multiplication (·). Given a RLWE ciphertext
ct that encrypts m̂ and a plaintext ĉ, the operation ct · ĉ
results in a ciphertext that encrypts m̂ · ĉ.

In state-of-the-art MPC protocols, it is generally good prac-
tice to mixed the usage of different cryptogrpahic primitives
to achieve best performance. In this work, we use the lattice-
based HEs to utilize the players’ local computation power
as much as possible, and switch to secret sharing where HE
is unsuitable in terms of functionality. We write J⃗aKH

l to de-
note an RLWE ciphertext held by Pl but encrypted under
P1−l’s key, where the vector a⃗ is arranged into a polynomial
â = ∑

N−1
i=0 a⃗[i]X i before encryption (i.e., coefficient encoding).

HE to Arithmetic Share H2A [21]. A conversion from
J⃗aKH

l to the arithmetic share J⃗aK is done as follows: Pl
samples r̂ ∈R AN,q, and sends the sum ct = J⃗aKH

l ⊞ r̂ to
the opposite. Then P1−l decrypts ct and outputs the coef-
ficients vector as the share J⃗aK1−l . On the other hand, Pl sets
J⃗a[i]Kl =−⌈2ℓ · r̂[i]/q⌋ mod 2ℓ for all i ∈ [N].

2.1.4 Batch private information retrieval

Private information retrieval (PIR) is a family of protocols that
enable a client to query a server’s database db with a private
index i, such that the client obtains db[i] without the server
learning i. Researchers have proposed an extended variant
where a client can query a set of indices (I = {i1, i2, · · · , im})
simultaneously, which is more efficient than naively issuing
m independent queries on db, with the help of probabilistic
batch codes (PBC) [2].

The efficient PBC construction is based on cuckoo hashing.
Using a 3-way cuckoo hashing we can encode the database
into M = 3n codewords distributed in B = 1.5L buckets, with
a small failure probability (p = 240), where L is the number
of queries. After encoding, each query only requires to search
in one bucket with the size of ≈ 2n/L. Note that each query

requires to search the entire database with the size of n with-
out PBC. As a result, batch PIR can significantly reduce the
computation cost of each query.

For more details, the server computes all hash results for
every index and duplicate the items to their index’s hash result
position. It will improve the size of database from n to 3n.
When length of the hashing table is B, and the item in database
will be mapped to B positions. Each of the table position has
≈ 3n/B items, which can be seen as a bucket. The client
compute the cuckoo hashing function for its L queries, the L
queries can be mapped into different positions in B. The client
sends B queries and then each query can only be searched in
the database of one bucket. The total workload of the server is
3n, but it can response many queries together. The amortized
computation cost of each query is much lower than doing L
independent queries.

2.2 ANNS based on clustering
There has been a lot of studies on ANNS to improve the search
efficiency. They can be summarized as graph or tree based
approaches, local sensitive hash based approaches, and clus-
tering based approaches. In plaintext practices, graph-based
approaches such as HNSW [29] usually yield the best perfor-
mance. However, HNSW is unfriendly for secure computation
because it heavily relies on hierarchical RAM operations that
cannot be run in parallel. Although clustering based algorithm
performs averagely in plaintext, we find that it’s quite efficient
in secure computation (This fact is also observed in SANNS).
To this end, we choose ANNS as the underlying plaintext
approach for Panther.

Algorithm 1 shows a typical workflow of clustering-based
ANNS. It can be briefly described as follows:

1. Classify the database items into t clusters;

2. Select the top-u clusters whose cluster centers are nearest
to the query point;

3. Retrieve points in the u clusters.

4. Select the top-k nearest points to the query point.

The algorithm above is friendly for secure computation
because it could reduce a large amount of the searching space
by dropping out distant clusters.

3 Problem Setting

3.1 Threat Model
Following [3, 9], we provide 2-party computation security
against a static semi-honest probabilistic polynomial time
(PPT) adversary A . We consider a computationally bounded
adversary A which corrupts with server or client at the start of
protocol execution. Semi-honest security means that as long

3



Algorithm 1 Clustering based ANNS algorithm

Input Client inputs query: q⃗ ∈ Rd ; Server inputs t clusters
with each cluster with up to m points. A list of n IDs i⃗d.
All cluster centers {⃗c1, ..., c⃗t}.

Output ID1, ..., IDk
1: for i := 1, ..., t do
2: di := ||⃗q− c⃗i||22

▷ compute distance between query and cluster
centers

3: end for
4: Vc, Ic = {v1, ..,vu},{id1, ..., idu}←
5: ←TopK({d1, ...,dt},{1,2, ..., t},u)
6: ▷ compute the ID of the top-u nearest clusters

7: Pc← ∪
i∈Ic

C

▷ retrieve points in nearest clusters
8: for p⃗ ∈ Pc do
9: dp := ||⃗q− p⃗||22

▷ compute distance between query and points
10: end for
11: {v1, ...,vk},{ĨD1, ..., ĨDk}←

12: ← TopK({dp}p∈Pc ,{ID(p)}p∈Pc ,k)
13: ▷ compute the top-k nearest points in retrieved points

as the adversary A follows the protocol specification, all of its
view could be simulated by a simulator given the corrupted
party’s input and output. It is suitable for many practical
scene, e.g., both parties have the willing to collaborate, but
need to run a secure protocol due to legal restrictions. Our
protocol aims to improve the performance over prior works
under the same threat model. Any semi-honest protocol can
be transformed to be maliciously secure, although that may
bring huge overhead.

3.2 Overview of private ANNS based on clus-
tering

As mentioned in Section 2.2, we would like to build our pri-
vate ANNS solution using the clustering based algorithm
following SANNS [9]. In this way, the workflow of private
ANNS is similar with the one described in Algorithm 1,
but replaces all the operations with their MPC counterparts,
namely, distance computation (Line 2,9), top-k selection
(Line 4 ∼ 5,11 ∼ 12) and point retrieval (Line 7). All the
intermediate results between the operations are kept in secret-
shared form. In this way, no extra information will be leaked
beyond the protocol output and the hyper parameters. This is
known as the sequential modular composition theorem [7],
and is the rule-of-thumb in designing MPC protocols.

