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Abstract

The zeta function ζ(z) =
∑∞

n=1
1
nz is convergent only for Re(z) > 1. The

Riemann-Siegel function is Z(t) = eiϑ(t)ζ(1
2
+ it). If Z(t1) and Z(t2) have

opposite signs, Z(t) vanishes between t1 and t2, and ζ(z) has a zero on the
critical line between 1

2
+it1 and 1

2
+it2. This method to test zeros is too hard to

practice for newcomers. The eta function η(z) =
∑∞

n=1
(−1)n−1

nz is convergent
for Re(z) > 0, and η(z) =

(
1 − 2

2z

)
ζ(z) for the critical strip 0 < Re(z) < 1.

So, η(z) and the analytic continuation of ζ(z) have the same zeros in the critical
strip, and the alternating series can be directly used to test the zeros.

Keywords: Riemann zeta function, Dirichlet eta function, partial sum, absolute
convergence.

1 Introduction

The Riemann zeta function ζ(z) =
∞∑
n=1

1
nz , z ∈ C, is absolutely convergent in the

region Re(z) > 1. It is well known [1] that ζ(2) = 1 + 1
22 + 1

32 + · · · = π2

6 . By
the famous functional equation [2], ζ(z) = 2zπz−1 sin zπ

2 Γ(1 − z)ζ(1 − z), we have

ζ(−1) = 2−1π−2 sin −π2 Γ(2)ζ(2) = 1
2π2 × (−1) × 1 × π2

6 = − 1
12 . But by the original

series, we have ζ(−1) = 1 + 2 + 3 + · · · → ∞.
Actually, in the above functional equation, ζ(z) and ζ(1−z) cannot be concurrently

convergent, because at least one of Re(z) and Re(1− z) is strictly smaller than 1. So,
ζ(z) and ζ(1 − z) must be two different branches of the analytic continuation of the
original series on the complex plane.
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The famous Riemann zeros are not for the original series, instead for a branch
of its analytic continuation. The general method to test these zeros needs to use the
Riemann-Siegel function, which is defined by Z(t) = eiϑ(t)ζ( 1

2 + it). If Z(t1) and Z(t2)
have opposite signs, Z(t) vanishes between t1 and t2, and so ζ(z) has a zero on the
critical line between 1

2 +it1 and 1
2 +it2. Clearly, this method is too hard to practice for

newcomers, and the mysterious zeros have not been broadly exhibited to the average
person.

In this paper, we present a simple method to test these famous zeros. The method
is based on that η(z) =

(
1− 2

2z

)
ζ(z) in the critical strip 0 < Re(z) < 1, where

the Dirichlet eta function η(z) =
∑∞

n=1
(−1)n−1

nz is convergent for Re(z) > 0. This
relationship shows that η(z) and the analytic continuation of ζ(z) have the same zeros
in the critical strip, and we can use the alternating series to test the zeros.

2 Zeta function and Eta function

The Riemann zeta function is further represented as [3]

ζ(z) =

∞∑
n=1

1

nz
=

∞∑
n=1

e−z lnn
z=a+ib

======
a,b∈R

∞∑
n=1

e−(a+ib) lnn

=

∞∑
n=1

e−a lnne−ib lnn =

∞∑
n=1

(
1

n

)a
cos(b lnn)− i

∞∑
n=1

(
1

n

)a
sin(b lnn) (1)

If a > 1, both
∑∞

n=1

(
1
n

)a
cos(b lnn) and

∑∞
n=1

(
1
n

)a
sin(b lnn) are absolutely

convergent. Therefore, ζ(z) has no zeros for a > 1.
The Dirichlet eta function [4] is the alternating series

η(z) =

∞∑
n=1

(−1)n−1

nz
, z ∈ C. (2)

