
DEEP Commitments and Their Applications

Alan Szepieniec
alan@neptune.cash

Neptune Cash

Abstract. This note studies a method of committing to a polynomial
in a way that allows executions of low degree tests such as FRI to be
batched and even deferred. In particular, it achieves (unlimited-depth)
aggregation for STARKs.

1 Introduction

In the context of proof-carrying data (PCD) protocols [7] relying on STARKs [3]
as the underlying succinct proof system, it is often necessary to prove the correct
verification of two or more STARK proofs. In order to minimize the complexity
of this task, the FRI [2] low degree test stands out as an obvious candidate for
optimization. It represents a conceptually separate, almost detached, step in the
STARK workflow, and accounts for roughly half the row count in the recursive
execution trace as well as half the proof size. This situation begs the question:
can the FRI steps be merged?

For context, if the recursive prover only has access to succinct proofs then
there is little he can do beyond verify each one independently. But there might
be reasons why the recursive prover has access to some witness information in
addition to the proofs, for instance because he is the one who produced them
in the first place; or because he acquired them from the person who did. Either
way, the desired end-result is a single proof attesting to the validity of both
claims simultaneously. The question is whether the recursive prover can produce
it more efficiently when armed with associated witness data, by batching the
FRI steps.

The näıve approach involves ignoring all but the initial codeword-
commitments in the transcripts of the original FRI steps. After batching the
codewords, a single execution of FRI suffices to establish that all operands were
of low degree. This strategy works in principle but comes with a huge memory
cost. In the last step of the single execution of FRI it produces a set of indices
where the codewords’ consistency is to be tested. The prover must supply the
values of all codewords in these locations — including the codewords compris-
ing the low-degree-extended algebraic execution trace. In order to answer these
queries efficiently, the prover has to store the entire low-degree-extended alge-
braic execution trace of all proofs that are being merged. The memory cost of
this task is prohibitive: the number of columns in the algebraic execution trace
is typically on the order of hundreds if not thousands.

Contributions. This note answers the motivating question positively. We
circumvent the obstacle posed by the naive approach by decoupling the FRI step
from the preceding steps. Our technique reduces an algebraic execution trace to
a single polynomial commitment in a way that can be verified independently
from a possible follow-up low degree test. The immediate implication is that
a single polynomial, along with some supplementary commitment information,
suffices as the witness to a polynomial commitment, as opposed to the entire
algebraic execution trace. This difference results in a factor 100-1000 reduction
in the memory cost of the now-not-so-näıve approach.

A second implication is the capacity to defer low degree tests on committed
polynomials. Commitments can be merged — again independently from a follow-
up low degree test — and perhaps merged again and again — before finally being
subjected to a low degree test. In other words, our construction directly leads
to an accumulation scheme [11] (AKA aggregation scheme [8]) but with the
caveat that every commitment needs to circulate with an associated witness.
To reiterate, this witness is essentially a single polynomial and not the entire
low degree extended trace. Furthermore, with techniques already used to achieve
zero-knowledge [16], these “witnesses” leak no information about the traces from
which they originate, whether immediately or any number of hops in the past.

Technical Overview. The main technique is inspired by the STIR low
degree test [1] and uses steps from there to achieve similar effects. Specifically,
an interactive commitment to a polynomial is given by

– h : D → F, the (Merkle root of the) polynomial’s Reed-Solomon codeword
on a domain D;

– z ∈ F, the out-of-domain indeterminate sampled by the verifier;
– y ∈ F, the out-of-domain value provided by the prover such that g(z) = y;
– x0, . . . , xt−1 ∈ D, t-many in-domain indeterminates sampled unformly at

random from the code’s domain D by the verifier; and
– γ ∈ F a weight for degree correction, sampled by the verifier.

The codewords h represents a random linear combination of terms that can have
one of two origins. First, the terms can originate from an algebraic execution
trace with quotients, and in this configuration the integrity of the algebraic
execution trace is reduced to a polynomial commitment. Second, the terms can
originate from the merger of two or more other polynomial commitments, and
in this configuration multiple polynomial commitments are reduced to one. The
commitments resulting from either of these procedures gives rise to a polynomial
(in the honest case)

q(X) =
γt+1 ·Xt+1 − 1

γ ·X − 1
· h(X)− Ans(X)

Z(X)
(1)

where Ans(X) is the interpolant through {(x0, h(x0)), . . . , (xt−1, h(xt−1)), (z, y)},
and Z(X) is the matching vanishing polynomial. The special features of q are
two-fold. First, the low degree of q(X) certifies the integrity of all algebraic

2

execution traces that gave rise to it. Second, the summands of h can be dropped
after the correct derivation of the entire commitment is checked. Specifically,
a commitment whose derivation-check fails, generates a derived function
q : D → F that is overwhelmingly likely to be rejected by any follow-up low
degree test.

Related Work. The general principle of defferring the expensive crypto-
graphic step to the end of a scheme involving recursive proofs was first proposed
by Halo [9]. The concept was later formally studied and encapsulated as aggre-
gation [8] and (independently) accumulation schemes [11]. While the object of
these formal investigations were homomorphic polynomial commitments with-
out witnesses, the former work [8] did explore the possibility of relaxing the
homomorphism requirement and requiring knowledge of a witness of some sort.