Among the three operations, distance computation could be
done efficiently using leveled HE such as BFV. Indeed, it only

Distance Compute
(Line 2 , 9)

Top-𝑘
(Line 4~5 , 11~12)

Point Retrieval
(Line 7)

HE with 
Noise Flooding

DORAM

Garbled Circuits

HE with H2A

PIR

Secret Share + 
Garbled Circuits +

Top-𝑘 Selection Network 

SANNS Panther
Operations

In Algorithm 1

Figure 1: Comparison between SANNS and Panther

constitute 10∼ 20% of the total time cost in SANNS. However
the other two operations are quite expensive: point retrieval
takes more than 50%, and top-k selection takes ∼ 30%.

We briefly compare the methods used by Panther and
SANNS for each operation in Figure 1, and explain them
in detail in the next sections.

4 Point Retrievals via Batch PIR

In this section, we demonstrate how Panther avoids the oblivi-
ous RAM, which contributes more than 50% to the end-to-end
improvement.

Recall the "point retrieval" procedure in Line 7, Algo-
rithm 1. It is composed of multiple oblivious database reads
whose query IDs (the cluster addresses) are in secret shared
form, and the database (points for each cluster) is held solely
by the server. SANNS [9] uses DORAM [12] to solve the prob-
lem. However, we notice that using DORAM is an overkill
because it’s designed for scenarios where both the query IDs
and database are secret-shared. Indeed, if the server knows
the database in clear, there exist more efficient methods such
as PIR. Compared to distributed ORAM, PIR has a much
lower communication cost at the price of slightly higher com-
putation cost, which could easily be parallelized by multi-
threading. Nevertheless, we cannot directly adopt PIR be-
cause PIR additionally requires the client to know the cluster
addresses in clear. To this end, we let the server locally shuffle
the clusters before each query, so that the cluster addresses
are just independent random values and safe to be revealed
to the client without harming the database privacy. By em-
ploying such a "shuffle-and-reveal" strategy, we successfully
reduce the problem to batch PIR, drastically reducing the
communication cost.

There still exist several issues to solve, such as how to
select a PIR scheme that is friendly for database shuffles, how
to optimize the PIR encoding so that the shuffling proccess
could be done at low cost, etc. Subsections below describe
our endeavors to overcome these difficulties.
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4.1 Details of Database Shuffling

In the PIR protocol, the client C is aware of the index of
the retrieved item. However, in the secure ANNS scenario,
if C knows which clusters have been retrieved, it may leak
information of the dataset. E.g. if cluster 1 and cluster 2 are
returned, C knows the two clusters are close to each other.
To address this issue, we have to return the secret-shared
indices of the top-u nearest clusters (Step 4-6 in Algorithm 1).
Let JidK denote one of these secret-shared indices. Note that
we have id = JidKs + JidKc mod t, where t is the number of
clusters, and subscripts s and c denote the share holder S and
C , respectively.

Querying a secret-shared index in a single-query PIR is
manageable. A first attempt is to ask the server S to rotate the
entire database JidKs steps, making the client’s shared index
JidKc into a real index that can be used with any standard
PIR protocols. This technique is used in [11]. However, what
we need in ANNS is batch PIR rather than single-query PIR.
Batch PIR often employs cuckoo hashing to reduce the amor-
tized cost, which is not compatible with the database rotating
method because of the difficulties to obliviously compute
the cuckoo hashing on secret-shared values. In the plaintext
cuckoo hashing algorithm, collision detection is both neces-
sary and straightforward, but when computing obliviously,
the collision detection outcomes must remain private.

To address the challenges of secret-shared indices in
batch PIR, we propose employing a shuffle-and-reveal ap-
proach. In detail, let the indices of database be ID =
(id1, id2, ..idn). Before each query, S selects a new random
permutation δ : Zn

n 7→ Zn
n, and locally applies δ on ID, ob-

taining δ(ID) = (id′1, id′2, ..id′n). Then S and C together
run some selection (e.g. top-k) function. Let the output be
JOK = (Jid′o1K,Jid′o2K, ..Jid′okK). S discloses its share JOKs
to C . We have the following Lemma:

Lemma 1. For any adversary A that corrupts the client
C , the simulator randomly samples P = (p1, p2, ..pk) from
(1,2, ..n) without replacement, and hands P over to A . A
cannot distinguish O from P.

The proof is easy to see since random sampling without
replacement is the same with random permutation. In other
words, our shuffle-and-reveal approach does not decrease se-
curity, thus O could safely be used by C for subsequent PIR
queries.

One more issue is that PIR protocols often return additional
items that may affect the database privacy. This is allowed
in PIR but not allowed in ANNS because by definition PIR
does not guarantee anything about the database privacy. In
Section 6 we will show how to transfer the PIR results into
secret-shared form to protect both parties’ privacy. Interest-
ingly, since we will pick top-k items in the end, returning
additional items will only make ANNS more accurate.

𝑥4 →

𝑥3 →

𝑥1 →

𝑥2 →

𝑆ℎ𝑢𝑓𝑓𝑙𝑒 ∶ {𝑥1, 𝑥2 , 𝑥3, 𝑥4} → {𝑥4, 𝑥3 , 𝑥1, 𝑥2}

𝑥1 →

𝑥2 →

𝑥3 →

𝑥4 →

𝑥1 →

𝑥2 →

𝑥3 →

𝑥4 →

𝑥4 →

𝑥3 →

𝑥1 →

𝑥2 →

Figure 2: Different encoding methods. If we encode different
items into a single polynomial (up), we need to re-encode each
time we shuffle. If we encode different items into separate
polynomials (down), we only need to save an index map
{4,3,1,2} to implement efficient shuffling.

4.2 Choosing a Shuffling-friendly PIR Protocol

From a practical perspective, we aim to ensure that the shuffle
operation does not significantly impact performance. Unfor-
tunately, for efficient PIR protocols with preproccessing such
as SimplePIR [20] and PIANO [51], they need a considerable
amount of offline hints stored at the client side, which need
to be updated according to any database changes. It is accept-
able in their cases due to the assumption that the database is
less frequently updated. However, in our scenario, we need
to reshuffle the entire database for each query, essentially
making the "offline" cost an "online" cost, completely under-
mining their performance advantages.

