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1 Introduction

Functional Encryption (FE) [10,33] is an encryption that allows evaluation on
ciphertexts and meanwhile gets rid of "all-or-nothing". Concretely, in an FE
scheme, given a ciphertext associated with a message x, the decryption can only
recover f(x) but nothing else, with a secret key associated with a function f .
There have been a plenty of works focusing on FE constructions in recent years,
which can be roughly categoried into "general" style [20,11,34,8,6,7,30,27], and
"practical" style [3,5,35,9,4,36,23,25].

In FE, there is a central entity holding a master secret key, which is crucial
in preserving the privacy of messages and issuing the secret keys. An important
problem of FE is that if the central entity is compromised by the adversary, then
the adversary can totally destroy the security of the system. Such a problem is
called key-escrow problem.

To tackle the key-escrow problem, recently, a line of research has made efforts
in constructing Registered Identity-Based Encryption (RIBE) [21,22,26,16,24],
Registered Attribute-Based Encryption (RABE) [31,29,18,19], and Registered
Functional Encryption (RFE) [18]. The above encryptions can be subsumed into
Registered Encryption. In Registered Encryption, each user generates his own
public/secret key pair, and the central entity is replaced with a semi-honest key
curator that does not hold any secret information and is in charge of aggregating
public information (e.g., public keys from registered users).
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For Registered Encryption, there are some efficiency requirements that for
L users totally, each user only needs to update their decryption key at most
O(logL) times over the lifetime of the system, and the size of master public key
and each update should be bounded by poly(λ, logL), where λ is the security
parameter and poly is a universal polynomial.

Recently, Francati, Friolo, Maitra, Malavolta, Rahimi, and Venturi [18] pre-
sented a feasible construction of RFE supporting all circuits from indistinguisha-
bility obfuscation (iO). This construction lies more in "general" style, which
means that it seems far from being practical. Thus, from practical side, we seek
for RFE constructions lying more in "practical" style. This motivation is analo-
gous to the motivation of practical FE [3,5].

1.1 Contributions

We present two practical RFE schemes:

– A Registered Inner Product Functional Encryption (RIPFE) scheme relying
on the Matrix Decision Diffie-Hellman (MDDH) assumption. Our RIPFE
scheme achieves weakly selective-IND security (c.f. Definition 4) and weakly
selective-SIM security (c.f. Definition 5). The efficiency properties are as
below:
• the size of common reference string is L · n · poly(λ, |F|, logL);
• the running time of key generation and registration is L·n·poly(λ, |F|, logL)

and L · n · poly(λ, |F|, logL) + L2 · n · poly(λ) respectively;
• the size of master public key and helper decryption key is bounded by
logL · n · poly(λ) and logL · n · poly(λ) + logL ·O(logL) respectively;

• the number of updates in the system is at most O(logL);
• the update operation can be implemented in logL · n · poly(λ) + logL ·
O(logL) time in the RAM model of computation,

where L is the a-priori fixed number of users, n is the length of the message,
λ is the security parameter, |F| is the size of the function space, and poly is
a universal polynomial.
Our RIPFE supports a bounded number of functions in the system. We
stress that this is something inherent to the inner product functionality
itself. Similar limitation also exists in Inner Product Functional Encryption
(IPFE).

– A Registered Quadratic Functional Encryption (RQFE) scheme relying on
the MDDH assumption and the bilateral MDDH (bi-MDDH) assumption.
Our RQFE scheme achieves weakly selective-IND security and weakly selective-
SIM security. The efficiency properties are as below:
• the size of common reference string is L · (n+ 1) · poly(λ, |F|, logL);
• the running time of key generation and registration is L · (n + 1) ·
poly(λ, |F|, logL) and L · (n+1) ·poly(λ, |F|, logL)+L2 · (n+1) ·poly(λ)
respectively;

• the size of master public key and helper decryption key is bounded by
logL · (n+ 1) · poly(λ) and logL · (n+ 1) · poly(λ) + logL · n2 · poly(λ) +
logL ·O(logL) respectively;
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• the number of updates in the system is at most O(logL);
• the update operation can be implemented in logL·(n+1)·poly(λ)+logL·
n2 · poly(λ) + logL ·O(logL) time in the RAM model of computation,

where n2 is the length of the message.

Both of our schemes are imposed an a-priori fixed number of users, as the pre-
vious pairing-based Registered Encryption schemes. And for our constructions,
when the functions of the users that are corrupted by the adversary cover the en-
tire function space, weakly selective-SIM security is equivalent to selective-SIM
security.

1.2 Related Works

Previous works that tried to resolve the key-escrow problem of FE mainly con-
centrated on constructing decentralized FE, where the central trust is distributed
to many entities. It should be noted that decentralized FE is in the private key
setting, while FE can be in the public key setting. Chotard, Sans, Gay, Phan,
and Pointcheval [15] introduced the notion of decentralized Multi-Client Func-
tional Encryption (DMCFE). In DMCFE, secret keys are issued by multiple en-
tities instead of a central entity. Till now, a sequence of DMCFE schemes have
been presented [15,32,2,1]. Chotard, Sans, Gay, Phan, and Pointcheval [14] intro-
duced another notion of dynamic decentralized Functional Encryption (DDFE),
and presented constructions for various functionalities. The major difference be-
tween DDFE and DMCFE is that DDFE allows multiple users to join the system
dynamically, while DMCFE has no easy way to do this.

Decentralized FE mitigates the reliance on the central trusted entity, but the
secret keys are still issued by the entities rather than the users. If a sufficient
number of entities are compromised, the system will be insecure.

2 Technical Overview

Starting Point. We start from the observation that the pairing-based slotted
RABE scheme in [29] is roughly a combination of a centralized Attribute-Based
Encryption (ABE) and a traditional public key encryption. Thus, to construct
slotted RFE schemes, we try the way of combining a centralized FE and a tradi-
tional public key encryption. Since as stated in [18], an RFE can be transformed
from a slotted RFE following the generic compiler in [29], our task can be mainly
set to constructing the slotted RFE schemes. Commonly, we start with the inner
product setting.

Slotted Registered Inner Product Functional Encryption. We use the
IPFE scheme in [35] as the underlying centralized FE scheme. We provide a brief
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description of this IPFE scheme:

crs =([A]1, [AV]1);

ct =(C1 = [sA]1, C2 = [sAV + x]1);

sk =([Vf ]2);

Dec : e(C2, [f ]2) · e(C1, sk)
−1 = [sAVf + xf − sAVf ]T = [xf ]T .

As [29], we first put the sk in the crs, thus eliminating the central entity for
issuing the sk. Then, from mathematical side, we observe that the key point to
recover [xf ]T is to obtain [sAVf ]T . Thus, to embed the public key encryption,
our idea is to add an extra term regarding the public key encryption to [sAVf ]T ,
so that obtaining [sAVf ]T requires obtaining the term regarding the public key
encryption first.

The term regarding the public key encryption in our scheme follows a similar
algebraic structure in [29], i.e., the aggregation of public keys attaching to a
user slot. Concretely, it is of the form as [sA

∑
tUtWifi]T (as [sAVf ]T , this

is reflected in the decryption). And we require the public key of each user only
leaks information about [UiWtfj ]2 for any t 6= i, so that only the user i himself
can subtract [sAUiWifi]T and thus subtract [sA

∑
tUtWifi]T , with his secret

key Ui. At this time, our draft is as below:

crs =([A]1, [AV]1, [AV1]1, {[Wifj ]2}i,j , {[V1Wif +Vfj ]2}i,j);
pki =([P 2

i,t,j ]]1 = [AUi]1, {[P 2
i,t,j ]2} = {[UiWtfj ]2}i 6=t,j);

ski =Ui;

mpk =([A
∑
i

Ui]1, [A]1, [AV]1, [AV1]1);

hski =(i, fi, [
∑
t 6=i

UtWifi]2, [V1Wifi +Vfi]2, [Wifi]2);

ct =(C1 = [sA]1, C2 = [sAV + x]1, C3 = [sAV1 + sA
∑
t

Ut]1).

In the above draft, V1 is used to link V and
∑
tUt.

It seems that we have almost accomplished our task, except validating the
pki. However, note that in light of the syntax of slotted RFE (c.f. Section 3.6),
the registered {fi}i should be embedded in the mpk and thus in the ct. To do this,
since the aggregation of mpk takes only public information, thus all we can utilize
to embed the registered {fi}i are {[Wifj ]2}i,j and {[V1Wif+Vfj ]2}i,j from the
crs. Observe that these are in G2, thus we cannot carry over the above method of
"sticking an extra term to [sAVf ]T " by adding them to C2 or C3 in the ct, since
C2 and C3 are in G1. Instead, we use an independent term [sAV2

∑
tWtft]T to

embed the registered {fi}i. To link [sAV2

∑
tWtft]T with the above draft, we

replace C2 in the ct with [sAV+x+η ·(1, 0, ..., 0)]1, and add C4 = [sAV2]1, C5 =
[sAV2

∑
tWtft − η]T to the ct. C5 and the replaced C2 are used to ensure that

[sAV2

∑
tWtft]T works, C4 is used to cancel [sAV2

∑
tWtft]T .
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Note that there is a minor flaw that η · (1, 0, ..., 0)fi might not equal η (if the
first component of fi is not equal to 1), so that [−η]T in C5 cannot cancel out
[η · (1, 0, ..., 0)fi]T . To tackle this, in the course of encryption and decryption,
we change fi into f ′i , where fi = αif

′
i and the first component of f ′i is 1. Since

fi is public, this can be achieved without sacrificing the privacy. As for the
correctness, we can simply multiply αi to the decryption output in the exponent.
Then our draft becomes:

crs =([A]1, [AV]1, [AV1]1, [AV2]1, {[Wifj ]2}i,j , {[V1Wif ++V2Wjfj +Vfj ]2}i,j);
pki =([P 1

i ]1 = [AUi]1, {[P 2
i,t,j ]2} = {[UiWtfj ]2}i6=t,j);

ski =Ui;

mpk =([A
∑
i

Ui]1, [
∑
i

Wif
′
i ]2, [A]1, [AV]1, [AV1]1, [AV2]1);

hski =(i, fi, [
∑
t 6=i

UtWif
′
i ]2, [V1Wif

′
i +V2Wif

′
i +Vf ′i ]2, [Wif

′
i ]2);

ct =(C1 = [sA]1, C2 = [sAV + x+ η · (1, 0, ..., 0)]1, C3 = [sAV1 + sA
∑
t

Ut]1,

C4 = [sAV2]1, C5 = [sAV2

∑
t

Wtf
′
t − η]T ).

As for the validity of the pki, note that for the correctness, it is sufficed to ensure
that e(P 1

i , [Wtfj ]2) = e([A]1, [P
2
i,t,j ]2) for each t 6= i and each j. As long as the

equations hold, the decryption will proceed successfully. And for the security, we
make the secret key Ui enabled to be extracted by bounding its range, so that
the validity of the pki in the security can be easily checked. We leave the details
of extracting the secret key in the following section for security.

Then we obtain our slotted RIPFE scheme as in Section 4.1. Overall, we first
combine the centralized FE scheme [35] and the traditional public key encryp-
tion, next we embed the registered {fi}i into the mpk, then we add a validation
mechanism for the public keys, eventually we construct a slotted RIPFE scheme
satisfying the syntax of slotted RIPFE.

Slotted Registered Quadratic Functional Encryption. For the slotted
RQFE, we use the Quadratic Functional Encryption (QFE) scheme in [36] as
the underlying centralized FE scheme. This QFE scheme is based on the IPFE
scheme in [35], which is used by us for constructing our slotted RIPFE scheme.
Thus, a preliminary blueprint of our slotted RQFE seems to follow the framework
of QFE in [36], i.e., using our slotted RIPFE as a building block in the black-
box manner. However, a halfway issue is that "the cancel of η" doesn’t work any
more, if applying our slotted RIPFE to our slotted RQFE in a straight-forward
manner. Inspired by [18], we tackle this by modifying the encrypted message
(x1,x2) into (x1‖η1,x2‖η2), and modifying the function fi into f̂i (c.f. equation
(2) to see f̂i), so that ((x1‖η1)⊗ (x2‖η2))f̂i = (x1 ⊗ x2)fi + η1 · η2. Then we can
cancel out [η1 · η2]T by replacing η in "C5" (in our slotted RIPFE) with η1 · η2.
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Security. Different from the existing pairing-based Registered Encryption schemes,
which all achieve adaptive-IND security, our RFE schemes achieve security in
weaker flavors, i.e., weakly selective-IND security, or weakly selective-SIM se-
curity. Roughly speaking, weakly selective-IND security is almost the same as
selective-IND security, except that we require that for any function f in the
function space, f(x∗0) = f(x∗1), where x∗0,x

∗
1 are the challenge messages, while

selective-IND security only requires the function f involved in the secret key
queries to satisfy f(x∗0) = f(x∗1); weakly selective-SIM security allows the ad-
versary to obtain more function values in the final simulation game but with-
out revealing the encrypted message. Weakly selective-SIM security seems to be
acceptable, since in centralized FE, under the precondition "not revealing the
message", the adversary can query secret keys as many as possible, which im-
plies that the adversary can obtain function values as many as possible. Further,
for our constructions, when the functions of the users that are corrupted by
the adversary cover the entire function space, weakly selective-SIM security is
equivalent to selective-SIM security.

Our security analysis roughly follows the proof ideas of IPFE in [35], QFE
in [36], and ABE in [12,13]. That is, we first utilize the computational indistin-
guishability from the MDDH assumption to transit the real game into a game
convenient for statistical indistinguishability, which relies on the "orthogonal-
ity", then we switch the challenge message in a sequence of steps.

However, a "rough blueprint" usually encounters some "unnoticeable" and
tough challenges. In our security analysis, a notable challenge of our slotted
RIPFE is that when programming the MDDH assumption, the challenger needs
to know the secret key Ui determined by the adversary (which is not known
directly by the challenger), so that the challenger can simulate the challenge ct.
To tackle this, we require that each secret key Ui is sampled over a bounded
range (i.e., the range of brute-force discrete log for the evaluated function value).
Since the challenger knows the master secret key (the master secret key only
appears in the security analysis, not in the real construction), thus the challenger
can obtain [Ui]T with the master secret key, and then extract Ui by brute-force
discrete log. If Ui cannot be computed or [Ui]T is not unique (with negligible
probability), we require the challenger to abort.

A similar challenge also appears in the security analysis of our slotted RQFE.
However, for our slotted RQFE, when programming the bi-MDDH assumption
and the MDDH assumption, carrying out the extraction method of our slotted
RIPFE in a straight-forward manner would be failed. This is because at this
time, the challenger lacks the matrices regarding the assumptions (the reduction
is in the black-box manner), and thus fails in computing [Ui]T . To tackle this,
we require each pki to extra include some auxiliary information, which can be
utilized by the challenger to compute [Ui]T and further to compute Ui.
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3 Preliminaries

3.1 Notations

We use negl to denote a negligible function in the security parameter λ ∈ N, use
←R to denote random sampling, use 0 to denote a zero matrix of proper size,
use In to denote an identity matrix of size n × n, where n ∈ N, and use ‖ to
denote concatenation of matrices. For an integer N , we use [N ] to denote the
set {1, ..., N}.

3.2 Prime-Order Bilinear Groups

A prime-order group generator G takes as input the security parameter λ in unary
notation and outputs a description G = (p,G1, G2, GT , e), where p is a prime,
G1, G2, GT are cyclic groups of order p, and e : G1×G2 → GT is an asymmetric
non-degenerated bilinear mapping. Let [1]1 = g1 ∈ G1, [1]2 = g2 ∈ G2 and
[1]T = gT = e(g1, g2) ∈ GT be the respective generators. For any a, b ∈ Zp, we
have e(ga1 , gb2) = e(g1, g2)

ab = gabT = [ab]T . We define [M]1 = gM1 , [M]2 = gM2
and [M]T = gMT , where M is a matrix over Zp, and exponentiation is carried out
component-wise. We also define e([A]1, [B]2) = [AB]T , where A,B are matrices
over Zp.

3.3 Matrix Diffie-Hellman Assumption

Let k, l , d ∈ N. The Matrix Decision Diffie-Hellman (MDDH) assumption [17]

says that for all p.p.t adversariesA, the following advantage function Adv
MDDHd

k,l

A (λ)
is negligible in λ:

Adv
MDDHd

k,l

A (λ) := |Pr[A(G, [M]1, [MS]1 ) = 1]− Pr[A(G, [M]1, [U]1 ) = 1]|,

where G = (p,G1, G2, GT , e)← G(1λ),M← Zl×k
p ,S← Zk×dp , and U← Zl×d

p .
MDDH assumption also holds similarly in G2.

