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Abstract. In many multi-round public-coin interactive proof systems, challenges in different
rounds serve different roles, but a formulation that actively utilizes this aspect has not been
studied extensively. In this paper, we propose new notions called critical-round special honest
verifier zero-knowledge and critical-round special soundness. Our notions are simple, intuitive,
easy to apply, and capture several practical multi-round proof protocols including, but not
limited to, those from the MPC-in-the-Head paradigm.
We demonstrate the usefulness of these notions with two fundamental applications where three-
round protocols are known to be useful, but multi-round ones generally fail. First, we show that
critical-round proofs yield trapdoor commitment schemes. This result also enables the instanti-
ation of post-quantum secure adaptor signatures and threshold ring signatures from MPCitH,
resolving open questions in (Haque and Scafuro, PKC 2020) and in (Liu et al., ASIACRYPT
2024). Second, we show that critical-round proofs can be securely composed using the Cramer-
Schoenmakers-Damgård method. This solves an open question posed by Abe et al. in CRYPTO
2024.
Overall, these results shed new light on the potential of multi-round proofs in both theoretical
and practical cryptographic protocol design.

Keywords: Multi-Round, Critical Round, Composition, Trapdoor Commitment, MPCitH,
Adaptor Signatures, Threshold Ring Signatures

1 Introduction

1.1 Background

A public-coin proof system is a widely used tool in cryptographic protocol design. In its simplest
three-move form, the prover, attempting to prove a relation on instance x, first commits to a, receives
a challenge c from the verifier, and responds with z. The verifier accepts if (x, a, c, z) satisfies the
verification predicate. This framework not only leads to non-interactive zero-knowledge proof systems
and signature schemes via the Fiat-Shamir transformation [FS87], but also has various other important
applications. One simple yet surprising example are trapdoor commitment (TD) schemes [Dam90],
which can be constructed from any Σ-protocol where x serves as the commitment key, a is the
commitment, the message is embedded in c, and z is the opening information. If the committer
knows the witness for x, they can open a to any message c by using z, as the proof protocol can
be completed with any challenge. Conversely, if the witness is unknown, the committer can only
⋆ This work was done while Dung Bui was doing a summer internship at NTT Social Informatics Laboratories.
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respond to a single pre-determined challenge c through zero-knowledge simulation, leveraging the
special honest verifier zero-knowledge property of Σ-protocols.

Recent advances in design paradigms have led to the development of efficient (2µ + 1)-move
public-coin proof systems. The MPC-in-the-Head (MPCitH) paradigm [IKOS07] demonstrates how
to construct zero-knowledge proofs from a multi-party computation (MPC) protocol. Its prepro-
cessing variants [KKW18,BN20] result in multi-round proofs7 with concrete efficiency. This frame-
work has also been applied extensively to the development of efficient post-quantum signatures,
e.g., [BDK+21,FJR22,KZ22,AGH+23,CCJ23,BCC+24]. Another paradigm that produces multi-round
proofs is interactive oracle proofs (IOPs) [RRR16,BCS16], as well as polynomial IOPs [BFS20]. These
have given rise to a vast number of constructions of succinct non-interactive arguments of knowledge
(SNARKs) such as [AHIV17,BCR+19,CHM+20,GWC19,COS20,CFF+21], and to polynomial com-
mitment schemes [BBHR18,ACFY24].

The security of multi-round proofs has been studied primarily in terms of their soundness proper-
ties. Several formulations of soundness and their relationships are studied in the literature [BGTZ23].
With regard to knowledge soundness, (k1, . . . , kµ)-special soundness [ACK21,AFR23] is a natural gen-
eralization of the standard 2-special soundness [Cra96] used in three-move proofs. The formulation is
primarily used to analyze the security of non-interactive proofs and signature schemes resulting from
the Fiat-Shamir transformation. A variation of zero-knowledge is considered in [DG23,GKK+22] for
analyzing the security of SNARKs via the Fiat-Shamir transformation in the programmable random
oracle model.

Beyond non-interactive zero-knowledge proofs and signatures, further applications for multi-round
proofs should be explored to expand their utility both in theory and practice. However, extending
the rich results of three-move proofs to multi-round ones is far from trivial. Take, for instance, the
aforementioned trapdoor commitments—where to embed the message among the multiple challenges
is unclear. In fact, it can be argued that, due to the non-interactive nature of the commitment scheme,
the transformation from a three-move proof to a trapdoor commitment schemes does not extend to
the multi-round case in general. It is also noted in [ABO+24] that the multi-round analogue of the
well-known Cramer-Shoenmakers-Damgård (CDS) composition [CDS94] does not yield sound proofs.
We elaborate on these unsuccessful applications of multi-round proofs in the next section.

1.2 Our Contribution

Given that multi-round proof protocols often face challenges in adapting well-developed techniques
for three-move ones, our objective is to introduce a useful formulation that characterizes a class of
multi-round proof protocols that are as effective as their three-move counterparts. General multi-
round public-coin protocols differ from the three-move protocols in two key ways: the number of
moves 2µ+1, which exceeds three; and the number of branches ki at each step, which can exceed two.
In this paper, we primarily focus on the issues arising from the increased number of rounds. Whenever
our results impose restrictions on ki, we state this explicitly and discuss possible extensions to more
general cases.

The results of this paper are summarized as follows:

1. Utility-Focused Characterization. Observing that challenges in multi-round proofs often serve
different roles, we introduce the notion of a critical round, defined as the round that plays a critical
role in both zero-knowledge and (knowledge) soundness. We formalize the notions of critical-round
special honest verifier zero-knowledge (CRZK) and critical-round special soundness (CRSS), which
together characterize a class of multi-round proofs we call critical-round protocols. CRZK states
that the whole proof can be simulated only by knowing a challenge in the specific round in
advance, and aims for construction of applications. CRSS is a combination of round-by-round
soundness and special soundness switched in the specific round. It helps to build more compact
tree of transcripts or eliminating programmable random oracles.
The class of critical-round protocols includes important existing constructions of multi-round
proofs, such as those based on MPCitH and IOPs. To demonstrate this, we formally prove that
the first MPCitH protocol with preprocessing, also known as the KKW protocol [KKW18], satisfies
these notions.

7 Some are in the three-move format with a structured challenge string. We view them as multi-round with
separate challenges.
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2. Application 1: Trapdoor Commitment. We present a transformation from critical-round
proofs to trapdoor commitment schemes for k = 2 at their critical round. For k > 2, we instead
construct an accumulator that binds k − 1 messages into a single string.
As further applications worth mentioning, our result unlocks MPCitH-based instantiations of (1)
post-quantum threshold ring signatures and (2) post-quantum adaptor signatures for arbitrary
one-way relations. These follow the frameworks from [HS20,LTZ24], that construct these advanced
signatures from trapdoor commitments that allow to embed an instance of a particular NP relation
to the commitment key. Our construction enables to obtain them solely from (practically efficient)
MPCitH, answering the open question posed in both [LTZ24] and [HS20].

3. Application 2: Composition. We show that critical-round protocols are securely composed
via the CDS composition solely by applying it to the critical round with k = 2. This partially
answers an open question posed in [ABO+24] that seeks for compositions as powerful as the
CDS for multi-round protocols. We also argue that our composition extends to general k > 2 in
the random oracle model applying the Share-then-Hash technique from [AAB+20]. As a further
application, we introduce trapdoor commitments with flexible trapdoor allocation that combines
this result with the first one.

To justify our focus on the above applications, we explain how general multi-round proof proto-
cols fail in these cases. A key observation is that the zero-knowledge simulator is employed in the
construction. Since the general form of the zero-knowledge simulator requires to input all challenges
to generate a simulated transcript, the protocols can only be executed if all challenges for the sim-
ulated part are available in advance. This establishes a sharp contrast with non-interactive proofs
via Fiat-Shamir, e.g., [AAB+24,HJMN24], where the zero-knowledge simulator is used only in the
security proof with a programmable random oracle.

Failure in trapdoor commitment: Recall the trapdoor commitment scheme from a three-move
protocol: the commitment key is an instance x where the witness is not known to the committer. To
commit to message m, the committer runs the zero-knowledge simulator with m as challenge c and
obtains a as a commitment and z as an opening information.
Consider a multi-round analogue of this construction. The committer would set all challenges c1, . . . , cµ
to be m (or compute them deterministically from m) and run the zero-knowledge simulator to get a
and all z1, . . . , zµ. In the binding game, the adversary will produce two transcripts for the same a but
with distinct messages m and m′. However, for the (k1, . . . , kµ)-special soundness extractor to work,
we need a tree of transcripts that branches in all later challenges as well. It is clear that rewinding
does not help at all since the game is non-interactive. One might consider resorting to the Fiat-Shamir
approach where each ci = H(x, a, c1, . . . , zi−1) with c1 = m. Modeling H as a programmable random
oracle allows rewinding. However, the initial message a is available only after the zero-knowledge
simulator has been executed. Thus, the honest committer cannot obtain any of the ci in advance.

Failure in composition: Consider the CDS composition with a minimal example of the disjunctive
statement A ∨ B. A prover who only has a witness for A must simulate the proof for B using the
zero-knowledge simulator. For this to be possible, all challenges for the B part must be prepared in
advance. This means that, under the CDS paradigm, all real challenges provided by the verifier will
be secret-shared between the A and B parts, such that the B challenges are set as prepared, while the
A challenges follow the randomness of the real challenges. However, this is no longer sound if there are
two or more rounds. Consider a cheating prover (who potentially knows both witnesses) preparing the
first half of the rounds for the A challenges and the latter half of the rounds for the B challenges in
advance, then following the protocol with these pre-determined challenges. Rewinding such a prover
never yields a sufficient set of transcripts for extraction because half of the shared challenges are fixed
for both A and B.

1.3 Related Work

On special soundness and special zero-knowledge. Special soundness is defined in [Cra96] as the
existence of a knowledge extractor that, given any two accepting transcripts for the same initial
message, outputs a witness with probability one. Based on an observation that parallel repetition
of k-special sound protocols for k > 2 does not preserve k-special soundness, it is relaxed to screen
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erroneous transcripts with a predicate in [AAB+21]. A multi-round generalization of special soundness,
known as (k1, . . . , kµ)-special soundness, is introduced in [AF22,AFR23]. As well as it is observed in
the three-move case, (k1, . . . , kµ)-special soundness does not capture a class of protocols that repeats
atomic protocols in parallel [AF22]. It is then relaxed to handle erroneous transcripts in several
ways [ABO+24,AAB+24,DFMS22].

The aim of special soundness is to separate the adversary from the knowledge extractor. Con-
sequently, it becomes difficult to account for extraction errors based on computational assumptions
regarding the adversary. This issue is ingeniously addressed in [AFR23] by extending the extractor
to output, with probability 1, either a witness for the relation or a witness for the computational
problem. In this manner, it is possible to work with arguments such as KKW, which rely on the
hardness of a hash function collision.

The notion of k-zero knowledge in [DG23] shares essentially the same idea as our critical-round
zero-knowledge. They formalize it in the programmable random oracle model with a perfect zero-
knowledge flavor, as required for proving the Fiat-Shamir security of SNARKs. We extend and refine
this concept for interactive protocols, which is crucial for broadening its applicability.

On round elimination paradigm. Round elimination is a powerful technique developed in [HJMN24]
that transforms a class of multi-round protocols into three-move ones in the random oracle model.
In our terminology, it applies to protocols where the last round is critical, such that applying the
Fiat-Shamir transformation up to the last round leaves only the final round as interactive. This
technique is useful for constructing efficient non-interactive zero-knowledge proofs, allowing for a
modular security analysis. However, it does not guarantee a black-box use of the resulting three-
move protocol, as the zero-knowledge property holds only in the programmable random oracle model.
Because of this limitation, it is unsuitable to first apply round elimination to obtain a three-move
protocol and then use it for CDS composition or trapdoor commitments.

On compositions of proofs. There are many composition methods for three-move proofs in the litera-
ture, e.g., [CDS94,CPS+16a,CPS+16b,AAB+20,AAB+21,ACF21,ZLH+22,GGHAK22,ABFV22,ABF+24].
The CDS composition is the most powerful in terms of the expressiveness of the composition and the
generality of the underlying protocols. Other methods focus on reducing communication complexity
or providing additional properties, such as delayed input.

While most of these three-move compositions do not extend to multi-round protocols, Speed-
stacking in [GHAKS23] is a multi-round extension of Stacking-Σ [GGHAK22] for three-move com-
positions. It employs a non-interactive partially binding commitment scheme making the composed
protocol computationally sound. The composition in [FGQ+23] transforms round-by-round sound
multi-round protocols into a non-interactive argument system in the non-programmable random ora-
cle and the common reference string models. The composition in [ABO+24] uses a dual-mode commit-
ment scheme that preserves the soundness of the underlying protocols but results in computational
zero-knowledge protocols. It remains an open problem to devise a multi-round composition method
that simultaneously preserves the quality of soundness and zero-knowledge in the plain model as the
CDS does for three-move protocols.

