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Abstract: Evaluation of cryptographic implementations with respect to side-channels has been man-
dated at high security levels nowadays. Typically, the evaluation involves four stages: detection, mod-
eling, certification and secret recovery. In pursuit of specific goal at each stage, inherently different
techniques used to be considered necessary. However, since the recent works of Eurocrypt2022 [1] [2]
and Eurocrypt2024 [3], linear regression analysis (LRA) has uniquely become the technique that is well-
applied throughout all the stages. In this paper, we concentrate on this silver bullet technique within
the field of side-channel. First, we address the fundamental problems of why and how to use LRA. The
discussion of nominal and binary nature explains its strong applicability. To sustain effective outcomes,
we provide in-depth analyses about the design matrix, regarding the sample distribution of plaintext and
the chosen polynomial degree. We summarize ideal conditions that totally avoid multicollinearity prob-
lem, and explore the novel evaluator-advantageous property of LRA by means of model diagnosis. Then,
we trace the roots where we theoretically elaborate its connections with traditional side-channel tech-
niques, including Correlation Power Analysis (CPA), Distance-of-Means analysis (DoM) and Partition
Power Analysis (PPA), in terms of regression coefficients, regression model and coefficient of determi-
nation. Finally, we probe into the state-of-the-art combined LRA with the so-called collapse function,
demonstrating its relationship with another refined technique, G-DoM. We argue that properly relaxing
the definition of bit groups equally satisfies our conclusions. Experimental results are in line with the
theory, confirming its correctness.

Keywords: side-channel evaluation; linear regresssion; CPA; DoM; collapsed function

1 Introduction
Cryptographers have traditionally designed cipher systems assuming that they would be realized in
a closed environment which does not leak any information about the internal state. However, this
long-standing security assumption is nullified when an adversary is enhanced with sophisticated side-
channel analyses other than only black box access. Without strict evaluation, cryptosystem risks emitting
informative signals such as power consumption [4] and electromagnetic radiation [5] to the external. These
leakages statistically depend on sensitive intermediate variables of the running cryptographic algorithm
and therefore provide a breach for undermining the protection.

In response to this new threat, security assessment schemes such as Common Criteria [6] and FIPS
140-3 [7] have mandated the evaluation of cryptographic implementations against side-channel analyses
at high security levels. Early studies (e.g., [8][9][10]) have been carried out where it is found out that the
∗Corresponding author.

1



illegal side-channel analysis also abides by the Shannon’s communication model. As a result, the security
evaluation is generally conducted in the following sequence:

(1) Leakage Detection. Leakage detection is primary in side-channel evaluation. Referring to
Shannon’s information theory, it answers the most fundamental question: “Is there an information leaking
source?” A typical way for achieving this goal is resorting to the hypothesis testing in statistics. So
far, popular examples include Welch’s T-test [11], Pearson’s ρ-test [12] and χ2-test [13], among others.
Searching time samples on the entire leakage trace, evaluators aim to identify all data-dependent leaking
points, without concern for whether they can be exploited at a reasonable computational cost.

(2) Leakage Modeling. Confirming the existence of information source, the natural next step
is to profile it in a detailed manner. Some may argue against the necessity of this stage, citing the
non-profiled side-channel analyses. However, [14][15] find out that this kind of techniques fails to deal
with injective targets, in terms of recall in classification theory. Under these circumstances, leakage
modeling establishes behaviors of leakages and helps understand the features of a given implementation.
It studies how secret data is modulated onto physical carrier signals such as electrical currents, and
subsequently transmitted to the external. Practical tools for this stage relates to probability density
estimation, including parameterized Gaussian template [16], semi-parameterized Gaussian mixture [17]
and non-parameterized histogram [18].

(3) Leakage Certification. A notorious problem in modeling is that the estimation quality is
heavily impacted by the capabilities of the modeler (e.g., the available number of leakage measurements
and computational resources). Without a thorough examination, a given implementation may look
“secure” in front of an inferior evaluator, but is in fact vulnerable to a more powerful adversary (i.e., a
sense of false security). Besides, an ideal model should capture all components that contribute to the
data-dependency. To address these issues, leakage certification is an essential post stage to the modeling
by quantifying differences between estimated model and real leakages. It ensures a close approximation to
the true leakage distribution, whilst guaranteeing unbiasedness. Practical tools for this purpose include
distance-sampling based divergence [19] and moment-based statistical test [12].

(4) Secret Recovery. As the last stage of security evaluation, an hypothetical adversary (corre-
sponding to the role of information destination in Shannon’s information theory) tries to recover the
modulated secret from leakages by the use of so-called side-channel distinguishers (corresponding to the
role of demodulator). Most distinguishers base on the idea of maximum likelihood principal where the
secret is the unknown parameter to be deduced. This final stage accomplishes the evaluation by applying
concrete distinguishers (e.g., [20][21]) with well-established models on the detected leaking points.

At first glance, in pursuit of specific goal at each stage, inherently different techniques used to be
considered. However, since the recent works in 2022 [1] [2] and 2024 [3], linear regression analysis (LRA)
has uniquely become the technique that is well-applied throughout all the four stages! Besides this
unexpected versatility, LRA additionally overcomes several challenges that are insurmountable for other
techniques. A brief description will be provided in the next subsection.

1.1 Related Works
Here, we briefly introduce the advantages of LRA as demonstrated in practical applications of security
evaluation.

(1) Explainable leakage detection. Despite extensive research over a long period, leakage detec-
tion still faces critical problems of low interpretability or high overhead. Non-specific techniques (e.g., [7])
allow black box assumption of low cost, but are incapable of answering whether the detected leakages are
exploitable for side-channel distinguishers. In contrast, specific techniques (e.g., [6]) aim to demonstrate
concrete attacks on identified leakages. Yet, the cost becomes prohibitive if the target is closed-source
(as in the case with most commercial products), and the conclusions are not transferable across leak-
ing points. In [3], the LRA-based leakage detection method introduces the concept of collapse function
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and resolves both challenges. It provides interpretable results by precisely locating the leaking bits of
intermediate variables.

(2) Effective leakage modeling. Originally suggested as a leakage modeling technique, [22] proves
that under the ordinary least squares (OLS) loss function, LRA produces the minimal residuals whenever
correct subkey is assumed. In terms of goodness-of-fit tests [23], it indicates that the model achieves
optimality and accounts for the vast majority of variations in leakages. This modeling technique is
regarded as best under Gaussian noise [24]. Later research of LRA [25] drives a breakthrough from
gate-level to instruction-level leakage simulation. It enables prediction of leakages given a sequence of
instructions, without the need to actually execute it.

(3) Completeness certification. In modern implementations, intermediate state can be large (e.g.,
32-bit words are processed in parallel) and difficult to handle. Security evaluation based on an inaccu-
rate leakage model will easily lead to flawed conclusions. Tackling this issue, [1] explores the F-test for
explanatory variable selection. The authors introduce the novel concept of “model completeness”, ensur-
ing that all contributing factors of leakages are captured and modeled. Leveraging this, [2] successfully
reverse-engineered the components in microarchitecture of commercial implementations.

