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Abstract. Adaptor signatures (AS) extend the functionality of tradi-
tional digital signatures by enabling the generation of a pre-signature tied
to an instance of a hard NP relation, which can later be turned (adapted)
into a full signature upon revealing a corresponding witness. The recent
work by Liu et al. [ASIACRYPT 2024] devised a generic AS scheme that
can be used for any NP relation—which here we will refer to as universal
adaptor signatures scheme, in short UAS—from any one-way function.
However, this generic construction depends on the Karp reduction to the
Hamiltonian cycle problem, which adds significant overhead and hinders
practical applicability.
In this work, we present an alternative approach to construct universal

adaptor signature schemes relying on the multi-party computation in the
head (MPCitH) paradigm. This overcomes the reliance on the costly
Karp reduction, while inheriting the core property of the MPCitH—
which makes it an invaluable tool in efficient cryptographic protocols—
namely, that the construction is black-box with respect to the underlying
cryptographic primitive (while it remains non-black-box in the relation
being proven). Our framework simplifies the design of UAS and enhances
their applicability across a wide range of decentralized applications, such
as blockchain and privacy-preserving systems. Our results demonstrate
that MPCitH-based UAS schemes offer strong security guarantees while
making them a promising tool in the design of real-world cryptographic
protocols.

1 Introduction

Blockchain technology was born out of a need for secure, transparent, and de-
centralized systems, with Bitcoin [18] serving as the first major application.
Initially, blockchain’s primary purpose was to enable peer-to-peer digital trans-
actions without relying on a centralized authority. Over time, this innovation laid
the foundation for decentralized finance (DeFi), a financial ecosystem built on
blockchain, offering an alternative to traditional financial intermediaries. DeFi
enables lending, borrowing, trading, and other financial services through smart



contracts, allowing users to maintain control over their assets without depending
on centralized entities.

As DeFi rapidly grew, it gained significant adoption within and beyond the
cryptocurrency space, attracting users, developers, and institutional players. The
promise of financial inclusion, coupled with the potential to earn yields and par-
ticipate in decentralized governance, spurred widespread interest. However, with
this increase in adoption came notable challenges, particularly in terms of scal-
ability. Popular blockchains like Ethereum struggled with network congestion,
leading to high transaction fees and slower processing times. These limitations
emphasized the critical need for blockchain systems to handle the growing de-
mand efficiently. Scalability remains a central focus for the continued growth
of DeFi and blockchain applications, with efforts directed toward reducing bot-
tlenecks, increasing transaction throughput, and lowering fees to ensure that
blockchain networks can support a global user base.

A method that has been proposed to address such scalability challenges is
the use of adaptor signatures (AS) [19,2]. Adaptor signatures enable more effi-
cient transaction processing by reducing the amount of data that needs to be
stored and validated on-chain. This cryptographic technique allows participants
to conditionally reveal certain information, such as secrets, only when specific
conditions are met. By minimizing the need for complex scripts and offloading
much of the computation, adaptor signatures help streamline transactions and
reduce associated fees.

Adaptor signatures (AS) were introduced by Poelstra [19,20]. A first formal
definition was given by Aumayr et al. [1,2]. It defined AS as an extended version
of digital signatures which incorporates a cryptographic relation between a so-
called pre-signature and a witness for an NP statement. In more detail, in an
AS scheme, the signer produces a pre-signature tied to a hard relation R, and
any party who knows the witness y to Y (where (Y, y) ∈ R) can transform (i.e.,
adapt) this pre-signature into a valid signature. Once the full signature is made
public, the signer can extract the witness y from both the pre-signature and the
full signature. Due to these features adaptor signatures can introduce a layer of
fairness and trust between participants, which makes them particularly useful in
scenarios like fair exchanges and cross-chain swaps.

The notion of AS also has the natural requirement that the adapted signature
does not leak information about the witness. This guarantees that only those who
generated the pre-signature will get access to the witness. Such a feature becomes
particularly relevant in the blockchain context, in which for example an entity
wants to sell the witness for Y , conditioned on being paid in some cryptocurrency.
AS can be used to perform exactly this task atomically, by letting the buyer of y
issue a pre-signature for a transaction that pays the seller. The seller, to get the
money simply needs to complete the signature by adapting it. Upon generating
the adapted signature, the seller will be rewarded, and the extraction property
of the AS scheme guarantees that the buyer will learn the witness y. It is easy
to see that in such a scenario, it would be preferable that the adapted signature
(that will be posted on the blockchain) does not leak information about y, as
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this would allow anyone participating in the blockchain protocol to learn y for
free. This property was formalized as witness hiding in [17].

AS schemes can be applied in blockchain systems to reduce on-chain compu-
tation while maintaining security. Key applications include:

Atomic Swaps. Atomic swaps [20,7] allow two parties to exchange assets from
different cryptocurrencies (e.g., Bitcoin and Ethereum) without intermedi-
aries. Both parties lock their funds on-chain and exchange pre-signatures
tied to a shared hard relation instance. Once the pre-signature is adapted
by one party using their witness, the other party can extract the witness and
adapt the second pre-signature, ensuring a fair exchange of assets without
one party holding an unfair advantage.

Cross-Chain Atomic Swaps. Similar to atomic swaps, cross-chain swaps [12,6]
involve two different blockchains, where assets from different chains are ex-
changed securely. Alice and Bob lock funds on their respective blockchains
and exchange pre-signatures for transactions. The same instance Y and wit-
ness y are used across both chains, allowing each party to adapt their pre-
signatures once they observe the other party’s adapted signature, ensuring
secure asset transfer across both blockchains.

Multi-Hop Payments. Multi-hop payments [7] enable multiple parties to route
payments among themselves via a common intermediary, assuming they
share a payment channel. While the original protocol [7] has each party
sample a new instance-witness pair for every transaction, we simplify it by
allowing all parties to use the same instance, provided that intermediate par-
ties do not collude. Consider three parties: Alice, Bob, and Charlie where
Alice wishes to pay cryptocurrency (say c) to Charlie. First, Alice and Bob
lock funds on the blockchain within a payment channel as collateral, followed
by Bob and Charlie. Charlie then randomly samples an instance-witness pair
(Y, y) and forwards the instance Y to Alice and Bob. Alice initiates the trans-
action by creating a pre-signature σ̃A and sending it to Bob. Bob, in turn,
generates his own pre-signature σ̃B and forwards it to Charlie. Once Charlie
receives σ̃B , he can convert it into a full signature σB by using the witness
y, allowing him to finalize the transaction on the blockchain and receive
the amount c. Simultaneously, Bob can derive the witness y from σ̃B and
σB , adapt his pre-signature σ̃A into a full signature σA, and complete his
transaction to obtain c.

Universal AS (UAS). While most previous works [2,24,7,23,15,21] focus on
constructing AS schemes based on specific signatures schemes (such as ECDSA [2]
and Schnorr [2,24]) and for script-related relations (like the public/secret key re-
lation in signatures), only two works [4,17] have explored AS schemes for generic
NP relations, which we refer to as universal adaptor signature schemes (in short,
UAS). Dai et al. [4] gave a generic construction of universal AS. However, their
scheme does not provide witness hiding as the witness is fully exposed in the
adapted signature itself. To address this issue, Liu et al. [17] proposed a construc-
tion that leverages the NP-completenes of the the Hamiltonian cycle problem. In
particular, they creates an AS scheme which can be used for the case of Hamilto-
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nian cycles. Since any NP relation can be reduced to that problem, this provides
a universal AS scheme. However, when the target NP language we need for our
application is not the language of Hamiltonian cycles—which will be the case
in most, if not all, applications of universal AS—then before using the scheme
of [17] a Karp reduction [14] needs to be used to reduce the statement at hand to
an instance of the Hamilton cycle problem. This makes the above resul of purely
theoretical value, because the Karp reductions (in particular to Hamilton cycle)
is a computationally expensive operation. Thus an question left open by [17] is
whether we can avoid relying on the expensive Karp reduction, which takes us
closer to a practical system.

In fact, Liu et al. suggested that a possible way to get such a result could
be by using the multi-party computation in the head (MPCitH)paradigm [13]
which has proven invaluable in the design of practical (zero-knowledge) proofs.
However, as observed there, the techniques of [17] appear to be incompatible
with MPCitH. The reason is that the scheme of [17] requires the existence of a
sigma protocol in which the first round is independent of the witness (a property
satisfied by the sigma-protocol for Hamiltonian cycles proposed in [3]). This
feature is not satisfied by the sigma-protocol obtained via the MPCitH approach.
Indeed, in this, the first round consists of the commitments of the parties’ views
that executed an MPC protocol to check the membership of an instance-witness
pair in an NP relation. In particular the input of these parties corresponds to a
share of the witness. Hence, the views depend on the witness itself, and as such
the first round of the obtained sigma-protocol is not witness-independent. As
such [17] left the following natural question remained open:

Question: How to construct more efficient UAS schemes from the MPCitH
paradigm?