Trapdoor commitments and instance dependent commitments. The idea of constructing a commitment
scheme from a three-move interactive proofs dates back to [Dam90]. When commitment key x is
chosen from no-instances of a language where yes and no instances are indistinguishable, it forms an
instance-dependent commitment scheme (IDTC) [CPS+16a]. Our trapdoor commitment can be used
as IDTC as well. IDTCs are an essential building block in delayed-input proof systems used in various
cryptographic protocols such as [Vis17,CPV20,FHJ20,HV20,ABFV22].

Applications of trapdoor commitments. Trapdoor commitments enjoy various cryptographic appli-
cations. Recent ones include constructions of advanced signature schemes such as threshold ring
signatures [HS20] and adaptor signatures [LTZ24]. Both rely on a black-box use of trapdoor commit-
ments, which they instantiate based on a generic NP reduction for graph hamiltonicity that involves
large practical overheads.

As an example, let us motivate the usefulness of trapdoor commitments for the case of adaptor
signatures. An adaptor signature scheme [Poe17] is characterized by a signature scheme and a NP
language L. It presents the property that, given a so-called pre-signature σ̄ and an adapted signature
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σ on a message, one can extract an NP witness w for some public instance x ∈ L. This feature
is closely related to the trapdoor extractability property of a trapdoor commitment scheme, which
says that given two valid opening proofs to different values m,m′ for the same commitment com,
one can extract a valid trapdoor td. This is observed in [LTZ24], where messages are pre-signed by
signing a commitment com and opening open to some message m0. Then, a pre-signature is adapted
by trapdoor-opening com to some message m ̸= m0. Given both openings, the trapdoor of the
commitment scheme (which is the witness w) can be retrieved.

By constructing a trapdoor commitment where the trapdoor corresponds to the witness of any
NP relation, their framework yields (plausibly post-quantum) adaptor signatures for NP relations.
A similar consideration applies to the threshold ring signatures from [HS20]. As we instantiate our
trapdoor commitment from an efficient framework such as MPCitH, our result enables more efficient
post-quantum secure constructions of these signatures.

2 Preliminaries

2.1 Notation

Throughout the paper, we use sans-self for algorithms. Sets are denoted by calligraphic letters. Entities
such as a prover, a verifier, and an adversary are denoted by capital letters. Some exceptions may be
used for better readability.

We use notation x ←$ D as sampling from a probability distribution D. If D is a set, then we
assume elements from the set are sampled uniformly. A sequence of values from 1 to n (inclusive) is
denoted using [n].

2.2 Public-Coin Proof System

We follow the definitions of [ACK21]. Let R : X × W → {0, 1} be a binary relation defined over
instances X and witnessesW. Language LR associated by R is LR := {x ∈ X | ∃w ∈ W : R(x,w) = 1}.
By LRW , we denote set LRW := {(x,w) | R(x,w) = 1}. LR(λ) (LRW (λ), resp.) denotes a subset of
LR (LRW , resp.) whose instance x is limited to λ bits. An interactive proof system Π for relation R
is a pair of interactive algorithms, prover P and verifier V , where a witness w is given to P as private
input and instance x is given to both P and V as common input, and V outputs b ∈ {0, 1} at the
end of the execution. By ⟨P (w), V ⟩(x)→ b we denote an execution of the algorithms. A transcript of
a protocol execution consists of x, b, and all content of input and output communication tapes of V .
It is (perfectly) complete if, for any (x,w) ∈ LRW , ⟨P (w), V ⟩(x)→ 1.

Definition 1 (Public-Coin Proof Protocol). A (2µ + 1)-move public-coin proof protocol for
relation R is a set of probabilistic polynomial-time algorithms A, Z, V and efficiently and uniformly
sampleable space {Ci}i∈[µ] that constitutes an interactive proof system (P, V ) that:

Step 1: P runs (st1, a)← A(x,w) and sends a to V .
Step 2i: V uniformly choose ci from Ci and send it to P .

Step 2i+ 1: P runs (sti+1, zi)← Z(sti, ci) and sends zi to V .
Final: V runs V(x, a, c1, z1, . . . , cµ, zµ)→ b and outputs b.

A transcript (a, c1, z1, . . . , cµ, zµ) with respect to instance x is accepting if V(x, a, c1, z1, . . . , cµ, zµ) =
1. The protocol has µ rounds, each of them consisting of a prover message followed by a verifier chal-
lenge.

Definition 2 (Tree of Transcripts [ACK21]). A (k1, . . . , kµ)-tree is a directed tree where every
node at depth i (1 ≤ i ≤ µ) has exactly ki outgoing edges. (k1, . . . , kµ)-tree of transcripts for a
(2µ + 1)-move public-coin proof protocol is a set of

∏µ
i=1 ki transcripts that can be represented by a

(k1, . . . , kµ)-tree in the following manner. Every path of the tree corresponds to a transcript in a way
that the i-th response from the prover and the i-th challenge from the verifier is assigned to the i-th
node and the i-th edge from the top, respectively. Challenges assigned on a set of edges from a node
must be pairwise distinct challenges. A tree of transcripts is called accepting if every transcript in the
tree is accepted.
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For more notation related to the tree of transcript, Let T be a (k1, . . . , kµ)-tree of transcripts.
Every node in depth i is indexed by id := (1, j1, . . . , ji−1) ∈ 1 × [k1] × · · · × [ki]. The root node is
at depth 1 and indexed by (1). As every node except for the root node has only one incoming edge,
every edge is represented by the same index as its destination node. By path(T, id) we denote the
path from the root to node id. A partial transcript assigned on path(T, id) is denoted by trans(T, id).
Let chal(T, id) denote a set of challenges assigned to outgoing edges from node id. For transcript
τ := (a, c1, z1, . . . , cµ, zµ), prefix(τ, i) denotes the transcript up to i-th node (a, c1, z1, . . . , ci, zi).

Definition 3 (Knowledge Soundness). An interactive proof system for relation R is knowledge
sound with knowledge error ϵks if there exists an expected polynomial-time algorithm Extks called an
extractor that, for every algorithm P ∗, every x ∈ {0, 1}λ, and aux ∈ {0, 1}∗,

Pr[w ← Ext
P∗(aux)
ks (x) : R(x,w) = 1] ≥ Pr[⟨P ∗(aux), V ⟩(x) = 1]− ϵks(λ)

poly(λ)
.

It is shown in [ACK21] that (k1, . . . , kµ)-Special Soundness, as defined below, implies knowledge
soundness.

Definition 4 ((k1, . . . , kµ)-Special Soundness [ACK21]). A (2µ + 1)-move public-coin proof
protocol is (k1, . . . , kµ)-special sound (SS for short) if there exists a polynomial-time algorithm that,
given any accepting (k1, . . . , kµ)-tree of transcripts, outputs w that satisfies R(x,w) = 1.

Definition 5 (Special Honest-Verifier Zero-Knowledge). A (2µ + 1)-round public-coin proof
protocol is special honest-verifier zero-knowledge if there exists a polynomial-time algorithm Sim that,
for any (x,w) ∈ LRW and ci ∈ Ci for i ∈ [µ], distribution of (a, c1, z1, . . . , cµ, zµ) generated as
(a, z1, . . . , zµ) ← Sim(x, c1, . . . , cµ) and that of (a′, c′1, z′1, . . . , c′µ, z′µ) generated as (st1, a

′) ← A(x,w)
and (sti+1, z

′
i)← Z(sti, ci) for i from 1 to µ are indistinguishable.

2.3 Trapdoor Commitments

Trapdoor commitments are a type of commitment schemes where, if P knows a trapdoor, they can
open a commitment to any message. Without the knowledge of the trapdoor, however, P can only
open the commitment to reveal the originally committed message, preserving binding. In other words,
the commitment is only binding if the trapdoor is not known to P . A trapdoor commitment scheme
has four properties: completeness, hiding, binding, and equivocability. We formalize these properties
below, following [CV05].

Definition 6 (Trapdoor Commitment Scheme). A trapdoor commitment scheme is a tuple of
five algorithms T D = (Gen,Com,TCom,Equiv,Ver) for a message space M such that:

Gen(1λ)→ (ck, td) : On input the security parameter λ, Gen(1λ) returns a commitment key ck and a
trapdoor td.

Com(ck,m)→ (com, open) : On input a commitment key ck and a message m ∈ M, Com(ck,m)
outputs a commitment com and an opening open.

TCom(ck, td)→ (com, st) : On input a commitment key ck and a trapdoor td, TCom(ck, td) outputs
a commitment com and a state st.

Equiv(m, st)→ open : On input a message m ∈ M and a state st, Equiv(m, st) outputs an opening
open.

Ver(ck, com,m, open)→ 0/1 : On input a commitment key ck, a commitment com, a message m, and
an opening open, Ver(ck, com,m, open) outputs 1 (accept) or 0 (reject).

Moreover, these algorithms should satisfy the following properties:

Completeness. For any m ∈M,

Pr

[
Ver(ck, com,m, open) = 1

∣∣∣∣ (ck, td)← Gen(1λ)
(com, open)← Com(ck,m)

]
= 1

6



Binding. A trapdoor commitment scheme is computationally binding if for any PPT adversary A,

Pr

 Ver(ck, com,m, open) = 1
∧ Ver(ck, com,m′, open′) = 1
∧ m ̸= m′

∣∣∣∣∣∣
(ck, td)← Gen(1λ)
(com,m, open,m′,
open′)← A(ck)

 ≤ negl(λ)

If the property holds for any (even computationally unbounded) adversary A, then the scheme is
statistically binding.

Hiding. A trapdoor commitment is computationally (resp. statistically) hiding if for any stateful PPT
(resp. unbounded) adversary A, and for every m,m′ ∈M,∣∣∣∣Pr [1← A(ck, com)

∣∣∣∣ (ck, td)← Gen(1λ)
(com, open)← Com(ck,m)

]
− Pr

[
1← A(ck, com)

∣∣∣∣ (ck, td)← Gen(1λ)
(com, open)← Com(ck,m′)

]∣∣∣∣ ≤ negl(λ).

Equivocability. A trapdoor commitment is computationally (resp. statistically) equivocable if for any
m,m′ ∈M the following distributions are computationally (resp. statistically) indistinguishable:{

(ck, com, open,m) :
(ck, td)← Gen(1λ)
(com, open)← Com(ck,m)

}
and (ck, com, open,m′) :

(ck, td)← Gen(1λ)
(com, st)← TCom(ck, td)
open← Equiv(st,m′)

 .

We also introduce a property called trapdoor extractability, for which one can extract a valid
trapdoor from any adversary that breaks binding. It is easy to see that trapdoor extractability implies
binding. To define this property, we need to assume the existence of a trapdoor-checking function ft
such that ft(ck, td) = 1 if and only if td is a valid trapdoor for ck. We also define a stronger notion
that captures offline extraction.

Definition 7 (Trapdoor extractability). A trapdoor commitment scheme is trapdoor extractable
if for any PPT adversary A, there exists a polynomial-time extractor Ext such that

Pr


ft(ck, td

′) = 0
∧ Ver(ck, com,m, open) = 1
∧ Ver(ck, com,m′, open′) = 1
∧ m ̸= m′

∣∣∣∣∣∣∣∣
(ck, td)← Gen(1λ)
(com,m, open,m′,
open′)← A(ck)
td′ ← Ext(ck)

 ≤ negl(λ)

Besides, we say that a trapdoor commitment is offline trapdoor extractable if there exists an
algorithm Extoff such that for any (ck, td)← Gen(1λ) and two accepting openings (com,m, open) and
(com,m′, open′) with m ̸= m′,

Pr[ft(ck, td
′) = 0 | td′ ← Extoff(ck, com,m, open,m′, open′)] ≤ negl(λ).

2.4 Accumulators

An accumulator, also known as a set commitment, is a succinct primitive that allows one to commit
to a set of elements S = {x1, . . . , xt} and then produce a short proof of membership for any xi ∈
S [Bd94,BP97]. We introduce a definition below, following the syntax in [Kol24].

Definition 8 (Accumulator). A (static) accumulator with domain M is a tuple of algorithms
(Gen,Accum,WitGen,Ver) with the following syntax:

Gen(1λ)→ ck : On input the security parameter λ and an upper bound for the set size n, Gen(1λ)
returns a commitment key ck.

Accum(ck, S)→ (com, st) : On input a commitment key ck and a set S ⊂ M, Accum(ck, S) outputs
a commitment com and a state st.

WitGen(ck, st,m)→ π : On input a commitment key ck, a state st and a value m, WitGen(ck, st,m)
outputs a membership proof π.

7



Ver(ck, com,m, π)→ 0/1 : On input a commitment key ck, a commitment com, a message m, and
an opening proof π, Ver(ck, com,m, π) outputs 1 (accept) or 0 (reject).

Moreover, these algorithms should satisfy the following properties:

Completeness. For any S ⊂M such that |S| ≤ n and for any m ∈ S,

Pr

Ver(ck, com,m, π) = 1

∣∣∣∣∣∣
(ck, td)← Gen(1λ, n)
(com, st)← Com(ck, S)
π ←WitGen(ck, st,m)

 = 1.

