
Pseudorandom Obfuscation and Applications

Pedro Branco
Bocconi

Nico Döttling
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Abstract

We introduce the notion of pseudorandom obfuscation (PRO), a way to obfuscate (keyed) pseudo-
random functions fK in an average-case sense. We introduce several variants of pseudorandom
obfuscation and show constructions and applications. For some of our applications that can be
achieved using full-fledged indistinguishability obfuscation (iO), we show constructions using
lattice-based assumptions alone; the other applications we enable using PRO are simply not
known even assuming iO. We briefly summarize our contributions below.

1. Constructions of PRO: We show how to construct the strongest version of PRO, assum-
ing the sub-exponential hardness of the learning with errors (LWE) problem, and of the
evasive LWE problem (Wee, EUROCRYPT 2022; Tsabary, CRYPTO 2022).

2. Applications outside the iOWorld: We show how to construct a succinct witness encryp-
tion scheme from PRO, where the size of the ciphertext is independent of the witness size.
Such a witness encryption scheme is not known to exist even assuming iO.

3. Applications in the iOWorld: Ourweakest variant of pseudorandomobfuscation, named
obfuscation for identical pseudorandom functions (iPRO), is weaker than iO: rather than
obfuscating arbitrary circuits as in iO, iPRO only obfuscates circuits computing pseudo-
random functions. We show that iPRO already enables several applications of iO, such as
unleveled fully homomorphic encryption (without assuming circular security) and suc-
cinct randomized encodings.

4. From iPRO to iO: Despite being a seemingly weaker notion than iO, we show two path-
ways to constructing full-fledged iO from iPRO. Our first construction builds iO from
iPRO and (standard assumptions on) cryptographic bilinear maps. Combined with our
construction of iPRO, this gives us a construction of iO fromanew combination of assump-
tions, namely LWE, evasive LWE and bilinear maps. Our second construction builds iO
(and even ideal obfuscation) from iPRO in the pseudorandom oracle model (Jain, Lin,
Luo and Wichs, CRYPTO 2023). To our knowledge, this is the first purely lattice-based,
and hence plausibly post-quantum secure, construction of iOwith a proof of security from
LWE and evasive LWE.

Finally, we highlight some barriers in achieving the strongest version of pseudorandom obfus-
cation.
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1 Introduction

The goal of program obfuscation is to make computer programs unintelligible, while preserving
their functionality. Because of its intrinsic ability to hide secrets in plain software, obfuscation is
often considered to be the quintessential cryptographic primitive. The possibility and utility of
program obfuscation was already foreshadowed in Diffie and Hellman’s landmark paper [DH76];
however, it took more than two decades for program obfuscation to be placed on solid definitional
foundations in [Had00, BGI+01], where it is shown that strong (but natural) notions for obfusca-
tion, namely ideal obfuscation and virtual black-box obfuscation, are impossible to achieve. To rem-
edy this, the authors of [BGI+01] suggested the notion of indistinguishability obfuscation (iO), which
guarantees that the obfuscations of any pair of functionally-equivalent circuits (or programs) are
computationally indistinguishable [BGI+01, GR07].

The study of iO has had a lasting impact on cryptography and has generated a remarkable body
of research devoted to constructing general-purpose obfuscators [GGH+13, BGK+14, BR14, PST14,
BMSZ16, MSZ16, Lin16, LV16, AS17, Lin17, LT17, CVW18, GJ18, JLMS19, Agr19, BIJ+20, AP20,
BDGM20, JLS21, GP21, WW21, BDGM22, JLS22] as well as enabling fascinating new applications
in cryptography and complexity theory [GGH+13, SW14, BZ14, BPR15, BGL+15, Zha19, CLLZ21,
BGK+23, ILW23]. A milestone in this line of research is the work of Jain, Lin and Sahai [JLS21,
JLS22] who constructed an iO scheme from the hardness of three well-founded assumptions: the
hardness of Diffie-Hellman like problems on bilinear maps; the hardness of learning parity with
noise (LPN); and the existence of pseudorandom generators in NC0. Further recent work [RVV24]
replaced the last of these assumptions with sparse LPN over the binary field. However, owing to
their dependence on bilinear maps, none of these constructions are post-quantum secure.

Thus, despite the resounding success of iO, the question of constructing useful program ob-
fuscators from the hardness of (post-quantum secure) lattice problems has remained frustratingly
open, despite several attempts [CVW18, BIJ+20, GP21, BDGM20]. The objective of this work is to
make progress on this problem: by proposing new notions of obfuscation different from iO, both
weaker and stronger; constructing them from plausibly post-quantum secure assumptions; and
studying their implications for cryptography.

1.1 Our Results

In this work, we propose the notion of pseudorandom obfuscation (PRO) and investigate general-
purpose constructions. We consider two variants of PRO: the stronger one yields cryptographic
primitives that are currently unknown even assuming iO, whereas the weaker variant suffices for
many applications of iO. We show that the weaker variant also provides an alternative pathway to
constructing full-fledged iO. We summarize our contributions in more detail below.

Pseudorandom Obfuscation: A New Notion. A pseudorandom obfuscation scheme PRO.Obf
allows one to obfuscate any (keyed) function fK : X → Y ; that is, PRO.Obf takes as input a key
K and outputs a circuit computing fK . Security, in an informal sense, says that if the function
table of fK , for a uniformly randomK, is pseudorandom (a condition that we will call truth-table
pseudorandom), then the obfuscation of fK hides all information about K. We formalize this in
several different ways (see Table 1 for a summary of definitions and applications):

• The Stronger Variants, PRO and dPRO: If the function table of fK is computationally indis-
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tinguishable from uniform in the presence of an auxiliary input auxK , that is,

{fK(x)}x∈X , auxK ≈c {ux : ux ← Y}x∈X , auxK (1.1)

over the random choice ofK, then the PRO definition requires that

PRO.Obf(fK), auxK ≈c PRO.Obf(fK′), auxK (1.2)

where K,K ′ are i.i.d. random keys and the computational indistinguishability holds over
the random coins used in PRO.Obf. That is, if the function family {fK}K∈K is truth-table
pseudorandom in the presence of the auxiliary input auxK , then the obfuscation of fK is
(computationally) independent of the auxiliary input.
Crucially, we require the entire function table of fK to be pseudorandom to adversaries who
can run in time polynomial in the size of the function table, a stronger notion of pseudoran-
domness than the standard one where a polynomial-time adversary can make queries to the
function table of fK .
We also consider a stronger version, named doubly pseudorandom obfuscation or dPRO,
which replaces condition 1.2 with the following stronger condition (the pre-condition 1.1
remains the same):

dPRO.Obf(fK), auxK ≈c Uℓ, auxK (1.3)

where Uℓ is a uniformly sampled bit-string of length ℓ = |PRO.Obf(fK)|. That is, we require
that the obfuscated program itself is also pseudorandom.
While both these notions in general suffer from a contrived impossibility (more discussion
on this later), they imply cryptographic primitives that we do not yet know how to construct,
even from iO.

• The Weaker Variant, iPRO: If the function table of fK is truth-table pseudorandom in the
presence of an auxiliary input auxK (that is, assuming precondition 1.1), for any two K,K ′

such that fK ≡ fK′ , the iPRO definition guarantees condition (1.2), namely that

iPRO.Obf(fK), auxK ≈c iPRO.Obf(fK′), auxK

Here, indistinguishability holds only for function pairs fK , fK′ which have the same function
table. Indeed, this definition can be seen both as a weakening of PRO (and dPRO) but also a
weakening of the standard notion of iO,which has no requirement on the pseudorandomness
of the function table of fK . In particular, an immediate observation is that if iO exists, so does
iPRO.

For a more detailed discussion of these notions, along with the comparison with existing ones, we
refer the reader to Section 1.4.
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`````````````̀Guarantee
Pre-condition

fK ≡ fK′
fK ≡ fK′ ,

and pseudorandom (1.1)
fK and fK′

are pseudorandom (1.1)

Obf(fK) ≈c Obf(fK′) (1.2) iO

iPRO
Applications:

Null-iO, Witness Encryption [VWW22]

dvSNARGs for UP [MPV24]

(+LWE) FHE (Section 7.1)

Succinct RE (Section 7.2)

(+Bilinear maps) iO (Section 8.3)

(+PROM [JLLW23]) iO (Section 8.4)

PRO
Applications:

PRO for TMs (Section 6.2)

Succinct WE (Section 7.3)

Obf(fK) ≈c Uℓ (1.3) impossible same as dPRO dPRO

Table 1: Notions of obfuscation in this paper, and their applications. The column represents the assump-
tion on the pre-condition, and the row represents the guarantee of the obfuscation. Notation: dvSNARG
represents a designated verifier succinct non-interactive argument; FHE is fully homomorphic encryption;
WE is witness encryption; RE is randomized encoding; and PROM is the pseudorandom oracle model from
[JLLW23]. The combination of notions in the bottom left cell (colored blue) is unachievable: indeed, an
obfuscation of fK cannot be pseudorandom if fK is an arbitrary function.

PseudorandomObfuscation: Constructions. Themain technical contribution of this work is the
construction of a dPRO scheme for all truth-table-pseudorandom functions (namely, ones whose
truth table is indistinguishable from random) assuming the sub-exponential hardness of the learn-
ingwith errors (LWE) problem [Reg05] and of the evasive LWEproblem [Wee22, Tsa22, VWW22].

Theorem 1.1 (Informal). If LWE and evasive LWE are sub-exponentially hard, then there exists a doubly
pseudorandom obfuscation (dPRO) scheme for all polynomial-time computable truth-table-pseudorandom
families.

We defer a discussion of these assumptions to Section 1.5, and focus here on the most significant
ideas in our construction. At a high-level, we follow the outline of Brakerski, Döttling, Garg and
Malavolta [BDGM20] to construct iO, but with several new ideas and techniques. In a nutshell,
our construction proceeds in three steps.

• Step 1: Exponentially-efficient dPRO.Our starting point is to construct an exponentially-efficient
doubly pseudorandom obfuscation scheme (xdPRO) where the only efficiency constraint is
that the size of the obfuscated circuit should be sublinear in the domain size of fK (Section 4).
This requirement is akin to how one weakens iO to XiO [LPST16]. Our construction is in-
spired by heuristic lattice-based obfuscation schemes [GP21, WW21, BDGM22], except that
here, we can prove its security based on LWE and evasive LWE.

• Step 2: Delegating Computation. In order to bootstrap xdPRO to dPRO (in the next step), we
will need to reduce the computation time of the xdPRO scheme by delegating its computa-
tion to the decoder. To do this, we construct (Section 5) a laconic function evaluation (LFE)
scheme [QWW18] that satisfies a notion of blindness. That is, provided that the output of the
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computation is pseudorandom, the ciphertext in the blind laconic FE scheme is computation-
ally indistinguishable from uniformly random bits. Our scheme is secure assuming only the
hardness of the LWE problem.

• Step 3: Bootstrapping. To obtain a full-fledged (d)PRO scheme, we finally apply a bootstrap-
ping theorem (Section 6), akin to the well-known transformations for iO [AJ15, BV15]. Cru-
cially, for the bootstrapping step to work (for constructing either dPRO or even the weaker
PRO), we need the underlying xPRO scheme to be doubly pseudorandom, i.e. it should be an
xdPRO scheme.

In addition, as a contribution of independent interest, we show that one can easily turn a (d)PRO
scheme for circuits into a (d)PRO scheme for Turingmachines, using standard cryptographic tech-
niques.

Pseudorandom Obfuscation: Applications. Our first observation is that many of the applica-
tions of iO already obfuscate pseudorandom functions. Thus, we can use known ideas from the
literature to build interesting cryptographic primitives from the weakest version of pseudorandom
obfuscation, namely iPRO (Section 7). For instance, we show how to construct fully-homomorphic
encryption [Gen09] (without any circular security assumption) and succinct randomized encod-
ings [BGL+15] from iPRO. Although these primitives are also known from iO, using iPRO yields
constructions from aweaker notion of obfuscation, and gives us constructions that are fully lattice-
based (and therefore plausibly post-quantum secure) [SW14]. (If one relies on the stronger notion
of PRO, the constructions have a simple security analysis without any puncturing argument.)

We pause to mention that our framework gives a construction of witness encryption and null-
IO from iPRO, generalizing the work of [VWW22, Tsa22]; and an adaptive designated verifier
SNARG for the complexity class UP, generalizing the work of [MPV24]. In both cases [VWW22,
Tsa22, MPV24], the authors based their constructions on LWE and evasive LWE, which we recover
via iPRO.

In addition, we show that the stronger notion of PRO implies the existence of a succinctwitness
encryption scheme [GGSW13], i.e., a scheme where the size of the ciphertext is independent of
the witness size. To the best of our knowledge, it is currently unknown how to construct such
a scheme from iO, because of the dependency of the obfuscated circuit on the size of the input.
PRO allows us to bypass this input-size barrier, and we view this as evidence that the security
guarantees offered by PRO may be stronger than those of iO. We provide more details on how we
achieve these applications in Section 1.2.

ANew Pathway Towards iO. As a contribution of independent interest, we show how iPRO can
be used to construct general-purpose iO (Section 8), thus obtaining new constructions of iO from
assumptions that were not known previously known to imply obfuscation. First, we show how to
combine iPRO with bilinear pairings in order to obtain iO.
Theorem1.2 (Informal). If the LWE, the evasive LWE, the SXDH, and theDLIN assumptions hold against
sub-exponential distinguishers, then there exists indistinguishability obfuscation for all polynomial-time
computable function families.

Comparedwith known construction of iO from standard assumptions [JLS21, JLS22], the above
construction does not rely on the hardness of coding-related problems (such as the learning parity
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with noise problem), nor it requires the existence of low-complexity pseudorandom generators
(implementable by constant-depth circuits). The flip side is that we require the hardness of the
LWE and the evasive LWE problem, which was not needed by prior approaches.

Finally, we present an entirely lattice-based construction of iO, with security in the pseudoran-
dom oracle model (PROM) [JLLW23]. The PROM is a recently introduced idealized model that
allows one to reason formally about the interplay between random oracles and obfuscation. This
yields the first construction of iO that is entirely based on lattices with a proof of security, albeit in
an idealized model and with strong cryptographic assumptions.

Theorem 1.3 (Informal). If the LWE and the evasive LWE assumptions hold against sub-exponential
distinguishers, then there exists indistinguishability obfuscation for all polynomial-time computable function
families in the PROM.

Besides providing new candidate constructions of iO, our transformations elucidate the relation
between iO and iPRO, and the kind of cryptographic structure that is needed to bridge between
these two primitives.

Impossibility of PRO. Weobserve that there is a (contrived) truth-table pseudorandom function
familyF = {fK}K∈K and an auxiliary input function aux : K → {0, 1}∗ such thatF cannot be PRO-
obfuscated. The idea, drawing from [GK05, BCC+14, VWW22], is to let the auxiliary input function
be awitness encryption for theNP statement xwhich is (a large part of) the truth table of fK whose
witness w is a small program that computes fK . The pre-condition in the definition of PRO is true
via its pseudorandomness and the semantic security of the witness encryption scheme. However,
one can easily break the PRO guarantee using the obfuscated program as a witness to decrypt the
auxiliary input. This is a counterexample not only to PRO, but also xPRO, the slightly compressing
version. With a little more work, we can extend this to the setting where there is no auxiliary
input: By including the auxiliary input in the truth table itself, and by ensuring that the witness
encryption ciphertext (in the no case) is pseudorandom. For a more in-depth discussion on the
implications of this result, we refer the reader to Section 1.4, and for the details of the impossibility
result, see Section 9.

Overview of the rest of this section. In the rest of this section, we will first give an overview
of the applications in Section 1.2 and Section 1.3. We then discuss our notions of pseudorandom
obfuscation in the context of existing notions of obfuscations in Section 1.4. Finally, we discuss the
evasive LWE assumption in Section 1.5 and outline our construction of (d)PRO in Section 1.6.

1.2 Technical Overview I: Applications

We outline some of the applications of our PRO scheme; for details, we refer the reader to Section 7.
In fact, for all but one of our applications, the weaker notion of iPRO will suffice.

Fully homomorphic encryption. As a first application, we consider the problem of turning a
leveled homomorphic encryption scheme into a fully homomorphic one. This precise problem
was already considered in [CLTV15] and in fact the same idea works here: Simply obfuscate a
circuit that on input an index i ∈ {1, . . . , d}, returns a key that allows one to evaluate up to depth
d. Setting d = 2ω(log(λ)) allows one to evaluate circuits of any polynomial depth, without affecting
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the efficiency of the construction. The only subtlety here is that we need to select a base leveled
homomorphic encryption scheme with pseudorandom keys and ciphertexts (such as [BV11, GSW13])
to be able to appeal to the security of iPRO.

Succinct randomized encodings. Wecan similarly construct succinct randomized encodings [BGL+15]
by obfuscating the program that generates a garbled circuit locally. That is, given the description of
a gate i, the program produces the garbled version of the gate. To make this template go through
with PRO, we need two additional ingredients: (a) ensure that the output of the garbled circuit is
pseudorandom, which we ensure by garbling a circuit that computes not C(x) but rather C(x)⊕ r
for a random r, and publishing the garbled circuit together with r; and (b) ensure that the garbled
circuit itself is random, which we ensure by appealing to the notion of blind garbling [BLSV18].

Making this template go through with the weaker notion of iPRO requires a puncturing argu-
ment and follows closely the machinery of [BGL+15].1

Succinct witness encryption. Next, we discuss how to construct a succinct witness encryption
scheme [GGSW13]. This is the only application we discuss that uses the full power of PRO. In
particular, this application is a case-study in how to overcome the informal “input-size barrier”
faced by iO-based constructions; for more on this barrier, see the work of Jain and Jin [JJ22].

As a first step, assume we have a pseudorandom witness encryption WE scheme with long
ciphertexts of length polynomial in the statement andwitness length. In such awitness encryption
scheme, the ciphertext for any x /∈ L and any message m is pseudorandom. To turn this into a
succinct WE scheme, think of the witness encryption ciphertext as the truth-table of a function
(with the NP statement x and the message bit b hard-coded) which, on input i, outputs the i-th bit
of the ciphertext. Now, apply PRO for TMs (which exists assuming PRO for circuits) and let the
PRO obfuscation be the succinctWE ciphertext. The size of the ciphertext only depends on the size
of the Turing machine description of the underlying program, which is independent of the witness
size (although it does depend on the statement size).

A pseudorandom witness encryption can be constructed in a few different ways:

• The scheme of [VWW22] constructs a pseudorandom witness encryption scheme directly
from evasive LWE.

• Theworks of [WZ17,GKW17] construct compute-and-compare obfuscation from LWE, which
allows one to generically upgrade a witness encryption scheme into one with pseudorandom
ciphertexts. Therefore, using either iO or even iPRO along with LWE, one can construct a
pseudorandom witness encryption scheme.

1.3 Technical Overview II: From iPRO to iO

Finally, we show how iPRO can be used generically to achieve the regular notion of iO, if one is
willing to rely on additional computational assumptions.

To get an intuitive understanding of the idea behind our transformation, it is useful to pretend
that we already have a general-purpose iO and see how to combine it with a iPRO in order to get an
XiO. We then rely on known bootstrapping theorems [LPST16] to obtain another general-purpose

1The version we present only works for small-space computations, although we suspect this restriction can be re-
moved using similar techniques to those in [KLW15, AL18, GS18].
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iO. This is of course a vacuous statement but, later in the overview, we will discuss how to relax
the initial assumptions without affecting the conclusion.

To obfuscate a circuit C, we sample n PRF keys Ki and partition the truth table of C into n
blocks. For the i-th block, we compute an iPRO-obfuscation C̃i of the circuit C∗i (x) = C(x) ⊕
PRF(Ki, x), restricted to the x’s in the i-th input block. Additionally, we compute an iO-obfuscation
F̃ of the function F (i, x) = PRF(Ki, x). To evaluate the obfuscated circuit on some input x belong-
ing to the i-th block, one can compute:

C̃i(x)⊕ F̃ (i, x) = C(x)⊕ PRF(Ki, x)⊕ PRF(Ki, x) = C(x).

To showwhy the scheme is secure, we beginwith an obfuscation of a circuitC, whichwe gradually
change to an obfuscation of a functionally-equivalent C ′, in a series of hybrid distributions. In the
i-th hybrid, we program the obfuscated circuit F̃ to hardwire the values {PRF(Ki, x)}x for all x in
the i-th block. Clearly, the functionality of the circuit is preserved, so this modification is compu-
tationally indistinguishable, by the security of iO. Let us nowmake an important observation: The
value of PRF(Ki, x) can alternatively be computed as

C̃i(x)⊕ C(x) = PRF(Ki, x)

where C̃i(x) is publicly available to the distinguisher. This effectively transfers the dependency on
the circuit C from C̃i(x) to F̃ . In other words, the function table {C̃i(x)}x of the i-th input block is
now pseudorandom, since any other item in the view of the distinguisher can be computed from
{C̃i(x)}x and the truth-table {Ci(x)}x (which is public information), and the output of the PRF
masks the real output of the circuit.

This means that we can now appeal to the security of iPRO, in order to switch the obfuscated
function from C(x) ⊕ PRF(Ki, x) to C ′(x) ⊕ PRF(Ki, x), which are also functionally equivalent.
Undoing the previous change and continuing this way for all input blocks, yields the desired im-
plication. As a note for the advanced reader, we remark that this puncturing strategy requires us
to set the size of F̃ to be proportional to the size of an input block, but this will be amortized by
taking n to be large enough, thus allowing us to achieve XiO.

To tie the loose ends, we have to show how to instantiate the iO-obfuscation for F̃ without
resorting to general purpose iO. Our observation is that it suffices to (i) build an obfuscation for
a single (arbitrary) PRF and that (ii) even an iO with sublinear compactness (in the truth-table)
suffices, since we are constructing XiO. We propose two different instantiations.

• First, note that a random oracle is already an obfuscation of a pseudorandom function! There-
fore, if we are willing to rely on idealized models of security, iPRO alone already suffices to
construct iO. To prove this, we rely on the pseudorandom oracle model [JLLW23], which
allows one to formally prove theorems about obfuscations of idealized functions.

• Our second instantiation is in the standard model, and it relies on the pseudorandomness of
the (small domain) PRF

PRF(K, (i, j)) = gxiyj

where the PRF key K is the collection of all xi and yj . By the decisional Diffie-Hellman
assumption,2 we have that the two distributions

{gxiyj} ≈c {gzi,j : zi,j ← Zp}
2Technically we will rely on the hardness of the Diffie-Hellman problem over asymmetric bilinear groups, which is

known as the SXDH assumption.
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are computationally indistinguishable. The reason why we use such a PRF, is that existing
constructions of functional encryption schemes for quadratic functions [Wee20] can be seen
(up to a rearranging of the algorithms) as XiO-obfuscation for this particular function. Since
the scheme from [Wee20] can be proven secure assuming the hardness of the DLIN assump-
tion on bilinear groups, we obtain the final implication that iPRO plus the two computational
assumptions mentioned above (namely, SXDH and DLIN on bilinear groups) suffice to con-
struct iO.

ANewPerspective and aChallenge for the Future. Weview our transformation from iPRO to iO
above as a generalization of the FHE with hints approach of [BDGM20]. The BDGM construction
of iO involves two steps: the first step is to produce encrypted outputs of C; in [BDGM20], this is
achieved by releasing the FHE encryption of C. The second step is to produce decryption hints.
This is the hard part since we need to hide both the secret key and the randomness.

Our iPRO to iO transformation cleanly separates out these two tasks:

• The iPRO is responsible for generating encrypted outputs of C. Importantly, we do not need
to use FHE for encryption; rather, a specific PRF-based encryption scheme is sufficient.

• The iO for (small-domain) PRFs is responsible for decryption hints.

The use of bilinear maps is only in the second step, a clearly defined goal. This sets up a clear chal-
lenge for future, namely, building such scheme without using functional encryption for quadratic
functions, which itself seems hard to build from LWE.

1.4 Discussion on Pseudorandom Obfuscation

We discuss in more detail the different variants of PRO and how the notion compares with existing
notions of obfuscation.

On the Meaning of the Impossibility Result for PRO. In this work, we consider three variants
of the notion of pseudorandom obfuscation — dPRO, PRO and iPRO. Our main theorem shows
that the former variant exists for all pseudorandom functions, under the evasive LWE assumption.
However, in Section 9 we also show that there are contrived truth-table-pseudorandom function
family for which PRO does not exist. In light of this, we advise maximum caution in the use of
(d)PRO to build new cryptography.

