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Thomas den Hollander* Sören Kleine† Marzio Mula‡ Daniel Slamanig§

Sebastian A. Spindler¶

Research Institute CODE, Universität der Bundeswehr München

Abstract

Proving knowledge of a secret isogeny has recently been proposed as a means to generate
supersingular elliptic curves of unknown endomorphism ring, but is equally important for cryp-
tographic protocol design as well as for real world deployments. Recently, Cong, Lai and Levin
(ACNS’23) have investigated the use of general-purpose (non-interactive) zero-knowledge proof
systems for proving the knowledge of an isogeny of degree 2k between supersingular elliptic
curves. In particular, their approach is to model this relation via a sequence of k successive steps
of a walk in the supersingular isogeny graph and to show that the respective j-invariants are roots
of the second modular polynomial. They then arithmetize this relation and show that this ap-
proach, when compared to state-of-the-art tailor-made proofs of knowledge by Basso et al. (EU-
ROCRYPT’23), gives a 3-10× improvement in proof and verification times, with comparable proof
sizes.

In this paper we ask whether we can further improve the modular polynomial-based approach
and generalize its application to primes ℓ > 2, as used in some recent isogeny-based construc-
tions. We will answer these questions affirmatively, by designing efficient arithmetizations for
each ℓ ∈ {2, 3, 5, 7, 13} that achieve an improvement over Cong, Lai and Levin of up to 48%.

Our main technical tool and source of efficiency gains is to switch from classical modular poly-
nomials to canonical modular polynomials. Adapting the well-known results on the former to the
latter polynomials, however, is not straight-forward and requires some technical effort. We prove
various interesting connections via novel use of resultant theory, and advance the understanding
of canonical modular polynomials, which might be of independent interest.

1 Introduction

More than twenty years have passed since the seminal works by Couveignes [Cou06], Rostovstev,
and Stolbunov [RS06] have introduced the idea of using maps between elliptic curves, called isoge-
nies, for cryptographic purposes. Although their original attempts seemed too inefficient to compare
with concurrent cryptosystems, later efforts in this direction [JD11, CLM+18] gave birth to a rich,
and still lively, branch of cryptography. A strong reason for researchers to push into in this field is
that the main problem on which it is based – namely, recovering a secret isogeny between two given
elliptic curves – is considered hard even for quantum computers. Moreover, compared with other
proposals for post-quantum cryptography, isogenies enjoy shorter parameters which though come
at the price of slower performance. Since its proposal, isogeny-based cryptography has evolved into
a very active and dynamic field and many different cryptographic applications have been proposed
so far.

In this work we are particularly interested in (non-interactive) zero-knowledge proofs of knowl-
edge of secret isogenies. They are a central tool to enforce honest behaviors in multi-party protocols.
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More specifically, in many cryptographic applications it is required that when a party presents a
public key, it also needs to provide a proof-of-possession (PoP) of the corresponding secret key, to
prove that the public key is well-formed. Such PoPs are for instance an important measure to pre-
vent rogue key attacks in multi-party signature protocols [RY07]. More practically, this is required
in public-key infrastructures (PKIs) when requesting the issuance of a certificate. In current PKIs
based on X.509 certificates [CSF+08], these so-called certificate signing requests realize the PoPs via
signatures, i.e. the knowledge of the corresponding signing key is demonstrated by computing a
signature. This only works for certifying signing keys. However, in a post-quantum setting this
gets more relevant, e.g. when certifying KEM keys for KEMTLS [SSW20], one explicitly requires
zero-knowledge proofs [GHL+22]. Another immediate application of such proofs is the design of
signature schemes obtained via the the Fiat-Shamir heuristic, e.g. GPS signatures [GPS17], CSI-FiSh
[BKV19] or SQISign [DKL+20].

More recently such proofs have been studied for settings where one wants to avoid a trusted
setup to generate supersingular curves of unknown endomorphism ring [BCC+23, CLL23]. Such
curves are needed for several isogeny-based protocols ranging from hash functions [CLG09] to
VDFs [BBBF18, DMPS19], delay encryption schemes [BD21], and public-key cryptosystems [Mor23,
FMP23]. In all these applications it is central to the security that the trapdoor is discarded after the
trusted setup. This is a requirement that is hard to enforce in practice. Basso et al. [BCC+23] propose
to implement a sequential multi-party ceremony to replace the trusted setup. Loosely speaking, they
consider a walk in the isogeny graph E0 → E1 → · · · → Ek which starts from some (well-known)
curve E0 and then each party i takes the previous curve Ei−1, generates a random isogeny to a new
curve Ei and provides a proof that they know the isogeny from Ei−1 to Ei. This is a well-known
technique that is often used to avoid a trusted setup for generating the structured reference string
(SRS) for succinct non-interactive argument of knowledge systems (zk-SNARKs) [GKM+18], and
can be seen as a variant where one uses explicit zero-knowledge proofs for the updates [AGRS24]
instead of knowledge assumptions as done in [GKM+18]. Such a protocol can be used to replace a
trusted setup as long as one of the parties in the chain can be assumed to be honest (i.e. discards its
secret isogeny).

1.1 Previous Work

In general one can distinguish between tailor-made approaches and generic (or general-purpose) ap-
proaches. Subsequently, we are only focusing on work directly relevant to our approach, and we
refer the reader to a recent comprehensive survey of proofs of knowledge of isogenies by Beullens
et al. [BFGP23] for a complete overview.

For tailor-made approaches, the most recent work is the one of Basso et al. [BCC+23], which
builds on the SIDH proof of knowledge from [DFJP14, DDGZ22] and achieves statistical zero-know-
ledge. One main limitation of this (and most previous approaches with the exception of [DKL+20])
is that the small challenge space requires numerous parallel executions of the protocol in order to
reduce the soundness error. A more concerning problem is that the knowledge soundness achieved
in [BCC+23] is not exact but only relaxed, i.e., while the relation is intended to prove knowledge of
a d-isogeny, one can only extract an ℓ2id-isogeny for some small prime ℓ and 0 ≤ i ≤ n.

The second approach is to take a general-purpose (non-interactive) zero-knowledge proof sys-
tem that is capable of proving any language in NP, such as a zk-SNARK, and prove the respective
isogeny relation using this proof system. While tailor-made approaches might intuitively seem to
be more efficient than such a generic approach, there has been enormous progress in the field of
zk-SNARKs over the last decade (cf. [Tha22] for a good overview). This has led Cong, Lai and Levin
[CLL23] (CLL henceforth) to look into how well such an approach can perform when concretely in-
stantiated with various recent general-purpose zero-knowledge proof systems. As a starting point
CLL take the work by Chavez-Saab, Rodrı́guez-Henrı́quez and Tibouchi [CSRT22], which constructs
isogeny-based verifiable delay functions (VDFs) [BBBF18] using a succinct non-interactive argument
(SNARG) system. For the evaluation of their VDF they require to prove isogeny walks over super-
singular elliptic curves. In brief, for a small prime ℓ they consider the supersingular isogeny graph
of ℓ-isogenous supersingular elliptic curves (represented by their j-invariants) and want to prove a
walk in this graph. Their idea now is to consider the ℓth modular polynomial Φℓ(X, Y) ∈ Z[X, Y],
for which it holds that two curves E and E′ are ℓ-isogenous if and only if their j-invariants satisfy
Φℓ(j(E), j(E′)) = 0. Consequently, when aiming to prove a walk in the ℓ-isogeny graph from some
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starting curve E to some curve E′, we can efficiently represent it as a sequence of successive steps,
i.e. a sequence of j-invariants j0, j1, . . . , jk such that Φℓ(ji, ji+1) = 0 for all i ∈ {0, . . . , k − 1}, and
j0 = j(E) and jk = j(E′). This means that the relation

Rℓk-ISOPATH = {((E, E′), ϕ) | ϕ : E → E′ is an isogeny of degree ℓk}

can be equivalently represented by means of the relation

Rℓk-MODPOLY =

((E, E′), (ji)i∈[k−1]

)∣∣∣∣∣∣
Φℓ(j(E), j1) = 0 ∧
Φℓ(jk−1, j(E′)) = 0∧

i∈[k−2] Φℓ(ji, ji+1) = 0

 . (1)

We note that [CSRT22] do not require the zero-knowledge and knowledge soundness properties for
the VDF application and thus a SNARG suffices. CLL then use this relation for the specific case of a
degree 2k isogeny to construct a rank-1 constraint system (R1CS), which is a very popular arithme-
tization method in state-of-the-art zk-SNARKs. They then take a number of existing plausibly post-
quantum zero-knowledge argument systems and in particular Aurora [BCR+19], Ligero [AHIV17]
and Limbo [DOT21] which do not need to make additional structured cryptographic assumptions
(e.g., such as lattice-based proof systems for R1CS [NS22, BS23]).

Although CLL focus on ℓ = 2, it is not uncommon for isogeny-based protocols to involve, or
at least allow for, other small primes. For instance, the KEM presented in [Mor23] makes use of a
3-smooth isogeny as a public key, and a 5- or 7-smooth isogeny for encapsulation. Similarly, a 3-
smooth isogeny is used for the encryption in the updatable PKE scheme from [DFV24] and for the
encapsulation in the KEM from [Bas24, Protocol 2]. More generally, while the choice ℓ = 2 is usually
done for simplicity, considering different small primes can provide greater flexibility and also allows
for trade-offs in the efficiency between the building blocks and the isogeny proofs of knowledge.

The results in [CLL23] show that the efficiency of this general-purpose approach when compared
with the recent tailor-made approach in [BCC+23] achieves an order of magnitude improvement
over proof and verification times, with slightly worse but still comparable proof sizes. Moreover,
compared to existing tailor-made solutions, this approach provides a stronger notion of soundness,
i.e. an exact instead of a relaxed one.

In this work we ask whether this is the best we can do when targeting R1CS and whether the
approach can be generalized to prove the knowledge of isogenies of degree ℓk for primes ℓ greater

than 2.

1.2 Our Contributions

The goal of this paper is to improve on the state-of-the-art results of [CLL23] for proving the knowl-
edge of an isogeny, and we make the following contributions.

Use of canonical modular polynomials. We consider canonical modular polynomials in place of the
classical modular polynomials used in [CSRT22, CLL23] and we show that constructing a proof of
knowledge of the corresponding relation Rℓk-MODROOT is computationally equivalent to proving the
relations Rℓk-ISOPATH and Rℓk-MODPOLY mentioned above. While the approach via classical modular
polynomials stems directly from well-known theoretical results, the same results are not as readily
available for the case of canonical polynomials. Therefore we incorporate them and prove connec-
tions to the classical modular polynomials via novel use of resultant theory. We also spot a few gaps
in the relevant literature and provide new proofs of some basic properties of the modular polyno-
mials over finite fields. For example, we analyze the existence of edges of multiplicity at least three
in the supersingular ℓ-isogeny graph for small ℓ – which seems to be known to experts of the field,
at least in a weaker form – and we study the relationship between multiple edges in the ℓ-isogeny
graph on the one hand and multiple roots of the ℓth canonical modular polynomial on the other
hand. Therefore this part might also be of interest beyond the concrete application in this paper.

Improved and generalized isogeny proofs of knowledge. By moving to canonical modular polyno-
mials we obtain a more efficient arithmetization for the equivalent relation Rℓk-MODPOLY. Moreover,
while [CLL23] only consider isogenies of 2-power degrees, we generalize the approach to cover iso-
genies of degree ℓk, where ℓ ∈ {2, 3, 5, 7, 13}. This is of interest not only because such primes are
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used in some recent isogeny-based constructions [Mor23, DFV24, Bas24], but also because here we
reduce the number of constraints further, potentially yielding even more efficient proof systems.

We first encode our new relation into an R1CS over the field Fp2 with p2 elements, and subse-
quently lift these arithmetizations to Fp ×Fp in order to obtain a formulation which works over Fp.
We describe several techniques to minimize the non-zero entries in the constraint matrices when lift-
ing, such as a basis change for product relations and a change of variables for linear relations, which
may be applicable more broadly. Additionally, we are able to further exploit the structured nature of
the canonical modular polynomials to maximize the use of the more efficient squaring relations over
Fp, minimizing the number of R1CS-constraints. We expect our system to be up to twice as efficient
as [CLL23] in concrete proof systems.

1.3 Concurrent Work

In [LP24], Levin and Pedersen examine radical isogenies and develop a verifiable random function
(VRF) from an efficient proof of knowledge of an isogeny. Although the theory behind the two
approaches is quite different, they also obtain an arithmetization that uses the same number of con-
straints and number of variables asymptotically for ℓ = 2. An advantage of their approach is that it
prevents backtracking for free, whereas ours would require an additional check as in [CLL23, Ap-
pendix A]. On the other hand, ours is more general in two respects: We do not put restrictions on
the prime p while they need p = 3 mod 4, and we also generalize to isogeny degrees beyond ℓ = 2,
where we are able to obtain systems with fewer constraints and variables.