Soundness. For any PPT adversary A,

Pr

 Ver(ck, com,m∗, π∗) = 1
∧ m∗ ̸∈ S∗

∣∣∣∣∣∣∣∣
(ck, td)← Gen(1λ, n)
S∗ ← A(ck)
(com, st)← Com(ck, S∗)
(m∗, π∗)← A(ck, com, st)

 ≤ negl(λ).

Succinctness. Both com and π have size bounded by O(λ, polylog(n)). The running time of Ver is
also bounded by O(λ, polylog(n)).

3 Critical-Round Zero-Knowledge and Soundness

3.1 Formulation

Recall that the most general form of multi-round zero-knowledge simulator as shown in Definition 5
takes all challenges (c1, . . . , cµ) as input. Here, we formalize a stronger notion where the entire simu-
lation is possible by knowing only the challenge in the critical round.

Definition 9 (Critical-Round Special Honest Verifier Zero-Knowledge). A (2µ + 1)-move
public-coin proof protocol is critical-round special honest verifier zero-knowledge (CRZK for short) at
round i∗zk if there exists a set of polynomial-time algorithm (SimA,SimZ) that:

– SimA takes x and ci∗zk ∈ Ci∗zk as input, and outputs (st1, a) where st1 is a state information and a
is a prover’s message at step 1.

– SimZ takes sti and ci ∈ Ci, and outputs (sti+1, zi) where sti+1 is an updated state, and zi is a
prover’s response for step 2i+ 1.

– For any (x,w) ∈ LRW and ci ∈ Ci for i ∈ [µ], distribution of (a, c1, z1, . . . , cµ, zµ) gener-
ated as (st1, a) ← SimA(x, ci∗zk) and (sti+1, zi) ← SimZ(sti, ci) for i from 1 to µ, and that of
(a′, c1, z

′
1, . . . , cµ, z

′
µ) generated as (st1, a

′)← A(x,w) and (sti+1, z
′
i)← Z(sti, ci) for i from 1 to µ

are indistinguishable.

A slightly stronger variation of critical-round zero-knowledge requires a simulator that takes k− 1
possible challenges for the critical round. Formally:

Definition 10 (Critical-Round k-Special Honest Verifier Zero-Knowledge). A (2µ + 1)-
move public-coin proof protocol is critical-round k-special honest verifier zero-knowledge (k-CRZK for
short) at round i∗zk if there exists a set of polynomial-time algorithm (SimAX,SimZX) that:

– SimAX takes x and (c
(1)
i∗zk

, . . . , c
(k−1)
i∗zk

) ∈ Ck−1i∗zk
as input, and outputs (st1, a) where st1 is a state

information and a is a prover’s message at step 1.
– SimZX takes sti and ci ∈ Ci, and outputs (sti+1, zi) where sti+1 is an updated state, and zi is a

prover’s response for step 2i+ 1.
– For any (x,w) ∈ LRW , ci ∈ Ci for i ∈ [µ] \ {i∗zk}, (c

(1)
i∗zk

, . . . , c
(k−1)
i∗zk

) ∈ Ck−1i∗zk
, and any ci∗zk ∈

(c
(1)
i∗zk

, . . . , c
(k−1)
i∗zk

), distribution of (a, c1, z1, . . . , cµ, zµ) generated as (st1, a)← SimAX(x, c
(1)
i∗zk

, . . . , c
(k−1)
i∗zk

),
(sti+1, zi) ← SimZX(sti, ci) for i from 1 to µ, and that of (a′, c1, z

′
1, . . . , cµ, z

′
µ) generated as

(st1, a
′)← A(x,w) and (sti+1, z

′
i)← Z(sti, ci) for i from 1 to µ are indistinguishable.

8



In terms of soundness, critical round has different meaning than that of zero-knowledge. Critical-
round special soundness captures that the protocol behaves as a round-by-round sound one up to
the critical round, and as a proof of knowledge thereafter. The critical round i∗zk in the definition of
CRZK is independent of the critical round i∗ss in the special soundness definition. Depending on the
specific context, however, a relationship between these two rounds can be established.

Definition 11 (Critical-Round Special Soundness). A (2µ+1)-move public-coin proof protocol
is (κ1, . . . , κi∗ss−1, ki∗ss , . . . , kµ)-critical-round special sound (CRSS for short) at round i∗ss if the following
properties hold:

– For each prefix τi := prefix(τ, i), i ∈ [i∗ss − 1], of an accepting transcript τ , there exists a set of κi

bad challenges BCτi ∈ Ci
κi where κi/|Ci| is negligible in λ.

– There exists a polynomial-time algorithm, Ext, that, given any accepting (1, . . . , 1, ki∗ss , . . . , kµ)-tree
of transcripts whose trunk of transcripts τ∗ := (a, c1, z1, . . . , ci∗ss−1, zi∗ss−1) satisfies ci /∈ BCτi for
τi = prefix(τ∗, i) for all i ∈ [i∗ss − 1], outputs w satisfying R(x,w) = 1.

We may also write bad challenges as BCi instead of BCτi when τi is clear from the context.

3.2 Relations to Other Notions

In this section we compare related notions to CRSS and CRZK. We also derive concrete bounds for
multi-round CRSS interactive protocols, and for non-interactive protocols obtain via the Fiat-Shamir
transform.

Generalizations of special soundness. Our CRSS (Definition 11) can be written as prefix-conditioned s-
soundness for a specific prefix-conditioned soundness function s relative to an adversary in [HJMN24].
We choose our formulation for its simplicity and intuitiveness, as it best serves our purpose in com-
bination with CRZK.

Any (k1, . . . , kµ)-SS protocol is (k1, . . . , kµ)-CRSS at round 1. Hence CRSS is a seamless gener-
alization of SS. As well as SS, our CRSS can be generalized to handle erroneous transcripts for the
(ki∗ss , . . . , kµ) part following the formulation of statistical special soundness [ABO+24], predicate spe-
cial soundness [AAB+24], or G-soundness [DFMS22] yielding the notion of statistical CRSS, and so
on.

CRSS implies knowledge soundness. In each round i < i∗ss, a good challenge can be sampled uniformly
from Ci since κi/|Ci| is negligible in λ. In the remaining rounds i∗ss ≤ i ≤ µ, the tree builder behaves
essentially the same as a special soundness tree builder in [ACK21]. We now describe our knowledge
extractor as follows:

The knowledge extractor Extks, given access to a deterministic (dishonest) prover P ∗ and statement
x, first samples the prover’s randomness r uniformly at random. It then invokes the tree builder T0(r),
which is formally described in Figure 1. T0(r) first obtains the initial message a from the prover P ∗(x; r)
and eventually returns a (1, . . . , 1, ki∗ss , . . . , kµ)-tree of accepting transcripts from recursions. It aborts
if the tree builder aborts. The knowledge extractor then invokes the CRSS extractor to extract a
witness corresponding to the statement x.

The following lemma modified from [ACK21] gives the expected running time and success proba-
bility of the tree builder algorithm T .

Lemma 1. Let V(x, a, c1, z1, . . . , cµ, zµ) → {0, 1} be the verification predicate corresponding to the
(2µ+ 1)-move interactive proof system (P, V ) and let δ denote the success probability of a (cheating)
prover P ∗ passing the verification on statement x and fixed randomness r. Then, the expected number
of invocations to the cheating prover P ∗ by the (1, . . . , 1, ki∗ss , . . . , kµ)-tree builder algorithm T defined
above is at most

∏µ
i=i∗ss

ki. The probability that T outputs a (1, . . . , 1, ki∗ss , . . . , kµ)-tree tree is at least

δ −
µ∑

i=i∗ss

ki − 1

|Ci|
.
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Recursive Tree Builder Ti(r, c1, . . . , ci)→ (b, tree).
Construction.
If i = µ,

- Obtain a transcript π = (a, c1, z1, . . . , cµ, zµ) ← P ∗(x; r) with verifier’s challenges c1, . . . , cµ.
(Count as 1 query)

- Output b← V(x, π).
- If b = 0 then abort.
- Else set tree = {π} and return (b, tree).

If i∗ss − 1 ≤ i < µ,
- Sample ci+1 ←$ Ci+1.
- Run Ti+1(r, c1, . . . , ci, ci+1)→ (b, tree).
- Abort if Ti+1(r, c1, . . . , ci, ci+1) aborts.
- Else repeat

∗ Sample c′i+1 ←$ Ci+1 \ {ci+1} without replacement,
∗ Run Ti+1(r, c1, . . . , ci, c

′
i+1)→ (b′, tree′),

∗ If b′ = 1 then append tree′ to tree,
until either ki+1 − 1 additional tree′s have been appended (return b = 1 and tree) or until all
challenges in Ci+1 have been tried (abort).

If 0 ≤ i < i∗ss − 1,
- Sample ci+1 ←$ Ci+1.
- Run Ti+1(r, c1, . . . , ci, ci+1)→ (b, tree).
- Abort if Ti+1(r, c1, . . . , ci, ci+1) aborts.
- Else return b = 1 and tree.

Fig. 1. Recursive Tree Builder Ti(r, c1, . . . , ci), which is T0(r) at i = 0.

Proof. (Sketch) Our tree builder behaves essentially the same as the collision game in [ACK21], where
the matrix H is replaced with a verification predicate V. In the round i∗ss ≤ i ≤ µ, the above lemma
simply follows the analysis of Lemma 5 in [ACK21]. When it comes to the first i∗ss − 1 rounds, the
tree building algorithm only samples one element from the challenge space and checks if a series of
recursive algorithms successfully return a tree of accepting transcripts, which has no influence on
total number of transcripts. Thus the (expected) total number of invocations to P ∗ is still

∏µ
i=i∗ss

ki.
The success probability can also be directly computed from the above analysis.

Next, we compute the probability that the CRSS extractor succeeds in extracting a witness from
a (1, . . . , 1, ki∗ss , . . . , kµ)-tree output by above tree builder. In each round 1 ≤ i < i∗ss the tree builder
successfully samples a good challenge ci /∈ BCi with probability at least (|Ci| − κi)/|Ci|. Thus, the
success probability for knowledge extractor Extks is

Pr[w ← ExtP
∗

ks (x) : R(x,w) = 1] ≥

δ −
µ∑

i=i∗ss

ki − 1

|Ci|

i∗ss−1∏
i=1

|Ci| − κi

|Ci|

 ≥ δ −
µ∑

i=i∗ss

ki − 1

|Ci|
−

i∗ss−1∑
i=1

κi

|Ci|
,

where δ := Pr[⟨P ∗, V ⟩(x) = 1].
Recall the definition of knowledge soundness (Definition 3), Pr[w ← ExtP

∗

ks (x) : R(x,w) = 1] ≥
Pr[⟨P ∗, V ⟩(x) = 1]− ϵks. It turns out that the knowledge error is given by

ϵks =

i∗ss−1∑
i=1

κi

|Ci|
+

µ∑
i=i∗ss

ki − 1

|Ci|
.

CRSS implies special soundness. To be precise, (κ1, . . . , κi∗ss−1, ki∗ss , . . . , kµ)-CRSS implies (k1, . . . , kµ)-
SS for ki = κi + 1, i ∈ [i∗ss − 1] when

∏
i κi is bound by a polynomial in λ. The extractor for

SS can be built by invoking the extractor of CRSS on every (1, . . . , 1, ki∗ss , . . . , kµ)-tree in the given
(κ1+1, . . . , κi∗ss−1+1, ki∗ss , . . . , kµ)-tree. This strategy always succeeds since in each round i ∈ [1, i∗ss−1]
there exists at least one branch where the challenge does not belong to BCτi as demanded by the
CRSS extractor. For the SS extractor to be efficient, we require

∏
i κi to be bound by a polynomial in

λ, which is also the case for a ((k1, . . . , kµ)-special soundness) knowledge extractor efficiently building
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a (k1, . . . , kµ)-tree of transcripts. This implication is particularly useful as (k1, . . . , kµ)-SS further
implies knowledge soundness and Fiat-Shamir security [ACK21,AFK23]. We note that the condition∏

i κi < poly(λ) is satisfied by MPCitH-based constructions as we observe in the next section.

CRSS and Fiat-Shamir security. We compute the knowledge error of the Fiat-Shamir transformation
FS[Π] of a (κ1, . . . , κi∗ss−1, ki∗ss , . . . , kµ)-critical-round special sound interactive proof Π in which the
critical round is i∗ss. Let a Q-query cheating prover P ∗ make Qi queries at round i such that

∑µ
i=1 Qi =

Q. We briefly describe the knowledge extractor Extfs. In fact, it is essentially the same as in [AFK23],
except that the sub-extractor Exti at round i < i∗ss just runs Exti+1 and relays the queries. It aborts
if Exti+1 returns 0. From Theorem 2 in [AFK23], the sub-extractor successfully returns an accepting
(1, . . . , 1, ki∗ss , . . . , kµ)-tree with probability at least

δ − (
∑µ

i=i∗ss
Qi + 1)θi∗ss

1− θi∗ss

where θi∗ss = 1−
∏µ

i=i∗ss
(1− ki−1

|Ci| ) and δ denotes the success probability of the cheating prover convincing
the verifier. The expected number of invocations to P ∗ is at most

∏µ
i=i∗ss

ki +Q · (
∏µ

i=i∗ss
ki − 1).