(4) Robust distinguisher. Following the initial implications in [22], [26] officially adopts LRA
as a side-channel distinguisher. Compared with others, this on-the-fly profiling attack additional gains
an advantage of robustness (i.e., can be performed with few general assumptions about the leakages).
Subsequent works [14] suggest to replace the regression strategy in LRA with a step-wise one to overcome
several ineffectiveness. Yet, [25] argues that this improvement is sensitive to iterative order, prone to over-
fitting, and has greatly uncertainty of the finalised model.

1.2 Our Contributions
In view of the exceptional capabilities and potentials, this paper develops new insights into LRA within
the field of side-channel. Our contributions are as follows:

1. We address the fundamental problems of why and how to use LRA. Our study of the nominal
and binary nature elucidates its strong applicability in side-channel analysis. We provide in-depth
discussions about the statistical characteristics of design matrix, and summarize ideal conditions
that avoid severe consequences of multicollinearity. We explore a novel aspect of LRA – it is
particularly advantageous for evaluators (i.e., an adversary of equal power cannot benefit the same)
– by checking the residuals.

2. We explore the connections of LRA with traditional side-channel techniques including CPA, DoM
and PPA. We theoretically prove that: (i) regression coefficients are equivalent to DoM’s values,
with the corresponding explanatory variables act as selection functions; (ii) coefficient of deter-
mination can be expressed in terms of CPA’s correlation coefficients, adjusted by an extra factor
- the Proportion of Variations Explained (PVE); (iii) regression model is based on the nature of
PPA, which is the weighted sum of partitions of leakage measurements. Also, a further study on
the Equal Images under different Subkeys (EIS) property of regression model is provided.

3. Finally, we probe into the state-of-the-art technique that is combined with LRA for enhanced
capability - the collapse function. We first demonstrate the relationship of this combined method
with another refined side-channel technique, the G-DoM. Then, we extend its definition. We argue
that bit groups of random size, even with possible bit dropping, equally satisfy our theoretical
conclusions.

1.3 Organization
The remaining of this paper is organized as follows: preliminaries including leakage model, CPA, PPA,
DoM and LRA are introduced in Section 2. Nominality, design matrix and evaluator-advantageous prop-
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erty are detailed in Section 3. We analyze connections of LRA with traditional side-channel techniques
and recently emerged collapsed functions in Section 4. Experiments on PRESENT and AES are presented
in Section 5. Finally, we conclude this paper in Section 6.

2 Preliminaries

2.1 Side-channel Leakages and Leakage Model
Side-channel analysis treats the secret as a tuple of subkeys. Let k∗ denote the target subkey selected
from a set K and k denote any possible guessing value. Let m denote the corresponding plaintext byte
variable. Cryptographic algorithm keeps to group operation for closure property (e.g., all computations
in AES take place on Galois field F8

2). Let x = G(m, k) denote one of such operations and x is the n-bit
assumed intermediate variable. Let F denote the leakage function which describes the physical signals
leaked according to the computation of G, and whose distribution over m is identical for any subkey (i.e.,
the EIS property, see [22][27][28] for details). Let L denote the leakage measurement and

L = F ◦ G(m, k∗) + N = F(x∗) + N, (1)

where N is the independent Gaussian noise with D{N} = σ2
N . Both the algebraic properties of the running

cryptographic algorithm and the physical characteristics of the underlying hardware circuits determine
the resistance of an implementation against side-channel attacks. This intuition is captured by G and
F respectively and we do not assume any restrictions on them to make our results well-applied to any
scenario.

2.2 Distance-of-Means Analysis
DoM targeting a single bit of x∗ is the first proposed side-channel technique [20]. In this attack, leakage
measurements are divided into two subsets according to the assumed value of the target bit (i.e., the
selection function). Leakages bundled together are deemed to share the same distribution. Denoted as
SB-DoM (single bit DoM), it is expressed as:

DSB−DoM = argmax
k∈K

∆
(k)
SB−DoM(T)

= argmax
k∈K

E{L
q|x[T]

q =1
} − E{L

q|x[T]
q =0

},
(2)

where Lq is the measurement of the q-th encryption, xq is the corresponding assumed intermediate value
calculated under guessing subkey k and plaintext byte mq, and x

[T]
q is the T-th bit (i.e., the target bit) of

xq. It is soon extended to multiple bits to overcome some algebraic property of cryptographic algorithm
that lead to failure in the mono-bit setting [29]: the generalized DoM. Abbreviated as G-DoM, it is
defined as:

DG−DoM = argmax
k∈K

∆
(k)
G−DoM

= argmax
k∈K

E{Lq|xq<⌊n
2 ⌋} − E{Lq|xq≥⌈n

2 ⌉}.
(3)

The idea of summing existing distinguishers to define a new one has been realized in [29] where SB-
DoM on each bit of x is integrated. This attack is denoted as M-DoM (multiply bit DoM) and it is
straightforwardly written as:

DM−DoM = argmax
k∈K

∆
(k)
M−DoM

= argmax
k∈K

∑n
i=1 ∆

(k)
SB−DoM(i).

(4)
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2.3 Correlation Power Analysis and Partition Power Analysis
CPA identifies subkey by assessing the linear fitting rate between leakage model and measurements. It
implicitly extends the binary classification of DoM to a multiple one by incorporating the well-known
Pearson’s correlation coefficient. Generally, CPA can be conducted either in a profiled way [30], or
in a non-profiled way with an a-priori leakage model (e.g., Hamming Weight) [21]. In this paper, we
concentrate on the more powerful version of profiled CPA which is expressed as:

DCPA = argmax
k∈K

ρ (Lq=1,2,...,Q, F̂(xq)), (5)

where F̂ denotes the profiled leakage function with some estimation errors. This improvement of multi-
classification is then explicitly formalized in [31] by introducing PPA:

DPPA = argmax
k∈K

∑
i
αi × E{Lq|F̂ (xq) = Ωi}. (6)

R(F̂) = {Ω1,Ω2, . . .} is the range of F̂ . As the name implies, PPA calculates a weighted sum of leakage
partitions. Real constants αi-s are to be determined. Taking Hamming weight as example, the parameters
are chosen as (see Equ (7) in [31]): R(F̂) = {0, 1, · · · , n} and αi =

Ci
n

2n × (i−
∑n

j=0
Cj

n

2n × j).

