
Byte-wise equal property of ARADI

Sunyeop Kim1, Insung Kim1, Dongjae Lee4, Deukjo Hong3, Jaechul Sung2, and
Seokhie Hong1

1 Institute of Cyber Security & Privacy (ICSP), Korea University, South Korea
kin3548@gmail.com, cmcom35@korea.ac.kr, shhong@korea.ac.kr

2 Department of Mathematics, University of Seoul, South Korea jcsung@uos.ac.kr
3 Department of Information Technology & Engineering, Jeonbuk National

University, South Korea deukjo.hong@jbnu.ac.kr
4 Department of Convergence Security, Kangwon National University, South Korea

dongjae.lee@kangwon.ac.kr

Abstract. ARADI is a low-latency block cipher proposed by the NSA
(National Security Agency) in 2024 for memory encryption. Bellini et al.
experimentally demonstrated that in specific cubes of 5-round ARADI,
the cube sums are byte-wise equal, for example, to 0x9d9dc5c5. This pa-
per modifies the MILP-based division property algorithm to prove this
and observes that the rotation amount of 8 in ARADI causes cancella-
tions of monomials, allowing us to extend the byte-wise equal property
up to 8 rounds. As a result, we obtained distinguishers for rounds 6 and
7 with lower data complexities of 277 and 2112, respectively, compared
to previous methods.

Keywords: Block cipher, Integral attack, Algebraic attack

1 Introduction

In modern processor architectures, CPUs are often protected within a secure
enclave, ensuring security. However, it is practically impossible to provide the
same level of protection for RAM. For this reason, it is necessary to encrypt data
recorded in RAM using a secret key. In this case, encryption must be performed
with very low latency to avoid delaying memory access.

To address this, in 2024, the U.S. National Security Agency (NSA) proposed
a low-latency block cipher called ARADI, which is based on Toffoli gates and
has a 128-bit block size and a 256-bit key size [4]. Unlike other symmetric key
primitives, ARADI does not provide an explanation for the chosen structure,
parameters, or security analysis. Therefore, to verify the security of ARADI,
it is necessary to conduct a thorough review of various cryptographic analysis
techniques.

Following the publication of ARADI, Bellini et al. [1] analyzed the ARADI
cipher using an automated tool called CLAASP [2]. They applied various cryp-
tographic analysis techniques to ARADI, resulting in statistical black-box anal-
ysis (avalanche and diffusion tests), differential and linear trails up to 9 rounds,

2 K, Seonyeop et al.

impossible differential trails up to 8 rounds, an integral distinguisher up to 7
rounds, and a neural distinguisher up to 5 rounds.

In another study, Bellini et al. [3] introduced an 8-round integral distinguisher
and the concept of ”weakly-composed-Toffoli gates,” which involves specific com-
binations of Toffoli gates used in the S-box layer of ARADI. This allowed them to
extend a given integral distinguisher by one more round without increasing data
complexity, demonstrating that the cube-sum in a specific cube is always the
same across two words. They also proposed a key recovery attack on 10-round
ARADI with a data complexity of 2124 and a time complexity of 2177.

On the other hand, [3] experimentally demonstrated that the cube sum in a
specific cube of 5 rounds takes the form of ”AABB”(ex. 0x9d9dc5c5), although
they did not provide a theoretical proof for this. This can be viewed as a type
of extended integral distinguisher, and in this paper, we define this characteris-
tic as the “byte-wise equal property”. We theoretically proved this property by
modifying the division property algorithm. Additionally, we leveraged the ob-
servation that a rotation value of 8 significantly impacts this property, allowing
us to extend the byte-wise equal property up to 8 rounds. Table 1 compares the
data complexities of the algebraic distinguishers for ARADI presented to date.

Round
Data(log2(·) scale)
Section 4 [3] [1]

5 13 16 84

6 77 84 113

7 112 113 124

8 124 124 -

1.1 Our Contribution

We theoretically prove the experimental 5-round distinguisher with byte-wise
equal cube sums presented in [3] by modifying the MILP based division prop-
erty algorithm to extend the constraints by one round. We observe that this
distinguisher arises due to the rotation amount of 8 and extend the byte-wise
equal property up to 8 rounds. As a result, we were able to find algebraic distin-
guishers for rounds 6 and 7 with data complexities of 277 and 2112, respectively,
which are lower than those previously reported.

1.2 Organization

Section 2 explains the background knowledge and the structure and key sched-
ule of ARADI. Section 3 describes the extended integral distinguishers and the
division property. In Section 4, we prove the byte-wise equal property of 5-round
ARADI and extend the property to rounds 6-8. Finally, Section 5 concludes the
paper.

Byte-wise equal property of ARADI 3

2 Preliminary

This chapter provides a brief explanation of algebraic attacks, along with the
structure and notation of the ARADI block cipher.

2.1 Boolean Functions and algebraic attack

A Boolean function f defined on n variables is a function from Fn
2 to F2. This

function can be expressed as a polynomial on n variables over F2, called algebraic
normal form (ANF). The algebraic degree of f , denoted deg(f), is defined as the
degree of its ANF.