η(0) is defined to be 1/2. η(1) = ln 2, η(2) = π2

12 . Notice that, for Re(z) > 1

2

2z
ζ(z) =

2

2z

(
1 +

1

2z
+

1

3z
+

1

4z
+ · · ·

)
=

2

2z
+

2

4z
+

2

6z
+

2

8z
+ · · · ,(

1− 2

2z

)
ζ(z) =

(
1 +

1

2z
+

1

3z
+

1

4z
+ · · ·

)
−
(

2

2z
+

2

4z
+

2

6z
+

2

8z
+ · · ·

)
rearranged

=========== 1 + (
1

2z
− 2

2z
) +

1

3z
+ (

1

4z
− 2

4z
) + · · ·

= 1− 1

2z
+

1

3z
− 1

4z
+ · · · =

∞∑
n=1

(−1)n−1

nz
= η(z).

Extending this relationship η(z) = (1−21−z)ζ(z) to the complex plane, we can obtain
the functional equation ζ(z) = 2zπz−1 sin zπ

2 Γ(1 − z)ζ(1 − z). If z = −2,−4,−6, · · · ,
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sin zπ
2 = 0. These values are called simple zeros of ζ(z). Since Γ(z)Γ(1 − z) = π

sinπz ,
we know Γ(1− z) has no zeros. So, ζ(z) = 0 iff ζ(1− z) = 0, which also implies that
ζ(z̄) = ζ(1− z̄) = 0. The famous Riemann hypothesis [5] claims that all the complex
zeros of ζ(z) lie on the critical line Re(z) = 1/2.

In history, the zeros of ζ(z) were very hard to calculate [6]. Nowadays, several
million zeros have been obtained [7]. We refer to the table of zeros https://www-users.
cse.umn.edu/∼odlyzko/zeta tables/index.html. It is worth noting that the symbol ζ(z)
didn’t refer to the original series, instead its analytic continuation.

3 The general method to test zeros

The general method to test zeros is based on the famous functional equation. Define
the functions

χ(z) = 2z−1πz sec
zπ

2
/Γ(z), ϑ = ϑ(t) = −

|χ( 1
2 + it)|

2
argχ(

1

2
+ it),

where Γ(z) =
∫∞
0
xz−1e−xdx, and the Riemann-Siegel function

Z(t) = eiϑ(t)ζ(
1

2
+ it) (3)

which is real for real values of t. The Riemann-Siegel theta function appearing above
is also defined by

ϑ(t) = arg[Γ(
1

4
+

1

2
it)]− t

2
lnπ. (4)

If Z(t1) and Z(t2) have opposite signs, Z(t) vanishes between t1 and t2, and so ζ(z)
has a zero on the critical line between 1

2 + it1 and 1
2 + it2.

To calculate the first nontrivial zero, one needs to determine the sign of Z(0) =
eiϑ(

1
2 )ζ( 1

2 ). If z = 1/2, η(1/2) = 1− 1√
2

+ 1√
3
− 1√

4
+ · · · , which converges to a positive

number. Since η(1/2) = (1 − 21/2)ζ(1/2) and 1 −
√

2 < 0, it claims that ζ(1/2) < 0
(page 388, Ref.[2]). Define

ξ(z) =
1

2
z(z − 1)π−

z
2 Γ(

z

2
)ζ(z). (5)

Hence, ξ(1/2) = − 1
8π
− 1

4 Γ( 1
4 )ζ(1/2). Since ζ( 1

2 ) < 0 and Γ( 1
4 ) > 0, then ξ( 1

2 ) > 0,
which implies Z(0) < 0. By numerical analysis, it shows that Z(6π) > 0. Therefore,
there is one zero at least on the critical line between t = 0 and t = 6π. We currently
know that the first zero approximates to 1/2 + 14.1347251 i.

4 A simple method to test zeros

For the first three zeros

r1 = 1/2 + 14.134725 i, r2 = 1/2 + 21.0220396 i, r3 = 1/2 + 25.01085758 i,
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we have the following numerical calculations (see Table 1).