2 Preliminaries

2.1 Isogeny Graphs and Classical Modular Polynomials

Let K be a perfect field, and let E0, E1 be elliptic curves over K. An isogeny is a morphism of curves
ϕ : E0 −→ E1 which induces also a surjective group homomorphism on the sets of K-rational points.
An isogeny of degree n is also called an n-isogeny, and two elliptic curves E0 and E1 over K are called
n-isogenous if there exists an n-isogeny ϕ : E0 −→ E1. An isogeny of degree 1 is called an isomorphism,
an isogeny ϕ : E −→ E is called an endomorphism, and an endomorphism of degree 1 is called an au-
tomorphism. We refer the interested reader to Appendix A.1 for other standard definitions, properties
and references on elliptic curves and isogenies.

We will say that two n-isogenies ϕ1 : E −→ E1 and ϕ2 : E −→ E2 are equivalent if they are the
same up to post-composition with an isomorphism, i.e. if there exists an isomorphism σ : E1 −→ E2
such that ϕ2 = σ ◦ ϕ1. The kernel of an isogeny ϕ can be represented by its kernel polynomial [Koh96,
§2.4], which is the square-free monic polynomial whose roots are precisely the x-coordinates of the
points in the kernel of ϕ. We say that ϕ is defined over K if the coefficients of its kernel polynomial
lie in K. Closely related to kernel polynomials is the nth division polynomial ψn of an elliptic curve E
(which we scale by 2y for even n compared to the usual definition [Was08, p. 81], so that it is always
a polynomial in x only): It is the kernel polynomial of the multiplication-by-n endomorphism scaled
by the factor n (resp. 2n) for odd n (resp. even n).

To each elliptic curve E defined over a field K one can attach a j-invariant j(E) ∈ K which can
be computed efficiently from the coefficients of E. Two elliptic curves E0 and E1 are isomorphic if
and only if j(E0) = j(E1), and any j0 ∈ K is the j-invariant of an elliptic curve defined over K(j0)
[Sil09, Proposition III.1.4]. By a slight abuse of terminology, we will often refer to the number of non-
equivalent n-isogenies j0 → j1 to indicate the number of equivalence classes of n-isogenies starting
from a fixed elliptic curve of j-invariant j0 and landing on some elliptic curve of j-invariant j1; note
that the number of such equivalence classes does not depend on the choice of representative of j0.

Now fix a prime p and let q = pk for some positive integer k. An elliptic curve E over Fq is called
supersingular if the cardinality of E(Fq) is congruent to 1 modulo p [Was08, Proposition 4.31]. Given
a prime ℓ ̸= p, the supersingular ℓ-isogeny graph Gℓ(p) is defined as follows: The vertices of Gℓ(p)
shall be the isomorphism classes of supersingular elliptic curves, which we parametrize by their j-
invariants in Fp2 [Sil09, Theorem V.3.1], and the number of edges j0 → j1 is precisely the number of
non-equivalent ℓ-isogenies j0 → j1. The graph Gℓ(p) is connected, (ℓ+ 1)-regular, and it is Ramanu-
jan [Piz90, CL24]. Furthermore, since every isogeny admits a dual isogeny [Sil09, Theorem III.6.1-2],
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it can almost be considered as an undirected graph; however, curves of j-invariants 0 or 1728 have
special automorphisms [Sil09, Theorem III.10.1], which cause asymmetries in the graph for p ≥ 5:
If we write µ(0) := 3, µ(1728) := 2 and µ(j) := 1 for j /∈ {0, 1728}, then there are µ(j0)/µ(j1)
times as many non-equivalent ℓ-isogenies j0 → j1 as there are non-equivalent ℓ-isogenies j1 → j0 (cf.
[AAM19, Formula (11)]).

In this paper we will consider random walks on Gℓ(p), i.e. sequences

j(E0) −→ j(E1) −→ . . . −→ j(Ek)

of adjacent j-invariants in Gℓ(p). It is easy to check whether two given j-invariants belong to a pair
of ℓ-isogenous elliptic curves. To this end, one can use the so-called classical modular polynomials (see
[Mü95, §4.3], [AAM19, §2.4] and [Sut12, §2.3]): The ℓth classical modular polynomial Φℓ(X, Y) is a
two-variable polynomial with integer coefficients whose roots are given by the pairs of j-invariants
of ℓ-isogenous elliptic curves – more precisely, given the prime ℓ and any two elliptic curves E, E′

over a field K with char(K) ̸= ℓ, the number of non-equivalent ℓ-isogenies E → E′ is equal to the
multiplicity of j(E′) as a root of Φℓ(j(E), Y).

2.2 Resultants

Let R be an integral domain and let f , g ∈ R[X] be non-zero polynomials. The Sylvester matrix of f
and g and especially its determinant, the resultant of f and g, are important algebraic tools to detect
common divisors between two polynomials. We only state the necessary properties here and give
the theoretical background together with proofs for the below results in Appendix B.

Proposition 1. Let R be an integral domain, let f , g ∈ R[X] be non-zero polynomials and let φ : R → S
be a ring homomorphism of integral domains, extended to a ring homomorphism φ : R[X] → S[X]
via coefficient-wise application. Then the following holds:

(a) If φ preserves the degress of f and g, then

res(φ( f ), φ(g)) = φ(res( f , g)).

(b) res( f , g) = 0 if and only if f and g share a common divisor of positive degree.

Proof. Lemma 17 and Corollary 18.

Remark 1. We note that, as the discriminant of f is defined as the resultant of f and ∂
∂X f up to scaling,

the above results also translate to the discriminant; see Corollary 23 for a precise formulation of the
first claim for discriminants.

Proposition 2. Let R = K[Y] be a polynomial ring over a field K and fix an element y0 ∈ K. Addi-
tionally let f , g ∈ R[X] be non-zero polynomials and extend the K-linear evaluation homomorphism
φ : R → K given by Y 7→ y0 to a ring homomorphism φ : R[X] → K[X] via coefficient-wise applica-
tion. Further suppose that φ preserves the X-degrees of f and g, and write

m := deg gcd(φ( f ), φ(g)).

Then
∂k

∂Yk

∣∣∣∣
Y=y0

res( f , g) = 0 for k ∈ {0, . . . , m − 1},

i.e. res( f , g) ∈ K[Y] has a root of multiplicity at least m at y0.

Proof. Corollary 20.
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2.3 Zero-Knowledge Argument Systems and R1CS

As stated before, in this work we will use generic techniques to prove the knowledge of isogenies,
improving and expanding on the previous results of [CLL23]. Since our arithmetization is broadly
applicable across different argument systems, and we do not need any formal properties of an argu-
ment system throughout this work, we will omit a full formal treatment of zk-SNARKS. For a com-
prehensive formal treatment, readers are referred to the respective proof systems [BCR+19, AHIV17,
XZZ+19].

A zk-SNARK is a non-interactive argument system that is complete, knowledge-sound, zero-
knowledge and succinct. The proving algorithm takes a statement and witness pair (s, w) for some
NP-relation and generates a proof π. There is a verification algorithm to check the validity of a
proof. Completeness indicates that a valid proof can be generated form any pair (s, w) in the rela-
tion. Knowledge soundness means that any prover that can generate a valid proof for a statement
s needs to know a corresponding witness w. Zero-knowledge means that the proof does not reveal
any information about the witness. An argument system is succinct if the proof size is small and
the proof can be verified efficiently. Usually, both proof size and verifier time are required to be
polynomial in |x| and polylogarithmic in |w|.

In this paper we design an efficient arithmetization in the form of a rank-1 constraint system
(R1CS). This represents a popular choice and this allows us to cover many different proof systems.
An R1CS is defined as follows:

Definition 1 ([BCR+19]). The relation RR1CS is the set of pairs ((F, k, n, m, A, B, C, v), w) whereF is a
finite field, k, n, m ∈ N denote the numbers of inputs, variables and constraints respectively (k ≤ n),
A, B, C are m × (1 + n)-matrices over F, v ∈ Fk, and w ∈ Fn−k, such that for all i ∈ [m](

n

∑
j=0

Aijzj

)
·
(

n

∑
j=0

Bijzj

)
=

(
n

∑
j=0

Cijzj

)
,

where (1, v, w) =: z = (zj)j ∈ Fn+1.

It is worth noting that the efficiency of proving and verifying knowledge of a witness may de-
pend on different aspects of the R1CS, depending on the proof system that is used. For example,
the prover time of pairing-based SNARKs is usually O(n), the proof size is constant, and the verifier
time is O(k) [Gro16, Lip22]. On the other hand, [BCR+19, AHIV17, XZS22] have prover time pro-
portional to the circuit size, which corresponds to the number of non-zero entries in the constraint
matrices A, B and C, which we will denote by nnz. Lastly, for [DOT21] the proof size and prover
and verifier times seem to be determined by the number of multiplications, corresponding to the
number of R1CS constraints m. The efficiency of the arithmetization in [CLL23] is only quantified
through the number of constraints m and optimized using this metric.

In this work, we will provide all of n, m and nnz. When optimizing, we will focus on the latter
two, since the number of variables is mostly relevant for the non-post-quantum secure pairing-based
SNARKs. Often optimizing for one metric also improves another, such as when a linear constraint
can be removed to eliminate a variable, but this is not always the case. As we will see in Section 5,
we achieve very efficient constraint systems in terms of all three metrics.

3 Canonical Modular Polynomials

The classical modular polynomials tend to have many non-vanishing coefficients, which makes
these polynomials quite expensive to handle in an R1CS. To be more precise, the polynomial Φℓ(X, Y)
is symmetric in X and Y, of degree ℓ+ 1 in both variables [Lan87, Theorem 5.2.3], and typically most
of the possible mixed monomials XiY j with i, j ≤ ℓ occur.
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For example, the third classical modular polynomial is given by (see [CFA+06, Example 17.18])

Φ3(X, Y) = −X3Y3 + X4 + Y4 + 2232(X3Y2 + X2Y3)

− 1069956(X3Y + XY3) + 36864000(X3 + Y3)

+ 2587918086X2Y2 + 8900222976000(X2Y + XY2)

+ 452984832000000(X2 + Y2)− 770845966336000000XY
+ 1855425871872000000000(X + Y).

Luckily, there exists a related class of polynomials called canonical modular polynomials Φc
ℓ, which

are asymmetric, and have a smaller degree in the second variable. To contrast our previous example,
the third canonical modular polynomial is given by

Φc
3(X, j) = X4 + 36X3 + 270X2 + 756X + 729 − X · j.

One actually has a concrete formula for the degree κ in the second variable j (see [Mü95, Equa-
tion (5.1) and Lemma 5.7]): It is given by κ = s·(ℓ−1)

12 , where s is the smallest non-zero natural number
such that the fraction defining κ is an integer; in other words,

s =
12

gcd(12, ℓ− 1)
and κ =

ℓ− 1
gcd(12, ℓ− 1)

.

The ℓth canonical modular polynomial thus has the form

Φc
ℓ(X, j) =

ℓ+1

∑
i=0

κ

∑
m=0

ci,mXi jm

for suitable coefficients ci,m ∈ Z. In the case κ = 1, i.e. ℓ ∈ {2, 3, 5, 7, 13}, we can be more precise; we
give all canonical modular polynomials for this case in Appendix A.2.

Lemma 3. Let ℓ ∈ {2, 3, 5, 7, 13}. Then the ℓth canonical modular polynomial Φc
ℓ(X, j) is of the form

Φc
ℓ(X, j) = Xℓ+1 +

ℓ

∑
i=1

ciXi + ℓs − X · j = Φc
ℓ(X, 0)− X · j

with integer coefficients ci := ci,0 ∈ Z. In particular, the rational function

Θc
ℓ(X, j) := Φc

ℓ(ℓ
s/X, j) · Xℓ+1/ℓs = Xℓ+1 +

ℓ

∑
i=1

ciℓ
s·(i−1)Xℓ+1−i + ℓs·ℓ − Xℓ · j

is a monic polynomial with integer coefficients. Setting Jℓ(X) := Φc
ℓ(X, 0)/X, we furthermore have

that for any f ∈ K× and j0 ∈ K:

j0 = Jℓ( f ) if and only if Φc
ℓ( f , j0) = 0.

Proof. The claim on the form of Φc
ℓ(X, j) follows from direct inspection, and the claim on the form

of Θc
ℓ(X, j) is an immediate consequence. Furthermore we have Φc

ℓ(X, j) = X · Jℓ(X)− X · j, which
implies the claim on Jℓ(X).