Other batch PIR protocols, such as PIRANA [25] and
BatchPIR [33], demonstrate high efficiency but are not
friendly to shuffle operations, because both protocols encode
multiple items into a single polynomial in a SIMD manner,
necessitating a complete re-encoding of the polynomial if
item positions are to be shuffled. The SIMD encoding in ho-
momorphic encryption could be time-consuming, so we wish
to avoid redoing such encoding process for each query.

Consequently, an appropriate PIR protocol for our scheme
must facilitate both efficient shuffling and encoding without
leaking additional database information. Fortunately, there ex-
ists a line of PIR protocols that do not need preprocessing, and
allow direct coefficient encoding instead of SIMD encoding,
such as SealPIR [2], OnionPIR [32], and Spiral [31]. Although
Spiral is recognized as the state-of-the-art RLWE-based PIR
protocol, its advantage lies in the size of PIR results, which is
not the bottleneck of our protocol since we already have low
communication cost. Under our context of batch PIR, where
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the size of each bucket is approximately 211, we found that
the earlier SealPIR protocol performs best. Keeping our re-
quirements in mind, we present a comprehensive comparison
of various PIR protocols in Table 2, and discuss necessary
customizations in the subsequent section.

4.3 Further Optimizing the PIR Protocol
Item encoding. We encode the points of each cluster into
coefficients of a single BFV plaintext polynomial. As a re-
sult, shuffling the database is just modifying the index map,
and does not require any polynomial modification. Figure
2 gives a toy example. In more detail, for each point vector
p⃗= (p1, p2, ..., pd), we encode each element of the vector into
one separate coefficient, while lots of PIR protocols consider
the data as a string and ignore its own structures. Separate
each element is helpful for additive secret sharing, as will
be shown in 6.1. In one plaintext, we can encode m points
with d dimensions. Because of m×d is large enough in our
scenarios, this encoding method will not waste much space.
For larger datasets, if there are more points in each cluster,
we can encode them into multiple plaintext polynomials.

Support 2k plaintext modulus. After retrieving the data,
we utilize the additively shared data to compute distances.
Our goal is to represent these distances within the ring Z2k

for the comparison phase. This choice is motivated by the ob-
servation that comparison protocols operate more efficiently
in the ring Z2k than in the prime field Zp, particularly since
modulo reduction in Z2k is nearly free. The SealPIR proto-
col [2] inherently supports coefficient encoding without the
constraint of having a prime plaintext modulus. However, a
naive approach necessitates that the plaintext modulus be set
as an odd number to facilitate the inverse operation in the
expansion step of SealPIR. After expansion, the constant co-
efficient of the plaintext polynomial will be m = 2l , which
must be multiplied by the modular inverse of m modulo p to
recover the value 1; this process is referred to as the reverse
operation. If we set the plaintext modulus to 2k, we are unable
to find the inverse of m.

Fortunately, we have discovered that multiplying the entire
ciphertext by the inverse of m modulo the ciphertext modulus
q can also be effective. This approach implicitly requires that
q be an odd modulus, a condition typically satisfied in RLWE-
based homomorphic encryption, which uses moduli q ≡ 1
mod 2N. We outline this idea in Algorithm 2 and present our
findings below.

Lemma 2. Algorithm 2 securely expands the input ciphertext
JxiKH to a vector of ciphertexts ⟨J0KH , · · · ,J1KH , · · · ,J0KH⟩,
where the i-th entry encrypts 1 and all other entries encrypt
0.

Proof. We only show the correctness argument here. Let e be
the noise of input query JxiKH , and Bsub be the noise growth

Algorithm 2 Support 2k plaintext modulus expand

Input query = JxiKH

Output a vector of n ciphertexts ⟨J0KH , · · · ,J1KH , · · · ,J0KH⟩,
where the i-th entry encrypts 1 and all others encrypt 0.

1: Find smallest m = 2l such that m≥ n
2: inverse← m−1(mod q)

▷ where q is ciphertext modulus
3: query′ ← query · inverse
4: return NAIVEEXPAND(query′)

▷ The NaiveExpand proposed in [2] with further
details in appendix A.

of EXPAND, which depends only on the HE parameters. If
we multiply the ciphertext with the inverse of m mod q, then
the noise vin can be represented as m−1e. After EXPAND
operation vout will not be influenced because m−1 can be
eliminated.

vout = 2lvin +2(2l−1)Bsub

= mvin +2(2l−1)Bsub

= mm−1e+2(2l−1)Bsub

= e+2(2l−1)Bsub

JxiKH can be represented as (∆xi + ê− â · sk, â). After mul-
tiplication, we get (∆m−1xi +m−1ê−m−1â · sk,m−1â). After
EXPAND, the coefficient of xi will multiplied by m, then m−1

can be used to inverse it to get J1KH .

5 Optimized Top-k Selection

5.1 Mixed Primitives Approximate Top-k

The performance of the top-k selection protocol is highly
dependent on the efficiency of the comparison protocol
ΠCompare. There are generally two kinds of MPC primitives to
facilitate secure comparisons: garbled circuits (GC) and secret
sharing (SS). The performance metrics of state-of-the-art com-
parison protocols in two-party computation are presented in
Table 3. State-of-the-art SS-based protocols utilize oblivious
transfer (OT) to compute comparison results, and it benefits
from advancements in silent OT [5], resulting in significantly
reduced communication costs. However, it still necessitates
multiple communication rounds, which could become a bottle-
neck in scenarios with high latency, particularly for tasks with
high depths such as top-k. In contrast, GC-based protocols
incur substantial communication costs but require a constant
number of communication rounds, regardless of circuit com-
plexity. By effectively balancing communication costs with
the number of communication rounds and leveraging the ad-
vantages of both protocol types, we can substantially enhance
comparison efficiency.
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Coefficient Encoding Shuffle friendly Comm. Comp.

SealPIR [2] ✓ ✓ ✶ ✶
Spiral [31] ✓ ✓ ✓ ✗

OnionPIR [32] ✓ ✓ ✓ ✗
FastPIR [1] ✗ ✗ ✓ ✓

SimplePIR [20], PIANO [51] - ✗ - ✓
BatchPIR [33], PIRANA [25] ✗ ✗ ✓ ✓

Table 2: Advantages and disadvantages of Related PIR Protocols. The communication and computation columns indicate the
comparison against SealPIR under database with a small size.