Backtracking, we see that the fact that we have just proven the existence of a cryptographic
primitive that is also impossible, is due to the fact that we started from a computational assumption
that cannot be true. It was already known that evasive LWE cannot hold in general, although
the variant that we use in this work is even weaker than that used in prior work [Tsa22, VWW22,
MPV24]. So, a pessimistic interpretation of our work is the discovery of a new counterexample for
a weaker variant of evasive LWE.We refer the reader to Section 1.5 for a more thorough discussion
on evasive LWE, whereas in what follows we focus on notion of PRO itself.

Our interpretation of our collection of results is much more optimistic, for the following rea-
sons:

First, we remark that the weaker definition of iPRO, where security is guaranteed for pseudo-
random functions with identical truth tables, does not suffer from this impossibility and in fact it is
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weaker than the standard notion of iO. Furthermore, barring a single exception (succinct witness
encryption), iPRO suffices to obtain all applications presented in this work.

Secondly, while PRO for general functionalities is impossible to achieve, it is entirely plausible
that restricting the attention to specific classes of functions can yield a feasible notion. For instance,
obfuscation of null functions exists assuming LWE, as shown in [WZ17, GKW17], and we conjec-
ture here that PRO for the class of puncturable pseudorandom functions is also not subject to our
impossibility result.

Thirdly, from PRO, we construct succinct witness encryption which is currently not known
to exist under falsifiable computational assumptions.3 Nor do existing impossibility results rule
out this notion. Loosely speaking, known impossibility results rely on incompressibility arguments,
where one ultimately reaches the conclusion that an obfuscation can compress random strings, a
contradiction. However, in order to set this up, one needs the ability to include in the output of
the program some pseudorandom bitstrings. The interface of witness encryption offers no such
option, making this approach not viable. Overall, we have no evidence against the existence of
succinct witness encryption as a primitive. Thus, we view our work as a heuristic first step towards
understanding the feasibility of succinct witness encryption which is currently outside of the reach
of our techniques. This is not unlike proofs in the random oracle or in the generic group model,
two well-known heuristic models in cryptography, that have proven very robust and successful in
advancing our understanding.

Finally, in addition to the quest for new cryptographic primitives, we argue that PRO may be
useful also in the study of obfuscation on its own. In fact, our construction of PRO is based entirely
on lattice-based techniques, and has a proof of security against evasive LWE and the LWE assump-
tions. On the other hand, known iO constructions from well-founded assumptions [JLS21, JLS22]
rely on different assumptions, that are insecure against quantum algorithms. Thus, our PRO con-
struction is, at present, the only candidate post-quantum construction of obfuscation for a large
class of functions with a proof of security against a popular (although heuristic) computational
assumption. (The one exception is compute-and-compare obfuscation [WZ17, GKW17] which ob-
fuscates a much more restricted class of functions, similar in spirit to null functions; see below for
a more detailed discussion.) Given the similarity of our construction with existing lattice-based iO
candidates [GP21, WW21, BDGM22], we optimistically view our PRO scheme as evidence of the
existence of post-quantum iO.

PRO vs iO. The notion of PRO is both stronger and weaker than iO (and hence incompara-
ble). First of all, it is clear that the security of iO applies to a wider class of functions (in fact,
all polynomially-computable ones) and it is a worst case guarantee, that is, it applies to any pair of
functionally equivalent circuits. On the other hand, PRO only offers security for functions that are
computationally indistinguishable from uniform, and it is an average case guarantee, since security
only holds over the random choice of the key K. However, when the security offered by PRO ap-
plies, it appears to be slightly stronger than that of iO. In particular, it gives a security notion that
is akin to ideal obfuscation.

In fact, the security guarantee provided by iO, namely indistinguishable obfuscations for func-
tionally equivalent programs, turned out to be a bit cumbersome, and it took considerable effort to
harness the full potential of iO (thirteen years from [BGI+01] to [SW14]). To get some evidence

3Constructions are known via differing-inputs (aka extractability) obfuscation or extractable witness encryp-
tion [BCP14, ABG+13]
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for this claim, recall that the typical iO proof proceeds by puncturing out bad inputs one by one,
each time making sure that the functionality of the program is unchanged, in order to appeal to
the indistinguishability guarantee offered by iO. On the other hand, no such arguments are needed
with PRO: if one can establish that the function table of the obfuscated program is pseudorandom,
then security allows one to replace the obfuscated circuit in one shot. Note that this step does not
preserve the functionality of the obfuscated program which, if we use a dPRO scheme, is in fact
substituted by something maximally non-functional, i.e. truly random bits. The adversary cannot
tell that functionality has been removed, and this is only possible since PRO applies only to pseu-
dorandom function families. This security argument is typically simpler and it allows for better
parameters, which in turn enables applications not known from iO.

PRO vs. Probabilistic iO. The notion of probabilistic iO (pIO) [CLTV15] gives us a way to ob-
fuscate a probabilistic circuitC(x; r) and requires that the obfuscations of two probabilistic circuits
C(x; r) and D(x; r) that generate indistinguishable distributions for all x are themselves indistin-
guishable. [CLTV15] show a construction of (one of their variants of) pIO from IO. Their construc-
tion obfuscates the (deterministic) circuit C ′K(x) = C(K; prfK(x)), i.e. it generates the random
coins for each input x by applying a pseudorandom function prf to x. Now, the two circuits C ′K
and D′K have indistinguishable, but not necessarily pseudorandom, truth tables. Our construction of
PRO, on the other hand, crucially requires the truth table to be pseudorandom; thus, we view PRO
as a weakening of pIO.

PRO vs. Compute-and-Compare Obfuscation. Yet another average-case notion of obfuscation
where the function truth-table is required to have entropy is the notion of compute-and-compare
obfuscation (also called lockable obfuscation) [WZ17, GKW17]. In lockable obfuscation corre-
sponding to a function f : {0, 1}n → {0, 1}m, one obfuscates a program Πf,y(x) = 1 if f(x) = y
and 0 otherwise. Importantly, the string y ∈ {0, 1}m is required to have sufficient pseudo-entropy.
[WZ17, GKW17] construct compute-and-compare (CC) obfuscation from the hardness of LWE.

In comparison to PRO, the truth-table in CC obfuscation is definitely not pseudorandom, but
it does have structured entropy that allows constructions from LWE.

1.5 The Computational Assumptions

The LWE assumption [Reg05] is, at this point, the standard assumption in lattice-based cryptogra-
phy, sowe do not discuss it any further here and just refer to Section 2.3 for details. In the following,
we assume typical LWE parameters, i.e., we work over a ring Zq and assume for convenience and
simplicity that q is a power of 2, whereas error terms are drawn from discrete Gaussian distribu-
tions with suitable parameters. The evasive LWE problem is a recent but popular assumption intro-
duced in the context of broadcast encryption [Wee22] and witness encryption [Tsa22, VWW22];
we use a variant from the recent work of Brzuska, Unal and Woo [BUW24]. Let P ∈ Zm′×n

q be a
uniformly randommatrix. Fix some efficiently samplable distribution (S, aux), possibly depending
onP, where S ∈ Zn×ℓ

q is a matrix and aux is a bit-string. The evasive LWE assumption states that if
(B,P,BS+E,PS+E′, aux) ≈c (B,P,U,U′, aux)

where (B,U,U′) are uniformly sampled matrices with B ∈ Zm×n
q and (E,E′) are Gaussian error

matrices, then
(B,P,BS+E,B−1(P), aux) ≈c (B,P,U,B−1(P), aux)
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where B−1(P) is a matrix with small entries such that B−1(P) · B = P (mod q). The design
philosophy behind this assumption is that the pre-condition appears to rule out known attack
strategies from the literature, such as the well-known zeroizing attacks. In other words, the as-
sumption postulates that, given a matrix D := B−1(P) which is a “Gaussian pre-image” of a ran-
dom matrix P under B, the only thing that the distinguisher can do with LWE samples BS + E
is expand them into LWE “pseudo-samples” D · (BS + E) = PS + DE. Note that the auxil-
iary information aux may depend on P, whereas B is chosen after aux4. We refer the reader to
[Wee22, Tsa22, VWW22] for a more thorough discussion, and we mention here that the version
that we define in Section 2.4 and use is seemingly weaker than the variant proposed in the context
of witness encryption [Tsa22, VWW22], in that the matrix P is sampled uniformly and provided
to the sampler as an input, whereas in their version the matrixP is sampled jointly with S and aux.

We nevertheless caution the reader that evasive LWE is a non-falsifiable assumption (borrow-
ing terminology from [Nao03]) and that counterexamples are known [VWW22]. Somewhat in-
terestingly though, known counterexamples from [VWW22] do not directly apply to the variant
that we consider in this work, since the matrix P here is sampled without a trapdoor. Even more
recent attacks [BUW24] do not apply to our variant since the matrices (P,B) are given to the dis-
tinguisher both in the pre- and post-condition. This roughly corresponds to the binding variant of
evasive LWE, which is conjectured to hold in [BUW24]. With that being said, we do not suggest
that our version of evasive LWE is sound (in fact we prove the exact opposite) and therefore the
usual caveats of evasive LWE also apply to our work.

Overall, evasive LWEwas motivated as a bridge between the standard LWE assumption and iO,
and was used to prove the security of lattice-based constructions of broadcast encryption [Wee22],
witness encryption [Tsa22, VWW22], multi-authority [WWW22] and unbounded-depth [HLL23]
attribute-based encryption, all tools that we can construct from iO but not from LWE. In this work,
we show that evasive LWE implies cryptography that seems out of reach even for iO, in our current
understanding.

1.6 Technical Overview III: Construction of dPRO

As discussed above, in this work we pursue the compactness approach to obfuscation, along the
lines of [AJ15, BV15, LPST16]. Roughly speaking, this approach consists of three main steps:

• Achieving non-trivial compactness: We construct a obfuscation scheme whose only effect is
to slightly reduce the size of the obfuscated program, compared to the trivial obfuscation
that just returns the function table.

• Delegation: We then add a mechanism to delegate computation, making the runtime of the
obfuscator slightly sublinear, compared to the trivial obfuscation that evaluates the program
on all inputs.

• Bootstrapping: Once we have achieved the desired efficiency, we can bootstrap our construc-
tion to a full-fledged obfuscation.

4However, note that thematrixB can be easily recovered fromD andP via basic linear algebra for typical parameters,
i.e. when P is wider thanB.
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We describe these steps in more detail next. In the following, we will assume familiarity with
basic lattice techniques such as trapdoor sampling, gadget matrices and binary decomposition.
For details on these techniques, the reader is referred to Section 2.

Compactness from Homomorphic Encryption. Our starting point to achieve initial compact-
ness is the candidate indistinguishability obfuscator of Brakerski et al. [BDGM20] (see also [GP21,
WW21, BDGM22]). A circuit C : {1, . . . , κ} → {0, 1}k is obfuscated by encrypting it under a
suitable (leveled) FHE scheme (for concreteness, we think of the GSW scheme [GSW13]). Given
an encryption c = Encsk(C) of C, the evaluator can homomorphically expand it into a ciphertext
vector encrypting the entire truth table of C, i.e., we obtain

(c1, . . . , cκ) where ci = Encsk(C(i)).

Note now that revealing the corresponding secret key sk to the evaluator is not an option, as it
would allow him to also decrypt Enc(C). Furthermore, revealing the ciphertext randomnesses of
(c1, . . . , cκ) is also not an option, as it is large in the sense that it scales with the size of the truth
table of C and would furthermore also reveal information about C.

The critical idea of [BDGM20] is that we can recrypt the ciphertext vector (c1, . . . , cκ) into an
encryption scheme which has a succinct randomness. This recryption is facilitated by the fact that
approximate decryption for GSW is a linear function (of the secret key). Hence, by providing
an encryption of sk under a suitable linearly homomorphic encryption scheme, we can recrypt
(c1, . . . , cκ) into a batch-ciphertextAwhich can be “opened” by revealing a succinct random string.
In [BDGM20], the choice for this linearly homomorphic encryption scheme was the Damgård-
Jurik [DJ01] cryptosystem, whereas in [BDGM22, GP21, WW21] these were schemes following
the dual-Regev framework [GPV08]. In the latter, the secret key is a matrix R ∈ Zn×km

q , whereas
an encryption of a message M ∈ Zk×kn

q consists of a uniformly random matrix P ∈ Zk×n
q and a

matrixA = PR+ Ē+M⊗ g⊤ ∈ Zk×km
q (where g⊤ = (1, 2, 4, . . . , 2log(q)) is a gadget vector). Here,

m = n log q. For a linear function given by a matrix F ∈ Zkn×κ
q , we can obtain an encryption of

M · F by computing

A ·G−1(F) = P ·R ·G−1(F) + ĒG−1(F) +MF ≈ P ·R ·G−1(F) +MF.

The important observation is that, for a suitable choice of parameters, the size of the randomness
RG−1(F) ∈ Zn×κm

q is substantially smaller than the size of the encrypted messageMF. Hence, by
revealingRG−1(F) we can allow an evaluator to learnMF.

In our setting, the encrypted messageM is of the form I⊗ sk⊤, where sk is the secret key of the
GSW scheme, whereas the linear function F is the vectorization of the (approximate) decryption
function of GSW with the ciphertexts (c1, . . . , cκ) hardwired, i.e.

(I⊗ sk⊤) · F ≈ (C(1), . . . , C(κ)) ∈ Zk×κ
q .

First observe that the asymptotics work in our favor now: For κ = k2, the complete function table
(C(1), . . . , C(κ)) is of size ∼ k × κ = k3, whereas both P and RG−1(F) are of size ≲ k2, so we do
achieve compression, as we can discount the size of c = Enc(C).

However this presentation is too simplistic, and in fact a closer look at the above scheme reveals
critical security issues: The term RG−1(F) together with the matrix F reveal R and therefore sk

15



entirely aswe can recoverR by solving a linear systemof equations. To address this issue, all above-
mentioned work [BDGM20, BDGM22, GP21, WW21] resorted to some mechanism to generate a
magic encryption of 0, that is a ciphertextC′ of the formC′ = PS+E′ ∈ Zk×κ

q . Given such aC′, the
obfuscator can provide H = RG−1(F) + S to the evaluator, who can recover (C(1), . . . , C(κ)) by
computing

A ·G−1(F) +C′ −PH ≈ (C(1), . . . , C(κ)).

The issue with this approach though is that the ciphertext C′ is of size ∼ k × κ, and thus no
compression takes place if C′ was included in the obfuscation.

The aforementioned works [BDGM20, BDGM22, GP21, WW21] resorted to new ad-hoc “circu-
larity” assumptions in order to generate such ciphertextsC′ that are simultaneously compressible
and capable of performing the above rerandomization task. While none of these schemes were
broken, some of the underlying assumptions turned out to be invalid [HJL21, JLLS23].

Anchoring Compactness in Evasive LWE. In this work, we adopt a different strategy for the case
of circuits C that compute pseudorandom functions, by relying on the evasive LWE assumption.

We will assume that C is a pseudorandom function with range Zk
q , and we will not concern

ourselves with noise that is added on the low-order bits of the outputs of C. This is a valid sim-
plification, as we can always encode the PRF output we are interested in into the most-significant
bit of C, while computing all lower order bits using a different PRF with a fresh key. Furthermore,
note that in the setting of pseudorandom obfuscation we do not try to hide the circuit C, but just a
key K5. Hence, in the following we will write Enc(K) instead of Enc(C).

In a nutshell, we compress the C′ ciphertext via two additional components: A short matrix
D ∈ Zk×m, and a matrix C = BS + E ∈ Zm×κm

q , where B ← Zm×n
q is chosen uniformly random

andD is such thatD ·B = P. First note thatD is of size∼ k andC of size∼ κ, hence together their
size is sublinear in k ·κ. Now note thatD andC together allow us to achieve a similar functionality
as required, since we can compute

D ·C = DBS+DE = PS+DE,

where the term DE is short as both D and E are short. The obvious question at this point is, why
should providing C′ via D and C yield a secure scheme, which in our case is a pseudorandom
obfuscator. In otherwords, wewant to argue that the tuple (Enc(K),P,A,D,C) is pseudorandom.

A first issue here is that the matrix D follows a (component-wise) discrete Gaussian distribu-
tion, hence it is easily distinguishable from uniform. To address this issue, we will not provide the
matrix D itself, but only the random coins used to sample it. However, if D was sampled using
a conventional Gaussian sampler, we would be in trouble if we had to provide random coins that
explain a matrix D, which we did not sample ourselves. We overcome this issue by relying on a
primitive we call invertible Gaussian sampler: An invertible sampler comes with an efficient proce-
dure which, given a sample t of the distribution, generates coins r such that running the sampler
using coins r outputs t. For narrow discrete Gaussians, i.e., having polynomial variance, we can
immediately obtain an invertible sampler via classical inverse transform sampling (see e.g. [Ros98]).
For wide discrete Gaussians, i.e., having super-polynomial variance, [AWY20] shows an efficient
inverter for the sampler in [GPV08].

5In case C is a universal circuit, the keyK actually encodes a circuit, hence in general encrypting keys and circuits is
equivalent.
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We can now argue that (Enc(K),P,A,H,D,C) is pseudorandom. In order to appeal to the
evasive LWE assumption, we will include Enc(K),P,A,H in auxiliary information aux. To keep
this outline concise we will not consider additional auxiliary information relating to the keyK, as
it does not introduce additional challenges. Assume for now that the precondition of evasive LWE
holds, i.e., that

(B,P,BS+E,PS+E′, aux) ≈c (B,P,U,U′, aux).

Evasive LWE then postulates that

(B,P,BS+E,D, aux) ≈c (B,P,U,D, aux),

in other words
(B,P,Enc(K),A,H,D,C) ≈c (B,P,Enc(K),A,H,D,U),

i.e., we can replaceCwith a uniformly randommatrixU. We will get back to the task of establish-
ing the evasive LWE precondition later, and for now just assume that it holds.

At this point, instead of computing H via H = S +RG−1(F) we can just choose H uniformly
at random, as S is chosen uniformly random and does not appear anywhere else anymore. In
the next hybrid step, we want to replace A = PR + Ē + I ⊗ sk⊤ ⊗ g⊤ (which encrypts the GSW
secret key sk) with a uniformly random matrix. We cannot immediately use the LWE assumption
as the matrix D is correlated with P via DB = P. However, instead of first choosing D and B
and setting P = DB, we can choose P uniformly at random and generate a (statistically close
to) uniform matrix B together with a lattice trapdoor td [GPV08, MP12]. The lattice trapdoor td
enables us to sampleD from a discrete gaussian under the constraint thatD ·B = P.

Before we proceed, recall that we need to represent D via the random coins used to sample
it. However, now D is sampled via an entirely different process! Thus we would be indeed be
stuck ifDwas sampled by a plain Gaussian sampler. However, asDwas sampled via an invertible
Gaussian sampler, we can use the inverse sampler to simulate random coins r which explain the
matrixD as an output of this sampler. Hence, we can now replaceA = PR+Ē+I⊗sk⊤⊗g⊤ with
a uniformly randommatrix via a routine reduction to LWE. Finally, now that we have removed the
encryption of the GSW secret key sk, we can appeal to the ciphertext and key pseudorandomness
of GSW to replace Enc(K) with a uniformly random string.

Establishing the Evasive-LWE Precondition. The more involved step of this proof is to establish
the evasive LWE precondition. That is, we have to show that

(B,P,BS+E,PS+E′, aux) ≈c (B,P,U,U′, aux),

where aux = (Enc(K),P,A,H) with A = PR+ Ē+ I⊗ sk⊤ ⊗ g⊤ and H = S+RG−1(F). Let us
defineC = BS+E andC′ = PS+E′. The first step is just a syntactic one, we chooseH uniformly
at random and set S = H−RG−1(F). Hence, we compute C and C′ via

C = BH−BRG−1(F) +E and C′ = PH−PRG−1(F) +E′.

Furthermore, we introduce a new noise term E∗ and set

C = BH− (BR+E∗)G−1(F) +E∗G−1(F) +E.
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By introducing another variableU∗ = BR+E∗ we can write C as

C = BH−U∗G−1(F) +E∗G−1(F) +E.

Similarly, we rewrite C′ as

C′ = PH−AG−1(F)− (C(K, 1), . . . , C(K,κ)) + ĒG−1(F)− Ẽ+E′,

wherewehaveused thatPR = A−Ē−I⊗sk⊤⊗g⊤ and (I⊗sk⊤⊗g⊤)·G−1(F) = (C(K, 1), . . . , C(K,κ))+
Ẽ (by the approximate linear decryption property of GSW). By choosing the gaussian parameter
of E and E′ sufficiently large, we can appeal to a standard drowning argument to argue that E
drowns E∗G−1(F) and E′ drowns ĒG−1(F)− Ẽ. This hybrid replacement allow us to computeC
and C′ via

C = BH−U∗G−1(F) +E and
C′ = PH−AG−1(F)− (C(K, 1), . . . , C(K,κ)) +E′.

That is, now we just needU∗ to computeC, but notR and E∗. Likewise, we can computeC′ from
A (as well asK and additional public information), but without knowledge ofR and Ē.

Realizing that only U∗ = BR + E∗ and A = PR + Ē + I ⊗ sk⊤ ⊗ g⊤ depend on R as well
as E∗ and Ē respectively, we are set to make both U∗ and A uniform via a routine reduction to
LWE. Subsequently, since A does not depend on the GSW secret key sk anymore, we can replace
c = Enc(K) with c = Enc(0) using the security of GSW.

Notice that we have not made use of fact the C computes a pseudorandom function so far. In
the next step we will make use of this property, and replace the matrix (C(K, 1), . . . , C(K,κ)) by
uniformly random values, hence we can just choose the matrix C′ uniformly at random (as no
other term depends onK anymore).

To establish the evasive LWE precondition we still have to argue that the matrix C is pseudo-
random, and this turns out to be somewhat tricky. The matrixU∗ is distributed uniformly random
and appears nowhere else. However, a simple dimensional analysis reveals that U∗ ∈ Zm×km

q has
insufficient entropy to fully randomize C ∈ Zm×κ

q , as κ ≈ k2 ≫ km. Hence we have to rely on
pseudorandomness for this step, and it is tempting to once again rely on the LWE assumption to
argue that −U∗G−1(F) + E is pseudorandom. However, this is not readily possible as the matrix
F is not distributed uniformly random, and in fact it is the result of homomorphically expanding
the ciphertext c. Fortunately, a small modification of our scheme will help us make this argument
go through: We will just add n uniformly random rows to the matrix F. This will make enough
room to embed an LWE challenge into F and C. Specifically, let

F′ =

(
F
V

)
for a uniformly random matrixV.

To preserve correctness of our scheme we also need to modify how the matrix A is computed in
the scheme, which we set to

A = PR+ Ē+ (I,0)⊗ sk⊤ ⊗ g⊤,

where the additional column 0 in (I,0) ensures that any terms resulting from V are cancelled
out. Furthermore, we include the matrix V ∈ Zn×κ

q into the obfuscation, which does not violate
compactness as it is of size κ · poly(λ) = k2 · poly(λ)≪ k3.
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With this modification, we can now argue that

C = BH−U∗G−1(F′) +E

is pseudorandom under the LWE assumption. First, sinceU∗ is distributed uniformly random we
can equivalently compute it as U∗ = Û − (0,T ·G) for uniformly random matrices Û and T and
an all-zero matrix 0 of appropriate size. Hence it holds that

C = BH− ÛG−1(F′) + (0,T ·G) ·G−1(F′) +E

= BH− ÛG−1(F′) + 0 ·G−1(F) +T ·V +E

= BH− ÛG−1(F′) +TV +E.

Hence, again via a standard reduction to LWE we can replace TV + E and therefore C by a uni-
formly random matrix.

All that remains now to finish the proof for the evasive LWE precondition is to make c, A and
Hwell-formed again, i.e., we replace c = Enc(0) by c = Enc(K), we setA = PR+ Ē+I⊗ sk⊤⊗g⊤,
and finally we setH = S+RG−1(F). Hence we have established that

(B,P,BS+E,PS+E′, aux) ≈c (B,P,C,C′, aux),

where C and C′ are chosen uniformly random and aux = (Enc(K),P,A,H) with A = PR+ Ē+
I⊗sk⊤⊗g⊤ andH = S+RG−1(F). This concludes the proof sketch for our exponentially efficient
pseudorandom obfuscator.