Consider k = (k1, ..., kn) as a vector of n secret variables and v = (v1, ..., vm)
as a vector of m public variables. In this context, each bit of the symmetric-
key cryptosystem can be represented by the Boolean function f(k, v). Here, k
represents the master key of the block cipher, v represents the plaintext, and
f(k, v) denotes the each bit of the ciphertext.

Let a set of public variables I = {vi1 , vi1 , ..., vid} be a set of cube variables.
Then f(k, v) can be rewritten as

f(k, v) = tI · pI(k, v)⊕ qI(k, v)

where tI =
∏

v∈I v, pI does not include any variables form I, and each term in
qI is not divisible by tI .

Define CI , referred to as a cube, as a set of 2|I| values where variables in I
take all possible combinations of values, and all remaining variables are fixed to
some arbitrary values. Then the following equation holds.⊕

(vi1 ,vi1 ,...,vid)∈{0,1}d

f(k, v) = pI(k, v)

In this case, if the algebraic degree of f in cube variables is less than d, then
f cannot contain a multiple of tI , which results in pI(k, v) = 0.

2.2 Notations

⊙ : 32 or 16 bit word-wise AND

· : bit-wise AND

∥ : concatanation of bits array

Sb
a(x) : b-bit left rotation of a-bit word x

2.3 Specification of Block Cipher ARADI

The ARADI algorithm uses a block size of 128 bits and a key size of 256 bits,
and it consists of 16 rounds.

4 K, Seonyeop et al.

Round function of ARADI The internal state of ARADI consists of four
32-bit words, and the encryption function is divided into an S-box layer (π), a
linear layer (Λi), and a key XOR layer (τrki). The overall encryption function is
defined as follows:

τrk16
◦⃝15

i=0(Λi mod 4 ◦ π ◦ τrki
)

Descriptions of each layer are as follows:

1. S-box layer(π)
It is constructed based on a Toffoli gate operating on a 32-bit words, defined
as (a, b, c)←− (a, b, c⊕ a⊙ b)

X −→ X ⊕W ⊙ Y,Z −→ Z ⊕X ⊙ Y, Y −→ Y ⊕W ⊙ Z,W −→W ⊕X ⊙ Z

2. linear layer(Λi)
In round i, the internal state (W,X, Y, Z) is computed as follows.

Λi((W,X, Y, Z)) = (Li(W), Li(X), Li(Y), Li(Z))

Here, Li is an involutory linear operation acting on a 32-bit word, which
splits a 32-bit input into two 16-bit words (u, l) and performs the following
computation.

(u, l) −→ (u⊕ Sai
16(u)⊕ Sci

16(l), l ⊕ Sai
16(l)⊕ Sbi

16(u))

The rotation values used in each round i are given in Table .

i mod 4 ai bi ci
0 11 8 14

1 10 9 11

2 9 4 14

3 8 9 7
Table 1. rotation amount

3. key addition layer(τrki
)

The 128-bit round key rki is XORed with the internal state.

Keyschedule of ARADI The key schedule of ARADI has an internal state
represented by an array of eight 32-bit words. If the state at step i is denoted
as Ki

0,K
i
1, . . . ,K

i
7, the 128-bit round key rki for the i-th round is defined as

Ki
0∥Ki

1∥Ki
2∥Ki

3 in even rounds and as Ki
4∥Ki

5∥Ki
6∥Ki

7 in odd-indexed rounds.
In each step, Ki

0∥Ki
1 and Ki

4∥Ki
5 are processed through a 64-bit linear trans-

formation M0, while Ki
2∥Ki

3 and Ki
6∥Ki

7 undergo a 64-bit linear transformation

Byte-wise equal property of ARADI 5

M1. This is followed by a word-level permutation Pi mod 2, where P0 = (1, 2)(5, 6)
and P1 = (1, 4)(3, 6).

The linear transformations M0 and M1 operate on the 64-bit inputs (a, b) as
follows:

M0((a, b)) = (S1
32(a)⊕ b, S3

32(b)⊕ S1
32(a)⊕ b)

M1((a, b)) = (S9
32(a)⊕ b, S28

32(b)⊕ S9
32(a)⊕ b)

2.4 Attack Setting for ARADI

We will follow the notations introduced in [3]. Specifically, the state value after
r rounds is represented by the 32-bit words W r, Xr, Y r, Zr, and each i-th bit in
these words is denoted as W r

i , X
r
i , Y

r
i , Z

r
i . Additionally, the index sets of the bits

in the plaintextW 0, X0, Y 0, Z0 are represented by IW , IX , IY , IZ ⊆ {0, 1, ...31}.
When |IW | + |IX| + |IY | + |IZ| = d < 127, we refer to this as the cube

indices of dimension d, or simply as the cube-index sets. The corresponding
plaintext variables

{W 0
i |i ∈ IW } ∪ {X0

i |i ∈ IX} ∪ {Y 0
i |i ∈ IY } ∪ {Z0

i |i ∈ IZ}
are used as the cube variables.