Comm. cost Rounds

GC-based Πcmp [35] 4λℓ bits O(1)
SS-based Πcmp (m = 4) [21] < 11ℓ bits O(logℓ)

GC-based Naive Top-k O(nk) Πcmp O(1)
GC-based Top-k network O(n(logk)2) Πcmp O(1)

Table 3: Communication cost of different protocols. λ is the
security parameter (usually λ≥ 128). m is the parameter in
SS-based compare protocol.

SANNS proposed an effective method for enhancing the
top-k algorithm by computing approximate top-k results. This
approach reduces the number of comparison operations from
O(nk) to O(n+ lk). The approximate top-k algorithm can be
summarized as follows:

(a). Shuffle the input n items and split it into l bins.
(b). Compute the minimum within each bin using GC.
(c). Calculate top-k of the above l minimum items using GC

to get the final result.

By carefully studying the algorithm flow and testing, we found
that indeed Step (c) performs best with GC, since SS-based
top-k will consume too many communication rounds. How-
ever, Step (b) is better suited for SS, because the operations
in different bins can be parallelized, sharing the same round
complexity. We employ an SS-based protocol to compute
the minimum within each bin. This approach requires only
O((logℓ+1) log(n/l)) communication rounds and incurs a
communication cost of 11nℓ bits, which performs significantly
better in various network conditions.

5.2 A Better Top-k Selection Network

Although the approximate top-k selection algorithm can sig-
nificantly reduce the costs associated with the comparison
phase, it still requires the computation of accurate top-k re-
sults at step (c). The SANNS algorithm employs a naive top-k
method, which invokes the min function k times to obtain
accurate top-k results, resulting in O(nk) comparison opera-
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Figure 3: Top-k selection network demo (k = 3,n = 15)

tions. This approach is sub-optimal for both GC-based and
SS-based protocols.

We build on the bitonic top-k selection network proposed
by [37] with two improvements:

• Extend the algorithm to support arbitrary k and n value,
without potentially expensive padding to nearest power-
of-two values;

• Integrate an odd-even merge sort network to bootstrap
the initial states of top-k selection with optimal compari-
son gates.

Figure 3 illustrates our construction with an example, with
details described in Algorithm 6 and Algorithm 4. We give
a brief description of how we extend the bitonic sorting to
top-k selection below. Suppose we have a bitonic sequence
S⃗ = ⟨S1,S2, · · · ,S2k⟩, where S1 ≤ ·· · ≤ Si ≥ ·· · ≥ S2k for
some i ∈ [1,2k]. The first step is to compare the pairs of
elements (S1,Sk+1), (S2,Sk+2), · · · , (Sk,S2k), if the first ele-
ment is larger than the second element, then swap them. Af-
ter this step will get two bitonic sequences ⟨S1, · · · ,Sk⟩ and
⟨Sk+1, · · · ,S2k⟩, where all the elements in the first bitonic se-
quence are smaller than any of the elements in the second
bitonic sequence. If we want to compute the top-k min ele-
ments, we can easily prune the second sequence in the result.
Afterwards, we follow a standard bitonic merge process to
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Algorithm 3 Top-k selection algorithm

Input v⃗ = {v1, ...,v2}, i⃗d = {id1, ..., idn}, k
Output {v1, ...,vk},{ID1, ..., IDk}

1: v⃗, i⃗d←LOCALSORT(⃗v, i⃗d,n,k)
2: l := n/k
3: while l > 1 do
4: for i := 1, ...,⌊l/2⌋ do
5: l,r := (i−1)k+1, ik
6: l′,r′ := (i−1)k+ ⌈l/2⌉+1, ik+ ⌈l/2⌉
7: v⃗[l:r],i⃗d[l:r]←

←kMERGE(⃗v[l:r], i⃗d[l:r], v⃗[l′:r′], i⃗d[l′:r′],k)
8: v⃗[l:r], i⃗d[l:r]←

←BITONICMERGE(⃗v[l : r], i⃗d[l : r],k)
9: end for

10: l := ⌈l/2⌉
11: v⃗, i⃗d := v⃗[1 : lk], i⃗d[1 : lk]
12: end while
13: return v⃗, i⃗d

Sort methods Compare operation

Bitonic Sort n(logn)(logn+1)/4
Odd-even Merge Sort n(logn)(logn−1)/4+n−1

Reduce n((logn)/2−1)+1

n=100 n=1000 n=10000

Bitonic Sort 1194 26984 453904
Odd-even Merge Sort 1077 23499 425695

Reduce 9.7% 12.9% 6.2%

Table 4: Comparison of the number of compare-and-swap op-
eration between bitonic sort and odd-even merge sort, where
n represents the number of value to be sorted.

completely sort the first sequence. With pruning, we reduce
to a bitonic sequence with length k, which has been sorted by
the bitonic sort algorithm. The next step is to concatenate two
length-k bitonic sequences into one bitonic sequence with
length 2k, and repeat the above process.

Finally, to bootstrap the selection network with sorted
length-k sequences, we utilize odd-even merge sort network
for the optimal instantiation of Πsort in Algorithm 4. Although
it has the same asymptotic complexity as bitonic sort, odd-
even merge sort produces less comparison operations, which
we detail in Table 4 for concrete parameters. Roughly speak-
ing, we could achieve a 10% reduction in communication cost
with this optimization in our scenario.

Our optimized top-k selection network has much better
asymptotic complexity O(n logk logk) compared to previous
alternatives (Table 3), with also higher concrete efficiency as
we will show in the experiments.