Output-Compressing Laconic Function Evaluation. Thus, we are now equipped with an xPRO
scheme which enables us to compress pseudorandom objects. The next step is to delegate the bulk
of the computation to the evaluator, in order to achieve a bootstrappable construction [LPST16]
(see also [BDGM22]). A sensible primitive for this task is an output-compressing laconic function
evaluation (LFE) scheme [QWW18]. In a nutshell, this primitive allows an encrypter, who has an
input x and a hash value h of a circuit C, to compute an encryption of c = Enc(h, x) from which a
decrypter, who has the circuit C, can compute C(x) but, critically, learns nothing else about x.

In terms of efficiency, the crucial feature of LFE is that both the encryption time and the cipher-
text size are sublinear (and ideally independent) of the size of the circuit C. In the LWE-based
construction of [QWW18] both the encryption time and ciphertext size depend on the depth d of
the circuit C, as well as its input and output size. However, this is where we can rely on xPRO
to reduce the dependency on the output size: Instead of outputting the LFE ciphertext, we return
an xPRO obfuscation of the circuit that computes the ciphertext. This way we combine the dele-
gation properties of LFE, with the compression properties of xPRO. Unfortunately, we cannot yet
prove the security of this combined scheme. So far, we have no guarantee that the LFE cipher-
text c = Enc(h,K) looks pseudorandom given the circuit C, and therefore we cannot appeal to the
pseudorandomness of PRO.

Blind Laconic Function Evaluation. To address this issue we introduce an LFE scheme with a
stronger security notion, inspired by the notion of blind garbled circuits of [BLSV18]. We say that
an LFE scheme is blind, if for any pseudorandom C(K) (for a randomly sampledK) the ciphertext
c = Enc(h,K) is also pseudorandom even given the circuit C, the hash h, and potentially some
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additional auxiliary information. In other words, blindness means that the LFE scheme preserves
pseudorandomness, which is precisely the property that we need for our transformation above.

To keep things simple, in this overviewwewill actually focus on the weaker notion of attribute-
based LFE (AB-LFE). AB-LFE has a similar syntax to LFE, but with a few small differences:

• The circuit C outputs just a single bit.

• The encrypter provides an input x ∈ {0, 1}n as well as a message µ.

• The decrypter gets the ciphertext c = Enc(h, x, µ) as well as x. If C(x) = 0 the decrypter will
learn µ, otherwise the decrypter learns nothing about µ.

Let us now make more concrete the desiderata for a blind AB-LFE:

• If C(x) = 0, then c is computationally indistinguishable from uniform among all strings z
satisfying Dec(C, x, z) = µ, given C, x, crs, h and µ

• If C(x) = 1, then c is computationally indistinguishable from uniform, given C, x, crs, h and
µ.

Our blind AB-LFE scheme is identical to that of [QWW18], except for a single but crucial modifi-
cation, that we describe next.

• The common reference string crs consists of uniformly random LWE matricesA1, . . . ,An.

• The hashing algorithm takes the common reference string crs and a boolean circuit C and
deterministically computes an LWE matrix AC via homomorphic key evaluation [BGG+14,
BTVW17].

• The encryption algorithm takes as input the common reference string crs, a hash value AC ,
input bits x1, . . . , xn ∈ {0, 1} and a message µ ∈ {0, 1}. It computes ciphertexts

b⊤i = s⊤ · (Ai + xi ·G) + e⊤i for i ∈ {1, . . . , n},

chooses a uniformly random a∗ ∈ Zn
q and computes

β = s⊤AcG
−1(a∗) + e′ + µ · q/2

where e′ is an error term chosen uniformly from [−q/4, q/4). The distribution of e′ differs
from the one used in [QWW18], and it will be crucial for our later proof. The ciphertext c
consists of all of the above elements.

• The decryption algorithm takes as input the common reference string crs, the circuit C and a
ciphertext c. Using (b⊤1 , . . . , b

⊤
n ,A1, . . . ,An) as well as x = (x1, . . . , xn) it computes

b⊤C = s⊤(Ac + C(x) ·G) + e⊤C

via homomorphic ciphertext evaluation and outputsMSB(β − b⊤CG
−1(a∗)).
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To establish correctness, it suffices to observe that

β − b⊤CG
−1(a∗)

= s⊤ACG
−1(a∗) + e′ + µ · q/2− (s⊤(Ac + C(x) ·G) + e⊤C)G

−1(a∗)

= C(x) · s⊤G ·G−1(a∗) + e⊤CG
−1(a∗) + e′ + µ · q/2

= C(x) · s⊤a∗ + e⊤CG
−1(a∗) + e′ + µ · q/2.

For C(x) = 0, it holds that e⊤CG−1(a∗) + e′ ∈ [−q/4, q/4) with high probability and therefore
MSB(β − b⊤CG

−1(a∗)) = µ. To prove blindness, note that

s⊤AC = b⊤C − C(x) · s⊤ ·G− e⊤C

since b⊤C = s⊤(AC + C(x) ·G) + e⊤C . Hence it holds that

β = (b⊤C − C(x) · s⊤ ·G− e⊤C) ·G−1(a∗) + e′ + µ · q/2
= b⊤C ·G−1(a∗)− C(x) · (s⊤ · a∗ + ẽ)− C(x) · ẽ− e⊤C ·G−1(a∗) + e′ + µ · q/2
=s b

⊤
C ·G−1(a∗)− C(x) · b̃+ e′ + µ · q/2

where we set b̃ = s⊤a∗ + ẽ. The third line follows from the fact that e′ drowns the short terms
−C(x) · ẽ − e⊤C ·G−1(a∗), by a standard statistical argument. We can now establish blindness as
follows:

• ForC(x) = 0, it holds that b1, . . . , bn are uniform, a∗ is uniform and furthermore e′ is uniform
in [−q/4, q/4). As bC can be deterministically computed from b1, . . . , bn, A1, . . . ,An, C and
x, it holds that β is uniform across all values which satisfyMSB(β − b∗G−1(a∗)) = µ. Hence
the ciphertext c is uniform among all strings that decrypt to µ.

• For C(x) = 1, it holds that b1, . . . , bn are uniform, a∗ is uniform. As b̃ is also uniform (and
independent of the aforementioned terms), β is also uniform. Hence c is uniform.

Hence, we have obtained a blind AB-LFE scheme. To obtain a fully-fledged blind LFE scheme,
we can rely on the same transformation as [GKP+13, QWW18], except using blind randomized
encodings [BLSV18] and an FHE scheme with pseudorandom keys and ciphertexts6. We omit
details here, and we refer the interested reader to Section 5 for details.

Bootstrapping Pseudorandom Obfuscation. Equipped with a blind and output-compressing
LFEwe now outline the final bootstrapping step in our construction of pseudorandomobfuscation.
Themain idea of the transformation comes from [BV15, AJ15] and it is based on the input-extension
method. First, observe that it is easy to obfuscate a circuit C(K, ·) (computing a pseudorandom
function) where the input domain is a single bit, by simply computing

c0 = Enc(h, (K, 0)) and c1 = Enc(h, (K, 1))

where h is the hash ofC(·, ·). One can recoverC(K,x) by running the LFE decryption, and security
immediately follows from the blindness of the LFE, i.e. both c0 and c1 are pseudorandom. Next,

6For completeness, we added a sketch of this transformation in Appendix A.
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we extend the input domain of this obfuscation by hashing increasingly longer functions. Assum-
ing that we are inductively given an obfuscation for length i inputs, we can use it to construct an
obfuscation for length i + 1 inputs as follows: Obfuscate the circuit Ci that on input x ∈ {0, 1}i
return

ci+1,0 = Enc(hi+1, (K,x∥0)) and ci+1,1 = Enc(hi+1, (K,x∥1))

where hi+1 is the LFE-hash of the i + 1-st circuit in this sequence. This way, we can construct
an obfuscation for an arbitrary input domain, at the cost of one iteration per input bit. The most
delicate aspect of this recursion is to ensure that the resulting obfuscation runs in polynomial time,
regardless of the input length. It turns out that output-compressing LFE suffices to instantiate this
transformation, thanks to the compactness and delegation properties. For more details, we refer
the reader to Section 6.

1.7 Organization of the Paper

We now describe the organization of the rest of the paper. In Section 2, we introduce the rele-
vant tools and definitions used in the paper. In Section 3, we introduce our various notions of
pseudorandom obfuscation. In Section 4, we construct exponentially inefficient pseudorandom
obfuscation. In Section 5, we construct a laconic function evaluation scheme satisfying blindness.
In Section 6, we show how to bootstrap our xPRO construction to the setting to construct (d)PRO.
Additionally, we also show how to construct PRO for Turing machines. In Section 7, we show how
to use iPRO/PRO to construct fully homomorphic encryption (without circular security assump-
tions), succinct randomized encodings and succinct witness encryption. In Section 8, we show
how to construct iO from PRO either using bilinear maps, or in the pseudorandom oracle model.
Finally, in Section 9, we show counterexamples to our notions of PRO.

2 Preliminaries

Throughout this work, we write λ to denote the security parameter. We say a function f is neg-
ligible in the security parameter λ if f(λ) = λ−ω(1). We say an algorithm is efficient if it runs in
probabilistic polynomial time (PPT) in the length of its input. We say that two distributions are
computationally indistinguishable (denoted by ≈c) if no PPT distinguisher can tell them apart with
probability negligibly better than 1/2.

The statistical distance ∆(X;X ′) of two random variables X and X ′ supported on a set S is
defined as ∆(X;X ′) = 1

2

∑
x∈S |Pr[X = x] − Pr[X ′ = x]|. If X and X ′ have statistical distance

ε, we write X ≈ε X ′. If X and X ′ have negligible statistical distance, we write X =s X ′. Unless
stated otherwise, wewill generally assume such a negligible statistical distance is of order Õ(2−λ) =
poly(λ) · 2−λ.

2.1 Linear Algebra

Wedenote vectors v in bold lowercase andmatricesM in bold uppercase. We typically assume that
vectors are column vectors and denote row vectors as transposes of column vectors, i.e. we write
v⊤ to denote a row vector corresponding to a column vector v. The tensor (Kronecker) product
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for matricesA and B is defined as

A⊗B =

a1,1B, . . . , a1,mB
. . . , . . . , . . . ,

an,1B, . . . , an,mB

 .

2.2 Lattices and Gaussians

For a vector x ∈ Rn we will use ∥x∥ :=
√∑

i x
2
i to denote the L2 norm of x and ∥x∥∞ = maxi |xi|

to denote the L∞ norm of x.
We recall a few basic facts about lattices. An integer lattice Λ ⊆ Zn is defined via

Λ = Λ(B) = {B · x | x ∈ Zk},

where B ∈ Zn×k is a full-rank integer matrix. We call k ≤ n the rank of Λ. The dual lattice
Λ∗ = Λ∗(Λ) of an integer lattice Λ is defined by

Λ∗(Λ) = {x ∈ Rn | ∀y ∈ Λ : x⊤y ∈ Z}.

For any σ > 0 the Gaussian function ρσ : Rn → R≥0 is defined by

ρσ(x) = e−π·∥x∥
2/σ2

.

For any lattice Λ ⊆ Rn the quantity ρσ(Λ) =
∑

x∈Λ ρσ(x) is finite, hence we can define the discrete
Gaussian distribution DΛ,σ via the probability mass function

Pr[e = x] =

{
ρσ(x)/ρσ(Λ) for x ∈ Λ

0 otherwise

for an e ∼ DΛ,σ.
The following tail bound for discrete Gaussians follows immediately from the fact that discrete

gaussians are sub-gaussian and a simple tail bound for sub-gaussians, see e.g. [MP12].

Lemma 2.1. Let σ > 0 and let X ∼ DZ,σ. Then it holds that

Pr[|X| ≥ tσ] ≤ 2 · e−π·t2 .

Consequently, it holds that
Pr[|X| ≥

√
λσ] ≤ 2 · e−πλ ≤ Õ(2−λ).

Recall the definition of the smoothing parameter of a lattice [MR04].

Definition 2.2. For a lattice Λ the smoothing parameter ηε(Λ) is defined to be the smallest σ for
which ρ1/σ(Λ

∗) ≤ 1 + ε.

We will use the following upper bound for the smoothing parameter of a lattice due to Mic-
ciancio and Regev [MR04].
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Lemma 2.3. Let Λ be an n-dimensional lattice and let ε > 0. Then it holds that

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λn(Λ).

Hence it holds that
η2−λ(Λ) ≤ O(

√
λ) · λn(Λ).

For the special case of Λ = Zn it holds that η2−λ(Zn) = O(
√
λ).

If σ ≥ ηε(Λ), it holds by the Poisson summation formula (see e.g. [Reg05]) that

ρσ(Λ) = σn det(Λ∗) · ρ1/σ(Λ∗),

and hence we get σn ≤ ρσ(Zn) ≤ σn(1 + ε).
The following is a general version of many smudging or drowning lemmata which have been

used in many prior works, e.g. [GKPV10, AIK11, AJL+12].
Lemma 2.4. Let χ be a symmetric andmonotonously decreasing distribution supported on eitherZ orZ+ 1

2 ,
that is for e ∼ χ we have for all x′ ≥ x ≥ 0 in the support that

Pr[e = −x] = Pr[e = x]

Pr[e = x′] ≤ Pr[e = x].

Then it holds for any t ∈ Z that

∆(e+ t; e) = Pr[e ∈ [−t/2, t/2)],

where e ∼ χ. Concretely:

• If e is the uniform distribution on an interval [−B0/2, B0/2], then∆(e+ t; e) = t/B0.

• If e ∼ DZ,σ, then ∆(e+ t; e) ≤ t/σ.

Proof. It holds that

∆(e+ t; e) = ∆(e+ t/2; e− t/2)

=
1

2
·
∑
x

|Pr[e = x− t/2]− Pr[e = x+ t/2]|

=
∑
x≥0

(Pr[e = x− t/2]− Pr[e = x+ t/2])

= Pr[e ≥ −t/2]− Pr[e ≥ t/2]

= Pr[e ∈ [−t/2, t/2)],

where the third equality holds due to symmetry and monotony of χ.
If e is uniform on an interval of size B0, it holds that Pr[e ∈ [−t/2, t/2)] = t

B0
. If e followsDZ,σ,

it holds that
Pr[e ∈ [−t/2, t/2)] ≤ t · Pr[e = 0] = t · ρσ(0)

ρσ(Z)
≤ t

σ
.
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Gentry, Peikert and Vaikuntanathan [GPV08] provide a generic method to sample a discrete
gaussian distribution from a rank k lattice in Zn given a sufficiently good basis.

Theorem 2.5. Let B ∈ Zn×k, c ∈ Zn and let σ ≥ O(
√
λ) · λn(B), where λn(B) is the L2-norm of the

longest column of B. There exists an efficient sampler which produces an output distribution statistically
close to DΛ(B),σ,c. It follows that for any t ∈ Zn we can efficiently sample statistically close to DΛ(B)+t,σ,
as DΛ(B)+t,σ ≡ t+DΛ(B),σ,−t.

Lattice Trapdoors. We recall the notion of lattice trapdoors from [GPV08, MP12].

Theorem 2.6. There exists a pair of algorithms (TrapGen, SampPre) with the following syntax.

• TrapGen(1λ, q, n): Generates a matrix B ∈ Zm×n
q with m = O(n log(q)) and trapdoor information

td. We will assume wlog that td includes the matrix B.

• SampPre(td, t, τ): Takes a trapdoor td, a target t ∈ Zn
q and a parameter τ ≥ Ω(

√
λ) and outputs a

sample x ∈ Zm.

The following two properties hold.

• (Uniformity) The matrices B generated by TrapGen(1λ, q, n) are statistically close to uniform in
Zm×n
q

• (Trapdoor Sampling) For a matrix B ∈ Zm×n
q and a vector t ∈ Zn

q define the coset L(B, t) = {x ∈
Zm|x ·B = t}. Then it holds that

(x ·B,x, td) =s (t,SampPre(td, t, τ), td)

where (B, td)← TrapGen(1λ, q, n), x← DL(B,t),τ and t← Zn
q .

To simplify notation, we will overload SampPre for matrices. For a matrix T = (t1, . . . , tk) ∈
Zn×k
q we will denote

SampPre(td,T, τ) = (SampPre(td, t1, τ), . . . ,SampPre(td, tk, τ)) ∈ Zm×k.

Reverse Sampling Gaussians Samples from discrete Gaussian distributions have a discernible
structure and are thus far fromuniform. For one of our constructions, we need to represent samples
from a discrete gaussian distribution in a way that looks pseudorandom. If such a sample x was
generated by a sampling algorithm and we happen to know the random coins r that were used to
generate x, we can simply represent x by the uniformly random coins r. For general sampling
algorithms, recovering random coins that lead to a specific sample is infeasible, as the sampling
algorithm may be a one-way function. For the case of Gaussians, however [AWY20] showed that
the discrete Gaussian sampler of [GPV08] allows for efficient reverse sampling. That is, there exists
an efficient algorithm S−1 which, given a sample x from a discrete Gaussian distribution DZ,σ
outputs random coins r′ ∈ {0, 1}poly(λ) such that

(Sσ(r), r) ≈s (x,S−1σ (x)),

where r ← {0, 1}poly(λ) are random coins for the Gaussian sampler S.
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The idea for this reverse sampler is conceptually simple: The gaussian sampler of [GPV08]
produces samples statistically close toDZ,σ by efficiently rejecting samples of a uniformdistribution
on the interval [−λσ, λσ]. AsDZ,σ is supported on this interval, except with negligible probability,
the output distribution of this sampler is statistically close toDZ,σ. Reverse sampling this rejection
sampler is now fairly straightforward.

Lemma 2.7 (Gaussian Reverse Sampling [GPV08, AWY20]). There exists an efficient algorithm S−1
which, given a gaussian parameter σ and a sample x ∼ DZ,σ outputs random coins r′ ∈ {0, 1}poly(λ), such
that

(Sσ(r), r) ≈s (x,S−1σ (x)).

Note that this sampler immediately gives rise to an reversible sampler forDZn×m,σ, as this dis-
tribution can be sampled by sampling its components independently from DZ,σ

Gadget Matrix. Let g = (1, 2, . . . , 2log(q)−1). The gadget matrixG is defined as

G = In ⊗ g ∈ Zn×n log(q)
q .

We are going to use the fact that there exists an efficiently computable function G−1 : Zn
q →

{0, 1}n log(q) such that for all u ∈ Zn
q we haveG ·G−1(u).

For vectors f ∈ Zk·n
q and r ∈ {0, 1}m we also define define a randomized gadget matrix in-

verse [MP12, BdMW16] as
G−1r (f) =

(
f̃
r

)
,

where f̃ ∈ {0, 1}k·n·log(q) is the unique vector with (Ik ⊗G) · f̃ = f .

Homomorphic Evaluation. For an integer η, we consider the lattice encodings

bi = sT (Ai − xiG) + eTi such that ∥ei∥∞ ≤ B

where s ∈ Zn
q , Ai ∈ Zn×m

q and x ∈ {0, 1}η. And we are going to make use of the following
deterministic homomorphic evaluation algorithm for matrix-valued circuits C : {0, 1}η → Zn×m

q

as described in [BGG+14, BTVW17].

• EvalPK(C, (A1, . . . ,Aη)): Takes as input the circuit C and n matrices (A1, . . . ,Aη) and re-
turns a matrix AC .

• EvalCT(C, (A1, . . . ,Aη), (b1, . . . ,bη),x): Takes as input the circuit C, matrices (A1, . . . ,Aη),
encodings (b1, . . . ,bη), and the input x and returns an encoding bC .

The key equation of homomorphic evaluation is:

bC = sT (AC − C(x)) + eTC where ∥eC∥∞ ≤ (m+ 2)d ·B · log(q) ·m · η

where d = depth(C).

26



2.3 The Learning with Errors Problem

We recall the definition of the decisional Learning with Errors (LWE) problem, introduced by
Regev [Reg05].

Definition 2.8 (Decisional Learning with Errors). Let n = n(λ),m = m(λ), q = q(λ), and ρ = ρ(λ)
be integer parameters. The LWE problem is to distinguish between the distributions:(A,As+ e) :

A← Zn×m
q

s← Zn
q

e← Dm
Z,ρ

 ≈c

{
(A,u) :

A← Zn×m
q

u← Zm
q

}
.

The LWE(n, q, ρ) assumption is that no polynomial time algorithm can solve this problem with
non-negligible advantage, for any polynomial number of samplesm.

Throughout this work, wewill always assume that themodulus q is of the form q = 2p for some
p ∈ Z. It is known [PRS17] that LWE is as hard as worst-case lattice problems for any choice of
modulus.

2.4 Evasive LWE

The evasive LWE assumption [Wee22, Tsa22, VWW22] is a family of assumptions that postulates
the hardness of a post-condition, if a certain pre-condition holds. In this work, we use a version
called private-coin binding evasive LWE, a terminology introduced in [BUW24]. In this version, both
the distinguisher for the pre-condition and the distinguisher for the post-condition get thematrices
B andP as explicit inputs. Compared to the version used in prior works, our assumption appears
to be slightly weaker than the one used in [VWW22]: in their definition, the matrix S, the matrix
P and the auxiliary information aux are jointly sampled. In our version, the sampling algorithm
takes the matrix P as an explicit input.

There is another subtle definitional issue concerning theway evasive LWE is commonly phrased.
Specifically, we typically grant the distinguisher D′ for the post-condition more runtime than the
pre-condition distinguisherD. Furthermore, we also allow for a polynomial loss in the distinguish-
ing advantage ofD′. In e.g. [MPV24] this is handled by requiring that for every sampler Samp there
exists a polynomial Q such that when compared to D the runtime of D′ grows at most by a factor
of Q(λ) and the distinguishing advantage of D drops at most by a factor of 1/Q(λ).

This is however problematic if the evasive LWE assumption is used a super-constant number
of times in a hybrid argument, e.g., as done in [MPV24] and in our work. Specifically, in such a
sequence of hybrids we construct a sequence of samplers Samp1, . . . ,Sampk. Now the polynomial
Qi, which is only existentially quantified by the sampler Sampi could, e.g., have degree 22

i . This
is a constant as long as k is a constant and thus i is a constant. However, this quickly becomes a
problem once k grows with λ.

To deal with this definitional issue, we additionally require that the degree of this polynomial
Q is bounded by c · d for some universal constant c > 0, where d is such that |Samp| ≤ λd and
|Samp| is the circuit-size of the sampler Samp.

We state our final definition in the followingwhich, for notational convenience, we simply refer
to as evasive LWE.
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Definition 2.9 (Evasive LWE, adapted from [MPV24] and [BUW24]). Letm,n, k, κ > 0 be integers
and let q be a modulus. Let τ, σ, σ′ > 0. Let Samp be an algorithm which takes 1λ and a matrix
P ∈ Zk×n

q and outputs a matrix S ∈ Zn×κ
q and auxiliary information aux. Let

D← Dk×m
Z,τ

B← Zm×n
q

P = D ·B
(S, aux)← Samp(1λ,P)

E← Dm×κ
Z,σ ,E′ ← Dk×κ

Z,σ′

C← Zm×κ
q ,C′ ← Zk×κ

q

For PPT distinguishers D′ and D define the following functions:

AdvpreD′ (λ) = |Pr[D′(B,P,BS+E,PS+E′, aux) = 1]− Pr[D′(B,P,C,C′, aux) = 1]|
AdvpostD (λ) = |Pr[D′(B,P,BS+E,D, aux) = 1]− Pr[D′(B,P,C,D, aux) = 1]|

We say that the evasive LWE assumption evLWE(q,m, n, k, κ,Samp, τ, σ, σ′) holds, if there exists
polynomial Q such that degλ(Q) ≤ c · degλ(|Samp|) (for some universal constant c > 0), such that
for every PPT distinguisher D there exists a PPT distinguisher D′ such that

AdvpreD′ (λ) ≥ AdvpostD (λ)/Q(λ)− negl(λ)

and time(D′) ≤ time(D) ·Q(λ).

Note that this is a non-falsifiable assumption (using the terminology of [Nao03]), as it does not
provide an efficient testwhich can determine whether a given distinguisher D breaks the assump-
tion.

2.5 The Gentry-Sahai-Waters Scheme

We recall the syntax and some properties of interest of the (levelled) homomorphic encryption
from [GSW13]. The scheme consists of the following algorithms.

• KeyGen(1λ, 1d) : On input the security parameter 1λ and the depth parameter 1d, the key
generation algorithm returns a key pair (pk, sk).

• Enc(pk,m): On input a public key pk and a message m, the encryption algorithm returns a
ciphertext c.

• Eval(pk, C, (c1, . . . , cη)): On input the public key pk, an η-inputs circuit C, and a vector of
ciphertexts (c1, . . . , cη), the evaluation algorithm returns an evaluated ciphertext c.