Next, the knowledge extractor Extfs runs the CRSS extractor with the input of the (1, . . . , 1, ki∗ss , . . . , kµ)-
tree. This extraction fails if at least one of the responses to queries from the cheating prover in round
i < i∗ss is a bad challenge. We denote this event to be Ea. Suppose that Q ≤ 1∑i∗ss−1

i=1
κi
|Ci|

, we have

Pr[Ea] ≤ max∑i∗ss−1

i=1 Qi≤Q

1−
i∗ss−1∏
i=1

(
1− κi

|Ci|

)Qi

 ≤ max∑i∗ss−1

i=1 Qi≤Q

i∗ss−1∑
i=1

Qiκi

|Ci|
≤ Q

i∗ss−1∑
i=1

κi

|Ci|
.

Finally, we are able to compute the success probability of the knowledge extractor, which is at
least

Pr[R(x,ExtP
∗

fs (x)) = 1] ≥

ϵ−
(∑µ

i=i∗ss
Qq + 1

)
θi∗ss

1− θi∗ss

1−Q

i∗ss−1∑
i=1

κi

|Ci|


≥

ϵ− (Q+ 1) θi∗ss −Q
∑i∗ss−1

i=1
κi

|Ci|

1− θi∗ss
.

By the definition of knowledge soundness (Definition 3), the knowledge error

ϵfs (Q) = (Q+ 1) θi∗ss +Q

i∗ss−1∑
i=1

κi

|Ci|
≤ (Q+ 1)

θi∗ss +

i∗ss−1∑
i=1

κi

|Ci|

 ≤ (Q+ 1) ϵks

where ϵks is the knowledge error of the corresponding interactive protocol Π.

CRZK leads to k-zero knowledge. We recap the notion of k-zero-knowledge that was first introduced
in [GKK+22] and formalized in [DG23]. Informally, an interactive proof is k-zero-knowledge if there
exists a zero-knowledge simulator SimFS that only needs to program the random oracle in round k,
and whose transcript is indistinguishable from honestly generated ones. Formally:

Lemma 2. Let Π be a (2µ+1)-move public-coin proof protocol which is critical-round special honest
verifier zero-knowledge at round i∗zk and such that the first message has sufficient min-entropy. Let
ΠFS be the corresponding non-interactive proof protocol via Fiat-Shamir transform. Then ΠFS is k-zero
knowledge with k = i∗zk.

Proof. (Sketch) We construct a simulator, SimFS, that fulfills requirements in [DG23], as follows:

1. Given statement x as input, sample ci∗zk ←$ Ci∗zk and obtain (st1, a)← SimA(x, ci∗zk).
2. Query the random oracle and get ci = H(x, a, z1, . . . , zi−1) for all i ̸= i∗zk. Specially if i = 1, get

c1 = H(x, a).
If i = i∗zk, reprogram H(x, a, z1, . . . , zi∗zk−1) := ci∗zk .

3. Obtain (sti+1, zi)← SimZ(sti, ci).

The distribution of (a, c1, z1, . . . , cµ, zµ) is indistinguishable from that of honestly generated tran-
scripts due to the critical-round special honest verifier zero-knowledge property.
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k-CRZK and k-special unsoundness. Our k-CRZK implies k-special unsoundness [AFK23,BGTZ23]
at the critical round i∗zk for languages that constitute a hard subset membership problem [GW11].
Special unsoundness (Definition 20) claims the ability of a cheating prover to convince the verifier
of a false statement if the challenge sent by the verifier is a bad challenge at certain round. We can
build the cheating prover by running the k-CRZK simulator on k − 1 preselected challenges. If the
verifier "unluckily" sends one of these k − 1 challenges at the critical round, the cheating prover is
able to behave honestly in the remaining rounds. Due to the hardness of the subset membership
problem with respect to the concerned language, the CRZK simulator works on false statements as
required. The reverse implication does not generally hold since special unsoundness does not concern
the output distribution of the cheating prover.

3.3 Instantiations of Critical-Round Proofs

Critical Rounds in MPCitH-based Proofs. We show that our new notions capture the multi-
round proofs based on the MPCitH framework. We cast the honest-verifier zero-knowledge proof
in [KKW18] (denoted by KKW) and provide formal proof that their 5-move protocol satisfies CRZK
and CRSS.

In the KKW framework, the prover runs an MPC protocol that evaluates a boolean circuit C on
an input w (witness), commits to the views of all parties, and then opens all-but-one of these views to
the verifier. This MPC protocol 1) is secure against semi-honest all-but-one corruptions, hence there
exists a simulator Simp that outputs simulated consistent views of n − 1 parties, and 2) is executed
in a deterministic manner by using a preprocessing material sampled independently of the witness w.
To prevent the prover from cheating in the preprocessing phase, the prover follows the cut-and-choose
paradigm, i.e., first generates and commits to m executions of the preprocessing stage, and later opens
all of them except one (corresponding to a verifier’s challenge). The unopened material is used for
executing the MPC protocol later on. 8

We show that KKW is CRZK at round i∗zk = 2 and (1, 2)-CRSS at round i∗ss = 2 as the theorem
below. The formal proof is shown in Appendix C together with the detailed description of the KKW
framework.

Theorem 1. The 5-move interactive honest-verifier zero-knowledge argument in [KKW18] (denoted
as the KKW protocol), assuming that the hash function used is collision-resistant and the commit-
ment scheme used is computationally binding and hiding, is critical-round special honest-verifier zero-
knowledge at round i∗zk = 2 and (1, 2)-critical-round special sound at round i∗ss = 2.

Let (a, c1, z1, c2, z2) be a transcript of the KKW protocol. The intuition behind the proof is
described below:

– CRZK at round i∗zk = 2 is proved by constructing two simulators (SimA,SimZ) that work as
SimA(x, c2) → (st1, a), SimZ(st1, c1) → (z1, st2), and SimZ(st2, c2) → z2. The first simulator
SimA simply generates m preprocessing materials honestly as in the first message of an honest
execution. Then, SimZ is built by from the simulator Sim of the MPC protocol. For this, a
key observation is that the witness is required only during the MPC execution and not during
the preprocessing phase. Hence, the witness is simulatable with Sim given any outputs from an
honestly executed preprocessing phase. We note that Sim starts simulating by sampling legitimate
preprocessing material and uses it to simulate the online phase, then defines a valid broadcast
message in the reconstruction output step. Therefore, we can redefine the input of Sim to consist
of honest preprocessing material.

– To see (1, 2)-CRSS holds at round i∗ss = 2, consider a prefix (a, c1, z1). The only way that the prover
can cheat is by (1) guessing c1 correctly and then (2) using the c1-th preprocessing material to
cheat by generating a “fake” view of the parties in MPC protocol in the next move. Therefore,
for each c1 ∈ [m], there is at most one bad challenge, and hence |BC|/|C| is negligible for large
enough m and for a sufficiently large number of parallel repetitions. We construct an extractor,
Ext, that either extracts an actual witness or finds a collision for the commitment or the hash
function. Given two accepted transcripts (a, c1, z1, c2, z2) and (a, c1, z1, c

′
2, z
′
2) with the same prefix

(a, c1, z1), the extractor Ext relies on the fact that c2 ̸= c′2. Hence, from (z2, z
′
2), Ext can learn the

8 This cut-and-choose strategy receives several optimizations, e.g. [BN20]. Their zero-knowledge simulation
strategy exploited in our analysis remains unchanged.
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view of all n parties of the MPC protocol using same preprocessing material that was committed
(and not opened) in the first three moves.

Critical Rounds in IOP-based Proofs. We discuss the applicability of our CRZK and CRSS no-
tions to other proof systems of practical interest, in particular SNARKs based on IOPs [RRR16,BCS16]
and polynomial IOPs [BFS20]. For these, the proof of knowledge soundness does not involve build-
ing a tree of transcripts as in the KKW framework. Rather, it often relies on the extractability of
a polynomial commitment scheme, which is usually proven in the algebraic group model or relies
on knowledge assumptions where no rewinding of the adversary is required. These protocols can be
regarded as (κ1, . . . , κµ)-CRSS with critical round i∗ss = µ + 1. The sets of bad challenges BCi at
each round are related to the polynomial evaluation checks and batching operations. Usually, these
rely on the statistical soundness of the Schwartz-Zippel lemma. Then, the knowledge extractor can
be naturally adjusted to the algebraic group model or to extra assumptions such that it is given
additional auxiliary information (e.g., the algebraic representations of all group elements) extracted
from the adversary. For instance, if one considers a successful adversary for Plonk [GWC19], in the
algebraic group model the extractor always obtains either a valid witness or an instance breaking
the Q-DLOG assumption over the groups, given that the transcript does not include bad challenges.
Jumping ahead, i∗ss = µ+ 1 requires some care within our applications as it causes i∗ss ̸= i∗zk.

To avoid reliance on the AGM, in some cases, one can analyze the interactive proof systems under-
lying these SNARKs in the standard model. A recent work by Lipmaa, Parisella, and Siim [LPS24]
characterizes Plonk as a computationally special-sound 5-round protocol, revealing the concrete con-
stants κi that parametrize its special soundness. The usual variant of Plonk consists of 4 rounds, but
the first round is divided into two for their analysis. Precisely, they obtain that for an upper bound
of n constraints, Plonk is k⃗-special sound where k⃗ = (3n+ 1, 3n+ 1, 3, 4n+ 21, 6).

We notice that their extractor is guaranteed to work (either by extracting a valid witness or by
breaking the binding of the polynomial commitment scheme) given a (1, 1, 1, k4, k5)-tree of transcripts
if the first three challenges are good, i.e., ci ̸∈ BCi for i = 1, 2, 3. Hence, we conclude that Plonk
satisfies (κ1 = 3n, κ2 = 3n, κ3 = 2, k4, k5)-CRSS where i∗ss = 4 in the standard model. Unfortunately,
k4 grows linearly with the witness size, which is a drawback for the efficiency of our applications. In
our AGM-based analysis, the resulting constants are κ⃗ = (3n, 3n, 2, 4n+ 20, 5) for a critical round at
i∗ss = 6.

Critical-round zero knowledge also applies to some of these protocols. The most prominent example
is again Plonk, which satisfies critical-round zero knowledge at round i∗zk = 3. In short, the main
observation is that the first three messages of the Plonk prover consist of commitments to various
polynomials, whereas the fourth and the fifth prover messages contain only evaluations and opening
proofs. All the polynomial evaluations used by the verifier are carried out at the same evaluation
point, z, which is the third challenge sent by the verifier. Hence, it is possible to simulate an entire
transcript by knowing only z in advance. This observation, albeit with the different purpose of showing
simulation extractability, was done in [GKK+22], and we refer to their work for details.

4 Trapdoor Commitment from Multi-Round Protocol

4.1 Construction and Security

Given a (2µ + 1)-move public-coin proof protocol, Πi∗ = (A,Z,V,SimA,SimZ), for relation R that
is critical at round i∗ (the critical rounds for special HVZK and special soundness are the same
i∗ss = i∗zk = i∗), and two hash functions G and H, we construct a trapdoor commitment scheme K =
(Gen,Com,TCom,Equiv,Ver) as follows. For simplicity, we assume that the message space M = Ci∗ .

Theorem 2. KΠi∗ in Figure 2 constitutes a trapdoor commitment scheme with the following proper-
ties:

– It is hiding if Πi∗ is critical-round special honest verifier zero-knowledge at round i∗.
– It is both binding and trapdoor extractable if Πi∗ is perfectly complete, G and H are non-programmable

and programmable random oracles, respectively, relation R is one-way, and Πi∗ is (κ1, . . . , κi∗−1,
ski∗ , . . . , kµ)-critical-round special sound with ki∗ = 2.

– It is equivocal if Πi∗ is critical-round honest verifier zero-knowledge at round i∗.

13



Set up.
Given a (2µ+1)-move public-coin proof protocol, Πi∗ = (A,Z,V, SimA, SimZ), for relation R that
is critical at round i∗, and two hash functions G and H.
Construction.
Gen: Given 1λ as input, compute (x,w)←$ LRW (λ). Commitment key is x, and w is a trapdoor.
Com: Given (x,m) as input, compute ci∗ := m, (st1, a)← SimA(x, ci∗). For i = 1, . . . , µ, do

ci :=


G(x, a, c1, z1, . . . , ci−1, zi−1) (i < i∗)
ci∗ (i = i∗)
H(x, a, c1, z1, . . . , ci−1, zi−1) (i > i∗)

(1)

and (sti+1, zi)← SimZ(sti, ci).
Output com := (a, c1, z1, . . . , ci∗−1, zi∗−1) and open := (zi∗ , ci∗+1, zi∗+1, . . . , cµ, zµ).

TCom: Given (w, x) as input, compute (st1, a) ← A(x,w), and for i = 1, . . . , i∗ − 1, do ci :=
G(x, a, c1, z1, . . . , ci−1, zi−1) and (sti+1, zi)← Z(sti, ci).
Output com := (a, c1, z1, . . . , ci∗−1, zi∗−1) and sti∗ .