Algorithm 4 Function in top-k selection algorithm

1: function LOCALSORT(⃗v, i⃗d,n,k)
2: l := n/k ▷ For simplicity, we assume n divides k
3: for i := 1, ..., l do

(⃗v i, i⃗d
i
)←

4: ←ΠSort ({v(i−1)k+, ...,vik},{id(i−1)k+1, ..., idik})
▷ where (⃗v i, i⃗d

i
) is the input value and it’s id sorted

ascending by the value
5: end for
6: return {⃗v1||⃗v2||...||⃗vl},{i⃗d1||i⃗d2||...||i⃗dl}
7: end function
8:
9: function kMERGE(⃗v1, i⃗d1, v⃗2, i⃗d2,k)

10: for i := 1, ...,k do
11: j := k− i+1
12: (⃗v1[i], i⃗d1[i]), (⃗v2[ j], i⃗d2[ j])←
13: ← COMPSWAP((⃗v1[i], i⃗d1[i]), (⃗v2[ j], i⃗d2[ j]))
14: end for
15: return (⃗v1, i⃗d1)
16: end function
17:
18: function BITONICMERGE(⃗v, i⃗d,k)
19: if k <= 1 then
20: return v⃗, i⃗d
21: end if
22: m := 2⌊logk⌋

23: for i := 1, ...,k−m do
24: j := i+m
25: (⃗v[i], i⃗d[i]), (⃗v[ j], i⃗d[ j])←
26: ← COMPSWAP((⃗v[i], i⃗d[i]), (⃗v[ j], i⃗d[ j]))
27: v⃗[:m], i⃗d[:m]← BITONICMERGE(⃗v[:m], i⃗d[:m],m)
28: v⃗[m+1:k], i⃗d[m+1:k]←

← BITONICMERGE(⃗v[m+1:k], i⃗d[m+1:k],k−m)
29: end for
30: return v⃗, i⃗d
31: end function
32:
33: function COMPSWAP((v1, id1),(v2, id2))
34: b← ΠCompare(v1,v2)
35: vmin,vmax← ΠMux(v1,v2,b)
36: idvmin , idvmax ←ΠMux(id1, id2,b)
37: return (vmin, idvmin),(vmax, idvmax)
38: end function

6 Putting Everything Together

The distance computation, PIR and top-k operations needs
to be connected with secret-shared intermediate values to
form an end-to-end MPC application. However, multiple steps
(Line 4,7,9 in Algorithm 1) in Panther result in outputs that
requires further treatment. First, the resulting ciphertext in
SealPIR is in a "double encryption" format, presenting a chal-
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lenge for post-processing into secret-shared values. Second,
homomorphic ciphertexts contain noises that could poten-
tially reveal information about the plaintext, requiring the
noise flooding [14] countermeasure (which will increase the
HE parameters) before secret-shared. For efficiency reasons,
the homomorphic computations in ANNS usually run on a
relatively low plaintext bitwidth (e.g.,8), making the noise
flooding step especially expensive.

This section delves into the intricacy of post processing
these ciphertext in an optimal manner, seamlessly chaining
all the operations together.

6.1 Post-processing PIR results

Section 4 elaborates our proposal of using PIR to retrieve
points. However, there remains a critical unresolved issue for
its integration into the pipeline of the secure ANNS scheme.
The retrieved points should not be revealed to the client, and
should be converted into a form that is appropriate for sub-
sequent distance computation. As one of the most efficient
PIR protocols, SealPIR operates in a two-dimensional manner
and produces doubly-encrypted ciphertext JJ⃗aKH

l KH
l as results.

This restricts us from directly applying the H2A trick on such
ciphertext, due to the one-bit error that H2A might introduce
to the first-layer ciphertext J⃗aKH

l that is segmented into several
polynomial components. As a consequence, J⃗aKH

l might be
destroyed and can not be decrypted correctly when the one-bit
error takes place in the middle of the assembled ciphertext.

The problem stems from the practice of parameter choices
during usage of SealPIR. Let (p,q) denote the plaintext mod-
ulus and ciphertext modulus of the first dimension, and let
(p′,q′) denote those of the second dimension. Generally
speaking, in most applications, q would be larger than p′

in order to accommodate sufficient precision for p and the
computation, rendering it necessary to break the first-layer
ciphertext into several components modulo p′.

In our scenario, we observe that with a careful selection of
BFV parameters, we can still apply H2A to secret-share the
retrieved points. The idea is to perform a modulus switch on
the first-layer ciphertext from modulo q to modulo q1 with the
restriction of p′ = q1. Note that q1 could be a sub modulus of
q that is composed of a chain of RNS moduli {q1, · · · ,qn}. In
this setting, a first-layer ciphertext polynomial can be fully ac-
commodated in a plaintext polynomial. Although H2A would
still introduce one-bit error to the first-layer ciphertext, it is
absorbed into the low-end noise. We present the details in
Algorithm 5 for combining a two-dimensional PIR with the
above level-2 H2A conversion.

Fix one-bit error. Although the H2A protocol can success-
fully re-share the retrieved points between the server and
client, there still exists one-bit error that can impact accuracy.
This error appears in the point value, not the distance value,

Algorithm 5 PIR with Level-2 H2A

Input
1: First dim.: HE.pp1 = {N,q, p}, where and q =
{q1, · · · ,qn}. p = 2t

2: Second dim.: HE.pp2 = {N,q′, p′}, let p′ = q1 .
3: Client inputs index (id1, id2);
4: Server inputs the encoded dataset which has n plaintext

pt. Each item x⃗i, j has been encoded in coefficient as
pti,j ∈ AN,q

Output Client gets J⃗xid1,id2Kc; Server gets J⃗xid1,id2Ks
5:
6: Generate Query:
7: C encrypts (id1, id2) to ct1 = RLWEN,q,p

pk (xid1) and ct2 =

RLWEN,q′,p′
pk (xid2);

8: C sends ciphertexts to S as query.
9:

10: Response:
11: m :=

√
n ▷ the size of each dimension

12: {ct1
1, ...,ct

1
m}← EXPAND((ct1))

13: ▷ S obviously expands
14: {s0,s1, ...,sm}← {RLWEN,q,p

pk (0), ...,RLWEN,q,p
pk (0)}

15: for i := 1, ...,m do
16: for j := 1, ...,m do
17: si← si ⊞ (ct1

i ·pti,j)
18: end for
19: end for
20: for i := 1, ...,m do
21: si←MODULUSSWITCH(si,q1) ▷ Now si ∈ A2

q1
22: end for
23: {(â0, b̂0), ...,(âm, b̂m)}← {s0, ...,sm}
24: ▷ where âi, b̂i ∈ Aq1

25: {ct2
1, ...,ct

2
m}← EXPAND((ct2))

26:
27: {w0,w1}← {RLWEN,q,p

pk (0),RLWEN,q,p
pk (0)}

28: for i := 1, ...,m do
29: w0← w0 ⊞ (ct2

i · âi)
30: w1← w1 ⊞ (ct2

i · b̂i)
31: end for
32: w0←MODULUSSWITCH(w0,q′1)
33: w1←MODULUSSWITCH(w1,q′1)
34: r̂,w′0←H2A(w0)
35: S sends w′0 and w1 to C while saving r̂.
36:
37: Extract:
38: û← Dec(w0) ▷ û+ r̂ = â+ ê
39: b̂← Dec(w1)
40: C : J⃗xid1,id2Kc← Dec((û, b̂))
41: S : J⃗xid1,id2Ks← ⌈r̂ · p

q1
⌋

and must not be ignored. To address this, we propose a proto-
col to fix one-bit error. The main idea is to pad the lower bits
of the value with 0b01. If a one-bit error occurs, the lower bits
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will become 0b00 or 0b10 (secret-shared), neither of which
will affect the higher bits. We can then use a truncate and re-
duce protocol in [35] to remove the two lower bits and obtain
the correct value.