Since the constant coefficients of Φc
ℓ(X, j) and Θc

ℓ(X, j) are powers of ℓ, we obtain:

Corollary 4. Let ℓ ∈ {2, 3, 5, 7, 13}, assume char(K) ̸= ℓ and let j, j′ ∈ K with j ̸= j′. Then

gcd(Φc
ℓ(X, j), Φc

ℓ(X, j′)) = 1 = gcd(Θc
ℓ(X, j), Θc

ℓ(X, j′)).
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3.1 The Multiplicity Theorem

Unfortunately, it is no longer true that Φc
ℓ(j(E0), j(E1)) = 0 if E0 and E1 are ℓ-isogenous over Fp.

Instead, taking inspiration from [CFA+06, §17.2.3], we will see that we need to find a common root
X of the two functions Φc

ℓ(X, j(E0)) and Φc
ℓ(ℓ

s/X, j(E1)), where s is defined as above. To prove a
more precise version of this claim, we first relate the classical modular polynomial to the canonical
modular polynomial via resultant theory.

However, we have to restrict ourselves to the case κ = 1. The corresponding primes – namely,
ℓ ∈ {2, 3, 5, 7, 13} – are in fact exactly those for which the modular curve X0(ℓ) has genus 0. This
fact gives a high-level intuition of why these primes provide a compact representation of ℓ-isogenies:
The elements of X0(ℓ), that are the edges in Gℓ(p), can be parametrized (up to issues at the ‘ramified’
points j ∈ {0, 1728}) by f ∈ Fp

×. This parametrization, which we will later analyze and exploit, has
already been studied in the works of Fricke [Fri11, Section 2, Chapters 4-5], Mestre [Mes86, §5], and
Elkies [Elk98, §4].

Corollary 5. For any ℓ ∈ {2, 3, 5, 7, 13} we have

res(Θc
ℓ(X, J1), Φc

ℓ(X, J0)) = ℓs·ℓ · Φℓ(J0, J1),

where the resultant is computed over the coefficient ring R = Z[J0, J1] of bivariate polynomials. In
particular, suppose that we have a field K of characteristic char(K) ̸= ℓ as well as j0, j1 ∈ K with
m := deg gcd(Φc

ℓ(X, j0), Θc
ℓ(X, j1)). Then

∂k

∂Jk
1

∣∣∣∣
J1=j1

Φℓ(j0, J1) = 0 for k ∈ {0, . . . , m − 1},

i.e. there are at least m non-equivalent ℓ-isogenies from j0 to j1.

Proof. The first claim can be checked by direct computation. For the second claim we first apply the
ring homomorphism Z[J0] → K defined by J0 7→ j0 in view of Proposition 1(a) to obtain

res(Θc
ℓ(X, J1), Φc

ℓ(X, j0)) = ℓs·ℓ · Φℓ(j0, J1)

as an equality in K[J1]. Now we consider the K-linear evaluation homomorphism φ : K[J1] → K
given by J1 7→ j1, extended via coefficient-wise application to a homomorphism φ : K[J1][X] → K[X].
As this homomorphism preserves the X-degrees of f := Θc

ℓ(X, J1) and g := Φc
ℓ(X, j0), we are exactly

in the situation of Proposition 2. Therefore we deduce that res( f , g) = ℓs·ℓ · Φℓ(j0, J1) has a root of
multiplicity at least m at j1, and char(K) ̸= ℓ yields the claim.

The previous relation will be the main tool in establishing the desired connection between the
classical and the canonical modular polynomial. For the proof we need to analyze root multiplicities
of the canonical modular polynomial in the next two results, which can also be found in [Tsu13, §4.3]
in the language of modular curves.

Lemma 6. Let ℓ ∈ {2, 3, 5, 7, 13}, assume char(K) ̸= ℓ and let j0 ∈ K. Then Φc
ℓ(X, j0) has a double

root in K if and only if j0 = 0 or j0 = 1728.

Proof. To simplify notation we may assume that K is algebraically closed. In view of Lemma 3 we
obtain the univariate polynomial

Dℓ(X) := j + ∂
∂X Φc

ℓ(X, j).

Now an element f ∈ K is a double root of Φc
ℓ(X, j0) if and only if it is non-zero (due to char(K) ̸= ℓ)

and satisfies Jℓ( f ) = j0 = Dℓ( f ). From this we see that the double roots are precisely the common
roots of Φc

ℓ(X, j0) and the polynomial

Dℓ(X) · X −Jℓ(X) · X = −Φc
ℓ(X,Dℓ(X)),

which has leading coefficient ℓ. Via direct computation one now confirms that there are e, m, n ∈ N
such that

res(Φc
ℓ(X, J),−Φc

ℓ(X,Dℓ(X))) = (−1)ℓ · ℓe · (J − 0)m · (J − 1728)n,
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computed over the coefficient ring Z[J]. Therefore char(K) ̸= ℓ allows us to apply Proposition 1
(with the homomorphism Z[J] → K given by the evaluation J 7→ j0) to deduce the claimed equiva-
lence.

The second result discusses the special j-invariants 0 and 1728; for an explicit list of the factors
given below we refer the reader to Appendix A.3.

Lemma 7. Let ℓ ∈ {2, 3, 5, 7, 13}. Then there are monic polynomials gℓ,0 and gℓ,1728 in Z[X] of degree
at most 2 and monic non-constant polynomials hℓ,0,± and hℓ,1728,± in Z[X] such that

Φc
ℓ(X, 0) = gℓ,0 · h3

ℓ,0,+, Θc
ℓ(X, 0) = gℓ,0 · h3

ℓ,0,−

and
Φc

ℓ(X, 1728) = gℓ,1728 · h2
ℓ,1728,+, Θc

ℓ(X, 1728) = gℓ,1728 · h2
ℓ,1728,−.

Moreover, if K is a field with char(K) /∈ {2, 3, ℓ} and j∗ ∈ {0, 1728}, then each hℓ,j∗ ,± does neither
have a double root nor share a root with gℓ,j∗ in K.

Proof. The factorizations follow from direct computations. For j∗ ∈ {0, 1728} one further verifies
that the prime factors of deg(hℓ,j∗ ,±) lie in {2, 3}, and that the prime factors of disc(hℓ,j∗ ,±) and
res(gℓ,j∗ , hℓ,j∗ ,±) lie in {2, 3, ℓ}. To prove the additional claim, we now make use of resultant theory
once more by considering the unique homomorphism φ : Z → K. This homomorphism preserves
the degree of hℓ,j∗ ,± and, as the prime factors of deg(hℓ,j∗ ,±) are contained in {2, 3}, the degree of

∂
∂X hℓ,j∗ ,± due to our assumption on char(K). Therefore this assumption and Proposition 1(a) (cf.
Remark 1) yield

disc(φ(hℓ,j∗ ,±)) = φ(disc(hℓ,j∗ ,±)) ̸= 0,

so hℓ,j∗ ,± cannot have a double root in K by Proposition 1(b). Similarly we obtain

res(φ(gℓ,j∗), φ(hℓ,j∗ ,±)) = φ(res(gℓ,j∗ , hℓ,j∗ ,±)) ̸= 0,

i.e. gℓ,j∗ and hℓ,j∗ ,± cannot have a common root in K by Proposition 1(b).

With the above preparations we are finally ready to state and prove the following crucial relation
between the classical and canonical modular polynomial:

Multiplicity Theorem. Let ℓ ∈ {2, 3, 5, 7, 13}, let K be a field of characteristic char(K) ̸= ℓ and let
j0, j1 ∈ K. Then there are exactly as many non-equivalent ℓ-isogenies j0 → j1 as there are roots f ∈ K× of
Φc

ℓ(X, j0) (counted with multiplicity) such that Φc
ℓ(ℓ

s/ f , j1) = 0. In particular, j0 and j1 are ℓ-isogenous if
and only if there exists an f ∈ K× such that

Φc
ℓ( f , j0) = 0 = Φc

ℓ(ℓ
s/ f , j1). (2)

Proof. To simplify notation we assume that K is algebraically closed. As before we consider the
polynomial Θc

ℓ(X, j1) = Φc
ℓ(ℓ

s/X, j1) · Xℓ+1/ℓs instead of the rational function Φc
ℓ(ℓ

s/X, j1), noting
that it has the same roots (with the same multiplicities) since char(K) ̸= ℓ. For any j0, j1 ∈ K we write
νℓ(j0, j1) for the number of roots of Φc

ℓ(X, j0) (counted with multiplicity) that are roots of Θc
ℓ(X, j1),

and we write ιℓ(j0, j1) for the number of non-equivalent ℓ-isogenies from j0 to j1.
Hence our goal is to show that νℓ(j0, j1) = ιℓ(j0, j1); however, it suffices to prove the inequality

νℓ(j0, j1) ≤ ιℓ(j0, j1) for all j0, j1 ∈ K. Indeed, summing both quantities over all possible j1 for a fixed
j0 ∈ K then yields

ℓ+ 1 = degX(Φ
c
ℓ(X, j0)) = ∑

j1∈K
νℓ(j0, j1) ≤ ∑

j1∈K
ιℓ(j0, j1)

= degY(Φℓ(j0, Y)) = ℓ+ 1

in view of Lemma 3, and thus all inequalities have to be equalities.
To prove the inequalities, we first note that Corollary 5 yields

deg gcd(Φc
ℓ(X, j0), Θc

ℓ(X, j1)) ≤ ιℓ(j0, j1). (3)
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We will use this inequality in the following, but we need to work through a slightly tedious case
distinction: First, if j0 /∈ {0, 1728}, then any root of Φc

ℓ(X, j0) is a simple root by Lemma 6, so

νℓ(j0, j1) = deg gcd(Φc
ℓ(X, j0), Θc

ℓ(X, j1)) ≤ ιℓ(j0, j1).

Next we consider an edge case: Let char(K) ∈ {2, 3} and let j0 = j∗ = 0 = 1728 be the unique
supersingular j-invariant in K (cf. [Sil09, §V.4]). Then all ℓ + 1 non-equivalent ℓ-isogenies starting
from j∗ are loops, and one can directly verify that we have Θc

ℓ(X, 0) = Φc
ℓ(X, 0) over K. Therefore,

for j1 ̸= j∗, Corollary 4 yields

ιℓ(j∗, j∗) = ℓ+ 1 = νℓ(j∗, j∗) and ιℓ(j∗, j1) = 0 = νℓ(j∗, j1);

thus we may now assume char(K) /∈ {2, 3, ℓ}. To proceed we recall the multiplicity factors

µ(0) = 3, µ(1728) = 2 and µ(j) = 1

for j ∈ K \ {0, 1728}, and consider a special j-invariant j0 = j∗ ∈ {0, 1728}. For j∗ ̸= j1 any (distinct)
root f of Φc

ℓ(X, j∗) such that Θc
ℓ( f , j1) = 0 then has multiplicity µ(j∗) as a root of Φc

ℓ(X, j∗) and
multiplicity µ(j1) as a root of Θc

ℓ(X, j1). Indeed, if j1 /∈ {0, 1728} the second claim follows from
Lemma 6, and otherwise all multiplicities are derived from Lemma 7 since Corollary 4 and the
assumption j∗ ̸= j1 force f to be a root of hℓ,j∗ ,+ and hℓ,j1,− (if j1 ∈ {0, 1728}), which both only have
simple roots by our restriction on the characteristic.

With inequality (3) and µ(1728) < µ(0) we hence see that the roots of the greatest common
divisor of Φc

ℓ(X, 1728) and Θc
ℓ(X, 0) all have multiplicity µ(1728), so we obtain

νℓ(1728, 0) = deg gcd(Φc
ℓ(X, 1728), Θc

ℓ(X, 0)) ≤ ιℓ(1728, 0).

Using the multiplicity-preserving correspondence f 7→ ℓs/ f between roots of Φc
ℓ(X, j) and roots of

Θc
ℓ(X, j), we further deduce

νℓ(j∗, j1) =
µ(j∗)
µ(j1)

· νℓ(j1, j∗) ≤ µ(j∗)
µ(j1)

· ιℓ(j1, j∗) = ιℓ(j∗, j1)

in all other cases with j∗ ̸= j1, where the middle inequality has been derived in previous cases and
the last equality is due to the larger automorphism groups at the special j-invariants 0 and 1728, as
explained in Subsection 2.1.

The final case to consider is j∗ = j1, where Lemma 7 also does the heavy lifting: Here any root f
of Φc

ℓ(X, j∗) is either a root of gℓ,j∗ – then with the same multiplicity for both Φc
ℓ(X, j∗) and Θc

ℓ(X, j∗)
– or it is a root of both hℓ,j∗ ,±, in which case its multiplicity for both Φc

ℓ(X, j∗) and Θc
ℓ(X, j∗) is µ(j∗)

since each hℓ,j∗ ,± only has simple rots. Therefore we also deduce

νℓ(j∗, j∗) = deg gcd(Φc
ℓ(X, j∗), Θc

ℓ(X, j∗)) ≤ ιℓ(j∗, j∗)

from inequality (3), and this finishes the proof.

