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Abstract
Modern cryptographic techniques such as fully homomorphic en-

cryption (FHE) have recently gained broad attention. Most of these

cryptosystems rely on lattice problems wherein polynomial multi-

plication forms the computational bottleneck. A popular method to

accelerate these polynomialmultiplications is theNumber-Theoretic

Transformation (NTT). Recent works aim to improve the practical

deployability of NTT and propose toolchains supporting the NTT

hardware accelerator design processes. However, existing design

tools do not provide on-the-fly twiddle factor generation (TFG)

which leads to high memory demands. Inspired by this situation,

we present OpenNTT, a fully automated, open-source framework

to compile NTT hardware accelerators with TFG for various NTT

types and parameter sets. We address the challenge of combining

conflict-free memory accesses and efficient, linear twiddle factor

generation through a dedicated NTT processing order. Following

this order, we develop a flexible twiddle factor generation method

with minimal memory usage. These core concepts together with

a frequency-optimized hardware architecture form our OpenNTT

framework. We use OpenNTT to compile and test NTT hardware

designs with various parameter sets on FPGAs. The obtained results

show a clear memory reduction due to TFG and a speedup by 2.7×
in latency and 2.2× in area-time-product, compared to prior arts.
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1 Introduction
The advent of new cryptographic techniques such as post-quantum

cryptography (PQC) [8, 3], fully homomorphic encryption (FHE) [6,

5], or zero-knowledge proofs (ZKP) [29] demands a performant

and efficient deployment. One widely used method to meet these

demands is the Number-Theoretic Transformation (NTT). The NTT

accelerates the computationally expensive polynomial multiplica-

tions required in the arising FHE, PQC, and ZKP schemes. Poly-

nomial multiplication without NTT shows a runtime of 𝒪(𝑁 2),
where 𝑁 is the polynomial degree. In contrast, NTT reduces the

runtime to 𝒪(𝑁 log𝑁 ) [17]. The lower algorithmic complexity

already fosters degree 𝑁 = 28 polynomial multiplication as used
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in PQC, but becomes highly essential for 𝑁 = 2
14

to 2
24
-degree

polynomials involved in FHE and ZKP.

AlthoughNTT reduces the algorithmic complexity of polynomial

multiplication, this computation step remains the clear bottleneck

in FHE schemes. Hence, it is required to further accelerate NTT

which poses a highly active field in research. Different acceleration

approaches have been proposed including optimized software so-

lutions [7, 26] as well as FPGA and AISC designs [15, 18, 22, 28].

Many of the existing works target one specific use case of NTT

by only supporting a limited parameter set or a single NTT type.

Extending these designs to other parameter sets requires significant

engineering effort and know-how, which leads to long design times

for NTT hardware accelerators. Hence, latest research focuses on

providing frameworks to compile NTT hardware designs, thereby

supporting a broader applicability of NTT accelerators.

However, we observe that prior NTT hardware compilation

works rely on stored twiddle factors. The twiddle factors are kept

in memory and fetched on-demand during NTT transformations.

Yet, the memory required to store twiddle factors increases linearly

with the polynomial degree 𝑁 and the modulus size log(𝑞). This
leads to a significant memory overhead in applications with large

𝑁 and 𝑞 such as in FHE or ZKP. Furthermore, twiddle factors also

depend on the prime 𝑞 and need to be replaced each time 𝑞 changes,

which is a frequent scenario in FHE applications. Hence, supporting

multiple primes introduces additional overheads in on-chipmemory

or off-chip bandwidth.

In contrast to storing twiddle factors, they can also be gener-

ated on the fly. This on-the-fly twiddle factor generation (TFG) is a

highly relevant alternative as it significantly reduces the on-chip

memory at the cost of additional logic resources. The logic over-

head however does not increase with the polynomial degree or the

number of supported primes. This makes TFG an attractive choice

for various large-degree NTTs as used in FHE. Yet, TFG introduces

additional constraints to the transformation flow as twiddle factors

cannot be generated in an arbitrary order. These constraints pose a

noteworthy challenge in the context of parameter flexibility. This

challenge has not been sufficiently addressed in prior work leading

to a lack of NTT compilation tools with twiddle factor generation.

In this paper, we address this limitation and present OpenNTT,

a fully automated framework to compile efficient NTT architec-

tures for various parameter sets. OpenNTT relies on on-the-fly

twiddle factor generation and hence significantly reduces memory

consumption. We combine the TFG and the flexibility in param-

eters through a generic algorithm that unifies efficient TFG and
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collision-free NTT transformations. Furthermore, our framework

is designed to be user-friendly. Users just provide the desired pa-

rameter set while the tool overtakes all instantiation, configuration,

and testbench creation steps. Hence, OpenNTT fully automates the

hardware generation flow leading to a faster design process.

Compared to other NTT accelerators, the hardware assembled

with OpenNTT reaches higher clock frequencies and, hence, up

to 2.7× lower latency. Furthermore, OpenNTT shows a 2.2× im-

provement in area-time product which makes our framework an

attractive alternative for rapid NTT hardware accelerator design.

Our main contributions are listed as follows:

● We give a comprehensive analysis of the required process-

ing order and twiddle factor order in NTT transformations.

Based on this analysis, we explain the challenges of efficient

TFG in fully pipelined and conflict-free NTT designs.

● We propose a generic algorithm that compiles twiddle factor

generation modules for conflict-free NTT designs. Our algo-

rithm is flexible in various design parameters such as NTT

type, polynomial degree, number of processing elements,

multiplier latency, and number of supported primes.

● We present OpenNTT, a user-friendly framework to rapidly

create efficient and performant NTT designs for hardware

acceleration. OpenNTT incorporates our generic TFG algo-

rithm and delivers optimized NTT architectures. The com-

piled architectures satisfy a wide range of applications cov-

ering FHE, PQC, and ZKP demands.

● We make our tool, OpenNTT, and all its source code pub-

lically available on GitHub [21]. This aims to support the

NTT deployment and further research in the field.

The remainder of this paper is structured as follows. Sec. 2 gives

the background of the Number-Theoretic Transformation. Sec. 3

explains our algorithm to generically compile on-the-fly generation

of twiddle factors for various NTT types. Sec. 4 highlights our over-

all hardware design flow. Finally, Sec. 5 presents implementation

results and comparisons. Sec. 6 concludes the paper.
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Figure 1: CT butterfly (left) and GS butterfly (right).
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Figure 2: Data flow for a 𝑁 = 8 point NR DIF NTT.