2.4 Linear Regression Analysis
In essential, LRA performs a key-dependent basis decomposition for the leakage function F , which can
be seen as a Q-dimensional vector F⃗(.) = {F(x1),F(x2), . . . ,F(xQ)} ∈ RQ in a real scenario. Here RQ is
the usual Euclidean space. The design matrix G consists of a series of binary explanatory column vectors,
each of which is made up of instance values of the corresponding explanatory variable. It is written as:

G(k) = {⃗1, x⃗[1], x⃗[2], . . . , x⃗[1,2], x⃗[1,3], . . .}

=


1 x

[1]
1 x

[2]
1 . . . x

[1,2]
1 x

[1,3]
1 . . .

1 x
[1]
2 x

[2]
2 . . . x

[1,2]
2 x

[1,3]
2 . . .

. . . . . . . . . . . . . . . . . . . . .

1 x
[1]
Q x

[2]
Q . . . x

[1,2]
Q x

[1,3]
Q . . .

 ,
(7)

where x
[w1,w2,...]
q =

∏
j x

[wj ]
q . The decomposition mounts to finding a set of real coefficients β-s for the

approximation:
F⃗(.) ≈ β−1 +

∑
i
βi x⃗

[i] +
∑

i1 ̸=i2
βi1,i2 x⃗

[i1,i2]+

. . .+
∑

i1 ̸=i2 ̸=···̸=id
βi1,i2,··· ,id x⃗

[i1,i2,··· ,id],
(8)

where d ≤ n is the polynomial degree. If d = 1, it indicates the common Independent Bit Leakage
(IBL) [32], which matches most of devices in practice [26]. Let L⃗ = {L1, . . . ,LQ} = F⃗(.) + N⃗ ∈ RQ

denote the measurement column vector (i.e., the response vector) and β⃗(k) = (β−1, β1, β2, . . .)
T denote the

coefficient vector we look for. Then, the optimal approximation in Equ (8) (written as F⃗(.) ≈ G(k)β⃗(k)

in matrix form) equals to minimizing the convex residual function:

||R⃗s||2 = ||L⃗ − F⃗(.)||2 = ||L⃗ −G(k)β⃗(k)||2

= ||L⃗||2 + β⃗ T(k)
(
GT(k)G(k)

)
β⃗(k)− 2β⃗ T(k)(GT(k)L⃗).

(9)

Notation ||.|| denotes the L2 norm. The above quadratic form of residuals is minimal when its Jacobian
is zero [33]. Assuming that GT(k)G(k) is invertible (otherwise see Section 3.2), Equ (9) exclusively
attains its minimum at β⃗(k) = (GT(k)G(k))−1GT(k)L⃗. From a vector perspective, it manifests that L⃗ is
projected into the subspace spanned by G(k), with an orthogonal residual vector of minimum magnitude.

As a detection, certification or profiling method, the task is finished by obtaining the regression
model under k = k∗ and performing statistical significance tests on the regression coefficients. But, an
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additional goodness-of-fit test is required when LRA is used as a side-channel distinguisher. The sum of
squared residuals, the coefficient of determination (R2) and the Akaike information criterion are three
typical ways for this purpose, aimed at finding the best-fitting G(k). Previous works [26] have validated
their equivalence by stripping off key-independent terms. So, we adopt the most popular R2:

DLRA = argmax
k∈K

R2(k)

= argmax
k∈K

1− ||L⃗ −G(k)(GT(k)G(k))−1GT(k)L⃗||2

(L⃗ − L̄)T(L⃗ − L̄)
.

(10)

L̄ is the sample mean of the measurement set {L1, . . . ,LQ}. In the following, k is omitted if not specified.
e is used to generally represent any explanatory variable and G = {e⃗1, e⃗2, . . .}.

3 LRA: Why, How and Who
In this section, we discuss the strong applicability of LRA within the field of side-channel. We investigate
the statistical characteristics of design matrix and generalize ideal conditions for practical application.
We demonstrate why LRA is advantageous for evaluators, through model diagnosis [34][35].

3.1 Why to Use LRA: The Nominal and Binary Nature
To put it plainly, the nominality of a variable refers to the “label” meaning of its values [36]. That is,
different values are not comparable in numerical terms, absence of ordinality, and do not maintain any
proportional relations. They are simply labels of classes for distinction and are interchangeable with each
other. To be specific, the target bit variable in SB-DoM is not nominal, as swapping “0” and “1” will
immediately result in a negative differential result. Naturally, this also applies to M-DoM, G-DoM, CPA
and PPA.

In contrast, the nominality holds true for the binary explanatory variables in LRA. Swapping “0”
and “1” of a specific variable does reverse its regression coefficient, but does not affect the others as well
as the residuals and R2 [37]. Furthermore, the binary property benefits from the basic knowledge that
two points can always define a line. It explains the reason why “linear” regression is enough for side-
channel analysis, even for those advanced scenarios where more sophisticated techniques such as mutual
information analysis [38] and Cramér–von Mises test [17] are usually recommended. In a nutshell, LRA
captures non-linear dependencies by breaking them down into pieces of linear dependencies defined by
the corresponding binary explanatory variables. The nominality strengthens this ability, especially in
terms of robustness.
Theorem 1. The strong applicability of LRA in side-channel stems from the nominality and binary of
explanatory variables.

3.2 How to Use LRA: The Ideal Conditions for Application
In practice, the efficiency of LRA lies on the proper setup of G. Otherwise, the positive semidefinite term
GTG in Equ.(9) is singular. First, we study the row constraints with property:
Property 1. For any guessing subkey, the rank of design matrix is bounded by the sample distribution
of plaintext byte variable during encryptions, i.e., rank(G(k)) ≤ #M ≤ Q.

Notation #M is the number of de-duplicated plaintext byte instance values during Q encryptions.
This property is easily verified as repeated plaintexts will yield the same assumed intermediate value and
therefore identical rows in G, having no effect on the matrix rank due to Gaussian elimination.

Then, we turn our analysis to the column constraints of G. In practice, a polynomial degree d is
selected. This is natural because one major advantage of LRA is its few requirement for a-priori knowledge
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about leakages. Once selected, LRA consistently exploits the same degree for all guessing subkeys. In this
case, the number of columns is controlled as

∑d
p=0

(
n
p

)
≤ 2n, which directly leads to another property:

Property 2. For any guessing subkey, the rank of design matrix is bounded by the number of columns
under the selected degree d, i.e., rank(G(k)) ≤

∑d
p=0

(
n
p

)
≤ 2n.

Summarizing above properties, we have the lemma:
Lemma 1. The rank of design matrix falls into two cases:

1. rank(G(k)) ≤ #M <
∑d

p=0

(
n
p

)
. This indicates that for all subkeys the design matrices are rank

deficient.

2. rank(G(k)) ≤
∑d

p=0

(
n
p

)
≤ #M . This indicates that the design matrix has an opportunity to

become full rank.

There are serious consequences according to the lemma.
Corollay 1. If the design matrix suffers from a rank deficiency, the explanatory column vectors encounter
a complete multicollinearity problem, where their number exceeds the actual dimension of the column space
they span.