3.4 Bilateral Matrix Diffie-Hellman Assumption

Let k, l , d ∈ N. The bilateral Matrix Decision Diffie-Hellman (bi-MDDH) as-
sumption says that for all p.p.t adversaries A, the following advantage function

Adv
bi-MDDHd

k,l

A (λ) is negligible in λ:

Adv
bi-MDDHd

k,l

A (λ) := |Pr[A(G, [M]1, [M]2, [MS]1 , [MS]2 ) = 1]−

Pr[A(G, [M]1, [M]2, [U]1 , [U]2 ) = 1]|,

where G = (p,G1, G2, GT , e)← G(1λ),M← Zl×k
p ,S← Zk×dp , and U← Zl×d

p .
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3.5 Registered Functional Encryption

Syntax. Suppose a message spaceM, and a function space F = {fu :M→ Y}.
A Registered Functional Encryption scheme consists of the following six algo-
rithms, where Setup,KeyGen,Enc are randomized algorithms, and RegPK,Update,
Dec are deterministic algorithms:

– Setup(1λ, 1|F|)→ crs: This algorithm takes as input the security parameter λ
in unary notation, and the size of the function space |F|. Output a common
reference string crs.

– KeyGen(crs, aux) → (pk, sk): This algorithm takes as input the crs, and a
(possibly empty) state aux. Output a public key pk, and a secret key sk.

– RegPK(crs, aux, pk, f) → (mpk, aux′): This algorithm takes as input the crs,
an aux, a pk, and a function f ∈ F . Output a master public key mpk, and a
new state aux′.

– Enc(mpk,m) → ct: This algorithm takes as input the mpk, and a message
m ∈M. Output a ciphertext ct.

– Update(crs, aux, pk) → hsk: This algorithm takes as input the crs, an aux,
and a pk. Output a helper decryption key hsk.

– Dec(sk, hsk, ct) → f(m) ∈ Y/ ⊥ /GetUpdate: This algorithm takes as input
a sk, a hsk, and a ct. Output a function value f(m) ∈ Y, or ⊥, or GetUpdate.

Correctness, Compactness, and Update Efficiency. Let ΠRFE = (Setup,
KeyGen,RegPK,Enc,Update,Dec) be a RFE scheme with message spaceM and
function space F . For a security parameter λ and an adversary A, we define the
following GameCorrΠRFE ,A(λ) between A and the challenger:

• Setup phase: The challenger runs crs ← Setup(1λ, 1|F|), and initializes the
state aux =⊥ and the initial master public key mpk0 =⊥. Also, the challenger
initializes three counters ctrreg = 0, ctrenc = 0, ctr∗reg =⊥ to keep track of
the number of registration queries, the number of encryption queries, and
the index of the target key, respectively. Also, it sets out = 0 (this variable
defines the output of the expriment). Finally, the challenger sends crs to A.

• Query phase: The adversary A can make the following queries:
• Register non-target key query: A sends a public key pk and a function
f ∈ F to the challenger, then the challenger proceeds as follows:
1. The challenger increments ctrreg = ctrreg+1 and runs (mpkctrreg , aux

′)
← RegPK(crs, aux, pk, f).

2. The challenger updates aux = aux′ and sends (ctrreg,mpkctrreg , aux)
to A.

• Register target key query: A sends a target function f∗ ∈ F to the chal-
lenger. If ctr∗reg 6=⊥ (i.e., A has already make a register target key query),
the challenger returns ⊥. Otherwise, the challenger proceeds as follows:
1. The challenger increments ctrreg = ctrreg+1, then runs (pk∗, sk∗)←

KeyGen(crs, aux) and (mpkctrreg , aux
′)RegPK(crs, aux, pk∗, f∗).

2. The challenger updates aux = aux′ and stores the index of the target
identity ctr∗reg ← ctrreg. Then run hsk∗ ← Update(crs, aux, pk∗).
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3. The challenger sends (ctrreg,mpkctrreg , aux, pk
∗, hsk∗, sk∗) to A.

• Encryption query: A chooses an index ctr[reg]∗ ≤ i ≤ ctrreg of a pub-
lic key, and a message m ∈ M. If ctr∗reg =⊥, the challenger returns
⊥. Otherwise, the challenger sets ctrenc = ctrenc + 1,mctrenc

= m,
and runs ctctrenc

← Enc(mpki,mctrenc
). Finally, the challenger returns

(ctrenc, ctctrenc) to A.
• Decryption query: A chooses an index 1 ≤ j ≤ ctrenc. The challenger runs
yj ← Dec(sk∗, hsk∗, ctj). If yj = GetUpdate, the challenger updates the
helper decryption key hsk∗ ← Update(crs, aux, pk∗) and recomputes yj ←
Dec(sk∗, hsk∗, ctj). If yj 6= f∗(mj), the experiment halts with output 1.

• End phase: When the adversary A has finished making queries and the exper-
iment has not halted (as a result of a decryption query), then the experiment
outputs 0.

Definition 1 (Correctness).We say an RFE scheme ΠRFE = (Setup,KeyGen,
RegPK,Enc,Update,Dec) with messge space M and function space F is correct
(resp. perfectly correct) if for all (possibly unbounded) adversaries A making at
most a polynomial number of queries, we have

Pr[GameCorrΠRFE ,A(λ) = 1] = negl (resp. Pr[GameCorrΠRFE ,A(λ) = 1] = 0).

Definition 2 (Compactness). Let N be the number of registration queries the
adversary A makes in GameCorrΠRFE ,A(λ), and n be the length of the encrypted mes-
sage. There exists a universal polynomial poly(·, ·, ·) such that for all i ∈ ctrreg,
|mpki| = poly(λ, n, logN). We also require that the size of the helper decryption
key hsk∗ satisfies |hsk∗| = poly(λ, n, logN) (at all points in GameCorrΠRFE ,A(λ)).

Definition 3 (Update Efficiency). Let N be the number of registration queries
the adversary A makes in GameCorrΠRFE ,A(λ). Then, in the course of GameCorrΠRFE ,A(λ),
the challenger invokes the update algorithm Update at most O(logN) times,
where each invocation runs in poly(logN) time in the RAM model of computa-
tion. Specifically, we model Update as a RAM program that has random access
to its input. Thus, the running time of Update in the RAM model can be smaller
than the input length.

Security Definition. The security definition of RFE is analogous to the stan-
dard FE security definition. Namely, each user of a slot should only gain the
function value fi(m) and nothing else about the message m ∈ M, given the
ciphertext ct of m, the slot secret key ski, and the helper decryption key hski,
where fi ∈ F is the registered function of slot i. As the standard FE, we de-
fine two kinds of security, one is weakly selective-indistinguishability security
(weakly selective-IND security), and the other is selective-simulation security
(selective-SIM security). We provide the formal definitions as below:

Weakly Selective-IND Security. We define the following GameSel−INDΠRFE ,A (λ) be-
tween A and the challenger:
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• Setup phase: The adversary A chooses two messages (m∗0,m∗1) overM, and
sends them to the challenger. The challenger runs crs← Setup(1λ, 1|F|, (m∗0,m

∗
1)),

and initializes the state aux =⊥ and the master public key mpk =⊥. Also,
the challenger initializes a counter ctr = 0 (for the number of honest reg-
istration queries made by A), a set of corrupted public keys C = ∅, and a
dictionary D = ∅ (storing the mapping between registered public keys and
their corresponding functions). Finally, the challenger sends crs to A.

• Query phase: The adversary A can make the following queries:
• Register corrupted key query: A sends a public key pk and a function f ∈
F to the challenger. Then the challenger proceeds as follows:
1. The challenger computes (mpk′, aux′)← RegPK(crs, aux, pk, f).
2. The challenger updates aux = aux′,mpk = mpk′, C = C ∪ {pk}, and

D[pk] = D[pk] ∪ {f}.
3. The challenger sends (aux,mpk) to A.

• Register honest key query: A sends a target function f ∈ F . Then the
challenger proceeds as follows:
1. The challenger sets ctr = ctr+1 and runs (pkctr, skctr)← KeyGen(crs, aux).
2. The challenger registers (pkctr, f) by running (mpk′, aux′)← RegPK(crs,

aux, pkctr, f).
3. The challenger updates aux = aux′,mpk = mpk′, and D[pkctr] =

D[pkctr] ∪ {f}.
4. The challenger sends (ctr, aux,mpk, pkctr) to A.

• Corrupt honest key: A chooses an index i ∈ [ctr]. The challenger updates
C = C ∪ {pki} and sends ski to A, where (pki, ski) is the i-th public and
secret key generated during the i-th honest registration query.

• Challenge phase: The challenger runs ct∗ ← Enc(mpk,m∗b), where b← {0, 1},
and sends ct∗ to A.

• Output phase: A outputs a bit b′ ∈ {0, 1}.

An adversary A is said valid if f(m∗0) = f(m∗1) for each f ∈ F . And as
shown in [28,18], security without post-challenge queries (corrupt honest key
queries) implies security with post-challenge queries. In other words, selective
corruptions imply adaptive corruptions. Note that compared with the defini-
tion in [18], in which an adversary A is said valid if f(m∗0) = f(m∗1) for every
f ∈ {f ∈ D[pk]|pk ∈ C}, our definition is weaker. This is also why our definition
is called weakly selective-IND security.

Definition 4 (Weakly Selective-IND Security). We say an RFE scheme
ΠRFE = (Setup,KeyGen,RegPK,Enc,Update,Dec) with messge space M and
function space F is weakly selective-IND secure, if for all p.p.t valid adversaries
A, we have

|Pr[GameSel−INDΠRFE ,A (λ, 1) = 1]− Pr[GameSel−INDΠRFE ,A (λ, 0) = 1]| = negl.

Selective-SIM Security. We define the following real ensembles:
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– Setup(1λ, 1L, 1|F|,m∗) → crs: This algorithm takes as input the security
parameter λ in unary notation, the number of slots L, the size of the function
space |F|, and a challenge message m∗ from A. Output a common reference
string crs.

– KeyGen(crs, aux) → (pk, sk): This algorithm takes as input the crs, and a
(possibly empty) state aux. Output a public key pk, and a secret key sk.

– RegPK(crs, aux, pk, f) → (mpk, aux′): This algorithm takes as input the crs,
an aux, a pk, and a function f ∈ F by A. Output a master public key mpk,
and a new state aux′.

– Enc(mpk,m∗)→ ct: This algorithm takes as input the mpk, and a challenge
message m∗inM from A. Output a challenge ciphertext ct.

We define the following ideal ensembles:

– Setup∗(1λ, 1L, 1|F|,m∗) → (crs∗,msk∗): This algorithm takes as input the
security parameter λ in unary notation, the number of slots L, the size
of the function space |F|, and a challenge message m∗ from A. Output a
simulated common reference string crs∗, and a master secret key msk∗.

– KeyGen∗(crs∗, aux∗)→ (pk∗, sk∗): This algorithm takes as input the crs∗, and
a (possibly empty) state aux∗. Output a public key pk∗, and a secret key sk∗.

– RegPK∗(crs∗, aux∗, pk∗, f) → (mpk∗, aux′∗): This algorithm takes as input
the crs∗, an aux∗, a pk∗, and a function f ∈ F . Output a master public key
mpk∗, and a new state aux′∗.

– Enc∗(msk∗, σ)→ ct∗: This algorithm takes as input the msk∗, and auxiliary
information σ. Output a challenge ciphertext ct∗.

Definition 5 (Selective-SIM Security). We say an RFE scheme ΠRFE =
(Setup,KeyGen,RegPK,Enc,Update,Dec) with messge spaceM and function space
F is selective-SIM secure, if for all p.p.t adversaries A, the above two ensem-
bles in A’s view, i.e., (crs, pk,mpk, aux′, ct) and (crs∗, pk∗,mpk∗, aux′∗, ct∗), are
computationally indistinguishable.

We further define weakly seletive-SIM security, which demonstrates the
adversary obtain more function values than they should have obtained, but with-
out revealing the message. This seems to be acceptable, since in centralized FE,
under the precondition "not revealing the message", the adversary can query
secret keys as many as possible.

In our constructions, when the functions of the users that are corrupted by
the adversary cover the entire function space, weakly selective-SIM security is
equivalent to selective-SIM security.

3.6 Slotted Registered Functional Encryption

Syntax. Suppose a message space M, and a function space F = {fu : M →
Y}. A slotted Registered Functional Encryption scheme consists of the follow-
ing six algorithms, where Setup,KeyGen,Enc are randomized algorithms, and
IsValid,Aggr,Dec are deterministic algorithms:
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– Setup(1λ, 1L, 1|F|)→ crs: This algorithm takes as input the security param-
eter λ in unary notation, the number of slots L, and the size of the function
space |F|. Output a common reference string crs.

– KeyGen(crs, i)→ (pki, ski): This algorithm takes as input the crs, and a slot
index i ∈ [L]. Output a public key pki, and a secret key ski.

– IsValid(crs, i, pki)→ 0/1: This algorithm takes as input the crs, a slot index
i ∈ [L], and a public key pki. Output a bit 0, or 1.

– Aggr(crs, {(pki, fi ∈ F)}i∈[L]) → (mpk, {hski}i∈[L]): This algorithm takes as
input the crs, and L pairs (pk1, f1 ∈ F), ..., (pkL, fL ∈ F). Output a master
public key mpk, and L helper decryption keys {hski}i∈[L].

– Enc(mpk,m) → ct: This algorithm takes as input the mpk, and a message
m ∈M. Output a ciphertext ct.

– Dec(sk, hsk, ct) → f(m) ∈ Y/ ⊥: This algorithm takes as input a sk, a hsk,
and a ct. Output a function value f(m) ∈ Y, or ⊥.

Definition 6 (Completeness).We say a slotted RFE scheme ΠsRFE = (Setup,
KeyGen, IsValid,Aggr,Enc,Dec) with messge space M and function space F is
completeness, if for any λ ∈ N, any L ∈ N, and any i ∈ [L], we have

Pr[IsValid(crs, i, pki) = 1|crs← Setup(1λ, 1L, 1|F|), (pki, ski)← KeyGen(crs, i)] = 1.

Definition 7 (Perfect Correctness). We say a slotted RFE scheme ΠsRFE =
(Setup,KeyGen, IsValid,Aggr,Enc,Dec) with messge spaceM and function space
F is perfectly correct, if for any λ ∈ N, any L ∈ N, any i ∈ [L], any crs ←
Setup(1λ, 1L, 1|F|), any (pki, ski) ← KeyGen(crs, i), for all collection of public
key {pkj}j∈[L]\{i} such that 1 ← IsValid(crs, j, pkj), for any m ∈ M, and any
f1, ..., fL ∈ F , we have

Pr

[
fi(m)← Dec(ski, hski, ct)

∣∣∣∣ (mpk, {hskt}t∈[L])← Aggr(crs, {(pkt, ft)}t∈[L]);
ct← Enc(mpk,m);

]
= 1.

Definition 8 (Compactness). Let n be the length of the encrypted message.
There exists a universal polynomial poly(·, ·) such that the size of the master
public key and individual helper secret key output by Aggr is poly(λ, n).

Security Definition. The security definition of slotted RFE is analogous to the
security definition of RFE. As RFE, we define weakly selective-indistinguishability
security (weakly selective-IND security), and selective-simulation security (selective-
SIM security), for slotted RFE. We provide the formal definitions as below:

Weakly Selective-IND Security. We define the following GameSel−INDΠsRFE ,A (λ) be-
tween A and the challenger:

• Setup phase: The adversary A chooses two messages (m∗0,m∗1) overM, and
sends (m∗0,m

∗
1) as well as the number of slots L to the challenger. The

challenger runs crs← Setup(1λ, 1L, 1|F|, (m∗0,m
∗
1)), and initializes a counter

ctr = 0, a dictionary D = ∅, and a set of corrupted slot indexes C = ∅.
Finally, the challenger sends crs to A.
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• Query phase: The adversary A can make the following queries:
• Honest key generation query: A sends i ∈ [L] to the challenger. The chal-

lenger sets ctr = ctr + 1, runs (pkctr, skctr) ← KeyGen(crs, i), and sets
D[ctr] = (i, pkctr, skctr). Finally, the challenger sends (ctr, pkctr) to A.