More recently, Bünz et al. [12] focus on achieving accumulation schemes
from proof systems whose commitments are not homomorphic — i.e., exactly
our setting. Their construction, inspired by ProtoStar [10] and ProtoGalaxy [14],
involves tracking an error term and verifying its correct update at each accu-
mulation step. It has the drawback that the quality of an accumulator degrades
with the circuit depth, and ultimately they only achieve bounded-depth PCD.
Our construction is entirely different and does not have this deficiency.

2 Preliminaries

2.1 Proximity Gaps and Correlated Agreement

Definition 1. A linear code V ⊂ Fn of length n and dimension k exhibits a
(ϵ, δ) proximity gap if for every affine line in the ambient space, either all points
are δ-close to the code or at most a fraction ϵ of them are. Symbolically:

∀u0, u1 ∈ Fn . Pr
r

$←−F
[∆(r · u0 + (1− r) · u1, V) ≤ δ] ̸∈ (ϵ; 1) . (2)

BCIKS [4] represents the state of the art in terms of proximity gaps for Reed
Solomon codes. In summary:

– 0 ≤ δ < 1−ρ
2 . Within the unique decoding radius: ϵ = n

|F| .

– 1−ρ
2 ≤ δ < 1−√ρ. Up to the Johnson bound: ϵ = (k+1)2

2·min
(
1−
√

(ρ)−δ,
√

ρ

20

)7
·|F|

.

– 1−√ρ ≤ δ < 1−ρ. Beyond the Johnson bound no gaps are proven. However,

it is conjectured that constants c1, c2 exist such that ϵ ≤ 1
((1−ρ−δ)·ρ)c1 ·

nc2

|F| .

The following lemma captures the soundness error of a recurring technique,
that of reducing a batch of words to one random linear combination. It follows
immediately from a (δ, ϵ) proximity gap.

Lemma 1 (linear batching). Let u0, . . . , ut−1 ∈ Fn be vectors in the ambient
space of a code V ⊆ Fn that exhibits a (δ, ϵ) proximity gap. Then

Pr
r1,...,rt−1

$←−F

[
∆

(
u0 +

t−1∑
i=1

ri · ui, V

)
≤ δ

]
̸∈ (ϵ; 1) . (3)

3

Another technique is to use the powers of just one random challenge. The
next lemma captures the soundness error of this technique.

Lemma 2 (univariate batching). Let u0, . . . , ut−1 ∈ Fn be vectors in the
ambient space of a code V ⊆ Fn that exhibits a (δ, ϵ) proximity gap. Then

Pr
r

$←−F

[
∆

(
t−1∑
i=0

ri · ui, V

)
≤ δ

]
̸∈ (t · ϵ; 1) . (4)

In addition to linear batching and univariate batching, multilinear batch-
ing [13] has been studied. This alternative induces less soundness degradation
relative to univariate batching and requires less randomness than linear batching.

Definition 2 (correlated agreement). A linear code V ⊂ Fn of length n and
dimension k exhibits (ϵ, δ) correlated agreement if for all affine lines of which
the proportion that is δ-close to the code is larger than ϵ, there is a common

index set I ⊂ {0, . . . , n − 1} with |I|
n = 1 − δ where all points on the line agree

with some codeword.

Correlated agreement is a stronger notion which implies proximity gaps. The
converse is not known to hold. BCIKS [4] proves the existence of proximity gaps
for Reed-Solomon by proving correlated agreement. The conjecture beyond the
Johnson bound is technically two conjectures, since a priori it is possible that
proximity gaps do exist in this regime while correlated agreement does not.

2.2 Out-of-Domain Evaluation

Lemma 3 ([1], Lemma 4.5). Let g : D → F be a function, d ∈ N be a degree
parameter, s ∈ N a repetition parameter, and δ ∈ [0; 1] be a distance parameter.
If RS[F, D, d] is (δ, ℓ)-list decodable then

Pr
r∈(F\D)s

[∃u ̸= u′ ∈ List(f, d, δ) ,∀i ∈ [0 : s) , û(ri) = û′(ri)] ≤
ℓ2

2
·
(

d

|F| − |D|

)s

.

(5)

The value of ℓ depends on the distance parameter δ above which “far” vectors
are to be rejected. The optimal δ minimizes the soundness error. Distinguish
three cases:

– 0 ≤ δ < 1−ρ
2 . Within the unique decoding radius there is always at most one

codeword so ℓ = 1.
– 1−ρ

2 ≤ δ < 1 −√ρ. Up to and arbitrarily close to the Johnson bound there
are list decoding algorithms such that ℓ < 1

2·(1−√
ρ−δ)·√ρ .

– 1−√ρ ≤ δ < 1−ρ. Beyond the Johnson bound and up to the covering radius
ℓ is bounded in the general case only by conjecture. For instance, DEEP-FRI

conjectures [6, 2.3] ℓ ≤
(

n
1−ρ−δ

)Cρ

for some Cρ that depends on ρ, where n

is the code length.