In this work, we solve this open problem by proposing a new approach to
construct universal adaptor signatures from the MPCitH paradigm.

1.1 Our Contributions

In this work, we present a novel approach to construct universal adaptor signa-
tures (UAS) from themulti-party computation in the head (MPCitH) paradigm [13].
Furthermore, we enhance the applicability across a wide range of decentralized
applications, such as blockchain and privacy-preserving systems. Our results
demonstrate that MPCitH-based AS schemes lead to more efficient protocols,
making them a promising candidates for real-world cryptographic protocols.

1.2 Technical Overview

In this section we take a brief overview of our approach.

Generic Construction for NP Relations [17]. We start by recalling the
generic construction proposed in [17]. The key insight is that the process used to
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extract the witness of universal adaptor signatures (UAS) shares some similar-
ities with the notion of special soundness of sigma protocols. Special soundness
requires that a witness can be extracted from two valid transcripts (that refer
to the same NP instance) with the same first-round message but different chal-
lenges (we refer to Section 2.5 for a formal definition of sigma protocols). In Liu
et al.’s generic construction, a pre-signature for a message m with respect to an
instance Y (a Hamiltonian graph) is of the form

σ̃ = (σ̄, cmt, ch = m0, rsp),

where σ̄ is a regular signature on message (m,Y, cmt), and (cmt, ch, rsp) is a
simulated transcript of Blum’s sigma protocol w.r.t. instance Y for the Hamil-
tonian cycle problem [3,9], with m0 being an all-zero string. Moreover, Blum’s
sigma protocol has the property that one can simulate a transcript with the
challenge 0λ, and then use the same first-round message to reply to a different
challenge if the witness for the statement being proven is known. Hence, with the
knowledge of a witness y, the pre-signature can be adapted into a full signature

σ = (σ̄, cmt, ch′ = m, rsp′),

where (cmt, ch′, rsp′) is another valid transcript with challenge being the message
m to be signed. By the special soundness of the sigma protocol, a witness y for
the instance Y can be extracted from both the pre-signature σ̃ and the adapted
signature σ.

MPC-in-the-Head Paradigm. Now we recall the multi-party computation
in the head (MPCitH) paradigm [13], which transforms a secure n-party MPC
protocol Π into a sigma protocol. Let R be an NP relation with Y an instance
and y a corresponding witness such that (Y, y) ∈ R. Let fR be the functionality
such that

fR(Y, y1, ..., yn) = 1 if and only if (Y,
⊕
i∈[n]

yi) ∈ R.

Let Π be an MPC protocol securely realizing fR. The high-level idea of the
MPCitH paradigm is that, the prover, with public input Y and private input y,
first shares y into n pieces of secrets y1, ..., yn, and then simulates “in the head”
the running of Π with party Pi taking yi as the local private input. The prover
then commits the views of all parties, where the view Viewi consists of the input
and output of Pi, the randomness used for Pi, and the transcripts sent to/from
Pi. Upon receiving commitments of all views, the verifier randomly samples two
distinct indexes i, j, and asks the prover to open the corresponding views of Pi

and Pj . The verifier then checks whether Viewi and Viewj are well-formed and
consistent with each other. In this informal part of the paper, we will refer to
this protocol with ΠMPCitH. Unfortunately, this protocol cannot be used in the
approach of [17] we have just recalled due to the first round being dependent on
the witness. For this reason, we will follow a different approach.
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Our new approach. The high-level idea is as follows. Let (pk, sk) be a public-
secret-key pair of a standard unforgeable signature scheme. The public-secret
key of our adaptor signature corresponds exactly to (pk, sk).

To issue a pre-signature for an NP statement Y and message m, the signer
generates a public-secret-key pair for a public-key encryption scheme (pke, ske),
and sign (using the standard signature scheme) (m,Y, pke) thus obtaining σ̄.
The pre-signature is represented by the tuple

σ̃ = (pke, ske, σ̄).

To adapt the signature (i.e., to complete the signature) we require the adap-
tor to execute ΠMPCitH proving the knowledge of a witness for y, but with the
following difference. In the first round the views of the MPC protocol are not
committed but encrypted using the public-key pke. In summary, the adapted
signature simply consists of ΠMPCitH, where the views in the first round are com-
puted using a public-key encryption scheme instead of a commitment scheme.
What we have just described would make the generation of the adapted sig-
nature an interactive protocol (given that ΠMPCitH is interactive). To make it
non-interactive, we apply the Fiat-Shamir transform [8] thus obtaining a proof
π, which represents our adapted signature

σ = (Y, pke, σ̄, π).

We now argue that our scheme satisfies the most relevant properties required
by a secure adaptor signature scheme.

– Unforgeability. This is inherited from the underlying signature scheme.
Indeed, generating a standard signature requires generating a pre-signature
and adapting the signature. This is clearly impossible unless sk is known, or
the adversary breaks the unforgeability property of the standard signature
scheme we use.

– Witness extractability. The extractabiltiy property requires that having
the pre-signature σ̃ and the adapted signature σ with respect to a state-
ment Y , it must be possible to extract the witness for Y . Note that the
pre-signature contains the secret key ske of the encryption scheme used to
generate the first round of ΠMPCitH. The extractor can use ske to decrypt the
first round message of ΠMPCitH and extract all the shares contained in the
view of the MPC parties, and finally reconstruct the witness. Arguing that
the extraction is successful even when the adapted signature is generated
by a malicious adversary, requires some care, and we refer the reader to the
technical section of the paper for more details.

– Witness hiding. Witness hiding requires that by looking at the adapted
signature σ (without the knowledge of the pre-signature σ̃), no adversary
should be able to infer something about the witness for Y . We recall that
the adapted signature σ simply corresponds to an application of the Fiat-
Shamir transform on the protocol ΠMPCitH. This in a nutshell corresponds to
a non-interactive zero-knowledge proof, which by definition hides the witness
for the statement proven.
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1.3 Roadmap

This paper is organized as follows. In Section 2, we present the preliminaries,
including extractable commitments, the MPCitH paradigm, and the syntax and
security notions of adaptor signatures. In Section 3 we show our main contribu-
tion: the generic construction of UAS from the MPCitH paradigm, along with
its security proof. In Section 4 we discuss several issues related to the application
of UAS on blockchains.

2 Preliminaries

We use λ ∈ N to denote the security parameter throughout this paper. For µ ∈ N,
define [µ] := {1, 2, ..., µ}. Denote by x := y the operation of assigning y to x.

Denote by x
$← S the operation of sampling x uniformly at random from a set

S. For a distribution D, denote by x← D the operation of sampling x according
to D. For an algorithm A, denote by y ← A(x; r), or simply y ← A(x), the
operation of running A with input x and randomness r and assigning the output
to y. For deterministic algorithms A, we also write as y := A(x) or y := A(x; r).
“PPT” is short for probabilistic polynomial-time.

Min-entropy. Let X a random variable (distribution) defined over S. The min-
entropy of X is defined as H∞(X) := − log(maxs∈S Pr[X = s]).

2.1 Extractable Commitments

We recall the definition of extractable commitments in [22].

Definition 1 (Extractable Commitments). An extractable commitment scheme
eCOM = (TdGen,Com,Ver,Ext) consists of the following four algorithms.

– (ck, td)← TdGen(1λ). The trapdoor key generation algorithm takes as input
the security parameter λ, and outputs a commitment key ck and a trapdoor
td.
We denote as (ck, td) := TdGen(1λ; r) if the randomness r is specified during
trapdoor key generation.

– (c, d) ← Com(ck,m). The commitment algorithm takes as input ck and a
message m, and outputs a commitment c and an opening d.

– 0/1 ← Ver(ck, c,m, d). The verification algorithm takes as input ck, c, m
and d, and outputs a bit.

– m′ ← Ext(td, c). The extraction algorithm takes as input td and c, and out-
puts a message m′.

Correctness. For any (ck, td)← Gen(1λ), any message m and (c, d)← Com(ck,m),
it holds that Ver(ck, c,m, d) = 1.
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If the trapdoor td is set to be empty, then we define a regular commitment
scheme Com = (Gen,Com,Ver), where TdGen is replaced with the key generation
algorithm ck ← Gen(1λ).

Definition 2 (Extractability). An extractable commitment scheme eCOM has
extractability, if for any unbounded adversary A, the advantage

AdvexteCOM,A(λ) :=

∣∣∣∣Pr [ (ck, td)← TdGen(1λ)
(c,m, d)← A(ck);m′ ← Ext(td, c)

:
Ver(ck, c,m, d) = 1
∧ m ̸= m′

]∣∣∣∣
is negligible over λ.

We say eCOM has perfect extractability if AdvexteCOM,A(λ) = 0.

In our construction of adaptor signatures in Section 3, we require honest ex-
tractability, which guarantees perfect extractability against honest committers.