• Corruption query:A sends j ∈ [ctr] to the challenger. The challenger sends
sk′, where (i′, pk′, sk′) = D[j], to A. Let QCorr be the set of corruption
queries made by A.

• Challenge phase: A sends the challenge ({c∗i , f∗i , pk
∗
i }i∈[L]), where c∗i ∈ [ctr]∪

{⊥}. Then, for each i ∈ [L], the challenger proceeds as follows:
- If c∗i ∈ [ctr], the challenger retrieves (i′, pk′, sk′) = D[c∗i ]. If i′ = i, the
challenger sets pki = pk′. In addition, if c∗i ∈ QCorr, the challenger
updates C = C ∪ {i}. Otherwise, if i′ 6= i, the challenger aborts.

- If c∗i =⊥, the challenger checks the validity of pk
∗
i . If 0← IsValid(crs, i, pki),

the challenger aborts. Otherwise, the challenger sets pki = pk∗i and up-
dates C = C ∪ {i}.

Finally, the challenger sends ct∗ ← Enc(mpk,m∗b), where b ← {0, 1} and
mpk, {hski}i∈[L] ← Aggr(crs, {(pki, f∗i )}), to A.

• Output phase: A outputs a bit b′ ∈ {0, 1}.

An adversary A is said valid if f(m∗0) = f(m∗1) for each f ∈ F . And as shown
in [28,18], security without post-challenge queries (corruption queries) implies
security with post-challenge queries. Note that compared with the definition in
[18], in which an adversaryA is said valid if f∗i (m∗0) = f∗i (m

∗
1) for every i ∈ C, our

definition is weaker. This is also why our definition is called weakly selective-IND
security.

Definition 9 (Weakly Selective-IND Security).We say a slotted RFE scheme
ΠsRFE = (Setup,KeyGen, IsValid,Aggr,Enc,Dec) with messge spaceM and func-
tion space F is weakly selective-IND secure, if for all p.p.t valid adversaries A,
we have

|Pr[GameSel−INDΠsRFE ,A (λ, 1) = 1]− Pr[GameSel−INDΠsRFE ,A (λ, 0) = 1]| = negl.

Selective-SIM Security. We define the following real ensembles:

– Setup(1λ, 1L, 1|F|,m∗) → crs: This algorithm takes as input the security
parameter λ in unary notation, the number of slots L, the size of the function
space |F|, and a challenge message m∗ from A. Output a common reference
string crs.

– KeyGen(crs, i)→ (pki, ski): This algorithm takes as input the crs, and a slot
index i ∈ [L]. Output a public key pki, and a secret key ski.

– IsValid(crs, i, pki)→ 0/1: This algorithm takes as input the crs, a slot index
i ∈ [L], and a public key pki. Output a bit 0, or 1.

– Aggr(crs, {(pki, fi ∈ F)}i∈[L]) → (mpk, {hski}i∈[L]): This algorithm takes as
input the crs, and L pairs (pk1, f1 ∈ F), ..., (pkL, fL ∈ F). Output a master
public key mpk, and L helper decryption keys {hski}i∈[L].

– Enc(mpk,m∗)→ ct: This algorithm takes as input the mpk, and a challenge
message m ∈M. Output a ciphertext ct.
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We define the following ideal ensembles:

– Setup∗(1λ, 1L, 1|F|,m∗) → (crs∗,msk∗): This algorithm takes as input the
security parameter λ in unary notation, the number of slots L, the size
of the function space |F|, and a challenge message m∗ from A. Output a
simulated common reference string crs∗, and a master secret key msk∗.

– KeyGen∗(crs∗, i) → (pk∗i , sk
∗
i ): This algorithm takes as input the crs∗, and a

slot index i ∈ [L]. Output a public key pk∗i , and a secret key sk∗i .
– IsValid∗(crs∗, i, pk∗i ) → 0/1: This algorithm takes as input the crs∗, a slot

index i ∈ [L], and a public key pk∗i . Output a bit 0, or 1.
– Aggr∗(crs∗, {(pk∗i , fi ∈ F)}i∈[L])→ (mpk∗, {hsk∗i }i∈[L]): This algorithm takes

as input the crs∗, and L pairs (pk∗1, f1), ..., (pk
∗
L, fL). Output a master public

key mpk∗, and L helper decryption keys {hsk∗i }i∈[L].
– Enc∗(msk∗, σ)→ ct∗: This algorithm takes as input the msk∗, and auxiliary

information σ. Output a ciphertext ct∗.

Definition 10 (Selective-SIM Security).We say a slotted RFE scheme ΠsRFE =
(Setup,KeyGen, IsValid,Aggr,Enc,Dec) with messge spaceM and function space
F is selecive-SIM secure, if for all p.p.t adversaries A, the above two ensembles in
A’s view, i.e., (crs, {pki}i,mpk, {hski}i, ct) and (crs∗, {pk∗i }i,mpk∗, {hsk∗i }i, ct∗),
are computationally indistinguishable.

We further define weakly seletive-SIM security, which demonstrates the
adversary obtain more function values than they should have obtained, but with-
out revealing the message. This is seems to be acceptable, since in centralized FE,
under the precondition "not revealing the message", the adversary can query se-
cret keys as many as possible.

In our constructions, when the functions of the users that are corrupted by
the adversary cover the entire function space, weakly selective-SIM security is
equivalent to selective-SIM security.

4 Slotted Registered Inner-Product Functional
Encryption

4.1 Construction ΠsRIPFE

We construct a slotted Registered Inner-Product Functional Encryption (slotted
RIPFE) scheme ΠsRIPFE = (Setup,KeyGen, IsValid,Aggr,Enc,Dec) with mes-
sage space M = Z1×n

p , function space F = {fj ∈ Zn×1p }j<n, where n ∈ N, a
function value upperbound B, and an a-priori fixed number of slots L = L(λ)
as follows:

– Setup(1λ, 1n, 1L, 1|F|): Run the group generator G = (p,G1, G2, GT , e) ←
G(1λ). Sample A←R Zk×(k+1)

p ,V,V1,V2 ←R Z(k+1)×n
p , and Wi ←R Zn×np

for each i ∈ [L]. Output

crs = (G, [A]1, [AV]1, [AV1]1, [AV2]1, {[Wifj ]2}i∈[L],j∈[|F|],
{[V1Wifj +V2Wifj +Vfj ]2}i∈[L],j∈[|F|]).
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– KeyGen(crs, i): Sample Ui ←R Z(k+1)×n
p , which satisfies each component of

Ui is bounded by the brute-force discrete log bound B (used in the security
proofs). Store ski = Ui. Output

pki = ([P 1
i ]1 = [AUi]1, {[P 2

i,t,j ]2} = {[UiWtfj ]2}t 6=i,j∈[|F|]).

– IsValid(crs, i, pki): Check
1. whether [P 1

i ]1 in pki are elements in G1?
2. whether {[P 2

i,t,j ]2} in pki are elements in G2?
3. whether e([P 1

i ]1, [Wtfj ]2) = e([A]1, [P
2
i,t,j ]2), for each t 6= i, j ∈ [|F|]?

If any fails, output 0. Otherwise, output 1.
– Aggr(crs, (pk1, f

1), ..., (pkL, f
L)): For the target functions {f i}i∈[L], set each

f i = αif
′i, where the first component of f

′i equals 1. Output

mpk = ([A
∑
i∈[L]

Ui]1, [
∑
i∈[L]

Wif
′i]2, [A]1, [AV]1, [AV1]1, [AV2]1);

{hski = (i, f i, [
∑

t 6=i,t∈[L]

UtWif
′i]2, [

∑
t6=i,t∈[L]

Wtf
′t]2), [V1Wif

′i +V2Wif
′i +Vf

′i]2,

[Wif
′i]2}i∈[L].

– Enc(mpk,x ∈M): Sample s←R Z1×k
p , and η ←R Zp. Output

ct = (C1 = [sA]1, C2 = [sAV + x+ η · (1, 0, ..., 0︸ ︷︷ ︸
n′s

)]1,

C3 = [sAV1 + sA
∑
t∈[L]

Ut]1, C4 = [sAV2]1,

C5 = [sAV2

∑
t∈[L]

Wtf
′t − η]T ).

– Dec(ski, hski, ct): For the target f i, set f i = αif
′i, where the first component

of f
′i equals 1. Since αi can be gained from f i, [Wif

′i]2 can be gained
by computing [α−1i Wif

i]2. Similar for [V1Wif
′i +V2Wif

′i +Vf
′i]2. Then

compute [α−1i γ]T as follows:

e(C2, [f
′i]2︸︷︷︸

hski

) · e(C1, [V1Wif
′i +V2Wif

′i +Vf
′i]2︸ ︷︷ ︸

hski

)−1 · e(C3, [Wif
′i]2︸ ︷︷ ︸

hski

)·

e(C1, [
∑

t 6=i,t∈[L]

UtWif
′i]2︸ ︷︷ ︸

hski

)−1 · e(C1, [ Ui︸︷︷︸
ski

Wif
′i]2︸ ︷︷ ︸

hski

)−1 · e(C4, [
∑

t 6=i,t∈[L]

Wtf
′t]2︸ ︷︷ ︸

hski

)−1 · C5.

Output γ by brute-force discrete log.

Theorem 1 (Completeness of Construction ΠsRIPFE). The slotted RIPFE
construction ΠsRIPFE with message spaceM = Z1×n

p , function space F = {fj ∈
Zn×1p }j<n, a function value upperbound B, and an a-priori fixed number of slots
L = L(λ) is complete.
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Proof. We proceed the checks as follows:

1. It is easy to see that [P 1
i ]1 in pki are elements in G1.

2. It is easy to see that {[P 2
i,t,j ]2} in pki are elements in G2.

3. For each t 6= i, j ∈ [|F|], we have e([P 1
i ]1, [Wtfj ]2) = [AUiWtfj ]T =

e([A]1, [P
2
i,t,j ]2).

All the checks pass, thus, IsValid(crs, i, pki) outputs 1 and completeness holds.

Theorem 2 (Compactness of Construction ΠsRIPFE). The slotted RIPFE
construction ΠsRIPFE with message spaceM = Z1×n

p , function space F = {fj ∈
Zn×1p }j<n, a function value upperbound B, and an a-priori fixed number of slots
L = L(λ) satisfies the following properties:

– |mpk| = n · poly(λ).
– For each i ∈ [L], |hski| = n · poly(λ) +O(logL).

Proof. We can see inmpk, [A
∑
i∈[L] Ui]1 is of kn group elements, [

∑
i∈[L] Wif

i]2
is of n group elements, [A]1 is of k(k + 1) group elements, [AV]1 is of kn group
elements, [AV1]1 is of kn group elements, and [AV2]1 is of kn group elements.
Each group element is of poly(λ) size. Thus, when we omit k, which is the
parameter of the MDDH assumption, the size of mpk is n · poly(λ).

Similarly, in hski, i is ofO(logL) size, f i is of n ring elements, [
∑
t 6=i,t∈[L] UtWif

i]2

is of (k+1) group elements, [
∑
t 6=i,t∈[L] Wtf

t]2 is of n group elements, [V1Wif
′i+

V2Wif
′i + Vf

′i]2 is of (k + 1) group elements, and [Wif
′i]2 is of n group el-

ements. Each ring element or group element is of poly(λ) size. Thus, when we
omit k, which is the parameter of the MDDH assumption, the size of hski is
n · poly(λ) +O(logL).

Theorem 3 (Correctness of Construction ΠsRIPFE). The slotted RIPFE
construction ΠsRIPFE with message spaceM = Z1×n

p , function space F = {fj ∈
Zn×1p }j<n, a function value upperbound B, and an a-priori fixed number of slots
L = L(λ) is perfectly correct.

Proof. We proceed the proof in two steps.

1. We first demonstrate the correctness in the case that each pki, i ∈
[L] is of the right form.
Fix some λ, message size n = n(λ), the number of slots L = L(λ), the size
of function space |F|, and an index i ∈ [L]. Let crs← Setup(1λ, 1n, 1L, 1|F|)
and (pki, ski)← KeyGen(crs, i) be defined as in Construction ΠsRIPFE . Take
any set of public keys {pkj}j∈[L]\{i}, where 1← IsValid(crs, j, pkj). For each
j ∈ [L], let f j be the target function associated with pkj . Let (mpk, {hski})←
Aggr(crs, {(pkj , f j)}j∈[L]). For a message x ∈M, let ct← Enc(mpk,x). Then
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the correctness follows:

e(C2, [f
′i]2) · e(C1, [V1Wif

′i +V2Wif
′i +Vf

′i]2)
−1 · e(C3, [Wif

′i]2)·

e(C1, [
∑

t 6=i,t∈[L]

UtWif
′i]2)

−1 · e(C1, [UiWif
′i]2)

−1 · e(C4, [
∑

t6=i,t∈[L]

Wtf
′t]2)

−1 · C5

=[sAVf
′i + xf

′i + η · (1, 0, ..., 0)f
′i − sAV1Wif

′i − sAV2Wif
′i − sAVf

′i+

sAV1Wif
′i + sA

∑
t∈[L]

UtWif
′i − sA

∑
t6=i,t∈[L]

UtWif
′i − sAUiWif

′i−

sAV2

∑
t6=i,t∈[L]

Wtf
′t + sAV2

∑
t∈[L]

Wtf
′t − η]T

=[xf
′i]T .

Then by multiplying αi in the exponent, which can be obtained from f i, we
can finally obtain [xf i]T .

2. We then demonstrate that correctness holds as long as 1← IsValid(crs, j, pkj).
We replace [AUi]1 and [UiWtfj ]2 with [P 1

i ]1 and [P 2
i,t,j ]2, respectively. Then,

we have

e(C2, [f
′i]2) · e(C1, [V1Wif

′i +V2Wif
′i +Vf

′i]2)
−1 · e(C3, [Wif

′i]2)·

e(C1, [
∑

t 6=i,t∈[L]

UtWif
′i]2)

−1 · e(C1, [UiWif
′i]2)

−1 · e(C4, [
∑

t6=i,t∈[L]

Wtf
′t]2)

−1 · C5

=[sAVf
′i + xf

′i + η · (1, 0, ..., 0)f
′i − sAV1Wif

′i − sAV2Wif
′i − sAVf

′i+

sAV1Wif
′i + s

∑
t∈[L]

P 1
t Wif

′i − sA
∑

t 6=i,t∈[L]

P
′2
t,i,i − sAUiWif

′i−

sAV2

∑
t6=i,t∈[L]

Wtf
′t + sAV2

∑
t∈[L]

Wtf
′t − η]T , (1)

where P
′2
t,i,i = α−1i · (P 2

t,i,i).
By 1← IsValid(crs, j, pkj), we have

[P 1
t Wif

′i]T = [AP
′2
t,i,i]T ,

for each t 6= i. Thus we have

[s
∑

t 6=i,t∈[L]

P 1
t Wif

′i]T = [sA
∑

t6=i,t∈[L]

P
′2
t,i,i]T .

Since the rest [sP 1
i Wif

′i]T
?
= [sAWif

′i]T depends on whether the adversary
desires to proceed a successful decryption, we don’t need to consider it. Thus
the formula (1) equals [xf

′i]T .

Theorem 4 (Weakly Selective-IND Security of Construction ΠsRIPFE).
The slotted RIPFE construction ΠsRIPFE with message spaceM = Z1×n

p , func-
tion space F = {fj ∈ Zn×1p }j<n, a function value upperbound B, and an a-priori
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fixed number of slots L = L(λ) is weakly selective-IND secure relying on the
MDDH assumption.

Proof.
Games. We define the following games:

– Game0: This is the game with the real construction and choosing x∗1 as the
encrypted message.

– Game1: This is the same as Game0, except that we change Setup and Enc
with the challenge messages (x∗0,x∗1) as follows:

• Setup(1λ, 1n, 1L, 1|F|): Run the group generatorG = (p,G1, G2, GT , e)←
G(1λ). Sample A ←R Zk×(k+1)

p ,V,V1,V2 ←R Z(k+1)×n
p , and Wi ←R

Zn×np for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies

Aa⊥> = 0 ∈ Zk×1p . Output

crs = (G, [A]1, [AV]1, [AV1]1, [AV2]1, {[Wifj ]2}i∈[L],j∈[|F|],
{[V1Wifj +V2Wifj +Vfj ]2}i∈[L],j∈[|F|]);

msk = (a⊥,A,V,V1,V2, {Wi}i∈[L]).