Extend with known MSB After retrieving multiple points
with H2A protocols, the elements of points have been secret
shared in mod p= 2ℓ1 , where p is the first dimension plaintext
modulus. Then we input this data to compute distance, the
distance result will be additive shared in 2ℓ2 . If each element
of a d-dimension point has been quantized to ℓ bits, then
ℓ2 = 2ℓ+ ⌈logd⌉. A simple way to set ℓ1 = ℓ2 will incur
higher cost for points retrieval to accommodate larger ℓ2. We
use a smaller ℓ1 to retrieve points and then extend them to ℓ2.
The extension protocol in [27] requires only two rounds of
communication and O(ℓ2−ℓ1) bits, when the most significant
bit (MSB) is known.

6.2 Optimized distance computation

For d-coordinate points, we recall that the Euclidean distance
||⃗u− v⃗||22 = ||⃗u||22 + ||⃗v||22− 2 ⟨⃗u, v⃗⟩. When P0 holds u⃗ and P1
holds a set of points {⃗v j} j∈[N], P0 would encode each co-
ordinate as a constant polynomial f̂i = u⃗[i] and sends the
encryption of d polynomials to P1 who encodes polynomi-
als ĝi = ∑ j v⃗ j[i]x j, for i ∈ [d]. The inner products

〈⃗
u, v⃗ j

〉
are

given in coefficients of ĥ = ∑i f̂iĝi. A simple masking of ĥ by
sending the encryption of ĥ− r̂ back to P0 with a randomly
sampled r̂ ∈AN,p is not sufficient to securely produce additive
secret sharing, because the noise contained in the ciphertext
reveals information about ĝi, the plaintext used in constant
homomorphic multiplication. In the SANNS framework [9],
in order to eliminate such leakage, they rely on the heavy
noise flooding technique [14] to hide such information in
large noise. However, this enforces them to use large parame-
ters for the BFV scheme, i.e., N = 213 and 180-bit ciphertext
modulus q, resulting in suboptimal performance.

To optimize the performance, we leverage the H2A tech-
nique introduced in [21], which essentially combines masking
and noise flooding into a single step by sampling a random
polynomial r̂ ∈R AN,q in the ciphertext domain and sends
back J⃗hKH

1 ⊞ r̂ to P0. P1 locally constructs its own share from
r̂ as shown in Section 2.1.3. It is not difficult to argue the in-
formation hiding property of this approach since r̂ completely
randomizes the ciphertext, including the noise. The drawback
is that this method will lead to a probabilistic one-bit error for
a reconstructed plain value (Appendix C, [21]), but it hardly
affects our ANNS scenario, as also demonstrated by our ex-
periments. After all, in most of the time, the low-end bits will
be truncated before entering garbled circuits, the only excep-
tion is that if the values reach the maximum, the low end bits
will also affect the high end bits. In the end, this optimization
enables us to use a small parameter set with N = 211 and a

N p q

Distance 2048 224 {54} bits
PIR HE.pp1 4096 212 {24,36,37} bits
PIR HE.pp2 4096 log p≈ 24 {36,36,37} bits

Table 5: BFV parameters HE.pp

54-bit modulus q. Details can be found in Table 5.

7 Evaluation

7.1 Implementation and Environment

We have fully implemented Panther in C++ using the Secret-
Flow 1 and EMP-toolkit [45] libraries. The SPU library within
SecretFlow was employed to develop the secret-sharing-based
comparison and distance computation protocols. Additionally,
we utilized the mpir part in the PSI library of SecretFlow to
construct the PIR building block, and the emp-sh2pc frame-
work 2 to implement the top-k selection network using garbled
circuits protocols. These components were integrated to cre-
ate a comprehensive end-to-end implementation, which we
subsequently evaluated in terms of performance.

The experiments presented in this paper were conducted
on cloud instances equipped with 128 processors (across two
physical sockets), operating at 2.70 GHz and 256 GB of RAM.
Both the client and server are running under 64 threads.

To simulate various network conditions, we adjusted the
bandwidth using the traffic control utility in Linux. Following
the SANNS network setting, we performed our benchmarks
under two network conditions: a Local Area Network (LAN)
with a bandwidth of 4000 Mbps and a 1ms round-trip time
(RTT), and a Wide Area Network (WAN) with a bandwidth
of 320 Mbps and a 74ms RTT.

7.2 Other Settings

BFV Parametes choices. In our end-to-end implementa-
tion, we utilize the BFV homomorphic encryption scheme as
a foundational component at various stages. By leveraging the
H2A protocol, we can employ more user-friendly parameters,
resulting in enhanced performance. Table 5 summarizes the
parameters used in our experiments. To support the Level-2
H2A protocol, it is necessary to set the second dimension
plaintext modulus p equal to the first dimension q1.

Datasets. We evaluate our scheme using the SANNS algo-
rithm parameters in the context of the following datasets:SIFT
(n = 1 000 000, d = 128), Deep1B-1M (n = 1 000 000,

1https://github.com/secretflow
2https://github.com/emp-toolkit/emp-sh2pc
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Figure 4: Comparison of proposed protocols with SANNS in terms of running time and communication costs.

d = 96), Deep1B-10M (n = 10 000 000, d = 96) and Ama-
zon (n = 220, d = 50). Our objective is to demonstrate the
performance of Panther across datasets of varying sizes and
dimensions.