2 Background
2.1 Number-Theoretic Transformation
The Number-Theoretic Transformation (NTT) is a variant of the

Discrete Fourier Transformation over the polynomial ring ℛ𝑞 =
Z𝑞(︀𝑥⌋︀⇑(𝑥𝑁 + 1). This polynomial ring is the set of polynomials

a(𝑥) = 𝑎𝑁−1𝑥𝑁−1 + . . . + 𝑎1𝑥 + 𝑎0 with degree less than 𝑁 . The

coefficients 𝑎𝑖 ∈ Z𝑞 are integers modulo a prime 𝑞, which satis-

fies 𝑞 ≡ 1 mod 𝑁 . The NTT takes a polynomial a(𝑥) in coefficient
representation as input and maps it to its evaluation representa-

tion â(𝑥) = Ntt(a(𝑥)) following Eq. (1). The variable 𝜔 is a 𝑁 -th

primitive root of unity in Z𝑞 , i. e. 𝜔𝑖 ≠ 1 mod 𝑞 for 0 < 𝑖 < 𝑁

and 𝜔
𝑁 = 1 mod 𝑞. The powers of 𝜔 are called twiddle factors

and are essential for NTT. The inverse NTT transformation of

a(𝑥) = Intt(â(𝑥)) is defined as in Eq. (2).

𝑎𝑘 =
𝑁−1
∑
𝑖=0

𝑎𝑖𝜔
𝑖𝑘

mod 𝑞. (1)

𝑎𝑖 = 𝑁−1
𝑁−1
∑
𝑘=0

𝑎𝑘𝜔
−𝑖𝑘

mod 𝑞. (2)

Two approaches can be used to efficiently compute the NTT,

namely decimation in time (DIT) and decimation in frequency

(DIF) [13]. DIT internally uses the Cooley-Tukey (CT) butterfly

operation while DIF uses the Gentleman-Sande (GS) butterfly. Fig. 1

shows the two butterfly configurations. Each butterfly operation

takes two coefficients of one polynomial (𝑎𝑖 and 𝑎 𝑗 ) and one twiddle

factor (𝜔
𝑘
) as input and returns two output coefficients, as shown

in Fig. 1. These butterfly operations form an NTT transformation

as shown in Fig. 2, wherein 𝑁 ⇑2 butterfly operations are performed

in each of the 𝑆 = log
2
(𝑁 ) stages. In NTT hardware designs, one

or multiple butterfly operations can performed concurrently by

instantiating multiple processing elements (PE). We refer to the

number of processing elements as 𝑛𝑃𝐸 .

There exist two commonly used coefficient orders for DIT and

DIF NTT. First, the input polynomial a(𝑥) is in normal order leading

to a bit-reversed output polynomial â(𝑥), as shown in Fig. 2. Con-

versely, in the second case, the input polynomial is in bit-reversed

order leading to normal-ordered output. We refer to these options

as normal-to-reversed (NR) transformation and reversed-to-normal

(RN) transformation, respectively. For a thorough study of different

NTT algorithms, we refer to [17] and [13].

2.2 Polynomial Multiplication using NTT
The NTT is commonly used to accelerate polynomial multiplication

denoted as c(𝑥) = a(𝑥) × b(𝑥). For that, three steps are required.
The first step is to NTT-transform the two input polynomials to get

â(𝑥) and b̂(𝑥). In the second step, a coefficient-wise multiplication

ĉ(𝑥) = â(𝑥) ⊙ b̂(𝑥) is performed (⊙ denotes the coefficient-wise

multiplication). Finally, ĉ(𝑥) is transformed back to the coefficient

domain to yield c(𝑥). During polynomial multiplication, the de-

gree of the resulting polynomial grows larger than 𝑁 − 1, which
needs to be considered in NTT computations. Again, there exist

two approaches to cope with this property. The first approach is

to perform 2𝑁 -point NTT on zero-padded input polynomials a(𝑥)
and b(𝑥). The following coefficient-wise multiplication is done
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Algorithm 1 NWC-based Polynomial Multiplication [18].

Input: a(𝑥), b(𝑥) ∈ ℛ𝑞 ;𝜓 : primitive 2𝑁 -th root of unity in Z𝑞
Output: c(𝑥) ← a(𝑥) × b(𝑥) ∈ ℛ𝑞

1: â(𝑥) ← Ntt(a(𝑥) ⊙ (1,𝜓 1, . . . ,𝜓𝑁−1
)) = Mntt(a(𝑥))

2: b̂(𝑥) ← Ntt(b(𝑥) ⊙ (1,𝜓 1, . . . ,𝜓𝑁−1
)) = Mntt(b(𝑥))

3: ĉ(𝑥) ← â(𝑥) ⊙ b̂(𝑥)
4: c(𝑥) ← Intt(ĉ(𝑥)) ⊙ (1,𝜓−1, . . . ,𝜓−(𝑁−1)) = Mintt(ĉ(𝑥))
5: return c(𝑥)

on 2𝑁 coefficients and finally, 2𝑁 -point INTT is performed. The

resulting polynomial is then reduced by the irreducible polyno-

mial (𝑥𝑁 + 1). An alternative approach is the negative-wrapped

convolution technique [23]. Here, the 2𝑁 -point NTT is reduced

to an 𝑁 -point NTT, and zero-padding is avoided. Instead, prepro-

cessing and postprocessing steps are required. These additional

steps multiply powers of 2𝑁 -th roots of unity 𝜓
2𝑁 = 1 mod 𝑞 to

the input and output polynomial, as Alg. 1 shows. The pre- and

postprocessing multiplications can be merged to the NTT compu-

tation which reduces the computational overhead [23]. We refer to

this merged NTT variant as MNTT and MINTT for forward and

inverse transformation, respectively.

2.3 Twiddle Factors in NTT
The twiddle factor management is an important design aspect in

NTT accelerators. This design aspect strongly influences the re-

source utilization of hardware designs. Hence, we discuss common

twiddle factor management techniques in this section.

2.3.1 Stored Twiddle Factors. During one forward NTT transfor-

mation, twiddle factors 𝜔
0
, 𝜔

1
, . . . , 𝜔

𝑁 ⇑2−1
are needed (see Sec. 2.1).

The twiddle factors for INTT are 𝜔
0
, 𝜔
−1
, . . . , 𝜔

−(𝑁 ⇑2−1)
. There-

fore, the straightforward approach is to precompute the 2 ⋅ 𝑁 ⇑2
twiddle factors for both transformations and store them in memory.

This results in a total of 𝑁 stored twiddle factors per modulus 𝑞. In

the case of MNTT, the number of twiddle factors doubles due to

the 2𝑁 -th roots of unity. This leads to a memory consumption of

2𝑁 twiddle factors per prime 𝑞 in MNTT.

The main issue of stored twiddle factors is the limited scalability

of this approach. The number of memory elements needed scales

linear with 𝑁 which becomes critical in large-degree polynomials

such as in FHE. In addition, FHE commonly uses the residue-number

system [4, 12] to lower computational complexity. This means

that NTT must be performed multiple times for different moduli

𝑞0 . . . 𝑞𝐿−1 and, hence, 𝐿 different sets of twiddle factors are needed.