Definition 3 (Statistical Binding). An extractable commitment scheme eCOM
has statistical binding, if for any unbounded adversary A, the advantage

AdvbindingeCOM,A(λ) :=

∣∣∣∣∣∣Pr
 (ck, td)← TdGen(1λ)
(c,m0,m1, d0, d1)← A(ck)

:
m0 ̸= m1

∧ Ver(ck, c,m0, d0) = 1
∧ Ver(ck, c,m1, d1) = 1

∣∣∣∣∣∣
is negligible over λ.

We say eCOM has perfect binding if AdvbindingeCOM,A(λ) = 0.

Definition 4 (Hiding of Extractable Commitments). An extractable com-
mitment scheme eCOM has hiding, if for any stateful PPT adversary A, the
advantage

AdvhidingeCOM,A(λ) :=

∣∣∣∣Pr [(ck, td)← TdGen(1λ); (m0,m1, st)← A(ck)
(c, d)← Com(ck,m0)

: A(st, c) = 1

]
− Pr

[
(ck, td)← TdGen(1λ); (m0,m1, st)← A(ck)

(c, d)← Com(ck,m1)
: A(st, c) = 1

]∣∣∣∣
is negligible over λ.

The properties of statistical binding and (computational) hiding for a regular
commitment scheme COM can be defined similarly.

Definition 5 (κ-Min-Entropy of Commitments). An extractable commit-
ment scheme eCOM has κ-min-entropy, if for any (ck, td) ← TdGen(1λ), any
message m, we have H∞(c) ≥ κ, where c is computed as (c, d)← Com(ck,m).

Extractable commitments can be constructed from public-key encryption
(PKE) schemes, where the public key serves as the commitment key, the se-
cret key serves as the trapdoor, and the commitment is a ciphertext of a mes-
sage with r—the randomness used in the encryption—being the opening. We
refer to Appendix A for the definition of PKE and the transform we have just
highlighted.
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2.2 Signatures

Definition 6 (Signatures). A signature scheme SIG = (Gen,Sign,Ver) con-
sists of the following three algorithms.

– (pk, sk)← Gen(1λ). The key generation algorithm takes as input the security
parameter λ, and outputs a public key pk and a secret key sk.

– σ ← Sign(sk,m). The signing algorithm takes as input sk and a message m,
and outputs a signature σ.

– 0/1 ← Ver(pk,m, σ). The verification algorithm takes as input pk, m, and
σ, and outputs a bit b indicating the validity of σ (w.r.t. m).

Correctness. For any (pk, sk)← Gen(1λ), any message m and σ ← Sign(sk,m),
it holds that Ver(pk,m, σ) = 1.

Definition 7 (Unforgeability of Signatures). A signature scheme SIG is
unforgeable under chosen message attacks (UF-CMA secure), if for any PPT
adversary A, the advantage

AdvufSIG,A(λ) := Pr[ExpufSIG,A(λ) = 1]

is negligible over λ, where the experiment ExpufSIG,A(λ) is defined in Fig. 1.

ExpufSIG,A(λ):

(pk, sk)← Gen(1λ); S := ∅
(m∗, σ∗)← ASign(·)(pk)

Return ((m∗ /∈ S) ∧ (Ver(pk,m∗, σ∗)))

Sign(m):

σ ← Sign(sk,m)
S := S ∪ {m}
Return σ

Fig. 1. The UF-CMA security experiment of signature scheme SIG.

2.3 NP Languages

Let {Rλ} ⊆ ({0, 1}∗ × {0, 1}∗)λ be a series of binary relations indexed by param-
eter λ. If λ is fixed then we simply denote Rλ as R. We call R an NP relation
if there is an efficient algorithm to check whether (Y, y) ∈ R. The relation R
defines an NP language LR := {Y ∈ {0, 1}∗ | ∃y ∈ {0, 1}∗ s.t. (Y, y) ∈ R}. We
call Y the instance (not necessarily in LR), and y a witness of Y if (Y, y) ∈ R.
Usually, there is an efficient sample algorithm that returns an instance-witness
pair. Formally, (Y, y)← Sample(R).

Definition 8 (Hard Relations). A binary relation R is hard (one-way), if for
any PPT adversary A, the advantage

AdvowR,A(λ) := Pr[(Y, y)← Sample(R); y′ ← A(R, Y ) : (Y, y′) ∈ R]

is negligible over λ.
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2.4 (Universal) Adaptor Signatures

Definition 9 ((Universal) Adaptor Signatures [2,17]). An adaptor signa-
ture scheme w.r.t. a relation R consists of seven algorithms AS = (Gen,Sign,Ver,
pSign, pVer,Adapt,Ext), where the first three algorithms are defined as regular
signatures (cf. Def. 6), and the last four are defined as follows.

– σ̃ ← pSign(sk,m, Y ). The pre-sign algorithm takes as input sk, m and an
instance Y , and outputs a pre-signature σ̃.

– b ← pVer(pk,m, Y, σ̃). The pre-verification algorithm takes as input pk, m,
Y and σ̃, and outputs a bit indicating the validity of σ̃.

– σ ← Adapt(pk,m, σ̃, y). The adaption algorithm takes as input pk, m, σ̃ and
a witness y as input, and outputs an adapted signature σ.

– y/ ⊥← Ext(pk,m, Y, σ̃, σ). The extraction algorithm takes as input pk, m,
Y , σ̃ and σ, and outputs a witness y, or a failure symbol ⊥.

Except for the correctness as defined in Def. 6, we additionally require the pre-
signature correctness, the adaption correctness, and the extraction correctness.

For any (pk, sk) ← Gen(1λ), any message m, any (Y, y) ∈ R, any σ̃ ←
pSign(sk,m, Y ), σ ← Adapt(pk,m, σ̃, y), and y′ ← Ext(pk,m, Y, σ̃, σ), it holds
that

1. (Pre-signature correctness) pVer(pk,m, Y, σ̃) = 1, and
2. (Adaption correctness) Ver(pk,m, σ) = 1.
3. (Extraction correctness) (Y, y′) ∈ R.

We call an AS scheme a universal adaptor signature (UAS) scheme (denoted as
UAS), if the scheme is defined for generic NP relations.

We require unforgeability, witness extractability, pre-signature adaptability,
and witness hiding for the security of adaptor signatures.

Unforgeability. The adversary cannot generate a valid pre-signature or a reg-
ular signature on a fresh message.

Witness extractability. The signer can extract a witness from the pre-signature
and the adapted signature.

Pre-signature adaptability. The receiver can adapt a valid pre-signature into
a valid (full) signature with the knowledge of a witness.

Witness hiding The adapted signature leaks no additional information about
the witness.

We formally define these security notions, following the works by Dai et al. [4]
and Liu et al. [17].

Definition 10 (Unforgeability of Adaptor Signatures). An adaptor sig-
nature scheme AS w.r.t. binary relation R is unforgeable under chosen mes-
sage attacks (UF-CMA secure), if for any PPT adversary A, AdvufAS,A(λ) :=

Pr[ExpufAS,A(λ) = 1] is negligible over λ, where the experiment ExpufAS,A(λ) is de-
fined in Fig. 2.
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ExpufAS,A(λ):

(pk, sk)← Gen(1λ); S := ∅; T [m] := ∅
(m∗, σ∗)← ASign(·),pSign(·,·),NewY()(pk)

Return (b1 ∧ (b2,1 ∨ b2,2)), where
b1: Ver(pk,m

∗, σ∗) = 1 ∧ m∗ /∈ S
b2,1: T [m∗] = ∅
b2,2: ∀(Y, σ̃) ∈ T [m∗] : Y ∈ Y

Sign(m):

σ ← Sign(sk,m)
S := S ∪ {m}
Return σ

pSign(m,Y ):

σ̃ ← pSign(sk,m, Y )
T [m] := T ∪ {(Y, σ̃)}
Return σ̃

NewY():

(Y, y)← Sample(R)
Y := Y ∪ {Y }
Return Y

Fig. 2. The UF-CMA security experiment of adaptor signature scheme AS.

Definition 11 (Witness Extractability of Adaptor Signatures). An adap-
tor signature scheme AS w.r.t. relation R is witness extractable, if for any PPT
adversary A, Advwe

AS,A(λ) := Pr[Expwe
AS,A(λ) = 1] is negligible over λ, where the

experiment Expwe
AS,A(λ) is defined in Fig. 3.

Expwe
AS,A(λ):

(pk, sk)← Gen(1λ); S := ∅; T [m] := ∅
(m∗, σ∗)← ASign(·),pSign(·,·)(pk)

Return (b1 ∧ b2), where
b1: Ver(pk,m

∗, σ∗) = 1 ∧ m∗ /∈ S
b2: ∀(Y, σ̃) ∈ T [m∗] : (Y,Ext(pk,m∗, Y, σ̃, σ∗)) /∈ R
// all (Y, σ̃) in the pre-sign list lead to a failed extraction

Sign(m):

σ ← Sign(sk,m)
S := S ∪ {m}
Return σ

pSign(m,Y ):

σ̃ ← pSign(sk,m, Y )
T [m] := T ∪ {(Y, σ̃)}
Return σ̃

Fig. 3. The witness extractability experiment of adaptor signature scheme AS.