Table 1: Numerical calculations for the first three zeros

Partial-sum η(1/2 + 14.134725 i) = c− di |c|+ |d|
100000 -0.00127695-0.000932693 I 0.00220965
200000 0.00108099 +0.000285084 I 0.00136607
300000 0.000629314 +0.000661002 I 0.00129032
400000 -0.000785402+0.0000901101 I 0.000875512
500000 0.000701391 -0.0000898594 I 0.000791251
600000 -0.00058472-0.000273739 I 0.00085846
700000 0.00010144 +0.000588673 I 0.000690113
800000 0.00049395 -0.000261985 I 0.000755936
900000 -0.000289405-0.000440756 I 0.000730162
Partial-sum η(1/2 + 21.0220396 i) = c− di |c|+ |d|
100000 0.00156992 -0.000194757 I 0.00176467
200000 -0.000590181-0.000950496 I 0.00154068
300000 -0.000307477+0.00085796 I 0.00116544
400000 -0.000432487+0.000660018 I 0.0010925
500000 -0.000582426-0.000401353 I 0.000983779
600000 0.000643547 -0.0000592712 I 0.000702818
700000 -0.000586334+0.000110852 I 0.000697186
800000 0.000553754 +0.0000797987 I 0.000633552
900000 -0.000362282-0.000383504 I 0.000745786
Partial-sum η(1/2 + 25.010857 i) = c− di |c|+ |d|
100000 -0.000747071-0.00139243 I 0.0021395
200000 0.000953789 -0.000583543 I 0.00153733
300000 -0.000273221+0.000871604 I 0.00114482
400000 0.00045176 +0.000649957 I 0.00110172
500000 -0.0000663671+0.000704695 I 0.000771062
600000 -0.000625278-0.000157189 I 0.000782467
700000 0.000534317 -0.000268088 I 0.000802405
800000 -0.000439384+0.000345612 I 0.000784996
900000 0.000470723 -0.00023747 I 0.000708193

With the finite precision, we have the faith in that the three values are really zeros
of eta function. Of course, they are not for the original zeta series. Practically, the
three series ζ(r1), ζ(r2), ζ(r3) are divergent, not convergent.

Theorem 1. Let z = 1
2 +bi, b > 0. Denote the partial sum

∑k
n=1

(−1)n−1

nz by c−di,
for some positive integer k. Then the modulus |c− di| is continuous with respect to b.

Proof. It is easy to see that

c− di =

k∑
n=1

(−1)n−1

nz
=

K∑
n=1

(−1)n−1e−z lnn
z= 1

2+ib=======

k∑
n=1

(−1)n−1e−(
1
2+ib) lnn
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=

k∑
n=1

(−1)n−1
√

1

n
cos(b lnn)− i

k∑
n=1

(−1)n−1
√

1

n
sin(b lnn),

|c− di| =

√√√√( k∑
n=1

(−1)n−1

√
1

n
cos(b lnn)

)2

+

(
k∑

n=1

(−1)n−1

√
1

n
sin(b lnn)

)2

.

Since all cos(b lnn), sin(b lnn), n = 1, · · · , k, are continuous with respect to b, the
above modulus is also continuous with respect to b.

Based on this theorem, we now present a new method (see Algorithm 1) to search

for a zero in a short interval. Let sk :=
∑k

n=1(−1)n−1e−(
1
2+ib) lnn. We compute the

mean of partial sums sk1 , sk2 , · · · , sk` , so as to partly offset the roundoff errors.

Algorithm 1: Testing zeros of Dirichlet eta series in the critical strip

Input: (b1, b2), b2 > b1 > 0, which contains at least one zero of eta series, and a
set of positive integers K = {k1, k2, · · · , k`}, k1 < k2 < · · · < k`.