• Enc(mpk,x∗1,msk, {ski}i∈[L]): Sample c←R Z1×(k+1)
p , which satisfies ca⊥> =

1, and η ←R Zp. Output

ct = (C1 = [c]1, C2 = [cV + x∗1 + η · (1, 0, ..., 0︸ ︷︷ ︸
n′s

)]1,

C3 = [cV1 + c
∑
t∈[L]

Ut]1, C4 = [cV2]1,

C5 = [cV2

∑
t∈[L]

Wtf
′t − η]T ).

– Game2: This is the same as Game1, except that we change Setup and Enc
with the challenge messages (x∗0,x∗1) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x∗0,x
∗
1)): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). Sample A ←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×n

p , and Wi ←R

Zn×np for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies

Aa⊥> = 0 ∈ Zk×1p . Output

crs = (G, [A]1, [AṼ]1, [AV1]1, [AV2]1, {[Wifj ]2}i∈[L],j∈[|F|],

{[V1Wifj +V2Wifj + (Ṽ + a⊥>(x∗0 − x∗1))fj ]2}i∈[L],j∈|[F ]|);

msk = (a⊥,A, Ṽ,V1,V2, {Wi}i∈[L]).



19

• Enc(mpk,x∗0,msk, {ski}i∈[L]): Sample c←R Z1×(k+1)
p , which satisfies ca⊥> =

1, and η ←R Zp. Output

ct = (C1 = [c]1, C2 = [cṼ + x∗0 + η · (1, 0, ..., 0︸ ︷︷ ︸
n′s

)]1,

C3 = [cV1 + c
∑
t∈[L]

Ut]1, C4 = [cV2]1,

C5 = [cV2

∑
t∈[L]

Wtf
′t − η]T ).

– Game3: This is the same as Game2, except that we change Setup and Enc
with the challenge messages (x∗0,x∗1) as follows:
• Setup(1λ, 1n, 1L, 1|F|): Run the group generatorG = (p,G1, G2, GT , e)←
G(1λ). Sample A ←R Zk×(k+1)

p , Ṽ,V1,V2 ←R Z(k+1)×n
p , and Wi ←R

Zn×np for each i ∈ [L]. Output

crs = (G, [A]1, [AṼ]1, [AV1]1, [AV2]1, {[Wifj ]2}i∈[L],j∈[|F|],

{[V1Wifj +V2Wifj + Ṽfj ]2}i∈[L],j∈|[F ]|);

msk = (a⊥,A, Ṽ,V1,V2, {Wi}i∈[L]).

• Enc(mpk,x∗0): Sample s←R Z1×k
p , and η ←R Zp. Output

ct = (C1 = [sA]1, C2 = [sAṼ + x∗0 + η · (1, 0, ..., 0︸ ︷︷ ︸
n′s

)]1,

C3 = [sAV1 + sA
∑
t∈[L]

Ut]1, C4 = [sAV2]1,

C5 = [sAV2

∑
t∈[L]

Wtf
′t − η]T ).

Lemma 1. We have |AdvGame0,A(λ)−AdvGame1,A(λ)| ≤ AdvMDDH
B1,G1

(λ), where B1
is the adversary for the MDDH assumption in G1.

Proof. Suppose a challenger B1. The adversary A sends (x∗0,x∗1) and the number
of slots L to B1. B1 runs the group generator G = (p,G1, G2, GT , e) ← G(1λ),
and samples V,V1,V2 ←R Z(k+1)×n

p , Wi ←R Zn×np for each i ∈ [L]. B1 receives
([A]1, [T ]1) from the underlying MDDH assumption. For A, there exist a⊥ ∈
Z1×(k+1)
p such that Aa⊥> = 0 ∈ Zk×1p . Then B1 generates

crs = (G, [A]1, [AV]1, [AV1]1, [AV2]1, {[Wifj ]2}i∈[L],j∈[|F|],
{[V1Wifj +V2Wifj +Vfj ]2}i∈[L],j∈[|F|]);

msk = (V,V1,V2, {Wi}i∈[L]).

B1 initializes a counter ctr = 0, a dictionary D = ∅, and a set of corrupted slot
indexes C = ∅. B1 sends crs to A.
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Upon receiving an honest key generation query i ∈ [L] from A, B1 sets
ctr = ctr + 1, and generates (pkctr, skctr) as follows:

Sample Ui ←R Z(k+1)×n
p , which satisfies each component of Ui is bounded

by B. Set

pkctr = ([AUi]1, {[UiWtfj ]2}t6=i,j∈[|F|]);
skctr = Ui.

Upon receiving a corruption query j ∈ [ctr] from A, B1 sends sk′ to A, where
(i′, pk′, sk′) = D[j]. Let QCorr be the set of corruption queries made by A.

Upon receiving the challenge ({c∗i , f i∗, pk
∗
i }i∈[L]) from A, where c∗i ∈ [ctr]∪{⊥

}. Then for each i ∈ [L], B1 proceeds as follows:

– If c∗i ∈ [ctr], B1 retrieves (i′, pk′, sk′) = D[c∗i ]. If i′ = i, B1 sets pki = pk′. In
addition, if c∗i ∈ Q, B1 updates C = C ∪ {i}. Otherwise, if i′ 6= i, B1 aborts.

– If c∗i =⊥, B1 checks the validity of pk∗i . If 0← IsValid(crs, i, pk∗i ), B1 aborts.
Otherwise, 1 ← IsValid(crs, i, pk∗i ), B1 computes ski = Ui with msk and
brute-force discrete log (If Ui cannot be computed, B1 aborts. And note
that only with negligible probability, [Ui]T is not unique, in this case, B1
also aborts.). Then B1 sets pki = pk∗i and updates C = C ∪ {i}. B1 sets
f i∗ = αif

′i∗ for each i ∈ [L].

B1 samples η ←R Zp and generates ct∗ as follows:

C1 = [ T ]1, C2 = [ T V + x∗1 + η · (1, 0, ..., 0︸ ︷︷ ︸
n′s

)]1,

C3 = [ T V1 + T
∑
t∈[L]

Ut]1, C4 = [ T V2]1,

C5 = [ T V2

∑
t∈[L]

Wtf
′t∗ − η]T ).

B1 generates mpk, {hski}i∈[L] as follows:

mpk = ([A
∑
i∈[L]

Ui]1, [
∑
i∈[L]

Wif
′i∗]2, [A]1, [AV]1, [AV1]1, [AV2]1);

{hski = (i, f i∗, [
∑

t6=i,t∈[L]

UtWif
′i∗]2, [

∑
t6=i,t∈[L]

Wtf
′t∗]2), [V1Wif

′i∗ +V2Wif
′i∗ +Vf

′i∗]2,

[Wif
′i∗]2}i∈[L].

B1 sends (ct∗,mpk, {hski}i∈[L]) to A.
Observe when T = sA, where s ←R Z1×k

p , the distributions are as Game0;
when T = c, where c←R Z1×(k+1)

p satisfying ca⊥> = 1, the distributions are as
Game1. Then if A can distinguish Game0 and Game1, B1 can utilize A to break
the MDDH assumption in G1. Thus lead to contradiction.
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Lemma 2. We have |AdvGame1,A(λ)− AdvGame2,A(λ)| = 0.

Proof. Sample Ṽ ←R Z(k+1)×n
p . Then change the variables by embedding the

challenge (x∗0,x
∗
1) into V as follows:

V = Ṽ + a⊥>(x∗0 − x∗1),

where the distributions are taken over the random choices of V and Ṽ.
We have AV = A(Ṽ + a⊥>(x∗0 − x∗1)) = AṼ. Then crs is changed into

crs = (G, [A]1, [ AṼ ]1, [AV1]1, [AV2]1, {[Wifj ]2}i∈[L],j∈[|F|],

{[V1Wifj +V2Wifj + (Ṽ + a⊥>(x∗0 − x∗1)) fj ]2}i∈[L],j∈|[F ]|).

ct∗ is changed into

ct∗ = (C1 = [c]1, C2 = [ cṼ + x∗0︸ ︷︷ ︸
c(Ṽ+a⊥>(x∗0−x∗1))+x∗1

+η · (1, 0, ..., 0︸ ︷︷ ︸
n′s

)]1,

C3 = [cV1 + c
∑
t∈[L]

Ut]1, C4 = [cV2]1,

C5 = [cV2

∑
t∈[L]

Wtf
′t∗ − η]T ).

Therefore, Game1 and Game2 are identically distributed. Notably, it is re-
quired that for each j ∈ |[F ]|, we have fj(x

∗
0) = fj(x

∗
1), thus (Ṽ + a⊥>(x∗0 −

x∗1))fj = Ṽfj .

Lemma 3. We have |AdvGame2,A(λ)−AdvGame3,A(λ)| ≤ AdvMDDH
B2,G1

(λ), where B2
is the adversary for the MDDH assumption in G1.

Proof. This proof is similar to the proof of Lemma 1, we omit it here.

Theorem 5 (Weakly Selective-SIM Security of Construction ΠsRIPFE).
The slotted RIPFE construction ΠsRIPFE with message spaceM = Z1×n

p , func-
tion space F = {fj ∈ Zn×1p }j<n, a function value upperbound B, and an a-priori
fixed number of slots L = L(λ) is weakly selective-SIM secure relying on the
MDDH assumption.

Remark 1. When the functions of the users that are corrupted by the adversary
cover the entire function space, for ΠsRIPFE, weakly selective-SIM security is
equivalent to selective-SIM security.

Proof.
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Games. We define the following games, where Game2 is the output of the simu-
lator:

– Game0: This is as the real scheme.
– Game1: This is the same as Game0, except that we change Setup and Enc

with the challenge message x∗ as follows:
• Setup(1λ, 1n, 1L, 1|F|): Run the group generatorG = (p,G1, G2, GT , e)←
G(1λ). Sample A ←R Zk×(k+1)

p ,V,V1,V2 ←R Z(k+1)×n
p , and Wi ←R

Zn×np for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies

Aa⊥> = 0 ∈ Zk×1p . Output

crs = (G, [A]1, [AV]1, [AV1]1, [AV2]1, {[Wifj ]2}i∈[L],j∈[|F|],
{[V1Wifj +V2Wifj +Vfj ]2}i∈[L],j∈[|F|]);

msk = (a⊥,A,V,V1,V2, {Wi}i∈[L]).

• Enc(mpk,x∗,msk, {ski}i∈[L]): Sample c←R Z1×(k+1)
p , which satisfies ca⊥> =

1, and η ←R Zp. Output

ct = (C1 = [c]1, C2 = [cV + x∗ + η · (1, 0, ..., 0︸ ︷︷ ︸
n′s

)]1,

C3 = [cV1 + c
∑
t∈[L]

Ut]1, C4 = [cV2]1,

C5 = [cV2

∑
t∈[L]

Wtf
′t − η]T ).

– Game2: This is the same as Game1, except that we change Setup and Enc
with the challenge message x∗ as follows:
• Setup(1λ, 1n, 1L, 1|F|,x∗): Run the group generatorG = (p,G1, G2, GT , e)←
G(1λ). Sample A ←R Zk×(k+1)

p , Ṽ,V1,V2 ←R Z(k+1)×n
p , and Wi ←R

Zn×np for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies

Aa⊥> = 0 ∈ Zk×1p . Output

crs = (G, [A]1, [AṼ]1, [AV1]1, [AV2]1, {[Wifj ]2}i∈[L],j∈[|F|],

{[V1Wifj +V2Wifj + (Ṽ − a⊥>x∗)fj ]2}i∈[L],j∈[|F|]);

msk = (a⊥,A, Ṽ,V1,V2, {Wi}i∈[L]).

• Enc(mpk,msk, {ski}i∈[L]): Sample c←R Z1×(k+1)
p , which satisfies ca⊥> =

1, and η ←R Zp. Output

ct = (C1 = [c]1, C2 = [cṼ + η · (1, 0, ..., 0︸ ︷︷ ︸
n′s

)]1,

C3 = [cV1 + c
∑
t∈[L]

Ut]1, C4 = [cV2]1,

C5 = [cV2

∑
t∈[L]

Wtf
′t − η]T ).
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Lemma 4. We have |Pr[Game0,A(λ) = 1]−Pr[Game1,A(λ) = 1]| ≤ AdvMDDH
B1,G1

(λ),
where B1 is the adversary for the MDDH assumption in G1.

Proof. Suppose a challenger B1. The adversary A sends x∗ and the number of
slots L to B1. B1 receives ([A]1, [T ]1) from the underlying MDDH assumption.
ForA, there exist a⊥ ∈ Z1×(k+1)

p such thatAa⊥> = 0 ∈ Zk×1p . Then B1 interacts
with A as follows:
B1 generates the output of Setup:
Run the group generatorG = (p,G1, G2, GT , e)← G(1λ), and sampleV,V1,V2 ←R

Z(k+1)×n
p , Wi ←R Zn×np for each i ∈ [L]. Output

crs = (G, [A]1, [AV]1, [AV1]1, [AV2]1, {[Wifj ]2}i∈[L],j∈[|F|],
{[V1Wifj +V2Wifj +Vfj ]2}i∈[L],j∈[|F|]);

msk = (V,V1,V2, {Wi}i∈[L]).

B1 sends crs to A.
B1 generates the output of KeyGen for honest users:

Sample Ui ←R Z(k+1)×n
p , which satisfies each component of Ui is bounded

by B. Output

pkctr = ([AUi]1, {[UiWtfj ]2}t6=i,j∈[|F|]);
skctr = Ui.

Upon receiving ({f i∗, pk∗i }i∈[L]) from A, for each i ∈ [L], B1 generates the
output of IsValid:

Check the validity of pk∗i . If 0 ← IsValid(crs, i, pk∗i ), B1 aborts. Otherwise,
1← IsValid(crs, i, pk∗i ), B1 computes ski = Ui with msk and brute-force discrete
log (If Ui cannot be computed, B1 aborts. And note that only with negligible
probability, [Ui]T is not unique, in this case, B1 also aborts.).
B1 generates the output of Aggr:
Output

mpk = ([A
∑
i∈[L]

Ui]1, [
∑
i∈[L]

Wif
′i∗]2, [A]1, [AV]1, [AV1]1, [AV2]1);

{hski = (i, f i∗, [
∑

t6=i,t∈[L]

UtWif
′i∗]2, [

∑
t6=i,t∈[L]

Wtf
′t∗]2, [V1Wif

′i∗ +V2Wif
′i∗ +Vf

′i∗]2,

[Wif
′i∗]2)}i∈[L].

B1 sends (mpk, {hski}i∈[L]) to A.
B1 generates the output of Enc:
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Sample η ←R Zp. Output

ct∗ = (C1 = [ T ]1, C2 = [ T V + x∗ + η · (1, 0, ..., 0︸ ︷︷ ︸
n′s

)]1,

C3 = [ T V1 + T
∑
t∈[L]

Ut]1, C4 = [ T V2]1,

C5 = [ T V2

∑
t∈[L]

Wtf
′t∗ − η]T ).

B1 sends ct∗ to A.
Observe when T = sA, where s ←R Z1×k

p , the distributions are as Game0;
when T = c, where c←R Z1×(k+1)

p satisfying ca⊥> = 1, the distributions are as
Game1. Then if A can distinguish Game0 and Game1, B1 can utilize A to break
the MDDH assumption in G1. Thus lead to contradiction.

Lemma 5. We have |Pr[Game1,A(λ) = 1]− Pr[Game2,A(λ) = 1| = 0.

Proof. Sample Ṽ ←R Z(k+1)×n
p . Then change the variables by embedding the

challenge x∗ into V as follows:

V = Ṽ − a⊥>x∗,

where the distributions are taken over the random choices of V and Ṽ.
We have AV = A(Ṽ − a⊥>x∗) = AṼ. Then crs is changed into

crs = (G, [A]1, [ AṼ ]1, [AV1]1, [AV2]1, {[Wifj ]2}i∈[L],j∈[|F|],

{[V1Wifj +V2Wifj + (Ṽ − a⊥>x∗) fj ]2}i∈[L],j∈[F|]).

ct∗ is changed into

ct∗ = (C1 = [c]1, C2 = [ cṼ︸ ︷︷ ︸
c(Ṽ−a⊥>x∗)+x∗

+η · (1, 0, ..., 0︸ ︷︷ ︸
n′s

)]1,

C3 = [cV1 + c
∑
t∈[L]

Ut]1, C4 = [cV2]1,

C5 = [cV2

∑
t∈[L]

Wtf
′t∗ − η]T ).