4

2.3 Quotienting

Lemma 4 ([1], Lemma 4.4). Let g : D → F be a function; let S ∈ Ft be a
list of x-coordinates and T ∈ Ft be a list of matching y coordinates of t points
(x, y) satisfying x ∈ D ⇒ y = g(x); let Ans(X) be the minimal-degree interpolant
through (S, T); let Z(X) be the vanishing polynomial for S; let Fill : S → F be any
function; let RS[F, D, ρ·|D|] a RS code; and let δ ∈ [0; 1−ρ) a distance parameter.
If for all polynomials p(X) of degree less than ρ · |D| from the radius-δ Hamming
ball centered at g, p(X) disagrees with (S, T) somewhere (i.e., ∃i . p(zi) ̸= yi)
then the function

q : D → F , X 7→

{
g(X)−Ans(X)

Z(X) ⇐ X ̸∈ S

Fill(X) ⇐ X ∈ S
(6)

is δ-far from RS[F, D, ρ · |D| − t].

In the special case where |S| = |T | = 1 and S ∩ D = ∅ we refer to the
operation of computing q from g as a DEEP update.

2.4 Degree Correction

The drawback with Lemma 4 is that the distance is established relative to the
wrong code. Degree correction fixes this problem with randomness supplied by
the verifier. The next lemma is a specialization of the one proved in STIR [1,
Lemma 4.13] which applies to a batch of functions as opposed to just one. Below
we reformulate the proof to establish just this, in our terms and symbols.

Lemma 5. Let g : D → F be a function; and let η
$←− F. If RS[F, D, ρ · |D|]

exhibits (ϵ, δ) correlated agremeent with proximity parameter δ < 1− ρ; and if g
is δ-far from RS[F, D, ρ · |D| − t]; then

Pr

[
∆

(
ηt+1 ·Xt+1 − 1

η ·X − 1
· g(X),RS[F, D, ρ · |D|]

)
< δ

]
< (t+ 1) · ϵ . (7)

Proof. Assume for contradiction that the probability in Equation (7) is greater

than or equal to (t+1) · ϵ. Then since ηt+1·Xt+1−1
η·X−1 · g(X) =

∑t
i=0 η

i ·Xi · g(X) is
a univariate batching with weight η it follows from Lemma 2 that all members
of the batch {Xi · g(X)}ti=0 are δ-close to RS[F, D, ρ · |D|]. From the correlated
agreement assumption it then follows that there is a subdomainD ⊂ D of relative

density |D|
|D| = 1− δ where all members of the batch agree with some polynomial

of degree less than ρ · |D|. Let {ĝi(X)}ti=0 be such a set of polynomials such that
for all i ∈ {0, . . . , t}, ∆(ĝi(X), Xig(X)) < δ.

Proceed with induction on i. In the base case, ĝ0 ∈ RS[F, D, ρ · |D|− i]. In the
inductive case spanning i ∈ {0, . . . , t− 1}, assume that ĝ0 ∈ RS[F, D, ρ · |D| − i].
Then the polynomial Xi+1 · ĝ0 agrees with Xi+1 · g(X) and with ˆgi+1(X) on D.
Since |D| > ρ · |D| > deg(ˆgi+1(X)) and |D| > deg(Xi+1 · ĝ0(X)) it follows that

5

Xi+1 · g(X) and ˆgi+1(X) must be identical polynomials, so deg(Xi+1 · ĝ0(X)) =
deg(ˆgi+1(X)) < ρ · |D| and deg(ĝ0(X)) < ρ · |D|− i−1 and ĝ0 ∈ RS[F, D, ρ · |D|−
i − 1]. Completing the induction gives ĝ0 ∈ RS[F, D, ρ · |D| − t], and as ĝ0(X)
agrees with g(X) on D it follows that g is δ-close to RS[F, D, ρ · |D| − t]. ⊓⊔

3 DEEP-ALI

This section reviews the DEEP-ALI construction [6] for reducing a low-degree
extended algebraic execution trace to a single Reed-Solomon codeword from a
high level perspective. For a more formal treatment of both the protocol and the
language it decides we refer to to [6, § 6].

Let f be w-many low degree polynomials representing the execution trace,
and to whose Reed-Solomon codewords on D ⊂ F the verifier has oracle access.
A set of constraints apply to f and generate new polynomials g which are of low
degree if a) all polynomials f are of low degree, and b) f satisfies the constraints.

The constraint set C is a list of tuples (M , P,Q) where

– M is a list of scaling factors implicitly defining scaled variants of the trace
polynomials f(M0X),f(M1X), . . .;

– P is a circuit over F whose inputs are f(M0X),f(M1X), . . .;
– Q is a univariate polynomial that evaluates to zero in the points where the

constraint is active and no-where else.

Evaluating the constraints gives rise to g, which is then reduced to a single
random linear combination g in order to apply FRI. DEEP-ALI tests the con-
sistency between f and g as follows. Assume throughout that F is large enough
to securely sample randomness from.

DEEP-ALI

– The prover sends the oracle f : (D → F)w.
– The verifier sends α

$←− F|C|.
– The prover computes for all (M , P,Q) ∈ C, gi ← P (f(M0X),f(M1X),...)

Q(X) fol-

lowed by g(X) = α · g(X) and sends g : D → F.
– The verifier sends a single random out-of-domain indeterminate z.
– Once per each M across all constraints, the prover sends f(Mz).

