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Abstract. In a zero-knowledge proof market, we have two sides. On
one side, bidders with proofs of different sizes and some private value to
have this proof computed. On the other side, we have distributors (also
called sellers) which have compute available to process the proofs by the
bidders, and these distributors have a certain private cost to process these
proofs (dependent on the size). More broadly, this setting applies to any
online resource allocation where we have bidders who desire a certain
amount of a resource and distributors that can provide this resource.
In this work, we study how to devise double auctions for this setting
which are truthful for users, weak group strategy proof, weak budget
balanced, computationally efficient, and achieve a good approximation
of the maximum welfare possible by the set of bids. We denote such
auctions as robust.

1 Introduction

Consider the setting of a zero-knowledge proof market, where bidders are inter-
ested in having a zero-knowledge proof computed for a circuit they have (for a
certain price) and distributors (also referred to as sellers) are willing to perform
the proof computation for these bidders (for a certain price). In the middle, we
have an auctioneer who is in charge of matching bidders and distributors as well
as deciding the final prices—how much each matching bidder has to pay and
how much each matching distributor is receiving. Clearly, there are incentives in
this setting: the bidders want to have their proof computed for the least amount
of money as possible, and the distributors want to maximize their revenue given
their cycles of compute. How should the auctioneer decide which bidders to
match with which distributors and at what prices?

In particular, our auction setup is the following: The market has n bidders
interested in circuits of different complexities and sizes. Each bidder i has circuit
of size ki (measured in required cycles computation) and private value vi for
having the zero-knowledge proof for this circuit computed. The market also has
t distributors, each distributor j with a different computation capacity (units of
computation) uj they can provide per round, and a cost per compute cycle cj .

Our auction setup has a series of caveats. The bidders are only interested in
a certain number of cycles of compute, corresponding to the number of cycles
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needed to prove their circuit, and no less. In the literature, this has been coined
as a “single-minded bidder” [7] (we will also call them knapsack bidders). Dis-
tributors do not have this same “all-or-nothing” constraint. They are happy to
sell however many cycles of compute they have available, for the same price per
cycle. Furthermore, since proofs can be (and most times need to be) distributed
we do not impose any constraints on a bidder being assigned to one or multiple
distributors. Due to the above, and in order to simplify the model, we in many
places consider a distributor with uj units of capacity to instead be uj different
distributors selling one cycle of compute at cost cj . More generally, as modeled,
this setting encompasses a double auction of any resource where the bidder is
interested in only a certain quantity of this resource and no less. Other examples
can include storage, general computation, ML training, ad space or time and
others. (For a physical example, consider a chair auction, where bidders have
different sized tables and either want chairs for their whole table, or no chairs
at all.)

Related works on double auctions. Two-sided markets are used throughout
the web for a myriad of different settings and goods, stocks and futures, curren-
cies, ad sales [3], among others [18,28,10] and therefore double auctions have been
very well studied. However no works have been able to construct a double auction
(satisfying all classical properties required for auctions) in the setting described
above, where bidders have an “all-or-nothing” (or knapsack) constraint—what
we call a knapsack double auction. In particular, knapsack auctions have been
studied in the single-sided auction setting [3,7] (multiple bidders, single distrib-
utor) but not in the double-auction setting. On the other hand, double auctions
have been studied in the case where bidders are interested in a single item, or
are interested in many items, but have a diminishing value per additional item
of interest—as opposed to a value dictated by a knapsack constraint. (We give
a more detailed overview of related work in Appendix A.)1

The problem we pose is to define a knapsack double auction mechanism which
has the following properties:

– Truthfulness: The best strategy for auction participants is to report their
private values to the auctioneer.

– (Weak) Group-Strategy Proofness: For any group of colluding participants,
for at least one of the participants in the group, the best strategy is still to
bid truthfully over participating in the collusion.

– Welfare-Maximization: Across all possible assignments that satisfy the knap-
sack constraint, you pick the ones with the largest sum of private values.

– Weak Budget-Balanced: The auctioneer does not lose money from facilitating
the auction.

– Computational Efficiency: The mechanism runs in polynomial time in the
size of the inputs.

These properties are standard notions considered for auction mechanisms.
We define a double auction to be robust if it satisfies all these properties, with

1 Recent work by Wang et al. [34] studies a similar setting but does not achieve all
our desired properties. We discuss this in a dedicated subsection.
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the caveat of the welfare-maximization being an approximate notion (we leave
the exact approximation to be defined in Section 5). This is because by the
Myerson-Satterthwaite theorem [27], no auction mechanism can satisfy all of
these properties at once (even without the weak group-strategy proofness re-
quirement). Next, we consider existing mechanisms to check whether they may
satisfy our needs.

Vickrey-Clarke-Groves (VCG) Knapsack Double Auction [33,12,17,8].
Applying the double-auction version of the classical Vickrey-Clarke-Groves (VCG)
auction naively fails: It is not computationally efficient, not budget balanced
[21] (although it is collusion-proof [9]). There has been no analysis of VCG-
approximations in our knapsack double auction setting.

Pay-as-bid Double Auction. Another option would be an orderbook-style
approach, where bidders and distributors report their cost and transact whenever
there is a match in ranges. In this case, notice that the one to bid first can have an
incentive to strategize based on expected demand and other bids it sees within
the orderbook. In addition, the auction has discriminatory pricing (the same
item can be sold for different prices). This makes the auction not truthful (this
is because for certain bidder and distributor distributions, an individual bidder
could increase their utility by bidding something other than their true private
value).

1.1 Our contribution

This leads us to question whether we can devise an knapsack double auction
mechanism that is robust as defined above. Unfortunately, we show that achiev-
ing a perfectly welfare-maximizing solution and a computationally efficient so-
lution is impossible, since it is equivalent to the knapsack problem which is
known to be NP. Therefore, we tweak our definition of robustness to allow for
an approximate welfare-maximization.

Our contribution in this work is to show that there is a class of knapsack
double auctions that satisfy the properties above (with the approximate welfare-
maximization). We achieve this through a modular approach, inspired by the
composition framework of Düttling et al. [13].

Düttling et al. [13] established a framework where the input is two rank-
ing algorithms, for user bids and distributors bids respectively, a composition
rule and a payment rule, and the output is a double auction mechanism. They
show that for the scenario where multiple bidders and distributors interested
in buying/selling a single item, if the ranking algorithms, composition rule and
payment rule exhibited certain properties, then we could conclude that the re-
sulting double auction mechanism was truthful, weak GSP, welfare-maximizing
(to a certain extent) and WBB.

In our work, we follow the same approach, extending their framework to
the knapsack setting, where bidders are interested in only a certain number of
items (or no items) and distributors don’t have this constraint. Extending the
framework requires entirely new definitions, proofs and techniques. This general
framework allows for more flexibility in devising what we call knapsack double
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auctions by encompassing most current knapsack solutions. Specifically, we don’t
show that a single specific mechanism satisfies the properties above, but instead
show that the properties hold for a whole class of functions that satisfy our
constraints. (The work of extending the composition framework to some cross-
auction constraints was posed as an interesting open question by the work in [13];
this work answers that open question in establishing the feasibility of establishing
a composition framework which can support cross-auction constraints.)