Equiv: Given (sti∗ ,m), compute, for i = i∗, . . . , µ, ci := H(x, a, c1, z1, . . . , ci−1, zi−1) (except that
ci := m for i = i∗), and (sti+1, zi)← Z(sti, ci).
Output open := (zi∗ , ci∗+1, zi∗+1, . . . , cµ, zµ).

Ver: Given x, com, m, and open as input, parse them into (x, a, c1, z1, . . . , cµ, zµ) with ci∗ := m.
Check if every ci satisfies relation in (1), and output V(x, a, c1, z1, . . . , cµ, zµ).

Fig. 2. Trapdoor Commitment Scheme KΠi∗

Proof. Correctness is verified by inspection. Hiding property is proved by a game transition argument.
We begin with the left term of the hiding definition in Definition 6;

P0 := Pr
[
1← A(ck, com) | (ck, td)← Gen(1λ), (com, open)← Com(ck,m)

]
= Pr

1← A(x, (a, c1, z1, . . . ,
ci∗−1, zi∗−1))

∣∣∣∣∣∣
(x,w)← LRW (1λ), ci∗ = m,
(st1, a)← SimA(x, ci∗),
∀i ∈ [µ], (sti+1, zi)← SimZ(sti, ci)


We then modify the game by replacing the zero-knowledge simulator with a real prover algorithm.

P1 := Pr

1← A(x, (a, c1, z1, . . . ,
ci∗−1, zi∗−1))

∣∣∣∣∣∣
(x,w)← LRW (1λ), ci∗ = m,
(st1, a)← A(x,w),
∀i ∈ [µ], (sti+1, zi)← Z(sti, ci)


Then |P0 − P1| is bound by the zero-knowledge error, say ϵcrzk, as in Definition 9. We next replace
m to m′ and obtain:

P2 := Pr

1← A(x, (a, c1, z1, . . . ,
ci∗−1, zi∗−1))

∣∣∣∣∣∣
(x,w)← LRW (1λ), ci∗ = m′,
(st1, a)← A(x,w),
∀i ∈ [µ], (sti+1, zi)← Z(sti, ci)


which obviously hold P1 = P2 since the view of A is unchanged. Finally, we make it back to the
simulation as follows.

P3 = Pr

1← A(x, (a, c1, z1, . . . ,
ci∗−1, zi∗−1))

∣∣∣∣∣∣
(x,w)← LRW (1λ), ci∗ = m′,
(st1, a)← SimA(x, ci∗),
∀i ∈ [µ], (sti+1, zi)← SimZ(sti, ci)


As before, |P2 − P3| is upper bound by ϵcrzk. Since P3 is the same as the right term of the hiding
definition, we obtain P0 − P3 ≤ 2ϵcrzk as a bound for the hiding property that is negligible as ϵcrzk
is negligible by assumption.

Next, we prove the binding property. Let A be an algorithm that opens a commitment in two
ways with high probability. Precisely, given commitment key x, it outputs, with noticeable probability
ϵ, (com,m1, open1,m2, open2) that satisfies m1 ̸= m2, m1,m2 ∈ Ci∗ , Ver(com,mj , openj) = 1 for
j = {1, 2}. Given A as a black-box, we construct B that breaks one-wayness of R. The task of B
is to construct a (1, . . . , 1, ki∗ , . . . , kµ)-tree of transcripts. B is given access to non-programmable
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random oracle G and simulates programmable random oracle H. Given x, B runs A giving x as
input. B behaves transparent for queries to G and does lazy sampling simulation for H. B obtains
a valid colliding opening (com,m1, open1,m2, open2). Let com = (a, c1, z1, . . . , ci∗−1, zi∗−1). Let T
be a (1, . . . , 1, ki∗ , . . . , kµ)-tree whose nodes and edges are initialized with an empty value. B assigns
(com,m1, open1) and (com,m2, open2) to two paths on T . It then builds a complete tree of transcripts
as follows. It finds a leaf (ida) of T that no value is assigned yet. It then finds a node, (idb), on
path(T, ida) that no values are assigned on the path from (idb) to (ida) except for node (idb). It
rewinds A to the point that it queries trans(T, idb) to H and answers with a uniformly chosen distinct
challenge c∗ that c∗ /∈ chal(T, idb). If A outputs new valid colliding openings one of which matches
(trans(T, idb), c

∗, . . . ), it assigns the partial transcript (c∗, . . . ) on the path from (idb) to (ida). Once
all nodes and edges of T are assigned values, B runs w ← Ext(T ) and outputs w. This completes the
description of B.

We claim that, for com = (a, c1, z1, . . . , ci∗−1, zi∗−1), ci ̸= BCid holds for id of node at each depth
i ∈ [i∗ − 1]. To see this, observe that ci is determined by query G(a, c1, z1, . . . , ci−1, zi−1). The input
to G first determines BCid and then ci is randomly picked. Since Πi∗ is critical-round special sound
at i∗, the probability that ci is in BCid is negligibly small for every i ∈ [i∗ − 1].

We next claim that, in the rewinding search, A outputs valid colliding openings one of which
contains (trans(T, idb), cj+1) with sufficiently large probability. This is due to the standard rewinding
argument in the programmable random oracle model. This completes the proof of binding, and also
the proof of trapdoor extractability as B actually extracts a valid witness w such that R(x,w) = 1.

Finally, equivocability holds due to the critical-round honest verifier zero-knowledge of Πi∗ since
the equivocability game in Definition 6 is exactly the critical-round zero-knowledge game in Definition
9 where TCom runs A and Z honestly up to i∗ − 1 and Equiv runs Z(sti, ci) for i∗ and further rounds
for arbitrary challenge ci∗ where the message is embedded.

Removing random oracles. For a subclass of Πi∗ , we can remove random oracles from the above
construction. First, for Πi∗ with ki = 1 for all i < i∗, hash function G can be replaced with a correla-
tion intractable hash function, which can be constructed from falsifiable assumptions [CLW18,PS19].
Removing H is more difficult as we essentially rely on its programmability for building a complete
subtree. Since the binding game is non-interactive, without a random oracle, there is no way to ob-
tain more transcripts to fill unassigned branches of the tree. Nevertheless, the obvious case is that
i∗ = µ, i.e., the last round is critical and there are no further challenges. Several multi-round proto-
cols, e.g. [KKW18,BN20,KZ22,FJR22], that follow the MPCitH with preprocessing paradigm indeed
fall into this class. We also conjecture that, for all 5-move interactive proofs based on the MPCitH
paradigm that follow the KKW framework, we have i∗zk = i∗ss = 2, i.e., the second challenge round is
CRZK and CRSS provided that the first challenge round has an appropriate choice of the set BC.

Interactive Commitment Scheme. It is also possible to completely eliminate G and H by making
the commitment and opening interactive. In the committing phase, the committer and the receiver
engage in the proof protocol up to 2(i∗− 1)+ 1 step where the committer sends zi∗−1 to the receiver.
The opening phase starts by sending m from the committer and the protocol continues to the final
step. This interactive commitment scheme is however only privately verifiable to the receiver engaging
in both commitment and opening phases.

Differing critical rounds. For simplicity, our construction focuses on the case i∗zk = i∗ss = i∗, but
the construction and the proof also work in a more general case i∗zk ≥ i∗ss, where we base on
(κ1, . . . , κi∗ss−1, ki∗ss , . . . , ki∗zk , . . . , kµ)-CRSS. A commitment to m is a transcript from round 1 to round
i∗zk−1, com = (a, c1, z1, . . . , ci∗zk−1, zi∗zk−1), where a is generated by SimA(x,m). In the proof of binding,
rewinding the adversary starts from round i∗ss to obtain a complete tree of transcripts. Note that a
programmable random oracle is required at all rounds i > i∗ss. The proof of hiding remains intact.

Interestingly, in the other general case i∗zk < i∗ss where we base on (κ1, . . . , κi∗zk
, . . . , κi∗ss−1, ki∗ss , . . . , kµ)-

CRSS, the above variant is no longer binding since the adversary would take messages m and m′ from
the set of bad challenges so that the extractor fails. If κi∗zk

= 1, however, it remains binding since
either m or m′ must be a good challenge that forms a (1, . . . , 1, ki∗ss , . . . , kµ)-tree of transcripts that
suffices for the extractor.

Offline trapdoor extraction. Our construction satisfies trapdoor extractability, but for applications
such as adaptor signatures, offline trapdoor extractability is useful. If the critical round i∗ss = µ (such
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as in the MPCitH-based instantiation, see Section 3.3), then our trapdoor commitment is offline
trapdoor extractable, as from a binding break the challenger directly obtains a complete tree of
transcripts, and so can extract the trapdoor without having to rewind the adversary.

For arbitrary i∗, this is also possible with a variant of our scheme. The idea is that openings
should contain an entire sub-tree of transcripts starting at level i∗ + 1. If the protocol Πi∗ is
(κ1, . . . , κi∗−1, 2, ki∗+1, . . . , kµ) special-sound, then the Com algorithm works as follows:

– For i = 1, . . . , i∗, do as in Figure 2. The commitment is com = (a, c1, z1, . . . , ci∗−1, zi∗−1) and the
committed message m is used for simulation as ci∗ = m.

– For all remaining i = i∗ + 1, . . . , µ, set c
(ji∗+1,...,ji)
i for all ji = 1, . . . , ki to be arbitrary pairwise

distinct challenges. Then, set (st
(ji∗+1,...,ji)
i , z

(ji∗+1,...,ji)
i ) ← SimZ(st

(ji∗+1,...,ji)
i−1 , c

(ji∗+1,...,ji)
i ) for

each ji.
– An opening open contains all challenges c

(ji∗+1,...,ji)
i and responses zi∗ and z

(ji∗+1,...,ji)
i for every

i = i∗ + 1, . . . , µ and for every ji = 1, . . . , ki.

Clearly, a full tree of transcripts is obtained given two valid openings of com = (a, c1, z1, . . . , ci∗−1, zi∗−1)
to different messages. Note that with this modification the construction does not need a random or-
acle after round i∗. The drawback of this approach is the additional opening size and prover time,
hence we do not present it as our main construction.

4.2 Extension: Accumulator

We generalize our construction of a trapdoor commitment scheme (Figure 2) to construct an accumula-
tor ACCΠi∗ from a (2µ+1)-move public-coin proof protocol Πi∗ that is critical-round ki∗ -special honest
verifier zero knowledge and critical-round special sound at round i∗ss = i∗zk = i∗ and where ki∗ ≥ 3. Our
accumulator scheme requires that the maximum size of n that is supported by Gen(1λ, n) is bounded
by the parameter B = ki∗ − 1 that depends on Πi∗ . We present our construction in Figure 3.

Recall that critical-round ki∗ -special HVZK (Definition 10) requires that there exists a zero-
knowledge simulator (st1, a)← SimZX(x, c

(1)
i∗ , . . . , c

(k−1)
i∗ ) where each c

(j)
i∗ ∈ Ci∗ , i.e., that takes ki∗ −1

challenges to simulate the first message of the protocol a.9 A peculiar consequence is that the message
space M ⊂ Ci∗ must be a proper subset such that |M| ≤ |Ci∗ | − B. This is necessary for the proof
of soundness to go through. The reason is that a commitment to S always needs to be simulated
based on B challenges, and if |S| < B, the challenges not in S cannot be part of the message space to
guarantee that the extraction of a complete tree of transcripts is successful. Hence, we need to taint
B values from Ci∗ , which will be used in the simulation but cannot be part of the message space.

Theorem 3. The construction ACCΠi∗ in Figure 3 constitutes an accumulator if Πi∗ is a perfectly
complete and critical-round ki∗-special honest verifier zero-knowledge interactive proof at round i∗. It
is binding if G and H are non-programmable and programmable random oracles, respectively, relation
R is one-way, and Πi∗ is (κ1, . . . , κi∗−1, ki∗ , . . . , kµ)-critical-round special sound with ki∗ ≥ 3.

Proof. One can see by inspection that the construction satisfies correctness if n ≤ B. The construction
also satisfies succinctness as both com and π are independent of n and therefore of size O(λ).

For soundness, let A be an adversary against accumulator soundness with non-negligible success
probability. We will show how to use A as a black box to construct an adversary B that breaks
the one-wayness of the relation R. For this, it suffices to show that B can use A to obtain a valid
(1, . . . , 1, ki∗ , . . . , kµ) tree of transcripts. The proof follows a similar strategy as the proof of Theorem 2,
so we skip some technical details.

The reduction B is given a challenge instance x and access to a non-programmable random oracle
G. B also simulates the programmable random oracle H for A. As in the previous proof, B forwards
all queries of A to G, behaving transparently, and follows a lazy (uniformly random) simulation
strategy for H. B sets up the soundness game for A by setting ck = x. Then, A(ck) outputs a set
S = {m1, . . . ,mt} ⊂ M such that t ≤ n.