– The verifier computes for all (M , P,Q) ∈ C, gi ← P (f(M0z),f(M1z),...)
Q(z) fol-

lowed by g(z) = α · g(z).
– The prover explicitly performs the DEEP update1 h(2)(X)← g(X)−g(z)

X−z . The

verifier can simulate h(2) : D → F by applying the DEEP update to g in all
points where h(2) is queried. Similarly, the prover computes (and the verifier

simulates) h(1)(X)←
f(X)−

∑
M f(Mz)

∏
M′ ̸=M

X−Mz
M′z−Mz∏

M (X−Mz) .

– The prover and verifier run a low degree test (with batching) such as FRI
on h(1) and h(2).

1 We use the word “DEEP update” to refer to a single-point quotienting operation.

6

The DEEP-ALI is shown [6, Thm. 6.2] to have soundness error bounded by

ε+
2L(d · dC + deg(Qlcm)

|F|
, (8)

where ε is the soundness error of the batched low-degree test on h(1) and h(2),
where L is the list size when list-decoding vectors with the given distance pa-
rameter δ, where d is the trace domain size (or 1 more than deg(f(X)), where
dC = max

(M ,P,Q)∈C
deg(P) is the total degree of the constraints (as multivariate

polynomials), and where Qlcm = lcm
(M ,P,Q)∈C

Q(X).

4 DEEP-ALI with Explicit Batching

The batch low degree test is applied to a list of functions as opposed to a single-
ton; and the test starts by reducing this list to a single function. This reduction
is achieved by taking a randomized sum with uniformly random weights. This
step is sound assuming a proximity gap. The DEEP-ALI (with explicit batching)
looks as follows; this will be the starting point for future modifications.

DEEP-ALI with Explicit Batching

– The prover sends the oracle f : (D → F)w.
– The verifier sends α

$←− F|C|.
– The prover computes for all (M , P,Q) ∈ C, gi ← P (f(M0X),f(M1X),...)

Q(X) fol-

lowed by g(X) = α · g(X) and sends g : D → F.
– The verifier sends a single random out-of-domain indeterminate z.
– Once per each M across all constraints, the prover sends f(Mz).

– The verifier computes for all (M , P,Q) ∈ C, gi ← P (f(M0z),f(M1z),...)
Q(z) fol-

lowed by g(z) = α · g(z).
– The prover explicitly performs the DEEP update h(2)(X)← g(X)−g(z)

X−z . The

verifier can simulate h(2) : D → F by applying the DEEP update to g in all
points where h(2) is queried. Similarly, the prover computes (and the verifier

simulates) h(1)(X)←
f(X)−

∑
M f(Mz)

∏
M′ ̸=M

X−Mz
M′z−Mz∏

M (X−Mz) .

– The verifier sends batching weights β
$←− Fw+1.

– The prover computes (and the verifier simulates) h(0)(X) ←(∑w−1
i=0 βi · h(1)

i (X)
)
+ βw · h(2)(X).

– The prover and verifier run a low degree test (without batching) such as FRI
on h(0).

Note that the above protocol is identical to DEEP-ALI as presented in § 3 and
so has an identical soundness error. However, next we will modify the protocol
in particular in regards to h(0).

7

5 Decouple Batch-Verification from Low Degree Test

We modify the DEEP-ALI protocol (with explicit batching) in order to decouple
the batch verification from the low degree test. In particular, the batch verifi-
cation now happens before the low-degree test starts, and with an index set
independent from it. The modification is presented in two steps; only the second
incurs a soundness degradation.

In the first step, the function h(0) : D → F, representing (a commitment
to) the batch polynomial is sent explicitly. In every point X where the verifier
needs h(0)(X), he both reads it directly from this oracle and indirectly through
simulation, and moreover he verifies that both values agree. Since this step is
redundant from the point of view of the verifier, there is no soundness degrada-
tion. (There is a performance degradation because now the prover sends another
Merkle tree and many openings into it.)

The second step is more involved. Following receipt of h(0), the verifier sam-

ples a random indeterminate z
$←− F and sends it. The prover responds with a

value y ∈ F, which in the honest case equals h(0)(z). Next, the verifier samples

and sends x0, . . . , xt−1
$←− F and tests the equality

h(0)(X)
?
=

(
w−1∑
i=0

βi · h(1)
i (X)

)
+ βw · h(2)(X) (9)

in these points. The protocol proceeds with the function

q(X) =
γ(t+1) ·X(t+1) − 1

γ ·X − 1
· h

(0)(X)− Ans(X)

Z(X)
(10)

in place of h(0)(X), where γ
$←− F was sampled by the verifier and sent along

with (x0, . . . , xt−1), where Ans(X) is the minimal-degree interpolant through the
points (xi, h

(0)(xi)) for all i ∈ [0 : t) as well as (z, y), and where Z(X) is the
vanishing polynomial for the x-coordinates of these points. The prover supplies
Fill(X) which is a minimal (in the sense of information content) function that
agrees with the factor on the right in Equation (10) when X ∈ {x0, . . . , xt−1}.

To analyze the soundness degradation of this step, it suffices to analyze the
worlds in which q is not δ-far from the code. To this end, distinguish three jointly
exhaustive cases.

1. The batch sum
(∑

i=0 βi · h(1)
i (X)

)
+ βw · h(2)(X) is closer than δ to the

code whereas at least one of its summands was not. The probability of this
event is exactly ϵ from the (δ, ϵ) proximity gap as per Lemma 1.