Output: (c, d) ⊂ (b1, b2), which contains at least one zero of eta series.
1 steplen← 1/4 (or 1/32, 1/256, etc), stepnum← (b2 − b1)/steplen
2 l← 0, r ← 0, T ← { } // T is the empty set

3 for j = 0, j ≤ stepnum do
4 b← b1 + steplen ∗ j, S ← { } // S is the empty set

5 for n = 1, n ≤ k` do
6 l← l + (−1)n−1

√
1
n cos(b lnn)

7 r ← r + (−1)n−1
√

1
n sin(b lnn)

8 if n ∈ K then
9 s← l − ri // i2 = −1

10 S ← S ∪ {|s|} // |s| is the modulus of s

11 t← the mean value of S
12 T ← T ∪ {(b, t)}
13 Find (b̂, t̂) ∈ T , with a local minimum t̂

14 c← b̂− steplen, d← b̂+ steplen

Theorem 2. The computational cost for Algorithm 1 is O(50k`(3.32p+log2(k`))
2),

where p is the accuracy, i.e., the effective number of these digits which appear to the
right of the decimal point.

Proof. The longest binary length of operands in the procedure is log2(k`) (for integer
part) plus log2(10p) (for fractional part). The total iteration number is stepnum× k`.
Usually, stepnum = 50 which suffices to determine the local minimums in a short
interval. Note that log2(10) ≈ 3.32. So, the computational cost for a multiplication is
O((3.32p+ log2(k`))

2), and the total cost is O(50k`(3.32p+ log2(k`))
2).
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The following Mathematica code can be directly used to test the zeros, in which
we take k` = 80000.

Eta[b_,k_,mylist_]:= Module[{a,n,l,r,s,t,U,V,precision},

l = r = 0; U = V = {}; a = 1/2; precision = 10;

For[n = 1, n <=k, n++,

l = N[l + (-1)^(n - 1)/(n^a)*Cos[b*Log[n]], precision];

r = N[r + (-1)^(n - 1)/(n^a)*Sin[b*Log[n]], precision];

If[MemberQ[mylist, n], s = l - r*I; t = Abs[s];

U = AppendTo[U, {n, s, t}]]];

V = U];

Eta2[b1_, b2_, steplen_, k_, mylist_] :=

Module[{A, B, stepnum, b, j, W, v, precision},

A = B = W = {}; precision = 10; stepnum = (b2 - b1)/steplen;

For[j = 0, j <= stepnum, j++, b = b1 + steplen*j;

A = Eta[b, k, mylist]; v = N[Mean[A[[All, 3]]], precision];

B = AppendTo[B, {b, v}]];

W = B]

k = 80000; mylist = Table[j*10^4, {j, 3, 8}];

b1 = 60.0; b2 = 70.0; steplen = 1/4;

A = Eta2[b1, b2, steplen, k, mylist]; Print[A];

ListLinePlot[A, Mesh -> Full]

62 64 66 68 70

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 1 The local minimums for the interval (60, 70)

{{60.,1.32234},{60.25,1.26547},{60.5,0.889173},{60.75,0.252221},

{61.,0.560395},{61.25,1.4362},{61.5,2.25372},{61.75,2.90991},

{62.,3.31871},{62.25,3.4328},{62.5,3.26017},{62.75,2.8505},

{63.,2.31537},{63.25,1.83795},{63.5,1.61724},{63.75,1.67664},
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{64.,1.80111},{64.25,1.78278},{64.5,1.52398},{64.75,1.02702},

{65.,0.345057},{65.25,0.431093},{65.5,1.17698},{65.75,1.77798},

{66.,2.13208},{66.25,2.16306},{66.5,1.85003},{66.75,1.21334},

{67.,0.32057},{67.25,0.715488},{67.5,1.76543},{67.75,2.69039},

{68.,3.36349},{68.25,3.69287},{68.5,3.62832},{68.75,3.17258},

{69.,2.38021},{69.25,1.3504},{69.5,0.212189},{69.75,0.89441},

{70.,1.83443}}

By the Fig.1, we see there are four local minimums of modulus, corresponding to
the tuples (60.75, 0.252221), (65, 0.345057), (67, 0.32057), (69.5, 0.212189). So, the four
possible intervals are (60.5, 61), (64.75, 65.25), (66.75, 67.25), (69.25, 69.75). In fact, the
target zeros are 60.8317785, 65.112544, 67.07981, 69.546401.