2 Preliminaries

In this section we work through definitions and some background that will be
necessary when approaching our problem.

2.1 Double Auctions

We will study an asymmetric double auction setting. It is a two sided market with
n bidders and t distributors . There is one item type for sale. Each distributor has
u units to sell at a price c each2, and each bidder is interested in either getting
k units, or no units. We call this bidder a ‘single minded bidder’ or a ‘knapsack
bidder’. For the special case where k = 1 for every bidder, this degrades to the
multi-bidder multi-distributor single item auction, which is covered [13]. In this
setting (where k = 1 for every bidder) there have been other works that are
robust [25].

A set of bidders and distributors is feasible if there are at least as many
distributors as the the sum of the items desired by the set of bidders,

∑
i∈[N ] ki.

Each bidder i has a value vi and size ki, and each distributor j has a unit
capacity uj and a cost per unit cj , all of these are bounded from above and
below by some maximum and minimum value. Without loss of generality we can
assume each value and cost is unique (we can always achieve the same properties
by resolving equal costs/values randomly). We will denote by b = (v,k) the
value and size profile of each bidder. We will denote by bi = (vi, ki) the bid
representing the value and size of the i-th bidder. We denote by d the cost
profile of all distributors. We will denote by dj = (uj , cj) the unit capacity
and cost per unit of distributor j. Where appropriate, we will also refer to our
distributor bids as a single vector c of size m =

∑
j∈[t] uj , where we simply split

each distributor with u units of capacity and cost c into u different single-unit
distributors with cost c.

We define a double auction mechanism as a tuple of two deterministic func-
tions:

– The allocation rule x(·, ·) : It takes in the inputs of bidders and distributors
and outputs the set of winning3 bidders and distributors. For every i ∈ [n],

2 To simplify the exposition, where appropriate we will split a distributor into u single-
unit distributors.

3 Where we define winning bidders and distributors to be those who actually transact
as a result of the auction.
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we let xi(b,d) ∈ {0, 1} to denote whether bidder i was a winning bidder.
Symmetrically, we define xj(b,d) to denote a vector of size m =

∑
ℓ∈[t] uℓ

where each index denotes whether each unit of a certain distributor was
allocated, in order.

– The payment rule p(·, ·) : The payment rule takes in the same inputs as x(·, ·)
and outputs the price each winning bidder is required to pay, and payment
each distributor is entitled to receive. We will denote pi(b,d) to be the price
to be paid by bidder i and pj(b,d) the payment to be received by distributor
j for each unit (again pj is of size m, we break each distributor up for the
assignment). For any non-winning bidder/distributor units, this value is 0.

We can then define the welfare of bidder i from acquiring ki units to be
xi(b, c) ·vi−pi(b, c) (the price paid when a user is not selected is 0). Analogously
we define the welfare of distributor j for selling a unit to be pj(b, c)−xj(b, c) ·cj .
Finally, we can define the welfare of the auctioneer holding the auction. This is
just the difference between the prices paid by the bidders and the payments
made to the distributors,

∑
i∈[n] pi(b, c)−

∑
j∈[m] p

j(b, c) .
Now, we can define the welfare of the auction mechanism as the sum of the

welfare of all participating parties. After summing and cancelling some terms,
we get that:

W(b, c) =
∑
i∈[n]

xi(b, c) · vi −
∑
j∈[m]

xj(b, c) · cj .

Notice here we use our notation established beforehand where we split each
distributor, inputting only a vector of m costs. Because we also account for the
auctioneer’s welfare, the welfare is actually independent of the payment rule.
Intuitively this means that our welfare definition does not necessarily capture
payment ‘fairness’ as in who should the excess welfare belong to. However, this
will be (partially) covered by our truthfulness which holds for both sides.

2.2 Properties for Double Auction Mechanisms

We now define the properties we want double auction mechanisms to satisfy
more formally.

Truthfulness: A double auction mechanism is truthful if for every bidder
or distributor, reporting the private value (resp. the true cost) for the good(s)
is a best strategy. Furthermore, any participating bidder or distributor cannot
get negative utility.

Formally, this means that, for any bidder i ∈ [n] with truthful input bi =
(vi, ki), and for any b′i:

xi(b, c) · vi − pi(b, c) ≥ xi((b
′
i, b−i), c) · vi − pi((b

′
i, b−i), c) .

Furthermore, for any bidder i ∈ [n] that bids truthfully, xi(b, c)·vi−pi(b, c) ≥
0. It is defined symmetrically for distributors.
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Weak Group Strategy Proofness (WGSP): A double auction mecha-
nism is WGSP if for any input bid and cost vectors b,v to the mechanism, for
every set A ⊆ (B

⋃
S), subset of the participating bidders and distributors, and

every alternative reporting bid and/or cost inputs the participants in A can pick
together, there is always at least one party in A who is no better off by partic-
ipating in A than it is reporting truthfully. This means that a colluding set of
parties cannot skew the auction so that all colluding parties get better utility
from the auction.4

(Weak) Budget Balancing ((W)BB): A double auction mechanism is
budget balanced if the auctioneer neither gains nor loses utility from conducting
the auction. It is weak budget balanced if the auctioneer does not lose utility (in
this case the auctioneer can gain utility).

Welfare Maximizing: A double auction mechanism is welfare maximizing
if the welfare W (·, ·) output by the mechanism for any input sets b, c is exactly
OPT(b, c), where we define OPT as follows:

OPT (b = (v,k), c) = max
B,S:B⊆[n],S⊆[m] s.t.

∑
i∈B ki≤|S|

∑
i∈B

vi −
∑
j∈S

cj

 .

We will use this function OPT(b, c) throughout to denote the maximum
possible welfare achievable by a set of bidders and distributors. We say that a
mechanism is ϵ−welfare maximizing if for any b, c, W (b, c) ≥ ϵ · OPT(b, c).

Notice that given a blackbox algorithm to solve OPT(b, c) for any b, c, we
can construct a solver to the knapsack problem by assigning all costs equals
0 and picking the number of distributors equal the weight of the knapsack and
assigning bidders with size equal value equal weight. This implies that computing
OPT(b, c) is at least as hard as knapsack and not therefore not solvable in
polynomial time.

Computationally Efficient: A double auction mechanism is computation-
ally efficient if for any input b, c, both of its functions x(·, ·) and p(·, ·) can be
computed in time polynomial in the size of the input.

2.3 Relevant Prior Work on Double Auctions and Compositions

We first outline a known characterization of double auctions with respect to
truthfulness. For that, we will need two definitions

Definition 21 (Monotone Allocation Rule [13]) An allocation rule is x(·, ·)
is monotone if for every input set b, c, every winning bidder (resp. distributor)
who raises his value (resp. lowers his cost) while other bids and costs remain
static is still a winner.