2. There is no polynomial p(X) that agrees with h(0)(X) in more than a fraction
1 − δ of points and for which p(z) = y. Then by Lemmata 4 and 5 q(X) is
δ-far from the code except with probability bounded by (t+ 1) · ϵ.

3. There is such a polynomial p(X) and the batch sum is δ-far from the code. By

Lemma 3, p(X) is unique except with probability bounded by ℓ2

2 ·
(

d
|F|−|D|

)
.

8

Given that p(X) is unique, the probability that it also satisfies

p(X)
?
=

(
w−1∑
i=0

βi · h(1)
i (X)

)
+ βw · h(2)(X) (11)

in X ∈ {x0, . . . , xt−1} is (1 − δ)t. Consequently, Lemmata 4 and 5, q(X) is
δ-far from the code except with probability bounded by (t+ 1) · ϵ.

In conclusion, the soundness error degrades by a term

(2t+ 3) · ϵ+ ℓ2

2
·
(

d

|F| − |D|

)
. (12)

For reference, the complete protocol is presented below.

DEEP-ALI with Decoupled Batch-Verification

– The prover sends the oracle f : (D → F)w.
– The verifier sends α

$←− F|C|.
– The prover computes for all (M , P,Q) ∈ C, gi ← P (f(M0X),f(M1X),...)

Q(X) fol-

lowed by g(X) = α · g(X) and sends g : D → F.
– The verifier sends a single random out-of-domain indeterminate z.
– Once per each M across all constraints, the prover sends f(Mz).

– The verifier computes for all (M , P,Q) ∈ C, gi ← P (f(M0z),f(M1z),...)
Q(z) fol-

lowed by g(z) = α · g(z).
– The prover explicitly performs the DEEP update h(2)(X)← g(X)−g(z)

X−z . The

verifier can simulate h(2) : D → F by applying the DEEP update to g in all
points where h(2) is queried. Similarly, the prover computes (and the verifier

simulates) h(1)(X)←
f(X)−

∑
M f(Mz)

∏
M′ ̸=M

X−Mz
M′z−Mz∏

M (X−Mz) .

– The verifier sends batching weights β
$←− Fw+1.

– The prover computes and sends h(0)(X) ←
(∑w−1

i=0 βi · h(1)
i (X)

)
+ βw ·

h(2)(X).

– The verifier samples and sends z
$←− F.

– The prover computes and sends y ← h(0)(z).

– The verifier samples x0, . . . , xt−1
$←− D and checks for all i ∈ [0 : t) that

h(0)(xi) =
(∑t−1

j=0 βj · h(1)
j (xi)

)
+ βwh

(2)(xj).

– The verifier samples γ
$←− F and sends (x0, . . . , xt−1, γ).

– The prover and verifier run a low degree test (without batch-

ing) such as FRI on q(X) = γt+1·Xt+1−1
γ·X−1 · h(0)(X)−Ans(X)

Z(X) , where

Ans(X) is the minimal-degree polynomial interpolating through
{(x0, h

(0)(x0)), . . . , (xt−1, h
(0)(xt−1)), (z, y)} and Z(X) is the vanishing

polynomial for {x0, . . . , xt−1, z}. The prover supplies Fill(X) which is a min-

imal function that agrees with the fraction h(0)(X)−Ans(X)
Z(X) on {x0, . . . , xt−1},

which the verifier needs in order to simulate q(X).

9

5.1 DEEP Commitment Scheme

The previous protocol already suffices to address the motivating question of
amortizing the cost of verifying low degree tests by decoupling the witnesses
from the prior protocols they relate to. However, an even better result lies within
reach. It is possible to take the reduction to a single polynomial and make the
resulting polynomial commitment an independent certificate of integrity of the
computational claim. The polynomial commitment can be batched with other
polynomial commitment without noticeable effect on the soundness error, pro-
vided that eventually a low degree test is applied to the aggregate.

Consider the tuple (h(0), z, y, {x0, . . . , xt−1}, γ) as it appears in the transcript.
We will refer to this tuple from here on out as a DEEP Commitment. This name
stretches the traditional denotation of “commitment”, referring to something
that is produced entirely by the prover, is independent of protocol history, and
relies on cryptographic hard problem. However, the common feature justifying
overloading the term is that it binds the prover down to a single value — in this
case: a polynomial.

To see why equivocation is hard, consider the following argument. The low
degree test ensures that the committer can only open a committed word to a
polynomial from the radius-δ Hamming ball centered at that word, except with
some negligible probability expressed in terms of δ. Any Hamming ball containing
more than one codeword is likely to contain polynomials that agree somewhere.
The point is that the indeterminate z is chosen at random, by the verifier. The
probability of having multiple candidate polynomials that agree somewhat with
a function h(0) and also have the same value in a random point is bounded in
exact terms by Lemma 3.

In fact, with the same denotational allowance, it is a polynomial commitment
scheme. The prover can establish that h(0)(X) evaluates to given values in given
indeterminates by incorporating them into the interpolant Ans(X), vanishing
polynomial Z(X), and hole filler Fill(X). The quotient q(X) will be low degree
if and only if the extra points indeed match with the polynomial h(0)(X).

One of the reasons why this tuple receives special focus is that it allows
us to define the following notion, which helps with proving. Informally, δ-well-
formedness helps to distinguish which commitments have a matching witness.