Therefore, twiddle factors must (1) either be streamed from off-

chip memory or (2) multiple sets of twiddle factors must be stored

on-chip. The former approach (1) introduces high data transfer

penalties [11] whereas the latter approach (2) increases the on-chip

memory consumption. Hence, both approaches limit the efficiency

of the NTT design.

2.3.2 On-the-fly Generated Twiddle Factors. An alternative to stored
twiddle factors is the on-the-fly generation of twiddle factors (TFG

in short). TFG relies on computing the twiddle factors needed in

NTT instead of storing them. This computation is done by repeat-

edly multiplying twiddle factors by each other to yield the desired

twiddle factor sequence. The generation circuit hence instantiates

a dedicated modular multiplier and a small memory containing a

few, initial twiddle factors needed to fill the multiplier pipeline. The

reduction in memory consumption makes TFG an attractive choice

when memory is scarce or 𝑁 is large. This especially applies to FHE

applications with 𝑁 ≈ 2
16
, leading to a memory reduction from

several MB to a few kB. Furthermore, switching primes 𝑞 as in FHE

is more efficient in TFG since just a few initial twiddle factors need

to be replaced.

3 The proposed Twiddle Factor Generation
Algorithm

OpenNTT provides flexible NTT hardware designs with on-the-fly

twiddle factor generation. Therein, it is challenging to find generic

rules for combining conflict-free memory accesses and linear twid-

dle factor generation. This section presents our solution to this chal-

lenge. First, the conflict-free memory access pattern is discussed.

Based on this access pattern, we present our processing orders and

our efficient twiddle factor generation for various parameter sets.

3.1 Conflict-free Memory Access Pattern
Computing an NTT transformation requires performing a certain

amount of butterfly operations. These butterfly operations can

be executed simultaneously in hardware, which leads to a lower

latency. For that, multiple processing elements (PE) are instantiated,

where each PE performs one butterfly operation. In addition, the

processing elements are fully pipelined to perform one butterfly

operation in each clock cycle. Hence, two input coefficients and one

twiddle factor are consumed by each PE per clock cycle. To load

the involved input coefficients simultaneously, they must reside

in distinct RAM banks with one read port and one write port per

bank. Similarly, the outputs of the PEs need to be stored to memory,

which again requires two stores per cycle, per PE. Therefore, two

memory banks are needed per PE leading to a total of 2𝑛𝑃𝐸 banks.

Several works address this problem and propose different NTT

memory access patterns [2, 10]. In OpenNTT, we use the approach

of [24], which is explained in the following. For this explanation,

consider a 𝑁 = 16 point NR NTT with 𝑛𝑃𝐸 = 2 processing elements

(denoted as PE0 and PE1). This configuration needs 2𝑛𝑃𝐸 = 4 banks
(bank 0 to bank 3), where the two inputs of PE𝑖 are hardwired to

the read ports of bank 2𝑖 and bank 2𝑖 + 1. For example, coefficients

read from bank 0 and bank 1 enter PE0, and coefficients from bank

2 and bank 3 enter PE1. The memory bank content before and after

each of the log
2
(𝑁 ) = 4 stages is shown in Fig. 3.

The NTT transformation starts in stage 0 (top of Fig. 3). In stage 0,

the coefficients (𝑎0, 𝑎8) in red and (𝑎4, 𝑎12) in blue are simultaneously

loaded from memory and fed to the two PEs. After several cycles,

the result of this operation appears in the output of the PEs and

needs to be stored to memory. Yet, before being stored, the resulting

coefficients are reordered (RO). This reordering makes pairs of

coefficients residing at the correct locations to be fetched together

in the next stage. Hence, considering our example, (𝑎0, 𝑎4) and

(𝑎8, 𝑎12) are stored to address 0 (see after stage 0 in Fig. 3). This

repeats until all coefficients of stage 0 are processed.

Next, NTT advances to stage 1. Unlike stage 0, stage 1 requires

reordering of PE outputs across memory addresses. For example, 𝑎0
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Before Stage 0

A

Banks

0 1 2 3

0 𝑎0 𝑎8 𝑎4 𝑎12

1 𝑎1 𝑎9 𝑎5 𝑎13

2 𝑎2 𝑎10 𝑎6 𝑎14

3 𝑎3 𝑎11 𝑎7 𝑎15

PE1PE0

RO

After Stage 0

A

Banks

0 1 2 3

0 𝑎0 𝑎4 𝑎8 𝑎12

1 𝑎1 𝑎5 𝑎9 𝑎13

2 𝑎2 𝑎6 𝑎10 𝑎14

3 𝑎3 𝑎7 𝑎11 𝑎15

Before Stage 1

A

Banks

0 1 2 3

0 𝑎0 𝑎4 𝑎8 𝑎12

1 𝑎1 𝑎5 𝑎9 𝑎13

2 𝑎2 𝑎6 𝑎10 𝑎14

3 𝑎3 𝑎7 𝑎11 𝑎15

PE1PE0

RO

After Stage 1

A

Banks

0 1 2 3

0 𝑎0 𝑎2 𝑎8 𝑎10

1 𝑎1 𝑎3 𝑎9 𝑎11

2 𝑎4 𝑎6 𝑎12 𝑎14

3 𝑎5 𝑎7 𝑎13 𝑎15

Before Stage 2

A

Banks

0 1 2 3

0 𝑎0 𝑎2 𝑎8 𝑎10

1 𝑎1 𝑎3 𝑎9 𝑎11

2 𝑎4 𝑎6 𝑎12 𝑎14

3 𝑎5 𝑎7 𝑎13 𝑎15

PE1PE0

RO

After Stage 2

A

Banks

0 1 2 3

0 𝑎0 𝑎1 𝑎8 𝑎9

1 𝑎2 𝑎3 𝑎10 𝑎11

2 𝑎4 𝑎5 𝑎12 𝑎13

3 𝑎6 𝑎7 𝑎14 𝑎15

Before Stage 3

A

Banks

0 1 2 3

0 𝑎0 𝑎1 𝑎8 𝑎9

1 𝑎2 𝑎3 𝑎10 𝑎11

2 𝑎4 𝑎5 𝑎12 𝑎13

3 𝑎6 𝑎7 𝑎14 𝑎15

PE1PE0

RO

After Stage 3

A

Banks

0 1 2 3

0 𝑎0 𝑎1 𝑎8 𝑎9

1 𝑎2 𝑎3 𝑎10 𝑎11

2 𝑎4 𝑎5 𝑎12 𝑎13

3 𝑎6 𝑎7 𝑎14 𝑎15

P
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o
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Figure 3: Conflict-free memory management for 𝑁 = 16,
𝑛𝑃𝐸 = 2 NR NTT.

and 𝑎4 (red) are processed together but must be stored to addresses

A0 and A2 in Bank 0 (see after stage 1 in Fig. 3). Therefore, the load

pattern needs to be adapted: In the first step, (𝑎0, 𝑎4) and (𝑎8, 𝑎12)

are loaded and enter the PE pipeline. One cycle after, (𝑎2, 𝑎6) and

(𝑎10, 𝑎14) are loaded to the PE pipeline. Now, all coefficients required

for one reorder operation are within consecutive pipeline stages.