4 Group Strategy Proofness (without the weak) says no group can collude to make
some party better off while the others don’t lose anything. This cannot be satisfied
by any double auction mechanism [13] so we don’t consider it.
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This monotone allocation rule just states that bidders should never be re-
moved from the winning set for bidding more (resp. distributors should not be
removed from the winning set for bidding a lower cost.) Next we define a thresh-
old payment rule.

Definition 22 (Threshold Payments [13]) The threshold payment for bid-
der i (resp. for distributor j), given inputs b−i, c (resp. b, c−j) and a monotone
allocation rule x(·, ·), are respectively:

inf
vi:xi(b,c)=1

vi , sup
cj :xj(b,c)=1

cj .

What this is saying is that the threshold payment is the minimum value
this winning bidder would need to bid to still be accepted. The intuition is
symmetrical for distributors.

Theorem 21 (Truthful Double Auction Mechanisms [13]). A double auc-
tion mechanism is truthful if and only if the allocation rule is monotone and the
payment rule applies threshold payments.

The theorem above assumes that participants with a value of 0 always receive
or pay 0.

Ranking Algorithms for Compositions [13] The only definition we use
(almost) as-is from [13] is the definition for ranking algorithms for single unit
distributors. In their work, they use this definition to compose single unit distrib-
utors and single unit bidders. Although we use the same general framework, for
us, we will use this definition along with a ranking algorithm for knapsack bid-
ders and a different composition function (which accounts for the single minded
multi-unit bidders)5 to compose these ranking algorithms.

Definition 23 ((Single-Unit) Ranking Algorithm [13]) A (single-unit) rank-
ing algorithm r(c) is a deterministic algorithm that takes in a vector of m cost
reports from distributors and outputs an ordered set. We will denote rj(c) to be
the j-th element of the ordered output of r.

Furthermore, the work also defines two properties for ranking algorithms,
monotonicity and consistency. Since these will follow naturally from our more
general knapsack equivalents of these properties, we do not bring the definitions
here as well.

3 A New Composition Framework

In this section, we establish our new composition framework which encompasses
single minded bidders interested in multiple items. We will call these asymmetric
compositions, which compose a bidder with a knapsack constraint on its value,
with distributors that are interested in selling a single item.

5 Throughout this work we will use knapsack bidders and single minded multi-unit
bidders to both allude to bidders interested in only the a specific quantity of items.
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3.1 Ranking Algorithms

We will use one-sided ranking algorithms for user and operator bids to be used
for our composition.

Definition 31 (Knapsack Ranking) A knapsack ranking algorithm r(b) is a
deterministic algorithm that takes in a vector of n single minded bids of the
form bi = (vi, ki) and outputs an ordered set. We will denote ri(b) to be the i−th
element of the ordered output of r.

Definition 32 An asymmetric composition rule for ranking algorithms for multi-
unit single-minded bidders (resp. distributors) and simple distributors (resp. bid-
ders) receives as input a knapsack user bid b = (v, k) and a cost per item c and
outputs either 1 (accept) or 0 (reject).

We now define some composition rules which will be the ones we use the
most throughout the paper.

Definition 33 (t-Threshold Asymmetric Composition Rule) The t−threshold
composition rule accepts a bidder-distributor tuple (b = (v, k), c) if and only if
v − k · c ≥ t, where t is a non-negative threshold in R.

The 0−threshold composition rule accepts any bidder whose value is greater
than the cost to add this bidder to the winning set. For any non-zero threshold
t, it means we require a fixed positive welfare in order to accept the bidder.

Basically it means that every unit must individually add positive welfare by
accepting this bidder, in order for the bidder to be accepted. Since we send the
minimum price out of the k best-priced units available, this ensures that.

3.2 Asymmetric Composition

Here we formally define the core primitive we need, the asymmetric composition.
This asymmetric composition will take in a knapsack ranking and a single-unit
ranking, along with an asymmetric composition rule, and outputs an allocation
rule x(·, ·). An asymmetric composition along with a payment rule p(·, ·) defines
a double auction mechanism. Then, we can prove statements of the form: ‘If
the ranking algorithms and composition rule satisfy properties A and B, with
payment rule C then the double auction mechanism output by their asymmetric
composition satisfies property D’. We define an asymmetric composition below.

Definition 34 (Asymmetric Composition) An asymmetric composition, de-
termined by a knapsack ranking algorithm, a single-unit ranking algorithm, and
a composition rule, greedily determines an allocation as follows. Let n be the
number of bidders, t be the number of distributors and m be the total number of
units available across all distributors. We denote c to be the a vector of size m
of costs for each unit of work.

– For each j ∈ [m]:



Robust Double Auctions for Resource Allocation 9

1. Let cj = rj(c). Let Ij = {}.
2. For i ∈ [n] : Apply the composition rule on (ri(b), cj). If it outputs 1 and

ki +
∑

ℓ∈Ij
kℓ ≤ j, Ij = Ij

⋃
{i}.

– For each j ∈ [m], let wj =
∑

i∈I vi −
∑

i∈[j] rj(c).

– Let j∗ be the j with the largest corresponding wj for j ∈ [m]. Output Ij∗ and
{rj(c)}j∈[j∗].

This defines our asymmetric composition given two ranking algorithms. Note
that we can also define a slightly different asymmetric composition denoted a
trade-reduced asymmetric composition. In a trade-reduced asymmetric composi-
tion, we remove the least efficient distributor that was selected by the algorithm.
This distributor will set the price.

Definition 35 (Trade-Reduced Asymmetric Composition) A Trade-Reduced
Asymmetric Composition runs exactly as Definition 34 except after the algorithm
we run one additional step:

– Remove all units from the least-efficient (worst-ranked) distributor from the
accepted set. Also remove any bidders that no longer fit after this distributor
is removed.

Although it seems counter-intuitive to remove bidders and distributors that
can add positive welfare to the auction, we will see that it is necessary to trade-
reduce our composition in order to achieve incentive compatibility in the next
section.

4 Incentive Compatibility

In this section, we will determine incentive compatibility of knapsack double
auctions defined via our composition framework. Specifically, we will show what
properties our ranking algorithms and composition rule must follow so that the
resulting double auction is truthful for both sides (no party has an incentive to
misreport their true value) and also weak group strategy proof (for every group
formed, at least one member of the group has no incentive to join it).

4.1 Properties

We start by defining some properties that will be necessary to show both truth-
fulness and WGSP. We denote a player to be any bidder or distributor partici-
pating in the auction.

Definition 41 (Monotone Knapsack Ranking) We denote a knapsack rank-
ing algorithm to be monotone if a player’s ranking both:

– (Weakly) Improves with quality: For every bidder i, and bid set b, if bidder
i changes its bid bi = (vi, ki) to a bid bi′ = (vi′ , ki) with vi′ > vi, it follows
that ri(bi′ , b−i) ≤ ri(b) (defined symmetrically for distributors).
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– (Weakly) Deteriorates with size: For every bidder i and bid set b, if bidder
i changes its bid bi = (vi, ki) to bi′ = (vi, ki′) with ki′ > ki, it holds that
ri(bi′ , b−i) ≥ ri(b) (defined symmetrically for distributors).