Definition 3 (δ-well-formed DEEP commitment). Let (h, z, y, S, γ) :
(D → F) × F × F ×

(
D
t

)
× F be a DEEP commitment, and let ρ be the rate

of the associated code and δ ∈ [0; 1−ρ) a proximity parameter. The DEEP com-
mitment is δ-well-formed if there is a polynomial p(X) of degree less than ρ · |D|
such that ∆(h, p) < δ and p(z) = y and p(S) = h(S).

An obvious but important feature of δ-well-formedness is that the function q
implicitly defined by a DEEP commitment will be rejected by a low degree test
(except with high probability quantifiable in terms of δ) if the the commitment
is not δ-well-formed; and accepted otherwise.

10

6 Application: Batched Low-Degree Test

We are now in a position to address explicitly the motivating question articulated
in the introduction: to split the protocol into two parts, in order to batch the
second halves across multiple executions. To show that this construction retains
soundness, we prove soundness for the two components separately, before proving
that their composition is indeed still sound. The two components are separated
at the DEEP commitment (h(0), z, y, {x0, . . . , xt−1}, γ), which is the output of
the first component (Reduction to a Single Polynomial) and the input of the
second (DEEP Low Degree Test).

Definition 4 (soundness for reduction to single polynomials). Let P
be a protocol between prover and verifier that takes a APR intsance (i.e., the
problem instance that DEEP-ALI takes) and outputs a DEEP commitment (or
early reject). P is sound with soundness error ε if for every APR instance C,
and every witness f ,

Pr

 C is not satisfied byf
∧P(C,f)→ (h(0), z, y, {x0, . . . , xt−1}, γ)
∧ (h(0), z, y, {x0, . . . , xt−1}, γ) is δ-well-formed

 ≤ ε . (13)

Definition 5 (soundness for DEEP low degree tests). Let P be a protocol
between a prover and a verifier that takes a DEEP commitment (and implicitly, a
witness for the prover) and produces no output (other than the verifier’s verdict,
accept or reject). P is sound with soundness error ε if for any DEEP commitment
(h(0), z, y, {x0, . . . , xt−1}, γ) and for any witness f ,

Pr

[
P((h(0), z, y, {x0, . . . , xt−1}, γ)) accepts
∧ (h(0), z, y, {x0, . . . , xt−1}, γ) is not δ-well-formed

]
≤ ε . (14)

Theorem 1. The Reduce to Single Polynomial protocol is sound with soundness
error bounded by that of DEEP-ALI with Decoupled Batch-Verification.

Proof. Suppose A is an adversary that, when fed a false witness f , suc-
ceeds with probability εA to reduce it to a δ-well-formed DEEP commitment
(h(0), z, y, {x0, . . . , xt−1}, γ). Note that the Reduction to a Single Polynomial
protocol is a prefix of the DEEP-ALI with Decoupled Batch-Verification protocol.
If the commitment is δ-well-formed, continuing with the rest of the DEEP-ALI
with Decoupled Batch-Verification will result in an accepting verifier. It follows
that ϵA must be bounded by the soundness error of that protocol. ⊓⊔

Theorem 2. The DEEP Low Degree Test is sound with soundness error
bounded by that of the low degree test.

Proof. Because (h, y) is not δ-well-formed, the quotient q(X) = γt+1·Xt+1−1
γ·X−1 ·

h(X)−Ans(X)
Z(X) is δ-far from the code as per Lemmata 4 and 5. It follows that it

will be accepted with probability at most the soundness error of the low degree
test for proximity parameter δ. ⊓⊔

11

The obvious corollary is that composing the Reduction to a Single Polynomial
with a DEEP Low Degree Test is a sound protocol for APR with soundness error
bounded by the the sum of soundness errors of DEEP-ALI with Decoupled Batch-
Verification and the low degree test. The soundness error of the low degree test
is counted twice in this quantity; this duplicate count is an artifact of the black
box reduction.

The less obvious corollary is that composing multiple Reductions to Single
Polynomial with a single batched DEEP Low Degree Test is sound as well. The
soundness error comprises a linear number of terms originating from the Re-
ductions to Single Polynomials, one term originating from the (unbatched) low
degree test, and one term capturing the batching step which involves the ϵ from
the (δ, ϵ) proximity gap.

7 Application: Aggregation

The above decomposition views the DEEP commitment as an ephemeral object
with a short life span in between the Reduction to Single Polynomial and the
DEEP Low Degree Test. What if we extend the life span and view a DEEP
commitment as its own standalone object? The unlocked use cases is the second
reason for the particular focus on the tuple (h(0), z, y, {x0, . . . , xt−1}, γ).

The next protocol merges two DEEP commitments, (h1, z1, y1, S1, γ1) and
(h2, z2, y2, S2, γ2) (with respective interpolants Ans1(X), Ans2(X), vanishing
polynomials Z1(X), Z2(X), and hole fillers Fill1(X), Fill2(X)). It allows a user
to choose between running the DEEP Low Degree Test, or merge the DEEP
commitment with other DEEP commitments first. The choice can be delayed
indefinitely, as long as a DEEP Low Degree Test is run eventually.

DEEP Merge

– The verifier samples and sends r
$←− F.

– The prover computes and sends h3(X) =
γt+1
1 ·Xt+1−1
γ2·X−1 · h1(X)−Ans1(X)

Z1(X) + r ·
γt+1
2 ·Xt+1−1
γ2·X−1 · h2(X)−Ans2(X)

Z2(X) .