Hyperparameters. To ensure fairness in our evaluation, we
utilized the same hyperparameters (such as the number of clus-
ters, and the number of bins in approximated top-k) as those
used in SANNS [9] for assessing our secure ANNS scheme.
Our goal is to present the evaluation results to demonstrate
that our secure building block is more efficient than SANNS.
While using a more efficient plaintext clustering algorithm
or changing the hyperparameters might enhance the perfor-
mance of both Panther and SANNS, our focus remains on a
consistent comparison in the aspect of secure computation.

7.3 Microbenchmarks
7.3.1 Distance Computation

In Section 6.2, we discuss our methods for mitigating noise
leakage following homomorphic computation. Noise flooding
can also achieve similar objectives. We compare the bench-
mark performance of our method with that of noise flooding
in Table 6, which illustrates the advantages of our approach.
For noise flooding, we adopt the same parameters as SANNS,
specifically N = 8192, p = 224 and q≈ 180 bits. We conduct
the micro-benchmarks using a single thread. To compute the

Distance Compute (n = 100 000,d = 128)
LAN WAN Comm.

Noise Flooding [9] 549 ms 1858 ms 41.7 MB
Ours 293 ms 541 ms 5.21 MB

PIR (n = 2048)
LAN WAN Comm.

Noise Flooding 1064 ms 1138 ms 859 KB
Ours 107 ms 470 ms 250 KB

Table 6: Performance comparison of noise flooding and ours

distance, we analyze one point versus 100,000 points, each
having a dimensionality of 128, quantized to 8 bits. Addition-
ally, we evaluate the level-2 H2A protocol with PIR applied
to a database containing 2048 items, each representing a sep-
arate bucket size in batch PIR. Each item is encoded into an
individual polynomial.

7.3.2 Top-k selection benchmark

We evaluate our novel protocols for approximate top-k se-
lection by combining garbled circuits with secret-sharing-
based comparison protocols and exact topk by a better top-k
selection network (refer to Section 5). Figure 4 shows the
evaluation result. In this evaluation, we test n = 1,000,000
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Dataset Distances Top-k Points Retrieval Total
SANNS Panther SANNS Panther SANNS Panther SANNS Panther

S.
1M

LAN (s) 0.11 0.23 1.29 0.35 2.17 1.69 3.62 2.28 1.6 ×
WAN (s) 1.41 0.50 16.1 6.34 27.1 3.64 45.3 10.7 4.2 ×
Comm. 56.7 MB 5.57 MB 645 MB 66.4 MB 1.06 GB 45.4 MB 1.77 GB 118 MB ↓ 93 %

D
.1

M LAN (s) 0.09 0.22 1.24 0.39 1.84 1.66 3.23 2.28 1.4 ×
WAN (s) 1.10 0.41 15.5 6.80 23.0 3.58 40.4 11.0 3.7 ×
Comm. 44.1 MB 4.57 MB 620 MB 74.9 MB 920 MB 46.3 MB 1.58 GB 126 MB ↓ 92 %

D
.1

0M

LAN (s) 0.12 0.79 4.81 0.82 6.39 5.32 11.3 6.94 1.6 ×
WAN (s) 1.48 1.71 60.2 12.8 79.9 8.43 142 23.1 6.1 ×
Comm. 59.4 MB 9.23 MB 2.35 GB 227 MB 3.12 GB 82.1 MB 5.53 GB 318 MB ↓ 94 %

A
m

zn LAN (s) 0.05 0.09 1.06 0.38 1.23 1.29 2.29 1.78 1.3 ×
WAN (s) 0.61 0.31 13.2 6.67 15.4 3.27 28.7 10.5 2.7 ×
Comm. 24.4 MB 2.83 MB 528 MB 73.2 MB 617 MB 44.4 MB 1.12 GB 121 MB ↓ 89 %

Table 7: Performance comparison of Panther and SANNS. Since SANNS is not open-sourced, we estimate their time costs with
communication/bandwidth, neglecting their computational cost, thus the numbers in this table are in great favor of them.

24-bit shared integers for mixed primitives approximate top-k.
We assess for k ∈ {5,10,20,50,100}. The approximate top-k
algorithm is designed to return (1−δ) · k entries accurately,
where we set δ = 0.01 to examine performance metrics. As
detailed in SANNS, we utilize a single thread to compute
the results. The blue line SANNS in Figure 4 is data from
their paper. Even in this single-threaded context, our protocol
demonstrates a performance improvement by a factor of up to
5×. The grey line SANNS estimation in Figure 4 is estimated
by communication/cost. When using more threads, our pro-
tocol performance can be much better, while the GC-based
algorithm can’t break through the bandwidth limit.

We test n = 10,000 24-bit shared integers for exact top-
k and assess for k ∈ {5,10,20,50,100}. These parameters
are closer to the actual usage in clustering-based ANNS. We
reimplement the exact top-k algorithm in SANNS by emp-
sh2pc to get data under these parameters. As k increases, our
solution has a significant advantage. The performance can be
increased by 2.3× to 7.5×.

7.4 End-to-End Evaluation

We present a comparison of end-to-end schemes in Table 7.
For SANNS, the numbers in their paper (Table 2, [9]) are
based on a flexible bandwidth (Section 5.1, [9]), thus cannot
be reproduced for comparison. Instead, we report their com-
munication cost as outlined in their paper, and estimate their
runtime using the communication cost divided by bandwidth.
Note that we completely ignore their computational cost, and
put ourselves at a disadvantage.

As is shown, our approach greatly enhances the perfor-
mance of each component. We summarize the combined dis-
tance computation costs in the column of “Distances". It is
important to note that our estimated runtime appears slower
than that of SANNS under LAN because we count in the

CPU computational time. However, we are still more efficient
under WAN due to smaller HE parameters. For the top-k com-
ponent, we merge the approximate top-k results into those of
the top-k performance. This indicates that our method per-
forms significantly better in both LAN and WAN settings.
For point retrievals, our batch PIR approach significantly out-
performs SANNS’s DORAM-based approach, reducing the
communication costs by up to 97%.

In summary, our scheme consistently outperforms SANNS
in various datasets. We achieve a reduction in communica-
tion costs of up to 94%, while improving search times by up
to 6.1×. Note that if we take their computational cost into
account, our improvements will be even more significant.