This differs from previous work since we require two properties, both im-
provement with quality and deterioration with size. This is a natural extension
of the monotone ranking algorithm defined in [13], which did not consider single-
minded bidders.

Definition 42 (Consistent Knapsack Ranking) A knapsack ranking algo-
rithm is consistent if for any two bidders i ̸= i′ and any bid set b, ri(b) < ri′(b)
implies that at least one of the following conditions must hold:

1. vi ≥ vi′

2. ki ≤ ki′

Here, we must ensure at least one of the two conditions holds for our ranking
algorithm to be consistent. Either the value is greater or the size is smaller for
one bid to be ranked over another. Notice that bids with different value and
different size can be incomparable. In the case where k = 1 for all bidders, the
definition is equivalent to the consistency definition in [13].

Definition 43 (Monotone Asymmetric Composition) Consider two differ-
ent inputs to a asymmetric composition rule, with both bidders having same size
n: inputs (bi, c), (bi′ , c

′), and assume that vi′ ≥ vi and for each i ∈ [n], ki ≥ k′i.
The composition rule is monotone if for any such two inputs, if the composition
rule accepts (bi, c) then it accepts (bi′ , c

′).

These two properties will be important to show our incentive compatibility.

4.2 Truthfulness

Here, we show that we can use our definitions from before to show that a com-
position that follows certain rules will always be truthful.

Theorem 41 (Truthful Composition). A trade-reduced asymmetric com-
position that is monotone and composed of consistent and monotone ranking
algorithms using a monotone composition rule and applying threshold payments
is a truthful double auction mechanism.

We defer the proof to Appendix D.1.
We cannot protect against sybil attacks unless we include additional assump-

tions on the distribution. Potentially every distributor would have an incentive
to place a bid for one unit of computation for a price immediately less than its
own, in order to increase its revenue in the case that it can set its own price. For
this work, we do not consider sybil attacks.
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4.3 Weak Group Strategy Proofness

Next, we look at how our composition fares against groups of bidders strate-
gically coordinating their bids. Specifically, as we have seen, achieving Group
Strategy Proofness is not possible for double auctions [13], therefore, we look to
show that our asymmetric composition satisfies weak group strategy proofness.

Theorem 42 (Weak Group Strategy Proofness). An asymmetric compo-
sition of monotone, consistent ranking algorithms with a monotone composition
rule and applying threshold payments is a Weak Group Strategy Proof double
auction mechanism.

We defer the proof of this theorem to Appendix D.2.

5 Welfare and Budget Balancing of Compositions

Other than incentive compatibility, there are two more properties of the auction
we care about. Welfare and budget balancing. Recall we define these in Section 2.
We go into each of these in detail below.

5.1 Welfare

First, we look at the social welfare of the double auction mechanism resulting
from our asymmetric composition. Precisely, given the guarantees of welfare
achieved by single sided auctions defined by each ranking algorithm, we would
like to make a statement about the social welfare of the composition of both into
our double auction. For example, in [13] they show that for single unit auctions, a
composition of two second price auctions (which provide optimal social welfare)
into a double auction provides optimal social welfare. Recall that for knapsack
auctions there is no efficient algorithm that solves for the optimal solution in
polynomial time, so we will be most likely working with approximations in order
to keep the algorithm efficient. In this subsection, we lower bound the welfare of
the double auction mechanism resulting from our asymmetric composition below.
To do this, we first must define a set of parameters which will be necessary in
doing so.

Quantifying how exhaustive the composition rule is: We will quantify
how exhaustive the composition rule by a parameter which tells us how large the
set of bidders and distributors is when compared to the size of the set of bidders
and distributors in the optimal allocation would be. Specifically, we use s(b, c) to
output a number between 0 and

∑
i∈[n] ki to be the number of items allocated

by our composition. We will denote s′(b, c to denote how many items would
have been allocated with the same ranking algorithms and an unconstrained
composition rule, and finally we will denote s∗(b, c) to be the number of items the
optimal solution would have allocated. Concretely, in our case this will quantify
how much damage the trade reduction does to our welfare.
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Quantifying how close to optimal our ranking algorithms are: We
will use parameters α, β ≥ 1 to quantify how close to optimal the solution to the
one sided algorithms are for any number q of allowed allocation items. Let us
define vOPT(q) to be the value of the feasible solution with at most q bidders that
maximizes total value (analogously, we define cOPT(q) for distributors, but mini-
mizing cost). Then, we say that a ranking algorithm ALG is an α approximation
of the optimal if for any q > 0, for any bid vector b,

vALG(q) ≥
1

α
· vOPT(q) .

Similarly for distributors we say that a ranking algorithm is a β approximation
of optimal if for any q, for any cost vector c,

cALG(q) ≤ β · cOPT(q) .

Our ranking algorithm is perfect if β = 1.
Quantifying how difficult the problem instance is: The parameter

γ(b, c) = vOPT(s
∗(b, c)/cOPT(s

∗(b, c)) quantifies how hard the problem is by
taking the ratio of the optimal cost profile for distributors and optimal value
profile for distributors. It has been used also in prior works as the same mea-
surement in related problems [13,30]. A large ratio means that there is a lot more
value than cost and therefore there are likely to be a surplus of high value bids
and therefore approximating the problem instance is not as hard. It also means
that the optimal welfare is large. When there is a ratio close to one the optimal
solution is close to 0 and tight, and therefore harder to approximate.

Proving Welfare of an Asymmetric Composition Now we use these to
show our theorem on welfare, which uses the parameters above to quantify the
optimality of our asymmetric composition.

To do this, first we define a linear knapsack ranking algorithm and a perfect
standard ranking algorithm.

Definition 51 (Linear Knapsack Ranking) A linear knapsack ranking al-
gorithm is a ranking algorithm which sorts user bids of the form bi = (vi, ki) by
using as a sorting key the expression C(vi/ki) for any C ≥ 1.

This means that the bids with the largest value over size ratio (with some
multiplicative weight constant greater than one) are ranked first.

Lemma 51 A linear knapsack ranking is monotone and consistent.

Proof. It is easy to verify that our linear knapsack ranking satisfies both our
properties.

Definition 52 (Perfect Standard Ranking) A perfect standard ranking in
the unconstrained standard setting is a distributor ranking where for we use only
cost to rank the distributors, and we rank distributors by smallest cost. We call
it perfect since it achieves optimal welfare from the point of view of distributor
selection.
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Now we give our theorem. For the theorem below we consider only auction
mechanisms which execute at least one trade, meaning s(b, c) ≥ 1.

Theorem 51 (Approximate Welfare). Consider input (b, c) for which
OPT(b, c) ≥ 0. The asymmetric composition of a linear knapsack ranking al-
gorithm that is an α approximation of the optimal assignment, and a perfect
standard ranking, using a monotone composition rule achieves welfare at least:

s(b, c)

s′(b, c)
·

γ(b,c)
α − 1

γ(b, c)− 1
· OPT(b, c) .