Next, B runs (com, st) ← Com(ck, S) where com = (a, c1, z1, . . . , ci∗−1, zi∗−1). Then, it runs
(m∗, π∗) ← A(ck, com, st) which returns a valid proof π∗ for a message m∗ ̸∈ S, which B parses as
9 One example of such protocol is the three-move Stern Σ-protocol [Ste06], which is trivially 3-critical at its

only round.
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Set up.
• Let Πi∗ = (A,Z,V, SimAX, SimZX) be a (2µ + 1)-move public-coin proof for relation R that is

critical-round ki∗ -special HVZK and CRSS at round i∗ for some ki∗ ≥ 3.
• Let B = ki∗ − 1 and Ci∗ be the challenge space of Πi∗ at the i∗-th round.
• Let the message space M⊂ Ci∗ be a proper subset such that |M| ≤ |Ci∗ | −B.
• Let G and H be two hash functions.

Construction.
Gen: Given 1λ and a size bound n as input, check whether n ≤ B and otherwise abort. Sample an

instance (x,w)←$ LRW (λ). The commitment key is ck := x, and the trapdoor is td := w.
Accum: Given (ck, S) as input, parse ck = x and S = (m1, . . . ,mt). Abort if t > n, otherwise do:

• If t < B, choose B − t arbitrary elements mt+1, . . . ,mB ∈ Ci∗ \M.
• Compute (st1, a)← SimAX(x,m1, . . . ,mB).
• For i = 1, . . . , i∗ − 1, do

ci := G(x, a, c1, z1, . . . , ci−1, zi−1) (2)

and (sti+1, zi)← SimZ(sti, ci).
• For i = i∗ and for j = 1, . . . , t, do c

(j)
i := mj and (st

(j)
i+1, z

(j)
i )← SimZX(sti, c

(j)
i ).

• For i = i∗ + 1, . . . , µ and j = 1, . . . , t, do

c
(j)
i := H(x, a, c1, z1, . . . , c

(j)
i−1, z

(j)
i−1) (3)

and (st
(j)
i+1, z

(j)
i )← SimZX(st

(j)
i , c

(j)
i ).

• Output com := (a, c1, z1, . . . , ci∗−1, zi∗−1) and
st :=

{
mj , z

(j)
i∗ , c

(j)
i∗+1, z

(j)
i∗+1, . . . , c

(j)
µ , z

(j)
µ

}
j=1,...,t

.

WitGen: Given (ck,m, st) as input, check whether m = mj for some mj ∈ st, and otherwise abort.
Then, parse st to output πj = (mj , z

(j)
i∗ , c

(j)
i∗+1, z

(j)
i∗+1, . . . , c

(j)
µ , z

(j)
µ ).

Ver: Given (ck, com, m, π) as input, parse them into (x, a, c1, z1, . . . , cµ, zµ) with ci∗ := m.
Check if every ci satisfies the relations in (2) and (3), and output V(x, a, c1, z1, . . . , cµ, zµ).

Fig. 3. Accumulator ACCΠi∗

π∗ = (m∗, z∗j , c
∗
j+1, . . . , c

∗
µ, z
∗
µ). Note that m∗ ∈ {mt+1, . . . ,mki∗−1} is not valid since mt+1, . . . ,mki∗−1

are out of the message space. Recall that the goal of B is to obtain a (1, . . . , 1, ki∗ , . . . , kµ) tree
of transcripts. For this, note that B can simulate ki∗ − 1 valid sub-trees that start at level i∗ by
simply running (sti+1, zi+1)← SimZX(sti, ci+1) for all the required branches and their corresponding
challenges, where at level i∗ it sets c(j)i∗ = mj for every j = 1, . . . , ki∗ − 1 (recall that the accumulator
st contains messages m1, . . . ,mt,mt+1, . . . ,mki∗−1, where S = {m1, . . . ,mt} and mt+1, . . . ,mki∗−1 ̸∈
M).

Therefore, to get a full tree of transcripts T , B only needs one additional sub-tree that starts
at level i∗. The missing sub-tree can be obtained by setting c

(ki∗ )
i∗ = m∗ and by rewinding A while

reprogramming the random oracle H to provide distinct (uniformly random) challenges at every
iteration, following the same steps as in the proof of Theorem 2. Once T is obtained, B runs w ←
Ext(T ) and returns w.

It remains to show that the tree of transcripts satisfies the conditions of Definition 11. This again
follows as in the previous proof, as for com = (a, c1, z1, . . . , ci∗−1, zi∗−1), ci ̸= BCid holds for every
node id of T at any depth i ∈ [i∗ − 1] except with negligible probability.

Trapdoor Commitment from ki∗ ≥ 2. Inspired by our accumulator, we present a feasibility result to
show how to build a trapdoor commitment scheme if Πi∗ is CRZK and CRSS with ki∗ ≥ 2 at the
critical round, generalizing the ki∗ = 2 from the previous section. The idea is to extend the openings
of the trapdoor commitment scheme to include t = ⌈ki∗/2⌉ transcripts (branching at level i∗) in the
opening information. Then, any adversary who breaks commitment binding provides ki∗ transcripts
branching at level i∗, and security follows via a rewinding argument as in the previous constructions.

We also need that all challenges at level i∗ are distinct. For this, we use an encoding γ :M→ Cti∗
such that for any element c ∈ Ci∗ , there exists at most one element m ∈ M such that c ∈ γ(m).
Intuitively, this condition ensures that any challenge c ∈ Im(γ) is associated to a unique m ∈M. We
describe the commit and verify algorithms in more detail:
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Com(ck,m): Start by computing (st1, a) ← SimAX(x, γ(m)). Without loss of generality, we assume
the simulator takes t challenges; it can just use elements of Ci∗ \ Im(γ) if more are required.
– For i = 1, . . . , i∗ − 1, compute ci and zi as in Figure 3.
– For i = i∗ and for j = 1, . . . , t, do c

(j)
i := γ(m)j . and (st

(j)
i+1, z

(j)
i )← SimZX(sti, c

(j)
i ).

– For all remaining i = i∗+1, . . . , µ and j = 1, . . . , t, compute the challenges c(j)i and messages
z
(j)
i as in Figure 3.

Output com := (a, c1, z1, . . . , ci∗−1, zi∗−1), open :=
{
γ(m)j , z

(j)
i∗ , c

(j)
i∗+1, z

(j)
i∗+1, . . . , c

(j)
µ , z

(j)
µ

}
j=1,...,t

.

Ver(ck, com,m, open): Check the validity of every ci until round i∗−1 as in Figure 3. Then, compute
c
(j)
i∗ := γ(m)j for j = 1, . . . , t and check the validity of every c

(j)
i for j = i∗ + 1, . . . , µ. Finally,

check that V(x, a, c1, z1, . . . , c
(j)
i , z

(j)
i , . . . , c

(j)
µ , z

(j)
µ ) = 1 for every j = 1, . . . , t.

4.3 Applications to Advanced Signatures

Previous works [HS20] and [LTZ24] that introduce generic constructions of adaptor signatures (AS) for
arbitrary NP relations and threshold ring signatures (TRS), respectively, explicitly pose the open ques-
tion of how to implement post-quantum trapdoor commitments without the overhead from generic
NP reductions. In particular, they ask whether these could be built from MPCitH. We resolve both
open questions in the affirmative by instantiating their generic compilers with our (standard) trapdoor
commitment from Theorem 2, which satisfies all the required properties, and which we can instantiate
from MPCitH following Theorem 1.

Adaptor signatures. Adaptor signatures were introduced by Poelstra [Poe17] and formalized in [AEE+21]
[DOY22,GSST24], as a useful trick available to Schnorr signatures. An adaptor signature scheme is
defined with respect to a one-way NP relation LRW with instance-witness pairs (x,w) ∈ LRW ⇐⇒
R(x,w) = 1, and a digital signature scheme. A signer who holds a secret key sk, can pre-sign a
message m with respect to instance x, obtaining a so-called pre-signature σ̄. Later, σ̄ can be adapted
to a standard signature σ by some party that knows the witness w. Finally, from a pre-signature σ̄
and the signature σ, it is possible to extract a valid witness w such that R(x,w) = 1.

A recent work by Liu, Tzannetos, and Zikas [LTZ24] introduces a generic construction of witness-
hiding AS from any digital signature scheme and any hiding and offline trapdoor extractable trapdoor
commitment scheme. Their AS achieves post-quantum security if both the signature scheme and
the trapdoor commitment are also post-quantum secure. They instantiate the latter10 for any NP
relation via the three-move interactive protocol for graph hamiltonicity, at the cost of a large practical
overhead. We remark that our MPCitH-based trapdoor commitment scheme satisfies offline trapdoor
extractability as discussed in Section 4.1.

Threshold ring signatures. (t,N)-threshold ring signatures [BSS02] allow a set of t signers among
a “ring” of N participants to jointly produce a signature σ on a message m. Given a ring of users
R = {R1, . . . , RN} where each Ri owns a pair of keys (ski, pki), TRS guarantee that 1) the t signers
remain anonymous within the set of public keys (pk1, . . . , pkN ), and 2) if an adversary corrupts less
than t parties from the ring, then it is hard for the adversary to forge a valid signature σ.

The work of Haque and Scafuro [HS20] builds TRS from any trapdoor commitment and Shamir’s
secret sharing. The trapdoor commitment needs to satisfy binding, hiding, and trapdoor indistin-
guishability (which is in turn implied by our notion of equivocability). As in the previous case, they
achieve a post-quantum secure TRS by instantiating their trapdoor commitment from the interactive
protocol for graph hamiltonicity.

5 Composition of Multi-Round Protocols

In this section, our goal is to build a proof system for a logically composed relation using proof
systems for atomic relations in a black-box manner. These relations can be logically composed using
a monotone access structure. Thus, the prover will know valid witnesses for some of the relations
10 More precisely, they instantiate a weaker variant of trapdoor commitments that they call trapdoor commit-

ments with specific adaptable message (TC-am), and which they show to be sufficient for their application.
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(generating qualified transcripts) and will need to simulate the remaining non-qualified transcripts.
In brief, given multi-round proofs that are CRSS and CRZK at critical round i∗ (i∗zk = i∗ss = i∗), the
prover in our composition follows the 3-move CDS composition framework as below:

– For steps 2i+1 (i ̸= i∗), the prover simulates the non-qualified transcripts and honestly generates
the qualified ones based on the challenge sent by the verifier at step 2i.

– For step 2i∗ + 1 at the critical round, the prover samples the critical-round challenges of non-
qualified transcripts in advance. After receiving the challenge from the verifier in step 2i∗, the
prover uses a secret sharing scheme to generate remaining challenges for the qualified transcripts.

5.1 Construction and Security

Our composition is presented in Figure 4. The private input to the prover algorithm is a set of
witnesses {wj}j∈A that A ∈ Γ . We assume the reader is familiar with CDS composition and its related
definitions, otherwise, a formalization of the CDS composition for multi-round proofs is provided
in Appendix A. The ingredients of our protocol include a smooth secret sharing scheme SSSΓ∗ and n
critical-round proof protocols {Πj}j∈[n] with critical round i∗.

Composition Compiler Πcomp
Γ .

Statement: {xj}j∈[n].

Witness: {wj}j∈A∈Γ .

Step 1 : Prover computes as follows:

− for all j ∈ Ā : Sample cji∗ ←$ Ci∗ ; Simulate (stj1, a
j)← SimAj(xj , cji∗).

− for all j ∈ A : Compute (stj1, a
j)← Aj(xj , wj ; rj).

− Send {aj}j∈[n] to the verifier.
Step 2i : Verifier samples ci ←$ Ci and sends ci to the prover.
Step 2i+ 1 (i ̸= i∗) : Prover computes as follows:

− for all j ∈ Ā : Compute (stji+1, z
j
i )← SimZj(stji , ci).

− for all j ∈ A : Compute (stji+1, z
j
i )← Zj(stji , ci).

− Send {zji }j∈[n] to the verifier.
Step 2i∗ + 1 : Prover computes as follows:

− Compute {cji∗}j∈[n] ← CompleteΓ∗(ci∗ , {cji∗}j∈Ā).

− for all j ∈ Ā : Compute (stji∗+1, z
j
i∗)← SimZj(stji∗ , c

j
i∗).

− for all j ∈ A : Compute (stji∗+1, z
j
i∗)← Zj(stji∗ , c

j
i∗).

− Send {cji∗ , z
j
i∗}j∈[n] to the verifier.

Verification : Accept if and only if

− for all j ∈ [n] : Vj(xj , πj = (aj
1, c

j
1, z

j
1, . . . , c

j
µ, z

j
µ)) = 1.

− ChecksharesΓ∗(ci∗ , {cji∗}j∈[n]) = 1.

Fig. 4. Our composition Πcomp
Γ for multi-round protocols with critical round i∗.