• Dec(sk, c): On input the secret key sk and a ciphertext c, the decryption algorithm returns a
messagem.

We recall someuseful properties of theGSWhomomorphic encryption scheme,whichwe are going
to use extensively throughout this work.
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• (Evaluation Correctness) Let ci ∈ Enc(pk,mi) and let

C← Eval(pk, C, (c1, . . . , cη)) ∈ Z(n+1)×(n+1) log(q)
q

and let sk = (s,−1) where s ∈ Zn
q . Then it holds that

(sT ,−1)C = m · (sT ,−1)G+ eT where ∥e∥∞ ≤ B̃

where B̃ is some integer. Note that, even this bound is independent from the depth of the
computation and can be achieved without loss of generality by adding one key-switching in
the very end of the computation. Furthermore, observe that we can isolate the message by
computing

(sT ,−1)Cv = (0,−q/2 ·m) + eTv

where v = G−1(0, q/2). In a slight abuse of notation, we sometimes refer to the decryption
process as a linear function in s, whose coefficient can be computed from the ciphertext,
followed by a rounding.

• (Pseudorandomness) We require that for all messages m and any polynomial d = d(λ), the
following distributions are indistinguishable:{

pk,Enc(pk,m) : (pk, sk)← KeyGen(1λ, 1d)
}
≈c

{
u,Enc(pk,m) : u← {0, 1}|pk|

}
=s

{
u : u← {0, 1}|pk|+|c|

}
.

In other words, public keys and ciphertexts are computationally indistinguishable from ran-
dom bits. This is shown assuming the hardness of the LWE problem and an application of
the leftover-hash Lemma [HILL99, Reg05].

2.6 Pseudorandom Functions and Generators

We briefly recall the standard notion of a pseudorandom function (PRF), which is a function

PRF : {0, 1}λ × {0, 1}η → {0, 1}ℓ

whose output is computationally indistinguishable from uniform, for a randomly sampled key k,
for an algorithmhaving oracle access toPRF(K, ·). In thiswork, we are going to use a slightly differ-
ent security notion, where the distinguisher is directly given the entire truth-table of the function.
In other words, we require that the following distributions are computationally indistinguishable:

{PRF(K,x)}x∈{0,1}η ≈c

{
ux : ux ← {0, 1}λ

}
x∈{0,1}η

for a uniformly sampled K ← {0, 1}λ. Note that this notion is equivalent to the standard security
for a PRF whenever the distinguisher is allowed to run in time 2η, which is the setting that we
consider in this work, since it can query the function on all points.

We also consider the standard notion of a pseudorandom generator PRG : {0, 1}λ → {0, 1}∗,
whose output is computationally indistinguishable from uniform, for a randomly sampled seed. It
is well known that both PRFs and PRGs can be constructed from any one-way function [GGM84,
HILL99].
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3 Pseudorandom Obfuscation

In the followingwe present formal definitions for the notion of pseudorandom obfuscation (PRO).
Definition 3.1 (Pseudorandom Obfuscation). A pseudorandom obfuscation (PRO) scheme for a
family of keyed circuitsC : {0, 1}h×{0, 1}η → {0, 1}ℓ consists of twoPPT algorithms (PRO.Obf,PRO.Eval)
with the following syntax.

• PRO.Obf(1λ, C,K): On input the security parameter 1λ, a circuit C, and a key K ∈ {0, 1}h,
the probabilistic obfuscation algorithm returns an obfuscated circuit C̃.

• PRO.Eval(C, C̃, x): On input the circuit C, an obfuscated circuit C̃, and an input x, the deter-
ministic evaluation algorithm returns an output y.

We require the following correctness property to hold.
• (ε-Correctness) For all λ ∈ N, allK ∈ {0, 1}h, and all circuits C it holds that

Pr
C̃←PRO.Obf(1λ,C,K)

[
∀ x ∈ {0, 1}η : C(K,x) = PRO.Eval(C, C̃, x)

]
≥ 1− ε

where the probability is taken over the random coins of PRO.Obf.
We define three variants of security for pseudorandom obfuscation.

• Indistinguishable Pseudorandomness (iPRO): Let KeySamp be a sampling algorithm. If

{C(K,x)}x∈{0,1}η , auxK ≈c

{
ux : ux ← {0, 1}ℓ

}
x∈{0,1}η

, auxK

for a randomly sampled (K, auxK)← KeySamp(1λ), then we have that
PRO.Obf(1λ, C,K), auxK ≈c PRO.Obf(1

λ, C,K ′), auxK

where (K, auxK) ← KeySamp(1λ) and K ′ is such that C(K, ·) and C(K ′, ·) are functionally
equivalent.

• Pseudorandomness (PRO): Let KeySamp be a sampling algorithm. If

{C(K,x)}x∈{0,1}η , auxK ≈c

{
ux : ux ← {0, 1}ℓ

}
x∈{0,1}η

, auxK

for a randomly sampled (K, auxK)← KeySamp(1λ), then we have that
PRO.Obf(1λ, C,K), auxK ≈c PRO.Obf(1

λ, C,K ′), auxK

where both (K, auxK) ← KeySamp(1λ) and (K ′, auxK′) ← KeySamp(1λ) are randomly sam-
pled.

• Double Pseudorandomness (dPRO): Let KeySamp be a sampling algorithm. If

{C(K,x)}x∈{0,1}η , auxK ≈c

{
ux : ux ← {0, 1}ℓ

}
x∈{0,1}η

, auxK

for a randomly sampled (K, auxK)← KeySamp(1λ), then we have that
PRO.Obf(1λ, C,K), auxK ≈c ũ, auxK

where both (K, auxK)← KeySamp(1λ) and ũ← {0, 1}|C̃| are randomly sampled.
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In this work, we also consider (as an intermediate primitive) the notion of exponentially efficient
PRO, denoted by xPRO, directly inspired by the analogous notion in indistinguishability obfus-
cation [LPST16]. An xPRO scheme (xPRO.Obf, xPRO.Eval) is defined identically as above, except
that we allow the obfuscation algorithm to run in time polynomial in the size of the truth table (2η)
of C, and we only impose the following requirements:

• (Non-Trivial Efficiency) We require that |C̃| ≤ 2η(1−δ) for some constant δ > 0.

• (Shallowness) We require that depth(xPRO.Obf) = poly(λ, |C|).

4 Exponentially (In)efficient Pseudorandom Obfuscation

In this sectionwewill provide a construction of xPRO for any pseudorandom function that satisfies
the strong notion of double pseudorandomness. Specifically, let k, κ, h ∈ N be integers. We present a
construction of xPRO for any circuit

C : {0, 1}h × {0, 1}log(κ) → {0, 1}k

with pseudorandom outputs. In other words, we require that the following distributions are com-
putationally indistinguishable

{C(K, i)}i∈{1,...,κ} , auxK ≈c

{
ui : ui ← {0, 1}k

}
i∈{1,...,κ}

, auxK

over the random choice of (K, auxK) ← KeySamp(1λ). In other words, we regard C(K, ·) as the
succinct representation of TT(C(K, ·)), which is a pseudorandom binary string of length k · κ.

Parameters, Ingredients, and Notation. We will first discuss the cryptographic building blocks
and problem parameters needed for our construction.

• Let q = 2t be modulus, which we assume to be a power of 2.

• Let τ, ρ, σ, σ′ > η2−λ(Z) be parameters for discrete Gaussians.

• Let n ∈ N be an LWE dimension andm = Ω(n · log(q)).

• We define the most-significant bit operatorMSB : Zq → {0, 1} as

MSB(x) =

{
0 if x ∈ [−q/4, q/4)
1 otherwise

and in a slight abuse of notation, we also use the same operator on vectors to perform the
same operation component-wise.

• Let B̂ > 0 and let PRF be a pseudorandom function which outputs values in [−q/4+B̂, q/4−
B̂)k.
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• For a keyed circuit C : {0, 1}h × {0, 1}log(κ) → {0, 1}k we will define a circuit C̄ as follows:

C̄((K,K ′), i) =
q

2
· C(K, i) + PRF(K ′, i) ∈ Zk

q .

Note that it holds for all i ∈ {1, . . . , κ} and every êi ∈ Zk with ∥êi∥∞ ≤ B̂ that

MSB(C̄((K,K ′), i) + êi) = C(K, i).

• Let GSW = (KeyGen,Enc,Eval,Dec) be the d-leveled GSW encryption scheme, where we as-
sume that KeyGen takes the modulus q and the parameter d as explicit inputs. Furthermore,
we assume that GSW has a decryption error bounded by a parameter B̃ (which we assume
to be independent of q and d), i.e. it holds for all ciphertexts c (obtained via encryption
or homomorphic evaluation) encrypting a value m that the noisy decryption GSW.Dec of c
returns

GSW.Dec(sk, c) = m+ ẽ,

where |ẽ| ≤ B̃. Further recall that for a given ciphertext c noisy decryption is a linear function
of the secret key sk ∈ Zn

q , i.e. for every c in the ciphertext space there exists a vector f in Zn
q

such that
GSW.Dec(sk, c) = sk⊤ · f .

We call f the vectorization of GSW.Dec(·, c).
• Let ℓ = poly(λ) and let (Sk×m,τ ,S−1k×m,τ ) be a reversible sampler such that Sk×m,τ (r) takes uni-

formly random coins r ∈ {0, 1}ℓ·k·m and produces samples (statistically close to) (DZ,τ )
k×m

Constraints. Before providing our construction, we briefly state the constraints that the parame-
terswe introduced abovewill need to satisfy. These constraintswill arise due to efficiency (Lemma4.1
below), correctness (Lemma 4.2 below) and pseudorandomness (Theorem 4.3 below).

1. We require that log(q), n,m depend at most poly-logarithmically on k and κ (Lemma 4.1).
2. We need to choosem = O(n log(q)) to enable lattice trapdoor sampling (Theorem 2.6)
3. The modulus q needs to satisfy q > 4κkB̂, where B̂ := B̃+λm(k+1)ρ+λmτσ (Lemma 4.2).
4. The Gaussian parameter σ needs to be large enough such thatDZ,σ drowns a value of absolute

value B̃ + λ(k + 1)mρ (Theorem 4.3). Via Lemma 2.4 this can be achieved by choosing σ ≥
2λ(B̃ + λ(k + 1)mρ).

5. We require C̄ to produce pseudorandom outputs over Zq. This is the case if the uniform-
distribution on [−q/4 + B̂, q/4 − B̂)k is statistically close to the uniform distribution on
[−q/4, q/4)k, which in turn is the case if B̂/q ≤ 2−λ.
Then a simple hybrid argument shows that if C is a pseudorandom function with respect to
some auxiliary input auxK , then so is C̄, i.e.{

C̄((K,K ′), i)
}
i∈{1,...,κ} , auxK ≈c {ui}i∈{1,...,κ} , auxK ,

for (K, auxK)← KeySamp(1λ), K ′ ← {0, 1}λ and u1, . . . , uκ uniform in Zk
q .
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σ = 2λ(B̃ + λ(k + 1)mρ)

q = 2λκkB̂ = 2λκk(B̃ + λm(k + 1)ρ+ λmτσ) = O(22λκkλmτ(B̃ + λ(k + 1)mρ))

m = O(n log(q)).

Finally, by choosing n = poly(λ) for a sufficiently large polynomial (e.g. n = λ3), we will be
able to base the security of our scheme on LWE and evasive LWE with sub-exponential modulus-
to-noise ratio (Theorem 4.3).

4.1 Construction

We present our construction of xPRO in the following. Note that the evaluation xPRO.Eval algo-
rithm does not input any point, and instead it directly reconstructs the entire function table. This
is done for notational convenience, and it is anyway how we are going to use the algorithm later
on.

• xPRO.Obf(1λ, C,K):

– Sample a keyK ′ ← {0, 1}λ uniformly at random
– Set K̄ = (K,K ′).
– Sample (pk, sk) ← KeyGen(1λ, q, 1d), where d is the circuit depth of C, and compute
c← Enc(pk, K̄).

– Choose B← Zm×n
q and r ← {0, 1}k·m·ℓ uniformly at random.

– SampleD = Sk×m,τ (r) using random coins r and set P = D ·B ∈ Zk×n
q .

– Parse sk⊤ = (s1, . . . , sn) ∈ Zn
q , sample R ← Zn×(k+1)·m

q and Ē ← D
k×(k+1)·m
Z,ρ and com-

pute
A = P ·R+ Ē+ (Ik,0)⊗ (s1, . . . , sn)⊗ g⊤ ∈ Zk×(k+1)m

q ,

where 0 ∈ Zk
q is the all-zero column vector.

– For i ∈ {1, . . . , κ}:
∗ Compute ci ← Eval(pk, C̄(·, i), c)
∗ Let fi ∈ Zk·n

q be the vectorization of the linear function Dec(·, ci).
∗ Choose ri ← {0, 1}m uniformly at random.

– Compute
F = (G−1r1 (f1), . . . ,G

−1
rκ (fκ)) ∈ {0, 1}

(k+1)m×κ.

– Choose S← Zn×κ
q uniformly at random and setH = S+R · F ∈ Zn×κ

q .
– Choose E← Dm×κ

Z,σ and compute C = B · S+E ∈ Zm×κ
q .

– Output K̃ = (C, r,P,A, pk, c, {ri}i∈{1,...,k},H).

• xPRO.Eval(C, K̃):

– Parse K̃ = (C, r,P,A, pk, c, {ri}i∈{1,...,k},H).
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– RecomputeD = Sk×m(r) using random coins r.
– For i ∈ {1, . . . , κ}:

∗ Compute ci ← Eval(pk, C̄(·, i), c)
∗ Let fi ∈ Zk·n

q be the vectorization of the linear function Dec(·, ci).
– Recompute

F = (G−1r1 (f1), . . . ,G
−1
rκ (fκ)) ∈ {0, 1}

(k+1)m×κ.

– ComputeY = A · F+D ·C−P ·H ∈ Zk×κ
q and parseY = (y1, . . . ,yκ) column-wise.

– OutputMSB(y1), . . . ,MSB(yκ).

4.2 Efficiency and Compactness

We discuss the efficiency of the scheme xPRO. Clearly, both xPRO.Obf and xPRO.Eval run in time
polynomial in k, κ as well as n,m, log(q), d, ℓ = poly(λ). Note further that xPRO.Obf is shallow:
Computing the ci can be achieved in depth depth(C̄ · poly(λ), sampling of the matrices can be
performed component-wise, and matrix-operations can be performed in poly-logarithmic depth.

In terms of compactness, we will now analyze the size of
K̃ = (C, r,P,A, pk, c, {ri}i∈{1,...,k},H)

and compare it to the bit-size of the function table of C. In that regard, note first that the size of
TT(C(K, ·)) is κ · k bits.

• The matrix C ∈ Zm×κ
q has a bit-size of κ ·m · log(q) = κ · poly(λ).

• The random coins r ∈ {0, 1}k·m·ℓ have a bit-size of k ·m · ℓ = k · poly(λ).
• The matrix P ∈ Zk×n

q has a bit-size of k · n · log(q) = k · poly(λ).

• The matrixA ∈ Zk×(k+1)·m
q has a bit-size of k · (k + 1) ·m log(q) = k2 · poly(λ).

• The public key pk has a bit-size d · poly(λ) = poly(λ).
• The ciphertext has a bit-size h · poly(λ).7

• The list {ri}i∈{1,...,k} has a bit-size of k ·m = k · poly(λ).
• The matrixH ∈ Zn×κ

q has a bit-size of κ · n · log(q) = κ · poly(λ).

Thus, taken together K̃ has a bit-size of (k2 + κ + |K|) · poly(λ). Setting κ = O(k2) and assuming
that |K| = k2 · poly(λ) we get

|K̃| = k2 · poly(λ)
versus a truth table size of

|TT(C(K, ·))| = k3.

Hence, it holds that
|K̃| = |TT(C(K, ·))|2/3 · poly(λ),

i.e., we achieve non-trivial efficiency. We summarize this in the following Lemma.
7This can easily be improved to h+ poly(λ) via hybrid encryption.
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Lemma 4.1. Given that log(q), n,m, ℓ depend at most poly-logarithmically on k and κ, the scheme xPRO
defined above satisfies the non-trivial efficiency requirement.

4.3 Correctness

We now establish correctness of the scheme xPRO.
Lemma 4.2. Assume that the GSW encryption scheme has decryption noise bounded by B̃ and that q >
4κk(B̃ + λ(k + 1)mρ+ λmτσ). Then the scheme xPRO has correctness error at most Õ(2−λ).

Proof. For all i ∈ {1, . . . , k} it holds that
A ·G−1ri (fi)

= P ·R ·G−1ri (fi) + Ē ·G−1ri (fi) + ((Ik,0)⊗ (s1, . . . , sn)⊗ g⊤) ·G−1ri (fi)

= P ·R ·G−1ri (fi) + Ē ·G−1ri (fi) + Dec(sk, ci)

= P ·R ·G−1ri (fi) + Ē ·G−1ri (fi) + Dec(sk,Eval(pk, C̄(·, i), c))
= C̄(K, i) + ẽi +P ·R ·G−1ri (fi) + Ē ·G−1ri (fi),

where the second equality holds via the definition of fi, and the third equality holds by the the
definition of the ci, and the fourth equality holds by the correctness of FHE, where the ẽi are de-
cryption noise terms. Hence it holds that

A · F = (C̄(K̄, 1), . . . , C̄(K̄, κ)) + Ẽ+P ·R · F+ Ē · F,

where Ẽ = (ẽ1, . . . , ẽκ). Further note that
D ·C = D ·B · S+D ·E = P · S+D ·E

and by definition ofH:
PH = P · S+P ·R · F.

Hence it holds that
Y = A · F+D ·C−PH

= (C̄(K̄, 1), . . . , C̄(K̄, κ)) + Ẽ+ ĒF+DE.

Let Ê = (ê1, . . . , êκ) := Ẽ + ĒF + DE. Since Ē ∼ D
k×(k+1)m
Z,ρ , it holds for each column ēi of Ē

that ∥ei∥∞ ≤
√
λ · ρ ≤ log(1/ε) · ρ, except with probability k · (k + 1)m · Õ(2−λ) = Õ(2−λ). Hence

it holds for all i that ∥Ē · fi∥∞ ≤
√
λ · (k + 1)mρ. Furthermore, it holds for every column ei of E

that ∥ei∥∞ ≤
√
λ ·σ and for every row dj ofD that ∥dj∥∞ ≤

√
λτ , except with probability Õ(2−λ).

Hence it holds that ∥D · ei∥∞ ≤ λ · mτσ, except with probability Õ(2−λ). We conclude that the
norm of each column êi of the error matrix Ê can be bounded via

B̂ := B̃ + λm(k + 1)ρ+ λmτσ ≥ ∥êi∥∞.

By the definition of C̄ it holds for all i that C̄(K̄, i) = q/2 · PRF(K, i) + PRF(K ′, i). Recalling that
Y = (y1, . . . ,yκ), it holds for all i ∈ {1, . . . , κ} that

yi = q/2 · C(K, i) + PRF(K ′, i) + êi.
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Now observe that by definition of PRF it holds for every i ∈ {1, . . . , κ} that PRF(K ′, i) ∈ [−q/4 +
B̂, q/4− B̂)k. Hence it holds that PRF(K ′, i)+ êi ∈ [−q/4, q/4)k as êi ∈ [−B̂, B̂)k. We can conclude
that

MSB(yi) = MSB(q/2 · C(K, i) + PRF(K ′, i) + êi) = C(K, i).

We can conclude that xPRO is correct, except with probability Õ(2−λ).

4.4 Pseudorandomness

We now show that xPRO satisfies the strongest pseudorandomness property.
Theorem 4.3. Assume that C̄ is a pseudorandom function, that GSW has pseudorandom keys and pseudo-
random ciphertexts. Assume further that the assumptions (Sk×m,S−1k×m) is a reversible sampler forDZk×m,τ

(as by Lemma 2.7). Also assume that σ ≥ 2λ · (B̃ + λ(k + 1)mρ). Assume further that LWE(q, n, ρ) and
evLWE(q,m, n, k, κ,Samp, τ, σ, σ′) hold, where the sampler Samp is given in Algorithm 1. Then xPRO is
a doubly pseudorandom obfuscator.

Proof. Our proof will proceed in a sequence of hybrids. Consider the following hybrid distribu-
tions.

• HybridH0: This is identical to the real distribution.
• HybridH1: Identical to H0, except that we choose C uniformly at random. We will discuss

this step in more detail below.
• HybridH2: Identical to H1, except that we choose the matrix H ← Zn×κ

q uniformly at ran-
dom. Note that in H1 the matrix H is computed via H = S + R · F for a uniformly ran-
dom S (which is not used anywhere else). Hence H1 and H2 are identically distributed.
Observe that after this modification the matrix R is only used for the computation of A =
PR+ Ē+ (Ik,0)⊗ (s1, . . . , sn)⊗ g⊤.

• HybridH3: Identical toH2, except that we change the wayB is computed. Instead of choos-
ing B uniformly at random we compute (B, td) ← TrapGen(1λ, q, n). Statistical indistin-
guishability of hybrids H2 and H3 follows from the uniformity property of TrapGen (The-
orem 2.6).

• HybridH4: Identical to hybridH3, except that we change the way the coins r are generated.
Instead of choosing r uniformly at random, we sample D ← DZk×m,τ and set r = S−1k×m(D).
Statistical indistinguishability follows from the fact that (Sk×m,S−1k×m) is a reversible sampler
for DZk×m,τ .

• HybridH5: Identical to hybrid H4, except that we change the way D and P are computed.
Instead of choosing D ← DZk×m,τ and setting P = D · B, we choose P ← Zk×n

q uniformly
at random and set D = SampPre(td,P, τ). Statistical indistinguishability follows from the
trapdoor sampling property of (TrapGen, SampPre) (Theorem 2.6).

• HybridH6: Identical to H5, except that instead of computing A = PR + Ē + (Ik,0) ⊗
(s1, . . . , sn) ⊗ g⊤, we choose the matrix A ← Zk×(k+1)·m

q uniformly at random. Computa-
tional indistinguishability follows routinely from LWE(q, n, ρ).
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Algorithm 1 The Sampler Samp.
Samp(1λ,P):

• Choose (K, auxK)← KeySamp(1λ).

• ChooseK ′ ← {0, 1}λ uniformly at random.

• Set K̄ = (K,K ′).

• Sample (pk, sk)← KeyGen(1λ, 1d).

• Compute c← Enc(pk, K̄).

• Parse sk = (s1, . . . , sn) ∈ Zn
q , sample R← Zn×(k+1)·m

q and Ē← D
k×(k+1)·m
Z,ρ and compute

A = PR+ Ē+ (Ik,0)⊗ (s1, . . . , sn)⊗ g⊤.

• For i ∈ {1, . . . , κ}:

– Compute ci ← Eval(pk, C̄(·, i), c).
– Let fi ∈ Zk·n

q be the vectorization of the linear function Dec(·, ci).
– Choose ri ← {0, 1}m uniformly at random.

• Set F = (G−1r1 (f1), . . . ,G
−1
rκ (fκ)).

• Choose S← Zn×κ
q uniformly at random.

• SetH = S+R · F.

• Set aux = (P, pk, c,A, (ri)i∈{1,...,k},H, auxK).

• Output S, aux.

• HybridH7: Identical toH6, except that we undo the modification done inH5, i.e. we choose
D ← DZk×m,τ and set P = D · B. Statistical indistinguishability follows from the trapdoor
sampling property of (TrapGen, SampPre) (Theorem 2.6).

• HybridH8: Identical to H7, except that we undo the modification of H4, i.e. we choose the
coins r uniformly at random and set D = Sk×m(r). As before, statistical indistinguishability
follows from the fact that (Sk×m,S−1k×m) is a reversible sampler for DZk×m,τ .

• HybridH9: Identical to hybridH8, except that we undo the change ofH3, i.e. instead of com-
putingB via (B, td)← TrapGen(1λ, q, n), we chooseB← Zm×n

q uniformly at random. Statis-
tical indistinguishability follows from the uniformity property of TrapGen (Theorem 2.6).

• HybridH10: Identical to hybridH9, except that we choose the ciphertext c uniformly at ran-
dom. Indistinguishability follows from the ciphertext pseudorandomness of GSW.
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• HybridH11: Identical to hybrid H10, except that we choose the public key pk uniformly at
random. Indistinguishability follows from the public key pseudorandomness of GSW.

Note that in hybridH11 the obfuscation K̃ is chosen uniformly random, i.e.,H11 is the ideal distri-
bution.