Remark 2. In fact, it is true for all primes ℓ ∈ N and ℓ-isogenous j-invariants j0, j1 ∈ Fp that we can
always find a common root of system (2). Indeed, we can first view j0 and j1 as reductions modulo p
of CM j-invariants J0, J1 ∈ C ([Lan87, Theorem 13.5.14]) that are integral by [Cox13, Theorem 11.1].
Now equations (5.2-4) in [Mü95, §5] show that there is a common solution f̃ ∈ C that has to be
integral as it satisfies the polynomial Φc

ℓ(X, J0); therefore it can be reduced to a solution f ∈ Fp of
system (2).

However, the restriction to κ = 1 is crucial for the other direction: For example, for ℓ = 11,
p = 61 the j-invariants j0 = 41 and j1 = 37 are not ℓ-isogenous over Fp; in fact, they are not even
isogenous since j0 is supersingular, whereas j1 is ordinary. Nonetheless, either root of the polynomial
X2 + 3X − 27 ∈ Fp2 [X] gives a solution to system (2).

In spite of that, experiments seem to suggest that there are still at most as many ℓ-isogenies j0 → j1
as there are roots from j0 to j1 (counted as in the Multiplicity Theorem). Note that this does not
contradict our previous findings since Corollary 4 fails for κ > 1: For instance, in our example we
have

gcd(Φc
11(X, 41), Φc

11(X, 50)) = X2 − 30X − 1 ∈ Fp[X].
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3.2 Isogeny Relations and Root Computation

Recall that our goal is to build an efficient proof of knowledge for isogenies of degree ℓk (where
ℓ ∈ {2, 3, 5, 7, 13}), or, equivalently, for the relation Rℓk-MODPOLY (Eq. (1)). However, to apply the
canonical modular polynomials we instead need to consider the relation

Rℓk-MODROOT :=


(
(E, E′),(

(ji)i∈[k−1], ( fi)i∈[k]

) )
∣∣∣∣∣∣∣

Φc
ℓ( f1, j(E)) = 0 ∧

Θc
ℓ( fk, j(E′)) = 0∧

i∈[k−1]
Θc

ℓ( fi, ji) = 0 = Φc
ℓ( fi+1, ji)

 .

With the Multiplicity Theorem we see that simply omitting the roots ( fi)i∈[k] from the witness
brings us back to the previous relation, so this new relation is harder to prove. To gauge how much
harder it is, we need to investigate two questions: How many roots can system (2) have? And in which
field are those roots contained?

To answer the first question in view of the Multiplicity Theorem, we investigate the number of
ℓ-isogenies between j-invariants more closely. The following result is a consequence of the well-
known structure of ordinary isogeny volcanoes:

Proposition 8. Let ℓ be a prime and suppose that we have two j-invariants j0, j1 ∈ Fp for some prime
p ̸= ℓ. If j0 is ordinary, then the following holds:

(a) If j0 ̸= 0 or j1 = 0, then there are at most two non-equivalent ℓ-isogenies j0 → j1.

(b) If j0 = 0 ̸= j1, then there are at most three non-equivalent ℓ-isogenies j0 → j1 and at most one
non-equivalent ℓ-isogeny j1 → j0.

(c) If j0 = 1728 ̸= j1, then there are at most two non-equivalent ℓ-isogenies j0 → j1 and at most
one non-equivalent ℓ-isogeny j1 → j0.

Proof. This follows immediately from [Sut12, Theorem 7 & Remark 8] (note, however, that for ℓ = 2
there is exactly 1 vertex at the first level of the ordinary isogeny graph component containing 1728 –
the second formula given in Remark 8 only holds for odd ℓ).

Remark 3. Müller claims in [Mü95, Lemma 4.14] that the ℓ+ 1 non-equivalent ℓ-isogenies defined
on an ordinary curve over Fp with j-invariant not in {0, 1728} map to ℓ + 1 distinct j-invariants,
i.e. to ℓ + 1 non-isomorphic elliptic curves. However, if we consider p = 29, ℓ = 7 and the two
j-invariants j0 = 23 and j1 = 12 (noting that 1728 ≡ 17 mod 29), then the curve

E0 : y2 = x3 + 21x + 26

satisfies j(E0) = 23 = j0 and admits two 7-isogenies α1 and α2 (defined over F29) to the elliptic curve

E1 : y2 = x3 + 6x + 9

of j-invariant j(E1) = 12 = j1. Importantly, the kernels of these two 7-isogenies are distinct (and
hence the isogenies are not equivalent) since their kernel polynomials

x3 + 2x2 + 21x + 16 and x3 + 14x2 + 13x + 23

are distinct. The issue is that the degree 72 endomorphism α̂2 ◦ α1 is not equivalent to the multiplication-
by-7 isogeny [7] on E0. Indeed, this can be checked by comparing the kernel polynomial of α̂2 ◦ α1
to the kernel polynomial of [7], the latter of which is equal to the 7th division polynomial on E0 up
to the factor 7.

In general, Proposition 8 does not extend to supersingular j-invariants – the following example
can easily be checked with either modular polynomial according to the Multiplicity Theorem:

Example 1. For ℓ = 7 and p = 71 there are 6 non-equivalent ℓ-isogenies 0 → 48, 2 non-equivalent
ℓ-isogenies 48 → 0 and 4 non-equivalent ℓ-isogenies 40 → 40.

Luckily, we can strictly limit when the claims of Proposition 8 do not transfer to supersingular
j-invariants in our setting:
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Theorem 9. Let ℓ ≤ 13 be a prime. Then there is a prime pℓ < 4ℓ3 (given in Table 1) such that for any prime
p > pℓ and any two supersingular j-invariants j0, j1 ∈ Fp2 the following holds:

(a) If j0 ̸= 0 or j1 = 0, then there are at most two non-equivalent ℓ-isogenies j0 → j1.

(b) If j0 = 0 ̸= j1, then there are at most three non-equivalent ℓ-isogenies j0 → j1 and at most one
non-equivalent ℓ-isogeny j1 → j0.

(c) If j0 = 1728 ̸= j1, then there are at most two non-equivalent ℓ-isogenies j0 → j1 and at most one
non-equivalent ℓ-isogeny j1 → j0.

Proof. We first focus on the case j0 ̸= 0 in claim (a), where we have to prove that there are at most
two non-equivalent ℓ-isogenies j0 → j1. If this is not the case, then Φℓ(j0, Y) has a triple root at
Y = j1, and in Appendix B – specifically Proposition 22 – we argue computationally that this can
only happen up to a prime pℓ < 4ℓ3 due to j0 ̸= 0.

Next, by factoring Φℓ(0, 1728) ∈ Z, we see that 0 and 1728 cannot be ℓ-isogenous for p > pℓ.
Now consider j0 = 0, which forces p ≡ 2 mod 3 (cf. [Sil09, Example V.4.4]). For ℓ ∈ {2, 3} one
directly confirms that, due to p > pℓ, Φℓ(0, Y) has a triple root j1 ∈ Fp \ {0, 1728}, and for ℓ = 3 a
single root at 0. Since the number of non-equivalent ℓ-isogenies 0 → j1 is three times the number of
non-equivalent ℓ-isogenies j1 → 0, both claims hence hold for j0 = 0 here.

For ℓ > 3 we can use p > pℓ > 3ℓ2 to apply [LOX20, Theorem 2(2)], which directly yields claim
(b) and further shows that there are exactly

(ℓ+ 1)− 3 · 1
3

(
ℓ−

(
ℓ
3

))
= 1 +

(
ℓ
3

)
≤ 2

non-equivalent ℓ-isogenies 0 → 0, thus also finishing the proof of claim (a).
Finally, for j0 = 1728 ̸= j1 we have already shown that there are at most two non-equivalent

ℓ-isogenies j0 → j1 in (a), and that j0 is not ℓ-isogenous to 0. Thus the number of non-equivalent
ℓ-isogenies 1728 → j1 is exactly twice the number of non-equivalent ℓ-isogenies j1 → 1728, and
claim (c) follows.

ℓ 2 3 5 7 11 13
pℓ 13 53 379 1217 5101 8387
j0 5 6a + 28 117a + 322 379a + 173 977a + 4220 326a + 4482
j1 5 47a + 28 262a + 322 838a + 173 4124a + 4220 8061a + 4482

Table 1: Maximal primes pℓ for which a pair (j0, j1) of non-zero j-invariants with at least three ℓ-
isogenies between them exists (a is a square root of 349 modulo pℓ).

Remark 4. For any prime ℓ ∈ N one can find a prime pℓ as in Theorem 9, and one has the bound
pℓ < 4ℓ4. Indeed, due to [LOX20, Theorem 2] it suffices to consider the situation where we have at
least three non-equivalent ℓ-isogenies j0 → j1 for j0 /∈ {0, 1728} or (j0, j1) = (0, 1728). In view of
[BCNE+18, Theorem 4.10] we can then construct two non-commuting endomorphisms of degree ℓ2

on a curve E with j(E) = j0 by composing two non-equivalent ℓ-isogenies j0 → j1 with a suitable
ℓ-isogeny j1 → j0. Hence we obtain two embeddings of quadratic orders into the endomorphism
ring of E with distinct images, and these embeddings can be extended to optimal embeddings of
(possibly larger) quadratic orders that still have distinct images as the endomorphisms do not com-
mute. Thus Kaneko’s bound [Kan89, Theorem 2’] yields 4pℓ ≤ (−4ℓ2)2, i.e. pℓ < 4ℓ4. In particular,
by the discussion in Subsection 2.1 this proves that 0 and 1728 cannot be ℓ-isogenous for p > 4ℓ4.

Returning to our relation, let us suppose that we have two j-invariants j0, j1 ∈ Fp. As before we
consider the polynomials

Φc
ℓ(X, j0) and Θc

ℓ(X, j1) = Φc
ℓ(ℓ

s/X, j1) · Xℓ+1/ℓs,

which have the same set of common solutions as the system (2) due to p ̸= ℓ; these common solutions
are, moreover, precisely the roots of the polynomial

Γℓ(j0, j1) := gcd (Φc
ℓ(X, j0), Θc

ℓ(X, j1)) ∈ Fp(j0, j1)[X].
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The previous results now show that the degree of Γℓ(j0, j1) is low in most cases:

Corollary 10. Let ℓ ∈ {2, 3, 5, 7, 13}, let j0, j1 ∈ Fp for a prime p ̸= ℓ, and consider as above the
gcd-polynomial Γℓ(j0, j1) ∈ Fp[X]. Then

deg Γℓ(j0, j1) = min{ιℓ(j0, j1), ιℓ(j1, j0)}

where ιℓ(j, j′) denotes the number of non-equivalent ℓ-isogenies j → j′. In particular:

(a) deg Γℓ(j0, j1) ≥ 1 if and only if j0 and j1 are ℓ-isogenous.

(b) If j0 is ordinary or p > pℓ (e.g. if p ≥ 4ℓ3), then deg Γℓ(j0, j1) ≤ 2.

Proof. The main claim is a direct consequence of the Multiplicity Theorem and the multiplicity analy-
sis that was performed in its proof, noting that the minimum is necessary to account for higher root
multiplicities at j-invariants 0 and 1728 (see also Lemma 7); hence claim (a) follows immediately.
Moreover, Proposition 8 and Theorem 9 imply claim (b).

Remark 5. Since we can always factor a degree ℓ2-isogeny into two degree ℓ-isogenies (cf. [Sil09,
Corollary III.4.11]), the j-invariants j0 for which there is some j-invariant j1 with deg Γℓ(j0, j1) ≥ 2
correspond precisely to the j-invariants of ℓ2-small curves as defined in [LB20], where the authors
also prove that these j-invariants form a vanishingly small, but generally non-empty subset of Fp
for large p. For ℓ ∈ {2, 3, 5, 7, 13} we can bound the size of this set more precisely: By factoring the
J1-resultant

res(Φℓ(J0, J1), ∂
∂J1

Φℓ(J0, J1))

over the coefficient ring R = Z[J0], we see that the degree sum of all distinct irreducible factors is at
most ℓ2 + 1. Hence Proposition 1(a) shows that there are at most ℓ2 + 1 invariants j0 ∈ Fp that can
belong to an ℓ2-small curve for p > ℓ.