This immediately gives rise to the non-invertibility of GTG. Generally, multicollinearity enlarges
standard errors of regression coefficients, widening their confidence intervals and making the result unre-
liable. A slight variation in measurements can significantly alter the estimated results. Moreover, R2 is
falsely high, as LRA mistakenly interprets the random noise as correlated effects rather than capturing
the true variations.

Unfortunately, addressing only the rank issue is insufficient to totally resolve the multicollinearity
problem. This is because linearly independent column vectors do not necessarily have zero Pearson’s
correlation coefficients among them. With infinite measurements, design matrices become full rank for
any subkey k and degree d. The binary representation of the intermediate variable x traverses from all
zeros to all ones. In this case, first order explanatory variables have zero correlation coefficients with each
other: E(x[i] · x[j]) = E(x[i]) · E(x[j]). However, this no longer holds for higher order ones:

E(x[wi1,wi2,...] · x[wj1,wj2,...]) =
∏

w∈Z\Z̃
E(x[w])

∏
w∈Z̃

E((x[w])2)

= (
1

2
)|Z| ≤ E(x[wi1,wi2,...]) · E(x[wj1,wj2,...]),

(11)

where the set Z = {wi1, wi2, . . .} ∪ {wj1, wj2, . . .} and Z̃ = {wi1, wi2, . . .} ∩ {wj1, wj2, . . .}. Non-zero
correlation coefficients can develop into a new multicollinearity problem.
Corollary 2. Though of full rank, the design matrix may still exhibit a severe multicollinearity problem
because of the non-zero correlation coefficients among explanatory variables.

There are some statistical tools to help quantify the extent of multicollinearity. In this paper we
recommend Variance Inflation Factor (VIF) [34]. The VIF value for an explanatory vector e⃗ ∈ G is
assessed by conducting an auxiliary regression:

1. The tested explanatory vector e⃗ replaces the leakage measurement vector L⃗ to become the new
response vector.

2. The remaining G\{e⃗} forms the new design matrix.

3. Auxiliary regression: R
′2 = Regression (G\{e⃗}, e⃗).

4. Variance inflation factor: VIF = 1/(1−R
′2).

If VIF > 10, it generally implies that the tested explanatory vector can almost be re-expressed as a linear
combination of the others, and thus indicates a strong multicollinearity.
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To totally avoid multicollinearity problem, we sum up following conditions for ideal applications of
LRA in practice:
Theorem 2. The conditions for ideal applications of LRA in practice include: (i) a balanced or sufficiently
large leakage measurement set; (ii) a limited degree parameter to d = 1.
“Balanced” means the number of measurements for each possible plaintext byte value is constant. Note
that under the first ideal condition (degree is not restricted to d = 1), there are additional interesting
properties regarding the design matrix:
Property 3. Under balanced or infinite measurements, the ranks of design matrices are identical across
guessing subkeys, i.e., ∀k1, k2 ∈ K, rank(G(k1)) = rank(G(k2)).

This property derives from the closure property of the cryptographic operation G described in Sub-
section 2.1. Taking the most common case G(m, k) = m⊕ k as example, one can establish the following
relationship between guessing subkeys:

G(p, k1) = p⊕ k1 = (p⊕ k1 ⊕ k2)⊕ k2

= p
′
⊕ k2 = G(p

′
, k2),

(12)

which states that the rows of G(k1) corresponding to plaintext byte value p are in fact identical to those
of G(k2) corresponding to plaintext byte value p

′ . Similarly, we get:

G(p
′
, k1) = p

′
⊕ k1 = (p⊕ k1 ⊕ k2)⊕ k1

= p⊕ k2 = G(p, k2).
(13)

From the two preceding equations, converting G(k1) to G(k2) only involves a series of row swaps which will
not change the matrix rank. Likewise, these elementary operations won’t change the linear relationships
among column vectors either:
Property 4. Under balanced or infinite measurements, VIF-s among column vectors are identical across
guessing subkeys.

In a word, the first condition on measurements ensures full ranks of design matrices, while the second
one on degree thoroughly eliminates multicollinearity. Some might consider the second one as less crucial
than the first, since it appears to be merely a post improvement. However, we emphasize that the
second condition itself holds a unique position of preventing overfitting and incapability of LRA. As d

increases, the growing complexity of regression model enhances its ability to interpret the variations in
leakages, gradually giving rise to an overfitting rather than genuine predictive progress. Supporting this,
let us consider the worst case d = n with the simplest balanced measurement set Q = 2n (i.e., only one
measurement for each plaintext byte value). In this case, G(k)-s of all subkeys turn into invertible square
matrices and:

∀k ∈ K, G(k)
(
GT(k)G(k)

)−1
GT(k) = E. (14)

This equation suggests that LRA experiences serious overfitting, leaving no residuals and achieving a
perfect fit with R2 = 1. Moreover, LRA loses its ability to distinguish subkeys. Estimated outcomes
belonging to different subkeys are identical, rendering them invalid and worthless. Doubling the number
of measurements for each plaintext value by a constant factor does not affect the column space of design
matrices. It will only gently decrease the fitting rate by introducing additional uncertainties, but still
maintains the incapability:
Corollary 3. Under balanced or infinite measurements, yet at an inappropriately high degree d, the
estimated outcomes – including the coefficient of determination, regression coefficients and regression
model – tend to consistency across subkeys, due to overfitting and incapability of LRA.
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3.3 Who Should Use LRA: Advantageous for Evaluators
The requirement of balanced or large measurement set has shown some signs of this technique of being
advantageous for evaluators. Nevertheless, there are more evidences reflected on the statistical charac-
teristics of residuals. Before illustrating, we emphasize that following reasoning is not confined to the
ideal conditions. As starting point, consider the lemma:
Lemma 2. The uniquely highest value of R2 under the correct guessing subkey k∗ is supported by the
equation:

argmin
F̂(.): Fn

2 →R

E{||L⃗ − ⃗̂F(.)||2} = F⃗(.). (15)

The minimum value E{||L⃗ − ⃗̂F(.)||2} = E{||F⃗(.) − ⃗̂F(.)||2} + E{N2} ≥ E{N2} is exclusively attained at
F = F̂ .

This lemma is proved in [22]. Suppose an adversary who has any knowledge needed about the
device, except for k∗. We demonstrate that even in the presence of such a powerful adversary, his
benefits from LRA are limited. The residual in the q-th encryption consists of two parts: δ(x∗

q) =

F(x∗
q) − F̂(xq) = (F(x∗

q) − F̂(x∗
q)) + (F̂(x∗

q) − F̂(xq)) = δF (x
∗
q) + δk(x

∗
q). The first part captures

estimation errors from random noise and can be arbitrarily small by supplying additional measurements.
They are normal, homoscedastic and independent. The second part represents informative key-dependent
biases. If xq ̸= x∗

q , leakages generated according to x∗
q won’t be correctly modeled, and thus δk(x

∗
q) ̸= 0.