The heavy lifting of this proof occurs in the transition from H0 to H1. We will now focus on
this step, which relies on the evasive LWE assumption evLWE(q,m, n, k, κ,Samp, τ, σ, σ′). Recall
the sampler Samp given in Algorithm 1.

The sampler Samp generates an LWE secretS, an LWEmatrixP, aswell as auxiliary information
aux = (P, pk, c,A, (ri)i∈{1,...,k},H, auxK).

Now assume towards contradiction that there is a PPT distinguisher D which distinguishes
H0 and H1 with non-negligible advantage ε. We will use D to construct a distinguisher D′ which
distinguishes (B,P,BS + E,D, aux) and (B,P,U,D, aux) with non-negligible advantage ε. The
distinguisher D′(B,P,C,D, aux) is given as follows.

• Parse aux = (P, pk, c,A, (ri)i∈{1,...,k},H, auxK)

• Run D on input K̃ = (C, r,P,A, pk, c, (ri)i∈{1,...,k}),H) and auxK and output whatever D
outputs.

Wewill nowanalyze the advantage ofD′. LetP bedistributeduniformly randomand let (S, aux)←
Samp(1λ,P). Further let B← Zm×n

q be chosen uniformly random and let D← B−1(P).
First assume that C = BS + E, where , E ← Dm×km

Z,σ . It follows that the K̃ generated by D′
is identically distributed to H0. On the other hand, if C is chosen uniformly random, then the K̃
generated by D′ is identically distributed toH1. We conclude that

|Pr[D′(B,P,BS+E,D, aux) = 1]− Pr[D′(B,P,U,D, aux) = 1]|
= |Pr[D(H0) = 1]− Pr[D(H1) = 1]| ≥ ε.

In other words D′ breaks the post-condition of evasive LWE with advantage ε. It remains to show
that the pre-condition of evasive LWE holds. This will immediately lead to the desired contradic-
tion. Consider the following hybrids.

• Hybrid P0:

– Choose P← Zk×n
q uniformly at random.

– Choose (K, auxK)← KeySamp(1λ).
– ChooseK ′ ← {0, 1}λ uniformly at random.
– Set K̄ = (K,K ′).
– Sample (pk, sk)← KeyGen(1λ, 1d).
– Compute c← Enc(pk, K̄).
– Parse sk = (s1, . . . , sn) ∈ Zn

q , sampleR← Zn×(k+1)·m
q and Ē← D

k×(k+1)·m
Z,ρ and compute

A = PR+ Ē+ (Ik,0)⊗ (s1, . . . , sn)⊗ g⊤.

– For i ∈ {1, . . . , κ}:
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∗ Compute ci ← Eval(pk, C̄(·, i), c).
∗ Let fi ∈ Zk·n

q be the vectorization of the linear function Dec(·, ci).
∗ Choose ri ← {0, 1}m uniformly at random.

– Set F = (G−1r1 (f1), . . . ,G
−1
rκ (fκ)).

– Choose S← Zn×κ
q uniformly at random.

– SetH = S+R · F.
– Set aux = (P, pk, c,A, (ri)i∈{1,...,k},H, auxK).
– Choose B← Zm×n

q uniformly at random.
– Compute C = BS+E where E← Dm×κ

Z,σ .
– Compute C′ = PS+E′ where E′ ← Dk×κ

Z,σ′ .
– Output (B,P,C,C′, aux).

This is the real distribution of the pre-condition with the algorithm Samp(1λ,P) unrolled.
• Hybrid P1: This is identical to P0, except for the way we computeH, C and C′:

– ChooseH uniformly at random.
– ComputeU = BR+E∗, where E∗ ← D

m×(k+1)m
Z,ρ .

– Compute C = BH−UF+E∗F+Ewhere E← Dm×κ
Z,σ .

– ComputeC′ = PH−A ·F+ (C(K̄, 1), . . . , C(K̄, κ)) + ĒF+ Ẽ+E′ where E′ ← Dk×κ
Z,σ′

and Ẽ is such that ((Ik,0)⊗ sk⊤ × g⊤)F = (C̄(1), . . . , C̄(κ)) + Ẽ.

I.e., instead of choosing S uniformly at random and setting H = S +RF, we choose H uni-
formly at random and substitute SwithH−RF. Furthermore, note that the terms involving
the matrix E∗ in C just cancel out. Furthermore, we have used the correctness property of
GSW to substitute the term PS in the definition of C′ with

PS = PH−PRF

= PH− (A− Ē− (Ik,0)⊗ sk⊤ × g⊤)F

= PH−AF− ĒF− (C̄(1), . . . , C̄(κ))− Ẽ.

Hence hybrids P0 and P1 are identically distributed.
• Hybrid P2: This is identical to P1, except for the way we compute C and C′:

– Compute C = BH−UF+E where E← Dm×κ
Z,σ .

– Compute C′ = PH−A · F− (C̄(K̄, 1), . . . , C̄(K̄, κ)) +E′ where E′ ← Dk×κ
Z,σ′ .

Hybrids P1 and P2 are statistically close, as since ∥Ẽ∥∞ ≤ B̃ (by our assumption on GSW)
and ∥E∗F∥∞ ≤ λ(k + 1)mρ) (except with probability Õ(2−λ) as in the proof of Lemma 4.2),
and further since by assumption σ ≥ 2λ · (B̃ + λ(k + 1)mρ) we have by Lemma 2.4 that

E∗F+E =s E

and
ĒF− Ẽ+E′ =s E

′.

39



• Hybrid P3: This is identical to P2, except for the way we computeA andU:

– ChooseA uniformly at random.
– ChooseU uniformly at random.

Computational indistinguishability of P2 and P3 follows routinely from the LWE(q, n, ρ) as-
sumption.

• Hybrid P4: This is identical to hybrid P3, except that we compute c via:

– Compute c← Enc(pk, 0).

Computational indistinguishability between P3 and P4 follows from the IND-CPA security
of the FHE scheme (KeyGen,Enc,Dec,Eval).
For the sake of presentational clarity, the full P4 is given as follows.

– Choose P← Zk×n
q uniformly at random.

– Choose (K, auxK)← KeySamp(1λ).
– ChooseK ′ ← {0, 1}λ uniformly at random.
– Set K̄ = (K,K ′).
– Sample (pk, sk)← KeyGen(1λ, 1d).
– Compute c← Enc(pk, 0).
– ChooseA← Zk×(k+1)m

q uniformly at random.
– For i ∈ {1, . . . , κ}:

∗ Compute ci ← Eval(pk, C̄(·, i), c).
∗ Let fi ∈ Zk·n

q be the vectorization of the linear function Dec(·, ci).
∗ Choose ri ← {0, 1}m uniformly at random.

– Set F = (G−1r1 (f1), . . . ,G
−1
rκ (fκ)).

– ChooseH uniformly at random.
– Set aux = (P, pk, c,A, (ri)i∈{1,...,k},H, auxK).
– Choose B← Zm×n

q uniformly at random.
– ChooseU← Zm×(k+1)m

q uniformly at random.
– Compute C = BH−UF+E where E← Dm×κ

Z,σ .
– Compute C′ = PH−A · F− (C̄(K̄, 1), . . . , C̄(K̄, κ)) +E′ where E′ ← Dk×κ

Z,σ′ .
– Output (B,P,C,C′, aux).

• Hybrid P5: This is the same as P4, except that we compute C′ via

– Choose C′ uniformly at random.
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Note that both the matrix A and the matrix F are public, hence we cannot use LWE in this
step to argue that C′ is uniform. However, by the pseudorandomness of C̄ it holds that

(C̄((K,K ′), 1), . . . , C̄((K,K ′), κ)), auxK ≈c (c1, . . . , cκ), auxK

for uniformly random c1, . . . , cκ ∈ Zk
q . It follows that hybrids P4 and P5 are computationally

indistinguishable.

• Hybrid P6: This is the same as P5, except that we choose C via:

– Choose C uniformly at random.

Computational indistinguishability follows from the LWE(q, n,DZ,σ) assumption.
Specifically we will show that an distinguisher D for P5 and P6 gives rise to an LWE distin-
guisher D′ with the same advantage. The distinguisher D′ gets as input a matrices V and
Z, and needs to distinguish whether Z follows T · V + E or is chosen uniformly random.
D′ simulates P5, except with the following modifications concerning how the ri and C are
computed.

– Choose a matrixU′ uniformly at random
– For i ∈ {1, . . . , κ} set ri = G−1(vi)

– Compute the matrix C via C = BH+ Z+U′ · F

First observe that the ri are i.i.d. uniformly random, as the matrixV is distributed uniformly
random.
Assume that Z is distributed according to Z = T ·V +E. Then it holds that

Z+U′ · F = TV +E+U′ · F
= (0,T ·G) · F+U′ · F+E

= ((0,T ·G) +U′) · F+E

= U · F+E,

whereU = (0,T ·G) +U′ is distributed uniformly random. Hence, in this case it holds that

C = BH+ Z+U′ · F = BH+UF+E

and therefore the distribution of K̃ produced by D′ is identical to P5.
On the other hand, if Z is distributed uniformly random, then the C = BH + Z + U′ · F
is also distributed uniformly random, and therefore the distribution of K̃ produced by D′ is
identical to P6. Hence, D′ has the same advantage as D, and it follows by the hardness of
LWE that P5 and P6 are indistinguishable.

In the following hybrids we will undo the modifications of P1, . . . ,P4

• Hybrid P7: In hybrid P7 we undo the modification done by hybrid P4, specifically we com-
pute c via
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– Compute c← Enc(pk,K).

Computational indistinguishability follows from the IND-CPA security of the FHE scheme
(KeyGen,Enc,Dec,Eval), analogous to the hybrid step between P3 and P4.

• Hybrid P8: In this hybrid we undo a change done in hybrid P3, specifically we compute A
via

– Parse sk = (s1, . . . , sn) ∈ Zn
q , sampleR← Zn×(k+1)·m

q and Ē← D
k×(k+1)·m
Z,ρ and compute

A = PR+ Ē+ (Ik,0)⊗ (s1, . . . , sn)⊗ g⊤.

Computational indistinguishability follows from the LWE assumption, analogous to the hy-
brid step between P2 and P3.

• Hybrid P9: In P9 we undo a change done in hybrid P1, specifically we computeH via

– Choose S← Zn×κ
q uniformly at random.

– SetH = S+R · F.

HybridP9 is identically distributed to hybridP8, this is analogous to the hybrid step between
P0 and P1.
We provide P9 in full below and note that hybrid P9 is the ideal distribution of the evasive
LWE precondition, with the the algorithm Samp(1λ,B) unrolled.

– Choose P← Zk×n
q uniformly at random.

– Choose (K, auxK)← KeySamp(1λ).
– ChooseK ′ ← {0, 1}λ uniformly at random.
– Set K̄ = (K,K ′).
– Sample (pk, sk)← KeyGen(1λ, 1d).
– Compute c← Enc(pk, K̄).
– Parse sk = (s1, . . . , sn) ∈ Zn

q , sampleR← Zn×(k+1)·m
q and Ē← D

k×(k+1)·m
Z,ρ and compute

A = PR+ Ē+ (Ik,0)⊗ (s1, . . . , sn)⊗ g⊤.

– For i ∈ {1, . . . , κ}:
∗ Compute ci ← Eval(pk, C̄(·, i), c).
∗ Let fi ∈ Zk·n

q be the vectorization of the linear function Dec(·, ci).
∗ Choose ri ← {0, 1}m uniformly at random.

– Set F = (G−1r1 (f1), . . . ,G
−1
rκ (fκ)).

– Choose S← Zn×κ
q uniformly at random.

– SetH = S+R · F.
– Set aux = (P, pk, c,A, (ri)i∈{1,...,k},H).
– Choose C uniformly at random.
– Choose C′ uniformly at random.
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– Output (B,P,C,C′, aux).

Hence we have established that the evasive LWE precondition holds. As detailed above this leads
to the desired contradiction via the evasive LWE assumption. This concludes the proof.

5 Blind Laconic Function Evaluation

5.1 Definitions

We recall the definition of laconic function evaluation (LFE) from [QWW18], while additionally
defining the new blindness property that we consider in this work.
Definition 5.1 (Laconic Function Evaluation). An LFE scheme for a class of circuits C : {0, 1}η →
{0, 1}ℓ consists of four PPT algorithms

(LFE.Setup, LFE.Hash, LFE.Enc, LFE.Dec)

with the following syntax.
• LFE.Setup(1λ): On input the security parameter 1λ, the setup algorithm returns the common

reference string crs.
• LFE.Hash(crs, C): On input the common reference string crs and a circuit C, the hash algo-

rithm returns deterministically a digest hashC .
• LFE.Enc(crs, hashC ,x): On input the common reference string crs, a digest hashC , and an input

x, the encryption algorithm returns a ciphertext ct.
• LFE.Dec(crs, C, ct): On input the common reference string crs, the circuitC, and the ciphertext

ct, the decryption algorithm returns a message y.
We require the following properties to hold.

• (ε-Correctness) For all λ ∈ N, all crs ∈ LFE.Setup(1λ), all circuits C, and all inputs x, it holds
that

Pr

[
LFE.Dec(crs, C, ct) = C(x) :

hashC ← LFE.Hash(crs, C)
ct← LFE.Enc(crs, hashC ,x)

]
≥ 1− ε

where the probability is taken over the random coins of LFE.Enc.
• (Efficiency) The runtime of the LFE.Enc algorithm, and consequently the size of the cipher-

texts, must be sublinear in the size of the circuit C, that is
|LFE.Enc(crs, hashC ,x)| = poly(λ) · o(|C|).

• (Blindness) Let InputSamp be a sampling algorithm which produces pairs (x, auxx) and let
C be a circuit. We require that if

{C(x), auxx} ≈c

{
u, auxx : u← {0, 1}ℓ

}
then

{LFE.Enc(crs, hashC ,x), crs, hashC , auxx} ≈c

{
u, crs, hashC , auxx : u← {0, 1}|ct|

}
where crs← LFE.Setup(1λ), hashC ← LFE.Hash(crs, C), and (x, auxx)← InputSamp(1λ).
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5.2 Base Construction

We describe an LFE scheme that satisfies the blindness property. Our construction largely follows
the scheme of [QWW18], with some small but crucial modifications needed to make the output
of the LFE uniform. For notational convenience, we describe a construction for the class of circuits
C : {0, 1}η → {0, 1}, whereas the more general construction for ℓ-bit output circuits is obtained by
hashing circuits computing individual output bits, and encrypting the input ℓ times with respect
to each hash.

• LFE.Setup(1λ): Sample uniform

crs = (A1, . . . ,AL) ∈ Zn×m
q

where L equals η times the size of an FHE ciphertext andm = (n+ 1) log(q).

• LFE.Hash(crs, C): Compute and output

hashC = AC̃ ← EvalPK(C̃, (A1, . . . ,AL))

where C̃ is the circuit that computes the homomorphic evaluation of C and removes the last
row of the ciphertext.

• LFE.Enc(crs, hashC ,x): Sample (pk, sk) ← KeyGen(1λ) and parse s as the secret key. For all
i ∈ [η] compute Ci ← Enc(pk, xi) and let c = G−1(C1, . . . ,Cη) ∈ {0, 1}L be the vectorized
binary decomposition of (C1, . . . ,Cη). Then for all i ∈ [L] compute

bi = sT (Ai − ciḠ) + eTi

where ei ← Dm
Z,ρ is a B-bounded noise term and Ḡ denotes the gadget matrixG = In+1 ⊗ g

without the last row. Sample e← [−q/4, q/4) and t← {0, 1}m such that

MSB((sT ,−1)Gt+ e) = 1 (5.1)

whereMSB is the operator that returns the most significant bit. Finally, set

β = sTAC̃t+ e.

Return ct = (β, t, pk,b1, . . . ,bL, c).

• LFE.Dec(crs, C, ct): Compute

C← Eval(pk, C, (C1, . . . ,Cη))

and let cn+1 be the last row of C. Then compute

bC̃ ← EvalCT(C̃, (A1, . . . ,AL), (b1, . . . ,bL), c).

Return
MSB

(
β − (bT

C̃
+ cn+1)t

)
.
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Correctness. Correctness follows by observing that

MSB
(
β − (bT

C̃
+ cn+1)t

)
= MSB

(
β − (sT (AC̃ − C̄) + eC̃ + cn+1)t

)
= MSB

(
e+ ((sT ,−1)C+ eC̃)t

)
= MSB

(
e+ (C(x)(sT ,−1)G+ eC̃ + e)t

)
= MSB

(
e+ C(x)(sT ,−1)Gt+ (eC̃ + e)t

)
where C̄ denotes all but the last row of C, and the equalities hold by the correctness of the lattice
homomorphic evaluation. Note that∣∣(eC̃ + e)t

∣∣ ≤ m ·
∥∥eC̃ + e

∥∥
∞ ≤ (m+ 2)d ·B · log(q) ·m2 · L+ B̃ ·m

where d is the depth of C. For q ≥ 2ω(1) · ((m+ 2)d ·B · log(q) ·m2 · L+ B̃ ·m), we have that
e =s e+ (eC̃ + e)t

by Lemma 2.4, therefore with overwhelming probability we have that
MSB

(
e+ C(x)(sT ,−1)Gt+ (eC̃ + e)t

)
= MSB

(
e+ C(x)(sT ,−1)Gt

)
.

Observe that

MSB
(
e+ C(x)(sT ,−1)Gt

)
=

{
MSB (e) = 0 if C(x) = 0

MSB
(
e+ (sT ,−1)Gt

)
= 1 if C(x) = 1

where the first case follows by the fact that e ∈ [−q/4, q/4) and the second case follows by Eq. (5.1).

Blindness. Before presenting our main theorem, we prove a useful fact that we are going to use
repeatedly in our proof.
Lemma 5.2. For any fixed e∗ such that |e∗| ≤ B and any fixed u∗, the following distributions are all
statistically close:

{e | e← [−q/4, q/4) & MSB (e+ u∗) = 1}
=s {e+ e∗ | e← [−q/4, q/4) & MSB (e+ e∗ + u∗) = 1}
=s {e+ e∗ | e← [−q/4, q/4) & MSB (e+ u∗) = 1} .

Proof. The first equation is a standard application of Lemma 2.4. The second equation is also a
smudging argument, and it follows by observing that the distribution of the top random variable
can be alternatively represented by a uniform distribution whose support is the vector of size q/2
defined as

(e1, . . . , e|S|︸ ︷︷ ︸
ei∈S

,⊥, . . . ,⊥)

where S is the set of contiguous e such that MSB (e+ u∗) = 1. Then adding any B-bounded
element eB to e has the effect of shifting the entries by eB :

(e1 + eB, . . . , e|S| + eB︸ ︷︷ ︸
ei∈S

,⊥, . . . ,⊥)
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and therefore the two vectors differ in at most 2B entries, by rearranging them appropriately.
Thus we can conclude that the statistical distance between the top and the bottom distributions
is bounded by the probability of sampling one such element, which is 4B/q. The final claim fol-
lows by a triangle inequality.

We are now in the position of showing that the scheme satisfies blindness.

Theorem 5.3. If the LWE(q, n, ρ) problem is hard, then the LFE scheme as described above satisfies blind-
ness.

Proof. The crux of the proof is to describe a simulator LFE.Sim that simulates the ciphertext distri-
bution, given as input the computation output C(x), and in particular without knowing the input
x. We gradually modify the view induced by our scheme in a series of hybrid experiments.

• HybridH0: This is identical to the real distribution.

• HybridH1: In this hybrid, we modify the sampling procedure of u = (ū, u) = Gt and e as
follows:

– u is uniformly sampled over Zn+1
q .

– e is sampled uniformly from [−q/4, q/4) together with a B-bounded noise term eB , and
abort ifMSB

(
e+ eB + (sT ,−1)u

)
̸= 1. Return e+ eB .

Note that G is injective and the distribution post-selected on not aborting is the same as
conditional sampling, thus this distribution is statistically close to the original one by an ap-
plication of Lemma 5.2.

• HybridH2: In this hybrid, we sample the β component of the ciphertext as follows:

β = e+ C(x)(eB + sT ū︸ ︷︷ ︸
=v

−u) + (bT
C̃
+ cn+1)t.

To analyze this distribution, we consider two cases separately.

– C(x) = 0: In this case we have that

β = e+ (bT
C̃
+ cn+1)t

=s e+ eB + (bT
C̃
+ cn+1)t

=s e+ eB + (bT
C̃
+ cn+1)t+ (eC̃ + e)t

by Lemma 5.2.
– C(x) = 1: In this case we have that

β = e+ v − u+ (bT
C̃
+ cn+1)t

= e+ eB + (sT ,−1)u+ (bT
C̃
+ cn+1)t

=s e+ eB + (sT ,−1)u+ (bT
C̃
+ cn+1)t+ (eC̃ + e)t

by Lemma 5.2.
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In both cases, the latter string is precisely what the distinguisher is expecting in the previous
hybrid.

• HybridH3: In this hybrid we sample (b1, . . . ,bL, pk, v) uniformly at random.
Indistinguishability follow by a reduction against the LWE assumption, since all terms in the
real distributions are LWE samples with respect to the secret s. Let A∗i be the LWE matrix
corresponding to bi, the reduction can simulate the view of the distinguisher by computing
Ai = A∗i + ciḠ, β as specified above, sampling u uniformly in Zq and e uniformly from
[−q/4, q/4), aborting ifMSB (e+ v − u) ̸= 1.
It is clear that the reduction perfectly simulates the view of the distinguisher of H2 (in the
LWE case) or of H3 (in the uniform case). Thus, all is left to be shown is that the reduction
does not abort too often. It is easy to see that in the uniform case the reduction aborts with
probability exactly 1/2, since v is uniform. Therefore the same (up to a negligible term)must
hold for the LWE case, as otherwise this test could be used to distinguish the two distribu-
tions.

• HybridH4: In this hybrid, we sample (C1, . . . ,Cη) uniformly.
Indistinguishability is statistical, and follows by the security of the GSW encryption scheme.

• HybridH5: In this hybrid, we compute β as follows:

β = q/2 · C(x) + r + (bT
C̃
+ cn+1)t.

where r ← [−q/4, q/4) is randomly sampled.
We claim that this distribution is identical to the previous one. Recall that in the previous
hybrid β was computed under the constraint that

MSB
(
β − (bT

C̃
+ cn+1)t

)
= MSB (e+ C(x)(v − u)) = C(x).

For C(x) = 0, e is uniform subject to MSB(e) = 0 because it is conditioned upon a random
v that is not present in the view of the distinguisher and therefore its marginal is uniform in
[−q/4, q/4). ForC(x) = 1, the term e+v−u is uniform subject toMSB(e+v−u) = 1 because
v is uniformly sampled.

We then define our simulator LFE.Sim to be identical to the last hybrid, where all bits of the ci-
phertexts are uniformly sampled, except for the most significant bit of β − (bT

C̃
+ cn+1)t, which is

set to be identical to C(x). For multi-bit outputs, the simulator acts identically, using independent
randomness for each ciphertext, and in particular for each βi. At this point, we can appeal to the
fact that

{C(x), auxx} ≈c

{
u, auxx : u← {0, 1}ℓ

}
to conclude that the output of the simulator is computationally indistinguishable from uniform.
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Efficiency. Overall, we presented a blind LFE scheme for a circuit C : {0, 1}η → {0, 1}ℓ with
depth d = depth(C), with the following asymptotic sizes:

|crs| = poly(λ, d) · η and |hashC | = poly(λ, d) · ℓ and |ct| = poly(λ, d) · η · ℓ.

Furthermore, we have the following asymptotic runtimes of the algorithms:

|LFE.Setup| = poly(λ, d) · η and |LFE.Hash| = |LFE.Dec| = poly(λ, |C|)

whereas
|LFE.Enc| = poly(λ, d) · η · ℓ and depth(LFE.Enc) = poly(λ, d).

5.3 Decreasing the Depth of the Encryption Algorithm

In the following we show a generic transformation to decrease the depth of the encryption algo-
rithm of our blind LFE scheme, without changing the complexity of the other algorithms.

Blind Randomized Encodings. We recall the notion of blind randomized encodings (RE) from
[BLSV18].
Definition 5.4 (BlindRandomizedEncodings). AblindRE consists of twoPPT algorithm (RE.Enc,RE.Enc)
with the following syntax.

• RE.Enc(C,x): On input a circuit C and an input x, the encoding algorithm returns an en-
coding Ẽ.

• RE.Dec(Ẽ): On input an encoding Ẽ, the decoding algorithm returns an output y.
We require the following properties to hold.