3 Extended integral distinguisher and division property

This chapter explains the extended integral distinguisher, the division property,
and the method of determining the upper bound of algebraic degree using the
MILP-based division property.

3.1 Extended integral distinguisher

Lambin et al. [6] introduced a technique for identifying additional integral dis-
tinguishers. Their method focuses on searching for the composition Lout◦E ◦Lin

rather than directly analyzing a block cipher E : Fk
2 ×Fn

2 → Fn
2 . In this context,

Lin and Lout belong to GLn(F2), and E is considered a nonlinear permutation
on Fn

2 , functioning as a block cipher with a randomly chosen secret key from Fk
2 .

Overall, their approach allows for the discovery of an extended integral distin-
guisher, which is defined as per Definition 1.

Definition 1 ((Extended) Integral Distinguisher). Let E : Fk
2 ×Fn

2 → Fn
2

be an r-round block cipher with k-bit key and n-bit block. Define X and Y as the
plaintext and ciphertext multisets of E, respectively. For any key κ ∈ Fk

2 , if there
exists anon-zero vector v ∈ Fn

2 such that⊕
y∈Y

v · y =
⊕
x∈X

v · Eκ(x) = 0,

then the pair (X, v) is referred to as an r-round integral distinguisher of E, and
v · y is called a balanced bit.

6 K, Seonyeop et al.

In general, searching through all possible Lin and Lout mappings is infea-
sible due to the high complexity involved. Therefore, it is essential to consider
the structure of the block cipher and focus on specially selected Lin and Lout

mappings for the search.

3.2 Division property

The division property [7] is a technique initially proposed by Todo to find integral
distinguishers, which was subsequently extended to include bit-based division
properties [8], 3-subset division properties [8], and 3-subset division properties
without unknown subsets [5] (3SBDP). In this paper, we utilize 3SBDP modeled
through mixed integer linear programming (MILP). The modeling for the basic
operations—XOR, AND, COPY, and constant 1 XOR—is as follows.

Basic operations

1. Bitwise XOR : (b1, ..., bn) −→ a : a = b1 + b2 + · · ·+ bn
2. Bitwise AND : (b1, ..., bn) −→ a : a = bi for ∀i
3. Bitwise COPY : (b1, ..., bn) −→ a : a ≤ bi for ∀i and b1 + b2 + · · · bn ≤ a
4. Bitwise XOR with constant 1 : a −→ b : b ≤ a

We calculated the upper bound on the algebraic degree using the algorithm
presented in [3]. Algorithm 1 models the encryption procedure of ARADI, while
Algorithm 2 outputs the upper bound of algebraic degree of target bits when
considered as a polynomial of cube variables. For a detailed description of the
algorithm, please refer to [3].

4 Byte-wise equal property of ARADI

In this chapter, we formally define the byte-wise equal property and prove that
5-round ARADI, with the cube-index set provided in [3], exhibits this property.
We then demonstrate that a rotation amount of 8 affects the byte-wise equal
property and extend this property up to 8 rounds.

4.1 Experimental 5 round distinguisher on [3]

First, we will provide a precise definition of the byte-wise equal property.

Definition 2 (Byte-wise equal property). For a 32-bit value (u, l) repre-
sented by two 16-bit values, if S8

16(u) = u, S8
16(l) = l, we say that (u, l) has the

byte-wise equal property. In other words, if the value has the form AABB, it is
considered to have the byte-wise equal property. Additionally, if the cube sum of
a certain cube index set always exhibits the byte-wise equal property, we say that
the cube index set has the byte-wise equal property.

Byte-wise equal property of ARADI 7

Algorithm 1: [3] MILP model for 3SBDP of r rounds ARADI

input : Empty modelM,number of rounds r, key variables k0, ..., k255
output: MILP modelM

1 M.addV ar ←− w0
i , w

0
i , w

0
i , w

0
i , for i = 0, ..., 31

2 M.addV ar ←− rk0i , a
0
i , for i = 0, ..., 127

3 RoundkeyXOR(M, a00, ..., a
0
31, w

0
0, ..., w

0
31, rk

0
0, ..., rk

0
31)

4 RoundkeyXOR(M, a032, ..., a
0
63, w

0
32, ..., w

0
63, rk

0
32, ..., rk

0
63)

5 RoundkeyXOR(M, a064, ..., a
0
95, w

0
64, ..., w

0
95, rk

0
64, ..., rk

0
95)

6 RoundkeyXOR(M, a096, ..., a
0
127, w

0
96, ..., w

0
127, rk

0
96, ..., rk

0
127)

7 for j = 0 . . . r − 1 do
8 M.addV ar ←− b0i , c

0
i , d

0
i , e

0
i , for i = 0, ..., 31

9 S-box(M, b00, ..., b
0
31, c

0
0, ..., c

0
31, d

0
0, ..., d

0
31, e

0
0, ..., e

0
31)

10 M.addV ar ←− pji , q
j
i , s

j
i , t

j+1
i , for i = 0, ..., 31

11 Linear-map(M, j mod 4, pj0, ..., p
j
31, b

j
0, ..., b

j
31)