So,
Lemma 3. For incorrect guessing subkeys k ∈ K\{k∗}, residuals Rs = {δ(x∗

1), δ(x
∗
2), . . . , δ(x

∗
Q)} of LRA

do not satisfy normality, homoscedasticity and independence property.
This lemma comes directly from the non-random key-dependent offsets δk(x

∗
q), added to the tradi-

tional normal, homoscedastic and independent residuals δF (x
∗
q). For the adversary, the strength of LRA

is largely compromised. The distorted residuals may invalidate the hypothesis tests, such as T-tests
(recommended for secret recovery in [14]) and F-tests (recommended for leakage detection in [3], leakage
modeling in [25] and leakage certification in [1][2]). Without knowledge of k∗ and access to balanced or
sufficiently large measurement set, adversary cannot fully leverage the capabilities of LRA.
Theorem 3. LRA is evaluator-advantageous because of requirements of sufficient measurements and
knowledge of k∗.

4 LRA: Roots and Progress
In this section, we explore the connections of LRA with traditional side-channel techniques under the
ideal conditions of balanced measurements and d = 1. Our theoretical proofs elucidate the relationships
between the regression coefficients and both M-DoM and SB-DoM, between the coefficient of determi-
nation and CPA, and between the regression model and PPA. We probe into the combined LRA with
the state-of-the-art collapse functions, which leads us to revisit another refined technique, G-DoM. We
extend the definition of collapse function and summarize the criteria it should follow.

4.1 Regression Coefficients and DoM
Recalling Equ (2) of SB-DoM, we deduce:

E{L
q|x[T]

q =1
} =

E{L
q|x[T]

q =1
} × P{x[T]

q = 1}

P{x[T]
q = 1}

= 2E{Lqx
[T]
q } (16)

with P{x[T]
q = 1} = 1/2. Similarly, we can obtain:

E{L
q|x[T]

q =0
} = 2E{Lq(1− x[T]

q )}. (17)
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Hence, the differential value of SB-DoM is re-expressed as:

∆
(k)
SB−DoM(T) = 4E{Lqx

[T]
q } − 2E{Lq}. (18)

Then, we the turn analysis to the regression coefficients:

β⃗(k) = {(GT(k)G(k))−1} ∗ {GT(k)L⃗}. (19)

The second term of the equation is easily expanded as:

GT(k)L⃗ = {L⃗ · 1⃗, L⃗ · x⃗[1], . . . , L⃗ · x⃗[n]}T

= {E{Lq}, E{Lqx
[1]
q }, · · · , E{Lqx

[n]
q }}T ×Q.

(20)

Comparing Equ (20) with (18), it appears that the differential values of SB-DoM can be described as
linear weighted sums of elements from the second term vector of regression coefficients. Hence, the
natural next step is to derive possible weights from the first term (GT(k)G(k))−1. We apply Gauss-
Jordan elimination to examine the inverse matrix, appending an identity matrix to the right side of
GT(k)G(k) and performing a series of elementary row operations. This transforms it into the identity
matrix meanwhile converts the appended one into (GT(k)G(k))−1. The original augmented matrix is:

1 1/2 1/2 . . . 1/2 1 0 0 . . . 0

1/2 1/2 1/4 . . . 1/4 0 1 0 . . . 0

1/2 1/4 1/2 . . . 1/4 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1/2 1/4 1/4 . . . 1/2 0 0 0 . . . 1

 (21)

Note that we extract the factor Q−1 from the inverse matrix to compensate the term Q in Equ (20). The
general rules of GT(k)G(k) are based on the distributions of binary variable:

1. The first row and column are produced by the scalar products with the constant vector 1⃗. The
only 1 results from the scalar product with itself, while 1/2-s result from the scalar product with
other explanatory vectors.

2. The remaining submatrix: values on the principal diagonal equal to 1/2, arising from the self
product of each explanatory vector; the other values are 1/4, corresponding to the results between
different explanatory vectors.

We use ri for the i-th row and rij for the j-th element of that row. We perform pivoting on the first row
as the initial step:

1. r1 = (n+ 1)× r1 − 2×
∑

i>1 ri,

2. ∀i > 1, ri = ri − 1/2× r1.

It leads to the following intermediate matrix:

1 0 0 . . . 0 n+ 1 −2 −2 . . . −2

0 1/2 1/4 . . . 1/4 −n+1
2 2 1 . . . 1

0 1/4 1/2 . . . 1/4 −n+1
2 1 2 . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 1/4 1/4 . . . 1/2 −n+1
2 1 1 . . . 2


. (22)

Then, the remaining steps of Gauss-Jordan elimination are loops of two substeps as follows (2 ≤ i ≤ n):

1. ri = 4/(n+ 3− i)× {(n+ 2− i)× ri −
∑

j>i rj},

2. ∀j > i, rj = rj − 1/4× ri.

10



Let us focus on the appended matrix which will eventually turn into the inverse. Elements rij after the
first substep adhere to:

1. case 1: j = 1. The element is calculated as: ri1 = 4/(n+ 3− i)× {(n+ 2− i)× (−n+3−i
2 )− (n+

2− i)× (−n+3−i
2 )} = −2.

2. case 2: 2 ≤ j ≤ i− 1. The elements are calculated as: rij = 4/(n+3− i)×{(n+2− i)× 0− (n+

2− i)× 0} = 0

3. case 3: j = i. The element is calculated as: rii = 4/(n+3−i)×{(n+2−i)×2−(n+2−i)×1} = 4

4. case 4: i+1 ≤ j ≤ n. The elements are calculated as: rij = 4/(n+3− i)×{(n+2− i)× 1− (n+

2− i)× 1− 1} = 0

After the second substep, elements rjp (j > i) adhere to:

1. case 1: p = 1. The element is calculated as:
rjp = −(n+ 3− i)/2− 1/4× (−2) = −(n+ 3− (i+ 1))/2

2. case 2: 2 ≤ p ≤ i− 1. The elements are calculated as:
rjp = 0− 1/4× 0 = 0

3. case 3: p = i. The element is calculated as:
rjp = 1− 1/4× 4 = 0

4. case 4: p = i+ 1. The element is calculated as:
rjp = 2− 1/4× 0 = 2

5. case 5: i+ 2 ≤ p ≤ n. The elements are calculated as:
rjp = 1− 1/4× 0 = 1

Combining the above, the intermediate state looks like:

n+ 1 −2 −2 . . . −2 . . . −2 . . . −2

−2 4 0 . . . 0 . . . 0 . . . 0

−2 0 4 . . . 0 . . . 0 . . . 0

· · · . . . . . . . . . . . . . . . . . . . . . . . .

−2 0 0 . . . 4 . . . 0 . . . 0

−n+3−(i+1)
2 0 0 . . . 0 2 1 . . . 1

−n+3−(i+1)
2 0 0 . . . 0 1 2 . . . 1

· · · · · · · · · . . . . . . . . . . . . . . . . . .