Definition 12 (Pre-signature Adaptability of Adaptor Signatures). An
adaptor signature scheme AS w.r.t. relation R has pre-signature adaptability, if
for any public key pk, any message m, any (Y, y) ∈ R and pre-signature σ̃ s.t.
pVer(pk,m, Y, σ̃) = 1, it holds that Ver(pk,m,Adapt(pk,m, σ̃, y)) = 1.

Definition 13 (Witness Hiding of Adaptor Signatures). An adaptor sig-
nature scheme AS w.r.t. relation R is witness hiding, if there exists a simulator
Sim such that, for any PPT adversary A,

Advwh
AS,SimA(λ) := |Pr[Exp

wh
AS,Sim,A,0(λ) = 1]− Pr[Expwh

AS,Sim,A,1(λ) = 1]|

is negligible over λ, where the experiments Expwh
AS,Sim,A,b(λ) (b ∈ {0, 1}) are de-

fined in Fig. 4.
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Expwh
AS,Sim,A,b(λ):

(Y, y)← Sample(R)

Return AChallb(·,·,·)(Y )

Chall0(pk, sk,m)

If fAS(pk, sk) ̸= 1: Return ⊥
// check the validity of (pk, sk)
σ̃ ← pSign(sk,m, Y )
σ ← Adapt(pk,m, σ̃, y)
Return σ

Chall1(pk, sk,m)

If fAS(pk, sk) ̸= 1: Return ⊥
// check the validity of (pk, sk)
σ ← Sim(pk, sk,m, Y )
Return σ

Fig. 4. The witness hiding experiments of adaptor signature scheme AS.

2.5 Sigma Protocols

Definition 14 (Sigma Protocols [5]). A sigma protocol Σ for an NP rela-
tion R is a three-move interactive protocol between a prover P and a verifier V
working as follows.

– 0/1← ⟨P(y),V⟩(Y ). Both the prover P and the verifer V share the common
input Y , and P additionally takes y as a private input. After the interaction,
V outputs a bit b for accept/reject, based on the transcript and Y .

– The transcript consists of three moves: the first move is a commitment cmt
sending from P to V. The second move is a challenge ch sending from V
to P, where ch is sampled from some finite set CH. The third move is a
response rsp sending from P to V.

We require the following properties for Σ.

– Completeness. For all (Y, y) ∈ R, the verifier V outputs 1 after an honest
running of the protocol, i.e., 1← ⟨P(y),V⟩(Y ).

– Special Soundness There is a polynomial time extractor E such that given
any pair of accepted transcripts (cmt, ch, rsp) and (cmt, ch′, rsp′) for any
instance Y such that ch ̸= ch′, the extractor E can extract a witness y such
that (Y, y) ∈ R except for a negligible probability.

– Honest-Verifier Zero-Knowledge. There is a PPT simulator Sim such
that for all (Y, y) ∈ R, the output of Sim(Y ) is distributed computationally
close to the distribution of the transcript by an honest execution ⟨P(y),V⟩(Y ).

Definition 15 (Public-Coin Sigma Protocols). A sigma protocol Σ is public-
coin if the challenge ch sent by the verifier V is uniformly sampled from the
challenge space CH.

The well-known Fiat-Shamir transform [8] can be used to compile a public-
coin sigma protocol into a non-interactive zero-knowledge arguement (NIZK)
scheme in the random oracle model (ROM), by setting the challenge as ch :=
H(aux, cmt) and outputting π = (cmt, rsp), where aux is some public infor-
mation (e.g., the message to be signed when compiling a sigma protocol into a
signature scheme in the ROM), and rsp is the response (the third move) of the
sigma protocol. We omit the detailed description of the Fiat-Shamir transform
here.
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2.6 Multi-Party Computation

We recall the definition and security properties of MPC in [13].
Let P1, ..., Pn be n parties. All parties share a global input Y and each party

Pi privately holds a share of secret yi. We basically consider n-party functionality
fR w.r.t. an NP relation R which maps the input (Y, y1, ..., yn) to an n-tuple of
outputs.

The n-party protocol Π is specified via its next message function. More
precisely, Π(i, Y, yi, ri, (m1, ...,mr)) returns the set of n messages sent by Pi in
round r+ 1, given the global input Y , its local secret share yi, its random coins
ri, and the messages m1, ...,mr it received in the first r rounds. The output of
Π also indicates that the protocol should terminate and return the final output
of Π.

We use Viewi to denote the view of Pi in the running of Π, which consists of
yi, ri, and the messages Pi received. Note that if Pi is honest, then the messages
Pi sent out and the final output of Pi are totally determined by Viewi.

Definition 16 (Consistent Views). A pair of views Viewi,Viewj from parties
Pi, Pj are consistent (w.r.t. the protocol Π and the global input Y ), if the outgoing
messages implicit in Viewi are identical to the incoming messages reported in
Viewj and vice versa.

Lemma 1 (Local v.s. Global Consistency [13]). Let Π be an n-party pro-
tocol and Y be a global input. Let View1, ...,Viewn be n views. All pairs of views
Viewi,Viewj are consistent (w.r.t. Π and Y ) if and only if there exists an honest
execution of Π with global input Y in which Viewi is the view of Pi for all i ∈ [n].

Definition 17 (Correctness of Π). We say Π realizes a deterministic n-party
functionality f(Y, y1, ..., yn) with perfect (resp., statistical) correctness if for all
inputs Y, y1, ..., yn, the probability that the output of some player is different from
the output of f is 0 (resp., negligible over λ), where the probability is over the
independent choice of random coins r1, ..., rn.

Definition 18 (t-Privacy of Π). Let 1 ≤ t < n. We say that Π realizes f
with prefect t-privacy if there exists a simulator Sim such that for any inputs
Y, y1, ..., yn and every set of corrupted parties T ⊂ [n] s.t. |T | ≤ t, the joint
view ViewT (Y, y1, ..., yn) of parties in T is distributed identically to the output
of Sim(T, Y, (yi)i∈T , fT (Y, y1, ..., yn)). This definition can be relaxed to statistical
or computational privacy defined similarly.

2.7 MPC in the Head Paradigm

In this subsection we present the MPCitHead paradigm [13] that transfers an
n-party MPC protocol Π into a public-coin sigma protocol Σ.

Let R be an NP relation, and fR is a functionality corresponding to R such
that

fR(Y, y1, ..., yn) = 1 if and only if (Y,
⊕
i∈[n]

yi) ∈ R.
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Let COM be a commitment scheme with statistical binding and computa-
tional hiding, and ck ← COM.Gen(1λ) be a commitment key known to both the
prover P and the verifier V.5 Let Π be an (n−1)-private-n-party MPC protocol
realizing fR. We construct a sigma protocol ΣCOM

Π,R,ℓ = ⟨P,V⟩ for the NP relation
R as follows. Note that we run ℓ = Ω(λ) executions of Π in parallel to reduce
the soundness error.

1. The setup algorithm returns ck ← COM.Gen(1λ) as the common reference
string.

2. For j ∈ [ℓ], P proceeds as follows:

(a) Randomly sample y
(j)
1 , ..., y

(j)
n−1, and set y

(j)
n := y

⊕
i∈[n−1] y

(j)
i .

(b) Emulate “in their head” the execution of Π with inputs (Y, y
(j)
1 , ..., y

(j)
n )

and obtain views View
(j)
1 , ...,View(j)

n .

(c) For i ∈ [n], (c
(j)
i , d

(j)
i )← COM.Com(ck,View

(j)
i ).

3. P sends (c
(j)
i )i∈[n],j∈[ℓ] to V.

4. V sends (u(j))j∈[ℓ] as the challenge to P, where u(j) ∈ [n] is independently
sampled at random for all j ∈ [ℓ].

5. P sends (View
(j)

i ̸=u(j) , d
(j)

i̸=u(j))i∈[n],j∈[ℓ] to V.
6. V accepts if and only if the followings hold for all j ∈ [ℓ].

(a) For all i ∈ [n]\{u(j)}, (View(j)
i , d

(j)
i ) is the correct opening of commitment

c
(j)
i .

(b) For all i ∈ [n] \ {u(j)}, Pi finally output 1 (in the j-th execution).

(c) For all distinct i, i′ ∈ [n]\{u(j)}, View(j)
i and View

(j)
i′ are consistent with

each other.

We have the following theorem, of which the proof is deferred to Appendix B.

Theorem 1. Assume n ≥ 3 be a constant. If Π realizes fR with perfect correct-
ness and either perfect, statistical, or computational (n − 1)-privacy, and COM
be a commitment protocol with statistical binding and computational hiding, then
ΣCOM

Π,R,ℓ described above is a public-coin sigma protocol for R.