Theorem 4 (Πcomp
Γ ). If SSSΓ∗ is a smooth secret sharing scheme for access structure Γ ∗, and every

Πj for relation Rj is complete, (κ1, . . . , κi∗−1, ki∗ , . . . , kµ)-special sound and special honest verifier
zero-knowledge with critical round i∗, where κi = |BCi| and ki∗ = 2, then, protocol Πcomp

Γ is a (2µ+1)-
move proof system for relation RΓ ((x

1, . . . , xn), (w1, . . . , wn)) := {∃A ∈ Γ,∀j ∈ A, Rj(xj , wj) = 1}.
It is complete, (κ′1, . . . , κ

′
i∗−1, ki∗ , . . . , kµ)-special sound, and special honest verifier zero-knowledge

with critical round i∗, where κ′i = |
⋃

j∈[n] BC
j
i | and ki∗ = 2.

19



Proof. Completeness. It directly follows from the completeness and critical-round special honest ver-
ifier zero-knowledge of Πi. We note that CompleteΓ∗ works for the set Ā of shares {cj}j∈Ā since
Ā /∈ Γ ∗ when A ∈ Γ .

Critical-round special soundness. We prove that:
1. In round i ∈ [i∗ − 1], BCi =

⋃
j∈[n] BC

j
i ;

2. Given any accepting (1, . . . , 1, ki∗ , . . . , kµ)-tree of transcripts as input where ci /∈ BCi for i < i∗,
there exists an efficient extractor Ext that outputs a valid set of witnesses w = {wj}j∈A where
A ∈ Γ .

Statement 1 is simply proven by the union bound. We have κ′i = |BCi| < nκi. Next we move on
to construct the extractor for the rounds after the critical round. The composed accepting tree of
transcripts can be separated into n split transcripts, which should have the following properties:
– In the critical round i∗, the consistency of the shared challenges can be checked by the CheckShares

algorithm of the secret sharing scheme.
– In non-critical rounds i∗ < i ≤ µ, the challenge sets of all split transcripts for j ∈ [n] remain the

same as the main challenge.

The extractor Ext just runs extractors ExtΠj to extract witnesses for all j ∈ A. In non-critical
rounds i∗ < i ≤ µ, since the main challenges are distinct for all ki branches, the challenges in split
transcripts are also distinct among all branches.

In the critical round i∗, the proof is similar to the proof in original CDS composition. The perfect
secret sharing scheme on Γ ∗ and ki∗ = 2 guarantees that the set A of witnesses w = {wj}j∈A we
extract is a qualified set in Γ . We use the following proposition.
Proposition 1 ([CDS94]). Let Γ be monotone. A set is qualified in Γ if and only if it has a non-
empty intersection with every qualified set in Γ ∗.

Suppose that the cheating prover successfully responds to two different challenges c and c′ in round
i∗. We denote the shared challenges for n statements to be {cj}j∈[n] and {c′j}j∈[n]. Since c ̸= c′, we
know that for every qualified set B ∈ Γ ∗, there exists at least one index j ∈ B such that cj ̸= c′j from
which a witness wj can be extracted as ki∗ = 2 and the remaining non-critical round split challenges
are distinct among all branches. Since the set A of witnesses we extract has at least one index in
every qualified set B ∈ Γ ∗, we can conclude from Proposition 1 that A is a qualified set in Γ .

Critical-round special Honest verifier zero-knowledge. A special honest verifier zero-knowledge simula-
tor can be constructed straightforwardly based on the facts that Πj for all j ∈ [n] are critical-round
special honest verifier zero-knowledge at the same round and the smoothness of the secret sharing
scheme.

5.2 Extensions

Case of i∗zk ̸= i∗ss. In the composition in Figure 4, critical-round i∗ refers to the zero-knowledge
critical round i∗zk relative to the zero-knowledge simulator. Critical-round i∗ss for special soundness
can be arbitrary chosen from 1 to µ + 1 without affecting the construction, as long as ki∗zk = 2
when i∗zk ≥ i∗ss or κi∗zk

= 1 when i∗zk < i∗ss. Having i∗ss in a later round, e.g. in the final one, will
benefit in reducing the cost of building the tree of transcripts in the security proof. However, the
composition does not preserve the parameters; the composed protocol will have special soundness
(κ′1, . . . , κ

′
i∗ss−1, ki

∗
ss
, . . . , kµ) = (nκ1, . . . , nκi∗ss−1, ki∗ss , . . . , kµ). On the other hand, if i∗ss is an early round,

e.g. the first one, the composition preserves the parameters as (k′1, . . . , k′µ) = (k1, . . . , kµ) in exchange
for the larger cost of building the tree of transcripts.

Case of ki∗ > 2 (or κi∗zk
> 1). The above composition only works when the critical round i∗ is only

2-special sound, where a secret sharing scheme is applied. This restriction is inherent in the CDS
paradigm, since the cheating prover may be able to simulate up to ki∗ − 1 challenges for each atomic
statement beforehand and satisfy the constraint with the verifier’s challenges by cleverly combining
preselected challenges. (In the worst case, if (ki∗ − 1)n > |Ci∗ | for n atomic statements, the cheating
prover always succeeds.) Fortunately, such restriction can be avoided via the Share-then-Hash method
proposed by Abe et al. [AAB+20] with the help of a random oracle H : {0, 1}∗ 7→ Ci∗ . Intuitively,
rather than straightly use sampled values sji∗ as challenges cji∗ = sji∗ for simulated transcripts, the
prover is now required to obtain challenges cji∗ ← H(xj , sji∗) from the random oracle.
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5.3 Further Applications

Trapdoor commitments with flexible trapdoor allocation. Observe that the composition in Section 5.1
is closed, i.e., the resulting proof is also critical-round zero-knowledge. Thus, it can be seamlessly
combined with our construction of the trapdoor commitment scheme in Section 4.

This modular construction allows for flexible trapdoor setup regarding a monotone access structure
of one’s interest. For instance, by combining proofs for statements A and B into A ∨ B using the
composition, and using the composed critical-round proof system to build the commitment scheme,
we obtain a trapdoor commitment scheme that is equivocal only if the committer knows a witness
for either A or B. One could base on a critical-round proof for NP to achieve the same result. This
modular approach is particularly useful when the relation in question is not inherently closed under
logical composition.

6 Conclusion

We have introduced a novel characterization for multi-round proof protocols, which we name critical-
round zero-knowledge and critical-round special soundness. In our analysis, we demonstrate that
this class of multi-round protocols is as useful as three-move protocols in applications where a zero-
knowledge simulator is used as part of the construction. We also show that our characterization
applies to protocols of practical relevance.

Several open questions remain:

– We observed that some multi-round proof protocols that utilize the witness in only one round
can admit a CRZK simulator. This raises the question: could this observation be extended into a
more general theorem?

– Our security analysis focuses on the classical random oracle model. Although our CRSS implies
special soundness for certain parameters, which eventually implies Fiat-Shamir soundness in the
quantum random oracle model (QROM) [BGTZ23], we still expect that a careful QROM analysis
yields better security bounds than existing analyses for generic multi-round protocols, since no
programmability of the random oracle is required before the critical round in our applications.

– It would be of interest to derive concrete security bounds for our trapdoor commitment scheme.
We note that by instantiating the scheme from MPCitH, the construction could lead to practical
post-quantum secure adaptor and threshold ring signatures. The performance of these schemes
largely depends on parameter selection, which also remains as future work.
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Supplementary Material

A CDS Composition

A.1 Monotone Access Structure

First we recall the definition of the monotone access structure from [CDS94].

Definition 12 (Monotone Access Structure [CDS94]). An access structure Γ ⊂ 2M defined
over a set M is called a monotone access structure if for all A ∈ Γ and for all B ⊃ A it holds that
B ∈ Γ . Sets in Γ are called authorized sets, and sets not in Γ are called unauthorized sets.

Definition 13 (Dual Structure [CDS94]). Let Γ be an access structure defined over a set M . If
A ⊆M , then Ā denotes the complement of A in M . Now Γ ∗, the dual access structure is defined as
follows:

A ∈ Γ ∗ ⇔ Ā /∈ Γ .

The dual Γ ∗ of a monotone access structure is also monotone, and satisfies (Γ ∗)
∗
= Γ .

A.2 Secret Sharing Scheme

A semi-smooth perfect secret sharing scheme [CDS94], SSSΓ , over domain S and access structure Γ
over a set M consists of four polynomial-time algorithms, Share, Rec, CheckShares and Complete that:

ShareΓ (s)→ {sj}j∈M : is a probabilistic algorithm that takes secret s ∈ S and outputs shares
{sj}j∈M .

RecΓ ({sj}j∈A)→ s : is a reconstruction algorithm that takes a qualified set of shares {sj}j∈A, A ∈ Γ ,
and recovers secret s ∈ S.

CheckSharesΓ (s, {sj}j∈M ) : is a share verification algorithm that takes secret s and all shares {sj}j∈M ,
returns 1 or 0.

CompleteΓ (s, {sj}j∈Ā) : takes shares of a non-qualified set of shares {sj}j∈Ā for A ∈ Γ and secret s,
and outputs {sj}j∈A that {sj}j∈M constitute a complete set of shares of s.

It provides the following properties:

Correctness. For all s ∈ S, {sj}j∈M ← ShareΓ (s), and A ∈ Γ , it holds that s← Rec({sj}j∈A).
Perfect hiding. For any A ∈ Γ , s ∈ S, and {sj}j∈M ← ShareΓ (s), the distribution of {sj}j∈Ā,

denoted by SĀ, is independent of s.
Consistency testing. CheckSharesΓ (s, {sj}j∈M ) returns 1 if and only if, for all A ∈ Γ , RecΓ ({sj}j∈A) =

s.
Share completion. For any A ∈ Γ , s ∈ S, {sj}j∈Ā ← SĀ, and {sj}j∈A ← CompleteΓ (s, {sj}j∈Ā),

it holds that 1← CheckSharesΓ (s, {sj}j∈M ).

Efficient SSSΓ exists for Γ being a threshold structure [Sha79], monotone circuit [BL90], and
monotone span program [CDM00]. If, for every A ∈ Γ , SĀ equals uniform distribution over S|Ā|,
then it is called a smooth perfect secret sharing scheme. Shamir’s secret sharing scheme for threshold
structures is an example.

A.3 CDS Composition

We describe CDS composition [CDS94] in a general form for 2µ + 1-move protocols. It matches the
original one at µ = 1. We warn that it is for introducing consistent notations for succeeding sections,
and indeed not sound for µ ≥ 2 and k(> 3)-special sound as mentioned earlier.

Let ΠRj be a (2µ + 1)-move public-coin proof protocol for relation Rj with a tuple of three
algorithms (Aj ,Zj ,Vj) (Definition 1), and (xj , wj) be a pair of instance and witness satisfying
Rj(xj , wj) = 1. Let Γ be a monotone access structure over [n], and RΓ ((x

1, . . . , xn), (w1, . . . , wn))



be a compound relation that returns 1 if and only if there exists A ∈ Γ that Rj(xj , wj) = 1 for all
j ∈ A. We denote the honest verifier zero-knowledge simulator of ΠRj by Simj . Given ΠRj for j ∈ [n]
and access structure Γ , CDS composition constructs Prover and Verifier as follows where steps 2i and
2i+ 1 are repeated for i ∈ [µ]:

ΠCDS
µ,Γ (Prover({xj}j∈[n], {wj}j∈A),Verifier({xj}j∈[n])):

Step 1. For each j ∈ Ā, Prover calls the honest verifier zero-knowledge simulator (aj , {cji}i∈[µ],
{zji }i∈[µ]) ← Simj(xj). For those j ∈ A, Prover commits to aj by running aj ←
Aj(xj ; rj). Prover sends {aj}j∈[n] to Verifier.

Step 2i. Verifier samples ci
$←− Ci, and sends it to Prover.

Step 2i+ 1. Prover completes shares by {cji}j∈[n] ← CompleteΓ∗(ci, {cji}j∈Ā), and computes zji ←
Zj(xj , wj , {cjm}m∈[i]; rj) for all j ∈ A. It then sends {{cji}j∈[n], {z

j
i }j∈[n]} to Verifier.

Step final. Verifier runs Vj(xj , aj , {cji}i∈[µ], {z
j
i }i∈[µ]) for j ∈ [n] and CheckSharesΓ∗(ci, {cji}j∈[n])

for i ∈ [µ], and outputs 1 if all outputs are 1, outputs 0, otherwise.

It is shown in [CDS94] that, if every ΠRj is a 3-move public-coin proof protocol that is 2-special
sound and honest verifier zero-knowledge, and Γ admits a smooth perfect secret sharing scheme,
then the above protocol ΠCDS

1,Γ is a Σ-protocol for relation RΓ . It admits offline simulation since zero-
knowledge simulator Sj is invoked only in the first step of the prover algorithm. If every ΠRj is special
honest verifier zero-knowledge, the above can be augmented to accept access structure Γ that admits
a semi-smooth secret sharing scheme. It is done by modifying the prover’s first step in a way that
it first shares a random secret to obtain challenge cj for j ∈ Ā and runs the special honest verifier
zero-knowledge simulator on input xj and cj .

B Other Definitions

Definition 14 (Honest-Verifier Zero-Knowledge). An interactive proof system is honest-verifier
zero-knowledge if there exists a polynomial-time algorithm Sim (simulator) that, for any (x,w) ∈ LRW ,
distribution of outputs from Sim(x) and that of transcripts observed in ⟨P (w), V ⟩(x) are indistinguish-
able.