−n+3−(i+1)
2 0 0 . . . 0 1 1 . . . 2


. (23)

Comparing (22) and (23), both matrices share the similar submatrix in the lower right corner. Conse-
quently, the final inverse matrix can be deduced to take the form:

(GT(k)G(k))−1 =


n+ 1 −2 −2 . . . −2

−2 4 0 . . . 0

−2 0 4 . . . 0

. . . . . . . . . . . . . . .

−2 0 0 . . . 4

 . (24)

With this conclusion, we are able find out the relationships between the regression coefficients and the
differential values:

β−1(k) = E{Lq} −
1

2
∆

(k)
M−DoM,

βi(k) = ∆
(k)
SB−DoM(i), 1 ≤ i ≤ n.

(25)
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This equation under balanced measurements establishes the theorem for more practical scenarios of
random measurements:
Theorem 4. Under d = 1 and random measurements, the regression coefficients of LRA asymptotically
converge to the differential values of SB-DoM, where the corresponding explanatory variables serve as the
selection functions. The intercept converges to the difference between sample mean of measurements and
half the differential value of M-DoM.
This theorem provides a direct answer to the experimental phenomena observed in [14], explaining why
the regression coefficients fluctuate more wildly under incorrect subkeys.

4.2 Regression Model and PPA
Based on Theorem 4 and Equ (25), the regression model of LRA is now written and simplified as:

F̂(µ) = E{Lq} −
1

2
∆

(k)
M−DoM +

∑n
i=1 ∆

(k)
SB−DoM(i)µ

[i]

= E{Lq}+
∑n

i=1 ∆
(k)
SB−DoM(i)(µ

[i] − 1
2 )

= E{Lq}+
2

Q

∑n
i=1

∑Q
p=1(µ

[i] − 1
2 )(Lp|x[i]

p =1
− L

p|x[i]
p =0

).

(26)

The observations about the above equation are:

1. Given a certain p, the term L
p|x[i]

p =1
− L

p|x[i]
p =0

can only yield two possible outcomes: Lp or −Lp.

2. µ is the intermediate value being modeled. The term µ[i]− 1
2 can also yield two possible outcomes:

1/2 or −1/2.

Therefore, the contribution of a certain leakage measurement Lp to the above summation falls in two
situations:

1. µ[i] ⊕ x
[i]
p = 0. The Lp contributes positively.

2. µ[i] ⊕ x
[i]
p = 1. The Lp contributes negatively.

Given this analysis, Equ (26) is further simplified as:

F̂(µ) = E{Lq}+
1

Q

∑Q
p=1{

∑n
i=1(1− x

[i]
p ⊕ µ[i])− x

[i]
p ⊕ µ[i]}Lp

=
1

Q

∑Q
p=1(1 + n− 2×

∑n
i=1 µ

[i] ⊕ x
[i]
p )× Lp

=
1

2n
∑

a∈Fn
2
(1 + n− 2×HW(a⊕ µ))× E{Lp|xp=a}

=
1

2n
∑

a∈Fn
2
c(a)× E{Lp|xp=a}.

(27)

It is now clear that the regression model value is a weighted combination of measurement partitions.
Specifically, LRA first divides leakages into 2n partitions based on values of the intermediate variable.
Then, the weight of partition is calculated as: c(a) = 1+n−2×HW(a⊕µ), depending on both the value
currently being modeled (i.e., µ) and the key-dependent label (i.e., a) corresponding to the partition.
The only difference between the regression models under different subkeys lies in the weight c(a). Such
type of computation fundamentally equal to the core essence of the earlier technique PPA.
Theorem 5. Under d = 1 and random measurements, the regression model of LRA asymptotically
converges to the form of PPA – a linear combination of leakage measurement partitions characterized by
key-dependent weighted coefficients.

This facilitates an in-depth discussion about the EIS property of the regression model. As stated in
subsection 2.1, the property indicates that the output distribution of leakage function remains consistent
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across subkeys. Specifically, they only decide the input-to-output mapping without affecting the image.
The first moment of the regression model satisfies:

E{F̂(.)} =
1

2n
∑

µ∈Fn
2
F̂(µ)

= (
1

2n
)2

∑
a∈Fn

2
[
∑

µ∈Fn
2
(1 + n− 2×HW(a⊕ µ))]× E{Lp|xp=a}

=
1

2n
∑

a∈Fn
2
cst× E{Lp|xp=a} = E{Lp}.

(28)

The constant term cst = (2n)−1
∑

µ∈Fn
2
(1 + n − 2 × HW(a ⊕ µ)) = 1. For any given subkey, the first

moment of regression model always equals to the sample mean of leakage measurements. However, it can
be verified that this conclusion no longer stands for higher order moments. Thus, we have:
Corollary 4. The regression model of LRA does not conform to the common EIS property of leakage
model.
This drawback in model profiling will expose in the following subsection where LRA is used a distinguisher.

4.3 Coefficient of Determination and CPA
As introduced, CPA identifies subkeys by utilizing the Pearson’s linear correlation coefficient, while LRA
employs the coefficient of determination. Although both are linear, their relationships within the field of
side-channel remain ambiguous for many years. Now, we explicitly address this long standing issue, by
expressing one in terms of the other:

R2 = 1−
∑Q

q=1(Lq − F̂(xq))
2

σ2(Lq)

= 2× σ(F̂(xq))

σ(Lq)
× E{LqF̂(xq)} − E{Lq}E{F̂(xq)}

σ(Lq)σ(F̂(xq))

− σ2(F̂(xq)) + (E{F̂(xq)} − E{Lq})2

σ2(Lq)

=
σ(F̂(xq))

σ(Lq)
(2ρ(Lq, F̂(xq))−

σ(F̂(xq))

σ(Lq)
).

(29)

Note that (E{F̂(xq)}−E{Lq})2 = 0 due to Equ (28). As shown, R2 is now defined as the linear correlation
coefficient between the regression model and leakage measurements. The primary difference derives from
the extra term σ(F̂(xq))/σ(Lq), standing for the Proportion of Variations Explained (PVE). Compared to
the total variations in leakages, this goodness-of-fit metric quantifies the part modeled by the regression
model. Recalling Corollary 3 and 4, the second moment (i.e., variance) of F̂ varies across different
subkeys, making the PVE term indispensable in the equation. Meanwhile, potential overfitting of LRA
may result in misleading PVE values. These explain the experimental phenomena observed in [26] that
LRA underperforms CPA as a distinguisher.
Theorem 6. Under d = 1 and random measurements, the coefficient of determination in LRA asymptot-
ically converges to CPA’s correlation coefficients, adjusted by an extra factor - the Proportion of Variance
Explained (PVE).

