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Abstract. We present experimental findings on the decoding failure rate (DFR) of BIKE, a fourth-
round candidate in the NIST Post-Quantum Standardization process, at the 20-bit security level using
graph-theoretic approaches. We select parameters according to BIKE design principles and conduct a
series of experiments using Rust to generate significantly more decoding failure instances than in prior
work using SageMath. For each decoding failure, we study the internal state of the decoder at each
iteration and find that for 97% of decoding failures at block size r = 587, the decoder reaches a fixed
point within 7 iterations. We then consider the corresponding Tanner graphs of each decoding failure
instance to determine whether the decoding failures are due to absorbing sets. We find that 81% of
decoding failures at r = 587 were caused by absorbing sets, and of these the majority were (d, d)-near
codewords.

1 Introduction

Bit-flipping Key Encapsulation (BIKE) is a code-based cryptosystem based on quasi-cyclic moderate density
parity check codes (QC-MDPC). BIKE is one of three fourth-round finalists still under consideration in the
NIST Post-Quantum Standardization process. There is no closed-form analysis of the BIKE DFR, but several
works exist which use extrapolation techniques to estimate the DFR for bits of security λ ≥ 128. However,
one must consider the phenomenon known as the error floor region of DFR curves to avoid an underestimate
of DFR for larger code sizes. In this work, we build on prior work which identifies the error floor for BIKE
at λ = 20 and use a graph-theoretic approach to identify the factors influencing error-floor behavior.

Let C(n, k) be a binary [n, k] linear code with length n, dimension k, represented by parity-check matrix
H. For a parity check matrix Hk×n, there is a corresponding bipartite graph, known as a Tanner graph,
consisting of variable nodes vi and check nodes ci where each column hi, 1 ≤ i ≤ n, of H is represented by
a variable node, each row xj , 1 ≤ j ≤ k, of H is represented by a check node, and an edge connects variable
node vi and check node cj if entry xj,i in H is 1.

Low density parity check (LDPC) codes have been extensively analyzed in the literature. These are codes
which can be defined by parity check matrices Hk×n with row Hamming weight on the order of O(1), or up
to O(log(2n)). For each parity check matrix, there is a corresponding bipartite graph, known as a Tanner
graph.

Much analysis of error floor regions of LDPC codes under iterative decoders focuses on properties of
Tanner graph representations of the code [2–4], such as identifying stopping sets, trapping sets, and ab-
sorbing sets. It is said that the LDPC Tanner graph analyses cannot extend to MDPC codes because the
graphs are too dense [2,5]. Fortunately, at the 20-bit security level it is feasible generate several instances of
decoding failures and construct the corresponding Tanner graphs and subgraphs. In this ongoing work, we
study relationships between known classes of QC-MDPC matrices that contribute to the DFR [5] and the
corresponding Tanner graphs.

⋆ ⋆ ⋆ work was completed while this author was at Universiteit Leiden, Mathematics Institute
⋆ A version of this extended abstract was submitted to PQCrypto 2023 and withdrawn pending further work. We
have added only figures and brief clarifying points. (Date: October 23, 2024)



2

2 QC-MDPC Codes: Experiments and theory

In previous work [1], we used BIKE design principles to generate BIKE DFR data at the 20-bit security
level to both identify and analyze the DFR curve error floor. We found that the DFR curve transitioned
from waterfall to error floor region around r = 587. In this work, we re-run the same experiments using
Rust, instead of SageMath, yielding significantly more decoding failure instances for the same DFR. In the
following analysis, we focus on the block-size r = 587, column weight d = 15, and error weight t = 18. We are
continuing to characterize decoding failures, this time using the language of absorbing sets and comparing
this notion with known weaknesses for QC-MDPC codes under iterative decoders.