Computing roots. Corollary 10 suggests the following efficient strategy to find a root f of the system
(2) for two ℓ-isogenous j-invariants j0, j1 ∈ Fp: If the j-invariants do not lie in Fp2 , and are hence
necessarily ordinary, or if we have p ≥ 4ℓ3 (which is guaranteed for cryptographically large primes),
we can simply compute the gcd-polynomial Γℓ(j0, j1) and obtain a root either by directly reading it
off (in the degree 1 case) or by using the quadratic formula (in the rare degree 2 case). Otherwise we
will see in the next section (Theorem 12) that Γℓ(j0, j1) ∈ Fp2 [X] splits into linear factors over Fp2 –
this allows us to factor the polynomial over Fp2 , e.g. using Berlekamp factorization. Note, however,
that we do not even need a full factorization, as we are only interested in one root. Therefore we
may, starting with Γℓ(j0, j1), compute a partial factorization of our current polynomial and then only
keep the factor of smallest degree for the next step, until we reach a low enough degree to solve for
a root directly.

In view of the above results, we conclude that our new relation is practically equivalent to the
relation Rℓk-MODPOLY, i.e. a user with knowledge of an ℓ-isogeny j-invariant chain of length k can
efficiently compute the additional roots ( fi)i∈[k] needed to prove their knowledge with respect to
the relation Rℓk-MODROOT.

3.3 Isogeny Reconstruction and Splitting Behavior

As we have now given an essentially optimal bound on the number of roots of system (2) in large
characteristic, we next investigate where these roots lie. Due to Remark 5, this question is eas-
ily answered in the overwhelming majority of cases: For a j-invariant j0 that does not admit two
non-equivalent ℓ-isogenies to the same target, the Multiplicity Theorem shows that each root f of
Φc

ℓ(X, j0) is the unique root of the system given by Φc
ℓ(X, j0) = 0 = Θc

ℓ(X, j1) for some j1 ∈ Fp, and
hence lies in the field extension Fp(j0, j1). In fact, as Jℓ( f ) = j0 and Jℓ(ℓ

s/ f ) = j1 by Lemma 3, we
have Fp( f ) = Fp(j0, j1).

To analyze the splitting behavior in general, however, some additional work is required. As the
following example shows, the field extension generated by the two j-invariants is not guaranteed to
contain any root of system (2):
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Example 2. Let ℓ = 3, p = 61 and j0 = 9. Then we have the factorizations

Φ3(9, j1) = (j1 − 9)2 · (j1 − 41)2 and Φc
3(X, 9) = (X2 − 15X − 3) · (X2 − 10X + 1)

over F61. Further we have Γ3(9, 9) = X2 − 15X − 3 and Γ3(9, 41) = X2 − 10X + 1; these polynomials
are irreducible over F61, i.e. their roots lie in F612 \F61.

As a remedy to this issue, the following result describes how we can reconstruct an ℓ-isogeny
from a common root f of system (2) in most cases:

Reconstruction Theorem. Let ℓ ∈ {2, 3, 5, 7, 13}, let K be a field of characteristic char(K) /∈ {2, 3, ℓ}, let
j0 ∈ K \ {0, 1728} be a j-invariant and let f ∈ K× be a root of Φc

ℓ(X, j0). Define the parameters

A = −3j0(j0 − 1728) and B = −2j0(j0 − 1728)2

and the elliptic curve
E : y2 = x3 + Ax + B.

Then j(E) = j0, and we can find a kernel polynomial ϕℓ( f ) of degree
⌈
ℓ−1

2

⌉
that defines over K( f ) an ℓ-

isogeny from E to a curve with j-invariant Jℓ(ℓ
s/ f ). Moreover, f can be expressed as a K-rational function

in the coefficients 1 = s0, s1, . . . , sn of ϕℓ( f ), i.e.

K( f ) = K(s1, . . . , sn).

Proof. To limit confusion of variable names in this proof, we will write the canonical modular poly-
nomial in the variables T and j (instead of the usual variables X and j). This proof will be highly
computational – the observational claims used along the way can be verified via the Sage script
kernel polynomials.sage , which can be found in the accompanying GitHub repository1.

The discriminant of the curve E is 211 · 35 · j0 · (j0 − 1728), which is non-zero by our assumptions.
Hence E is an elliptic curve and one easily verifies that j(E) = j0.

To work computationally, we will consider the coefficient ring Z[T, T−1] of Laurent polynomials
over Z; since the root f is non-zero due to char(K) ̸= ℓ, we can then apply the ring homomorphism
Z[T, T−1] → K( f ) given by evaluating T at f . By Lemma 3 we can write

j0(T) =
Φc

ℓ(T, 0)
T

and j0(T)− 1728 =
Φc

ℓ(T, 1728)
T

.

Now considering the coefficients of E as elements of Z[T, T−1], and hence considering E = E(T) as
a curve overQ(T), we can apply the following deciding trick, which is based on the ideas in [CW05]
and [Tsu13, §3-4]: The ℓth division polynomial ψℓ ∈ Q(T)[x] of E(T) has coefficients in Z[T, T−1]

and admits in Z[T, T−1][x] a monic factor ϕℓ ∈ Z[T, T−1][x] of degree
⌈
ℓ−1

2

⌉
=: n.

Evaluating at f hence yields the polynomial ϕℓ( f ) ∈ K( f )[x] of degree n, and we have to show
that this is a kernel polynomial. For ℓ = 2 we do this directly: Writing ϕ2 = x − ρ and plugging the
root ρ into the x-coordinate of E(T) yields y2 = 0, so (ρ( f ), 0) is a 2-torsion point of E( f ) as desired.

To prove that ϕℓ( f ) is a kernel polynomial for ℓ ≥ 3, we want to apply the Kernel polynomial
criterion given in [Tsu13, §3.3]. First we note that a = 2 is a semi-primitive root modulo ℓ as stated on
[Tsu13, p. 34], so we have to compute the action of the [2]-endomorphism of E on the x-coordinate.
By the point doubling formula [Sil09, Group Law Algorithm III.2.3(d)] we have

[2]∗(x) =
x4 − 2A(T)x2 − 8B(T)x2 + A(T)2

4x3 + 4A(T)x + 4B(T)
=:

t1(T)
t2(T)

,

and due to our assumptions that char(K) /∈ {2, 3} and j0 /∈ {0, 1728} one can easily check with the
Euclidean algorithm that gcd(t1( f ), t2( f )) = 1 in K( f )[x].

Next we evaluate ϕℓ (in x) at the rational function [2]∗(x) to obtain

ϕℓ

(
t1(T)
t2(T)

)
=

1
t2(T)n ·

[
ϕℓ

(
t1(T)
t2(T)

)
· t2(T)n

]
=:

1
t2(T)n · hℓ(T)

1https://github.com/QuSAC/IsogenyPoKviaCanonicalModPolys
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where hℓ( f ) is coprime to t2( f )n in K( f )[x] since t1( f ) and t2( f ) are coprime. Now we define the
monic polynomial

τ2(ϕℓ( f )) := gcd(ψℓ( f ), hℓ( f ));

as ψℓ( f ) is the ℓth division polynomial of E( f ), we see with [Tsu13, Corollary 3.3.2] that ϕℓ( f ) is a
kernel polynomial of an ℓ-isogeny if and only if τ2(ϕℓ( f )) = ϕℓ( f ).

However, by [Tsu13, Proposition 3.3.1] we also see that τ2(ϕℓ( f )) is a monic polynomial of degree
n = ℓ−1

2 , so it suffices to show that ϕℓ( f ) divides τ2(ϕℓ( f )). To this end, first note that ϕℓ(T) divides
ψℓ(T) over Z[T, T−1] by construction, which allows us to deduce that ϕℓ( f ) divides ψℓ( f ).

Furthermore we can check computationally that ϕℓ(T) divides hℓ(T) over Z[T, T−1], and hence
ϕℓ( f ) also divides hℓ( f ). Therefore the definition of τ2(ϕℓ( f )) forces it to be divisible by ϕℓ( f ), and
we conclude that ϕℓ( f ) is a kernel polynomial of an ℓ-isogeny defined on E( f ).

Penultimately, we want to show that the isogeny defined by ϕℓ( f ) maps to a curve of j-invariant
Jℓ(ℓ

s/ f ). This can be deduced directly from Vélu’s formulas – more precisely, in [Koh96, §2.4] Kohel
describes the target curve in terms of A, B and the coefficients of ϕℓ( f ). Applying these formulas, we
see that the target curve is in short Weierstrass form with discriminant ∆ = 211 · 35 · f ℓ−1 · A · B ̸= 0
and j-invariant Jℓ(ℓ

s/ f ).
Finally, we refer to Appendix A.4 for the (ℓ-dependent) expressions of f as a K-rational function

in the coefficients of ϕℓ( f ); here we only note that, as a kernel polynomial, ϕℓ( f ) will never have any
double roots, so disc(ϕℓ( f )) ̸= 0 by Proposition 1(b) (in view of Remark 1).

Remark 6. Note that we can also reconstruct ℓ-isogenies from a root f ∈ K× of Φc
ℓ(X, j0) if we have

j1 = Jℓ(ℓ
s/ f ) /∈ {0, 1728}. Indeed, in this case we first compute the dual isogeny (up to equivalence)

by applying the above techniques to ℓs/ f , and then take its dual and precompose with the different
automorphisms at j0 to obtain the non-equivalent ℓ-isogenies j0 → j1 corresponding to f .

To now analyze the splitting behavior of Φc
ℓ(X, j0) for supersingular j-invariants, we still need to

handle the special j-invariants:

Proposition 11. Let ℓ ∈ {2, 3, 5, 7, 13}, let p ̸= ℓ be a prime and let moreover j∗ ∈ {0, 1728} ⊆ Fp2 be
supersingular. Then Φc

ℓ(X, j∗) splits over Fp2 .

Proof. We assume p > pℓ, all other cases can be checked directly. By Theorem 9(b-c) and Corollary
10, we see that Γℓ(j∗, j1) ∈ Fp2 [X] has degree at most 1 for any supersingular j1 ̸= j∗, so the only
roots of Φc

ℓ(X, j∗) that may not lie in Fp2 are the roots of Γℓ(j∗, j∗). However, by Corollary 10(b) this
is a polynomial of degree at most 2 over Fp.

The previous results give us the splitting behavior of Φc
ℓ(X, j0) for a supersingular j-invariant j0:

Theorem 12. Let ℓ ∈ {2, 3, 5, 7, 13}, let p ̸= ℓ be a prime and let j0 ∈ Fp2 be a supersingular j-invariant.
Then Φc

ℓ(X, j0) splits over Fp2 .

Proof. Due to Proposition 11 we may assume j0 /∈ {0, 1728} and, in particular, p ≥ 5. Now let
f ∈ Fp be a root of Φc

ℓ(X, j0). With the Reconstruction Theorem we can then associate to f the kernel
polynomial ϕℓ( f ) of an ℓ-isogeny defined on a curve E over Fp2 .

Moreover, the kernel of this isogeny is invariant under the action of the p2-Frobenius isomor-
phism of Fp on E. Indeed, this action is given by evaluation of the p2-Frobenius endomorphism π
of E; due to [AAM19, §4] we further see that π has trace ±2p since j0 /∈ {0, 1728}, so it acts on E
via scalar multiplication by ±p (cf. [AAM19, §5]) and we conclude that any subgroup of E(Fp) is
invariant under the action of π.

Therefore the coefficients of the kernel polynomial ϕℓ( f ) lie in Fp2 as well, and with the second
part of the Reconstruction Theorem we deduce f ∈ Fp2 as desired.

We give an application, which can alternatively be proven by showing that any Legendre param-
eter of a supersingular j-invariant lies in Fp2 [AT02, Proposition 2.2].

Corollary 13. Let p be a prime and let j0 ∈ Fp2 be a supersingular j-invariant. Then j0 − 1728 is a
square in Fp2 .
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Proof. As all elements of Fp are squares in Fp2 , we may assume j0 /∈ {0, 1728} and, in particular,
p ≥ 5. Due to Proposition 1(a) we can thus compute the discriminant of Φc

2(X, j0) by first computing
the discriminant of Φc

2(X, J0) over Z[J0] and then reducing modulo p and evaluating at j0, which
yields

disc(Φc
2(X, j0)) = 22 · j20 · (j0 − 1728).

Now Φc
2(X, j0) does not have multiple roots by Lemma 6 and splits into three linear factors over Fp2

by Theorem 12, so [Gow90, Theorem 1.8] shows that disc(Φc
2(X, j0)) must be a square in Fp2 , and

the claim follows.

4 Proving Isogeny Knowledge via R1CS

In the previous section we have laid all the theoretical foundations for describing the R1CS that
will enable us to build an efficient proof of knowledge for an ℓ-isogeny walk with k steps. Before
we describe our approach based on canonical modular polynomials, we briefly revisit the strategy
pursued in [CLL23] for the prime ℓ = 2.