– The verifier samples and sends z
$←− F.

– The prover computes and sends y ← h3(z).

– The verifier samples S = (x0, . . . , xt−1)
$←− Dt and checks for all i ∈ [0 : t)

that h3(xi) =
h1(xi)−Ans1(xi)

Z1(xi)
+ r · h2(xi)−Ans2(xi)

Z2(xi)
.

– The verifier samples γ3
$←− F.

The protocol’s completeness follows from construction. Its soundness, in the
configuration of a circuit whose inputs are Reductions to Single Polynomials,
whose internal nodes are DEEP Merges, and whose outputs are (potentially
batched) DEEP Low Degree Tests, follows inductively from the following lemma.

Lemma 6. Let (h3, z3, y3, S3, γ3) be a DEEP commitment resulting from
merging DEEP commitments (h1, z1, y1, S1, γ1) and (h2, z2, y2, S2, γ2). Let

12

(h1, z1, y1, S1, γ1) or (h2, z2, y2, S2, γ2) (or both) be not δ-well-formed. Then the
probability that (h3, z3, y3, S3, γ3) is δ-well-formed is bounded by

(3t+ 4) · ϵ+ ℓ2

2
·
(

d

|F| − |D|

)
+ (1− δ)t (15)

where ϵ is the false witness probability from the (δ, ϵ) proximity gap.

Proof. Since (h1, z1, y1, S1, γ1) or (h2, z2, y2, S2, γ2) is not δ-well-formed (or

neither are), then by Lemmata 4 and 5, one of the functions
γt+1
1 ·Xt+1−1
γ2·X−1 ·

h1(X)−Ans1(X)
Z1(X) or

γt+1
2 ·Xt+1−1
γ2·X−1 · h2(X)−Ans2(X)

Z2(X) is δ-far from the code (or both are)

except with probability (t+ 1) · ϵ each. Assuming one of the summands is δ-far,
h3 (when computed honestly) is δ-far from the code except with probability ϵ
from the (δ, ϵ) proximity gap. In summary, except with probability (2t+3) ·ϵ, the
radius-δ Hamming ball centered at (honestly computed) h3 contains no code-
words. Consequently, in this case, no low-degree polynomial agrees with h3, and
so h3 is incapable of being well-formed for any indeterminate z, including z3.

What remains is the case wherein h3(X) is not honestly computed, specifi-

cally: h3(X) ̸= γt+1
1 ·Xt+1−1
γ2·X−1 · h1(X)−Ans1(X)

Z1(X) + r · γ
t+1
2 ·Xt+1−1
γ2·X−1 · h2(X)−Ans2(X)

Z2(X) . Dis-

tinguish two cases.

1. There is no polynomial p(X) that agrees with h3(X) in more than a fraction
of 1− δ of points and for which p(z) = y. Then by Lemmata 4 and 5, q(X)
is δ-far from the code except with probability bounded by (t+ 1) · ϵ.

2. Such a polynomial p(X) does exist. By Lemma 3, except with probability

bounded by ℓ2

2 ·
(

d
|F|−|D|

)
, p(X) is unique. The probability that p(X) also

satisfies

p(X)
?
=

γt+1
1 ·Xt+1−1
γ2·X−1 · h1(X)−Ans1(X)

Z1(X) + r · γ
t+1
2 ·Xt+1−1
γ2·X−1 · h2(X)−Ans2(X)

Z2(X)

(16)
on all X ∈ S3 is (1− δ)t.

By the union bound, the probability of any event in which (h3, z3, y3, S3, γ3)
is δ-well-formed is bounded by

(3t+ 4) · ϵ+ ℓ2

2
·
(

d

|F| − |D|

)
+ (1− δ)t . (17)

⊓⊔

8 Conclusion

We close with a few remarks that do not fit elsewhere.

Abstraction level. The IOPs presented here represent non-interactive proofs
in the standard model. The following transformations are implicit: the BCS [5]

13

transform, which turns an IOP into a succinct interactive proof; the Fiat-Shamir
transform [15], which turns an interactive proof into a non-interactive proof in
the random oracle model; and lastly the random oracle is replaced with a concrete
hash function.

How possible? The construction and its security proofs offer little intuition
as to why it works. More specifically, why does decoupling the batch-verification
from the low degree test, and the same applications that follow from it, fail with
plain DEEP-ALI?

The issue seems to be related to the capacity of malicious provers to commit
to functions that are halfway in between the far-from-code batch sum and some
codeword, say with relative distances δ1 < δ and δ2 < δ respectively, and note
that δ1 + δ2 ≥ δ. The discrepancy between the batch sum and the committed
codeword is not caught with probability (1− δ1)

t, at which point the prover can
continue with a committed function whose distance from the code is less than δ.

The feature of the present proposal (and that of its inspiration, STIR [1])
that thwarts this attack vector is that the queried in-domain indeterminates and
matching responses are being quotiented out in the process deriving a new com-
mitted function q(X) whose low degree testifies to the computational integrity
claim. This quotienting step effectively shifts focus from the concrete function
h(0), first to the radius-δ Hamming ball centered at h(0), and then through the
out-of-domain evaluation at z to the (with high probability) unique polynomial
p(X). As a result, the question is not whether the function h(0) agrees with the
batch sum in all of the in-domain samples; instead, the question is whether the
polynomial p(X) agrees with the batch sum in all the in-domain samples.