• (Correctness) For all circuits C and inputs x it holds that

RE.Dec(RE.Enc(C,x)) = C(x).

• (Depth-Independence) The circuit depth of the encoding algorithm is independent of C, in
other words

depth(RE.Enc) = poly(λ).

• (Blindness) Let InputSamp be a sampling algorithm which produces pairs (x, auxx) and let
C be a circuit. We require that if

{C(x), auxx} ≈c

{
u, auxx : u← {0, 1}ℓ

}
then

{RE.Enc(C,x), auxx} ≈c

{
u, auxx : u← {0, 1}|Ẽ|

}
.

where (x, auxx)← InputSamp(1λ).
It is shown that blind randomized encodings can be constructed from any PRF, and we recall

here a sketch of the construction for completeness. For a detailed analysis, we refer the reader
to [BLSV18].

48



Theorem 5.5 ([BLSV18]). If there exists a PRF, then there exists a blind randomized encoding scheme for
all polynomial-size circuits.

Proof Sketch. For each wirew in the circuit sample a permutation bit αw ← {0, 1} and two PRF keys
sw,b ← {0, 1}λ. For any logical gate g : {0, 1}2 → {0, 1}, with input wires w1, w2 and output wire
w3, and for all β1, β2 ∈ {0, 1} compute the table entry

Tg,β1,β2 = (sw3,α3⊕β3 , β3)⊕ PRF(sw1,α1⊕β1 , (g, β1, β2))⊕ PRF(sw2,α2⊕β2 , (g, β1, β2))

where β3 = g(α1 ⊕ β1, α2 ⊕ β2)⊕ β3.
The output of the randomized encoding contains all the table entries {Tg,β1,β2}, together with

the the permutation bits {αj} for all output wires j, and the pairs {si,xi , xi⊕αi} for all input wires
i. The evaluate the encoding, follow the gates in topological order, and unmask the PRF output
with the provided information. Follow the pointers in the last bit to decide which entry of the table
to unmask.

Transformation. We now compile our blind LFE scheme into one with shallow encryption algo-
rithm. The LFE.Setup and LFE.Hash algorithms are unchanged, so we only describe the modifica-
tion of the remaining algorithms.

• LFE.Enc∗(crs, hashC ,x): Sample r ← {0, 1}r where r is the amount of random coins needed
by the LFE.Enc algorithm. Compute

Ẽ ← RE.Enc(LFE.Enc, (crs, hashC ,x, r))

and return ct = Ẽ.
• LFE.Dec∗(crs, C, ct): Return

LFE.Dec(crs, C,RE.Dec(Ẽ)).

Since the blind RE scheme is perfectly correct, the correctness of the compiled scheme follows
immediately from that of the underlying blind LFE. Next we show that the scheme is still blind.
Theorem 5.6. If the RE scheme and the LFE scheme are blind, then the LFE scheme as described above
satisfies blindness.

Proof. Follows by observing that the output of LFE.Enc(crs, hashC ,x) is uniformly distributed if so
is C(x), and consequently so is the output of

RE.Enc(LFE.Enc, (crs, hashC ,x); r)

Thus we can conclude the proof by appealing to the blindness of the RE scheme.
Finally, we argue that the complexity of the scheme is not increased by this transformation. In

particular, the new size of the ciphertext is boundedby the complexity of the old LFE.Enc algorithm,
times a fixed polynomial in the security parameter, which is |ct| = poly(λ, d) · η · ℓ, same as before.
On the other hand, the depth of the new encryption algorithm is

depth(LFE.Enc∗) = poly(λ)

regardless of the depth of C.
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5.4 Decreasing the Correctness Error

In the followingwe show how to arbitrarily decrease the correctness error of our blind LFE scheme.
Note that the blind randomized encoding scheme of [BLSV18] has perfect correctness, and there-
fore the only error happens when the base LFE scheme causes an error. Upon closer inspection,
we note that the only event that triggers an error is whenever

MSB
(
e+ C(x)(sT ,−1)Gt+ (eC̃ + e)t

)
̸= MSB

(
e+ C(x)(sT ,−1)Gt

)
.

Note that this can only happen if

e+ C(x)(sT ,−1)Gt ∈ [−Be, Be] ∪ [q/2−Be, q/2 +Be] (5.2)

where Be = (m+ 2)d ·B · log(q) ·m2 · L+ B̃ ·m is the bound on the magnitude of the noise term.
Thus, we can drive down the correctness error by letting the encrypter run N parallel instances of
the encryption algorithm, and each time check if Eq. (5.2) does not hold for both C(x) = 0 and
C(x) = 1. The probability that none of the instances passes this check decreases exponentially in
N . The runtime of the encryption algorithm is increased by a factor ofN and its depth is increased
by a factor log(N) < λ, and thus it is asymptotically unchanged. Therefore we henceforth assume
that the LFE has an arbitrary ε correctness error and the runtime of the encryption algorithm is
changed to

|LFE.Enc| = poly(λ, d, log(1/ε)) · η · ℓ

with all other asymptotics unchanged.

5.5 Decreasing the Size of the Ciphertext

Finally, we further reduce the ciphertext of our LFE scheme by another generic transformation,
whichuses a standardpseudorandomgeneratorPRG and a blind obfuscation (xPRO.Obf, xPRO.Eval).
For a circuit C, let us define the circuit C∗ as

C∗(x,K) = xPRO.Obf(1λ, C,x;PRG(K)).

Wedefine the new LFE scheme to hashC∗ instead, but except for this the algorithms LFE.Setup and
LFE.Hash are unchanged. Below we describe the modifications to the encryption and decryption
algorithms.

• LFE.Enc∗(crs, hashC∗ ,x): SampleK ← {0, 1}λ and return

LFE.Enc(crs, hashC∗ , (x,K))

• LFE.Dec∗(crs, C∗, ct): Define K̃ = LFE.Dec(crs, C∗, ct) and return

xPRO.Eval(C, K̃)

where xPRO.Eval(C, K̃) evaluates the obfuscated circuit on all inputs.

Correctness of the scheme follows immediately by a union bound on the correctness of the LFE
and the xPRO schemes. The next theorem establishes the blindness of the construction.
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Theorem 5.7. If the PRG is pseudorandom and the xPRO scheme and the LFE scheme are blind, then the
LFE scheme as described above satisfies blindness.

Proof. Assuming that C(x) is computationally indistinguishable from uniform, we have that{
xPRO.Obf(1λ, C,x;PRG(K)), auxx

}
≈c

{
xPRO.Obf(1λ, C,x), auxx

}
≈c {u, auxx}

where the first implication follows by the pseudorandomness of the PRG and the second implica-
tion follows by the security of xPRO. Appealing to the blindness of the LFE, we can conclude that
LFE.Enc(crs, hashC∗ , (x,K)) is computationally close to uniform.

Note that the asymptotic complexity of the algorithms is unchanged, with the exception of the
size of the ciphertext, which is now bounded by |ct| = poly(λ, d) · η · ℓ1−δ, for some constant δ > 0.
Since we can always increase ℓ artificially by, e.g., padding the output with pseudorandom bits, we
can assume without loss of generality that ℓ dominates the above expression and therefore that

|ct| ≤ ℓ

2
(5.3)

which is going to be a more convenient bound to work with.

6 Bootstrapping Pseudorandom Obfuscation

We provide here our bootstrapping theorems for PRO. First we show how to construct a PRO for
circuits starting from a blind LFE with appropriate efficiency properties. Then we show how to
bootstrap any PRO for circuits into a PRO for Turing machines.

6.1 Pseudorandom Obfuscation for Circuits

We provide here our bootstrapping theorem for pseudorandom obfuscation, which is similar in
spirit to the transformation shown in [BV15, AJ15]. We are going to obfuscate an arbitrary pseu-
dorandom function

PRF : {0, 1}λ × {0, 1}η → {0, 1}ℓ

provided that it is truth-table pseudorandom, namely that it is pseudorandom against any distin-
guisher running in time polynomial in 2η that gets to see the entire truth table of PRF(K, ·) for a
random K. To achieve this, we are going to use the following ingredients:

• The blind LFE scheme (LFE.Setup, LFE.Hash, LFE.Enc, LFE.Dec) presented in Section 5.2, after
applying the transformations described in Section 5.3, Section 5.4, and Section 5.5.

• A pseudorandom function PRF∗ : {0, 1}λ × {0, 1}η → {0, 1}r where r = r(λ) is the number
of random coins needed by the LFE.Enc algorithm.

The security of both primitives is governed by the security parameter λ, which we set in such a
way that security holds also for sub-exponential adversaries running in time polynomial in 2η.
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Construction. Our construction proceeds as follows.
• PRO.Obf(1λ,PRF,K): Sample keys (K∗2 , . . . ,K∗η)← {0, 1}λ. Then sample crsη ← LFE.Setup(1λ)

and compute hashη ← LFE.Hash(crs, Cη) where the circuit Cη is defined as:

Cη(K,x) = PRF(K,x).

Then, for all i = {η− 1, . . . , 1} compute crsi ← LFE.Setup(1λ) and hashi ← LFE.Hash(crsi, Ci)
where the circuit Ci is defined as:

Ci(K, (crsj , hashj ,K
∗
j )j=i+1,...,η, x) =(

LFE.Enc(crsi+1, hashi+1, (K, (crsj , hashj ,K
∗
j )j=i+1,...,η, x, 0);PRF

∗(K∗i+1, (x, 0))),

LFE.Enc(crsi+1, hashi+1, (K, (crsj , hashj ,K
∗
j )j=i+1,...,η, x, 1);PRF

∗(K∗i+1, (x, 1)))

)
.

Note that representations of the Ci as boolean circuits can be publicly and efficiently com-
puted given only the security parameter 1λ.
The obfuscated circuit K̃ consists of

{crsi}i∈{1,...,η}

and {
ct1,x ← LFE.Enc(crs1, hash1, (K, (crsj , hashj ,K

∗
j )j=2,...,η, x))

}
x∈{0,1} .

• PRO.Eval(PRF, K̃, x): To evaluate the obfuscated circuit at a point x ∈ {0, 1}η, proceed as
follows. For all i ∈ {1, . . . , η − 1} compute recursively

(cti+1,0, cti+1,1)← LFE.Dec(crsi, Ci, cti,xi)

where ct1,0, ct1,1 are the LFE ciphertexts contained in K̃. Return

LFE.Dec(crsη, Cη, ctη,xη)

Analysis. To see that the scheme is efficient, it suffices to argue that the size of each circuit Ci

is bounded by some polynomial in the security parameter, which is also an upper bound on the
runtime of the LFE algorithms. For Cη, this is trivial since it only computes the output of PRF,
which is efficient. On the other hand, the complexity of other circuits Ci is dominated by two
computations of PRF∗, together with two calls to the LFE.Enc ciphertext. Overall, we can bound
this by

|Ci| = poly(λ, depth(LFE.Enc)) · (2λ+ η) · 2|cti+1|
= poly(λ) · 2|cti+1|

which holds because the depth of the LFE.Enc algorithm is bounded by a fixed polynomial in the
security parameter and η < λ. Then, denoting by ℓi the size of the output of Ci and applying
Eq. (5.3), we obtain that

|Ci| = poly(λ) · 2|cti+1| ≤ poly(λ) · 2ℓi+1

2
= poly(λ) · 2|cti+2| ≤ · · · ≤ poly(λ) · ℓη.
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Since ℓη = ℓ is just the size of the output of PRF, then efficiency follows. In particular, the above
recurcive bound establishes that the size of the obfuscated circuit is polynomial in the size of an LFE
ciphertext evaluating PRF, which is in turn bounded by a factor poly(λ, d, η, ℓ) = poly(λ, d), where
d is the circuit depth of PRF. Furthermore, the depth of the circuit computing the obfuscation is
bounded by a fixed polynomial in λ, by the depth-independence of the LFE.

On the other hand, correctness follows by a union bound on the ε-correctness of the LFE: As
argued above, each ciphertext is of size bounded by a polynomial in the security parameter, and
we have at most 2η of them. Setting ε = 2−ω(η,log(λ)) we obtain an arbitrary small correctness error,
where the only other algorithm that depends on this parameter is

|LFE.Enc| = poly(λ, d, log(1/ε)) · η · ℓ = poly(λ, d) · η · ℓ = poly(λ)

since η < λ. As for security, the following theorem establishes our main result.

Theorem 6.1. If PRF schemes are pseudorandom and the LFE scheme is blind, both against distinguishers
running in time polynomial in 2η, then the obfuscation scheme as described above satisfies pseudorandom-
ness.

Proof. By the pseudorandomness of PRF, we have that

{PRF(K,x)}x∈{0,1}η , auxK ≈c {ux : ux ← {0, 1}ℓ}x∈{0,1}η , auxK

then, by appealing to the pseudorandomness of PRF∗ and the blindness of the LFE scheme, we
have that

{LFE.Enc(crsη, hashη, (K,x);PRF∗(K∗η , x))}x∈{0,1}η , auxK
≈c {LFE.Enc(crsη, hashη, (K,x); rx) : rx ← {0, 1}r}x∈{0,1}η , auxK
≈c {zx : zx ← {0, 1}|ctη |}x∈{0,1}η , auxK

Observing that the ciphertexts at level i + 1 are the outputs of the computation at level i, we can
apply the above argument recursively to conclude that

{LFE.Enc(crs1,hash1, (K, (crsj , hashj ,K
∗
j )j=2,...,η, x))}x∈{0,1}, auxK

≈c {zx : zx ← {0, 1}|ct1|}x∈{0,1}, auxK .

The proof is concluded by observing that the obfuscated circuit K̃ no longer depends onK.

6.2 Pseudorandom Obfuscation for Turing Machines

TuringMachines. Formally, a TuringMachine is described by a tupleM = (Σ, S, f), whereΣ is a
finite alphabet, S is a set of states containing the starting and the halting state, and f is a transition
function. In this work, we always consider the alphabet and the set of states as fixed, and therefore
a Turing Machine is completely described by its transition function, which we assume to be given
in circuit formCf . The Turingmachine is given a worktape, that the machine can use to read/write
information, and an output tape, that themachine can use to output some information. We assume
without loss of generality that the input is loaded in the worktape and that the Turing machine is
deterministic. Furthermore, we can also assumewithout loss of generality that the Turingmachine
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is oblivious, i.e., the movements of the head are deterministic and do not depend on the input of
the computation, but only on its size [AB06, Imp11]. It is well-known that, fixing an input size s
and a runtime T , an oblivious Turing machine can be converted into a circuit of size O(sT ), and
we denote this size by Circuit(s, T ).

We are going to define the gate-synthesis functionG that takes as input the description of a Turing
machineM and a gate index i, and returns the topology of the i-th gate of the corresponding circuit.
The topology of a gate includes the logical operation performed by the gate, as well as the indices
of the input and output wires. We are going to state a well-known fact from complexity theory.
Proposition 6.2. LetM be a Turing machine, there exists a gate-synthesis function G such that

|G| = poly(|M |, log(s), log(T ))

where |G| denotes the circuit size of G.

Proof Sketch. Since the Turing machine is oblivious, this means that the position of the head on
the tape at any given point in the computation is fixed, and in fact it can be efficiently computed
without running the entire computation. For the simplest model of oblivious Turing machines,
where the machine runs over the entire tape at each step, this can be done using simple modular
arithmetic.

The circuit conversion process then defines a circuit that checks that each cell position is correct
at every time step. This is done by checking that the neighboring cells in the current time step and
the previous time step, along with the state of the Turing machine, are all valid. Since we need to
verify a constant number of cells at each time, the overhead is constant.

Obfuscating Turing Machines. We show how to use a PRO for circuits to obfuscate any pseu-
dorandom function PRF : {0, 1}η × {0, 1}λ → {0, 1}ℓ, where the complexity of the obfuscation
algorithm grows only with the size of the Turing machine description of PRF. We denote this
scheme by

PROTM = (PRO.ObfTM,PRO.EvalTM)

We are going to use as additional building blocks another pseudorandom function PRF∗ and the
blind randomized encoding scheme from Theorem 5.5. Specifically, on input a Turing machine
MPRF, an input size η, and a runtime T , we define the circuit CMPRF,η,T (K,K∗, i, x) as follows:

• Compute gi ← G(MPRF, i)where i ∈ {1, . . . ,Circuit(η, T )}.

• Let W = {w} the set of wires associated with gi, where we can assume without loss of gen-
erality that |W | = O(1). Compute

αw ← PRF∗(K∗, (perm, x, w)) and {sw,b ← PRF∗(K∗, (key, x, w, b))}b∈{0,1} .

• If gi is an input gate, then it consists of a single wire w, and we return (sw,xw∗ , αw ⊕ xw∗) or
(sw,Kw∗ , αw ⊕ Kw∗), depending on whether it is a gate corresponding to x or K. Here w∗

denotes the bit of the input corresponding to the w-th wire.

• If gi is an input gate, then it consists of a single wire w, and we return αw.

• Otherwise we compute and return the encoding table as specified in Theorem 5.5.
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Our obfuscation consists of the output of K̃ ← PRO.Obf(1λ, CMPRF,η,T , (K,K∗)), for a uniformly
sampled K∗ ← {0, 1}λ. To evaluate a circuit on input x ∈ {0, 1}η, we simply recompute

Ẽ ← (PRO.Eval(CMPRF,η,T , K̃, (1, x)), . . . ,PRO.Eval(CMPRF,η,T , K̃, (Circuit(η, T ), x)))

and output RE.Dec(Ẽ). The next theorem establishes the pseudorandomness of the construction.

Theorem 6.3. If the PRF schemes and the PRO scheme are pseudorandom and RE scheme is blind, all
against distinguishers running in time polynomial in 2η, then the obfuscation scheme as described above
satisfies pseudorandomness.

Proof. The proof follows routinely by invoking (in this order) the pseudorandomness of PRF and
PRF∗, the blindness of the RE scheme, and the pseudorandomness of PRO. Since the truth-table
of the obfuscated circuit is bounded by a polynomial in 2η and the security parameter, this is also
an upper bound in the runtime of the reductions.

As for efficiency, note that the size of the obfuscated circuit CMPRF,η,T only depends on |MPRF|
(in terms of the circuit-size of the transition function), η, and λ, since all operations performed by
the circuit concern single gates of the computation, and are otherwise independent on the runtime
T (except for a factor of log(T ) in the input size which is anyway absorbed in the λ factor). Thus,
we can bound the size of the obfuscated program, as well as the circuit-size of the obfuscator by

|K̃| =
∣∣PRO.ObfTM

∣∣ = poly(λ, |MPRF|, η).

Plugging in the PRO for circuits constructed in Section 6.1, we can slightly improve the size of
the obfuscated program to |K̃| = poly(λ, depth(MPRF), η), where depth(MPRF) is the depth of the
circuit implementing the transition function ofMPRF.

7 Applications

We show how PRO allows us to construct a number of foundational cryptographic primitives,
sometimes allowing us to bypass well-known limitations of indistinguishability obfuscation. Sec-
tion 7.1 constructs an (unleveled) FHE scheme and Section 7.2 constructs a succinct randomized
encoding scheme, both from iPRO. Section 7.3 constructs a succinct witness encryption scheme,
this time assuming the stronger notion of PRO.

7.1 Fully Homomorphic Encryption

We show how PRO combined with the GSW (leveled) homomorphic encryption scheme allows us
to construct fully-homomorphic encryption (FHE)without resorting to any circularity assumption,
by instantiating the template from [CLTV15]. For simplicity, wewill describe the secret key version
of the protocol. One can then use the techniques of Rothblum [Rot11] to upgrade this scheme to a
public-key FHE scheme.

Recall that in the GSW encryption, the public evaluation key for depth-d evaluation consists of
d components

p = (p1, . . . ,pd)
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where the i-th component of the public key consists of an encryption of the (i − 1)-th private key
component si under the i-th private key component si+1. In a slight abuse of notation, we denote
by

pi ← Encsi+1(si)

the bit by bit encryption of si under key si+1. We shall think of the index i as ranging over [ℓ]where
ℓ = 2log

2(λ); that is, ranging over a slightly superpolynomial domain. Following the approach from
[CLTV15], we will define a circuit that, intuitively, computes pi given i. The FHE public key pk
will be an obfuscation of this circuit. The only difference from [CLTV15] is that we use a iPRO to
perform this obfuscation rather than an iO. We now describe the construction in more detail.

Construction. Let PRF be a subexponentially secure puncturable pseudorandom function. Let
KeyGen(sk, i) be a circuit that has sk hardcoded and takes as input i ∈ [ℓ(λ)] where ℓ(λ) = 2log

2 λ,
and performs the following operations.

• Compute si = GSW.Gen(1λ;PRF(sk, i)) and si+1 = GSW.Gen(1λ,PRF(sk, i + 1)) and ri =
PRF(sk, (rand, i)), where rand is a label (i.e., an arbitrary fixed constant).

• Output Encsi+1(si; ri).
Now, we construct the new FHE scheme as follows.

• FHE.Gen(1λ) : Sample the secret key as sk ← PRF.Gen(1λ), and the public key as ek ←
iPRO.Obf(1λ,KeyGen(sk, ·)).

• FHE.Enc(sk,m) : Compute s1 = GSW.Gen(1λ;PRF(sk, 1)). Output GSW.Encs1(m).

• FHE.Eval(ek, C, (c1, . . . , cη)) : Proceed just as in GSW homomorphic evaluation, but derive
evaluation keys pi via pi ← iPRO.Eval(C, ek, i) when needed.

• FHE.Dec(sk, ct, i) : Compute si = GSW.Gen(1λ;PRF(sk, i)) and output GSW.Dec(si, ct).

Note that, analogously to [CLTV15], we assume without loss of generality that the decryption
circuit takes as input the depth i of the evaluation circuit. (One can always include this depth as
an additional component of the ciphertext.)

Correctness and security. Correctness of the scheme follows directly from the correctness of
GSW and the correctness of the PRO scheme.

To show semantic security, it suffices to show that the following two hybrids are indistinguish-
able.

• HybridHℓ : Sample ek← iPRO.Obf(1λ,KeyGen(sk, ·)) and set

s1 := GSW.Gen(1λ,PRF(sk, 1))

Output (ek, s1).
• HybridH0 : Consider the program fsk′ which works for:

fsk′(j) = PRF.Eval(sk′, j)

Set ek′ ← iPRO.Obf(1λ, fsk′) and s1 := GSW.Gen(1λ,PRF(sk, 1)). Output (ek′, s1).
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Since ek′ in H0 is independent of s1, one can invoke GSW semantic security with respect s1. In
particular, this must also mean that semantic security holds inHℓ, i.e. the construction.

To show Hℓ and H0 are indistinguishable, we follow the argument of [CLTV15] and puncture
the truth-table one input at a time (the only difference is that we require that the truth-table to
additionally be pseudorandom). We will also use the fact that for all k ∈ [ℓ],

s1,Encs2(s1), . . . ,Encsk(sk−1) ≈C s1, u2, . . . , uk

for uniformly sampled strings ui of appropriate length.
we define the following intermediate hybrid Hi and show that Hi+1 and Hi are indistinguish-

able.:

• HybridHi : Consider the program fsk,sk′ which works for:

fsk,sk′,i(j) =

{
KeyGen(sk, j) for j < i

PRF.Eval(sk′, j) for j ≥ i.

Set ek← iPRO.Obf(1λ, fsk,sk′,i) and s1 ← GSW.Gen(1λ,PRF(sk, 1)).

We show how to go fromHi+1 toHi with more intermediate hybrids.
• HybridHi+1,1: Puncture sk on points ri = (rand, i) and i + 1 to get key sk{i} (note the

abuse of notation here - sk is punctured on two points defined by the index i). Let α =
GSW.Gen(1λ;PRF(sk, i)) and β = PRF(sk, (rand, i)). Let ct = Encα(sj , β).
Now, let

fsk{i},sk′,i,ct =


KeyGen(sk{i}, j) for j < i

ct for j = i

PRF(sk′, j) for j ≥ i+ 1.

Set ek ← iPRO(1λ, fsk{i},sk′,i,ct) and s1 ← GSW.Gen(1λ,PRF(sk, 1)).

This hybrid follows from the functionality equivalence of the and the pseudorandomness of
the truth table of the obfuscated program.

• HybridHi+1,2: Replace α and β with uniformly random strings. This follows from the punc-
tured key security of sk{i}.

• HybridHi+1,3: Replace ctwith a uniformly random string. This hybrid follows from the fact
that GSW ciphertexts are pseudorandom.

• HybridHi+1,4: Puncture sk′ on i to get key sk′{i}, and unpuncture sk. Obfuscate the program

fsk,sk′{i},i,ct =


KeyGen(sk, j) for j < i

ct for j = i

PRF(sk′{i}, j) for j ≥ i+ 1.