4.1 Revisiting the Approach in [CLL23]

The authors of [CLL23] use the classical modular polynomial Φ2(X, Y) to construct an R1CS to prove
knowledge of a degree 2k isogeny with respect to the relation Rℓk-MODPOLY (Eq. (1)). They do this
by finding an efficient arithmetization to prove that Φ2(ji, ji+1) = 0 for a chain of k + 1 successive
j-invariants. Here j0 = j(E0) and jk = j(Ek) are part of the statement, and ji for 0 < i < k are part
of the R1CS witness. We can recover the original isogeny by searching at each step for ℓ-isogenous
elliptic curves Ei, Ei+1 where j(Ei) = ji and j(Ei+1) = ji+1. On the other hand, such a chain of j-
invariants can be found for any degree 2k isogeny by iteratively computing degree 2 isogenies using
kernel points. This means that the problem of finding such a chain of j-invariants is equivalent to
finding an explicit isogeny E0 → Ek.

To arithmetize the authors express each step of the isogeny walk as an R1CS gadget, which is
then employed for each link in the chain. Two tricks are used to optimize:

• The values ji, j2i and j3i are computed for all i ∈ {0, . . . , k}, as well as ji ji+1 for each i < k. The
condition that Φ2(ji, ji+1) = 0 can then be expressed as a single R1CS constraint.

• To express the gadget overFp as well as overFp2 , the authors use arithmetizations for products
and squares that are more efficient than the naive approach of computing each cross term
individually. In particular, the product (x1 + x2α)(y1 + y1α), with x1, x2, y1, y2 ∈ Fp and α2 = d
some non-square residue in Fp, can be expressed in three products over Fp. Squarings can be
expressed in two products.

Our goal is now twofold: First, to further optimize the arithmetization for ℓ = 2. Second, to construct
efficient R1CS for more primes ℓ > 2, more specifically for the primes ℓ ∈ {2, 3, 5, 7, 13}, for which
we have developed a good understanding of canonical modular polynomials in the previous section.

By Lemma 3, for ℓ ∈ {2, 3, 5, 7, 13} the ℓth canonical modular polynomial has the form

Φc
ℓ(X, j) = Xℓ+1 + ∑ℓ

i=1 ciXi + ℓs − X · j.

In what follows we will write c0 = ℓs and cℓ+1 = 1. In view of the Multiplicity Theorem the proof of
knowledge with respect to relation Rℓk-MODROOT can be encoded step-wise via the system of equa-
tions (2). Multiplying the second equation Φc

ℓ(ℓ
s/X, j1) = 0 by Xℓ+1/ℓs to obtain Θc

ℓ(X, j1) as before,
we obtain the equivalent system (where c′i = cℓ+1−i · ℓs(ℓ−i)):

∑ℓ+1
i=0 ciXi − j0 · X = 0 ∧ ∑ℓ+1

i=0 c′iX
i − j1 · Xℓ = 0. (4)

We will reformulate these equations as an R1CS in the upcoming subsection. In our applications
we consider supersingular j-invariants, which are known to be contained in Fp2 . It is crucial for
the effectivity of our method that in this situation the roots of the above equations still lie in the
quadratic extension Fp2 of Fp, rather than in a larger extension, as proven in Theorem 12.
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4.2 Reformulation as an R1CS

Compared to the classical modular polynomials, the canonical modular polynomials have a struc-
ture that lends itself better to an R1CS for three reasons: First, the total degree of the polynomials is
lower, going from a single polynomial of total degree 2ℓ to two polynomials of degree ℓ+ 1. Second,
whereas Φℓ is very dense, Φc

ℓ and Θc
ℓ are both polynomials in just X in addition to a single term

containing j. Hence there are fewer terms to produce in the R1CS. Lastly, the structure described in
Lemma 7 allows us to factor part of this polynomial as a square, improving arithmetization over Fp.

We can compute the powers 1, X, X2, . . . , Xℓ together with the j-invariants j and j′ and rewrite
the equations as

X ·
(

ℓ

∑
i=0

ci+1Xi − j

)
+ c0 = 0, (5)

Xℓ ·
(

1

∑
i=0

c′ℓ+iX
i − j′

)
+

ℓ−1

∑
i=0

c′iX
i = 0. (6)

To reduce the amount of non-zero entries, we employ a change of variables and have the prover
supply y = j − c1 instead of j and y′ = j′ − c1 instead of j′. This eliminates the term X from the first
equation and the term Xℓ from the second equation, since c1 = c′ℓ. Clearly knowledge of a chain of
j-invariants is equivalent to knowledge of a chain of y’s.

These equations are expressed as an R1CS as follows. The assignment vector z has the form
z = (1 X X2 . . . Xℓ y y′)T , and the corresponding constraint matrices are given by

A =


0 1 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

0 1 0 · · · 0 0 0
0 0 0 · · · 1 0 0

 , B =


0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

0 c2 c3 · · · cℓ+1 −1 0
0 c′ℓ+1 0 · · · 0 0 −1

 ,

and

C =



0 0 1 0 · · · 0 0 0
0 0 0 1 · · · 0 0 0
...

...
...

0 0 0 0 · · · 1 0 0
−c0 0 0 0 · · · 0 0 0 0
−c′0 −c′1 −c′2 −c′3 · · · −c′ℓ−1 0 0 0


.

For an isogeny path of length k, each new step introduces a new value yi+1 together with the ℓ
powers of the current solution Xi. Moreover, we need ℓ− 1 more constraints for checking the powers
of the new variable Xi, together with two more constraints which encode the two equations (4).
There are ℓ+ 1, 2ℓ+ 2 and 2ℓ non-zero entries in A, B and C, respectively. This means that we can
arithmetize a degree ℓk isogeny for ℓ ∈ {2, 3, 5, 7, 13} in (ℓ+ 1)k + 1 variables, (ℓ+ 1)k constraints
and (5ℓ+ 3)k non-zero entries in the R1CS.

In fact, we can do better for ℓ ∈ {7, 13}, in the following way. We let t = ℓ+1
2 and rewrite the two

equations as

Xt ·
(

t

∑
i=0

ci+tXi

)
+

t−1

∑
i=0,i ̸=1

ciXi − yX = 0, (7)

Xt ·
(

t

∑
i=0,i ̸=t−1

c′i+tX
i − y′Xt−1

)
+

t−1

∑
i=0

c′iX
i = 0. (8)

This way we need to compute the variables X2, . . . , Xt, yX, y′Xt−1, and we have t + 1 + 2 constraints
(t + 1 consistency checks, and the two above equations). We have t variables for the powers of X
and two for yX and y′Xt−1, as well as one per j-invariant, through y. This gives a total of (t+ 3)k + 1
variables. The t + 1 consistency checks can be computed in 3t + 3, while the two other equations
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require 4t + 4 non-zero entries in the constraint matrices. In total, this means (t + 3)k + 1 variables,
(t + 3)k constraints and (7t + 7)k non-zero entries in the R1CS to arithmetize a walk of length k for
ℓ ∈ {3, 5, 7, 13}.

4.3 Lifting to Fp ×Fp

So far, we have described efficient arithmetizations for proving isogenies that work over Fp2 . While
it is perfectly valid to use an R1CS over this field, this is not supported by all proof systems. Fortu-
nately, we can lift any arithmetization over Fp2 to Fp ×Fp.

We represent elements in Fp2 as x + yα with α2 = d for some quadratic non-residue d ∈ Fp.
Linear operations over Fp2 translate directly to linear operations over Fp, whereas a multiplication
(x1 + x2α)(y1 + y2α) = z1 + z2α would naively induce four multiplications for all cross terms x1y1,
x1y2α, x2y1α and x2y2d. As noted in [CLL23], there exist well-known techniques to do this more
efficiently. Multiplication can be performed using one auxiliary variable and three constraints:

u = x2y2,
z1 − du = x1y1,

z1 + z2 + (1 − d)u = (x1 + x2)(y1 + y2).

This immediately implies an upper bound for the cost of lifting: We can substitute this relation for
every row of the original R1CS to obtain a new system with m′ = 3m. The amount of variables
becomes n′ = 2n + m, since variables now have two components and we add one intermediate
variable for every constraint. The number of non-zero entries for this new system is nnz′ ≤ 4 nnz
due to the doubling of the number of variables, and because all variables are used at most twice in
the above system of equations.

Squaring a variable can be performed more efficiently. For

z1 + z2α = (x1 + x2α)2,

the following system of equations suffices:

z2 = 2x1x2,
z1 + (d + 1)/2z2 = (x1 + x2)(x1 + dx2).

This uses just two constraints and nine non-zero entries, requiring no auxiliary variables.

A more efficient basis. Given these gadgets for multiplying and squaring, there is an optimization
we can perform to decrease the number of non-zero entries in the constraint matrices. The basis
change (x1, x2) → (x1, x1 + x2) = (x1, xs) saves one non-zero entry in the last constraint for the
general product. This might seem minor, but since both coefficients of x can itself be a linear combi-
nation of many variables, this is significant for our system. Unfortunately the same technique does
not give a saving for squaring. The right-hand side does not incur a cost by expressing x ∈ Fp2 as
x1 and xs, but the left hand side does incur a cost of expressing z ∈ Fp2 as z1 and zs. Hence we
have two options: Incur this cost here and potentially save it if the result is used as the result of a
multiplication, or not incur this cost. Although this sum basis is almost always at least as efficient as
the regular basis, one can simply choose the most efficient basis for each variable individually.

Exploiting Φc
ℓ’s structure. The above gadgets and the sum basis help us to express the canonical

modular polynomials efficiently in an R1CS over Fp × Fp. Furthermore, for some ℓ, the canonical
polynomial can be rewritten using the structure described in Lemma 7 such that it utilizes more
squares. This in turn minimizes the number of necessary constraints. For ℓ = 2 over Fp × Fp, we
can write the entire system using two squares and one product. First, define y = c1 − c2

2 · (4c3)
−1 − j

(and y′ accordingly). Then

c3

(
c2 · (2c3)

−1 + X
)2

+ y + c0X−1 = 0,

c3ℓ
3s
(

c2ℓ
s · (2c3)

−1 + X−1
)2

+ ℓsy′ + c0X = 0,

18



captures both polynomials in two squaring relations. We only need to compute the inverse X−1 with
a single additional multiplication. Over Fp × Fp, the resulting system has 7k constraints and 7k + 2
variables. In a similar fashion, for ℓ = 7, we can use the fact that Equation (7) can be written as
a square plus the term ỹ = 1728 − j. For ℓ = 13, we can express 9 coefficients correctly using the
square of a degree 7 polynomial, after which we only need to correct for the lowest degree terms.

Computing powers of X. To compute even powers, we can square directly. It is however also
possible to use a squaring for odd powers, through the relation

b
(

a · (2b)−1Xi + Xi+1
)2

= a2 · (4b)−1X2i + aX2i+1 + bX2i+2. (9)

We see that we obtain a linear combination of three powers, where we can freely choose a ∈ Fp and
b ∈ F×

p . By subtracting away a2 · (4b)−1X2i and bX2i+2, we obtain a constraint for the odd power
X2i+1. Unfortunately, this method cannot be used for the products with y or the highest power of
X, i.e. Xℓ or Xt, since here we cannot compensate for the even powers appearing on the right-hand
side.

Change of variables. One disadvantage of the above method is that it increases the number of non-
zero entries in the constraint matrices. To remedy this, we note that some powers of X are only used
in linear combinations with other powers, i.e. in a polynomial where all three powers are already
present. As such, we make a change of variables and store the right-hand side of Eq. (9) directly
instead of X2i+1. We can then choose a and b appropriately such that they agree with the coefficients
of one of the polynomials. For example, for ℓ = 5 we define Z = c5(c4 · (2c5)

−1X + X2)2 and rewrite
Eq. (5) as

X ·
[
c2X +

(
c3 − c2

4 · (4c5)
−1
)

X2 + Z + X5 − y
]
+ c0 = 0. (10)

The advantage is twofold: we do not need to subtract powers from Eq. (9) when computing X3, and
we do not have to add an X4 term to Equation (10). We should only use this substitution for powers
that are not necessary to compute higher powers: the above would be inefficient if we also required
the value of X3 to express (X3)2 = X6. Concretely, we use this trick to replace X3 for ℓ ∈ {5, 7} and
X5 for ℓ = 13.

More generally, the number of non-zero entries can often be minimized through a change of
variables. For example, since jX and j′Xt−1 are both only used once, we can instead already add
the terms of the linear combinations in which they will be used later. This is advantageous, since a
linear combination uses fewer nnz in the outcome of a square than in its input, and is cheaper still
in the outcome of a multiplication. This way, the intermediate variables that are unavoidable can be
used as efficiently as possible.