The 2-private 3-party GMW protocol [11,10] is prehaps the simplest instance
that is appliable for the above MPCitH transformation. We refer to [13] for more
MPC protocols in the literature.

The above described sigma protocol Σ (from the MPCitH paradigm) can
further be transferred into a non-interactive zero-knowledge (NIZK) arguement
scheme via the Fiat-Shamir transform [8] in the random oracle model (ROM).
We omit the formal proof here.

5 In our construction of universal adaptor signatures, the commitment scheme of the
MPCitH paradigm is replaced with an extractable commitment scheme where the
commitment key and the trapdoor are generated by the signer. Here we present
the core construction of the MPCitH protocol as a warm-up of our construction in
Section 3, and omit the generation of the commitment key.
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3 Universal Adaptor Signatures from the MPCitH
Paradigm

In this section we present our generic construction of universal adaptor signa-
tures (UAS) from the MPCitH paradigm. Let R be a hard relation, and f is a
functionality corresponding to R such that

fR(Y, y1, ..., yn) = 1 if and only if (Y,
⊕
i∈[n]

yi) ∈ R.

Let SIG be a signature scheme, eCOM be an extractable commitment scheme
as defined in Section 2.1, Π be an n-party MPC protocol securly realizing the
functionality fR, ℓ = Ω(λ), and H : {0, 1}∗ → [n]ℓ be a random oracle. Our
universal adaptor signature scheme UAS is constructed as follows.

– Gen(1λ). The key generation algorithm returns (pk, sk)← SIG.Gen(1λ).
– pSign(sk,m, Y ). On inputs sk, m and instance Y , the pre-signing algorithm

does the following.
1. (ck, td) ← eCOM.TdGen(1λ; r), where r is the randomness uniformly

sampled according to the specification of the tradpoor key generation
algorithm of eCOM.

2. σ̄ ← SIG.Sign(sk, (m,Y, ck)).
3. Return σ̃ := (r, σ̄).

– pVer(pk,m, Y, σ̃). On inputs pk,m, Y , and σ̃ = (r, σ̄), the pre-verification
algorithm does as follows.
1. Compute (ck, td) := eCOM.TdGen(1λ; r).
2. Return SIG.Ver(pk, (m,Y, ck), σ̄).

– Adapt(pk,m, σ̃, y). On inputs pk, m, σ̃ = (r, σ̄) and witness y, the adaption
algorithm does the following.
• Compute (ck, td) := eCOM.TdGen(1λ; r).
• Generate a zero-knowledge proof π = (cmt, rsp) for instance Y through

the MPCitH paradigm and the Fiat-Shamir transform. In more detail,
π is computed as follows:

1. For j ∈ [ℓ], randomly sample y
(j)
1 , ..., y

(j)
n−1, and set y

(j)
n := y

⊕
i∈[n−1] y

(j)
i .

2. For j ∈ [ℓ], emulate the execution of Π with inputs (Y, y
(j)
1 , ..., y

(j)
n )

and obtain views View
(j)
1 , ...,View(j)

n .

3. Set cmt := (c
(j)
i )i∈[n],j∈[ℓ], where (c

(j)
i , d

(j)
i )← eCOM.Com(ck,View

(j)
i )

for i ∈ [n] and j ∈ [ℓ].
4. Compute H(m,Y, ck, σ̄, cmt) = (u(1), ..., u(ℓ)).

5. Set rsp := (View
(j)

i ̸=u(j) , d
(j)

i̸=u(j))j∈[ℓ].

• Return σ := (Y, ck, σ̄, π := (cmt, rsp)).
– Sign(sk,m). On inputs sk and message m, the signing algorithm does the

following.
1. Sample a fresh instance-witness pair via (Y, y)← Sample(R).
2. σ̃ ← pSign(sk,m, Y ).
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3. Return σ ← Adapt(pk,m, σ̃, y).
– Ver(pk,m, σ). On inputs pk, m, and σ = (Y, ck, σ̄, π), the verification algo-

rithm returns 1 if the followings hold and 0 otherwise.
1. SIG.Ver(pk, (m,Y, ck), σ̄) = 1.
2. π is a valid zero-knowledge proof, where the verification in proceeds as

follows.
(a) Parse π = (cmt, rsp) =

(
(c

(j)
i )i∈[n],j∈[ℓ], (View

(j)
i , d

(j)
i )i∈G(j),j∈[ℓ]

)
with G(j) ⊂ [n] and |G(j)| = n− 1.

(b) Compute H(m,Y, ck, σ̄, cmt) = (u(1), ..., u(ℓ)).
(c) Output 1 if and only if the following hold for all j ∈ [ℓ]:

i. G(j) = [n] \ {u(j)};
ii. eCOM.Ver(ck, c

(j)
i ,View

(j)
i , d

(j)
i ) = 1 for i ∈ G(j) (all openings of

the commitments are correct).
iii. For i ∈ G(j), party Pi finally outputs 1 (in the j-th execution).

iv. Every pair of distinct views in (View
(j)
i )i∈G(j) are consistent.

– Ext(pk,m, Y, σ̃, σ). On inputs pk,m, Y , σ̃ = (r, σ̄) and σ = (Y ′, ck′, σ̄′, π),
the adaption algorithm proceeds as follows.

1. Compute eCOM.TdGen(1λ; r) = (ck, td) and H(m,Y, ck, σ̄, cmt) =
(u(1), ..., u(ℓ)).

2. If (Y ′ ̸= Y ) ∨ (ck′ ̸= ck), return ⊥.
3. If Ver(pk,m, σ) = 0, return ⊥.
4. Parse π = (cmt, rsp) and cmt = (c

(j)
i )i∈[n],j∈[ℓ]. For j ∈ [ℓ] and i ∈ [n],

View
(j)
i ← eCOM.Ext(td, c

(j)
i ).

5. Let y
(j)
i be the private input of View

(j)
i . If there exist j∗ ∈ [ℓ] such that

(Y,
⊕

i∈[n] y
(j∗)
i ) ∈ R, return y :=

⊕
i∈[n] y

(j∗)
i . Otherwise, return ⊥.

Theorem 2. If SIG is an UF-CMA-secure signature scheme, eCOM is an ex-
tractable commitment scheme with extractability, statistical binding, computa-
tional hiding, and κ-min-entropy (κ = Ω(λ)), R is a hard relation, Π is an
n-party MPC protocol realizing fR with (n− 1)-privacy, and H works as a (pro-
grammable) random oracle, then UAS constructed above is a universal adaptor
signature scheme with UF-CMA security, witness extractability, pre-signature
adaptability, and witness hiding.

Proof. The correctness of UAS is guaranteed by the correctness of SIG, the ver-
ification correctness and extractability of eCOM, and the correctness of Π.

Now we prove the security of UAS.

Witness extractability. LetA be an adversary against the witness extractabil-
ity of UAS, and (m∗, σ∗) be A’s final output, where σ∗ = (Y ∗, ck∗, σ̄∗, π∗). Recall
that for A to win in the witness extractability experiment (cf. Def. 11), it must
hold that

1. SIG.Ver(pk, (m∗, Y ∗, ck∗), σ̄∗) = 1, π∗ is a zero-knowledge proof for instance
Y ∗ that the verifier accepts, and A never asks Sign(m∗).

2. The witness extraction fails for all (Y, σ̃ = (r, σ̄) ∈ T [m∗]).
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We analyze A’s advantage in two cases.

– Case 1. There exists no item (Y, σ̃ = (r, σ̄)) ∈ T [m∗] with eCOM.TdGen(1λ; r) =
(ck, td) such that, Y = Y ∗ and ck = ck∗.

– Case 2. There exist an item (Y, σ̃ = (r, σ̄)) ∈ T [m∗] with eCOM.TdGen(1λ; r) =
(ck, td) such that, Y = Y ∗ and ck = ck∗.

Recall that A never queries Sign(m∗), and σ̄∗ is a valid signature w.r.t.
(m∗, Y ∗, ck∗). If Case 1 happens, then we can construct a reduction algorithm
A′ that breaks the UF-CMA security of the underlying signature scheme SIG.
We omit the details of the reduction here.

Now consider A’s advantage in Case 2. Let QH be the total number of
hash queries by A. We first analyze the subcase where A has queried H(q∗) =

H(m∗, Y ∗, ck∗, σ̄∗, (c
(j)
i )i∈[n],j∈[ℓ]) before outputting (m∗, σ∗ = (Y ∗, ck∗, σ̄∗, π∗)),

where π∗ =
(
(c

(j)
i )i∈[n],j∈[ℓ], (View

(j)
i , d

(j)
i )i∈G(j),j∈[ℓ]

)
.

We call q = (m,Y, ck, σ̄, cmt = (c
(j)
i )i∈[n],j∈[ℓ]) a good query, if there exists

an item (Y, σ̃ = (r, σ̄)) ∈ T [m] such that eCOM.TdGen(1λ; r) = (ck, td). It is
easy to see that in Case 2, the query q∗ that related to A’s final forgery is a
good query.