The reorder logic combines and swaps the outputs of two consecu-

tive cycles leading to store (𝑎0, 𝑎2) and (𝑎8, 𝑎10) to address A0 in the

first cycle. In the following cycle, (𝑎4, 𝑎6) and (𝑎12, 𝑎14) are stored

to address A2. This repeats for the remaining coefficients of stage 1

and also the following stages maintain this approach. Yet, the final

stage does not need to perform any reordering since no further

butterfly operations need to be done after this stage. Therefore, the

output coefficients of the PEs are stored to the same address where

the input coefficients were loaded from.

Based on the discussed NTT example with parameters 𝑁 = 16,
𝑛𝑃𝐸 = 2, we derive generic requirements for proper NR NTT exe-

cution flows: In the first log
2
(𝑛𝑃𝐸) stages, only reordering within

one PE output happens. Therefore, arbitrary processing orders

are allowed in this case. Similarly, in the last stage, no reorder-

ing is done. This also allows any processing order. Yet, in stages

𝑠 = log
2
(𝑛𝑃𝐸) . . . 𝑆 − 2, reordering across two consecutive PE out-

puts must happen. Hence, the coefficients to be reordered together

must be loaded right after each other.We denote the load address de-

pendency between even and odd load cycles as 𝑙𝑎𝑑𝑑𝑟𝑂 = 𝑙𝑎𝑑𝑑𝑟𝐸 +𝑥 ,

where 𝑙𝑎𝑑𝑑𝑟𝐸 is the address in even cycles, 𝑙𝑎𝑑𝑑𝑟𝑂 is the address

in odd cycles, and 𝑥 is the load address offset (I.e.: the load address

sequence A0, A2, A1, A3 is denoted as 𝑙𝑎𝑑𝑑𝑟𝑂 = 𝑙𝑎𝑑𝑑𝑟𝐸 + 2). This
leads to the formal requirement on the processing order for NR

NTTs as follows:

if 0 ≤ 𝑠 < log
2
(𝑛𝑃𝐸) or 𝑠 = 𝑆 − 1 then : Any order

if log
2
(𝑛𝑃𝐸) ≤ 𝑠 < 𝑆 − 1 then :

𝑙𝑎𝑑𝑑𝑟𝑂 = 𝑙𝑎𝑑𝑑𝑟𝐸 + (𝑁 ⇑4⇑𝑛𝑃𝐸 ≫ (𝑠 − log2(𝑛𝑃𝐸)))

Similar to the NR case, we derive the memory access constraints

for the RN NTT transformation. The derivation of the constraints

follows the same concept as in the NR case from above and yields:

if 𝑠 < 𝑆 − log
2
(𝑛𝑝𝑒) then :

𝑙𝑎𝑑𝑑𝑟𝑂 = 𝑙𝑎𝑑𝑑𝑟𝐸 + (𝑁 ⇑𝑛𝑃𝐸 ≫ (𝑆 − log2(𝑛𝑃𝐸) − 𝑠))
if 𝑠 ≥ 𝑆 − 1 − log

2
(𝑛𝑃𝐸) then : Any order

These derived constraints for NR and RNNTTsmust be obeyed to

ensure conflict-free and stall-free NTT transformations. In addition

to that, TFG introduces further requirements on the processing

order, which is elaborated in the next section.

3.2 Processing Order in NTT
We build upon the defined requirements from the conflict-free

memory layout and derive the actual processing order of NTT.

Thereby, we consider the constraints from the memory layout and

combine them with an efficient twiddle factor generation order.

Twiddle factor generation relies on a small set of stored twiddle

factors, which are multiplied repeatedly by each other. This multi-

plication leads to a linear generation order, (i.e. 𝜔
0𝑘
, 𝜔

1𝑘
, 𝜔

2𝑘
, . . . ),

whereas an arbitrary generation order is not possible without signif-

icant logic overhead. Hence, we adapt the NTT processing flow to

cope with this linear generation order. Furthermore, it is desirable

to unify the DIT and DIF processing flows to allow a more efficient

hardware compilation in OpenNTT. Therefore, we aim for one NTT

processing flow that suits both, DIF and DIT decimation methods.

We first discuss the NTT processing flow for DIT NR and DIF

NR transformations. For that, we consider 𝑁 = 32 and 𝑛𝑃𝐸 = 2.

Tab. 1 shows relevant stages of the NTT transformation and the

coefficients involved in each butterfly operation. Furthermore, the

twiddle factor is given for each butterfly for the DIT and DIF cases.

We first consider stage 0, where DIT only uses the twiddle factor

𝜔
0
. Contrarily, DIF uses 𝜔

0
, 𝜔

1
, . . . in butterfly operation 𝐵0, 𝐵1, . . .

of PE0. Hence, we use the processing order𝐵0, 𝐵1, . . . , 𝐵7 as it allows

linear twiddle factor generation and complies with the memory

access constraints from Sec. 3.1.

In stage 1, DIT still uses constant twiddle factors per PE and

hence does not need any specific order. Yet, memory constraints

require to process 𝐵0 and 𝐵4 directly after each other (see Sec. 3.1).

This means that DIF needs 𝜔
0
and 𝜔

8
as the first two twiddle

factors. To still allow a somewhat linear generation, we choose the

processing order 𝐵0, 𝐵4, 𝐵1, 𝐵5, . . . for stage 1, as shown in Tab. 1.

Using this approach, we can perform two concurrent, group-wise

linear twiddle factor generations of𝜔
0
,𝝎8

, 𝜔
2
,𝝎10

, . . . Thereby, the

underlined and bold twiddle factors show a linear generation order

in their group, and both groups have the same multiplicative offset
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Table 1: Twiddle factor order in 𝑁 = 32, 𝑛𝑃𝐸 = 2 NR NTTs.