This hybrid follows from the functionality equivalence of the and the pseudorandomness of
the truth table of the obfuscated program.
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• HybridHi+1,5: Replace ctwithPRF(sk′, i). This follows from the punctured security of sk′{i}.

• HybridHi+1,6: Unpuncture the key sk′ and obfuscated the program:

fsk,sk′,i(j) =

{
KeyGen(sk, j) for j < i

PRF.Eval(sk′, j) for j ≥ i.

This hybrid follows from the functionality equivalence of the and the pseudorandomness of
the truth table of the obfuscated program.

Therefore, via O(ℓ) hybrids, we have thatHℓ ≈c H0.

7.2 Succinct Randomized Encodings

A randomized encoding (RE) allows one to delegate the computation of a function F : {0, 1}|x| →
{0, 1} on an input x, while not revealing anything but F (x). (For convenience, here we consider
only functions with single-bit outputs but the more general case can be easily achieved by parallel
repetition.) A randomized encoding is succinct [BGL+15] if, when F is represented as a Turing
machine TM, the encoding of (F, x) has size polynomial in |TM|, |x|, and λ, and the runtime of
the decoding algorithm is polynomial in t and λ, where t is the runtime of TM on input x. In
this section, we show two ways to use pseudorandom obfuscation to realize succinct RE. First, we
show that succinct RE is an almost-immediate application of our PRO for Turing machines, using
a one-time pad trick. Second, we show that even iPRO suffices for succinct RE, by instantiating the
succinct garbling construction of Ananth and Lombardi [AL18] with the blind garbling scheme of
Brakerski, Lombardi, Segev and Vaikuntanathan [BLSV18] and then using the same trick.

7.2.1 Succinct Randomized Encodings from PRO

Construction. Consider the keyed function F̃ which on key (x, r), outputs the single value

F̃ (x, r) = F (x)⊕ r.

Our succinct randomized encoding consists of the obfuscatedprogram K̃ ← PRO.ObfTM(1λ, F̃ , (x, r)),
along with the uniformly sampled r ← {0, 1}. To recover the output, simply compute

PRO.EvalTM(F̃ , K̃)⊕ r

noting that the obfuscated program takes no additional input.
Correctness is immediate. For efficiency, the runtime of the encoder (for single-bit functions)

and the size of the encoding is bounded by a polynomial in the size of the input |x|, the size of the
Turing machine computing F , and the security parameter λ.

Security. For security, it suffices to show that there exists a polynomial time simulator Sim such
that:

(K̃, r), f(x) ≈c Sim(1λ, f(x)), f(x).

We first note that by construction

F (x)⊕ r, F (x) ≈c u, F (x)
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where u is uniformly sampled. Therefore, by PRO security, we have that

K̃, F (x) ≈c ũ, F (x)

for a uniformly sampled ũ.We now define the simulator Sim as follows: On input F (x),
• Sample a uniformly random string ũ to be the length of K̃.
• Compute r′ ← PRO.EvalTM(F̃ , ũ)⊕ F (x).

• Output (ũ, r′).
Then, we have that:

(K̃, r), F (x) =s (K̃,PROTM(F̃ , K̃)⊕ F (x)), F (x)

≈c (ũ,PRO
TM(F̃ , ũ)⊕ F (x)), F (x)

=s Sim(1λ, F (x)), F (x)

where the first statistical equality follows from the correctness of the PRO scheme, the second
computational indistinguishability follows from the PRO scheme, and the third statistical equality
follows from the definition of Sim.

7.2.2 Succinct Randomized Encodings from iPRO

In this section, we construct a succinct randomized encoding for small-space Turingmachines (e.g.,
with maximum space usage polynomial in the security parameter), with runtime bounded by a
polynomial that is known in advance.8 Our encoding relies on the succinct garbling construction
of [AL18], which upgrades a locally-simulatable garbling scheme to a succinct garbling scheme.
In addition to iPRO, we will need a blind, locally simulatable garbling scheme, as guaranteed by
the following. (We refer the reader to [BLSV18] and [AL18] for the definitions of blindness and
local simulatability, respectively.) We assume subexponential security of all primitives.
Theorem7.1. Assume (subexponentially-secure) one-way functions exist. Then there exists a (subexponentially-
secure), blind, (Lsim, Linp)-locally-simulatable garbling schemewithLsim(λ,C) = w·poly(λ) andLinp(λ, n,m) =
poly(λ, n), where w is the width of C.

We will not give a detailed proof here. The scheme is the BLSV blind garbling scheme of
[BLSV18], which can be viewed as a slight modification of Yao’s garbling scheme. Indeed, the
proof given in [AL18] that Yao’s garbling scheme is locally-simulatable with the above parameters
goes through for the BSLV scheme with only minor modifications.

Let succGC = (Setup,TMEncode, InpEncode,Eval) be the bounded-runtime succinct garbling
construction of Ananth and Lombardi [AL18] instantiated with the locally simulatable garbling
scheme ΠLGC of Theorem 7.1. We briefly recall the definition of TMEncode and refer the reader to
[AL18] for details. LetCM,T be the circuit that computes T steps ofM on inputs of the appropriate

8We suspect that it is possible to remove both these restrictions and construct a succinct randomized encoding for
arbitrary polynomial-time Turing machines. In particular, we suspect that one can remove the small-space restriction
by showing that a variant of the Ananth and Lombardi locally-simulatable garbling scheme is blind. And we suspect
that one can remove the bounded polynomial runtime restriction by adapting the techniques of Ananth and Lombardi
for removing the same restriction in the context of garbling schemes.
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length. Let H be a circuit that on input a gate index g of CM,T , outputs the corresponding gate of
ΠLGC .Garble(gsk, CM,T ).9 On input a secret key gsk, time bound T , and T -time Turing machineM ,
TMEncode outputs (T, iO(H)). In this section, we will consider a modified version of the scheme
where TMEncode outputs (T, iPRO(H)) instead of (T, iO(H)). Henceforth we will use succGC =
(Setup,TMEncode, InpEncode,Eval) to refer to the modified scheme. Since we are in the context
of randomized encodings, where the input is encoded together with the circuit, we can assume
without loss of generality that the input is hardwired into the circuit, and ignore the input encoding
algorithm InpEncode.

For r ∈ {0, 1}, we denote by M (r) a TM such that for all inputs x, M (r)(x) = M(x) ⊕ r. Given
a secret key gsk and time bound T , for r ∈ {0, 1}, we denote by (T, Fr) the output of TMEncode on
input gsk, T , and M (r). We view {Fr}r as a two-element keyed function family.

Construction. On input a Turing machine M and time bound T ,10 our succinct randomized
encoding algorithm behaves as follows. It first samples gsk using Setup(1λ), and samples r ←
{0, 1}. Then it runs TMEncode on input gsk, T , and M (r) to obtain Fr. Then, it computes K̃ =
iPRO.Obf({Fr}r, r). Finally, it outputs K̃ and r.

On input an encoding K̃, r, the decoding algorithmfirst uses K̃ to compute the garbling ⟨C(r)⟩ =
(iPRO.Eval(K̃, g))g of C(r) gate by gate. It then outputs ΠLGC .Eval(⟨Cr⟩).

Correctness is again immediate from the correctness of iPRO andΠLGC . Efficiency follows from
the efficiency of succGC, iPRO and ΠLGC .

Security. Again, it suffices to show that there exists a polynomial-time simulator Sim such that
K̃, r ≈c Sim(1λ,M(x)) .

Weshow this by exhibiting a sequence of hybrids such that the final hybrid is efficiently computable
given only M(x). Below, all indistinguishabilities hold even against adversaries running in time
poly(|TT(Fr)|).

Using correctness, we first rewrite K̃, r as
K̃, r = K̃,M(x)⊕ΠLGC .Eval((iPRO.Eval(K̃, g))g (7.1)

Note that this is efficiently computable from M(x) and K̃, so it remains to show that K̃,M(x) ≈c

Y,M(x), where Y is efficiently computable fromM(x).
As a first step, we show iPRO security can be applied to K̃ in Eq. (7.1); that is, we show that

TT(Fr) is pseudorandom givenM(x). Indeed, we have
M(x), TT(Fr) = M(x),ΠLGC .Garble(gsk, C

(r)) ≈c M(x), u,

because ΠLGC is blind, and the outputM(x)⊕ r of C(r) is uniformly random givenM(x). Having
established this, we follow the security proof ofAnanth andLombardi [AL18]. Their security proof
consists of showing the indistinguishability of a sequence of hybrids H0, . . . ,HN for N ≤ poly(λ),
where each hybridHi has the form11 iO(Hi),H0 = K̃, andHN is efficiently computable fromM(x).

9This is possible due to local simulatability. In general, the outputs may be local components of polynomial size, but
the notion of “gate” is more intuitive. (And, in the scheme ΠLGC the local components do correspond to gates.)

10Recall that we assume WLOG that the input is hardwired intoM .
11In the security proof of [AL18] there is also an input encoding Ii, but for us this is empty, as we have assumed

without loss of generality that the input is hardwired into the circuit that we are encoding. We are also ignoring the
time bound T .
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One can efficiently compute M(x) from each Hi, so we can equivalently write each hybrid in
the form

iO(Hi),M(x) .

so that, if iO is replaced with iPRO, then H0 is exactly the left-hand side of the desired claim,
namely K̃,M(x) ≈c Y,M(x), and HN matches the right-hand side of the desired claim. Thus, it
suffices to argue the indistinguishability of a sequence of hybrids H′0, . . . ,H′N that are identical to
H0, . . . ,HN except that iO is replacedwith iPRO. We go by the following inductivemeta-argument.
We claim that for all 0 ≤ i ≤ N , we have H′0 ≈c H′i, even against adversaries running in time
poly(|CM,T |). ClearlyH′0 = H′0. Now, suppose thatH′0 ≈c H′i. There are two cases. In the first case,
the Ananth and Lombardi proof thatHi ≈c Hi+1 is not an application of iO security, in which case
the same proof shows that Hi ≈c Hi+1. In the second case, it is an application of iO security, and
we claim that iPRO security suffices instead. That is, we claim that inH′i, TT(Hi) is pseudorandom.
But this follows because H0 ≈c Hi holds even against adversaries running in time polynomial in
TT(Hi). Noting that we can set the parameters of the (subexponential) iPRO and ΠLGC primitives
sufficiently large so that even after a polynomial-factor loss at each of theN = poly(λ) hybrids, we
still obtainH′0 ≈c H′N , completes the proof.

7.3 Succinct Witness Encryption

It is an easy exercise to construct awitness encryption [GGSW13] (without full succinctness) given
a dPRO scheme. For a given relation R and a statement x and a message m, define the circuit
CR,x(K,m,w) as follows.

• IfR(x,w) = 1, return m.

• Otherwise return PRF(K, (x,w)).

The witness encryption form is then defined to be PRO.Obf(1λ, CR,x, (K,m)) for a uniformly sam-
pledK ← {0, 1}λ.

If the relation is not satisfiable, then there exists no valid witness, and therefore the truth-table
of the obfuscated circuit is pseudorandom. In other words, we have that

ct = WE.Enc(1λ,R, x,m) = PRO.Obf(1λ, CR,x, (K,m)) ≈c

{
u : u← {0, 1}|ct|

}
since

{PRF(K, (x,w))}w ≈c

{
uw : uw ← {0, 1}λ

}
w

for a uniformly sampledK. Note that for this to be the case, it must hold that λ is set in such a way
that the pseudorandomness of PRF and PRO holds against distinguishers running in time 2|w|,
and in particular λ > |w|. Thus the size of the ciphertext, which is |PRO.Obf(1λ, CR,x, (K,m))|,
is bounded by poly(λ, depth(R(x, ·)), |w|) where depth(R(x, ·)) is the depth of the circuit checking
the relation R. Since all NP-relations can be checked in poly-logarithmic depth, we can assume
without loss of generality that the bound is actually poly(λ, |w|).

As an alternative to the above scheme, another option is to use a (non-doubly) PRO-obfuscation
instead, combined with a compute-and-compare obfuscation [WZ17, GKW17]: The PRO obfusca-
tion guarantees semantic security, whereas the compute-and-compare obfuscation makes the ci-
phertext computationally indistinguishable from random bits. A third option is to use an iO-based
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witness encryption and combine it with compute-and-compare obfuscation. Both of the above al-
ternativeswould result into slightlyworse parameters (specifically, the size of the ciphertextwould
now depend on |x|).

Construction. Now, we show how to remove the dependence on the size of the witness, thus
obtaining a succinctwitness encryption. Themain idea is, in essence, to obfuscate a Turingmachine
(described in Section 6.2) which takes no input and generates a witness encryption ciphertext as
in the above naive scheme.

Let W = W (λ) be a polynomial upper-bound on the witness length. Let λW be the security
parameter for the witness encryption described above with witness length |w| = W , and let pW =
pW (|x|,W, λ) by a bound on the the number of random bits used be the scheme. Let G : {0, 1}λ →
{0, 1}pW be a uniformly generatable PRG (note that this property can be achieved by instantiating
it through PRFs). Consider the following Turing-machineMR,x.

• On input a seed s ∈ {0, 1}λ, and a messagem proceed as follows.

• Compute r ← G(s) ∈ {0, 1}pW .

• ReturnWE.Enc(1λW ,R, x,m; r).

We then set the ciphertext to be the obfuscation K̃ ← PRO.ObfTM(1λ,MR,x, (s,m)) for a uniformly
sampled s ← {0, 1}λ. The decryption algorithm simply evaluates the obfuscated program to re-
trieve a witness encryption ciphertext, which can be then decrypted using the witness. Note that,
by the efficiency of the PRO for Turing machine, we have that the runtime of the obfuscation pro-
cedure is bounded by∣∣∣PRO.ObfTM(1λ,MR,x, (s,m))

∣∣∣ = poly(λ, |R|, |x|, log(W ), |s|, |m|) ≤ poly(λ, |R|, |x|)

whereas the size of the obfuscated program is bounded by a polynomial in the security parameter,
in the size of the input (|s|, |m|), and in the depth of the transition function of the underlying Turing
machine. The transition function consists of (i) the evaluation of G and (ii) the computation of a
witness encryption ciphertext. The depth of the former computation can bemade poly-logarithmic
in pW (and thus bounded by some polynomial in λ) by using a low-depth pseudorandom func-
tion [BPR12], whereas the depth of the latter is also bounded by depth(R(x, ·)) = poly(λ), as dis-
cussed above. Thus, the size of the obfuscated program is bounded by some fixed poly(λ, |s|, |m|) =
poly(λ), as desired.

Security. To argue that the scheme is secure, we first argue that for all false statements x it holds
that {

WE.Enc(1λW ,R, x,m; z) : z ← {0, 1}pW
}
≈c

{
u : u← {0, 1}|ct|

}
against all distinguishers running in time polynomial in 2W , by the security of the base witness
encryption scheme. Clearly, the same holds for all distinguishers running in time polynomial in λ,
since λ < λW . We now consider distinguishers running in polynomial time (in λ) and we argue
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that {
WE.Enc(1λW ,R, x,m;G(s))

}
≈c

{
WE.Enc(1λW ,R, x,m; z) : z ← {0, 1}pW

}
≈c

{
u : u← {0, 1}|ct|

}
where the first implication holds by the security of G and the second implication was discussed
above. We can invoke the pseudorandomness of PROTM to conclude that K̃ is computationally
indistinguishable from an encryption of 0.

8 Indistinguishability Obfuscation

In this section, we show how to use iPRO to construct general-purpose iO, in conjunction with
other assumptions. We begin by recalling some basic definitions.

8.1 Definitions

We recall the definition of iO [BGI+01].

Definition 8.1 (IndistinguishabilityObfuscation). An iO scheme for a class of circuitsC : {0, 1}η →
{0, 1} consists of two PPT algorithm (Obf,Eval) with the following syntax.

• Obf(1λ, C): On input the security parameter 1λ and a circuit C, the probabilistic obfuscation
algorithm returns an obfuscated circuit C̃.

• Eval(C̃, x): On input an obfuscated circuit C̃ and an index x, the deterministic evaluation
algorithm returns an output y.

We require the following properties to hold.

• (ε-Correctness) For all λ ∈ N and all circuits C, it holds that

Pr
[
∀ x ∈ {0, 1}η : C(x) = Eval(Obf(1λ, C), x)

]
≥ 1− ε

where the probability is taken over the random coins of Obf.

• (Indistinguishability) For all λ ∈ N and all pairs of functionally-equivalent circuits C0 ≡ C1,
it holds that

Obf(1λ, C0) ≈c Obf(1
λ, C1).

In [LPST16] it is shown that the existence of iO is implied (along with the subexponential LWE
assumption) by the notion of exponentially efficient iO, denoted by xiO. An xiO (xiO.Obf, xiO.Eval)
scheme is defined identically as above, except that we allow the obfuscation algorithm to run in
time polynomial in the size of the truth table (2η) of C, and we only impose the following require-
ments:

• (Non-Trivial Efficiency) We require that |C̃| ≤ 2η(1−δ) for some constant δ > 0.

• (Shallowness) We require that depth(xiO.Obf) = poly(λ, |C|).

63



8.2 Bilinear Pairings and Quadratic Functional Encryption

Let G be a (prime-order) bilinear group generator, that is, G is an algorithm that takes as an input
a security parameter λ and outputs (G1,G2,GT , e, p, g1, g2), where G1,G2,GT is the description of
threemultiplicative cyclic group, e : G1×G2 → GT is an efficiently computable bilinear pairing, p is
the order of the group which is always a prime number, and g1, g2 are generators of the groupsG1,
G2 respectively. Additionally, we denote by gt = e(g1, g2). In this work we assume a bilinear group
where elements sampled uniformly at random are indistinguishable from random bitstrings. In
other words we require that

{g2 : g2 ← G2} ≈c {u : u← {0, 1}∗} .

While this is a non-standard property, we remark that examples of such groups are known in the
literature [BHKL13, Tib14].

The SXDH assumption postulates that the following distributions are computationally indis-
tinguishable

(g1, g2, g
x
b , g

y
b , g

xy
b ) ≈c (g1, g2, g

x
b , g

y
b , g

z
b ) for any b ∈ {1, 2}

where (G1,G2,GT , e, p, g1, g2)← G(1λ) and x, y, z ← Zp.
We recall the definition of quadratic functional encryption (FE), specialized to the case of bi-

linear groups and with a very weak security notion, that is however sufficient for our purposes.
Definition 8.2 (Quadratic Functional Encryption). A quadratic FE scheme consists of four PPT
algorithm (Setup,KeyGen,Enc,Dec) with the following syntax.

• Setup(1λ): On input the security parameter 1λ, it outputs a pair of master public and secret
keys (mpk,msk).

• KeyGen(msk, f): On input a master secret keymsk and a quadratic function f : Zn
p ×Zn

p → Zp,
it outputs a functional secret key skf .

• Enc(mpk,m): On input a master public key mpk and a message m ∈ Zn
p × Zn

p , outputs a
ciphertext ct.

• Dec(skf , ct): On input a functional secret key skf and a ciphertext ct, returns a group element
in gt.

We require the following properties to hold.
• (Correctness) For all λ ∈ N, all f : Zn

p × Zn
p → Zp, and all m ∈ Zn

p × Zn
p , it holds that

Pr
[
Dec(KeyGen(msk, f),Enc(mpk,m)) = g

f(m)
t

]
= 1

where (mpk,msk)← Setup(1λ).
• (Succinctness) We require that |mpk| = poly(λ), |skf | = poly(λ), and |ct| = O(n) · poly(λ).
• (Simulation Security) There exists a simulator Sim such that for all λ ∈ N, all q ∈ poly(λ), all

quadratic functions {fi}i∈{1,...,q}, and all messages m ∈ Zn
p × Zn

p , it holds that the following
distributions are computationally indistinguishable:(

mpk, ct, {skfi}i∈{1,...,q}
)
≈c Sim

(
1λ,

{
g
fi(m)
2

}
i∈{1,...,q}

)
64



where (mpk,msk)← Setup(1λ), skfi ← KeyGen(msk, fi), and ct← Enc(mpk,m)

A quadratic FE satisfying the above syntax and security can be constructed from the DLIN
assumption in asymmetric bilinear groups [Wee20].

8.3 Construction of xiO

We present our construction of xiO scheme (xiO.Obf, xiO.Eval) in the following. We consider any
circuit C : {0, 1}η → {0, 1} and, for notational convenience, we assume that η is divisible by 3 and
we denote by n = 2η/3. In addition to a bilinear group and a quadratic FE as defined above, we
will use an xiPRO scheme (xPRO.Obf, xPRO.Eval) with indistinguishable security.

• xiO.Obf(1λ, C):

– Sample a bilinear group (G1,G2,GT , e, p, g1, g2)← G(1λ).
– Sample a key pair (mpk,msk)← Setup(1λ).
– Sample n vectors (xi,yi)← Zn

p × Zn
p .

– Compute cti ← Enc(mpk, (xi,yi)).
– For j ∈ {1, . . . , n2}, let fj be the j-th unit vector. I.e., fj is the quadratic function that
returns the j-th monomial of x⊗ y. Compute skfj ← KeyGen(msk, fj).

– Let Ci : (Zn
p ×Zn

p × {0, 1}|C|)× {0, 1}2η/3 → G2 for i ∈ {0, 1}η/3 be the circuit defined as
follows:
∗ It is keyed by the vectors (xi,yi) and the circuit C, which is hardwired.
∗ Takes as input some j ∈ {1, . . . , n2}, and defines x = (i, j).
∗ Returns gC(x)

2 · gfj(xi,yi)
2 .

– For all i ∈ {1, . . . , n}, obfuscate K̃i ← xPRO.Obf(1λ, Ci, (xi,yi, C)).
– Output C̃ = ({K̃i, cti}i, {skj}j).

• xiO.Eval(C̃, x):

– Denote by (i, j) be the decomposition of x, where i ∈ {1, . . . , n} and j ∈ {1, . . . , n2}.
– The output bit is defined to be 0 if

e
(
g1, xPRO.Eval(Ci, K̃i, j)

)
= Dec(skfj , cti)

and 1 otherwise.

The scheme is correct since, by the correctness of the xiPRO scheme and the quadratic FE we have
that for all (i, j) = x ∈ {0, 1}η, it holds that

e
(
g1, xPRO.Eval(Ci, K̃i, j)

)
= e

(
g1, g

C(x)
2 · gfj(xi,yi)

2

)
= g

C(x)
t · gfj(xi,yi)

t

= g
C(x)
t · Dec(skfj , cti).
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Furthermore, the scheme is compact since
|C̃| = n|K̃|+ n|ct|+ n2|skf |

= 2η/3 · (22η/3)2/3 · poly(λ) + 2η/3 · 2η/3 · poly(λ) + 22η/3 · poly(λ)
= 27/9η · poly(λ)

assuming that the xiPRO has a compression factor of 2/3 (like the one built in Section 4). We are
now ready to show that the construction satisfies the standard notion of indistinguishability.
Theorem 8.3. Assume that (xPRO.Obf, xPRO.Eval) is a pseudorandom xiPRO scheme, (Setup,KeyGen,
Enc,Dec) is a secure quadratic FE, and SXDH is hard. Then (xiO.Obf, xiO.Eval) satisfies indistinguisha-
bility.
Proof. We begin with an obfuscation of the circuit C0 and we gradually change it to an obfuscation
of some C1, where C1 ≡ C0, in a series of hybrid distributions. In the i-th hybrid, we switch K̃i to
hardwire C1 (denote this by K̃

(1)
i ) instead of C0 (denote this by K̃

(0)
i ). Since this is the only place

where the circuit is used, if we can show that each hybrid is computationally indistinguishable
from the previous distribution, then we complete the proof. Fix any index i, it suffices to show that

C0, C1, K̃
(0)
i , cti, {skj}j ≈c C0, C1, K̃

(1)
i , cti, {skj}j

since all other elements K̃ ̸=i and ct ̸=i are publicly and efficiently computable given the above vari-
ables and therefore their presence cannot increase the advantage of the distinguisher. By the secu-
rity of the quadratic FE, we know that

C0, C1, K̃
(b)
i , cti, {skj}j ≈c C0, C1, K̃

(b)
i , Sim

(
1λ,

{
g
fj(xi,yi)
2

}
j

)
for both b ∈ {0, 1}. Now, observe that the output of the simulator is publicly and efficiently com-
putable given K̃

(b)
i and Cb: We can simply evaluate the obfuscation K̃

(b)
i on all j ∈ {1, . . . , n2} to

obtain as an output
g
Cb(x)
2 · gfj(xi,yi)

2 ← xPRO.Eval(Ci, K̃
(b)
i , j)

where x = (i, j). Dividing by g
Cb(x)
2 = g

C0(x)
2 = g

C1(x)
2 , we obtain all {gfj(xi,yi)

2 }j , which we can
feed as input to the simulator Sim, which is by assumption also efficiently computable. Once again,
since this is an efficient computation that can be done publicly on K̃

(b)
i , it cannot increase the distin-

guishing advantage of any efficient distinguisher, and therefore we can without loss of generality
prove that

C0, C1, K̃
(0)
i ≈c C0, C1, K̃

(1)
i

to obtain the desired implication. Note that the two circuits are functionally equivalent, and thus
by the pseudorandomness of xiPRO, it suffices to show that the function table{

xPRO.Eval(Ci, K̃
(b)
i , j)

}
j
=

{
g
Cb(x)
2 · gfj(xi,yi)

2

}
j
≈c {uj : uj ← G2}j

is computationally indistinguishable from uniform. By the SXDH assumption, we have that{
g
Cb(x)
2 · gfj(xi,yi)

2

}
j
≈c

{
g
Cb(x)
2 · gzj2

}
j

where zj ← Zp, since fj(xi,yi) is the j-thmonomial of xi⊗yi. The proof is concluded by observing
that the RHS is uniformly distributed in G2 and therefore indistinguishable from uniform.