4.4 Collapsed Function and LRA
With the advancement of parallel computing, a single leaking point can originate from several subkeys,
which are hard to predict. This emerging challenge raises a new demand of scalability for side-channel
techniques, especially in the applications of leakage detection and certification. If the number of leaking
bits is affordable, LRA can be conducted on multiple subkeys without any modifications. However, the
computation cost becomes prohibitive for highly parallel devices (i.e., too many coefficients in Equ (8)
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need to be estimated). In this case, the collapse function introduces an elegant way for addressing this
issue. Let ε denote the size of bit group to collapse, and it is usually a constant in the application. The
collapse function on the input bit group {b1, b2, . . . , bε} is defined as:

Coll ({b1, b2, . . . , bε}) =


0, if (b1|b2| . . . |bε)(2) < 2ε−1

1, if (b1|b2| . . . |bε)(2) ≥ 2ε−1

. (30)

Notation “|” denotes bit concatenation and subscript (.)(2) means the value of binary representation. In
a word, function Coll maps a group of ε bits into a single binary explanatory variable, whilst retaining
sufficient dependency. After this, LRA is directly carried out on the collapsed output which largely
reduces the complexity from 2ε to 1. As hinted by Theorem 4, the collapsed bit serves as the new
selection function in the binary classification of DoM. Recalling Equ (3) and based on the analysis in [39],
we derive the theorem:
Theorem 7. Under d = 1 and random measurements, the estimated outcomes of LRA on collapsed bits,
including the regression coefficients, regression model and coefficient of determination, equally satisfy
Theorem 4 ∼ 6. The original LRA is a special case where each bit is collapsed to itself.

This state-of-the-art technique can be formally expressed as:

F̂(x) = E{Lq} −
1

2

∑
i ∆

(k)
G−DoM({b1, b2, . . . , bε}i)

+
∑

i ∆
(k)
G−DoM({b1, b2, . . . , bε}i)× Coll ({b1, b2, . . . , bε}i),

(31)

where the bit groups of the intermediate variable x satisfy:⋃
i{b1, b2, . . . , bε}i = {x[1], x[2], . . . , x[n]},⋂
i{b1, b2, . . . , bε}i = ∅.

(32)

The differential value of G-DoM is calculated as:

∆
(k)
G−DoM({b1, b2, . . . , bε}i) = E{Lq|Coll ({b1,b2,...,bε}i,q)=1}

− E{Lq|Coll ({b1,b2,...,bε}i,q)=0},
(33)

where {b1, b2, . . . , bε}i,q represents the instance of the bit group {b1, b2, . . . , bε}i in the q-th encryption.
It is noteworthy that Theorem 7 is independent of the parameter n, suggesting that it is well-applied
to any cryptographic algorithm (e.g., n = 8 for AES S-box and n = 4 for PRESENT S-box) and
arbitrary bit lengths of multiple intermediate variables (e.g., as initiated in [3] where x is the simple
concatenation of several subkeys). Also, the theorem is unrelated to the parameter ε. This is because
each bit group is processed independently in its corresponding G-DoM distinguisher and is transparent
to each other. Therefore, the bit groups can be of any size, with inconsistent lengths, and may even
undergo bit dropping. Furthermore, the collapse is set-oriented which is not confined to adjacent bits.
These extensions of definition significantly boosts the flexibility in practical applications. At last, we
generalize criteria that collapse function should adhere to:
Corollary 5. The criteria for collapse function include: (i) mutually independent collapsed bits; (ii)
uniformly distributed collapsed bits (the same occurrence probability of 0 and 1).

5 Experimental Analyses
In this section, we provide detailed validation for our theory. Specifically, the experiments are carried
out in three aspects:
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1. Analyses of design matrices. This experiment centers around Theorem 2 and Corollary 1∼3. We
examine the effects of the measurement size Q, the degree d and the bit-length n on the matrices’
ranks and multicollinearity.

2. Analyses of residuals. This experiment focuses on Theorem 3. We employ simulated leakages
to ensure tight control over the explanatory variables. It is necessary because it rules out the
possibility that experimental results could be induced by potential unknown explanatory variables.

3. Analysis of LRA’s estimated outcomes (regression coefficients, regression model and coefficient of
determination). This experiment focuses on Theorem 4∼7, and considers both the original LRA
and the collapsed function enhanced LRA, using real leakages from AES and PRESENT.

5.1 Experimental Analyses on Design Matrices
Experimental results of the first experiment are displayed in Figs. 1∼9. We investigate both the AES
(n = 8) and PRESENT (n = 4) S-boxes. Real leakages of AES are from the open dataset DPAcontest
v4 [40]. Real leakages of PRESENT are sampled from an ATMega328p micro-controller whose clock
frequency is 16 MHz. We apply a WaveRunner 8104 oscilloscope with a sampling rate of 1 GS/s. In
the experiments, we define two metrics for illustration. The rank ratio (RT) is defined as the ratio of
the current rank to the full rank, i.e., RT(G) = rank(G)/

∑d
p=0

(
n
p

)
. It shows how the matrix rank

grows with the number of measurements Q intuitively. To study statistical characteristics, 500 repeated
experiments are conducted for each value of Q, and we provide the upper bound RTupper(G), the lower
bound RTlower(G) and the average value RTavg(G) simultaneously to ensure a comprehensive analysis.
The model distance M2 is defined as the squared difference between the regression model F̂ under k∗

and that of F̂ ′ under an incorrect k, i.e., M2(k) =
∑

m∈Fn
2
(F̂ ◦ G(m, k)−F̂ ′ ◦G(m, k))2. It quantifies the

distances between regression models. Our observations are:

1. Growths of matrix ranks are more rapid for small n and d. With randomly encrypted plaintext
bytes, AES (see Figs. 1(a)∼3(a)) under the settings of d = 1, 4 and 7 requires 18, 310 and 1270

leakage measurements respectively for the lower bounds to reach full ranks. Similar phenomena
are found for PRESENT (see Figs 5(a)∼6(a)) where the number of measurements are 13 and 142

under d = 1 and 4. This observation is natural because large n and d lead to more columns in the
design matrix, and thereby makes it more challenging to get rid of rank deficiency. It supports our
Theorem 2 that sufficient or balanced measurements are needed for LRA.

2. Distributions of matrix ranks are more dispersed for small n and d (see Figs. 1(a)∼3(a) and
5(a)∼6(a)). This observation is adequately explained by Lemma 1. On one hand, rank(G)

is bounded by the number of de-duplicated plaintext byte values #M during the encryptions. A
small bit-length n brings a narrow value range. Consequently, for a certain encryption, the currently
encrypted value is likely to collide with those previous ones, which contributes a redundant row to
the design matrix, and thereby decreases the lower bound. On the other hand, increasing the degree
d, due to the data dependency shown in Corollary 2, the newly added explanatory variables will
equalize the influence on the matrix rank. Small variations of plaintext instance values in repeated
experiments will no longer cause significant changes on the overall relationships among the column
vectors, maintaining tighter bounds of matrix rank.