Non-interactive commitments. It is possible to transform the commitment
scheme into a (standard) non-interactive one, by applying the Fiat-Shamir trans-
form to the necessary rounds in a way that ignores the prior protocol transcript.
The result is a non-interactive commitment scheme that is computationally bind-
ing in the random oracle model. The drawback of this transform is a rather large
(but quantifiable) soundness error degradation resulting from a black box reduc-
tion. Since two steps of interaction are being made non-interactive, the soundness
error degrades by a factor Q2, whereQ is the number of queries the computation-
ally bounded adversary is allowed to make to the random oracle. The soundness
error of the remaining protocol should be small enough to compensate for this
degradation, resulting in a significant performance downgrade.

No extraction. PCD [7] and its refinements [11,8,12] are typically defined
in terms of knowledge soundness, which requires the existence of an extractor
capable of producing the prover’s witness in a slightly unrealistic model of re-
ality such as possessing the capacity to rewind the prover, or having access to
an idealized oracle. We opt here against knowledge soundness because regular
soundness suffices. In particular, typically when the commitment is a group el-
ement then every group element is a commitment to something ; and in this
context, soundness becomes moot and knowledge-soundness necessary to qual-

14

ify that something. By contrast, in the present context, not all commitments are
δ-well-formed, and so soundness is not moot.

References

1. Arnon, G., Chiesa, A., Fenzi, G., Yogev, E.: STIR: reed-solomon proximity testing
with fewer queries. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part X. LNCS,
vol. 14929, pp. 380–413. Springer (2024). https://doi.org/10.1007/978-3-031-68403-
6 12

2. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon
interactive oracle proofs of proximity. In: Chatzigiannakis, I., Kaklama-
nis, C., Marx, D., Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107,
pp. 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018).
https://doi.org/10.4230/LIPICS.ICALP.2018.14

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11694, pp. 701–732. Springer (2019). https://doi.org/10.1007/978-3-030-26954-
8 23

4. Ben-Sasson, E., Carmon, D., Ishai, Y., Kopparty, S., Saraf, S.: Proximity gaps
for reed-solomon codes. In: Irani, S. (ed.) FOCS 2020. pp. 900–909. IEEE (2020).
https://doi.org/10.1109/FOCS46700.2020.00088

5. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt,
M., Smith, A.D. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60 (2016).
https://doi.org/10.1007/978-3-662-53644-5 2

6. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside
the box improves soundness. In: Vidick, T. (ed.) ITCS 2020, Seattle, Washington,
USA. LIPIcs, vol. 151, pp. 5:1–5:32. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2020). https://doi.org/10.4230/LIPICS.ITCS.2020.5

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In: Boneh, D., Rough-
garden, T., Feigenbaum, J. (eds.) STOC 2013. pp. 111–120. ACM (2013).
https://doi.org/10.1145/2488608.2488623

8. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Proof-carrying
data from additive polynomial commitments. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 649–680. Springer (2021).
https://doi.org/10.1007/978-3-030-84242-0 23

9. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without a
trusted setup. IACR ePrint p. 1021 (2019), https://eprint.iacr.org/2019/1021

10. Bünz, B., Chen, B.: Protostar: Generic efficient accumulation/folding for special-
sound protocols. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023. Lec-
ture Notes in Computer Science, vol. 14439, pp. 77–110. Springer (2023).
https://doi.org/10.1007/978-981-99-8724-5 3

11. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from
accumulation schemes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol.
12551, pp. 1–18. Springer (2020). https://doi.org/10.1007/978-3-030-64378-2 1

12. Bünz, B., Mishra, P., Nguyen, W., Wang, W.: Accumulation without homomor-
phism. IACR ePrint p. 474 (2024), https://eprint.iacr.org/2024/474

13. Diamond, B.E., Posen, J.: Proximity testing with logarithmic randomness. IACR
Cryptol. ePrint Arch. p. 630 (2023), https://eprint.iacr.org/2023/630

15

https://doi.org/10.1007/978-3-031-68403-6_12
https://doi.org/10.1007/978-3-031-68403-6_12
https://doi.org/10.4230/LIPICS.ICALP.2018.14
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1109/FOCS46700.2020.00088
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.4230/LIPICS.ITCS.2020.5
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-030-84242-0_23
https://eprint.iacr.org/2019/1021
https://doi.org/10.1007/978-981-99-8724-5_3
https://doi.org/10.1007/978-3-030-64378-2_1
https://eprint.iacr.org/2024/474
https://eprint.iacr.org/2023/630

14. Eagen, L., Gabizon, A.: Protogalaxy: Efficient protostar-style folding of multiple
instances. IACR ePrint p. 1106 (2023), https://eprint.iacr.org/2023/1106

15. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer (1986). https://doi.org/10.1007/3-540-47721-7 12

16. Haböck, U., Kindi, A.: A note on adding zero-knowledge to starks. IACR Cryptol.
ePrint Arch. p. 1037 (2024), https://eprint.iacr.org/2024/1037

16

https://eprint.iacr.org/2023/1106
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2024/1037

	DEEP Commitments and Their Applications