For good query q = (m,Y, ck, σ̄, cmt = (c
(j)
i )i∈[n],j∈[ℓ]), define the following

two events:

– Fail: the event that there exists no j ∈ [ℓ] such that (Y,
⊕

i∈n y
(j)
i ) ∈ R,

where View
(j)

i ← eCOM.Ext(td, c
(j)
i ), and y

(j)
i is the private input of View

(j)

i

for i ∈ [n] and j ∈ [ℓ]. If Fail happens to a good query q, we also denote as
Fail(q) = 1.

– Pass: the event that there exists σ̄′ and rsp = (View
(j)
i , d

(j)
i )i∈G(j),j∈[ℓ] such

that (m,σ = (Y, ck, σ̄′, cmt, rsp)) passes the verification of UAS. If Pass
happens to a good query q, we also denote as Pass(q) = 1.

Given a good query q = (m,Y, ck, σ̄, cmt = (c
(j)
i )i∈[n],j∈[ℓ]), we analyze the

probability that Fail(q) = 1 and Pass(q) = 1 in Case 2. Let (Y, σ̃ = (r, σ̄)) ∈ T [m]
and eCOM.TdGen(1λ; r) = (ck, td). Recall that eCOM has extractability and sta-
tistical binding. Therefore, for i ∈ [n] and j ∈ [ℓ], except for a negligible binding

error, the commitment c
(j)
i can only be opened to View

(j)

i ← eCOM.Ext(td, c
(j)
i ).

By Lemma 1, if Fail happens, then there exist a group of indexes (̂i(1), ..., î(ℓ)) ∈
[n]ℓ such that for any j ∈ [ℓ], either View

(j)

î(j) exposes an output of 0 for party

Pî(j) , or View
(j)

î(j) is inconsistent with some other view View
(j)

i ̸=î(j) .

Let H(q) = (u(1), ..., u(ℓ)) ∈ [n]ℓ, and let (̂i(1), ..., î(ℓ)) ∈ [n]ℓ be defined as

above. For a message-signature pair (m,σ = (Y, ck, σ̄′, cmt = (c
(j)
i )i∈[n],j∈[ℓ], rsp =

(View
(j)
i , d

(j)
i )i∈G(j),j∈[ℓ])) that passes the verification, it must hold that

1. G(j) = [n] \ {u(j)};
2. For i ∈ G(j): eCOM.Ver(ck, c

(j)
i ,View

(j)
i , d

(j)
i ) = 1, and View

(j)
i = View

(j)

i .
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3. For i ∈ G(j), party Pi finally outputs 1 (in the j-th execution).

4. Every pair of distinct views in (View
(j)
i )i∈G(j) are consistent.

Therefore, for a good query q, if Fail happens, then Pass happens only if
(u(1), ..., u(ℓ)) = (̂i(1), ..., î(ℓ)). Since H is a random oracle and H(q) remains un-
defined until H(q) is invoked by A, we have that

Pr[Pass(q) ∧ Fail(q) ∧ Case 2] ≤ Pr[Pass(q) | (Fail(q) ∧ Case 2)] ≤ 1/nℓ.

Let (m∗, σ∗ = (Y ∗, ck∗, σ̄∗, π∗)) be A’s final forgery. If A successes in Case 2,
then there must exist a related good query H(q∗) = H(m∗, Y ∗, ck∗, σ̄∗, cmt =

c
(j)
i )i∈[n],j∈[ℓ]) such that Pass(q∗) = 1 and Fail(q∗) = 1. There are in total QH ran-
dom oracle queries by A. Therefore, the probability that A successes is bounded
by QH/n

ℓ.
Then we consider the subcase of Case 2 where A has never queried H(q∗) =

H(m∗, Y ∗, ck∗, σ̄∗, (c
(j)
i )i∈[n],j∈[ℓ]). Similar to the analysis above, it is easy to see

that (Fail(q∗) = 1∧Pass(q∗) = 1) cannot happen unless A successfully guess the
output of H(q∗), which happens with probability 1/nℓ.

In summary, there exist an PPT adversary A′ and a negligible function
negl(·) such that

Advwe
UAS,A(λ) ≤ AdvufSIG,A′(λ) +

QH + 1

nℓ
+ negl(λ),

where QH is the total number of random oracle queries by A. This concludes the
proof of witness extractability.

UF-CMA security. let A be an adversary against the UF-CMA security of
UAS, and (m∗, σ∗ = (Y ∗, ck∗, σ̄∗, π∗)) be A’s final forgery in the unforgeability
experiment (cf. Def. 10). Recall that for A to win, it must hold that

1. SIG.Ver(pk, (m∗, ck∗, Y ∗), σ̄∗) = 1, and π∗ is a valid zero-knowledge proof for
instance Y ∗.

2. A never queries Sign(m∗), and
3. (a) either T [m∗] = ∅ (i.e., A never asks pSign(m∗, Y ) for any Y ), or

(b) for all (Y, σ̃ = (r, σ̄)) ∈ T [m∗], it holds that Y ∈ Y (i.e., A only queries
pSign(m∗, Y ) for Y whose witness is unknown to it).

We first analyze the case 1 ∧ 2 ∧ (a). It is easy to see that in this case, A
does not get any signature on message (m∗, ·, ·) during either pre-signing queries
or signing queries. Therefore, we can construct a reduction algorithm A1 that
breaks the UF-CMA security of SIG.

Then we analyze the case 1 ∧ 2 ∧ (b). We further divide it into the following
two subcases.

(i) For all (Y, σ̃ = (r, σ̄)) ∈ T [m∗] and eCOM.TdGen(1λ; r) = (ck, td), it holds
that (Y, ck) ̸= (Y ∗, ck∗).
This means that A does not obtain a signature on message (m∗, Y ∗, ck∗)
during either pre-signing queries or signing queries. Consequently, A breaks
the UF-CMA security of the underlying SIG.
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(ii) There exists (Y, σ̃ = (r, σ̄))) ∈ T [m∗] and eCOM.TdGen(1λ; r) = (ck, td),
such that (Y, ck) = (Y ∗, ck∗).
This means that A adapts some pre-signature to a valid full signature with-
out knowing a witness. We analyze this case by showing an algorithm A2

such that, once the event (1∧ 2∧ (b)∧ (ii)) happens, A2 is able to break the
one-wayness of R.

A2 first receives an instance Ŷ from its own challenger, and then simulates
the experiment to A as follows.

1. A2 randomly selects η ← [Q] with Q the number of queries to NewY() by
A. Then A2 generates (pk, sk)← SIG.Gen(1λ) and sends pk to A.

2. A2 simulates the signing oracle Sign and the pre-signing oracle pSign as
normal.

3. A2 simulates the new instance oracle NewY() as normal, except that A2

returns Ŷ upon receiving the η-th query to NewY().
4. A2 simulates the random oracle H as normal. In more details, A2 maintains

a table H which is initialized to be empty. Upon receiving a query H(q), if
H[q] has not been defined, then A2 randomly samples ch← [n]ℓ and define
H[q] := ch. Finally A2 returns H[q].

5. At last A outputs (m∗, σ∗ = (Y ∗, ck∗, σ̄∗, π∗ = (cmt∗, rsp∗))). If Y ∗ ̸= Ŷ
then A2 aborts immediately. Otherwise, A2 checks if (1∧2∧ (b)∧ (ii)) holds.
If so, A2 retrieves (Y ∗, σ̃ = (r, σ̄)) ∈ T [m∗] such that eCOM.TdGen(1λ; r) =

( ˜ck∗, td∗). Let cmt∗ = (c
(j)
i )i∈[n],j∈[ℓ]. For j ∈ [ℓ] and i ∈ [n], A2 extracts

the views View
(j)
i ← eCOM.Ext(td∗, c

(j)
i ) and hence the private inputs y

(j)
i .

If there exists j∗ ∈ [ℓ] such that (Y ∗,
⊕

i∈[n] y
(j∗)
i ) ∈ R, then A2 outputs

y :=
⊕

i∈[n] y
(j∗)
i . Otherwise, A2 outputs ⊥.

Similar to the analysis of Case 2 in the proof of witness extractability above,

we know that for every good query q = (m,Y, ck, σ̄, cmt = (c
(j)
i )i∈[n],j∈[ℓ]), A2

successes in extracting a witness for Y except for a negligible probability 1/nℓ.
Let QH be the total number of queries to the random oracle H(·). Since the query
q∗ related to A’s final forgery is good in case (1 ∧ 2 ∧ (b) ∧ (ii)), A2 is able to
extract a witness of Y ∗ except for a probability (QH + 1)/nℓ.