We defer the proof of Theorem 51 to Appendix D.4.
The steps in the proof follow along the same lines as the proof in [13], except

the arguments are different since we use a different composition rule and different
ranking algorithms.

5.2 Budget Balancing

The second property we examine is the budget balancing of the double auction
mechanism resulting from our asymmetric composition. Specifically, while we
cannot guarantee strong budget balancing (the auctioneer will not gain or lose
money from the trade), what we can show is that the double auction mecha-
nism resulting from an asymmetric composition is weak budget balanced (the
auctioneer will not lose money from running the auction. We show this below:

Theorem 52 (Weak Budget Balanced Asymmetric Composition). An
trade-reduced monotone asymmetric composition of a linear knapsack ranking
and a consistent, monotone standard ranking algorithms using a monotone com-
position rule and applying threshold payments is weak budget balanced.

We defer the proof of this theorem to Appendix D.3.
With this, we have shown that our composition can be weak budget balanced

when using the correct ranking algorithms. Next, we look at how to use this.

6 Concrete Instantiations and Applications

Now, we move to look at what these ranking algorithms actually look like. It
is clear to see that for the single-unit ranking we can always just sort by cost.
This ranking is monotone and consistent. 6 Similarly, for our knapsack algorithm,
notice that any sorting of users using as sorting value some expression of the form
f(vi)/g(ki) for any functions f, g would satisfy the consistent and monotone
ranking definitions. However, we are only able to show approximate welfare
optimality and weak budget balancing for linear knapsack ranking algorithms.

6 We leave it more general in case other constraints cause some distributors to be more
appealing than others.
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Specifically, if we instantiate our knapsack ranking to use plainly vi/ki in
order to sort each bid. Ranking items in this fashion for the knapsack problem
has been shown to give a 1/2 approximation to the best knapsack solution for any
size, meaning this ranking achieves an α = 2 approximation in the parameters
defined in Section 5. The sort-by-cost ranking for distributors achieves a β = 1
optimal solution which then means that a composition of these two algorithms
provides a robust auction mechanism with welfare that is close to 1/2 of the
optimal welfare for problem instances with large enough γ. We formalize this
below:

Lemma 61 For any user bid vector b and distributor cost vector c, an asymmet-
ric composition by sorting user bids by vi/ki as our knapsack ranking algorithm
and sorting distributors by their cost cj, using the 0−threshold composition rule
and threshold payments is a robust double auction mechanism which achieves
welfare at least:

γ(b,c)
2 − 1

γ(b, c)− 1
· OPT(b, c) .

Proof. It follows directly from previous results shown here plus the fact that our
knapsack ranking algorithm can approximate knapsack up to a factor of 1/2.

Notice that for large γ(b, c) this approaches a 1/2 approximation of the
optimal welfare.

One can also define a more general theorem. Any linear knapsack ranking
algorithm which provides an α approximation to knapsack, paired with the opti-
mal distributor sorting algorithm, can be converted into a robust double auction
mechanism with a 1/α approximation to the optimal welfare for problem in-
stances with large enough γ.

6.1 Applications of Interest

Our knapsack double auctions can be useful for a suit of different online auctions.
Specifically in the blockchain space, where there is typically not one provider
but a heterogenous network of providers for computation, storage, among other
things, knapsack auctions become very relevant.

As is, our auctions can cover any setting where the bidders have some knap-
sack constraint on the amount of resource they want, and distributors don’t.
As modeled, it is also necessary that bidders don’t care whether their service is
provided by one or many distributors, as long as it is satisfied. Although most
modern services are parallelizable, it could be also very interesting to expand our
work to the case where we do not actually want a user’s bid to be split among
different distributors. Another interesting thing to consider would be whether
we can have a truthful mechanism that optimizes only for bidder welfare. Or
maybe dropping distributor truthfulness in favor of some notion of fairness for
distributors (on how often they get to sell).

One technicality that is necessary to be dealt with is sybil attacks. We as-
sume that the usage of the network is by known clients with a reputation. The
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auctioneer which is in charge of the auction can work to detect and dissuade
sybil attacks through authentication, staking, and slashing.

7 Protocol Modifications and Tradeoffs

In Appendix B and Appendix C, we discuss two additional modifications to the
protocol which might be of interest in practice.

First, in Appendix B we discuss an alternative way to compute the optimal
auction via a base fee, inspired on the [1]. We argue that if the base fee follows
properties similar to our ranking algorithms, the resulting auction behaves sim-
ilarly to the composition we discussed here. Furthermore, we discuss the ability
to burn or pool the difference between what the bidder must pay and what
the auctioneer must pay the distributors. All in all, we believe these might be
interesting mechanisms for real world applications.

Second, in Appendix C we discuss an orthogonal direction to the above, which
is the issue of fairness. Fairness, informally, refers to any distributor willing to
provide a unit for a price less than the agreed-upon price having equal chance of
being assigned it (proportional to the distributor’s size). This comes up because
for distributors, one important factor for willingly participating in auctions is
predictability of the expected return. This is talked about by FileCoin storage
providers as paramount for their business [2]. Thus, we believe fairness is a
good way to capture this. Unfortunately, fairness is at odds with other desired
properties of auctions. Again, we define fairness formally and discuss it in more
depth in Appendix C.

8 Conclusion

In this work, we pushed our understanding of double auctions by providing a
composition system for knapsack double auctions. Our main motivation for the
exploration was a zero-knowledge proof market, although we identified many
other settings where such a double auction could be useful. Many questions still
remain open in this setting. The two we find more compelling are:

– Can we achieve a closer approximation to the optimal welfare? Ideally we
could achieve a (1 − ϵ) approximation of the welfare for any epsilon. We
believe our framework outlines what is necessary for such result: a monotone
and consistent ranking algorithm that can achieve such approximation, along
with a way to relate this algorithm to the welfare (if it is not linear).

– Can we provide robust double auctions when both bidders and distributors
have a knapsack constraint? And how does this affect the welfare? This
setting can be relevant when bidders want their units to come from a single
provider (an example could be non-parallelizable computation).
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A Related Work

The related study of Transaction Fee Mechanism (TFM) design was initiated by
Roughgarden in 2020 [29]. There, Roughgarden analyzed how the new Ethereum
Improvement Proposal (EIP) 1559 performed with respect to other mechanisms
in the blockchain setting. In specific, Roughgarden defines a set of desired prop-
erties that a TFM design should satisfy, and shows that the EIP 1559 satisfied
this in the best way possible compared to other design ideas.

This work was later extended by [11], which showed that indeed the EIP 1559
behaved optimally (under said definitions) when the block size can increase or
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decrease infinitely with demand shifts. Later, other works [35,31] considered
tweaks to the model and what can be achieved with some simplifying assump-
tions, however all still focused on the blockchain use case. Recently, a work by
[16] considers the same problem under a set of new definitions which shed light
into the favorability of the cryptographic second-price auction whenever it is
possible to encrypt the mempool of pending transactions. Several other works
have also studied different aspects of TFM design [32,22,14,15].