12 Linear-map(M, j mod 4, qj0, ..., q
j
31, c

j
0, ..., c

j
31)

13 Linear-map(M, j mod 4, sj0, ..., s
j
31, d

j
0, ..., d

j
31)

14 Linear-map(M, j mod 4, tj0, ..., t
j
31, e

j
0, ..., e

j
31)

15 M.addV ar ←− wj+1
i , xj+1

i , yj+1
i , zj+1

i , for i = 0, ..., 31

16 M.addV ar ←− rkj+1
i for i = 0, ..., 127

17 RoundkeyXOR(M, wj+1
0 , ..., wj+1

31 , pj0, ..., p
j
31, rk

j
0, ..., rk

j
31)

18 RoundkeyXOR(M, xj+1
0 , ..., xj+1

31 , qj0, ..., q
j
31, rk

j
32, ..., rk

j
63)

19 RoundkeyXOR(M, yj+1
0 , ..., yj+1

31 , sj0, ..., s
j
31, rk

j
64, ..., rk

j
95)

20 RoundkeyXOR(M, zj+1
0 , ..., zj+1

31 , tj0, ..., t
j
31, rk

j
96, ..., rk

j
127)

21 return MILP modelM

In [3], it was experimentally suggested that using the cube-index set IW =
{11, 12, ..., 23}, IX = ∅, IY = ∅ and IZ = ∅, the byte-wise equal property that
consecutive bytes in the cube-sum values of X5 and Z5 are equal holds for the
5-round ARADI. To prove this, we will first demonstrate that the operation Li

preserves the byte-wise equal property.

Theorem 1. Assume that a value (u, l) possesses the byte-wise equal property.
Then, it follows that Li((u, l)) = (U,L) also retains the byte-wise equal property.

Proof. Since (u, l) has the byte-wise equal property, we have (u, l) = (S8
16(u), S

8
16(l).

Additionally, we can verify through simple calculations that

Li((u, l)) = Li((S
8
16(u), S

8
16(l)) = (S8

16(U), S8
16(L))

Therefore, it follows that (U,L) = (S8
16(U), S8

16(L)) which implies that (U,L)
also possesses the byte-wise equal property. ■

According to Theorem 1,

8 K, Seonyeop et al.

Algorithm 2: [3] MILP model for computing the upper bound on
degree

input : Empty modelM,number of rounds r, key variables k0, ..., k255,
bit position target, Indices sets IW , IX , IY , IZ

output: Degree upper bound of target function T
1 Model R rounds ARADI using Algorithm 1
2 S=wr

0∥...∥wr
31∥xr

0∥...∥xr
31∥yr0∥...∥yr31∥zr0∥...∥zr31

3 for i = 0 . . . 127 do
4 if i = target then
5 M.addConstr(Si = 1)
6 else
7 M.addConstr(Si = 0)
8 M.setObjective(

∑
i∈IW

w0
i +

∑
i∈IX

X0
i +

∑
i∈Iy

y0i +∑
i∈IZ

z0i ,Maximize)

9 return Objective value

X5 = L0(X
4 ⊕W 4 ⊙ Y 4), Z5 = L0(Z

4 ⊕X4 ⊙ Y 4 ⊕W 4 ⊙ Y 4)

having the byte-wise equal property means that

L0(X
5) = X4 ⊕W 4 ⊙ Y 4, L0(Z

5) = Z4 ⊕X4 ⊙ Y 4 ⊕W 4 ⊙ Y 4

also possess the byte-wise equal property.
To demonstrate this, we applied the division property by separating each

term. While we could show the byte-wise equal property for X4, Z4 and X4⊙Y 4

by calculating their degrees using Algorithm 1,2, we were unable to establish the
byte-wise equal property for W 4 ⊙ Y 4 through Algorithm 1,2.

To enhance the accuracy of the division property, we employed a method
that unfolds one round. Specifically, we expanded W 4

i · Y 4
i ⊕ W 4

i+8 · Y 4
i+8 for

0 ≤ i < 8, 16 ≤ i < 24 W 3, X3, Y 3 and Z3 into polynomials over W 3, X3, Y 3

and Z3 and added them to the MILP model. For example, to find the degree
of W 4

0 · Y 4
0 ⊕W 4

0 · Y 4
0 , we modeled the expanded polynomial in Appendix A as

a basic operation and put it into T of the modified MILP Algorithm 3. This
approach allows for the elimination of some monomials during the polynomial
expansion process, thereby increasing accuracy of division property. As a result,
we verified that all bits are balanced. The specific upper bounds of the algebraic
degree are included in Table 2 and Table 3

4.2 Byte-wise equal property for other rounds

Consider the case in the linear layer Li when i = 3 mod 4. By dividing the 64-bit
value into two 32-bit values, we represent A = (uA, lA), B = (uB , lB), yielding
the following:

Byte-wise equal property of ARADI 9

Algorithm 3: Modified MILP model for 3SBDP of r rounds ARADI

input : Empty modelM,number of rounds r, key variables k0, ..., k255,
MILP model T for target function T

output: MILP modelM
1 M.addV ar ←− w0

i , w
0
i , w

0
i , w

0
i , for i = 0, ..., 31

2 M.addV ar ←− rk0i , a
0
i , for i = 0, ..., 127

3 RoundkeyXOR(M, a00, ..., a
0
31, w

0
0, ..., w

0
31, rk

0
0, ..., rk

0
31)

4 RoundkeyXOR(M, a032, ..., a
0
63, w

0
32, ..., w

0
63, rk

0
32, ..., rk

0
63)

5 RoundkeyXOR(M, a064, ..., a
0
95, w

0
64, ..., w

0
95, rk

0
64, ..., rk

0
95)

6 RoundkeyXOR(M, a096, ..., a
0
127, w

0
96, ..., w

0
127, rk

0
96, ..., rk

0
127)

7 for j = 0 . . . r − 2 do
8 M.addV ar ←− b0i , c

0
i , d

0
i , e

0
i , for i = 0, ..., 31

9 S-box(M, b00, ..., b
0
31, c

0
0, ..., c

0
31, d

0
0, ..., d

0
31, e

0
0, ..., e

0
31)

10 M.addV ar ←− pji , q
j
i , s

j
i , t

j+1
i , for i = 0, ..., 31

11 Linear-map(M, j mod 4, pj0, ..., p
j
31, b

j
0, ..., b

j
31)

12 Linear-map(M, j mod 4, qj0, ..., q
j
31, c

j
0, ..., c

j
31)

13 Linear-map(M, j mod 4, sj0, ..., s
j
31, d

j
0, ..., d

j
31)

14 Linear-map(M, j mod 4, tj0, ..., t
j
31, e

j
0, ..., e

j
31)

15 M.addV ar ←− wj+1
i , xj+1

i , yj+1
i , zj+1

i , for i = 0, ..., 31

16 M.addV ar ←− rkj+1
i for i = 0, ..., 127

17 RoundkeyXOR(M, wj+1
0 , ..., wj+1

31 , pj0, ..., p
j
31, rk

j
0, ..., rk

j
31)

18 RoundkeyXOR(M, xj+1
0 , ..., xj+1

31 , qj0, ..., q
j
31, rk

j
32, ..., rk

j
63)

19 RoundkeyXOR(M, yj+1
0 , ..., yj+1

31 , sj0, ..., s
j
31, rk

j
64, ..., rk

j
95)

20 RoundkeyXOR(M, zj+1
0 , ..., zj+1

31 , tj0, ..., t
j
31, rk

j
96, ..., rk

j
127)

21 Add MILP model T toM
22 return MILP modelM

Li(A) = Li((uA, lA)) = (uA ⊕ S8
16(uA)⊕ S7

16(lA), lA ⊕ S8
16(lA)⊕ S9

16(uA))

Li(B) = Li((uB , lB)) = (uB ⊕ S8
16(uB)⊕ S7

16(lB), lB ⊕ S8
16(lB)⊕ S9

16(uB))

Since

S8
16(uA ⊕ S8

16(uA)) = uA ⊕ S8
16(uA),

S8
16(uB ⊕ S8

16(uB)) = uB ⊕ S8
16(uB)

we observe that when computing Li(A)j · Li(B)j ⊕ Li(A)j+8 · Li(B)j+8 for
j ∈ {0, 1, ..7}, 9 terms in total (from 3× 3), with 4 of these terms canceling out.

Similarly, since

10 K, Seonyeop et al.

S8
16(lA ⊕ S8

16(lA)) = lA ⊕ S8
16(lA)

S8
16(lB ⊕ S8

16(lB)) = lB ⊕ S8
16(lB)

when computing Li(A)j · Li(B)j ⊕ Li(A)j+8 · Li(B)j+8 for j ∈ {16, 1, ..23},
9 terms are generated, with 4 of them canceling out.

Therefore we can see that when i = 3 mod 4, a rotation amount of ai = 8
causes cancellations of monomials in the polynomial when XORing bits that are
8 bits(1 byte) apart. This is the key reason the byte-wise equal property occurs.
To leverage this, we added 2 rounds to i = 3 mod 4 and set i = 1 mod 4 as the
terminal round of the distinguisher for our search. Specifically, we searched so
that the distinguishers for rounds 6, 7, and 8 correspond to rounds 4-9, 3-9, and
2-9, respectively.

Since Xr+1 and Zr+1 include Xr, Zr, W r ⊙ Y r and Xr ⊙ Y r, we calculated
the upper bound of algebraic degree of each component to find cube indices
where the upper bound of algebraic degree remains lower than the cube size.
The cube indices for Xr ⊙ Y r is provided in Table 2, and the cube indices for
W r ⊙ Y r is shown in Table 3. For the cubes in Table 2, Xr ⊕ Zr exhibits the
byte-wise equal property, and for the cubes in Table 3, both Xr and Zr display
the byte-wise equal property.

The 6-round and 7-round byte-wise equal properties for Xr ⊕ Zr have data
complexities of 277 and 2112, respectively. Therefore, we can conclude that they
have lower data complexities than the distinguishers presented in [3], which have
complexities of 284 and 2113.