For the first interval (60.5, 61), we have the following results.

b1 = 60.5; b2 = 61.0; steplen=1/32;

A = Eta2[b1, b2, steplen, k, mylist]; Print[A];

ListLinePlot[A, Mesh -> Full]

{{60.5,0.889173},{60.5313,0.822285},{60.5625,0.751447},{60.5938,0.676809},

{60.625,0.598526},{60.6563,0.516757},{60.6875,0.431669},{60.7188,0.34343},

{60.75,0.252221},{60.7813,0.158227},{60.8125,0.0616484},{60.8438,0.0373803},

{60.875,0.138516},{60.9063,0.241628},{60.9375,0.346471},{60.9688,0.452808},

{61.,0.560395}}

60.6 60.7 60.8 60.9 61.0

0.2

0.4

0.6

0.8

Fig. 2 The local minimum for the interval (60.5, 61)

By the Fig.2, it is easy to see that the local minimum of modulus is 0.0373803, corre-
sponding to the tuple (60.8438, 0.0373803). So, the shorter interval is (60.8125, 60.875),
which still contains the target zero 60.8317785.

b1 = 60.8125; b2 = 60.875; steplen=1/256;

A = Eta2[b1, b2, steplen, k, mylist]; Print[A];

ListLinePlot[A, Mesh -> Full]

{{60.8125,0.0616484},{60.8164,0.049407},{60.8203,0.0371318},

{60.8242,0.0248276},{60.8281,0.0125183},{60.832,0.00206596},
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{60.8359,0.0124851},{60.8398,0.0248998},{60.8438,0.0373803},

{60.8477,0.0499026},{60.8516,0.0624616},{60.8555,0.0750554},

{60.8594,0.0876828},{60.8633,0.100343},{60.8672,0.113036},

{60.8711,0.12576},{60.875,0.138516}}

60.82 60.83 60.84 60.85 60.86 60.87

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fig. 3 The local minimum for the interval (60.8125, 60.875)

With the shorter step length 1/256, we find the local minimum of modulus is
0.00206596, corresponding to the tuple (60.832, 0.00206596). So, the shorter interval
is (60.8281, 60.8359), which still contains the target zero 60.8317785.

By the similar procedure, we obtain the strictly decreasing modulus chain

modulus : 0.252221 > 0.0373803 > 0.00206596 > · · ·

corresponding to the nested intervals

intervals : (60.5, 61) ⊃ (60.8125, 60.875) ⊃ (60.8281, 60.8359) ⊃ · · ·

Finally, we can obtain a more accurate approximation of the target zero.

5 Conclusion

We show that the Dirichlet eta function and the analytic continuation of Riemann
zeta function have the same zeros in the critical strip. Based on this relationship and
that the partial sum of eta series is continuous, we present a simple method to test
zeros. The programming code is also presented, which is very easy to execute. To the
best of our knowledge, it is the first time to invent such a simple method to test the
famous zeros.
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[3] Pérez-Marco R.: Notes on the Riemann Hypothesis, arXiv:1707.01770v2 (2018).

[4] Spanier J. and Oldham K.: The Zeta Numbers and Related Functions, An Atlas
of Functions, Washington, DC, Hemisphere, 25-33 (1987).

[5] Nuttall J.: Wronskians, Cumulants, and the Riemann hypothesis. Constructive
Approximation, 38, 193-212 (2013).

[6] Rubinstein M.: Elliptic curves of high rank and the Riemann zeta function on the
one line, Experimental Mathematics, 22(4), 465-480 (2013).

[7] Wolf M.: Evidence in favor of the Baez-Duarte criterion for the Riemann
hypothesis, arXiv:math/0605485v4 (2006).

9


	Introduction
	Zeta function and Eta function
	The general method to test zeros
	A simple method to test zeros
	Conclusion