Comparison with two-server works. Our performance are
even comparable with [36] which works under a two-server
setting. They answer a query on Deep1B-10M in 6.13 seconds,
which is similar with us under LAN and 3.8× faster than us
under WAN. Note that their two servers reside in a same
region of AWS regardless of WAN or LAN.

7.5 Accuracy

Since Panther and SANNS are both implementing the same
plaintext routine of Algorithm 1, and share the same set of
hyper parameters such as plaintext bitwidth, number of bins
in approximate top-k, and shape of clusters, we expect that the
accuracy of Panther directly follows SANNS, which achieves
10-NN accuracy of 0.9 (9 out of 10 points are correct on
average, Section 5.3 of [9]).

There are only two points that might lead to differences
in results between Panther and SANNS. The first is the pos-
sibility of one-bit error in the H2A step of distance compu-
tation (Section 6.2). Note that the one-bit error in the H2A
step of PIR has been addressed in Section 6.1. Although the
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one-bit error happens in the least significant bit and is unlikely
to affect the accuracy, we want to experimentally show the
results. However, SANNS didn’t provide enough details to
reproduce the same experiment result in their paper, most
importantly, we don’t have the plaintext clustering algorithm
they used. As a result, we pick the k-means clustering algo-
rithm in [13] and use Panther with noise flooding instead of
H2A to simulate SANNS. Table 8 shows its accuracy compar-
ison with Panther. Results indicate that H2A indeed does not
affect accuracy. Note that even we tried our best to tune the
hyper parameters, either aligned or not aligned to the settings
described in SANNS, the accuracy is still slightly below 0.9,
that may because the plaintext clustering algorithm in [13] is
not optimized for the task.

The second difference is that the batch queries in PIR nat-
urally return additional indices, specifically, Panther returns
50% more points in the points retrieval step. The extra points
will be fed into the top-k step so the number of output samples
does not change. It’s likely that feeding more candidate clus-
ters to top-k could improve the accuracy, but the beneficial
effect is unpredictable because the additional 50% clusters
are picked at random. We choose to stay conservative and do
not claim the accuracy improvements.

Dataset Panther with-
out H2A error

Panther

SIFT-1M 88.85% 88.85%
Deep1B-1M 89.16% 89.16%

Table 8: Accuracy comparison between Panther without H2A
errors (to simulate [9]) and Panther

8 Related Work

Approximated Nearest Neighbors Search Approximated
nearest neighbors (ANN) search has aboard applications. In
the "plaintext world", lots of studies aim to enhance search ef-
ficiency while maintaining high accuracy. Including(1) graph-
based [17, 28, 29, 34], (2) tree-based [44], (3) quantization-
based [22, 30, 46] and (4) hashing-based [26, 42, 50]. Most of
the algorithms employ same strategy: initially, they generate a
set of candidate nearest neighbors, followed by identifying the
actual k nearest neighbors from within this candidate set. The
difference is their ways how to generate candidates neighbors.
Refer to the benchmark [4], the graph based algorithm usually
performs better. It provides a more complex structures to orga-
nize the vectors. The complex structures bring big challenge
for secure computation. The k-means clustering based algo-
rithm may not be the optimal choice, but it is outperforming
in secure computation.

Secure k-NNs under Other Security Models Servan-
Schreiber et al. [36] propose an efficient private k-NNs called
Preco in two non-colluding server. In two server setting, it
is known to us existing a lot of much more efficient proto-
cols. But the assumption that two server hold the same dataset
while don’t collude to each other may be impractical in many
real-world scenarios. This protocol utilize local sensitive hash
(LSH) to calculate the index of the approximated nearest sub-
sets. Then it used distributed point function DPF to retrieve a
subset with all of the nearest points from all subsets. It can be
free of comparison but need to retrieve from a large number
of subsets (i.e. n = 245), which ensures each subset has only
one point. For single server, the cost in retrieval process will
become intolerable. Besides, this scheme will leak part of
information about the dataset.

Song et al. [40] follow the Preco’s direction but retain the
comparison operations, which can make the number of subset
smaller. However, the comparison method in their scheme
doesn’t consider the network latency. They only show the
performance under a low latency network. What’s more, even
using comparison after retrieve subsets, the number of subsets
still too large (e.g. n = 225) for single server setting.

Non-interactive Secure k-NNs Shaul et al. [39] propose a
k-NNs classifier based on FHE. It’s non-interactive but take
hours to query a database containing thousands of points. Zu-
ber et al. [52] propose a fully homomorphic k-NNs algorithm
based on TFHE. The computation is fully non-interactive
but has quadratic complexity with regard to the size of the
database (e.g. O(n2)). Note that clustering based secure k-
NNs algorithm has only O(

√
n) complexity.

It’s intuitively the non-interactive algorithm can’t run in
sublinear time. It must search all data to avoid information
leakage. It’s much less efficient than SANNS [9]. Although
using multi-thread CPU, it can’t support to query in a database
of millions because of the highest computation cost.

9 Conclusion

In this paper, we propose an efficient private ANNS frame-
work Panther. It can significantly improve the performance
than previous single server ANNS framework. We design
novel protocols to retreive point with efficient batch PIR in-
stead of ORAM. We propose a mixed-primitive top-k ap-
proach with optimized selection network to enhance the top-k
selection performance. We carefully design optimized usage
of homomorphic encryption. Evaluated the end-to-end imple-
mentation in different size of dataset, Panther is superior to
the previous work in both communication cost and computa-
tion cost.
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Appendix

A Naive Expand

Algorithm 6 Naive expand in [2] (Figure 3. line 6 - 12)

Input query = JxiKH

Output a vector of n ciphertexts ⟨J0KH , · · · ,J1KH , · · · ,J0KH⟩,
where the i-th entry encrypts 1 and all others encrypt 0.

1: Find smallest m = 2l such that m≥ n
2: ciphertexts← [query]
3: for j = 0 to l−1 do
4: for k = 0 to 2 j−1 do
5: c0← ciphertexts[k]
6: c1← c0 · x−2 j

7: c′k← c0+Sub(c0,N/2 j +1)
8: c′k+2 j← c1+Sub(c1,N/2 j +1)
9: end for

10: ciphertexts← [c′0, ...,c′2 j+1−1]
11: end for
12: return ciphertexts
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