5 Conclusion

In this paper, we theoretically prove the byte-wise equal property of 5-round
ARADI, as experimentally presented by Bellini et al. in [3]. We utilize the ob-
servation that this property is induced by the rotation amount of 8 to extend the
byte-wise equal property up to 8 rounds. Consequently, we obtained distinguish-
ers for rounds 6 and 7 with lower data complexities of 277 and 2112, respectively,
compared to previous methods. This study suggests that the rotation value of
8, being half of 16, induces undesirable properties. Therefore, it may be benefi-
cial to modify it to other values with similar resistance with other cryptanalysis
method.

References

1. Bellini, E., Formenti, M., Gérault, D., Grados, J., Hambitzer, A., Huang, Y.J.,
Huynh, P., Rachidi, M., Rohit, R., Tiwari, S.K.: Claasping aradi: Automated anal-
ysis of the aradi block cipher. Cryptology ePrint Archive (2024)

2. Bellini, E., Gerault, D., Grados, J., Huang, Y.J., Makarim, R., Rachidi, M., Tiwari,
S.: Claasp: a cryptographic library for the automated analysis of symmetric primi-
tives. In: International Conference on Selected Areas in Cryptography. pp. 387–408.
Springer (2023)

Byte-wise equal property of ARADI 11

Round

r
Indices

Degree of monomial

Cube dimensionXr
i ⊕Xr

i+8 Xr
i · Y r

i ⊕
Zr
i ⊕ Zr

i+8 Xr
i+8 · Y r

i+8

4

IW = {11, ..., 23}

9 12 13
IX = ∅
IY = ∅
IZ = ∅

5

IW = {0, ..., 19}

64 76 77
IX = {0, ..., 18}
IY = {0, ..., 18}
IZ = {0, ..., 18}

6

IW = {0, ..., 27}

104 111 112
IX = {0, ..., 27}
IY = {0, ..., 27}
IZ = {0, ..., 27}

7

IW = {0, ..., 30}

120 123 124
IX = {0, ..., 30}
IY = {0, ..., 30}
IZ = {0, ..., 30}

Table 2. The set of cube indices for X ⊙ Y and an upper bound on their algebraic
degree. The upper bound has been computed for each i ∈ {0, ...7}∪{16, ..., 24} and we
represented the maximum value. For each cube indices, X ⊕Z has the byte-wise equal
property

12 K, Seonyeop et al.

Round

r
Indices

Degree of monomial

Cube dimensionXr
i ⊕Xr

i+8 W r
i · Y r

i ⊕
Zr
i ⊕ Zr

i+8 W r
i+8 · Y r

i+8

4

IW = {11, ..., 23}

9 12 13
IX = ∅
IY = ∅
IZ = ∅

5

IW = {0, ..., 19}

67 79 80
IX = {0, ..., 19}
IY = {0, ..., 19}
IZ = {0, ..., 19}

6

IW = {0, ..., 28}

105 112 113
IX = {0, ..., 27}
IY = {0, ..., 27}
IZ = {0, ..., 27}

7

IW = {0, ..., 30}

120 123 124
IX = {0, ..., 30}
IY = {0, ..., 30}
IZ = {0, ..., 30}

Table 3. The set of cube indices for W ⊙ Y and an upper bound on their algebraic
degree. The upper bound has been computed for each i ∈ {0, ...7} ∪ {16, ..., 24} and
we represented the maximum value. For each cube indices, W and Z has the byte-wise
equal property

Byte-wise equal property of ARADI 13

3. Bellini, E., Rachidi, M., Rohit, R., Tiwari, S.K.: Mind the composition of toffoli
gates: Structural algebraic distinguishers of aradi. Cryptology ePrint Archive (2024)

4. Greene, P., Motley, M., Weeks, B.: Aradi and llama: Low-latency cryptography for
memory encryption. Cryptology ePrint Archive (2024)

5. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset: improved cube attacks against trivium
and grain-128aead. In: Advances in Cryptology–EUROCRYPT 2020: 39th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39. pp. 466–495.
Springer (2020)

6. Lambin, B., Derbez, P., Fouque, P.A.: Linearly equivalent s-boxes and the division
property. Designs, Codes and Cryptography 88, 2207–2231 (2020)

7. Todo, Y.: Structural evaluation by generalized integral property. In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
pp. 287–314. Springer (2015)

8. Todo, Y., Morii, M.: Bit-based division property and application to simon family.
In: Fast Software Encryption: 23rd International Conference, FSE 2016, Bochum,
Germany, March 20-23, 2016, Revised Selected Papers 23. pp. 357–377. Springer
(2016)