Butterfly Proc. PE0 PE1

operation order Coeffs
1

𝜔 DIF
2

𝜔 DIT
2

Coeffs
1

𝜔 DIF
2

𝜔 DIT
2

S
t
a
g
e
0
(
a
n
y
o
r
d
e
r
)

𝐵0 0 0 16 0 0 8 24 8 0

𝐵1 1 1 17 1 0 9 25 9 0

𝐵2 2 2 18 2 0 10 26 10 0

𝐵3 3 3 19 3 0 11 27 11 0

𝐵4 4 4 20 4 0 12 28 12 0

𝐵5 5 5 21 5 0 13 29 13 0

𝐵6 6 6 22 6 0 14 30 14 0

𝐵7 7 7 23 7 0 15 31 15 0

S
t
a
g
e
1

𝐵0 0 0 8 0 0 16 24 0 8

𝐵1 2 1 9 2 0 17 25 2 8

𝐵2 4 2 10 4 0 18 26 4 8

𝐵3 6 3 11 6 0 19 27 6 8

𝐵4 1 4 12 8 0 20 28 8 8

𝐵5 3 5 13 10 0 21 29 10 8

𝐵6 5 6 14 12 0 22 30 12 8

𝐵7 7 7 15 14 0 23 31 14 8

S
t
a
g
e
2

𝐵0 0 0 4 0 0 16 20 0 4

𝐵1 2 1 5 4 0 17 21 4 4

𝐵2 1 2 6 8 0 18 22 8 4

𝐵3 3 3 7 12 0 19 23 12 4

𝐵4 4 8 12 0 8 24 28 0 12

𝐵5 6 9 13 4 8 25 29 4 12

𝐵6 5 10 14 8 8 26 30 8 12

𝐵7 7 11 15 12 8 27 31 12 12

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

S
t
a
g
e
4
(
a
n
y
o
r
d
e
r
)

𝐵0 0 0 1 0 0 16 18 0 1

𝐵1 4 2 3 0 8 17 19 0 9

𝐵2 2 4 5 0 4 20 22 0 5

𝐵3 6 6 7 0 12 21 23 0 13

𝐵4 1 8 9 0 2 24 26 0 3

𝐵5 5 10 11 0 10 25 27 0 11

𝐵6 3 12 13 0 6 28 30 0 7

𝐵7 7 14 15 0 14 29 31 0 15

Notation:
1
: Coefficient indices, i.e. 𝑎𝑖 ;

2
: Twiddle factor powers, i.e. 𝜔

𝑖

of 𝜔
2
between two consecutive twiddle factors. This allows an

efficient generation with low logic overhead.

In stage 2, the memory access constraints require butterfly oper-

ations 𝐵0 and 𝐵2 to be processed directly after each other. Hence,

stage 2 follows a similar approach as stage 1 and uses the processing

order of 𝐵0, 𝐵2, 𝐵1, 𝐵3, . . . . This leads to a proper NTT execution

flow that complies with the memory constraints. Thereby, the DIF

twiddle factors are generated somewhat linearly (as in stage 1)

while DIT twiddle factors are generated linearly. The same applies

to stage 3 leading to an order of 𝐵0, 𝐵1, 𝐵4, 𝐵5, . . .

Finally, in stage 4, DIF only uses 𝜔
0
and hence does not pose

requirements on the processing order. Therefore, we choose a bit-

reversed order of processing. This allows a linear generation order

of the DIT twiddle factors, namely 𝜔
0
, 𝜔

2
, 𝜔

4
, . . . for PE0.

With the observations from this specific instance of NTT (𝑁 = 32,
𝑛𝑃𝐸 = 2), we can derive the general processing order of NR NTTs

for arbitrary 𝑁 and 𝑛𝑃𝐸 . Alg. 2 computes this sequence unifying

efficient twiddle factor generation and a conflict-free memory ac-

cess pattern. The first log
2
(𝑛𝑃𝐸) stages follow a linear processing

sequence. Then, from stage log
2
(𝑛𝑃𝐸) onwards, a non-linear but

TFG-friendly sequence is used. We further see from Alg. 2 that the

address generation logic only consists of hardware-friendly opera-

tions and yields a correct processing order for all combinations of

𝑁 and 𝑛𝑃𝐸 . A similar derivation can be done for RN NTTs as well.

Algorithm 2 Processing order of coefficients during NR NTT.

Input: 𝑁 , 𝑛𝑃𝐸
Output: 𝑎𝑑𝑑𝑟(︀𝑁 ⇑2⇑𝑛𝑃𝐸 ⋅ log2(𝑁 )⌋︀: array with the address sequence

1: 𝑎𝑑𝑑𝑟 ← (︀⌋︀

2: for 𝑠 = 0 to log
2
(𝑁 ) − 1 do

3: for 𝑖 = 0 to 𝑁 ⇑2⇑𝑛𝑃𝐸 do
4: if 𝑠 < log

2
(𝑛𝑃𝐸) then

5: 𝑎𝑑𝑑𝑟 .Append(𝑖) ▷ linear order

6: else
7: 𝑏 ← log

2
(𝑁 ⇑2⇑𝑛𝑃𝐸) ▷ bit-width of address

8: 𝑙_𝑏𝑖𝑡𝑠 ← 𝑏 − 𝑠 + log
2
(𝑛𝑃𝐸) ▷ bit-width of low part

9: ℎ ← 𝑖(︀𝑏 − 1 ∶ 𝑙_𝑏𝑖𝑡𝑠⌋︀

10: 𝑙 ← 𝑖(︀𝑙_𝑏𝑖𝑡𝑠 − 1 ∶ 0⌋︀

11: ℎ ← BitReverse(ℎ) ▷ bit-reverse high part

12: 𝑙 ← 𝑙⋙ 1 ▷ rotate low part

13: 𝑎𝑑𝑑𝑟 .Append({ℎ, 𝑙})

14: end if
15: end for
16: end for
17: return 𝑎𝑑𝑑𝑟

3.3 Optimized Twiddle Factor Generation
After deriving proper NTT processing orders, we focus on the twid-

dle factor generation itself. The TFG in OpenNTT is optimized for

low memory usage and must support different NTT types, poly-

nomial degrees, and number of processing elements. Each PE is

equipped with an exclusive multiplier unit for twiddle factor gener-

ation. This multiplier unit is fully pipelined with𝑑𝑀𝑢𝑙 stages, where

𝑑𝑀𝑢𝑙 depends on the prime size and the reduction method. Given

these flexibility requirements on 𝑁 , 𝑛𝑃𝐸 , 𝑑𝑀𝑢𝑙 , and NTT type, we

detail our optimized TFG architecture throughout this section.

In each NTT transformation, the generation multiplier’s pipeline

must be initially filled with twiddle factors obtained from a ROM

memory. After the initial filling, output twiddle factors are fed back

to the multiplier to generate the remaining sequence of twiddle

factors. The corresponding architecture is shown in Fig. 4.

A design goal of OpenNTT is to reduce the number of twiddle

factors in ROM memory (SharedTwROM in Fig. 4). To illustrate

our corresponding optimizations, we consider a multiplier with

latency 𝑑𝑀𝑢𝑙 = 4. Moreover, Tab. 2 shows the first two stages of a

DIF NR transformation with 𝑁 = 128 and 𝑛𝑃𝐸 = 4.
The NTT transformation starts with the initialization for stage

0. During initialization, the registers 𝑐 and 𝑡(︀0 . . . 𝑛𝑃𝐸 − 1⌋︀ in Fig. 4

are initialized with a total of 1 + 𝑛𝑃𝐸 = 5 twiddle factors from the

shared TwROM memory. The datapath used during initialization is

shown in red in Fig. 4. After this initialization, the transformation

starts, and the first 𝑑𝑀𝑢𝑙 = 4 twiddle factors (𝜔0
. . . 𝜔

3
, indicated in

red in Tab. 2) are loaded from ROM. These four twiddle factors are

broadcast to the four PEs, and each PE𝑖 multiplies 𝜔
0
. . . 𝜔

3
with

𝑡(︀𝑖⌋︀ to yield the first four twiddle factors for step 0 to step 3.