In A2’s simulation, the challenge instance Ŷ is randomly embedded into
one query during the simulation of NewY(), and hence Y ∗ = Ŷ holds with
probability 1/Q, where Q is the number of queries to NewY(). Therefore, if A
breaks the unforgeability of UAS in case (1 ∧ 2 ∧ (b) ∧ (ii)) with probability ϵ,
then A2 is able to break the one-wayness of the hard relation R with probability

at least ϵ−(QH+1)/nℓ

Q .
In summary, there exist PPT adversaries A1,A2, and a negligible function

negl(·) such that

AdvufUAS,A(λ) ≤ AdvufSIG,A1
(λ) +Q · AdvowR,A2

(λ) +
QH + 1

nℓ
+ negl(λ),

which finishes the proof of unforgeability.
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Pre-signature adaptability. Recall that a pre-signature is of the form σ̃ =
(r, σ̄), where eCOM.TdGen(1λ; r) = (ck, td) and σ̄ ← SIG.Sign(sk, (m,Y, ck)).
To adapt it to a full signature, it is only required to attach a zero-knowledge
proof π∗ for instance Y ∗, using ck as the commitment key. The pre-signature
adaptability is directly implied by the correctness of Π and the correctness of
eCOM.

Witness hiding. To prove the witness hiding property of UAS, we need to design
a simulator Sim which can simulate an adapted signature given (m,Y ), which
is indistinguishable from a signature generated by the pre-sign-and-adaption
paradigm with the knowledge of y.

We design Sim similarly to the signing algorithm, with the only difference
being that Sim generates a zero-knowledge proof π for instance Y without know-
ing a witness y as follows (which, is similar to the zero-knowledge simulator in
the proof of Theorem 1 but works in the random oracle model).

In more details, Sim works as follows.

1. (ck, td)← eCOM.TdGen(1λ; r), where r is the randomness uniformly sampled
according to the specification of eCOM.

2. σ̄ ← SIG.Sign(sk, (m,Y, ck)).

3. For all j ∈ [ℓ], independently sample u(j) ← [n] at random.

4. For all j ∈ [ℓ], randomly sample y
(j)
i for i ∈ [n] \ {u(j)}, and invoke the

simulator of the MPC protocol Π to obtain views (View
(j)
i )i∈[n]\{u(j)}.

5. For all j ∈ [ℓ] and i ∈ [n] \ {u(j)}, (c(j)i , d
(j)
i )← eCOM.Com(ck,View

(j)
i ).

6. For all j ∈ [ℓ], (c
(j)

u(j) , d
(j)

u(j))← eCOM.Com(ck,0) (where 0 denotes an all-zero
bit string).

7. Let cmt := (c
(j)
i )i∈[n],j∈[ℓ]. Reprogram H such that H(m,Y, ck, σ̄, cmt) =

(u1, ..., u(ℓ)). If the item already exists in H, then abort and return ⊥.
8. Finally, return the simulated signature σ := (Y, ck, σ̄, π := (cmt, rsp)), where

rsp :=
(
(View

(j)
i )i ̸=u(j) , (d

(j)
i )i ̸=u(j)

)
j∈[ℓ]

.

We first argue that the simulated transcript distributes computationally close to
the transcript by an honest execution, if the reprogramming does not fail.

– The challenge (u(1), ..., u(ℓ)) simulated by Sim distributes identically to the
honestly generated one since it is uniformly sampled.

– The private inputs in the response rsp simulated by Sim distribute identically
to the honestly generated ones, since they are all independent and random
strings.

– For every j ∈ [ℓ], the n−1 views revealed in the response distribute identically
(resp., statistically/computationally close) to the honestly generate ones, due
to the (n− 1)-privacy of the MPC protocol Π.
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– For every j ∈ [ℓ], all commitments c
(j)
i for i ∈ [n] \ {u(j)} are distributed

identically. Moreover, the commitment c
(j)

u(j) will not be revealed in the tran-

script, and hence c
(j)

u(j) in the simulation distributes computationally close to
the one honestly generated, due to the hiding of eCOM.

Therefore, the simulated signature is distributed computationally close to the
honestly generate one.

It is left to prove that the reprogramming fails with a negligible probability
QH/2

κnℓ with QH the number of hash queries by A, which is guaranteed by the
κ-min-entropy of eCOM. As a result, the witness hiding of UAS holds. ⊓⊔

4 Adaptor Signatures on Blockchains

While adaptor signatures (AS) offer an innovative approach to secure trans-
actions and privacy-preserving protocols in decentralized applications, several
technical challenges must be addressed during their deployment. These chal-
lenges primarily relate to security, efficiency, and the coordination of protocol
components. Additionally, shifting some computations to off-chain approaches
inherently raises valid concerns that need to be carefully managed.

4.1 Secure Transmission of Pre-Signatures

In the deployment of adaptor signatures, pre-signatures must be exchanged be-
tween participants (e.g., Alice and Bob in a cross-chain swap). Ensuring the
secure transmission of these pre-signatures is crucial, as any interception could
expose sensitive data. Pre-signatures contain critical cryptographic information
and must be transmitted over secure channels, such as encrypted communica-
tion protocols (e.g., TLS), to prevent man-in-the-middle attacks. If we further
assume a public key infrastrcture, the presignature should be encrypted under
the public key of the witness holder, prior to transmission.

In the context of AS, if a malicious actor intercepts the message containing
the pre-signature, even if they alter the data, no asset loss will occur. This is
because the pre-signature verification algorithm will detect any modification,
causing the procedure to abort. The worst-case scenario arises when a malicious
actor learns the witness by possessing both the pre-signature and the adapted
signature. In this case, without paying for the information, an adversary could ex-
ploit an insecure transmission channel to deduce the witness. Therefore, ensuring
secure communication channels is paramount to protecting sensitive information
and maintaining the integrity of the AS process.

4.2 Integrity of Pre-Signature Adaptation

A core component of adaptor signatures (AS) involves adapting pre-signatures
into full signatures upon revealing a witness (e.g., a private key or secret). En-
suring the integrity of this adaptation process is essential. Any vulnerability in
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the adaptation could allow an adversary to forge signatures. Careful implemen-
tation of cryptographic primitives and validation of the adaptation is required
to avoid security breaches. The associated risks of forgery become greater if the
AS algorithm necessitates a trusted setup, as this creates additional dependen-
cies on the trustworthiness of the setup phase. If the setup is compromised or if
the trusted entity that performed the setup, behaves maliciously, it could lead
to significant security vulnerabilities, allowing unauthorized parties to forge sig-
natures or otherwise undermine the integrity of the AS framework. Therefore,
in cases involving a trusted setup, it is crucial that the inputs used during the
setup are destroyed after their purpose has been fulfilled to mitigate the risk of
exploitation.

4.3 Collusion and Replay Attacks

In scenarios where multiple parties are involved, the potential for collusion exists.
An adversary may attempt to collaborate with one or more parties to exploit
the adaptor signature mechanism, leading to unauthorized access to assets or
information. Additionally, replay attacks may occur if a pre-signature is inter-
cepted and reused in a different context. To mitigate these risks, it is imperative
to implement robust protocols for nonce generation and transaction identifiers
to ensure that each signature operation is unique and cannot be replayed.

The risk of replay attacks is heightened in account-based models, such as
Ethereum, compared to the UTXO (Unspent Transaction Output) model, where
transactions are directly tied to input UTXOs. In Ethereum’s account-based
model, smart contracts can be invoked multiple times, even if it was not the
original intention, leading to unintended consequences based on the protocol’s
design. This vulnerability has made Ethereum susceptible to replay attacks,
where a transaction could be executed again, potentially allowing adversaries
to exploit the system and access assets without authorization. However, replay
attacks can be mitigated if the smart contract implementing the protocol incor-
porates mechanisms to identify and prevent such invocations, ensuring that each
transaction is processed uniquely and as intended.

4.4 Computational Complexity

The computational overhead associated with generating and adapting adaptor
signatures can pose challenges, particularly in high-frequency trading environ-
ments or scenarios requiring rapid transaction throughput. As the number of
participants increases, the complexity of managing the pre-signature and adap-
tation processes can lead to performance bottlenecks. Optimizing these processes
while maintaining security is critical to achieving practical implementations of
adaptor signatures (AS) in real-world applications.

To effectively scale up the use of AS, it is essential to identify every aspect
of the framework that can be further optimized. Examining the algorithms and
protocols used for signature generation and adaptation can reveal opportunities
for efficiency improvements. In our specific case, the owner of the witness (e.g.,
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the secret in an AS) can precompute the MPC-in-the-Head while the sender is
transmitting the pre-signature to them. This concurrent precomputation could
further enhance the system’s efficiency by overlapping processes that would typ-
ically be sequential, thus reducing the time needed for signature adaptation and
overall transaction finalization. By streamlining these processes and minimizing
computational requirements, the AS framework can be better suited for high-
demand applications and broader adoption in various sectors.