5 Evaluation

We provide constraints.sage in the accompanying GitHub repository2 which expresses and ver-
ifies all arithmetizations and automatically counts the number of constraints, variables and nnz.
These can be found in Table 2. To additionally compare results for distinct ℓ, we normalize by con-
sidering a security level λ, such that ℓk > 2λ. By increasing ℓ we can decrease k, reducing the
number of constraints necessary for the relation RR1CS. These results can be found in Table 3. We
achieve significant improvements everywhere, ranging between 25% − 45% for the number of con-
straints and 27%− 48% for nnz, making our arithmetizations suitable for ℓ-power isogenies for each
ℓ ∈ {2, 3, 5, 7, 13}, as well as mixed power isogenies.

In particular, the number of non-zero entries in our system is 38% smaller for ℓ = 2 over Fp2

and 48% over Fp. This is relevant for proof systems such as Aurora, where the prover runs in
time O(nnz log(nnz)), the verifier in time O(nnz) and the proof size is O(log2(nnz)). Over Fp
we therefore expect the prover and verifier time to be roughly halved. For Ligero, the proof size
is O(

√
nnz), which is thus expected to shrink by 30%. The proof size, verifier and prover times

of Limbo are linear in the number of constraints m, which decreases in terms of λ as we move to
higher primes. In particular, for ℓ = 7 we achieve a 38% improvement in m over Fp2 and a 45%
improvement over Fp. We expect this improvement to translate directly to its concrete efficiency.

2https://github.com/QuSAC/IsogenyPoKviaCanonicalModPolys
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ℓ Field m n nnz
[CLL23] Ours [CLL23] Ours [CLL23] Ours

2 Fp2 4k + 2 3k 4k + 3 3k + 1 21k + 6 13k
3 4k 4k + 1 18k
5 6k 6k + 1 28k
7 7k 7k + 1 35k

13 10k 10k + 1 56k
2 Fp 11k + 5 7k 11k + 7 7k + 2 79k + 23 41k
3 11k 11k + 2 65k
5 15k 15k + 2 97k
7 17k 17k + 2 123k

13 24k 24k + 2 194k

Table 2: Our results compared to [CLL23]. We consider the number of constraints m, the number of
variables n and the number of non-zero entries in the constraint matrices nnz.

ℓ Field m n nnz
[CLL23] Ours [CLL23] Ours [CLL23] Ours

2 Fp2 4λ + 2 3λ 4λ + 3 3λ + 1 21λ + 6 13λ

3 2.524λ 2.524λ + 1 11.357λ
5 2.584λ 2.584λ + 1 12.059λ
7 2.493λ 2.493λ + 1 12.467λ

13 2.702λ 2.702λ + 1 15.133λ
2 Fp 11λ + 5 7λ 11λ + 7 7λ + 2 79λ + 23 41λ
3 6.940λ 6.940λ + 2 41.010λ
5 6.460λ 6.460λ + 2 41.776λ
7 6.056λ 6.056λ + 2 43.813λ

13 6.486λ 6.486λ + 2 52.426λ

Table 3: Our results compared to those of [CLL23], normalized for security parameter λ.

6 Conclusion and Open Problems

In this paper we improved on the state-of-the-art of using general-purpose zero-knowledge proof
systems for proving knowledge of an isogeny via R1CS. We were able to generalize the approach of
Cong, Lai and Levin [CLL23] beyond ℓ = 2 to prime numbers ℓ ∈ {3, 5, 7, 13} via the use of canonical
modular polynomials. Moreover, we optimized the arithmetizations for the corresponding relation
both over Fp2 and over Fp ×Fp.

In the course of our work we encountered interesting mathematical questions, some of which
might hold in greater generality. For example, while Remark 4 argues that one can generalize The-
orem 9 to any prime ℓ, the growth trend displayed in Table 1 suggests that even tighter bounds on
the prime pℓ, such as 2 log2(ℓ)ℓ

3, could be achievable.
It might be even more interesting to study the canonical modular polynomials (or different,

equivalent polynomials) for primes ℓ such that κ > 1. In that case we do not know whether the
Multiplicity Theorem still holds true. More precisely, we expect one inequality to still hold, but the
other to fail generally – see Remark 2.

Therefore the mathematical contributions in this paper might motivate deeper studies in the
future.
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A More on Elliptic Curves

A.1 Elliptic Curves and Isogenies

In this subsection we gather some well-known definitions and results on elliptic curves and isoge-
nies.

Let K be a perfect field. An elliptic curve over K is a non-singular projective algebraic curve of
genus 1 with a distinguished ‘point at infinity’, usually denoted by O. Given an elliptic curve E over
K, the set of K-rational points E(K) forms a group with neutral element O.

Let E0 and E1 be elliptic curves over K, and K ⊆ L ⊆ K a field extension of K. An isogeny (defined)
over L, or L-isogeny, is a morphism of the curves ϕ : E0 −→ E1 over L (in particular it can be expressed
by rational maps with coefficients in L) which induces also a surjective group homomorphism on
the sets of K-rational points.

Any isogeny ϕ has a finite kernel, and the cardinality of this kernel equals the degree deg(ϕ) of ϕ
as a morphism if ϕ is separable [Sil09, Theorem III.4.10]. Further, if ϕ1 : E0 −→ E1 and ϕ2 : E1 −→ E2
are two isogenies, then

deg(ϕ2 ◦ ϕ1) = deg(ϕ2) · deg(ϕ1).

Given an elliptic curve E0 over K and any finite subgroup G ⊆ E0(K), there exist a unique (up to
equivalence) elliptic curve E1 and a separable isogeny ϕG : E0 −→ E1 with kernel equal to G [Sil09,
Proposition III.4.12].

A classic example of an n2-isogeny is the multiplication-by-n endomorphism [n] of E, which maps
each K-rational point of an elliptic curve to its nth scalar multiple. The kernel of the induced map on
the K-rational points is called the n-torsion of E, denoted E[n].

Notably, each n-isogeny ϕ : E0 −→ E1 admits a dual isogeny of degree n, which is the unique
isogeny ϕ̂ : E1 −→ E0 such that ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [n] [Sil09, Theorem III.6.1-2].

A.2 Canonical Modular Polynomials for κ = 1

Below we list the canonical modular polynomials for the primes ℓ ∈ {2, 3, 5, 7, 13}, which are the
primes that satisfy κ = ℓ−1

gcd(12,ℓ−1) = 1.

Φc
2(X, j) = X3 + 48X2 + 768X + 4096 − X · j,

Φc
3(X, j) = X4 + 36X3 + 270X2 + 756X + 729 − X · j,

Φc
5(X, j) = X6 + 30X5 + 315X4 + 1300X3 + 1575X2 + 750X + 125 − X · j,

Φc
7(X, j) = X8 + 28X7 + 322X6 + 1904X5 + 5915X4 + 8624X3 + 4018X2

+ 748X + 49 − X · j,

Φc
13(X, j) = X14 + 26X13 + 325X12 + 2548X11 + 13832X10 + 54340X9

+ 157118X8 + 333580X7 + 509366X6 + 534820X5 + 354536X4

+ 124852X3 + 15145X2 + 746X + 13 − X · j.

A.3 The Polynomial Factors of Lemma 7

In this subsection we list the polynomials gℓ,j∗ and hℓ,j∗ ,± described in Lemma 7 – we start with
j∗ = 0:

ℓ gℓ,0 hℓ,0,+ hℓ,0,−
2 1 X + 16 X + 256
3 X + 27 X + 3 X + 243
5 1 X2 + 10X + 5 X2 + 250X + 3125
7 X2 + 13X + 49 X2 + 5X + 1 X2 + 245X + 2401

13 X2 + 5X + 13 X4 + 7X3 + 20X2 + 19X + 1 X4 + 247X3 + 3380X2

+ 15379X + 28561

Table 4: The polynomials gℓ,0 and hℓ,0,±.
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Next we give the polynomials for j∗ = 1728:

ℓ gℓ,1728 hℓ,1728,+ hℓ,1728,−
2 X + 64 X − 8 X − 512
3 1 X2 + 18X − 27 X2 − 486X − 19683
5 X2 + 22X + 125 X2 + 4X − 1 X2 − 500X − 15625
7 1 X4 + 14X3 + 63X2 + 70X − 7 X4 − 490X3 − 21609X2

− 235298X − 823543

13 X2 + 6X + 13 X6 + 10X5 + 46X4 + 108X3

+ 122X2 + 38X − 1

X6 − 494X5 − 20618X4

− 237276X3 − 1313806X2

− 3712930X − 4826809

Table 5: The polynomials gℓ,1728 and hℓ,1728,±.

A.4 Rational Formulas for the Reconstruction Theorem

In this subsection we give, for the Reconstruction Theorem, the ℓ-dependent expressions of the root
f as a K-rational function in the coefficients of ϕℓ( f ). In these formulas we index f on the left hand
side by the prime ℓ for emphasis.

For ℓ = 3 we write ϕ3( f ) = x + C to obtain

f3 = − (2A2 + 7ACj0 + 3C3 j0)2

28 · 3 · A3 · j0
.

For ℓ ∈ {5, 7, 13} we can use char(K) /∈ {2, 3} to compute disc(ϕℓ( f )) by evaluating disc(ϕℓ(T))
at T = f according to Proposition 1(a). Thus computations in Z[T, T−1] show

f5 =
(−48A)3

disc(ϕ5( f ))3 · j0
and f7 =

(−48A)3

disc(ϕ7( f )) · j0
.

Lastly, for ℓ ∈ {2, 13} we see that the discriminant ∆ = 211 · 35 · f ℓ−1 · A · B ̸= 0 of the target
curve lies in K(s1, . . . , sn) by Kohel’s description of Vélu’s formulas [Koh96, §2.4], and

f2 =
∆

211 · 35 · A · B
and f13 =

2297 · 3135 · A27 · B27

disc(ϕ13( f ))5 · ∆2 .

B The Sylvester Matrix and the Resultant

In the following we discuss the theory of resultants, using [Bos18, §4.4] and [vzGG13, §6.3] as general
references, together with novel applications that will be important for our proofs. Throughout this
section we fix R to be a commutative (as well as unital and associative) ring.

We briefly recall the adjugate matrix: Let n ∈ N and suppose that we have a square matrix
M = (mij) ∈ Rn×n. For any i, j ∈ [n] = {1, . . . , n} we let Mij denote the matrix obtained from M
by removing the ith row and the jth column. Then the adjugate matrix adj(M) of M is defined as the
square matrix adj(M) = (aij)

n
i,j=1 ∈ Rn×n with entries

aij = (−1)i+j det(Mji).

The following result gives the well known Laplace expansion formulas:

Lemma 14. We have
adj(M) · M = det(M)In = M · adj(M)

where In denotes the nth identity matrix. Equivalently, for any i ∈ [n] we can compute det(M) via
Laplace expansion along the ith row given by

det(M) =
n

∑
j=1

(−1)i+j · mij · det(Mij),
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or via Laplace expansion along the ith column given by

det(M) =
n

∑
j=1

(−1)j+i · mji · det(Mji).

For n ∈ N0 we now consider the free R-module

Pn := {h ∈ R[X] : deg(h) < n}

of rank n, equipped with the descending monomial basis (Xn−1, Xn−2, . . . , X, 1).

Definition 2. Let f , g ∈ R[X] be non-zero polynomials of respective degrees d, e ∈ N0 and define
the R-linear map

σ : Pe ×Pd → Pd+e, (s, t) 7→ s · f + t · g.

We call the representation matrix of σ with respect to the descending monomial bases of each Pn the
Sylvester matrix Syl( f , g) of f and g.

Remark 7. In the literature the transpose of the representation matrix of σ is sometimes referred to
as the Sylvester matrix instead – see, for example, [BPR06, Notation 4.12].

Example 3. For polynomials f = a0X3 + a1X2 + a2X + a3 and g = b0X2 + b1X + b2 with a0, b0 ̸= 0
we have

Syl( f , g) =


a0 b0
a1 a0 b1 b0
a2 a1 b2 b1 b0
a3 a2 b2 b1

a3 b2


where empty entries are understood to be zero.

The following observation is straightforward, but crucial:

Lemma 15. Let K be a field and let f , g ∈ K[X] be non-zero polynomials. Then the rank of the
Sylvester matrix of f and g satisfies

rk Syl( f , g) ≤ deg( f ) + deg(g)− deg gcd( f , g).

Proof. Let h := gcd( f , g) and set m := deg(h). By the rank-nullity theorem we have to prove that the
kernel of σ has dimension at least m, which we can do by giving m kernel vectors that are K-linearly
independent. Setting s := g/h and t := f /h, we have the kernel vectors

(s · Xi−1,−t · Xi−1) ∈ ker(σ) for i ∈ [m].

Indeed, the degree of s · Xi−1 (resp. −t · Xi−1) is strictly smaller than deg(g) (resp. deg( f )) for any
1 ≤ i ≤ m, and

σ
(

s · Xi−1,−t · Xi−1
)
= Xi−1 · (s f − tg) = Xi−1 · h−1 · (g f − f g) = 0.