Wang et al. [34] considered the setting of a prover network and also examine
some mechanisms in this scenario. Their work, however, focuses on a profit-
maximizing middleman (in our work, called a gateway), which in turn sacrifices
some other properties deemed desired by previous works. As we will see, it is
extremely hard to conciliate a profit-maximizing gateway with the set of desider-
ata we define for the prover network. In communication with the authors they
have made considerable changes to the model they work on in a new unreleased
version of their work, and while related the models are different.

A.1 Combinatorial/Knapsack Auctions

The study of combinatorial auctions was initially studied by McMillan [26] in the
setting where there are several different item types and users might be interested
in only a set of them (these are also called package auctions). This setting was
also studied in other works [5,7,19]. Along with the fact that this setting is not
exactly equivalent to ours where users are interested in varying quantities of ‘the
same’ item, these works also only talk about one-sided auctions.

A.2 Multi-Unit Auctions for Bidders with Diminishing Marginal
Value per Item

Another setting that has been extensively studied is the setting where bidders
have an interest in many items, but have marginal decreasing value for each (if
they have a value of v1 for acquiring the first item, they have value v2 < v1 for
the second one and so on). In this setting, the VCG auction fails in both budget
balancing and computational efficiency, the optimal solution is intractable to
compute. Many clever solutions are found to balance the properties and achieve
something that ‘almost’ achieves all properties (given that achieving all of them
is impossible [27]) [4,20,6]. One work has also studied this problem in the double
auction setting [23,24] but the arguments all require the property of diminishing
marginal value per item.

B Handling Auction Surplus and Simplifying Auctions
for Bidders

In Ethereum, the mechanism has moved to use a ‘Base Fee’ approach, where
a congestion fee is charged by the network and this congestion fee does not
go to the miner picked for this round, and instead is re-spread to all holders
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(effectively, not literally, via burning). This is an interesting mechanism since it
ties the value of the Ethereum token to the usage of the network, since more
burning happens when the network is congested and little-to-no burning happens
when the network is not congested.

In our scenario, we can explore whether it would be possible to define a
burning mechanism and/or base fee mechanism that makes sense.

First, we consider burning or redistributing excess fees due to congestion.
What we can do for our scenario is for the auctioneer to hold on to the dif-
ference between the price the user has to pay for his transaction and the price
agreed upon for each distributor to get per cycle of compute. The auctioneer
can then either burn the surplus or redistribute it across a longer timeframe.
For Lagrange, this would mean redistributing this surplus generated on a sin-
gle round across more participants and rounds. This way, we are providing fair
value to different compute providers by averaging out their reward, and reward-
ing providers dependent on the network demand in general. This is one way
burning/redistributing can be used in this setting.

We can also explore whether setting a base fee based on congestion of previous
rounds makes sense. In the setting of a single double auction, there is no good
way to set a base fee since we have no prior knowledge on distribution of user
bids or demand and supply. However, in the setting where this double auction
is run periodically, as is the case in many applications seen in Section 1 and also
our guiding example of a zero-knowledge proof auction, we do have additional
information.

The idea would be to use past auctions to predict the cut-off buy point for
the next one. But how exactly should this base fee be computed? The idea in [1]
is to start it at 0, and increase or decrease it through a multiplicative constant
dependent on how much of the total supply was taken in the previous auction.
Whenever the congestion is high (there is a lot of demand for proofs at a certain
cost), we increase the cost slightly. Conversely, when the demand is low the cost
decreases. In the limit, we can see that this will estimate some sort of ranking.
The ranking will be dependent on how the base fee scales with the size of the
request from the bidder. One natural idea is to scale it linearly, the base fee is
per unit demanded. This will favor small circuits over larger circuits. Another
natural idea is to have a fixed base fee per circuit, and this, opposite to the
other idea, favors large circuits over small circuits. Anything in between these
two extremes can also make sense, and we must evaluate which choice better
optimizes welfare.

If a congestion-based base fee accurately estimates the difference between
the minimum cost the auctioneer must pay each distributor per unit, and the
minimum fee each bidder must bid per unit to be accepted, then this auction
behaves exactly as what we described above. We can make an estimate the base
fee via congestion on previous auctions. We claim that this auction scheme is
‘usually’ robust, where usually here refers to whenever the congestion fee accu-
rately predicts the minimal cost that would be output by the auction mechanism
we described earlier.
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To see this, first let’s pick a method for a base fee. If we pick a base fee that
scales linearly with the number of units requested by the bidder, then it simulates
a linear knapsack ranking exactly. Since the rest remains the same, our statement
follows from the same arguments as Lemma 61. The only difference from before
is that the surplus held by the auctioneer will be burned or distributed to auction
participants in the future. The benefit of the base fee is that it tells the user in
advance the minimum price it can expect to pay per unit. This simplifies the
process since the bidders do not need to know its private value for the proof in
advance, it only has to decide whether the current price is more or less than
what it is willing to pay. This way, we can ensure truthfulness and similarly
we can also ensure WGSP. Budget balancing remains since the payment rule is
unchanged. The only change is now we can only argue for bidder welfare in the
auction. As before fairness follows by definition of our randomized composition.

C Fairness and Disincentivizing Overbidding by Sellers

We have shown that a composition framework that allows us to input two ranking
algorithms with certain properties to output a double auction mechanism that is
truthful for both bidders and distributors; in other words, the profit maximizing
strategy for both operators and distributors is to report their private values
and capacities to the auctioneer. Distributors are not incentivized to bid more
items than they have because they will not receive any reward for selling items
they cannot provide. However, we run into a problem where, although bidding
truthfully is a Bayesian Nash Equilibrium, overbidding is also a Bayesian Nash
Equilibrium, since it also maximizes revenue (the distributor doesn’t actually
lose anything it didn’t already not have by overbidding).

Another issue we might consider is the case where many distributors have
the same cost bid, or many distributors are willing perform computation for
the price agreed upon by the auction (even if they were not the best option in
terms of welfare), it could be of interest to reduce the sum of the welfare of the
operators in exchange for fairness, where fairness would refer to how likely an
operator is to be picked given that its price was below the price that is being paid
by the bidders. We will call this property fairness. We will say that an auction
mechanism is fair if any distributor whose cost per unit is lower than the agreed
upon auction price has a chance of being picked proportional to its size.

In this section, we first define fairness formally. Then we discuss how it is at
odds with welfare and truthfulness in some regards, but is interesting to consider
for real world applications. We then show a way to devise a fair scheme that also
disincentives overbidding (at the cost of some welfare).

We consider fairness on a per-unit basis, ignoring which distributor the bid
came from.

Definition C1 (Fairness) We denote an auction mechanism to be fair if for
any two sellers with costs ci, cj respectively; if ci and cj are smaller than the cut-
off sell price c, then the probability that seller i is assigned is the same probability
that seller j is assigned.
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Consider any scenario where the demand is much higher than the supply for
a certain item. In this case, competing bidders will drive up the price well above
the cost each operator has for a given item. When this happens, there can be an
optimal assignment where different sets of distributors are valid assignments. In
the current setting, we always pick the most efficient distributors (distributors
with smallest cost) to participate. However, this is not necessarily fair. Although
this is welfare maximizing for the auction round, willing bidders cannot partici-
pate because other distributors are more efficient (given the knapsack constraint,
in high demand there may be sellers who are willing to provide units but are left
out).