After that, from step 4 onwards, the four generation modules

(TwGen) start to independently multiply the produced twiddle

factors with the constant 𝜔
𝑐
, which is stored in registers, to yield

the remaining twiddle factor sequence for stage 0 (shown in Tab. 2).

For example, as soon as PE3 outputs 𝜔
48
, this twiddle factor is fed

back to the multiplier and gets multiplied by 𝜔
𝑐 = 𝜔4

to give 𝜔
52

after 𝑑𝑀𝑢𝑙 = 4 cycles.



Florian Krieger, Florian Hirner, Ahmet Can Mert, and Sujoy Sinha Roy

TwGen for PE              TwGen for PE0

Generated Twiddle Factor
for PE0

Generated Twiddle Factor
for PE               

Shared
TwROM

FI
FO

Figure 4: Architecture of our generic twiddle factor gener-
ation. Red arrows indicate data flow during initialization.
Blue indicates data flow for stage setup.

During the twiddle factor generation of stage 0, we prepare the

values for 𝑐 and 𝑡(︀0 . . . 3⌋︀ registers needed in stage 1. For that, a

systematic and scalable strategy is used to collect 𝑐 and 𝑡(︀0 . . . 3⌋︀ for
stage 1 during stage 0, which avoids ROM usage. This strategy is de-

tailed as follows: The constant factor𝜔
𝑐
for stage 1 is obtained from

the twiddle factor output in step 𝑁 ⇑4⇑𝑛𝑃𝐸 = 8 of PE0’s generation
module (indicated with ③ in Tab. 2). Further, the elements 𝑡(︀𝑖⌋︀ are
obtained from outputs marked with ① in Tab. 2. Finally, 𝑑𝑀𝑢𝑙 = 4
many twiddle factors are needed to fill the multiplier pipeline at

the beginning of stage 1. These twiddle factors are obtained from

stage 0 and fed into a FIFO with 𝑑𝑀𝑢𝑙 elements (blue datapath in

Fig. 4). The FIFO is filled with the twiddle factors produced by PE0

in even steps, which are marked with ② in Tab. 2.

In the transition from stage 0 to stage 1, the generation multipli-

ers are provided with the FIFO content during the last 𝑑𝑀𝑢𝑙 steps

of stage 0 (indicated in blue in Tab. 2). The multipliers then output

the desired twiddle factors after 𝑑𝑀𝑢𝑙 clock cycles, which is just in

time for the beginning of stage 1, thereby avoiding pipeline stalls.

Note that this approach does not access the twiddle factor ROM

after the initialization of stage 0, allowing a reduced ROM size.

This procedure is repeated for the remaining stages, and can

easily be scaled to arbitrary parameter sets and NTT types. Note

that our execution sequence from Sec. 3.2 must be maintained. The

discussed stages fromTab. 2 allow a linear processing order, which is

not the case in further stages. However, the presented approach also

applies to the somewhat linear processing sequence from Sec. 3.2,

with a small amount of additional control logic needed.

4 Overall Design of OpenNTT
After presenting our optimized and generalized TFG approach, this

section explains our whole OpenNTT framework. The section first

explains the parameter sets of OpenNTT and the flexible hardware

architecture that uses our generalized TFG. Then, the OpenNTT

design flow is discussed.

4.1 Supported Parameters in OpenNTT
Our OpenNTT framework compiles hardware designs for a wide

range of NTT parameter sets. OpenNTT can compile unified NTT

modules (UNTT) as well as standalone forward (FNTT) and inverse

(INTT) transformation modules. UNTT modules support forward

and inverse NTT in a unified hardware architecture, e.g. needed in

Table 2: Memory-optimized TFG for DIF NR.

Stage 0
Initialization: 𝑐 ← 4 from ROM, 𝑡 ← (︀0, 16, 32, 48⌋︀ from ROM

Step PE0 PE1 PE2 PE3

0 0 = 0 + 𝑡(︀0⌋︀①② 16 = 0 + 𝑡(︀1⌋︀ 32 = 0 + 𝑡(︀2⌋︀① 48 = 0 + 𝑡(︀3⌋︀
1 1 = 1 + 𝑡(︀0⌋︀ 17 = 1 + 𝑡(︀1⌋︀ 33 = 1 + 𝑡(︀2⌋︀ 49 = 1 + 𝑡(︀3⌋︀
2 2 = 2 + 𝑡(︀0⌋︀② 18 = 2 + 𝑡(︀1⌋︀ 34 = 2 + 𝑡(︀2⌋︀ 50 = 2 + 𝑡(︀3⌋︀
3 3 = 3 + 𝑡(︀0⌋︀ 19 = 3 + 𝑡(︀1⌋︀ 35 = 3 + 𝑡(︀2⌋︀ 51 = 3 + 𝑡(︀3⌋︀
4 4 = 0 + 𝑐② 20 = 16 + 𝑐 36 = 32 + 𝑐 52 = 48 + 𝑐
5 5 = 1 + 𝑐 21 = 17 + 𝑐 37 = 33 + 𝑐 53 = 49 + 𝑐
6 6 = 2 + 𝑐② 22 = 18 + 𝑐 38 = 34 + 𝑐 54 = 50 + 𝑐
7 7 = 3 + 𝑐 23 = 19 + 𝑐 39 = 35 + 𝑐 55 = 51 + 𝑐
8 8 = 4 + 𝑐③ 24 = 20 + 𝑐 38 = 36 + 𝑐 56 = 52 + 𝑐
⋮ ⋮ ⋮ ⋮ ⋮

15 15 = 11 + 𝑐 31 = 27 + 𝑐 47 = 43 + 𝑐 63 = 59 + 𝑐

Stage 1
Setup: 𝑐 ← 8 from ③ in Stage 0, 𝑡 ← (︀0, 32, 0, 32⌋︀ from ① in Stage 0,

𝐹𝐼𝐹𝑂 ← (︀0, 2, 4, 6⌋︀ from ② in Stage 0

Step PE0 PE1 PE2 PE3

0 0 = 0 + 𝑡(︀0⌋︀①② 32 = 0 + 𝑡(︀1⌋︀ 0 = 0 + 𝑡(︀2⌋︀① 32 = 0 + 𝑡(︀3⌋︀
1 2 = 2 + 𝑡(︀0⌋︀ 34 = 2 + 𝑡(︀1⌋︀ 2 = 2 + 𝑡(︀2⌋︀ 34 = 2 + 𝑡(︀3⌋︀
2 4 = 4 + 𝑡(︀0⌋︀② 36 = 4 + 𝑡(︀1⌋︀ 4 = 4 + 𝑡(︀2⌋︀ 36 = 4 + 𝑡(︀3⌋︀
3 6 = 6 + 𝑡(︀0⌋︀ 38 = 6 + 𝑡(︀1⌋︀ 6 = 6 + 𝑡(︀2⌋︀ 38 = 6 + 𝑡(︀3⌋︀
4 8 = 0 + 𝑐② 40 = 32 + 𝑐 8 = 0 + 𝑐 40 = 32 + 𝑐
5 10 = 2 + 𝑐 42 = 34 + 𝑐 10 = 2 + 𝑐 42 = 34 + 𝑐
6 12 = 4 + 𝑐② 44 = 36 + 𝑐 12 = 4 + 𝑐 44 = 36 + 𝑐
⋮ ⋮ ⋮ ⋮ ⋮