For more notation related to the (k1, . . . , kµ)-tree of transcripts T . Outside the notations intro-
duced in Section 2.2, some extra notations are introduced below to support other definitions. By
nonleaves(T ), we denote all node indices of T except for the leaves. Let nodes(T, i) denote the set of
node indices in depth i of T , e.g., nodes(T, 2) = {(1, 1), (1, 2), . . . , (1, k1)}. For every Ci and ki > 1,
we denote sets of pairwise distinct ki challenges by

Cdiski
:= {(c1, . . . , cki) | ∀j, ℓ( ̸= j) ∈ [ki], (cj , cℓ) ∈ Ci × Ci, cj ̸= cℓ}.

Let pnum(T, i) denote the number of parent nodes at level i, i.e., pnum(T, i) =
∏i

j=1 kj−1 for k0 = 1.

Definition 15 (Statistical (k1, . . . , kµ)-Special Soundness [ABO+24]). A (2µ+1)-round public-
coin proof protocol is statistical (k1, . . . , kµ)-special sound with statistical soundness errror ϵstss if there
exists a polynomial-time algorithm and a function, ϵstss, defined over the challenge space, {Ci}i∈[µ],
that, given a distinct (k1, . . . , kµ)-tree of accepting transcripts, outputs w that satisfies R(x,w) = 1
with probability at least 1 − ϵstss. The probability is taken over the choices of challenges. A tree of
transcript is called “bad” if the extractor fails.

It is stressed that error bound ϵstss is independent of messages from the prover. It is shown
in [ABO+24] that, a parallel repetition of (k1, . . . , kµ)-special sound protocol results in a statistical
(k1, . . . , kµ)-special sound protocol with negligible statistical soundness error. They also showed that
it constitutes a proof of knowledge system.

Definition 16 (Round-by-Round Soundness [CCH+19,FGQ+23]). Let Π = (A,Z,V) be (2µ+
1)-move public-coin proof protocol. We say that Π is round-by-round sound if, there exists a “doomed
set” D ∈ {0, 1}∗ such that,

– If x /∈ L, then (x,∅) ∈ D, where ∅ denotes the empty transcript.
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– For all (2ℓ)-move partial transcript τ = (a, c1, z1, . . . , zℓ−1, cℓ), such that (x, τ) ∈ D, for all next
message zℓ given by the prover, there exists a negligible function negl(·) such that

Pr
cℓ+1←Cℓ+1

[(x, τ, zℓ, cℓ+1) /∈ D] ≤ negl(λ).

– For any x, any (2µ)-move partial transcript τ and any last prover message zµ, if (x, τ) ∈ D then
V (x, τ, zµ) = 0.

A Σ-protocol [Cra96] is a three-move public-coin proof protocol that is 2-special sound and special
honest verifier zero-knowledge. The 2-special soundness implies optimal soundness defined as follows.

Definition 17 (Optimal Soundness [FHJ20]). A three-move public-coin proof protocol for rela-
tion R is optimally sound if, for any x /∈ LR, and a ∈ {0, 1}∗, there exists at most one challenge c ∈ C
that there exists z that V(x, a, c, z) = 1 holds.

Definition 18 (Predicate Special Soundness [AAB+24]). Let Π = (P,V) be a 2µ+ 1-message
public-coin argument of knowledge for a relation RPP. We say that Π is (K,Φ)-predicate-special sound
for K = (k1, · · · ,kµ) and a predicate system Φ if there exists a polynomial time algorithm which given
a statement x and a K-tree of transcripts for this statement with Φ(t) = 1 always outputs a witness
w such that w ∈ RPP(x).

Definition 19 (G-soundness [DFMS22]). Let G ⊆ 2C be increasing. For a non-empty G, a (2ℓ+
1)-move identification protocol Π is called G-sound if there exists a probabilistic polynomial time
algorithm ExtG that takes as input

– a public key pk generated by Keygen, and
– a set T of transcripts whose
• first message are the same, that is, ∀t, t′ ∈ T , t<1 = t′<1,
• challenge sequences c(t), t ∈ T form a set {c(t), t ∈ T } ∈ G,
• transcripts pass verification, that is, ∀t̂ ∈ T , VrtΠ(pk, t̂) = 1,

and outputs a secret key sk such that (sk, pk) ∈ Keygen. We say G is an extraction structure for
Π.

Definition 20 (Special Unsoundness[AFK23,BGTZ23]). Let Π = (P,V) be (2µ + 1)-move
public-coin proof protocol, and let (ℓ1, . . . , ℓµ) ∈ Nµ. We say that Π has (ℓ1, . . . , ℓµ)-special unsound-
ness if there exists a dishonest prover A of the following form and, so that in the execution with V
and input x the following holds:

– A starts off in active mode, which is so that in every round i, when A sends the message mi,
there exists a subset Li ⊆ Ci such that |Li| = ℓi (defined as a function of the state of A at that
point) such that if the subsequent challenge ci is in Li, then A switches into passive mode.

– If A switches into passive mode, then it remains in passive mode until the end of the protocol, and
V accepts at the end of the protocol.

C KKW Framework

C.1 KKW framework.

We succinctly describe the KKW framework that follows the MPCitH paradigm [IKOS07]. In this
framework, the prover runs an MPC protocol that evaluates a boolean circuit C on an input w,
commits to the views of all parties, and then opens all-but-one of these views to the verifier. The
protocol relies on an XOR-based n-out-of-n secret sharing scheme; we denote shares of value a by JaK.
This MPC protocol, in the preprocessing model, is secure against semi-honest all-but-one corruptions.
The protocol can be summarized as follows:

– For each wire α of circuit C, let zα ∈ {0, 1} be the wire value. Each party holds a share JλαK of
a random value λα along with a masked value ẑα := zα + λα.

– The set of shares {JλαK}α∈C is generated by each i-th party in the preprocessing phase using a
random seed referred to as statei. Note that these shares are independent of w.
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– The masked shares {ẑα}α∈C and broadcast messages (denoted by msgsi) of each of the parties
allow for a deterministic simulation of the MPC protocol.

Next, we describe the resulting MPCitH protocol. To prevent the prover from cheating in the prepro-
cessing phase, the prover must first generate and commit to m executions of the preprocessing stage,
and later open all of them except one (corresponding to a verifier’s challenge). The unopened material
is used for executing the MPC protocol later on. This results in a 5-move protocol as described below:

1. First, prover runs m independent executions of the preprocessing phase as follows. Prover samples
m random values {seedj}j∈[m]. Then each seedj is used to generate the set of {statej,i}i∈[n] together
with randomness values (we omit these values for simplicity).
Later, prover commits to each state as comj,i = Com(statej,i), each seedj as hj = H(statej,1, . . . , statej,c).
Prover then sends h := H(h1, . . . , hm) to verifier.

2. Verifier asks prover to open m − 1 of the preprocessing material, i.e., all except for the c1-th
instance, where c1 ←$ [m].

3. Prover uses the unopened preprocessing material seedc1 to get {statec1,i}i∈[n] and uses them to
deterministically simulate the execution of MPC protocol. Finally, prover gets the initial masked
values {ẑα} and the broadcast messages from parties during execution {msgsi}i∈[n].
Prover sends {seed}j ̸=c1 as the opening of all-but-one c-th processing materials and {ẑα}, h′ :=
H(msgs1, . . . ,msgsn) to verifier.

4. Verifier asks prover to open the views of all parties except for the c2-th party in the simulation of
the MPC protocol, where c2 ←$ [n].

5. Prover opens the views by sending {statec1,i}i ̸=c2 along with comc1,c2 ,msgsc2 that can be used to
verify the correctness of the MPC execution.

Finally, the verifier:

– For i ̸= c2, uses statec1,i to compute comc1,i and then combines these with comc1,c2 to compute
hc1 = H(comc1,1, . . . , comc1,n).

– For j ̸= c1, uses {seed}j ̸=c1 to compute {hj}j ̸=c1 . Then, uses hc1 to check whether h = H(h1, . . . , hm),
otherwise outputting reject.

– From {ẑα}, {statec1,i}i ̸=c2 ,msgsc2 , simulates the MPC protocol to get {msgsi}i ̸=c2 and the output
bit b. If b = 0 then it outputs reject.

– Checks whether h′ ̸= H(msgs1, . . . ,msgsn) and outputs reject, otherwise accepts.

C.2 Critical Round in KKW

Theorem 5. Given the 5-move interactive honest-verifier zero-knowledge proof in [KKW18] (denoted
as KKW), assuming that the hash function used is collision-resistant and the commitment scheme
used is computationally binding and hiding, then KKW is critical-round special honest-verifier zero-
knowledge at round i∗zk = 2 and (1, 2)-critical-round special sound at round i∗ss = 2.

Proof. We denote a transcript of this protocol by (a, c1, z1, c2, z2). The critical-round special HVZK
property is proven by constructing two simulators (SimA,SimZ). We build these simulators based on
the semi-honest security of the MPC protocol, for which there exists a simulator Sim that outputs
simulated consistent views of n − 1 parties, i.e., all except for the c2-th party, as follows. Sim starts
by sampling {statei}i ̸=c2 , {ẑα},msgsc2 and uses these sampled values to simulate the online phase
of the MPC protocol until the reconstruction output step. At this step Sim learns the shares of
output JbKi of i-th party (i ̸= c2), Sim then defines a JbKp such that ⊕JbKi = 1, appends JbKp into
msgsc2 and gets a new broadcast message msgsc2 . Therefore, we can modify Sim syntactically by
redefining its input to be a set of {statei}i̸=c2 , {ẑα} that are sampled randomly in advance, such
that Sim({statei)}i ̸=c2 , {ẑα}) → msgsc2 . Now, we define the simulators (SimA,SimZ) as follows, for
challenges c1 ←$ [m], c2 ←$ [n].

– SimA(x, c2)→ (st1, a): First, execute the first round honestly, i.e., randomly sample m executions
of the preprocessing phase {seedj}j∈[m], then compute {seedj,i}i∈[n], {comj,i}i∈[n], {hj} and h.
Output st1 := ({seedj}j∈[m]) and a := h.

– SimZ(st1, c1)→ (z1, st2): To simulate the third message, SimZ simply retrieves the seeds from st1
and outputs zi := {seedj}j ̸=c1 and st2 := seedc1 .
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– SimZ(st2, c2)→ z2: To simulate the fifth message, given st2 = seedc1 , first compute {statec1,i}i∈[n]
along with comc1,c2 , then sample {ẑα}, and finally run the MPC simulator Sim({statec1,i}i ̸=c2 , {ẑα})
→ msgsc2 . Finally, output the value z2 := ({statec1,i}i ̸=c2 , {ẑα}, comc1,c2 ,msgsc2).

Due to the security of the MPC protocol against all-but-one corruptions, it is easy to see that by
a standard hybrid argument, the transcripts produced by the simulator (a, c1, z1, c2, z2) are compu-
tationally indistinguishable from those generated during actual protocol executions with an honest
verifier.

We now argue about critical-round (1, 2)-special soundness at round i∗ss = 2. Given a (1, 2)-tree of
the transcript T , all transcripts in T share the same prefix (a, c1, z1). Our goal is to show that if there
are two accepting transcripts (a, c1, z1, c2, z2) and (a, c1, z1, c

′
2, z
′
2) with the same prefix (a, c1, z1) and

c1 /∈ BC then there exists an extractor Ext that can either extract an actual witness, or find a collision
on the commitment scheme or the hash function.

To see this, note that the prefix (a, c1, z1) where c ∈ [m] commits to all m executions of the
preprocessing phase and then opens all of them except for the c1-th. Hence, the only way prover can
cheat is by (1) guessing c1 correctly and then (2) using the c1-th preprocessing material to cheat
by generating “fake” view of parties in MPC protocol. Otherwise, the transcripts sent by the prover
cannot pass the verification checks from the verifier in the final round. Therefore, for each c1 ∈ [m]
there is only one bad challenge defined by the prover from guessing c1, and hence |BC|/|C| is negligible
for large enough m and for a sufficiently large number of parallel repetitions. The extractor Ext works
as follows:

– From z1, Ext learns {seed}j ̸=c1 and {ẑα}.
– Since c2 ̸= c′2 then from (z2, z

′
2), Ext learns all {statec1,i}i∈[n] along with (comc1,c2 ,msgsc2 , comc1,c′2

,
msgsc′2).

– From {statec1,i}i∈[n], Ext learns the value λα for each wire α, therefore from {ẑα}, Ext can effec-
tively compute a witness w.

We highlight that as {ẑα}i∈[n] are fixed in round 3, then all {statec1,i,msgsi}i∈[n] obtained in the two
accepted transcripts are consistent unless there is a break in the binding of the commitment scheme
or the collision resistance of H (and in that case, the extractor outputs the collision). Otherwise, we
have that {statec1,i,msgsi}i∈[n] are generated honestly since c1 /∈ BC. Therefore, C(w) = 1 and w is
a valid witness.
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