Therefore, Game1 and Game2 are identically distributed. Note that (Ṽ −
a⊥>x∗)fj = Ṽfj − a⊥>x∗fj , where x∗fj is the function value.
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5 Slotted Registered Quadratic Functional Encryption

5.1 Construction ΠsRQFE

We construct a slotted Registered Quadratic Functional Encryption (slotted
RQFE) scheme ΠsRQFE = (Setup,KeyGen, IsValid,Aggr,Enc,Dec) with message
space M = Z1×n

p × Z1×n
p , function space F = {fj ∈ Zn2×1

p }, where n ∈ N, a
function value upperbound B, and an a-priori fixed number of slots L = L(λ)
as follows:

– Setup(1λ, 1n, 1L, 1|F|): Run the group generator G = (p,G1, G2, GT , e) ←
G(1λ). Sample A ←R Zk×(k+1)

p ,V,V1,V2 ←R Z(k+1)×(k+k′)(n+1)
p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)(n+1)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. Set

H =

(
A1 ⊗ In+1

In+1 ⊗A2

)
∈ Z(k+k′)(n+1)×(n+1)2

p .

For each f = (f11, ..., f1n, f21, ..., f2n, ..., fn1, ..., fnn) ∈ F , set

f̂ = (f̂11, ..., f̂1n, f̂1(n+1), f̂21, ..., f̂2n, f̂2(n+1), ...,

f̂n1, ..., f̂nn, f̂n(n+1), f̂(n+1)1, ..., f̂(n+1)n, f̂(n+1)(n+1))

= (f11, ..., f1n, 0, f21, ..., f2n, 0, ..., fn1, ..., fnn, 0, 0, ..., 0, 1). (2)

Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1, [AV2]1, {[WiHf̂j ]2}i∈[L],j∈[|F|],

{[WiBf̂j ]2}i∈[L],j∈[|F|], {[V1WiHf̂j +V2WiHf̂j +VHf̂j ]2}i∈[L],j∈[|F|]).

– KeyGen(crs, i): Sample Ui ←R Z(k+1)×(k+k′)(n+1)
p , which satisfies each com-

ponent of Ui is bounded by the brute-force discrete log bound B (used in
the security proofs). Store ski = Ui. Output

pki = ([P 1
i ]1 = [AUi]1, {[P 2

i,t,j ]2} = {[UiWtHf̂j ]2}t6=i,j∈[|F|], {[P 3
i,t,j ]2} = {[UiWtBf̂j ]2}t6=i,j∈[|F|]).

– IsValid(crs, i, pki): Check

1. whether [P 1
i ]1 in pki are elements in G1?

2. whether {[P 2
i,t,j ]2} and {[P 3

i,t,j ]2}t6=i,j∈|[F ]| in pki are elements in G2?

3. whether e([P 1
i ]1, [WtHf̂j ]2) = e([A]1, [P

2
i,t,j ]2), and e([P 1

i ]1, [WtBf̂j ]2) =

e([A]1, [P
3
i,t,j ]2) for each t 6= i, j ∈ [|F|]?

If any fails, output 0. Otherwise, output 1.
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– Aggr(crs, (pk1, f
1), ..., (pkL, f

L)): For the target functions {f i}i∈[L], set f̂ i as
equation (2). Output

mpk = ([A
∑
i∈[L]

Ui]1, [
∑
i∈[L]

WiHf̂ i]2, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1,

[AV2]1);

{hski = (i, f i, [A1]2, [A2]2, [
∑

t6=i,t∈[L]

UtWiHf̂ i]2, [
∑

t 6=i,t∈[L]

WtHf̂ i]2,

[V1WiHf̂ i +V2WiHf̂ i +VHf̂ i]2, [WiHf̂ i]2)}i∈[L].

– Enc(mpk, (x1,x2) ∈M): Sample η1, η2 ←R Zp. Set

x̂1 = (x1‖η1), x̂2 = (x2‖η2).

Sample s1 ←R Z1×k′
p , s2, s←R Z1×k

p . Outout

ct = (C1 = [s1A1 + x̂1︸ ︷︷ ︸
y1

]1, C2 = [s2A2 + x̂2︸ ︷︷ ︸
y2

]2, C3 = [sA]1,

C4 = [sAV + (s1 ⊗ x̂2‖y1 ⊗ s2)︸ ︷︷ ︸
y0

]1, C5 = [sAV1 + sA
∑
t∈[L]

Ut]1,

C6 = [sAV2]1, C7 = [−sAV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Dec(ski, hski, ct): For the target f i, set f̂ i as equation (2). Then compute [γ]T
as follows:

[(y1 ⊗ y2) f̂ i︸︷︷︸
hski

]T · e(C4, [Hf̂ i︸︷︷︸
hski

]2)
−1 · e(C3, [V1WiHf̂ i +V2WiHf̂ i +VHf̂ i]2︸ ︷︷ ︸

hski

)·

e(C5, [WiHf̂ i]2︸ ︷︷ ︸
hski

)−1 · e(C3, [
∑

t 6=i,t∈[L]

UtWiHf̂ i]2︸ ︷︷ ︸
hski

) · e(C3, [ Ui︸︷︷︸
ski

WiHf̂ i]2︸ ︷︷ ︸
hski

)·

e(C6, [
∑

t 6=i,t∈[L]

WtHf̂ t]2︸ ︷︷ ︸
hski

) · C7.

Output γ by brute-force discrete log.

Theorem 6 (Completeness of Construction ΠsRQFE). The slotted RQFE
construction ΠsRQFE with message space M = Z1×n

p × Z1×n
p , function space

F = {fj ∈ Zn2×1
p }, where n ∈ N, a function value upperbound B, and an a-

priori fixed number of slots L = L(λ) is complete.

Proof. We proceed the checks as follows:
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1. It is easy to see that [P 1
i ]1 in pki are elements in G1.

2. It is easy to see that {[P 2
i,t,j ]2} and {[P 3

i,t,j ]2} in pki are elements in G2.
3. For each t 6= i, j ∈ [|F|], we have

e([P 1
i ]1, [WtHfj ]2) = [AUiWtHfj ]T = e([A]1, [P

2
i,t,j ]2)

e([P 1
i ]1, [WtBfj ]2) = [AUiWtBfj ]T = e([A]1, [P

3
i,t,j ]2).

All the checks pass, thus, IsValid(crs, i, pki) outputs 1 and completeness holds.

Theorem 7 (Compactness of Construction ΠsRQFE). The slotted RQFE
construction ΠsRQFE with message space M = Z1×n

p × Z1×n
p , function space

F = {fj ∈ Zn2×1
p }, where n ∈ N, a function value upperbound B, and an a-

priori fixed number of slots L = L(λ) satisfies the following properties:

– |mpk| = (n+ 1) · poly(λ).
– For each i ∈ [L], |hski| = (n+ 1) · poly(λ) + n2 · poly(λ) +O(logL).

Proof. We can see in mpk, [A
∑
iUi]1 is of k(k + k′)(n + 1) group elements,

[
∑
iWiHf̂ i]2 is of (k + k′)(n + 1) group elements, [A]1 is of k(k + 1) group

elements, [A1]1 is of k′(n+1) group elements, [A1]2 is of k′(n+1) group elements,
[A2]2 is of k(n+1) group elements, [AV]1 is of k(k+ k′)(n+1) group elements,
[AV1]1 is of k(k + k′)(n+ 1) group elements, and [AV2]1 is of k(k + k′)(n+ 1)
group elements. Each group element is of poly(λ) size. Thus, when we omit k
and k′, which are the parameters of the MDDH assumption and the bi-MDDH
assumption respectively, the size of mpk is (n+ 1) · poly(λ).

Similarly, in hski, i is of O(logL) size, f i is of n2 ring elements, [A1]2 is of
k′(n+1) group elements, [A2]2 is of k(n+1) group elements, [

∑
t 6=i,t∈[L] UtWiHf̂ i]2

is of (k + 1) group elements, [
∑
t6=i,t∈[L] WtHf̂ t]2 is of (k + k′)(n+ 1) group el-

ements, [V1WiHf̂ i + V2WiHf̂ i + VHf̂ i]2 is of (k + 1) group elements, and
[WiHf̂ i]2 is of (k + k′)(n+ 1) group elements. Each ring element or group ele-
ment is of poly(λ) size. Thus, when we omit k and k′, which are the parameters
of the MDDH assumption and the bi-MDDH assumption respectively, the size
of hski is (n+ 1) · poly(λ) + n2 · poly(λ) +O(logL).

Theorem 8 (Correctness of Construction ΠsRQFE). The slotted RQFE
construction ΠsRQFE with message space M = Z1×n

p × Z1×n
p , function space

F = {fj ∈ Zn2×1
p }, where n ∈ N, a function value upperbound B, and an a-

priori fixed number of slots L = L(λ) is perfectly correct.

Proof. We proceed the proof in two steps.

1. We first demonstrate the correctness in the case that each pki, i ∈
[L] is of the right form.
Fix some λ, message size n = n(λ), the number of slots L = L(λ), the size
of function space |F|, and an index i ∈ [L]. Let crs← Setup(1λ, 1n, 1L, 1|F|)
and (pki, ski)← KeyGen(crs, i) be defined as in Construction ΠsRQFE . Take
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any set of public keys {pkj}j∈[L]\{i}, where 1← IsValid(crs, j, pkj). For each
j ∈ [L], let f j be the target function associated with pkj . Let (mpk, {hski})←
Aggr(crs, {(pkj , f j)}j∈[L]). For a message x ∈M, let ct← Enc(mpk,x). Then
the correctness follows:

[(y1 ⊗ y2)f̂
i]T · e(C4, [Hf̂ i]2)

−1 · e(C3, [V1WiHf̂ i +V2WiHf̂ i +VHf̂ i]2)·

e(C5, [WiHf̂ i]2)
−1 · e(C3, [

∑
t 6=i,t∈[L]

UtWiHf̂ i]2) · e(C3, [UiWiHf̂ i]2)·

e(C6, [
∑

t 6=i,t∈[L]

WtHf̂ t]2) · C7

=[(y1 ⊗ y2)f̂
i − sAVHf̂ i − (s1 ⊗ x̂2‖y1 ⊗ s2)Hf̂ i + sAV1WiHf̂ i + sAV2WiHf̂ i+

sAVHf̂ i − sAV1WiHf̂ i − sA
∑
t∈[L]

UtWiHf̂ i + sA
∑

t 6=i,t∈[L]

UtWiHf̂ i + sAUiWiHf̂ i+

sAV2

∑
t 6=i,t∈[L]

WtHf̂ t − sAV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T

=[(y1 ⊗ y2)f̂
i − η1 · η2]T

=[(x1 ⊗ x2)f
i + η1 · η2 − η1 · η2]T

=[(x1 ⊗ x2)f
i]T .

2. We then demonstrate that correctness holds as long as 1← IsValid(crs, j, pkj).
We replace [AUi]1, [UiWtHf̂j ]2 and [UiWtBtf̂j ]2 with [P 1

i ]1, [P
2
i,t,j ]2 and

[P 3
i,t,j ]2, respectively. Then, we have

[(y1 ⊗ y2)f̂
i]T · e(C4, [Hf̂ i]2)

−1 · e(C3, [V1WiHf̂ i +V2WiHf̂ i +VHf̂ i]2)·

e(C5, [WiHf̂ i]2)
−1 · e(C3, [

∑
t 6=i,t∈[L]

UtWiHf̂ i]2) · e(C3, [UiWiHf̂ i]2)·

e(C6, [
∑

t 6=i,t∈[L]

WtHf̂ t]2) · C7

=[(y1 ⊗ y2)f̂
i − sAVHf̂ i − (s1 ⊗ x̂2‖y1 ⊗ s2)Hf̂ i + sAV1WiHf̂ i + sAV2WiHf̂ i+

sAVHf̂ i − sAV1WiHf̂ i − s
∑
t∈[L]

P 1
t WiHf̂ i + sA

∑
t6=i,t∈[L]

P 2
t,i,i + sAUiWiHf̂ i+

sAV2

∑
t 6=i,t∈[L]

WtHf̂ t − sAV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T . (3)

By 1← IsValid(crs, j, pkj), we have

[P 1
t WiHf̂ i]T = [AP 2

t,i,i]T ,

for each t 6= i. Thus we have

[s
∑
t 6=i

P 1
t WiHf̂ i]T = [sA

∑
t6=i

P 2
t,i,i]T .
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Since the rest [sP 1
i WiHf̂ i]T

?
= [sAUiWiHf̂ i]T depends on whether the ad-

versary desires to proceed a successful decryption, we don’t need to consider
it. Thus the formula (3) equals [(x1 ⊗ x2)f

i]T .

Theorem 9 (Weakly Selective-IND Security of Construction ΠsRQFE).
The slotted RQFE construction ΠsRQFE with message spaceM = Z1×n

p ×Z1×n
p ,

function space F = {fj ∈ Zn2×1
p }, a function value upperbound B, and an a-

priori fixed number of slots L = L(λ) is weakly selective-IND secure relying on
the MDDH assumption and bi-MDDH assumption.

Proof.
Games. We define the following games:

– Game0: This is the game with the real construction and choosing (x
(1)
1 ,x

(1)
2 )

as the encrypted message.
– Game1: This is the same as Game0, except that we change Setup and Enc

with the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ) as follows:

• Setup(1λ, 1n, 1L, 1|F|): Run the group generatorG = (p,G1, G2, GT , e)←
G(λ). SampleA←R Zk×(k+1)

p ,V,V1,V2 ←R Z(k+1)×(k+k′)(n+1)
p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1, [AV2]1, {[WiHf̂j ]2}i∈[L],j∈[|F|],

{[WiBf̂j ]2}i∈[L],j∈[|F|], {[V1WiHf̂j +V2WiHf̂j +VHf̂j ]2}i∈[L],j∈[|F|]));
msk = (a⊥,A,A1,A2,V,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk, (x
(1)
1 ,x

(1)
2 ),msk, {ski}i∈[L]): Sample c←R Z1×(k+1)

p , which sat-
isfies ca⊥> = 1, s1 ←R Z1×k′

p , s2 ←R Z1×k
p , and η1, η2 ←R Zp. Output

ct = (C1 = [s1A1 + x̂
(1)
1︸ ︷︷ ︸

y1

]1, C2 = [s2A2 + x̂
(1)
2︸ ︷︷ ︸

y2

]2, C3 = [c]1,

C4 = [cV + (s1 ⊗ x̂
(1)
2 ‖y1 ⊗ s2)︸ ︷︷ ︸

y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Game2: This is the same as Game1, except that we change Setup and Enc

with the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x
(1)
1 ,x

(1)
2 )): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p
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for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample s1 ←R Z1×k′
p , s2 ←R Z1×k

p , and η1, η2 ←R Zp. Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(s1 ⊗ x̂
(1)
2 ‖y1 ⊗ s2)Hf̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk, (x
(1)
1 ,x

(1)
2 ),msk, {ski}i∈[L]): Sample c←R Z1×(k+1)

p , which sat-
isfies ca⊥> = 1.

ct = (C1 = [s1A1 + x̂
(1)
1︸ ︷︷ ︸

y1

]1, C2 = [s2A2 + x̂
(1)
2︸ ︷︷ ︸

y2

]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Game3: This is the same as Game2, except that we change Setup and Enc

with the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x
(1)
1 ,x

(1)
2 )): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample s1 ←R Z1×k′
p , s2 ←R Z1×k

p , and η1, η2 ←R Zp. Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(y1 ⊗ y2 − x̂
(1)
1 ⊗ x̂

(1)
2 )f̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk, (x
(1)
1 ,x

(1)
2 ),msk, {ski}i∈[L]): Sample c←R Z1×(k+1)

p , which sat-
isfies ca⊥> = 1. Output

ct = (C1 = [s1A1 + x̂
(1)
1︸ ︷︷ ︸

y1

]1, C2 = [s2A2 + x̂
(1)
2︸ ︷︷ ︸

y2

]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).
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– Game4: This is the same as Game3, except that we change Setup and Enc

with the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x
(1)
1 ,x

(1)
2 )): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample s2 ←R Z1×k
p , η1, η2 ←R Zp, and y1 ←R Z1×(n+1)

p .
Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(y1 ⊗ y2 − x̂
(1)
1 ⊗ x̂