Definition 1 ((a, b)-absorbing set). An (a, b)-absorbing set D is a subset of variable nodes of the Tanner
graph where the subgraph GD of the Tanner graph containing the vertices in D and their check node neighbors
satisfies the following properties: |D| = a, the subset O(D) of check nodes of odd-degree in the subgraph GD

is size b, and each variable node in D has strictly fewer neighbors of odd-degree than of even-degree.

We compare (d, d)-absorbing sets with (d, d)-near codewords and provide heuristic evidence that the two
sets have significant overlap.

2.1 Weak keys and absorbing sets

The supports of distances between the input error and the falsely outputted errors (ein − eout) were more
likely to be absorbing sets when weak keys were not filtered out. Weak keys are moderate density parity check
matrices with properties that make them vulnerable to decoding failure (see [5] for description). Our data
shows that the decoding failures associated with these weak keys are less likely to correspond to absorbing
sets than decoding failures coming from non-weak keys.

For r = 587, we collected 557 decoding failures with filtering to remove weak keys; 442 of these (79.4%)
were absorbing sets, including 415 that were (15, 15)-absorbing sets (all other (a, b) parameters occurred only
once or twice). See colum 1 of Table 1. For r = 587, we collected 1980 decoding failures without filtering
out weak keys; 1184 of these (59.8%) were absorbing sets, including 705 that were (15, 15)-absorbing sets.
In this ongoing work, we seek to distinguish the decoding behavior that leads to failure in the weak-key vs.
non-weak-key setting as it relates to absorbing sets.

2.2 (d, d)-near codewords and absorbing sets

A (u, v)-near codeword is a weight u vector with syndrome weight v. The family of (d, d)-near codewords is
known to cause decoding failures for BIKE [1], [5, Def. 16.3]. To study the impact of this phenomena on the
DFR waterfall more closely, for r = 587 we fixed a single non-weak parity check matrix H and generated
5546 decoding failures, of which 4498 were (a, b)-absorbing. In 4389 of these absorbing cases, ein − eout is a
(15, 15)-absorbing set, and all of these cases were also (15, 15)-near codewords. We briefly justify this:

From u = 15, we know the (15, 15)-near codewords correspond to subgraphs with 15 variable nodes and
by d = 15, each variable node has 15 neighbors. To better determine whether these near codewords should
be absorbing sets, we must determine how many neighbors of each variable node have odd-degree. Out of
all check nodes in the subgraphs, there are only 15 of odd-degree by v = 15. We use the maximum number
of unsatisfied parity check equations for each decoding failure instance (“maxupc”) and determine find that
for all (15, 15)-near codewords, maxupc ∈ {3, 7}. We conclude that for each variable node, at most 7 of its
neighbors have odd-degree. We thus hypothesize that all (15, 15)-near codewords are (15, 15)-absorbing sets.

We are continuing to analyze the absorbing sets that are not (d, d)-near codewords. In particular, working
with our r = 587 fixed key data we found that the decoder got trapped into a cycle of length-1 in all of
the (a, b)-absorbing decoding failure cases, except for one. Even the non-absorbing decoding failures over-
whelmingly ended in a decoder cycle of length 1 (904 of the 1048 non-absorbing decoding failures observed).
Itemizing the (a, b)-absorbing sets at the 20-bit security level is one step towards characterizing the error
floor behavior for BIKE at λ ≥ 128-bits of security.
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r = 587, 1010 random keys;
557 decoding failures;
438 (a, b)-absorbing.

r = 587, fixed key, 1010 trials;
5546 decoding failures;
4498 (a, b)-absorbing.

r = 827, fixed key, 1010 trials;
214 decoding failures;
213 (a, b)-absorbing.

(a, b) Frequency (a, b) Frequency (a, b) Frequency

(15, 15) 415 (15, 15) 4389 (15, 15) 213
(7, 47) 2 (16, 96) 6
(8, 48) 2 (16, 90) 4
(8, 54) 2 (15, 85) 3

(13, 39) 3
(19, 97) 3

Table 1: Experimental data on decoding failure (a, b)-absorbing structure.
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