Moreover, the above m vectors are K-linearly independent; in fact, even their first components are
already K-linearly independent as they have pairwise distinct degrees.

The determinant of the Sylvester matrix also plays an important role:

Definition 3. Let f , g ∈ R[X] be non-zero polynomials. The resultant res( f , g) of f and g is defined
as

res( f , g) := det Syl( f , g).

If we consider two coprime polynomials, then the inequality in Lemma 15 becomes an equality:
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Corollary 16. Let K be a field and let f , g ∈ K[X] be non-zero polynomials. Then the following are
equivalent:

(i) f and g are coprime, i.e. gcd( f , g) = 1.

(ii) rk Syl( f , g) = deg( f ) + deg(g).

(iii) res( f , g) ̸= 0.

Proof. By definition Syl( f , g) is a square matrix with deg( f ) + deg(g) rows, so the equivalence of
(ii) and (iii) follows from linear algebra. Moreover, Lemma 15 shows that (ii) implies (i); finally,
suppose that f and g are coprime and let (s, t) ∈ ker(σ). Then the equality s f = −tg shows that g
divides s and f divides t, which forces s = t = 0 due to degree restrictions. Hence σ is an injection
between (deg( f ) + deg(g))-dimensional K-vector spaces, so it has to be an isomorphism. Thus its
representation matrix Syl( f , g) has to be invertible, yielding (iii).

Next we note an immediate but important compatibility result that we will use frequently in the
sequel:

Lemma 17. Let f , g ∈ R[X] be non-zero polynomials, and let φ : R → S be a ring homomorphism,
extended to a ring homomorphism φ : R[X] → S[X] via coefficient-wise application. If φ preserves
the degrees of f and g, then we have

φ(Syl( f , g)) = Syl(φ( f ), φ(g)),

where on the left hand side φ is applied entry-wise. In particular, in this situation we have

φ(res( f , g)) = res(φ( f ), φ(g)).

Proof. This follows from the definitions and the fact that the determinant is compatible with ring
homomorphisms as it is defined as a multivariate polynomial in the entries of the matrix.

This compatibility result also extends Corollary 16 to integral domains:

Corollary 18. Let R be an integral domain and let f , g ∈ R[X] be non-zero polynomials. Then f and
g share a common divisor of positive degree if and only if res( f , g) = 0.

Proof. We consider the embedding φ : R → K of R into its field of fractions K, and its extension to
R[X] → K[X] via coefficient-wise application. As this clearly preserves the degrees of f and g, we
see with Lemma 17 that res( f , g) is non-zero if and only if res(φ( f ), φ(g)) is. Furthermore, f and
g share no common divisor of positive degree if and only if φ( f ) and φ(g) are coprime, as both
statements are equivalent to the fact that φ( f ) and φ(g) do not have a common root in an algebraic
closure of K. Therefore the claim follows from Corollary 16.

In our proofs we will consider the situation that R = A[Y] is itself a polynomial ring, and we
will be interested in deriving the resultant res( f , g) with respect to Y. As we want to connect the
derivatives to k-minors of Syl( f , g), i.e. to determinants of (k × k)-submatrices of Syl( f , g), we need
Jacobi’s formula:

Lemma 19 (Jacobi). Let R = A[Y] be a polynomial ring over a commutative ring A, let n ∈ N and
let M = (mij) ∈ Rn×n be a square matrix. Furthermore let ∂

∂Y M denote the matrix obtained from M
via entry-wise derivation. Then

∂

∂Y
det(M) = tr

(
adj(M) · ∂

∂Y
M
)

.

In particular, for any k ∈ {0, . . . , n} we have

∂k

∂Yk det(M) ∈ R · {(n − k)-minors of M},

i.e. the kth derivative of det(M) with respect to Y is an R-linear combination of (n − k)-minors of M.
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Proof. For ease of notation we index submatrices of M by indices in [n] × [n] where we disallow
indices of removed rows as the first index respectively of removed columns as the second index. We
proceed by induction on n: For n = 1 the matrix adj(M) has the single entry 1, so the formula clearly
holds.

Assuming n ≥ 2, we apply the product rule to the Laplace expansion of det(M) along the last
column to obtain

∂

∂Y
det(M) =

n

∑
i=1

(−1)i+n det(Min)
∂

∂Y
min + (−1)i+nmin

∂

∂Y
det(Min). (11)

By the induction hypothesis we furthermore have

∂

∂Y
det(Min) = tr

(
adj(Min) ·

∂

∂Y
Min

)
=

n−1

∑
j=1

i−1

∑
l=1

(−1)j+l det((Min)l j)
∂

∂Y
ml j +

n−1

∑
j=1

n

∑
l=i+1

(−1)j+l−1 det((Min)l j)
∂

∂Y
ml j.

Therefore swapping the summation order of l and i yields

n

∑
i=1

(−1)i+nmin
∂

∂Y
det(Min)

=
n−1

∑
j=1

n

∑
l=1

n

∑
i=l+1

(−1)l+j(−1)(i−1)+(n−1)min det((Ml j)in)
∂

∂Y
ml j

+
n−1

∑
j=1

n

∑
l=1

l−1

∑
i=1

(−1)l+j(−1)i+(n−1)min det((Ml j)in)
∂

∂Y
ml j

=
n−1

∑
j=1

n

∑
l=1

(−1)l+j det(Ml j)
∂

∂Y
ml j

where we used Laplace expansion of det(Ml j) along the last column to get rid of the sum over i.
Now we see that the first summands in Equation (11) give precisely the nth outer sum above, so in
total we obtain:

∂

∂Y
det(M) =

n

∑
j=1

n

∑
i=1

(−1)i+j det(Mij)
∂

∂Y
mij = tr

(
adj(M) · ∂

∂Y
M
)

(12)

Finally we argue why the second claim follows from this formula by induction on k. For k = 0
the claim is immediate as det(M) is the unique (n − 0)-minor of M. Now expressing ∂k−1

∂Yk−1 det(M)

as an R-linear combination of (n − k + 1)-minors of M via the induction hypothesis, we see by
Jacobi’s formula (12) (applied to each (n − k + 1)-minor of M) and the product rule that ∂k

∂Yk det(M)

is an R-linear combination of (n − k + 1)-minors of M and their (n − k + 1 − 1)-minors; the latter
are (n − k)-minors of M, and the former are R-linear combinations of (n − k)-minors of M due to
Laplace expansion, hence yielding the claim.

The following consequence is tailored to our needs:

Corollary 20. Let R = K[Y] be a polynomial ring over a field K and fix an element y0 ∈ K. Addi-
tionally let f , g ∈ R[X] be non-zero polynomials and extend the K-linear evaluation homomorphism
φ : R → K given by Y 7→ y0 to a ring homomorphism φ : R[X] → K[X] via coefficient-wise applica-
tion. Further suppose that φ preserves the X-degrees of f and g, and write

m := deg gcd(φ( f ), φ(g)).

Then
∂k

∂Yk

∣∣∣∣
Y=y0

res( f , g) = 0 for k ∈ {0, . . . , m − 1},

i.e. res( f , g) ∈ K[Y] has a root of multiplicity at least m at y0.
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Proof. Let k ∈ {0, . . . , m − 1} and set n := deg( f ) + deg(g). By Lemma 19 the kth Y-derivative
of res( f , g) is an R-linear combination of (n − k)-minors of Syl( f , g). Moreover, by Lemma 17 we
have Syl(φ( f ), φ(g)) = φ(Syl( f , g)), so the images of the (n − k)-minors of Syl( f , g) under φ are
(n − k)-minors of Syl(φ( f ), φ(g)). Hence

φ

(
∂k

∂Yk res( f , g)

)
=

∂k

∂Yk

∣∣∣∣
Y=y0

res( f , g)

is a K-linear combination of (n − k)-minors of Syl(φ( f ), φ(g)). Finally, by Lemma 15 we know that

rk Syl(φ( f ), φ(g)) ≤ deg(φ( f )) + deg(φ(g))− m = n − m < n − k,

so all (n − k)-minors of Syl(φ( f ), φ(g)) are zero by linear algebra and the claim follows.

To turn our attention to the second application of resultants in this paper, we relate the resultant
res( f , g) back to f and g:

Lemma 21. Let R be an integral domain and let f , g ∈ R[X] be non-zero polynomials of respective
degrees d, e ∈ N0 such that d + e ≥ 1. Then there are polynomials (s, t) ∈ Pe ×Pd such that

res( f , g) = s f + tg.

Proof. Recalling the definition of res( f , g) via the linear map σ : Pe ×Pd → Pd+e and translating the
existence of the adjugate matrix into linear maps, we obtain an R-linear map ϕ : Pd+e → Pe × Pd
such that

σ ◦ ϕ(h) = det(Syl( f , g)) · h = res( f , g) · h

for all h ∈ Pd+e. Applying this composition to h = 1, which is possible since d + e ≥ 1, hence shows
that ϕ(1) = (s, t) satisfies the required linear combination.

With this we can finish arguing the missing part of the proof of Theorem 9:

Proposition 22. Let ℓ ≤ 13 be a prime and let pℓ be given according to

(p2, p3, p5, p7, p11, p13) = (13, 53, 379, 1217, 5101, 8387).

Additionally let K be a field of characteristic char(K) /∈ [pℓ] and let j0 ∈ K× be a non-zero j-invariant.
Then Φℓ(j0, Y) does not have a triple root in K.

Proof. This proof is highly computational – the observational claims used along the way can be
verified via the Sage script maximal primes.sage found in the accompanying GitHub repository3.

We first introduce some notation: For a ∈ {0, 1, 2} we write

Ψa(X, Y) :=
∂a

∂Ya Φℓ(X, Y) ∈ Z[X][Y].

Furthermore we consider the resultants (with respect to the Y-variable)

g1 := res(Ψ0, Ψ1), g2 := res(Ψ0, Ψ2), g3 := res(Ψ1, Ψ2),

which are elements ofZ[X]. The content of each gi, i.e. the greatest common divisor of its coefficients,
does not have a prime factor larger than pℓ, so we divide each gi by this scalar (for computational
efficiency) as well as by the maximal power of X that divides gi – to simplify notation, we will denote
the polynomials we obtain through these divisions by gi again. In the following we will apply the
ring homomorphism

η : Z[X][Y] → K[Y], X 7→ j0, Y 7→ Y

to all of these polynomials; we note that, since pℓ > ℓ, the Y-degree of each Ψa is preserved by this
map.

Now suppose for a proof by contradiction that Φℓ(j0, Y) ∈ K[Y] has a triple root. Then the
polynomials (η(Ψ0), η(Ψ1), η(Ψ2)) all share a common root, so due to Lemma 17 and Corollary 16

3https://github.com/QuSAC/IsogenyPoKviaCanonicalModPolys

31

https://github.com/QuSAC/IsogenyPoKviaCanonicalModPolys


we see that, as powers of j0 and all primes not larger than pℓ are invertible in K, we have η(gi) = 0
for each i ∈ {1, 2, 3}. Due to the previous divisions by the powers of X the polynomials (g1, g2, g3)
turn out to pairwise have no common factor of non-zero degree, i.e. the number

γℓ := gcd(res(g1, g2), res(g1, g3), res(g2, g3)) ∈ Z

is non-zero by Corollary 18, and we can see that pℓ is its largest prime factor. However, by Lemma
21 (noting that each gi is non-constant) we find for any i, j ∈ {1, 2, 3}, i < j, polynomials si, tj ∈ Z[X]
such that res(gi, gj) = sigi + tjgj and thus

η(res(gi, gj)) = η(si)η(gi) + η(tj)η(gj) = 0.

Hence each res(gi, gj) is zero in K, so char(K) = p > 0 has to be a prime factor of γℓ. As pℓ is the
maximal prime factor of γℓ, we obtain a contradiction to our assumption on char(K).

An important special case of the resultant is the discriminant, which we will define now: Let R be
an integral domain and let f ∈ R[X] such that ∂

∂X f is non-zero. Then all entries in the first row of
Syl( f , ∂

∂X f ) are divisible by the leading coefficient a0 of f ; therefore the resultant res( f , ∂
∂X f ) is also

divisible by a0 due to Laplace expansion along this first row, and one defines

disc( f ) := (−1)(
deg( f )

2 ) · a−1
0 · res

(
f , ∂

∂X f
)

to be the discriminant of f . We directly obtain the following from Lemma 17:

Corollary 23. Let R be an integral domain and f ∈ R[X] a polynomial such that ∂
∂X f is non-zero.

Furthermore let φ : R → S be a ring homomorphism of integral domains, extended to a ring homo-
morphism φ : R[X] → S[X] via coefficient-wise application. If we have deg( ∂

∂X f ) = deg( ∂
∂X φ( f )),

then
φ(disc( f )) = disc(φ( f )).
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