15 30 = 22 + 𝑐 62 = 54 + 𝑐 30 = 22 + 𝑐 62 = 54 + 𝑐
Notation is in log𝜔 : 3 = 1 + 2 refers to 𝜔3

= 𝜔1
⋅𝜔2

mod 𝑞.

PQC [3]. Unlike UNTT, the standalone NTT modules only support

one direction of transformation and hence save hardware resources.

Thus, standalone modules are relevant in constrained applications,

such as in client-side FHE [20]. In addition, OpenNTT supports

multiple primes 𝑞0 . . . 𝑞𝐿−1 efficiently in one architecture. A seam-

less transition between primes can be performed without off-chip

communication due to the on-the-fly TFG. This is a clear benefit

compared to stored twiddle factors which introduce overheads in

frequent prime changes.

Finally, OpenNTT provides the choice of incorporating coeffi-

cient arithmetic into the NTT design. Thereby, users select whether

they want hardware support for coefficient-wise arithmetic such

as addition, subtraction, and multiplication along with the NTT

transformation. To efficiently compute these coefficient-wise opera-

tions, a user-defined number of polynomials 𝑛𝑃𝑜𝑙𝑦 can be stored in

OpenNTT’s memory subsystem. Two of these stored polynomials

are involved in each arithmetic operation. The selection of involved

polynomials is done by control signals to allow a high flexibility in

polynomial arithmetic computation.

4.2 Flexible Hardware Architecture
OpenNTT uses a parametric and adaptive hardware architecture to

meet the desired flexibility in hardware generation. This adaptive

architecture is shown in Fig. 5.

OpenNTT instantiates 𝑛𝑃𝐸 many processing elements (PE), illus-

trated in the center of Fig. 5. Each PE has one TwGenmodule which
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Figure 5: Overall Hardware Architecture of OpenNTT.

is responsible for delivering twiddle factors to the PE. Thereby,

TwGen uses our generic TFG algorithm detailed in Sec. 3. The

shared twiddle factor ROM (TwROM) serves all PEs along the blue

datapath. This ROM contains a minimal amount of precomputed

twiddle factors and is used to fill the multiplier pipeline initially.

Next to the twiddle factor, each PE takes two coefficients from

memory as input. Hence, two memory banks with one read and one

write port each are required per PE. The resulting 2𝑛𝑃𝐸 memory

banks are shown on the left in Fig. 5. The memory banks store up to

𝑛𝑃𝑜𝑙𝑦 polynomials. Each polynomial resides in one PolySlot spread

across all memory banks. The polynomial slots can be selected as

input operands for NTT and coefficient-wise operations.

Finally, the control logic (bottom right in Fig. 5) is responsible

for orchestrating the operations in OpenNTT. The control logic

takes various input signals, which partially depend on the chosen

NTT configuration. Based on these signals, it outputs proper read

and write addresses and control signals for the datapath and the

ReorderLogic. The ReorderLogic is required to store the butterfly

results to proper memory locations, as detailed in Sec. 3.1.

The presented hardware architecture is efficiently adaptable to

different parameter sets. This allows an automated and user-friendly

design flow which is discussed in the next section.

4.3 Design Flow in OpenNTT
The design flow in OpenNTT overtakes all main steps of hardware

generation. Based on the provided parameter set, OpenNTT uses

Python to produce parametrized SystemVerilog code. The resulting

SystemVerilog code can easily be integrated into larger designs.

In addition to that, OpenNTT provides testbenches and testvec-

tors to verify the correctness of the hardware design in simulation

and on real FPGAs. For that, the generated NTT accelerator is in-

stantiated in a prepared RTL wrapper to interface with the FPGA.

Subsequently, a ready-to-use C program executes prepared tests

on the FPGA and verifies the correct functionality of the overall

design. It is noteworthy that all these steps are fully automated and

require no user interaction except specifying parameters.
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Figure 6: Comparison of twiddle factors needed in memory.

5 Results and Evaluation
We use our OpenNTT framework and the presented concepts to

generate various NTT hardware designs. For that, we use Xilinx

Vivado and Vitis 2022.2 with default settings to synthesize, place,

and route our designs for different FPGAs. Furthermore, the correct

functionality of OpenNTT was verified by testing the designs with

different parameter sets on the ZYNQ-Z2 and Alveo U250 FPGAs.

The remainder of this section presents the gathered implemen-

tation results of OpenNTT. We first discuss the impact of TFG on

resource utilization before comparing our results to related work.

5.1 Resource Utilization
The selection between stored and generated twiddle factors in NTT

strongly influences resource utilization. We discuss this influence

by considering an FHE application with typical parameters [25, 1].

The selected parameter set uses 8 different primes 𝑞0 to 𝑞7 each

having [︂log
2
(𝑞𝑖)⌉︂ = 54 bits.

The memory consumption for (1) our optimized on-the-fly gen-

erated twiddle factors and (2) stored twiddle factors for different 𝑁

is shown in Fig. 6. We observe a significantly higher (between 93×
and 585×) memory consumption for stored twiddle factors com-

pared to our optimized on-the-fly TFG. Moreover, the difference

in memory usage increases with larger polynomial degrees. This

is caused by the linear memory growth w.r.t. 𝑁 in stored twiddle

factors, whereas TFG shows logarithmic growth w.r.t. log
2
(𝑁 ). The

advantage of lower memory consumption in TFG comes with the

drawback of higher logic utilization. This increased logic utilization

in terms of DSPs and LUTs is due to the additional multipliers in

the generation logic. However, the DSP and LUT overhead only

scales with the number of processing elements, but not with the

polynomial degree or the number of primes. This makes TFG an

attractive choice for large-degree NTTs as used in FHE.

5.2 Comparison to Related Works
Throughout this section, we present OpenNTTs implementation

results and compare them with related works. The related works

report NTT results for various parameter sets and different FPGA

platforms. Hence, we use our OpenNTT framework to compile NTT

designs for matching parameter sets and identical FPGAs, which

enhances fair comparisons.