In this setting, we can see that our current mechanism is not fair as defined
in Definition C1. Although it is in detriment to total welfare to pick a seller j
over seller i if cj > ci (since it is subtracted from the welfare), fairness is also an
important property in settings where sellers (participants in a recurring auction
mechanism for example) need a predictable and stable allocation to be able to
keep providing units in the long run [2]. Fairness can help reduce the variance in
seller revenue by ensuring that they are allocated with probability proportional
to the amount of compute they are committed to provide, whenever cost allows.

The question then is whether we can modify our composition to account
for fairness, and how will that impact welfare? To analyze this, we propose a
different notion of welfare, namely, to consider only bidder welfare, and consider
seller fairness rather than seller welfare. This way we can still argue about some
welfare guarantee for bidders when talking about fair mechanisms, which by
definition will not maximize welfare as defined in Section 2. Notice that we are
only modifying the welfare property and adding the fairness property, but would
still like the mechanism to satisfy our incentive compatibility properties as well
as budget balancing.

Definition C2 (Random Asymmetric Composition) Let us define a fair
asymmetric composition to work exactly as in Definition 35 except after the
trade reduction we don’t pick the most efficient distributors to participate and
instead sample uniformly each participant out of the costs per unit cj such that
cj < c where c is the price determined by the threshold payment rule.

Notice that by definition, this randomized asymmetric composition is fair.
However, it does not maintain the properties we had shown before from our
standard asymmetric composition. Specifically, it is easy two see two thing im-
mediately:

– The auction is no longer welfare maximizing, since the participating distrib-
utors are no longer the distributors with the least cost.

– The auction is no longer truthful, since now efficient distributors are incen-
tivized to overbid the amount of compute they can provide. Notice that now
distributors that were fully allocated in the previous composition function
by being the most efficient, might now only be partly allocated. This means
they can overbid the amount they have to increase their chances of being
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picked by the randomized algorithm and have all the units they have avail-
able allocated (by bidding more than what they have). Clearly this is not a
truthful auction.

Both of these problems can be addressed by introducing staking and slashing
into the distributors’ reward function. Specifically, we require each distributor dj
to deposit some value hj · uj before the auction. Then, whenever a distributors
cannot provide the entire amount of units of compute they bid, this amount can
be taken by the auctioneer and burned. (If this does not happen, the distributor
gets its deposit back at the end of the auction.) Now, we can adjust hj to be
such that the expected welfare of the distributors is maximized when bidding
truthfully. Although it is not straightforward to compute the optimal staking
and slashing mechanism such that this is true, it is easy to see that we can
always find some mechanism for which this is true by making the stake large
enough. We leave a further development of fairness and a more formal analysis
of it to future work.

D Deferred Proofs

In this section we provide the proofs deferred from the main body.

D.1 Proof of Theorem 41

We first restate the theorem then provide the proof.

Theorem 41 (Truthful Composition). A trade-reduced asymmetric com-
position that is monotone and composed of consistent and monotone ranking
algorithms using a monotone composition rule and applying threshold payments
is a truthful double auction mechanism.

Proof. We will consider truthfulness for bidders and distributors.
Truthful for bidders: First, notice that any participating bidder has non-

negative utility. Winning bids have utility greater than or equal to 0, and losing
bids have utility 0. Consider any bidder i with bi = (vi, ki) who bid his truthful
values. Let us consider two cases:

1. Bidder i was accepted: In this case, the bidder i has utility greater than
or equal to 0. Notice i has no incentive to reduce its value vi since the
threshold payment ensures that the payment by i is the smallest it had to
bid to get accepted. Furthermore, reducing ki is of no benefit to bidder i
since receiving less than ki items has value 0 for this bidder. Increasing the
bids cannot increase its utility either.

2. Bidder i was not accepted: In this case, i has utility 0. Notice it has no
incentive to change its reported vi, since by definition the threshold payment
necessary to be accepted for i was at least vi (to get accepted it would get at
most utility 0), and by consistency, for every i′ ranked higher than i, either
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vi ≥ vi′ or ki ≤ ni′ . Furthermore, notice that by monotonicity of the ranking
increasing the ki (or decreasing vi) can not give bidder i a better ranking.
Finally, decreasing ki brings the value of the package to 0 value to i so this
cannot increase utility.

Truthful for distributors: Again, notice that any participating distributor
has non-negative utility. They can either be picked and get utility greater than
or equal to 0, or not be picked and get utility 0. Consider any distributor with
cost ci. We again consider two cases:

1. Distributor i was accepted: By threshold payments, we note that dis-
tributor i has no incentive to increase its reported cost, since it gets paid
proportional to the maximum it could have bid and still be accepted.

2. Distributor i was not accepted: By monotonicity of the ranking, distrib-
utor i cannot improve its ranking by reporting a smaller cost. Furthermore,
by the threshold payment rule the cost received by accepted distributors was
at most ci, which means that decreasing ci to participate it could achieve at
most utility 0 (which it already has).

Notice that this only holds because we remove the least efficient distributor,
or else a distributor on the border could potentially set its own price by being
both an accepted bid and a bid that sets the price to receive (only removing a
distributor if it has both accepted and not accepted units also does not work,
since then this distributor has an incentive to reduce the number of units it bids
to not go over the assignment). ⊓⊔

D.2 Proof of Theorem 42

We first restate the theorem for WGSP compositions, then provide the proof.

Theorem 42 (Weak Group Strategy Proofness). An asymmetric compo-
sition of monotone, consistent ranking algorithms with a monotone composition
rule and applying threshold payments is a Weak Group Strategy Proof double
auction mechanism.

Proof. First, we show that for any coalition composed of multiple bidders and
multiple distributors, at least one participant is indifferent to participating in
the coalition.

Multi-bidder coalitions: We can split bidder coalitions into coalitions of
losing bidders, coalitions of winning bidders, and a coalition with a mix of both.

A coalition of losing bidders has utility 0. Any strategy that involves some
player lowering their bid would make this player’s utility the same as without
colluding (0) and therefore this player would always be indifferent to participat-
ing. Likewise, any strategy which involves some player increasing their bid in
order to get accepted would make this player have either 0 or negative utility,
meaning this player is indifferent to joining the coalition. Finally, any bid which
does not change the accepted set does not change the coalition’s utility.
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A coalition of winning bidders has utility greater than or equal to zero. Notice
that any strategy that involves some party lowering bids to anything greater than
the payment threshold would keep this party’s payment (and therefore utility)
unchanged and so this party would be indifferent to participating. Furthermore,
any strategy that involves some party lowering their bid until they get rejected
would make this party’s utility 0, which is less than or equal to its utility as a
winning bidder, therefore this party is indifferent to participating. Increasing a
bid cannot increase winning bidder’s utility by the threshold payment rule.