66



8.4 Construction of iO in the Pseudorandom Oracle Model

The pseudorandom oracle model (PROM) is a recently introduced model [JLLW23] which cap-
tures all the properties of a random oracle, while also allowing one to make non black-box use of
it, for instance by obfuscating the corresponding random function. We recall the definition in the
following.
Definition 8.4 (PROM [JLLW23]). Let PRF be a PRF. The pseudorandom oracle model (PROM)
for PRF is a model with an oracle that implements a random permutationHMap : {0, 1}λ → {0, 1}λ
and that answers to two different types of queries:

• O(Gen, k) = HMap(k).
• O(Eval, h, x) = PRF(HMap−1(h), x).
We sketch how (x)iPRO implies the existence of (x)iO in the PROM, without additional as-

sumptions: QueryO(Gen, k) on a uniformly sampled k to obtain a handle h. Then use the (x)iPRO
to obfuscate the circuit C ′ defined as:

C ′(x) = C(x)⊕ PRF(k, x).

Return (C̃ ′, h) as the obfuscation. On input x, the evaluator can recover the value C(x) by evaluat-
ing the obfuscated circuit C̃ ′(x) and querying the oracle O(Eval, h, x) using the handle h.

To show indistinguishability, we first observe that we can simulate the oracle O(Eval, h, x) by
computing:

C̃ ′(x)⊕ C0(x) = C̃ ′(x)⊕ C1(x) = PRF(k, x).

Thus all information in the view of the distinguisher is efficiently computable using C̃ ′, which
means that it suffices to show that the (x)iPRO obfuscation of C0 is computationally indistinguish-
able from the (x)iPRO obfuscation ofC1 (ignoring other variables in the view of the distinguisher).
By the pseudorandomness of (x)iPRO, it suffices to show that the truth-table ofC ′ is computation-
ally close to uniform, which follows immediately by the (sub-exponential) security of PRF.

9 On the impossibility of PRO for all PRF families

Following the ideas of [BCC+14, Theorem 4.1], one can show that there exist PRF families for
which there does not exist an average-case universal virtual black-box simulator (with or without
auxilliary input). For completeness, we recap their counterexample adapted to our setting.

9.1 Counterexample in the presence of auxillary input

In this section, we show that for all pseudorandom circuit families, there exists an auxiliary infor-
mation with respect to which the family is not PRO obfuscatable.
Theorem 9.1 (Adapted from [BCC+14, Theorem 4.1]). Assuming the existence of subexponentially
secure instance-hiding witness encryption12 for NP, for every class of circuit families C satisfying

{C(K,x)}x∈{0,1}η ≈c

{
ux : ux ← {0, 1}ℓ

}
x∈{0,1}η

,

12This property means that for x, x′ /∈ L, WE.Enc(x, b) ≈c WE.Enc(x′, b). This property is achieved by witness en-
cryptions constructed via null-iO.
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there exists a dependent auxiliary input such that the pre-condition ofPRO is satisfied, but the post-condition
is not.

Proof. Suppose the description of C(K, ·) ← Cλ has size p(λ), and suppose there exists a PRO
obfuscator such that |PRO(C)| ≤ q(|C|) for some polynomial q. We use the notation C(K, I) for
I ⊆ {0, 1}ℓ to indicate the ordered list of evaluations {C(K, i)}i∈I .

Consider the following NP language:

Lk,h = {{y1, . . . , yk} | there exists a circuit C of size at most h such that C(i) = yi} (9.1)

where h some polynomial.
Let h = h(λ) = q ◦ p(λ) and k = k(λ) = h(λ)2, and sample the auxiliary information for key K

as
auxK ← (WE.Enc(C(K, [k]), 0),WE.Enc(C(K, [k]), 1))

whereWE is witness encryption for the language Lk,h corresponding to the statement C(K, [k])13.

Analyzing the post-condition. Clearly, given C̃ = PRO.Obf(CK), and auxK , one can use C̃ to
decrypt each witness encryption of auxK to obtain the bits 0 and 1 respectively, with probability
close to 1 (by the correctness of the obfuscation). On the other hand, if an adversary is only given
the witness encryptions without C̃ (or any succinct representation of C) we have the following
observation:
Lemma 9.2. For all ppt adversaries A,∣∣∣∣PrK [A(WE.Enc(C(K, [k])), 0) = 1]− Pr

K
[A(WE.Enc(C(K, [k]), 1) = 1]

∣∣∣∣ ≤ negl(λ).

Proof. We argue this following the fact that C(K, ·)

• HybridH0: A is givenWE.Enc(C(K, [k])), 0).

• HybridH1: For all i, switch C(K, i) with ui ← {0, 1}ℓ. In particular, the witness encryption
is sampled as

WE.Enc((u1, . . . , uh), 0),

This follows from the subexponential PRF security of the family C(K, ·)← Cλ.

• HybridH2: Switch the encryption to be an encryption of 1.
Note that with high probability, (u1, . . . , uk) for uniformly ui corresponds to a no-instance
of Lk,h by a counting argument. This is because, there are 2h possible circuits of size h, and
there are 2k = 2h

2 possible strings (u1, . . . , uk), and hence with probability 2k/2h
2 ≤ 2−λ.

Therefore, one can invoke the security of witness encryption to switch the bit to 1.

• HybridH3: Switch (u1, . . . , uk) to C(K, [k]). Once again, we invoke the subexponential PRF
security of the family C(K, ·).

13Recall that [k] is shorthand for the set {1, 2, . . . , k}
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In particular, note that

|Pr[WE.Dec(ct0, ũ) = b]− Pr[WE.Dec(ct1, ũ) = b]| = negl(λ).

Therefore, given ũ and auxK = (ct0, ct1), if onewere to compute b0 ←WE.Dec(ct0, ũ) andWE.Dec(ct1, ũ),
we would have (b0, b1) ̸= (0, 1) with non-negligible probability. (This is because the above shows
that (1, 0) is almost as probable as (0, 1), so that (0, 1) cannot occur with 1 − negl(λ) probability.)
Therefore, this gives us a distinguisher for the case where C̃ = PRO.Obf(CK) and ũ.

Analyzing the pre-condition. However, we claim that the pre-condition of Definition 3.1 holds
with respect to this choice of auxK .
Lemma 9.3. Assuming that C(K, ·) is a subexponentially secure PRF family

{C(K,x)}x∈{0,1}η , auxK ≈c

{
ux : ux ← {0, 1}ℓ

}
x∈{0,1}η

, auxK . (9.2)

Proof. We proceed in a few hybrids.

• HybridH0: The distribution is as in the left-hand side of the (9.2).

• HybridH1: For all i, switch C(K, i) with ui ← {0, 1}ℓ. In particular, also switch auxK to be
sampled as

auxK := WE.Enc((u1, . . . , uh), 0),WE.Enc((u1, . . . , uh), 1),

This follows from the subexponential PRF security of the family C(K, ·)← Cλ.

• HybridH2: Switch auxK to be sampled from an independent distribution:

auxK := WE.Enc((u′1, . . . , u
′
k), 0),WE.Enc((u′1, . . . , u

′
k), 1)

where u′i ← {0, 1}ℓ independent from ui.
Note thatwith high probability, both (u1, . . . , uk) and (u′1, . . . , u

′
k) correspond to a no-instance

of Lλ,h by a counting argument. Therefore, by the instance hiding property of the witness
encryption,H1 andH2 are indistinguishable.

• HybridH3: Replace u′1, . . . , u
′
k with (C(K, 1), . . . , C(K, k)) for random C(K, ·) ← Cλ. This

follows from the subexponential PRF security of the family C(K, ·)← Cλ. This is exactly the
RHS of (9.2).

This completes the proof.

Hence, this shows that for any subexponentially secure PRF family, there exists an auxillary
input with respect to which the pre-condition holds, but the post-condition does not hold.

69



9.2 Counterexample without any auxiliary input

In this section, we show that PRO obfuscation is not possible in general, even in the absence of
auxiliary input.

The idea is similar to the construction in the previous section. Intuitively, we wish to produce
the same counterexample even in the absence of auxiliary input by modifying the circuit so that
certain of its outputs correspond to the witness encryptions in the previous counterexample.

However, this naive approach does not work. Indeed, consider fixing any value of h, the upper
bound on the witness size permitted by the witness encryption scheme. Then, the witness encryp-
tion ciphertexts may have bitlength larger than h. But this means that any attempt to hardcode
them into the circuit will render the circuit, thus certainly the obfuscated circuit, too large to be a
witness.

So, instead of a circuit, we will construct a Turing machine such that certain of its outputs corre-
spond to the witness encryptions in the previous counterexample. The resulting construction will
be a counterexample to PRO for Turing machines. However, since we have shown that PRO (for
circuits) implies PRO for Turing machines, the counterexample also rules out PRO.

The reason this avoids the problem mentioned above is simple. A Turing machine need not
scale with the size of the witness encryptions in order to produce them as output. Instead, only
h needs to be hardcoded into the Turing machine. As the description of h is only O(log h) bits, it
suffices to set h large enough so that h ≥ p(|TM|+O(log h)), where p is a polynomial upper bound
on the blowup of the PRO scheme, and |TM | denotes the bit length of the description of a base
Turing machine (which takes h as an input). This is of course possible. We now turn to the precise
statement and proof.
Theorem 9.4 (Adapted from [BCC+14, Corollary 4.3]). Suppose there exists a subexponentially se-
cure witness encryption scheme for NP with pseudorandom ciphertexts, which we denote byWE, satisfying
the following uniformity condition: There exists a polynomial-time Turing machine that on input 1λ, (a
description of) the relation circuitR, an instance x, and a messagem, outputs ct←WE.Enc(1λ,R, x,m).

Then, for any polynomial p, there exists a polynomial-time Turing machine TM computing a function
family fp : {0, 1}h × {0, 1}η → {0, 1}ℓ that, for randomK ← {0, 1}η, satisfies the PRO precondition

{fp(K,x)}x∈{0,1}η ,≈c

{
ux : ux ← {0, 1}ℓ

}
x∈{0,1}η

.

and such that from any obfuscation (circuit) C of size at most p(λ) computing fp(K, ·), one can efficiently
recover the key K and thus distinguish C from random.

In particular, a pseudorandom obfuscation scheme for all Turing machines does not exist.

Proof. We will denote by PRF : K × {0, 1}ℓ → {0, 1}η a subexponentially secure PRF, also com-
putable by a polynomial-time Turing machine, with |K| = poly(ℓ) large enough that for random
KPRF ← K,

{PRF(KPRF, x)}x∈{0,1}η ,≈c

{
ux : ux ← {0, 1}ℓ

}
x∈{0,1}η

.

(The existence of such a PRF follows from our assumption regarding the existence of witness en-
cryption.) Let h = λc, where c will be chosen later, and as before, let k(λ) = h(λ)2. Let ph = ph(λ)
be the (polynomial) length of witness encryptions under WE, where the language is Lk,h (from
Eq. (9.1)), the instance is of the form (z1, . . . , zk) for zi ∈ {0, 1}η, and the message has length h. We
may assume without loss of generality that η divides ph.
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Define a Turing machine TM′ as follows. On input c ∈ N, K ∈ {0, 1}h and x ∈ {0, 1}ℓ, TM
interprets its key K as a tuple of values (KPRF, r), where KPRF is a key for PRF, and r is a string
of random bits of the length needed for witness encryption. It then sets h, k, ph as above starting
with h := λc, and computes

ct := WE.Enc(Lk,h, (PRF(KPRF, 1), . . . ,PRF(KPRF, k)),K; r) ,

and encodes it as a sequence of N := ph/η values ct(1), . . . , ct(N) ∈ {0, 1}η. Finally, it outputs

TM′(K,x) :=

{
PRF(KPRF, x) x < 2ℓ −N

ct(i) x = 2ℓ −N + i− 1 .

We then defineTM to be a Turingmachine which has c hardcoded and on inputK, x, simulates
TM′ on input c,K, x and outputs whatever TM′ outputs. To finish the construction, we choose
c large enough so that h := λc ≥ p and |TM| ≤ h(λ) = λc. The latter is possible as |TM| =
O(log c) + |TM′|, and |TM′| is independent of c.

We now argue thatTM has the properties required by the theorem statement. The fact thatTM
satisfies the PRO precondition follows immediately from the facts that PRF is subexponentially
secure, and that WE has pseudorandom ciphertexts. For the impossibility of obfuscation, let C be
any circuit of size at most p(λ) computing fp(K, ·). By evaluating C on inputs 2ℓ − N + i − 1 for
i ∈ [N ], the adversary obtains the witness encryption

ct := WE.Enc(Lk,h, (PRF(KPRF, 1), . . . ,PRF(KPRF, k)),K; r) .

But the circuit C is itself a witness for (PRF(KPRF, 1), . . . ,PRF(KPRF, k)), as |C| ≤ p(λ) ≤ h(λ), and
C(i) = PRF(KPRF, i) for all i ≤ k. Hence, the adversary may run

K := WE.Dec(Lk,h, C, (PRF(KPRF, 1), . . . ,PRF(KPRF, k)), ct)

to recover K.
For the particular statement, note that the adversary can check the validity ofK = (KPRF, r) by

checking that PRF(KPRF, i) = C(i) for all i ≤ [k]. As this will almost certainly not hold for random
(description of) C, this allows the description of C to be distinguished from random, violating the
PRO postcondition.
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schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology

78



– EUROCRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer Science, pages
28–57, Vienna, Austria, May 8–12, 2016. Springer, Berlin, Heidelberg, Germany. 4

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDHon 5-linearmaps and locality-
5 PRGs. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 599–
629, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Cham, Switzerland. 4

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfus-
cation with non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, PKC 2016: 19th International Conference on Theory
and Practice of Public Key Cryptography, Part II, volume 9615 of Lecture Notes in Computer
Science, pages 447–462, Taipei, Taiwan, March 6–9, 2016. Springer, Berlin, Heidelberg,
Germany. 6, 9, 14, 19, 31, 63

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps
and block-wise local PRGs. In Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology – CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Sci-
ence, pages 630–660, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Cham,
Switzerland. 4

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th An-
nual Symposium on Foundations of Computer Science, pages 11–20, New Brunswick, NJ,
USA, October 9–11, 2016. IEEE Computer Society Press. 4

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology
– EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 700–718,
Cambridge, UK, April 15–19, 2012. Springer, Berlin, Heidelberg, Germany. 17, 23, 25,
26

[MPV24] Surya Mathialagan, Spencer Peters, and Vinod Vaikuntanathan. Adaptively sound
zero-knowledge SNARKs for UP. In Leonid Reyzin and Douglas Stebila, editors, Ad-
vances in Cryptology – CRYPTO 2024, Part X, volume 14929 of Lecture Notes in Computer
Science, pages 38–71, Santa Barbara, CA, USA, August 18–22, 2024. Springer, Cham,
Switzerland. 6, 7, 11, 27, 28

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on Gaussian measures. In 45th Annual Symposium on Foundations of Computer Science,
pages 372–381, Rome, Italy, October 17–19, 2004. IEEE Computer Society Press. 23

[MSZ16] Eric Miles, Amit Sahai, andMark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II, volume
9815 of Lecture Notes in Computer Science, pages 629–658, Santa Barbara, CA, USA, Au-
gust 14–18, 2016. Springer, Berlin, Heidelberg, Germany. 4

79



[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan
Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 96–109, Santa Barbara, CA,USA,August 17–21, 2003. Springer,
Berlin, Heidelberg, Germany. 14, 28

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of
ring-LWE for any ring andmodulus. In HamedHatami, Pierre McKenzie, and Valerie
King, editors, 49th Annual ACM Symposium on Theory of Computing, pages 461–473,
Montreal, QC, Canada, June 19–23, 2017. ACM Press. 27

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes
in Computer Science, pages 500–517, Santa Barbara, CA, USA, August 17–21, 2014.
Springer, Berlin, Heidelberg, Germany. 4

[QWW18] Willy Quach, HoeteckWee, and Daniel Wichs. Laconic function evaluation and appli-
cations. In Mikkel Thorup, editor, 59th Annual Symposium on Foundations of Computer
Science, pages 859–870, Paris, France, October 7–9, 2018. IEEE Computer Society Press.
6, 19, 20, 21, 43, 44, 82

[Reg05] OdedRegev. On lattices, learningwith errors, random linear codes, and cryptography.
InHaroldN.Gabow andRonald Fagin, editors, 37th Annual ACMSymposium on Theory
of Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press. 6, 13,
24, 27, 29

[Ros98] Sheldon M. Ross. A First Course in Probability. Prentice Hall, Upper Saddle River, N.J.,
fifth edition, 1998. 16

[Rot11] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In Yuval
Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference, volume 6597 of Lecture
Notes in Computer Science, pages 219–234, Providence, RI, USA, March 28–30, 2011.
Springer, Berlin, Heidelberg, Germany. 55

[RVV24] Seyoon Ragavan, Neekon Vafa, and Vinod Vaikuntanathan. Indistinguishability ob-
fuscation from bilinear maps and LPN variants. Cryptology ePrint Archive, 2024. 4

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on
Theory of Computing, pages 475–484, New York, NY, USA, May 31 – June 3, 2014. ACM
Press. 4, 7, 12

[Tib14] Mehdi Tibouchi. Elligator squared: Uniform points on elliptic curves of prime order
as uniform random strings. InNicolas Christin and Reihaneh Safavi-Naini, editors, FC
2014: 18th International Conference on Financial Cryptography and Data Security, volume
8437 of Lecture Notes in Computer Science, pages 139–156, Christ Church, Barbados,
March 3–7, 2014. Springer, Berlin, Heidelberg, Germany. 64

80



[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Yevgeniy
Dodis and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022, Part I,
volume 13507 of Lecture Notes in Computer Science, pages 535–559, Santa Barbara, CA,
USA, August 15–18, 2022. Springer, Cham, Switzerland. 6, 7, 11, 13, 14, 27

[VWW22] VinodVaikuntanathan, HoeteckWee, andDanielWichs. Witness encryption and null-
IO from evasive LWE. In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryp-
tology – ASIACRYPT 2022, Part I, volume 13791 of Lecture Notes in Computer Science,
pages 195–221, Taipei, Taiwan, December 5–9, 2022. Springer, Cham, Switzerland. 6,
7, 8, 9, 11, 13, 14, 27

[Wee20] Hoeteck Wee. Functional encryption for quadratic functions from k-lin, revisited. In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptography
Conference, Part I, volume 12550 of Lecture Notes in Computer Science, pages 210–228,
Durham, NC, USA, November 16–19, 2020. Springer, Cham, Switzerland. 11, 65

[Wee22] HoeteckWee. Optimal broadcast encryption andCP-ABE fromevasive lattice assump-
tions. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology –
EUROCRYPT 2022, Part II, volume 13276 of Lecture Notes in Computer Science, pages
217–241, Trondheim, Norway, May 30 – June 3, 2022. Springer, Cham, Switzerland. 6,
13, 14, 27

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling.
In Anne Canteaut and François-Xavier Standaert, editors,Advances in Cryptology – EU-
ROCRYPT 2021, Part III, volume 12698 of Lecture Notes in Computer Science, pages 127–
156, Zagreb, Croatia, October 17–21, 2021. Springer, Cham, Switzerland. 4, 6, 12, 15,
16

[WWW22] BrentWaters, HoeteckWee, and David J. Wu. Multi-authority ABE from lattices with-
out random oracles. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022: 20th
Theory of Cryptography Conference, Part I, volume 13747 of Lecture Notes in Computer Sci-
ence, pages 651–679, Chicago, IL, USA,November 7–10, 2022. Springer, Cham, Switzer-
land. 14

[WZ17] DanielWichs andGiorgos Zirdelis. Obfuscating compute-and-compare programs un-
der LWE. In Chris Umans, editor, 58th Annual Symposium on Foundations of Computer
Science, pages 600–611, Berkeley, CA, USA, October 15–17, 2017. IEEE Computer Soci-
ety Press. 9, 12, 13, 61

[Zha19] Mark Zhandry. On ELFs, deterministic encryption, and correlated-input security. In
Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
Part III, volume 11478 of Lecture Notes in Computer Science, pages 3–32, Darmstadt,
Germany, May 19–23, 2019. Springer, Cham, Switzerland. 4

A Blind LFE from Blind AB-LFE

Wewill briefly sketch how the blindAB-LFE schemediscussed in the technical outline (Section 1.2)
can be upgraded into a fully-fledged blind LFE scheme. We rely on the same transformation
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as [QWW18], but using slightly stronger components. Since this is fairly a standard transformation
(see e.g. [GKP+13]), we will only provide a sketch.

• The input ct is an FHE encryption of the input K. By relying on an FHE scheme with pseu-
dorandom keys and ciphertexts, such as the GSW scheme [GSW13], x is pseudorandom.

• Instead of using the circuit C directly, we use a circuit C ′ such that C ′(ct, i, b) where i ∈
{1, . . . ,m} and b ∈ {0, 1} outputs a bit ct′i ⊕ b , where ct′ ∈ {0, 1}m (for somem = poly(λ)) is
the bit-representation of the resulting from FHE evaluation of the circuit C on the ciphertext
ct.

• The blind AB-LFE encryption algorithm takes as input x, and index i, a bit b and a string µ.

• To encrypt a key K, we proceed as follows.

– Generate a fresh GSW key pair (pk, sk)
– EncryptK into a GSW ciphertext ct
– Garble the GSW decryption circuit Dec(sk, ·)with the secret key sk hardwired using the

blind garbling scheme of [BLSV18]. This yields a garbled circuit D̃ec as well as labels
(µ1,0, µ1,1), . . . , (µm,0, µm,1).

– For i ∈ {1, . . . ,m} and b ∈ {0, 1} compute blindAB-LFE ciphertexts ci,b = Enc(h, (ct, i, b), µi,b).
– The blind LFE ciphertext consists of pk, ct, D̃ec and {ci,0, ci,1}i∈{1,...,m}.

• To decrypt such a ciphertext, proceed as follows.

– Recompute the ciphertext ct′ by homomorphically evaluating C on ct.
– Decrypt the ci,cti to µi,cti using the LFE decryption algorithm with the circuit C ′.
– Evaluate the garbled circuit D̃ec on the µ1,ct1 , . . . , µm,ctm to obtain the output C(K).

To argue blindness of this LFE scheme, we proceed in the following hybrid steps:

• By the blindness of the AB-LFE scheme, the ciphertexts {ci,b}i,b are computationally indistin-
guishable from uniformly chosen values subject to the ci,ct′i decrypting to µi,ct′i

.

• By the blindness of the garbling scheme, D̃ec and the µ1,ct′1
, . . . , µm,ct′m are uniformly random

subject to D̃ec evaluating to C(K) on µ1,ct′1
, . . . , µm,ct′m

• By the pseudorandom keys and ciphertexts property of GSW, pk and ct are pseudorandom.

• Finally, by the pseudorandomness of C it holds that C(K) is pseudorandom.

Hence, it follows that the entire LFE ciphertext is pseudorandom (givenC, the hash h etc.), i.e. the
above LFE scheme is blind. In the main body (Section 5) we provide more direct, but conceptually
slightly more involved construction of blind LFE based on the direct construction of function hiding
LFE given in [QWW18].
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