(1)
2 )f̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk,x
(1)
2 ,msk, {ski}i∈[L]): Sample c ←R Z1×(k+1)

p , which satisfies
ca⊥> = 1. Output

ct = (C1 = [y1]1, C2 = [s2A2 + x̂
(1)
2︸ ︷︷ ︸

y2

]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Game5: This is the same as Game4, except that we change Setup and Enc

with the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x
(1)
1 ,x

(1)
2 )): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample y1 ←R Z1×(n+1)
p ,y2 ←R Z1×(n+1)

p , and η1, η2 ←R Zp.
Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(y1 ⊗ y2 − x̂
(1)
1 ⊗ x̂

(1)
2 )f̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).
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• Enc(mpk,msk, {ski}i∈[L]): Sample c←R Z1×(k+1)
p , which satisfies ca⊥> =

1. Output

ct = (C1 = [y1]1, C2 = [y2]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Game6: This is the same as Game5, except that we change Setup and Enc

with the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x
(0)
1 ,x

(0)
2 )): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample y1 ←R Z1×(n+1)
p ,y2 ←R Z1×(n+1)

p , and η1, η2 ←R Zp.
Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(y1 ⊗ y2 − x̂
(0)
1 ⊗ x̂

(0)
2 )f̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk,msk, {ski}i∈[L]): Sample c←R Z1×(k+1)
p , which satisfies ca⊥> =

1. Output

ct = (C1 = [y1]1, C2 = [y2]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Game7: This is the same as Game6, except that we change Setup and Enc

with the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x
(0)
1 ,x

(0)
2 )): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample s2 ←R Z1×k
p ,y1 ←R Z1×(n+1)

p , and η1, η2 ←R Zp.
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Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(y1 ⊗ y2 − x̂
(0)
1 ⊗ x̂

(0)
2 )f̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk,x
(0)
2 ,msk, {ski}i∈[L]): Sample c ←R Z1×(k+1)

p , which satisfies
ca⊥> = 1. Output

ct = (C1 = [y1]1, C2 = [s2A2 + x̂
(0)
2︸ ︷︷ ︸

y2

]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Game8: This is the same as Game7, except that we change Setup and Enc

with the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x
(0)
1 ,x

(0)
2 )): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample s1 ←R Z1×k′
p , s2 ←R Z1×k

p , and η1, η2 ←R Zp. Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(y1 ⊗ y2 − x̂
(0)
1 ⊗ x̂

(0)
2 )f̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk, (x
(0)
1 ,x

(0)
2 ),msk, {ski}i∈[L]): Sample c←R Z1×(k+1)

p , which sat-
isfies ca⊥> = 1. Output

ct = (C1 = [s1A1 + x̂
(0)
1︸ ︷︷ ︸

y1

]1, C2 = [s2A2 + x̂
(0)
2︸ ︷︷ ︸

y2

]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Game9: This is the same as Game8, except that we change Setup and Enc

with the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ) as follows:
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• Setup(1λ, 1n, 1L, 1|F|, (x
(0)
1 ,x

(0)
2 )): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample s1 ←R Z1×k′
p , s2 ←R Z1×k

p , and η1, η2 ←R Zp. Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(s1 ⊗ x̂
(0)
2 ‖y1 ⊗ s2)Hf̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk, (x
(0)
1 ,x

(0)
2 ),msk, {ski}i∈[L]): Sample c←R Z1×(k+1)

p , which sat-
isfies ca⊥> = 1. Output

ct = (C1 = [s1A1 + x̂
(0)
1︸ ︷︷ ︸

y1

]1, C2 = [s2A2 + x̂
(0)
2︸ ︷︷ ︸

y2

]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Game10: This is the same as Game9, except that we change Setup and Enc

with the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x
(0)
1 ,x

(0)
2 )): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ′,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ′]1, [AV1]1, [AV2]1, {[WiHf̂j ]2}i∈[L],j∈[|F|],

{[WiBf̂j ]2}i∈[L],j∈[|F|], {[V1WiHf̂j +V2WiHf̂j + Ṽ′Hf̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ
′,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk, (x
(0)
1 ,x

(0)
2 ),msk, {ski}i∈[L]): Sample c←R Z1×(k+1)

p , which sat-
isfies ca⊥> = 1, s1 ←R Z1×k′

p , s2 ←R Z1×k
p , and η1, η2 ←R Zp. Output

ct = (C1 = [s1A1 + x̂
(0)
1︸ ︷︷ ︸

y1

]1, C2 = [s2A2 + x̂
(0)
2︸ ︷︷ ︸

y2

]2, C3 = [c]1,

C4 = [cṼ′ + (s1 ⊗ x̂
(0)
2 ‖y1 ⊗ s2)︸ ︷︷ ︸

y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).
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– Game11: This is the same as Game10, except that we change Setup and Enc

with the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x
(0)
1 ,x

(0)
2 )): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ′,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ′]1, [AV1]1, [AV2]1, {[WiHf̂j ]2}i∈[L],j∈[|F|],

{[WiBf̂j ]2}i∈[L],j∈[|F|], {[V1WiHf̂j +V2WiHf̂j + Ṽ′Hf̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ
′,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk, (x
(0)
1 ,x

(0)
2 ),msk, {ski}i∈[L]): Sample s1 ←R Z1×k′

p , s2, s←R Z1×k
p ,

and η1, η2 ←R Zp. Output

ct = (C1 = [s1A1 + x̂
(0)
1︸ ︷︷ ︸

y1

]1, C2 = [s2A2 + x̂
(0)
2︸ ︷︷ ︸

y2

]2, C3 = [sA]1,

C4 = [sAṼ′ + (s1 ⊗ x̂
(0)
2 ‖y1 ⊗ s2)︸ ︷︷ ︸

y0

]1, C5 = [sAV1 + sA
∑
t∈[L]

Ut]1,

C6 = [sAV2]1, C7 = [−sAV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

Lemma 6. We have |AdvGame0,A(λ)−AdvGame1,A(λ)| ≤ AdvMDDH
B1,G1

(λ), where B1
is the adversary for the MDDH assumption in G1.

Proof. Suppose a challenger B1. The adversary A sends (x
(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 )

and the number of slots L to B1. B1 runs the group generatorG = (p,G1, G2, GT , e)←
G(1λ), and samplesV,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R Zk
′×(n+1)
p ,A2 ←R

Zk×(n+1)
p ,B ←R Z(k+k′)×(n+1)2

p , Wi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p for each i ∈

[L]. B1 receives ([A]1, [T ]1) from the underlying MDDH assumption in G1. For
A, there exist a⊥ ∈ Z1×(k+1)

p such that Aa⊥> = 0 ∈ Zk×1p . For each f ∈ F , B1
sets f̂ as equation (2). Then B1 generates

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1, [AV2]1, {[WiHf̂j ]2}i∈[L],j∈[|F|],

{[WiBf̂j ]2}i∈[L],j∈[|F|], {[V1WiHf̂j +V2WiHf̂j +VHf̂j ]2}i∈[L],j∈[|F|]);
msk = (A1,A2,V,V1,V2,B, {Wi}i∈[L]).

B1 initializes a counter ctr = 0, a dictionary D = ∅, and a set of corrupted slot
indexes C = ∅. B1 sends crs to A.

Upon receiving an honest key generation query i ∈ [L] from A, B1 sets
ctr = ctr + 1, and generates (pkctr, skctr) as follows:
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Sample Ui ←R Z(k+1)×(k+k′)(n+1)
p , which satisfies each component of Ui is

bounded by B. Set

pkctr = ([AUi]1, {[UiWtHf̂j ]2}t6=i,j∈[|F|], {[UiWtBf̂j ]2}t 6=i,j∈[|F|]);
skctr = Ui.

Upon receiving a corruption query j ∈ [ctr] from A, B1 sends sk′ to A, where
(i′, pk′, sk′) = D[j]. Let QCorr be the set of corruption queries made by A.

Upon receiving the challenge ({c∗i , f i∗, pk
∗
i }i∈[L]) from A, where c∗i ∈ [ctr]∪{⊥

}. Then for each i ∈ [L], B1 proceeds as follows:

– If c∗i ∈ [ctr], B1 retrieves (i′, pk′, sk′) = D[c∗i ]. If i′ = i, B1 sets pki = pk′. In
addition, if c∗i ∈ Q, B1 updates C = C ∪ {i}. Otherwise, if i′ 6= i, B1 aborts.

– If c∗i =⊥, B1 checks the validity of pk∗i . If 0← IsValid(crs, i, pk∗i ), B1 aborts.
Otherwise, 1 ← IsValid(crs, i, pk∗i ), B1 computes ski = Ui with msk and
brute-force discrete log (If Ui cannot be computed, B1 aborts. And note
that only with negligible probability, [Ui]T is not unique, in this case, B1
also aborts.). Then B1 sets pki = pk∗i and updates C = C ∪ {i}.

B1 samples s1 ←R Z1×k′
p , s2 ←R Z1×k

p , η1, η2 ←R Zp and generates ct∗ as
follows:

C1 = [s1A1 + x̂
(1)
1︸ ︷︷ ︸

y1

]1, C2 = [s2A2 + x̂
(1)
2︸ ︷︷ ︸

y2

]2, C3 = [ T ]1,

C4 = [ T V + (s1 ⊗ x̂
(1)
2 ‖y1 ⊗ s2)︸ ︷︷ ︸

y0

]1, C5 = [ T V1 + T
∑
t∈[L]

Ut]1,

C6 = [ T V2]1, C7 = [− T V2

∑
t∈[L]

WtHf̂ t∗ − η1 · η2]T ).

B1 generates mpk, {hski}i∈[L] as follows:

mpk = ([A
∑
i∈[L]

Ui]1, [
∑
i∈[L]

WiHf̂ i∗]2, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1,

[AV2]1);

{hski = (i, f i∗, [A1]2, [A2]2, [
∑

t 6=i,t∈[L]

UtWiHf̂ i∗]2, [
∑

t 6=i,t∈[L]

WtHf̂ i∗]2,

[V1WiHf̂ i∗ +V2WiHf̂ i∗ +VHf̂ i∗]2, [WiHf̂ i∗]2)}i∈[L].

B1 sends (ct∗,mpk, {hski}i∈[L]) to A.
Observe when T = sA, where s ←R Z1×k

p , the distributions are as Game0;
when T = c, where c←R Z1×(k+1)

p satisfying ca⊥> = 1, the distributions are as
Game1. Then if A can distinguish Game0 and Game1, B1 can utilize A to break
the MDDH assumption in G1. Thus lead to contradiction.

Lemma 7. We have |AdvGame1,A(λ)− AdvGame2,A(λ)| = 0.
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Proof. Sample Ṽ ←R Z(k+1)×(k+k′)(n+1)
p . Then change the variables V as fol-

lows:

V = Ṽ − a⊥>(s1 ⊗ x
(1)
2 ‖y1 ⊗ s2),

where the distributions are taken over the random choices of V and Ṽ.
We have AV = A(Ṽ − a⊥>(s1 ⊗ x

(1)
2 ‖y1 ⊗ s2)) = AṼ. Then crs is changed

into

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [A Ṽ ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + Ṽ Hf̂j −a⊥>(s1 ⊗ x̂
(1)
2 ‖y1 ⊗ s2) Hf̂j ]2}i∈[L],j∈[|F|]));

ct∗ is changed into

ct∗ = (C1 = [s1A1 + x̂
(1)
1︸ ︷︷ ︸

y1

]1, C2 = [s2A2 + x̂
(1)
2︸ ︷︷ ︸

y2

]2, C3 = [c]1,

C4 = [c Ṽ︸ ︷︷ ︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t∗ − η1 · η2]T ).

Therefore, Game1 and Game2 are identically distributed.

Lemma 8. We have |AdvGame2,A(λ)− AdvGame3,A(λ)| = 0.

Proof. It is easy to see

(s1 ⊗ x̂
(1)
2 ‖y1 ⊗ s2)Hf̂j

=(s1 ⊗ x̂
(1)
2 )(A1 ⊗ In+1) + (y1 ⊗ s2)(In+1 ⊗A2)

=(s1A1)⊗ x̂
(1)
2 + (s1A1)⊗ (s2A2) + x̂

(1)
1 ⊗ (s2A2)

=(y1 ⊗ y2 − x̂
(1)
1 ⊗ x̂

(1)
2 )fj .

Therefore, Game2 and Game3 are identically distributed.

Lemma 9. We have |AdvGame3,A(λ) − AdvGame4,A(λ)| ≤ Advbi-MDDH
B2

(λ), where
B2 is the adversary for the bi-MDDH assumption.

Proof. Suppose a challenger B2. The adversary A sends (x
(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 )

and the number of slots L to B2. B2 runs the group generatorG = (p,G1, G2, GT , e)←
G(1λ), and samples Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A ←R Zk×(k+1)
p ,A2 ←R

Zk×(n+1)
p ,B ←R Z(k+k′)×(n+1)2

p , Wi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p for each i ∈

[L], and s2 ←R Z1×k
p , η1, η2 ←R Zp. B2 receives ([A1]1, [A1]2, [T ]1, [T ]2) from
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the underlying bi-MDDH assumption. For A, there exist a⊥ ∈ Z1×(k+1)
p such

that Aa⊥> = 0 ∈ Zk×1p . For each f ∈ F , B2 sets f̂ as equation (2). Then B2
generates

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(( T + x̂
(1)
1 )⊗ y2 − x̂

(1)
1 ⊗ x̂

(1)
2 )f̂j ]2}i∈[L],j∈[|F|]);

msk = (A,a⊥,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

B2 initializes a counter ctr = 0, a dictionary D = ∅, and a set of corrupted slot
indexes C = ∅. B2 sends crs to A.

Upon receiving an honest key generation query i ∈ [L] from A, B2 sets
ctr = ctr + 1, and generates (pkctr, skctr) as follows:

Sample Ui ←R Z(k+1)×(k+k′)(n+1)
p , which satisfies each component of Ui is

bounded by B. Set

pkctr = ([AUi]1, {[UiWtHf̂j ]2}t 6=i,j∈[|F|], {[UiWtBf̂j ]2}t 6=i,j∈[|F|]);
skctr = Ui.

Upon receiving a corruption query j ∈ [ctr] from A, B2 sends sk′ to A, where
(i′, pk′, sk′) = D[j]. Let QCorr be the set of corruption queries made by A.

Upon receiving the challenge ({c∗i , f i∗, pk
∗
i }i∈[L]) from A, where c∗i ∈ [ctr]∪{⊥

}. Then for each i ∈ [L], B2 proceeds as follows:

– If c∗i ∈ [ctr], B2 retrieves (i′, pk′, sk′) = D[c∗i ]. If i′ = i, B2 sets pki = pk′. In
addition, if c∗i ∈ Q, B2 updates C = C ∪ {i}. Otherwise, if i′ 6= i, B2 aborts.

– If c∗i =⊥, B2 checks the validity of pk∗i . If 0← IsValid(crs, i, pk∗i ), B2 aborts.
Otherwise, 1 ← IsValid(crs, i, pk∗i ), B2 computes ski = Ui with msk and
brute-force discrete log (If Ui cannot be computed, B2 aborts. And note
that only with negligible probability, [Ui]T is not unique, in this case, B2
also aborts.). Then B2 sets pki = pk∗i and updates C = C ∪ {i}.

B2 samples c←R Z1×(k+1)
p , which satisfies ca⊥> = 1. Generate ct∗ as follows:

C1 = [ T + x̂
(1)
1 ]1, C2 = [s2A2 + x̂

(1)
2︸ ︷︷ ︸

y2

]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t∗ − η1 · η2]T ).
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B2 generates mpk, {hski}i∈[L] as follows:

mpk = ([A
∑
i∈[L]

Ui]1, [
∑
i∈[L]

WiHf̂ i∗]2, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1,

[AV2]1);

{hski = (i, f i∗, [A1]2, [A2]2, [
∑

t6=i,t∈[L]

UtWiHf̂ i∗]2, [
∑

t 6=i,t∈[L]

WtHf̂ i∗]2,

[V1WiHf̂ i∗ +V2WiHf̂ i∗ +VHf̂ i∗]2, [WiHf̂ i∗]2)}i∈[L].