In a coalition of both winning and losing bidders, notice that no winning
bidder can lower their bid further than the threshold (which would make its
utility 0 and therefore less than or equal to its current utlity). However, to
achieve non-zero utility, a losing bidder must be accepted, but this can only
happen if a member of the coalition that is a winning bidder plays a losing bid,
which as we just argued would make this member’s utility less than or equal to
his utility when not participating. Therefore, in a coalition of both winning and
losing bidders, at least one losing bidder or one winning bidder is indifferent (or
worse) to participating.

Multi-distributor coalitions: The argument for multi-distributor coali-
tions follows almost exactly symmetrically to the argument for bidder-only coali-
tions, so we omit it.

Mixed coalitions: Now, we move to show that in any coalition with both
bidders and distributors. Notice that any coalition with more than one distrib-
utor or more than one bidder is already shown to have at least one indifferent
participant by the arguments above. Therefore, what remains is to show that for
any coalition of a single bidder and a single distributor, at least one participant
is indifferent to participating in the coalition.

The argument follows similarly to our argument for coalitions of winning and
losing bidders:

– Coalition of a bidder with a winning distributor: The distributor cannot
increase its utility by bidding a smaller cost (will receive the same payment
by the threshold rule). By bidding a larger cost so that it is no longer a
winning distributor, this distributor’s utility will be at most the same as
before. Then, the only strategy the distributor would not be indifferent to
is bidding a larger cost and still be accepted. However, the larger cost that
the distributor can bid is at most the threshold payment and with that bid
it would have its utility unchanged. So for any coalition of a single bidder
with a single distributor, this distributor is indifferent.

– Coalition of a bidder with a losing distributor: follows as above.

Then, we have shown that for any coalition, at least one party is indifferent
to participating in the coalition, and this concludes our proof for Weak Group
Strategy Proofness. Again, this holds because there is no distributor or bidder
able to set the price and participate. ⊓⊔
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D.3 Proof of Theorem 52

Again, we restate our theorem for weak budget balancing and then provide the
proof.

Theorem 52 (Weak Budget Balanced Asymmetric Composition). An
trade-reduced monotone asymmetric composition of a linear knapsack ranking
and a consistent, monotone standard ranking algorithms using a monotone com-
position rule and applying threshold payments is weak budget balanced.

Proof. We apply per-unit threshold payment, where each bidder pays the mini-
mum per-unit price that was bid and rejected.

Notice that when we trade-reduce our composition, we remove one active
distributor, and all bidders that were assigned to that distributor for at least
one unit. This means we remove at least one bidder. Let bℓ = (vℓ, kℓ) be the
lowest ranked bidder that was removed by the trade reduction, and let c′ be the
per unit cost of the distributor that was removed by the trade reduction. Notice
that by our asymmetric composition, we know that vℓ/kℓ ≥ c′. We also know that
for any per-unit cost of distributors still active after the trade reduction, their
cost ca ≤ c′ (this holds because our distributor ranking algorithm is monotone
and consistent). Likewise, for any accepted bidder, we have that for their bid
ba = (va, ka), it holds that va/ka ≥ vℓ/kℓ. This is by definition of our linear
knapsack ranking algorithm.

Now, notice that for any accepted bid ba, if the bidder reduces its bid such
that v′a/ka ≤ vℓ/kℓ, it will be ranked after the losing bid, and therefore be as-
signed the highest cost distributor and be trade-reduced (no longer accepted).
This holds by definition of our ranking algorithm and monotonicity of our com-
position rule. This means that each accepted bidder will pay at least vℓ/kℓ per
unit. This is by definition of threshold payments. Similarly, by the same ar-
gument we see that each distributor will get paid at most c′ per unit . Since
vℓ/kℓ ≥ c′, it follows that our composition is weak budget balanced. ⊓⊔

D.4 Proof of Theorem 51

Finally, we restate the theorem and provide the proof for our welfare theorem.

Theorem 51 (Approximate Welfare). Consider input (b, c) for which OPT(b, c) ≥
0. The asymmetric composition of a linear knapsack ranking algorithm that is
an α approximation of the optimal assignment, and a perfect standard ranking,
using a monotone composition rule achieves welfare at least:

s(b, c)

s′(b, c)
·

γ(b,c)
α − 1

γ(b, c)− 1
· OPT(b, c) .

Proof. The final goal is to show that vALG(s(b, c)) − cALG(s(b, c)) ≥ s(b,c)
s′(b,c) ·

γ(b,c)
α −β

γ(b,c)−1 · (vOPT(s
∗(b, c))− cOPT(s

∗(b, c))) .
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Now recall s(b, c) represents the total number of units transacted. This is the
sum of all the sizes of the bidders accepted,

∑
i∈B ki. Now, let us split each vi

accepted into ki values v
i
1, . . . , v

i
ki

where each viℓ = vi/ki, for ℓ ∈ [ki]. We do this
for each accepted bid (vi, ki) and concatenate the outputs into a single vector w
of size

∑
i∈B ki.

Now, we can write the welfare of our output as follows:

vALG(s(b, c))− cALG(s(b, c)) =

s(b,c)∑
i=1

wi − ci ,

and the same holds when substituting s(b, c) for s′(b, c).

vALG(s(b, c))− cALG(s(b, c)) =

s′(b,c)∑
i=1

(wi − ci)−
s′(b,c)∑

i=s(b,c)+1

(wi − ci)

≥ (s′(b, c)− s(b, c))
1

s(b, c)

s′(b,c)∑
i=1

(wi − ci)−
s(b,c)∑
i=1

(wi − ci)

= (vALG(s
′(b, c))− cALG(s

′(b, c)))−
(
s′(b, c)

s(b, c)
− 1

)
(vALG(s(b, c))− cALG(s(b, c)))

Now, with some rearranging we get the following:

vALG(s(b, c))− cALG(s(b, c)) ≥
(
s(b, c)

s′(b, c)

)
(vALG(s

′(b, c))− cALG(s
′(b, c))) .

Then, also notice that we iterate through every size from in [m], which means
that at some point our algorithm considers the optimal size s∗(b, c). Then, the
welfare on the set output by our vanilla composition (no trade reduction) is at
least as large as the welfare of running our estimation on the optimal size. This
means that:

vALG(s
′(b, c))− cALG(s

′(b, c)) ≥ vALG(s
∗(b, c))− cALG(s

∗(b, c)) .

Finally, since our linear knapsack ranking is a α approximation of the optimal,
and our distributor ranking is a perfect, it follows that:

vALG(s
∗(b, c))− cALG(s

∗(b, c)) ≥ 1

α
vOPT(s

∗(b, c))− cOPT(s
∗(b, c))

=

(
γ(b, c)

α
− 1

)
cOPT(s

∗(b, c))

=
γ(b,c)

α − 1

γ(b, c)− 1
(vOPT(s

∗(b, c))− cOPT(s
∗(b, c))) .

Putting all the inequalities together we prove the initial statement. ⊓⊔
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