4.5 Further Considerations

In exploring the potential of adaptor signatures, several important consider-
ations arise. Regarding Bitcoin compatibility, our current work necessitates a
Turing-complete blockchain scripting language, such as Solidity for Ethereum,
to validate the adapted signatures within smart contracts, which will result in
significant costs of validation (transaction fees). On the other hand, Bitcoin’s lim-
ited transaction scripting interface [16] is not capable of validating our scheme.
Consequently, a potential avenue for future research is to find a method for con-
structing adaptor signatures derived from the MPC-in-the-head paradigm that
can be validated on the Bitcoin network. Additionally, while GAS2 [4] provides
a framework for creating adaptor signatures for strongly random-self reducible
NP relations, it offers unlinkability—ensuring that the adapted signature is in-
distinguishable from a normally generated signature, regardless of the instance
Y . However, it requires the strong random self-reducibility of the underlying re-
lation, which confines the instantiations of GAS2 to standard number-theoretic
problems, such as DL, RSA, and LWE. Our current construction does not sup-
port this unlinkability property, and thus a future research direction will involve
developing unlinkable adaptor signatures based on our existing framework.
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A Extractable Commitments from Public-Key
Encryption

A.1 Public-Key Encryption

Definition 19 (Public-Key Encryption). A public-key encryption (PKE)
scheme PKE = (Gen,Enc,Dec) consists of the following there algorithms.

– (pk, sk)← Gen(1λ). The key generation algorithm takes as input the security
parameter λ, and outputs a public key pk and a secret key sk.

– ct← Enc(pk,m). The (probabilistic) encryption algorithm takes as input pk
and a message m, and outputs a ciphertext ct.
We denote as ct := Enc(pk,m; r) if the randomness r is specified in encryp-
tion.

– m′ ← Dec(sk, ct). The decryption algorithm takes as input sk and a cipher-
text ct, and outputs a message m′.

Correctness. For any (pk, sk)← Gen(1λ), any message m and c← Enc(pk,m),
it holds that Dec(sk, ct) = m.

Definition 20 (CPA Security of PKE). A PKE scheme PKE is indistin-
guishable under chosen-plaintaxt attacks (CPA-secure), if for any stateful PPT
adversary A, the advantage

AdvcpaPKE,A(λ) :=

∣∣∣∣Pr [(pk, sk)← Gen(1λ); (m0,m1, st)← A(ck)
ct← Enc(pk,m0)

: A(st, ct) = 1

]
− Pr

[
(pk, sk)← Gen(1λ); (m0,m1, st)← A(ck)

ct← Enc(pk,m1)
: A(st, ct) = 1

]∣∣∣∣
is negligible over λ.

Definition 21 (κ-Min-Entropy of Ciphertexts). A PKE scheme PKE has
κ-min-entropy, if for any (pk, sk)← Gen(1λ), any message m, we have H∞(ct) ≥
κ, where ct is computed as ct← Enc(ck,m).

A.2 Construction of Extractable Commitments from PKE

A PKE scheme PKE directly implies an extractable commitment scheme eCOM
where the public key serves as the commitment key, the secret key serves as
the trapdoor, and the commitment is a ciphertext of a message with r—the
randomness used in the encryption—being the opening. It is easy to see that
the extractable commitment scheme has perfect binding (due to the perfect
correctness of PKE) and hiding (due to the CPA security of PKE).

More formally, let PKE = (Gen,Enc,Dec) be a CPA-secure PKE scheme, we
construct a extractable commitment scheme eCOM = (TdGen,Com,Ver,Ext) as
follows.
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– (ck, td)← TdGen(1λ). The trapdoor key generation algorithm returns ck :=
pk and td := sk, where (pk, sk)← PKE.Gen(1λ).

– (c, d) ← Com(ck,m). The commitment algorithm returns (c, d) := (ct, r),
where ct := PKE.Enc(ck,m; r) and r is a fresh randomness sampled according
to the specification of the encryption scheme.

– 0/1 ← Ver(ck, c,m, d). The verification algorithm returns 1 if c =
PKE.Enc(ck,m; d) and 0 otherwise.

– m′ ← Ext(td, c). The extraction algorithm returns PKE.Dec(td, c).

Theorem 3. If PKE is a CPA-secure PKE scheme with perfect correctness, then
eCOM constructed above is a secure extractable commitment scheme with perfect
binding and computational hiding. Moreover, if PKE has κ-min-entropy, then
eCOM also has κ-min-entropy.

Proof. The correctness of eCOM follows from the fact that PKE.Enc(pk,m; r)
is a deterministic function, and the extractability of eCOM is derived from the
correctness of PKE.

Now we prove the binding property of eCOM based on the correctness of
PKE. Recall that for every ck generated from (ck = pk, sk) ← PKE.Gen(1λ),
an encryption of m will always be decrypted into m. If there is an all-powerful
adversary that given ck, outputs a collusion (c,m0,m1, d0, d1), then we have
PKE.Enc(pk,m0; d0) = c = PKE.Enc(pk,m1; d1) and m0 ̸= m1, which is conflict
to the perfect correctness of PKE since the decryption of c, an encryption of m0,
may lead to a distinct message m1.

It has been left to prove the hiding property of COM, i.e., for any messages
m0 andm1 chosen by the adversary, a commitment ofm0 (which is an encryption
of m0) is indistinguishable from a commitment of m1 (which is an encryption of
m1). This is exactly the CPA security of PKE.

The κ-min-entropy of eCOM is straightforward. ⊓⊔

B Proof of Theorem 1

Proof. The proof mainly follows the proof in [13]. Correctness is straightforward
due to the correctness of Π and the correctness of COM.

Now we prove the special soundness. Let (cmt, ch, rsp) and (cmt, ch′, rsp′) be

two valid transcripts, where cmt = (c
(1)
1 , ..., c

(1)
n , ..., c

(ℓ)
1 , ..., c

(ℓ)
n ), ch := (u(j))j∈[ℓ],

ch′ := (u′(j))j∈[ℓ], rsp = (View
(j)

i ̸=u(j) , d
(j)

i ̸=u(j))j∈[ℓ], and rsp′ = (View
(j)

i ̸=u′(j) , d
(j)

i ̸=u′(j))j∈[ℓ].

Moreover, there exists (at least one) j∗ ∈ [ℓ] such that u(j∗) ̸= u′(j∗). The ex-

tractor E checks whether for i ∈ [n] \ {u(j∗), u′(j∗)}, the views View
(j∗)
i are the

same in both rsp and rsp′. If so, E retrieves the private inputs y
(j∗)
i from views

View
(j∗)
i and outputs

⊕
i y

(j∗)
i . Otherwise, the extractor E outputs ⊥.

Thanks to the statistical binding of COM, with overwhelming probability
(over the choice of the commitment key), a commitment cannot be opened into
two different messages (views), and E does not output ⊥. In this case, E is able
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to collect a group of views (View
(j∗)
i )i∈[n], of which any two distinct views are

consistent. By Lemma 1, this indicates that there exists an honest execution ofΠ

and View
(j∗)
i is the view of Pi for all i ∈ [n], and consequently y

(j∗)
i contained in

View
(j∗)
i are additional shares of a witness y for Y , and E ’s extraction is correct.

Finally we prove the honest-verifier zero-knowledge of ΣCOM
Π,R,ℓ. We construct

a simulator Sim that outputs a simulated transcript (cmt, ch, rsp) as follows.

1. Sim independently samples u(j) at random for all j ∈ [ℓ].

2. For all j ∈ [ℓ], Sim randomly samples y
(j)
i for i ∈ [n]\{u(j)}, and then invokes

the simulator of the MPC protocol to obtain views (View
(j)
i )i∈[n]\{u(j)}.

3. For all j ∈ [ℓ] and i ∈ [n] \ {u(j)}, Sim commits (View
(j)
i )i∈[n]\{u(j)} to get

c
(j)
i and the corresponding openings d

(j)
i .

4. For all j ∈ [ℓ], Sim commits 0 (all zero bit string) to c
(j)

u(j) .
5. Finally, Sim returns the simulated transcript (cmt, ch, rsp), where cmt :=

(c
(j)
i )i∈[n],j∈[ℓ], ch := (u(1), ..., u(ℓ)), and rsp := ((View

(j)

i ̸=u(j) , d
(j)

i̸=u(j))j∈[ℓ]).

Now we argue that the simulated transcript distributes computationally close to
the transcript by an honest execution.

– The challenge simulated by Sim distributes identically to the honestly gen-
erated one since it is uniformly sampled.

– The private inputs in the response simulated by Sim distribute identically
to the honestly generated ones, since they are all independent and random
strings.

– For every j ∈ [ℓ], the n−1 views revealed in the response distribute identically
(resp., statistically/computationally close) due to the (n− 1)-privacy of the
MPC protocol.

– For every j ∈ [ℓ], all commitments c
(j)
i for i ∈ [n] \ {u(j)} are distributed

identically. Moreover, the commitment c
(j)

u(j) will not be revealed in the tran-

script, and hence c
(j)

u(j) in the simulation distributes computationally close to
the one honestly generated, due to the hiding of COM.

Therefore, Sim constructed above is an honest-verifier zero-knowledge simulator,
which finishes the proof. ⊓⊔
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