OpenNTT is a generic hardware compilation tool with on-the-

fly twiddle factor generation. Yet, related works mostly use stored

twiddle factors, which is an orthogonal design approach to TFG.

This fact makes a direct comparison in terms of area consumption

hard. To improve the comparability, we use the area-time product

(ATP) as defined in [27]:𝐴𝑇𝑃 = (𝐿𝑈𝑇 +100 ⋅𝐷𝑆𝑃+300 ⋅𝐵𝑅𝐴𝑀)⋅𝐿𝑎𝑡 .
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Table 3: Performance Comparison with Related Works targeting FHE Parameters.

Work Platform 𝑁 log(𝑞) 𝑛𝑃𝐸 LUT / FF / BRAM / DSP

Freq. Latency NTT ATP

MHz cc 𝜇s (impr.) (impr.)

[19]

4096 24 1 802 / 525 / 7 / 4 185 24,583 132.9 439

Virtex-7 4096 24 8 5,665 / 3,188 / 8.5 / 33 157 3,079 19.7 227

Our xc7vx690tffg1761-2 4096 24 1 1,254 / 1,927 / 4 / 8 333 24,610 73.9 (1.8) 240 (1.82)

4096 24 8 8,630 / 9,963 / 5 / 64 320 3,106 9.7 (2.0) 160 (1.41)

[14]

4096 32 4 6,300 / 5,200 / 14 / 24 224 6,158 27.46 354

4096 60 1 2,600 / 2,500 / 21 / 26 144 24,590 171.6 1,973

Virtex-7 4096 60 8 22,100 / 19,500 / 48 / 208 141 3,086 21.91 1,255

Our
xc7vx485tffg1761-2 4096 32 4 5,973 / 8,030 / 9 / 56 290 6,194 21.4 (1.3) 305 (1.16)

4096 60 1 5,996 / 9,845 / 16 / 44 250 24,650 98.6 (1.7) 1,498 (1.32)

4096 60 8 34,886 / 45,316 / 18 / 352 225 3,146 14.0 (1.6) 1,055 (1.19)

[16]

4096 24 16 10,800 / 9,500 / 40 / 112 220 1,545 7.0 238

4096 60 1 1,900 / 1,800 / 17 / 42 154 24,585 159.6 1,788

Virtex-7 4096 60 8 14,100 / 12,500 / 41 / 336 150 3,081 20.5 1,230

Our
xc7vx690tffg1761-3 4096 24 16 19,912 / 19,583 / 17 / 128 290 1,570 5.4 (1.3) 205 (1.16)

4096 60 1 6,003 / 9,600 / 16 / 44 250 24,650 98.6 (1.6) 1,499 (1.19)

4096 60 8 35,262 / 44,107 / 18 / 352 240 3,146 13.1 (1.6) 994 (1.24)

[9] ZCU102 65536 52 32 149k / 91k / 137 / 564 200 16,776 83.9 20,675

Our xczu9eg-ffvb1156-2-e 65536 52 32 157k / 117k / 98 / 896 210 16,455 78.4 (1.1) 21,653 (0.95)

[18]

1024 28 1 1,000 / 1,000 / 2 / 7 125 5,290 42.0 97

Virtex-7 1024 28 8 16,000 / 14,000 / 24 / 56 125 490 3.9 112

Our xc7vx690tffg1761-2 1024 28 1 1,689 / 2,278 / 3 / 10 333 51,69 15.5 (2.7) 56 (1.73)

1024 28 8 12,717 / 14,217 / 9 / 80 320 689 2.2 (1.8) 50 (2.23)

Tab. 3 presents the ATP and other benchmarks of related works.

The table shows the parameter set, the used FPGA platform, the

reported implementation results, and the ATP. In addition, the trans-

formation latency and ATP improvement achieved by OpenNTT

are given. Note, that all comparisons are based on identical FPGAs.

We first consider [19], which presents a scalable NTT design

approach for different PE structures. Compared to [19], OpenNTT

shows close to 50% lower BRAM consumption but needs 2× more

DSPs. The cycle count for NTT transformations is similar, but Open-

NTT reaches significantly higher clock frequencies due to improved

pipelining. This leads to a latency reduction in OpenNTT of up to

2× and an ATP improvement of up to 82%. The work in [14] pro-

poses runtime flexibility in the polynomial degree 𝑁 and also relies

on stored twiddle factors. OpenNTT reaches 1.3× to 1.7× and 16%

to 33% lower latency and ATP, respectively across the different NTT

configurations. Considering the BRAM consumption of [14], we

see a clear benefit of generated twiddle factors over stored ones for

large𝑁 , log(𝑞), and𝑛𝑃𝐸 . OpenNTT lowers the BRAM consumption

by 63% from 48 to 18 BRAMs for 𝑁 = 4096, log(𝑞) = 60, 𝑛𝑃𝐸 = 8.
The authors of [16] propose a constant geometry NTT design based

on stored twiddle factors. Their twiddle factor memory is optimized

to reduce the BRAM consumption. Despite this optimization, the

TFG in OpenNTT leads to up to 2.35× lower BRAM consumption,

while the DSP consumption in OpenNTT is just 5% to 14% higher.

However, OpenNTT requires up to 3× more LUTs, limiting the

overall ATP improvement to 1.24×.
Next, we consider [9], which is an NTT accelerator for FHE.

The accelerator features large polynomials with 𝑁 = 65536 and

𝑛𝑃𝐸 = 32 PEs. OpenNTT produces similar results as [9] since both

works use twiddle factor generation. The latency in OpenNTT is

7% lower but the ATP is 5% higher compared to [9]. Finally, the

work in [18] presents an NTT design methodology for PQC and

FHE applications. Compared to [18], OpenNTT reaches 2.5× higher
frequency causing a significantly lower NTT latency and ATP.

Overall, it can be seen that OpenNTT designs outperform other

NTT hardware generation tools by up to 2.7× and 2.23× in latency

and ATP respectively. Furthermore, OpenNTT reduces the trans-

formation latency compared to application-specific FHE designs

such as [9]. The latency improvement of OpenNTT is explained

by our design strategy that allows higher clock frequencies on the

same FPGAs for a wide range of parameter sets. OpenNTT’s TFG

is efficient in terms of ATP and trades a higher DSP utilization for

reduced memory consumption. This memory reduction supports

the NTT deployment in memory-critical applications such as FHE.

6 Conclusion
In this paper, we presented OpenNTT, a flexible framework to

compile efficient NTT designs for hardware platforms. In contrast

to existing works, OpenNTT relied on on-the-fly twiddle factor

generation to reduce the memory consumption of our designs.

We proposed a generic design strategy to combine this twiddle

factor generation with conflict-free memory accesses for various

NTT types and parameter sets. Implementation results show the

competitiveness of OpenNTT, which achieves a speedup of up

to 2.7× compared to related work. Hence, OpenNTT supports a

performant and efficient NTT deployment on hardware platforms.
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