A W 4
0Y

4
0 + W 4

8Y
4
8

W 3
0W

3
23X

3
0Y

3
0 Y

3
23Z

3
23⊕W 3

0W
3
23X

3
0Y

3
0 Y

3
23⊕W 3

0W
3
23X

3
0Y

3
0 ⊕W 3

0W
3
23X

3
23Y

3
0 Y

3
23Z

3
0⊕

W 3
0W

3
23X

3
23Y

3
0 Y

3
23⊕W 3

0W
3
23X

3
23Y

3
23⊕W 3

0W
3
23Y

3
0 Y

3
23Z

3
0⊕W 3

0W
3
23Y

3
0 Y

3
23Z

3
23⊕W 3

0W
3
23Y

3
0 Z

3
0Z

3
23⊕

W 3
0W

3
23Y

3
0 Z

3
23 ⊕W 3

0W
3
23Y

3
0 ⊕W 3

0W
3
23Y

3
23Z

3
0Z

3
23 ⊕W 3

0W
3
23Y

3
23Z

3
0 ⊕W 3

0W
3
23Y

3
23 ⊕

W 3
0W

3
23Z

3
0⊕W 3

0W
3
23Z

3
23⊕W 3

0W
3
31X

3
0Y

3
0 Y

3
31Z

3
31⊕W 3

0W
3
31X

3
0Y

3
0 Y

3
31⊕W 3

0W
3
31X

3
0Y

3
0 ⊕

W 3
0W

3
31X

3
31Y

3
0 Y

3
31Z

3
0 ⊕W 3

0W
3
31X

3
31Y

3
0 Y

3
31 ⊕W 3

0W
3
31X

3
31Y

3
31 ⊕W 3

0W
3
31Y

3
0 Y

3
31Z

3
0 ⊕

W 3
0W

3
31Y

3
0 Y

3
31Z

3
31⊕W 3

0W
3
31Y

3
0 Z

3
0Z

3
31⊕W 3

0W
3
31Y

3
0 Z

3
31⊕W 3

0W
3
31Y

3
0 ⊕W 3

0W
3
31Y

3
31Z

3
0Z

3
31⊕

W 3
0W

3
31Y

3
31Z

3
0⊕W 3

0W
3
31Y

3
31⊕W 3

0W
3
31Z

3
0⊕W 3

0W
3
31Z

3
31⊕W 3

0X
3
0X

3
23Y

3
0 Y

3
23⊕W 3

0X
3
0X

3
23Y

3
0 Z

3
23⊕

W 3
0X

3
0X

3
31Y

3
0 Y

3
31⊕W 3

0X
3
0X

3
31Y

3
0 Z

3
31⊕W 3

0X
3
23Y

3
0 Y

3
23⊕W 3

0X
3
23Y

3
0 Z

3
23⊕W 3

0X
3
23Y

3
23Z

3
0⊕

W 3
0X

3
23Z

3
0Z

3
23⊕W 3

0X
3
31Y

3
0 Y

3
31⊕W 3

0X
3
31Y

3
0 Z

3
31⊕W 3

0X
3
31Y

3
31Z

3
0 ⊕W 3

0X
3
31Z

3
0Z

3
31⊕

W 3
0 Y

3
0 Y

3
23Z

3
0⊕W 3

0 Y
3
0 Y

3
23⊕W 3

0 Y
3
0 Y

3
31Z

3
0⊕W 3

0 Y
3
0 Y

3
31⊕W 3

0 Y
3
23⊕W 3

0 Y
3
31⊕W 3

8W
3
23X

3
8Y

3
8 Y

3
23Z

3
23⊕

W 3
8W

3
23X

3
8Y

3
8 Y

3
23 ⊕W 3

8W
3
23X

3
8Y

3
8 ⊕W 3

8W
3
23X

3
23Y

3
8 Y

3
23Z

3
8 ⊕W 3

8W
3
23X

3
23Y

3
8 Y

3
23 ⊕

W 3
8W

3
23X

3
23Y

3
23⊕W 3

8W
3
23Y

3
8 Y

3
23Z

3
8⊕W 3

8W
3
23Y

3
8 Y

3
23Z

3
23⊕W 3

8W
3
23Y

3
8 Z

3
8Z

3
23⊕W 3

8W
3
23Y

3
8 Z

3
23⊕

W 3
8W

3
23Y

3
8 ⊕W 3

8W
3
23Y

3
23Z

3
8Z

3
23⊕W 3

8W
3
23Y

3
23Z

3
8⊕W 3

8W
3
23Y

3
23⊕W 3

8W
3
23Z

3
8⊕W 3

8W
3
23Z

3
23⊕

W 3
8W

3
31X

3
8Y

3
8 Y

3
31Z

3
31⊕W 3

8W
3
31X

3
8Y

3
8 Y

3
31⊕W 3

8W
3
31X

3
8Y

3
8 ⊕W 3

8W
3
31X

3
31Y

3
8 Y

3
31Z

3
8⊕

W 3
8W

3
31X

3
31Y

3
8 Y

3
31⊕W 3

8W
3
31X

3
31Y

3
31⊕W 3

8W
3
31Y

3
8 Y

3
31Z

3