B2 sends (ct∗,mpk, {hski}i∈[L]) to A.
Observe when T = s1A1, where s1 ←R Z1×k′

p , the distributions are as
Game3; when T = y′1, where y′1 ←R Z1×(n+1)

p satisfying y′1 + x̂
(1)
1 = y1 and

y1 ←R Z1×(n+1)
p , the distributions are as Game4. Then if A can distinguish

Game3 and Game4, B2 can utilize A to break the bi-MDDH assumption. Thus
lead to contradiction.

Lemma 10. We have |AdvGame4,A(λ) − AdvGame5,A(λ)| ≤ AdvMDDH
B3,G2

(λ), where
B3 is the adversary for the MDDH assumption in G2.

Proof. Suppose a challenger B3. The adversary A sends (x
(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 )

and the number of slots L to B3. B3 runs the group generatorG = (p,G1, G2, GT , e)←
G(1λ), and samples Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A ←R Zk×(k+1)
p ,A1 ←R

Zk
′×(n+1)
p ,B ←R Z(k+k′)×(n+1)2

p , Wi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p for each i ∈

[L], and y1 ←R Z1×(n+1)
p , η1, η2 ←R Zp. B3 receives ([A2]2, [T ]2) from the un-

derlying MDDH assumption in G2. For A, there exist a⊥ ∈ Z1×(k+1)
p such that

Aa⊥> = 0 ∈ Zk×1p . For each f ∈ F , B3 sets f̂ as equation (2). Then B3 generates

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(y1 ⊗ ( T + x̂
(1)
2 )− x̂

(1)
1 ⊗ x̂

(1)
2 )f̂j ]2}i∈[L],j∈[|F|]);

msk = (A,a⊥,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

B3 initializes a counter ctr = 0, a dictionary D = ∅, and a set of corrupted slot
indexes C = ∅. B3 sends crs to A.

Upon receiving an honest key generation query i ∈ [L] from A, B3 sets
ctr = ctr + 1, and generates (pkctr, skctr) as follows:

Sample Ui ←R Z(k+1)×(k+k′)(n+1)
p , which satisfies each component of Ui is

bounded by B. Set

pkctr = ([AUi]1, {[UiWtHf̂j ]2}t6=i,j∈[|F|], {[UiWtBf̂j ]2}t 6=i,j∈[|F|]);
skctr = Ui.
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Upon receiving a corruption query j ∈ [ctr] from A, B3 sends sk′ to A, where
(i′, pk′, sk′) = D[j]. Let QCorr be the set of corruption queries made by A.

Upon receiving the challenge ({c∗i , f i∗, pk
∗
i }i∈[L]) from A, where c∗i ∈ [ctr]∪{⊥

}. Then for each i ∈ [L], B3 proceeds as follows:

– If c∗i ∈ [ctr], B3 retrieves (i′, pk′, sk′) = D[c∗i ]. If i′ = i, B3 sets pki = pk′. In
addition, if c∗i ∈ Q, B3 updates C = C ∪ {i}. Otherwise, if i′ 6= i, B3 aborts.

– If c∗i =⊥, B3 checks the validity of pk∗i . If 0← IsValid(crs, i, pk∗i ), B3 aborts.
Otherwise, 1 ← IsValid(crs, i, pk∗i ), B3 computes ski = Ui with msk and
brute-force discrete log (If Ui cannot be computed, B3 aborts. And note
that only with negligible probability, [Ui]T is not unique, in this case, B3
also aborts.). Then B3 sets pki = pk∗i and updates C = C ∪ {i}.

B3 samples c←R Z1×(k+1)
p , which satisfies ca⊥> = 1. Generate ct∗ as follows:

C1 = [y1]1, C2 = [ T + x̂
(1)
2 ]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t∗ − η1 · η2]T ).

B3 generates mpk, {hski}i∈[L] as follows:

mpk = ([A
∑
i∈[L]

Ui]1, [
∑
i∈[L]

WiHf̂ i∗]2, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1,

[AV2]1);

{hski = (i, f i∗, [A1]2, [A2]2, [
∑

t6=i,t∈[L]

UtWiHf̂ i∗]2, [
∑

t 6=i,t∈[L]

WtHf̂ i∗]2,

[V1WiHf̂ i∗ +V2WiHf̂ i∗ +VHf̂ i∗]2, [WiHf̂ i∗]2)}i∈[L].

B3 sends (ct∗,mpk, {hski}i∈[L]) to A.
Observe when T = s2A2, where s2 ←R Z1×k

p , the distributions are as Game4;
when T = y′2, where y′2 ←R Z1×(n+1)

p satisfying y′2 + x̂
(1)
2 = y2 and y2 ←R

Z1×(n+1)
p , the distributions are as Game5. Then if A can distinguish Game4 and

Game5, B3 can utilize A to break the MDDH assumption G2. Thus lead to
contradiction.

Lemma 11. We have |AdvGame5,A(λ)− AdvGame6,A(λ)| = 0.

Proof. This lemma follows that for the challenge messages (x(0)
1 ,x

(0)
2 ), (x

(1)
1 ,x

(1)
2 ),

for each i ∈ [|F|], we have

(x
(0)
1 ⊗ x

(0)
2 )fj = (x

(1)
1 ⊗ x

(1)
2 )fj .



41

Thus we have

(x̂
(0)
1 ⊗ x̂

(0)
2 )f̂j = (x

(0)
1 ⊗ x

(0)
2 )fj + η1 · η2 = (x

(1)
1 ⊗ x

(1)
2 )fj + η1 · η2 = (x̂

(1)
1 ⊗ x̂

(1)
2 )f̂j .

Therefore, Game5 and Game6 are identically distributed.

Lemma 12. We have |AdvGame6,A(λ) − AdvGame7,A(λ)| ≤ AdvMDDH
B4,G2

(λ), where
B4 is the adversary for the MDDH assumption in G2.

Proof. This proof is similar to the proof of Lemma 10, we omit it here.

Lemma 13. We have |AdvGame7,A(λ)−AdvGame8,A(λ)| ≤ Advbi-MDDH
B5

(λ), where
B5 is the adversary for the bi-MDDH assumption.

Proof. This proof is similar to the proof of Lemma 9, we omit it here.

Lemma 14. We have |AdvGame8,A(λ)− AdvGame9,A(λ)| = 0.

Proof. It is easy to see

(s1 ⊗ x̂
(0)
2 ‖y1 ⊗ s2)Hf̂j

=(s1 ⊗ x̂
(0)
2 )(A1 ⊗ In+1) + (y1 ⊗ s2)(In+1 ⊗A2)

=(s1A1)⊗ x̂
(0)
2 + (s1A1)⊗ (s2A2) + x̂

(0)
1 ⊗ (s2A2)

=(y1 ⊗ y2 − x̂
(0)
1 ⊗ x̂

(0)
2 )fj .

Therefore, Game8 and Game9 are identically distributed.

Lemma 15. We have |AdvGame9,A(λ)− AdvGame10,A(λ)| = 0.

Proof. Sample Ṽ′ ←R Z(k+1)×(k+k′)(n+1)
p . Then change the variables Ṽ as fol-

lows:

Ṽ = Ṽ′ + a⊥>(s1 ⊗ x
(0)
2 ‖y1 ⊗ s2),

where the distributions are taken over the random choices of Ṽ and Ṽ′.
We have AṼ = A(Ṽ′+a⊥>(s1⊗x

(0)
2 ‖y1⊗ s2)) = AṼ′. Then crs is changed

into

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [A Ṽ′ ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + Ṽ′ Hf̂j
((((((((((((((

−a⊥>(s1 ⊗ x̂
(0)
2 ‖y1 ⊗ s2)Hf̂j ]2}i∈[L],j∈[|F|]));

ct∗ is changed into

ct∗ = (C1 = [s1A1 + x̂
(0)
1︸ ︷︷ ︸

y1

]1, C2 = [s2A2 + x̂
(0)
2︸ ︷︷ ︸

y2

]2, C3 = [c]1,

C4 = [c Ṽ′ + (s1 ⊗ x
(0)
2 ‖y1 ⊗ s2)︸ ︷︷ ︸

y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t∗ − η1 · η2]T ).
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Therefore, Game9 and Game10 are identically distributed.

Lemma 16. We have |AdvGame10,A(λ)−AdvGame11,A(λ)| ≤ AdvMDDH
B6,G1

(λ), where
B6 is the adversary for the MDDH assumption in G1.

Proof. This proof is similar to the proof of Lemma 6, we omit it here.

Theorem 10 (Weakly Selective-SIM Security of Construction ΠsRQFE).
The slotted RQFE construction ΠsRQFE with message spaceM = Z1×n

p ×Z1×n
p ,

function space F = {fj ∈ Zn2×1
p }, a function value upperbound B, and an a-

priori fixed number of slots L = L(λ) is weakly selective-SIM secure relying on
the MDDH assumption and bi-MDDH assumption.

Remark 2. When the functions of the users that are corrupted by the adversary
cover the entire function space, for ΠsRQFE, weakly selective-SIM security is
equivalent to selective-SIM security.

Proof.

Games. We define the following games, where Game5 is the output of the simu-
lator:

– Game0: This is as the real scheme.
– Game1: This is the same as Game0, except that we change Setup and Enc

with the challenge message (x∗1,x
∗
2) as follows:

• Setup(1λ, 1n, 1L, 1|F|): Run the group generatorG = (p,G1, G2, GT , e)←
G(1λ). SampleA←R Zk×(k+1)

p ,V,V1,V2 ←R Z(k+1)×(k+k′)(n+1)
p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1, [AV2]1, {[WiHf̂j ]2}i∈[L],j∈[|F|],

{[WiBf̂j ]2}i∈[L],j∈[|F|], {[V1WiHf̂j +V2WiHf̂j +VHf̂j ]2}i∈[L],j∈[|F|]));
msk = (a⊥,A,A1,A2,V,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk, (x∗1,x
∗
2),msk, {ski}i∈[L]): Sample c ←R Z1×(k+1)

p , which satis-
fies ca⊥> = 1, s1 ←R Z1×k′

p , s2 ←R Z1×k
p , and η1, η2 ←R Zp. Output

ct = (C1 = [s1A1 + x̂∗1︸ ︷︷ ︸
y1

]1, C2 = [s2A2 + x̂∗2︸ ︷︷ ︸
y2

]2, C3 = [c]1,

C4 = [cV + (s1 ⊗ x̂∗2‖y1 ⊗ s2)︸ ︷︷ ︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).
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– Game2: This is the same as Game1, except that we change Setup and Enc
with the challenge messages (x∗1,x∗2) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x∗1,x
∗
2)): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample s1 ←R Z1×k′
p , s2 ←R Z1×k

p , and η1, η2 ←R Zp. Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(s1 ⊗ x̂∗2‖y1 ⊗ s2)Hf̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk, (x∗1,x
∗
2),msk, {ski}i∈[L]): Sample c ←R Z1×(k+1)

p , which satis-
fies ca⊥> = 1.

ct = (C1 = [s1A1 + x̂∗1︸ ︷︷ ︸
y1

]1, C2 = [s2A2 + x̂∗2︸ ︷︷ ︸
y2

]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Game3: This is the same as Game2, except that we change Setup and Enc
with the challenge messages (x∗1,x∗2) as follows:

• Setup(1λ, 1n, 1L, 1|F|, (x
(1)
1 ,x∗2)): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample s1 ←R Z1×k′
p , s2 ←R Z1×k

p , and η1, η2 ←R Zp. Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(y1 ⊗ y2 − x̂∗1 ⊗ x̂∗2)f̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).
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• Enc(mpk, (x∗1,x
∗
2),msk, {ski}i∈[L]): Sample c ←R Z1×(k+1)

p , which satis-
fies ca⊥> = 1. Output

ct = (C1 = [s1A1 + x̂∗1︸ ︷︷ ︸
y1

]1, C2 = [s2A2 + x̂∗2︸ ︷︷ ︸
y2

]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Game4: This is the same as Game3, except that we change Setup and Enc
with the challenge messages (x∗1,x∗2) as follows:
• Setup(1λ, 1n, 1L, 1|F|, (x∗1,x

∗
2)): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample s2 ←R Z1×k
p , η1, η2 ←R Zp, and y1 ←R Z1×(n+1)

p .
Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(y1 ⊗ y2 − x̂∗1 ⊗ x̂∗2)f̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk,x∗2,msk, {ski}i∈[L]): Sample c←R Z1×(k+1)
p , which satisfies ca⊥> =

1. Output

ct = (C1 = [y1]1, C2 = [s2A2 + x̂∗2︸ ︷︷ ︸
y2

]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

– Game5: This is the same as Game4, except that we change Setup and Enc
with the challenge messages (x∗1,x∗2) as follows:
• Setup(1λ, 1n, 1L, 1|F|, (x∗1,x

∗
2)): Run the group generatorG = (p,G1, G2, GT , e)←

G(1λ). SampleA←R Zk×(k+1)
p , Ṽ,V1,V2 ←R Z(k+1)×(k+k′)(n+1)

p ,A1 ←R

Zk
′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B←R Z(k+k′)×(n+1)2

p , andWi ←R Z(k+k′)(n+1)×(k+k′)(n+1)
p

for each i ∈ [L]. There exists an a⊥ ∈ Z1×(k+1)
p , which satisfies Aa⊥> =

0 ∈ Zk×1p . Sample y1 ←R Z1×(n+1)
p ,y2 ←R Z1×(n+1)

p , and η1, η2 ←R Zp.
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Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(y1 ⊗ y2 − x̂∗1 ⊗ x̂∗2)f̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

• Enc(mpk,msk, {ski}i∈[L]): Sample c←R Z1×(k+1)
p , which satisfies ca⊥> =

1. Output

ct = (C1 = [y1]1, C2 = [y2]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t − η1 · η2]T ).

Lemma 17. We have |AdvGame0,A(λ) − AdvGame1,A(λ)| ≤ AdvMDDH
B1,G1

(λ), where
B1 is the adversary for the MDDH assumption in G1.

Proof. Suppose a challenger B1. The adversary A sends (x∗1,x∗2) and the number
of slots L to B1. B1 receives ([A]1, [T ]1) from the underlying MDDH assumption.
ForA, there exist a⊥ ∈ Z1×(k+1)

p such thatAa⊥> = 0 ∈ Zk×1p . Then B1 interacts
with A as follows:
B1 generates the output of Setup:
Run the group generatorG = (p,G1, G2, GT , e)← G(1λ), and sampleV,V1,V2 ←R

Z(k+1)×(k+k′)(n+1)
p ,A1 ←R Zk

′×(n+1)
p ,A2 ←R Zk×(n+1)

p ,B ←R Z(k+k′)×(n+1)2

p ,
and Wi ←R Zn×np for each i ∈ [L]. For each f ∈ F , set f̂ as equation (2). Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1, [AV2]1, {[WiHf̂j ]2}i∈[L],j∈[|F|],

{[WiBf̂j ]2}i∈[L],j∈[|F|], {[V1WiHf̂j +V2WiHf̂j +VHf̂j ]2}i∈[L],j∈[|F|]));
msk = (A,A1,A2,V,V1,V2,B, {Wi}i∈[L]).

B1 sends crs to A.
B1 generates the output of KeyGen for honest users:
Sample Ui ←R Z(k+1)×n

p , which satisfies each component of Ui is bounded
by B. Output

pkctr = ([AUi]1, {[UiWtHfj ]2}t6=i,j∈[|F|], {[UiWtBfj ]2}t 6=i,j∈[|F|]);
skctr = Ui.

Upon receiving ({f i∗, pk∗i }i∈[L]) from A, for each i ∈ [L], B1 generates the
output of IsValid:
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Check the validity of pk∗i . If 0 ← IsValid(crs, i, pk∗i ), B1 aborts. Otherwise,
1← IsValid(crs, i, pk∗i ), B1 computes ski = Ui with msk and brute-force discrete
log (If Ui cannot be computed, B1 aborts. And note that only with negligible
probability, [Ui]T is not unique, in this case, B1 also aborts.).
B1 generates the output of Aggr:
Output

mpk = ([A
∑
i∈[L]

Ui]1, [
∑
i∈[L]

WiHf̂ i∗]2, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1,

[AV2]1);

{hski = (i, f i∗, [A1]2, [A2]2, [
∑

t6=i,t∈[L]

UtWiHf̂ i∗]2, [
∑

t 6=i,t∈[L]

WtHf̂ i∗]2,

[V1WiHf̂ i∗ +V2WiHf̂ i∗ +VHf̂ i∗]2, [WiHf̂ i∗]2)}i∈[L].

B1 sends (mpk, {hski}i∈[L]) to A.
B1 generates the output of Enc:
Sample s1 ←R Z1×k′

p , s2 ←R Z1×k
p , and η1, η2 ←R Zp. Output

ct∗ = (C1 = [s1A1 + x̂∗1︸ ︷︷ ︸
y1

]1, C2 = [s2A2 + x̂∗2︸ ︷︷ ︸
y2

]2, C3 = [ T ]1,

C4 = [ T V + (s1 ⊗ x̂∗2‖y1 ⊗ s2)︸ ︷︷ ︸
y0

]1, C5 = [ T V1 + T
∑
t∈[L]

Ut]1,

C6 = [ T V2]1, C7 = [− T V2

∑
t∈[L]

WtHf̂ t∗ − η1 · η2]T ).

B1 sends ct∗ to A.
Observe when T = sA, where s ←R Z1×k

p , the distributions are as Game0;
when T = c, where c←R Z1×(k+1)

p satisfying ca⊥> = 1, the distributions are as
Game1. Then if A can distinguish Game0 and Game1, B1 can utilize A to break
the MDDH assumption in G1. Thus lead to contradiction.

Lemma 18. We have |AdvGame1,A(λ)− AdvGame2,A(λ)| = 0.

Proof. Sample Ṽ ←R Z(k+1)×(k+k′)(n+1)
p . Then change the variables V as fol-

lows:

V = Ṽ − a⊥>(s1 ⊗ x∗2‖y1 ⊗ s2),

where the distributions are taken over the random choices of V and Ṽ.
We have AV = A(Ṽ − a⊥>(s1 ⊗ x∗2‖y1 ⊗ s2)) = AṼ. Then crs is changed

into

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [A Ṽ ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + Ṽ Hf̂j −a⊥>(s1 ⊗ x̂∗2‖y1 ⊗ s2) Hf̂j ]2}i∈[L],j∈[|F|]));
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ct∗ is changed into

ct∗ = (C1 = [s1A1 + x̂∗1︸ ︷︷ ︸
y1

]1, C2 = [s2A2 + x̂∗2︸ ︷︷ ︸
y2

]2, C3 = [c]1,

C4 = [c Ṽ︸ ︷︷ ︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t∗ − η1 · η2]T ).

Therefore, Game1 and Game2 are identically distributed.

Lemma 19. We have |AdvGame2,A(λ)− AdvGame3,A(λ)| = 0.

Proof. It is easy to see

(s1 ⊗ x̂∗2‖y1 ⊗ s2)Hf̂j

=(s1 ⊗ x̂∗2)(A1 ⊗ In+1) + (y1 ⊗ s2)(In+1 ⊗A2)

=(s1A1)⊗ x̂∗2 + (s1A1)⊗ (s2A2) + x̂∗1 ⊗ (s2A2)

=(y1 ⊗ y2 − x̂∗1 ⊗ x̂∗2)fj .

Therefore, Game2 and Game3 are identically distributed.

Lemma 20. We have |AdvGame3,A(λ)−AdvGame4,A(λ)| ≤ Advbi-MDDH
B2

(λ), where
B2 is the adversary for the bi-MDDH assumption.

Proof. Suppose a challenger B2. The adversary A sends (x∗1,x∗2) and the number
of slots L to B2. B2 receives ([A1]1, [A1]2, [T ]1, [T ]2) from the underlying bi-
MDDH assumption. Then B2 interacts with A as follows:
B2 generates the output of Setup:
Run the group generatorG = (p,G1, G2, GT , e)← G(1λ), and sample Ṽ,V1,V2 ←R

Z(k+1)×(k+k′)(n+1)
p ,A ←R Zk×(k+1)

p ,A2 ←R Zk×(n+1)
p ,B ←R Z(k+k′)×(n+1)2

p ,
and Wi ←R Zn×np for each i ∈ [L]. For A, there exist a⊥ ∈ Z1×(k+1)

p such
that Aa⊥> = 0 ∈ Zk×1p . For each f ∈ F , set f̂ as equation (2). Sample
s2 ←R Z1×k

p , η1, η2 ←R Zp. Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(( T + x̂∗1)⊗ y2 − x̂∗1 ⊗ x̂∗2)f̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A2, Ṽ,V1,V2,B, {Wi}i∈[L]).

B2 sends crs to A.
B2 generates the output of KeyGen for honest users:
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Sample Ui ←R Z(k+1)×n
p , which satisfies each component of Ui is bounded

by B. Output

pkctr = ([AUi]1, {[UiWtHfj ]2}t6=i,j∈[|F|], {[UiWtBfj ]2}t 6=i,j∈[|F|]);
skctr = Ui.

Upon receiving ({f i∗, pk∗i }i∈[L]) from A, for each i ∈ [L], B2 generates the
output of IsValid:

Check the validity of pk∗i . If 0 ← IsValid(crs, i, pk∗i ), B2 aborts. Otherwise,
1← IsValid(crs, i, pk∗i ), B2 computes ski = Ui with msk and brute-force discrete
log (If Ui cannot be computed, B2 aborts. And note that only with negligible
probability, [Ui]T is not unique, in this case, B2 also aborts.).
B2 generates the output of Aggr:
Output

mpk = ([A
∑
i∈[L]

Ui]1, [
∑
i∈[L]

WiHf̂ i∗]2, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1,

[AV2]1);

{hski = (i, f i∗, [A1]2, [A2]2, [
∑

t6=i,t∈[L]

UtWiHf̂ i∗]2, [
∑

t 6=i,t∈[L]

WtHf̂ i∗]2,

[V1WiHf̂ i∗ +V2WiHf̂ i∗ +VHf̂ i∗]2, [WiHf̂ i∗]2)}i∈[L].

B2 sends (mpk, {hski}i∈[L]) to A.
B2 generates the output of Enc:

Sample c←R Z1×(k+1)
p , which satisfies ca⊥> = 1. Output

ct∗ = (C1 = [ T + x̂∗1]1, C2 = [s2A2 + x̂∗2︸ ︷︷ ︸
y2

]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t∗ − η1 · η2]T ).

B2 sends ct∗ to A.
Observe when T = s1A1, where s1 ←R Z1×k′

p , the distributions are as
Game3; when T = y′1, where y′1 ←R Z1×(n+1)

p satisfying y′1 + x̂
(∗)
1 = y1 and

y1 ←R Z1×(n+1)
p , the distributions are as Game4. Then if A can distinguish

Game3 and Game4, B2 can utilize A to break the bi-MDDH assumption. Thus
lead to contradiction.

Lemma 21. We have |AdvGame4,A(λ) − AdvGame5,A(λ)| ≤ AdvMDDH
B3,G2

(λ), where
B3 is the adversary for the MDDH assumption in G2.
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Proof. Suppose a challenger B3. The adversary A sends (x∗1,x∗2) and the number
of slots L to B3. B3 receives ([A2]2, [T ]2) from the underlying MDDH assumption
in G2. Then B3 interacts with A as follows:
B3 generates the output of Setup:
Run the group generatorG = (p,G1, G2, GT , e)← G(1λ), and sample Ṽ,V1,V2 ←R

Z(k+1)×(k+k′)(n+1)
p ,A ←R Zk×(k+1)

p ,A1 ←R Zk
′×(n+1)
p ,B ←R Z(k+k′)×(n+1)2

p ,
and Wi ←R Zn×np for each i ∈ [L]. For A, there exist a⊥ ∈ Z1×(k+1)

p such
that Aa⊥> = 0 ∈ Zk×1p . For each f ∈ F , set f̂ as equation (2). Sample
y1 ←R Z1×(n+1)

p , η1, η2 ←R Zp. Output

crs = (G, [A]1, [A1]1, [A1]2, [A2]2, [AṼ]1, [AV1]1, [AV2]1,

{[WiHf̂j ]2}i∈[L],j∈[|F|], {[WiBf̂j ]2}i∈[L],j∈[|F|],

{[V1WiHf̂j +V2WiHf̂j + ṼHf̂j − a⊥>(y1 ⊗ ( T + x̂∗2)− x̂∗1 ⊗ x̂∗2)f̂j ]2}i∈[L],j∈[|F|]));

msk = (a⊥,A,A1, Ṽ,V1,V2,B, {Wi}i∈[L]).

B3 sends crs to A.
B3 generates the output of KeyGen for honest users:

Sample Ui ←R Z(k+1)×n
p , which satisfies each component of Ui is bounded

by B. Output

pkctr = ([AUi]1, {[UiWtHfj ]2}t6=i,j∈[|F|], {[UiWtBfj ]2}t 6=i,j∈[|F|]);
skctr = Ui.

Upon receiving ({f i∗, pk∗i }i∈[L]) from A, for each i ∈ [L], B3 generates the
output of IsValid:

Check the validity of pk∗i . If 0 ← IsValid(crs, i, pk∗i ), B3 aborts. Otherwise,
1← IsValid(crs, i, pk∗i ), B3 computes ski = Ui with msk and brute-force discrete
log (If Ui cannot be computed, B3 aborts. And note that only with negligible
probability, [Ui]T is not unique, in this case, B3 also aborts.).
B3 generates the output of Aggr:
Output

mpk = ([A
∑
i∈[L]

Ui]1, [
∑
i∈[L]

WiHf̂ i∗]2, [A]1, [A1]1, [A1]2, [A2]2, [AV]1, [AV1]1,

[AV2]1);

{hski = (i, f i∗, [A1]2, [A2]2, [
∑

t6=i,t∈[L]

UtWiHf̂ i∗]2, [
∑

t 6=i,t∈[L]

WtHf̂ i∗]2,

[V1WiHf̂ i∗ +V2WiHf̂ i∗ +VHf̂ i∗]2, [WiHf̂ i∗]2)}i∈[L].

B3 sends (mpk, {hski}i∈[L]) to A.
B3 generates the output of Enc:
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Sample c←R Z1×(k+1)
p , which satisfies ca⊥> = 1. Output

ct∗ = (C1 = [y1]1, C2 = [ T + x̂∗2]2, C3 = [c]1,

C4 = [ cṼ︸︷︷︸
y0

]1, C5 = [cV1 + c
∑
t∈[L]

Ut]1,

C6 = [cV2]1, C7 = [−cV2

∑
t∈[L]

WtHf̂ t∗ − η1 · η2]T ).

B3 sends ct∗ to A.
Observe when T = s2A2, where s2 ←R Z1×k

p , the distributions are as Game4;
when T = y′2, where y′2 ←R Z1×(n+1)

p satisfying y′2 + x̂
(∗)
2 = y2 and y2 ←R

Z1×(n+1)
p , the distributions are as Game5. Then if A can distinguish Game4 and

Game5, B3 can utilize A to break the MDDH assumption in G2. Thus lead to
contradiction.

Note that (x̂∗1 ⊗ x̂∗2)f̂j is the function value.

6 From Slotted RFE to RFE

The transformation from slotted RFE to RFE follows the generic compiler in
[28,18]. Here, we omit the concrete constructions of our RFE, the readers can
refer [28,18] for details.

Theorem 11 (Perfect Correctness of Construction ΠRIPFE). If the slot-
ted RIPFE ΠsRIPFE in Section 4.1 is complete and perfectly correct, then our
RIPFE ΠRIPFE, which follows the generic compiler in [28,18], is perfectly cor-
rect.

Proof. This follows an identical argument of [28,18]. We omit it here.

Theorem 12 (Compactness of Construction ΠRIPFE). If the slotted RIPFE
ΠsRIPFE in Section 4.1 is compact, then our RIPFE ΠRIPFE, which follows the
generic compiler in [28,18], is compact.

Proof. Since in RIPFE ΠRIPFE , there are (logL+1) instances of slotted RIPFE
ΠsRIPFE . For each instance of slotted RIPFEΠsRIPFE , the size of master public
key is bounded by n·poly(λ). Thus, for RIPFEΠRIPFE , the size of master public
key is bounded by logL ·n ·poly(λ). Similarly, for each instance of slotted RIPFE
ΠsRIPFE , the size of helper decryption key is bounded by n ·poly(λ)+O(logL).
Thus, for RIPFE ΠRIPFE , the size of helper decryption key is bounded by
logL · n · poly(λ) + logL ·O(logL).

Theorem 13 (Update Efficiency of Construction ΠRIPFE). If the slotted
RIPFE ΠsRIPFE in Section 4.1 is compact, then our RIPFE ΠRIPFE, which
follows the generic compiler in [28,18], satisfies update efficiency.
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Proof. By construction of ΠRIPFE , the number of updates is at most (logL+1).
And since each helper decryption key is of size logL ·n ·poly(λ)+ logL ·O(logL)
(which follows the compactness of slotted RIPFE ΠsRIPFE), thus the update
operation can be implemented in logL · n · poly(λ) + logL ·O(logL) time in the
RAM model of computation. Therefore, our RIPFE ΠRIPFE satisfies update
efficiency.

Theorem 14 (Security of Construction ΠRIPFE). If the slotted RIPFE
ΠsRIPFE in Section 4.1 is weakly selective-IND secure (resp. weakly selective-
SIM secure), then our RIPFE ΠRIPFE, which follows the generic compiler in
[28,18], is weakly selective-IND secure (resp. weakly selective-SIM secure).

Remark 3. When the functions of the users that are corrupted by the adversary
cover the entire function space, for ΠRIPFE, weakly selective-SIM security is
equivalent to selective-SIM security.

Proof. This follows an identical argument of [28,18]. A notable difference is that
we require the efficient algorithm B also sends the challenge messages chosen by
A to the underlying challenger, together with the number of slots, 2k

∗
, of the

k∗-th slotted RIPFE, in the setup phase. We omit the proof here.

Theorem 15 (Perfect Correctness of Construction ΠRQFE). If the slotted
RQFE ΠsRQFE in Section 5.1 is complete and perfectly correct, then our RQFE
ΠRQFE, which follows the generic compiler in [28,18], is perfectly correct.

Proof. This follows an identical argument of [28,18]. We omit it here.

Theorem 16 (Compactness of Construction ΠRQFE). If the slotted RQFE
ΠsRQFE in Section 5.1 is compact, then our RQFE ΠRQFE, which follows the
generic compiler in [28,18], is compact.

Proof. Since in RQFE ΠRQFE , there are (logL+ 1) instances of slotted RQFE
ΠsRQFE . For each instance of slotted RQFE ΠsRQFE , the size of master public
key is bounded by (n+ 1) · poly(λ). Thus, for RQFE ΠRQFE , the size of master
public key is bounded by logL · (n+ 1) · poly(λ). Similarly, for each instance of
slotted RQFE ΠsRQFE , the size of helper decryption key is bounded by (n +
1) · poly(λ)+n2 · poly(λ)+O(logL). Thus, for RQFE ΠRQFE , the size of helper
decryption key is bounded by logL · (n+1) ·poly(λ)+ logL ·n2 ·poly(λ)+ logL ·
O(logL).

Theorem 17 (Update Efficiency of Construction ΠRQFE). If the slotted
RQFE ΠsRQFE in Section 5.1 is compact, then our RQFE ΠRQFE, which follows
the generic compiler in [28,18], satisfies update efficiency.

Proof. By construction of ΠRQFE , the number of updates is at most (logL +
1). And since each helper decryption key is of size logL · (n + 1) · poly(λ) +
logL · n2 · poly(λ) + logL · O(logL) (which follows the compactness of slotted
RQFE ΠsRQFE), thus the update operation can be implemented in logL · (n+
1) · poly(λ) + logL · n2 · poly(λ) + logL · O(logL) time in the RAM model of
computation. Therefore, our RQFE ΠRQFE satisfies update efficiency.
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Theorem 18 (Security of Construction ΠRQFE). If the slotted RQFE ΠsRQFE

in Section 5.1 is weakly selective-IND secure (resp. weakly selective-SIM secure),
then our RQFE ΠRQFE, which follows the generic compiler in [28,18], is weakly
selective-IND secure (resp. weakly selective-SIM secure).

Remark 4. When the functions of the users that are corrupted by the adversary
cover the entire function space, for ΠRQFE, weakly selective-SIM security is
equivalent to selective-SIM security.

Proof. This follows an identical argument of [28,18]. A notable difference is that
we require the efficient algorithm B also sends the challenge messages chosen by
A to the underlying challenger, together with the number of slots, 2k

∗
, of the

k∗-th slotted RQFE, in the setup phase. We omit the proof here.
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