8⊕W 3

8W
3
31Y

3
8 Y

3
31Z

3
31⊕W 3

8W
3
31Y

3
8 Z

3
8Z

3
31⊕

W 3
8W

3
31Y

3
8 Z

3
31 ⊕W 3

8W
3
31Y

3
8 ⊕W 3

8W
3
31Y

3
31Z

3
8Z

3
31 ⊕W 3

8W
3
31Y

3
31Z

3
8 ⊕W 3

8W
3
31Y

3
31 ⊕

W 3
8W

3
31Z

3
8⊕W 3

8W
3
31Z

3
31⊕W 3

8X
3
8X

3
23Y

3
8 Y

3
23⊕W 3

8X
3
8X

3
23Y

3
8 Z

3
23⊕W 3

8X
3
8X

3
31Y

3
8 Y

3
31⊕

W 3
8X

3
8X

3
31Y

3
8 Z

3
31⊕W 3

8X
3
23Y

3
8 Y

3
23⊕W 3

8X
3
23Y

3
8 Z

3
23⊕W 3

8X
3
23Y

3
23Z

3
8⊕W 3

8X
3
23Z

3
8Z

3
23⊕

W 3
8X

3
31Y

3
8 Y

3
31 ⊕W 3

8X
3
31Y

3
8 Z

3
31 ⊕W 3

8X
3
31Y

3
31Z

3
8 ⊕W 3

8X
3
31Z

3
8Z

3
31 ⊕W 3

8 Y
3
8 Y

3
23Z

3
8 ⊕

W 3
8 Y

3
8 Y

3
23 ⊕W 3

8 Y
3
8 Y

3
31Z

3
8 ⊕W 3

8 Y
3
8 Y

3
31 ⊕W 3

8 Y
3
23 ⊕W 3

8 Y
3
31 ⊕W 3

23X
3
0X

3
23Y

3
0 Y

3
23 ⊕

W 3
23X

3
0X

3
23Y

3
23Z

3
0⊕W 3

23X
3
0Y

3
0 Y

3
23⊕W 3

23X
3
0Y

3
0 Z

3
23⊕W 3

23X
3
0Y

3
23Z

3
0⊕W 3

23X
3
0Z

3
0Z

3
23⊕

W 3
23X

3
8X

3
23Y

3
8 Y

3
23⊕W 3

23X
3
8X

3
23Y

3
23Z

3
8⊕W 3

23X
3
8Y

3
8 Y

3
23⊕W 3

23X
3
8Y

3
8 Z

3
23⊕W 3

23X
3
8Y

3
23Z

3
8⊕

W 3
23X

3
8Z

3
8Z

3
23⊕W 3

23X
3
23Z

3
23⊕W 3

23Y
3
0 Y

3
23Z

3
23⊕W 3

23Y
3
0 Y

3
23⊕W 3

23Y
3
0 ⊕W 3

23Y
3
8 Y

3
23Z

3
23⊕

W 3
23Y

3
8 Y

3
23⊕W 3

23Y
3
8 ⊕W 3

23Z
3
23⊕W 3

31X
3
0X

3
31Y

3
0 Y

3
31⊕W 3

31X
3
0X

3
31Y

3
31Z

3
0⊕W 3

31X
3
0Y

3
0 Y

3
31⊕

W 3
31X

3
0Y

3
0 Z

3
31⊕W 3

31X
3
0Y

3
31Z

3
0⊕W 3

31X
3
0Z

3
0Z

3
31⊕W 3

31X
3
8X

3
31Y

3
8 Y

3
31⊕W 3

31X
3
8X

3
31Y

3
31Z

3
8⊕

14 K, Seonyeop et al.

W 3
31X

3
8Y

3
8 Y

3
31 ⊕W 3

31X
3
8Y

3
8 Z

3
31 ⊕W 3

31X
3
8Y

3
31Z

3
8 ⊕W 3

31X
3
8Z

3
8Z

3
31 ⊕W 3

31X
3
31Z

3
31 ⊕

W 3
31Y

3
0 Y

3
31Z

3
31 ⊕W 3

31Y
3
0 Y

3
31 ⊕W 3

31Y
3
0 ⊕W 3

31Y
3
8 Y

3
31Z

3
31 ⊕W 3

31Y
3
8 Y

3
31 ⊕W 3

31Y
3
8 ⊕

W 3
31Z

3
31⊕X3

0Y
3
0 Y

3
23⊕X3

0Y
3
0 Y

3
31⊕X3

0Y
3
23Z

3
0 ⊕X3

0Y
3
31Z

3
0 ⊕X3

8Y
3
8 Y

3
23⊕X3

8Y
3
8 Y

3
31⊕

X3
8Y

3
23Z

3
8⊕X3

8Y
3
31Z

3
8⊕X3

23Y
3
0 Y

3
23⊕X3

23Y
3
0 Z

3
23⊕X3

23Y
3
8 Y

3
23⊕X3

23Y
3
8 Z

3
23⊕X3

23Y
3
23Z

3
23⊕

X3
23Y

3
23⊕X3

31Y
3
0 Y

3
31⊕X3

31Y
3
0 Z

3
31⊕X3

31Y
3
8 Y

3
31⊕X3

31Y
3
8 Z

3
31⊕X3

31Y
3
31Z

3
31⊕X3

31Y
3
31