3. Multicollinearity problem is extensively encountered in the practical applications of LRA. In each
repeated experiment, we calculate VIF for each explanatory vector e⃗ ∈ G, and the maximum value
VIFmax, which represents the worst case, is displayed in Figs. 1(b)∼3(b) and 5(b)∼6(b). The
number of measurements Q is set to the level at which the corresponding lower bound of rank ratio
just achieves 1. Also, we allows for a slight excess of this level to avoid potential statistical biases.
As shown, though VIF presents a negative correlation with Q, only when d = 1 does the VIFmax
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fall below 10, regardless of AES or PRESENT. It directly confirms our Corollary 2 that achieving
full rank itself is far from a sufficient condition to eliminate the multicollinearity.

4. The VIF values rise with a higher degree d. For both AES and PRESENT, this observation
underscores a careful selection of the degree parameter. From an ideal perspective, it is best to
set d to 1 — under this setting, the probability of a multicollinearity problem occurring is only
5/500 = 1% for AES (see Fig. 1(b)), and it further drops to 0% for PRESENT (see Fig. 5(b)).
Besides highlighting the ideal conditions in Theorem 2, it also substantiates Theorem 3 that an
adversary with restricted leakage measurements cannot make full use of LRA.

5. Multicollinearity impairs statistical inference. Fig. 9 exhibits the confidence intervals for the re-
gression coefficients under AES with d = 1, along with the VIF of each explanatory vector. In
the left figure, Q = 20 is the minimum number of measurements required for a full rank design
matrix, as shown in Fig 1(a). As depicted, the larger the VIF, the wider the confidence interval.
Multicollinearity diminishes the precision of the estimated results, rendering them unstable and
susceptible to minor changes. Also, it elevates the standard errors, undermining the reliability of
statistical significance tests. The varying lengths of confidence intervals with centers all at zero
make it difficult to identify which variables genuinely affect the leakages. They are disastrous
for the application of LRA in leakage detection, modeling and certification. In the right figure,
increasing Q to 120 has efficiently mitigated these problems: the confidence intervals are of almost
equal length, and those far from zero indicate more significant contributions.

6. If d is inappropriate, LRA may face an overfitting or incapability even under balanced leakage
measurements. In Figs. 4∼7, we set the balanced measurements to Q = 256 × num for AES and
Q = 16 × num for PRESENT. We use box plot to exhibit the distributions of R2(k) and M2(k)

over guessing subkey k. Apparently, a concentrated distribution of R2-s or small values of M2-s
indicate similar behaviors of LRA across subkeys. As illustrated, R2-s climb with the degree d,
suggesting a possible overfitting. Supporting this, the declines of R2-s in front of more complicated
measurement sets demonstrate that the model fails to adequately capture the increased variations
and uncertainties. Note that the phenomenon of R2 = 1 under num = 1 agrees with our reasoning
in Equ (14). Moreover, for AES, the distributions of R2-s initially get dispersed and then turns
compact. Similarly, the values of M2-s first get rise and then falls. This is because simple models of
low degree can only exhibit limited differences (resulting in compact R2-s and small M2-s). As the
complexity increases, regression models under different subkeys begin to deviate from each other
(producing dispersed R2-s and high M2-s). Yet, when d approaches its maximum, LRA converges
to a state of incapability, making all R2-s identical and M2-s drop to zero (as seen in the single lines
of box plot at d = 8). In contrast, the R2-s and M2-s present a monotone trend for PRESENT,
due to its small maximum degree. This observation aligns with Corollary 3 and advises the ideal
conditions in Theorem 2 to be both guaranteed.

7. High degrees d are generally undesirable even with infinite leakage measurements. While Figs. 1∼3
and 5∼6 illustrate the situations where design matrices just reach full rank, Fig. 8 relaxes Q to
infinity to explore the suitability of large d for more powerful adversaries or evaluators. According
to Property 1, this equates to a balanced measurement set. As shown, the results indicate that
only d = 1, 2 are viable for AES (i.e., VIFmax ≤ 10), whereas for PRESENT d = 1, 2, 3 are
allowed. This highlights the general infeasibility of high degrees, even with infinite measurements,
and emphasizes that both conditions in Theorem 2 should be met simultaneously.
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Figure 1: Statistical characteristics of the design matrix under AES (n = 8) and d = 1: (a): rank ratios; (b):
VIFmax-s.

Figure 2: Statistical characteristics of the design matrix under AES (n = 8) and d = 4: (a): rank ratios; (b):
VIFmax-s.

Figure 3: Statistical characteristics of the design matrix under AES (n = 8) and d = 7: (a): rank ratios; (b):
VIFmax-s.
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Figure 4: Distributions of R2 and M2 for AES (n = 8) under different guessing subkeys k and increasing degrees
d.
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Figure 5: Statistical characteristics of the design matrix under PRESENT (n = 4) and d = 1: (a): rank ratios;
(b): VIFmax-s.

Figure 6: Statistical characteristics of the design matrix under PRESENT (n = 4) and d = 4: (a): rank ratios;
(b): VIFmax-s.
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Figure 7: Distributions of R2 and M2 for PRESENT (n = 4) under different guessing subkeys k and increasing
degrees d.
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Figure 8: The limiting values of VIFmax in AES and PRESENT.
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Figure 9: The estimated values and confidence intervals of regression coefficients (α = 0.95): (a): Q = 20; (b):
Q = 120.

Figure 10: The statistical characteristics of residuals on HW leakages with k = k∗.

Figure 11: The statistical characteristics of residuals on HW leakages with k ̸= k∗.
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Figure 12: The estimated values and confidence intervals of regression coefficients (α = 0.95): (a): k = k∗; (b):
k ̸= k∗.
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5.2 Experimental Analyses on Residuals
Experimental results of the second experiment are given in Figs. 10∼12. We investigate the most common
leakage L = HW(Sbox(m ⊕ k∗)) + N of AES and ensure both conditions in Theorem 2 are met. This
allows for a systematical analysis solely from the aspect of residuals, excluding the possible effects of
multicollinearity and potential explanatory variables that are not considered. Our observations are as
follows:

1. Residuals deviate from normality when the subkey is incorrect. In Figs. 10(a)∼11(a), we intuitively
compare the statistical distributions of residuals under different settings of subkey. The x-axis rep-
resents the residual values and the y-axis shows their corresponding cumulative probabilities. A red
reference line indicating the theoretical normal distribution is given. As depicted, the cumulative
distribution of residuals under k = k∗ always aligns well with the normal distribution; however,
significant deviations occur at both ends of the reference line when the subkey is incorrect k ≠ k∗,
indicating issues of improper skewness and kurtosis in the distribution.

2. Residuals deviate from homoscedasticity and independence when the subkey is incorrect. In
Figs. 10(b)∼11(b), we display the statistical distributions of residuals as the encryption progresses.
The x-axis represents the indices of residuals (i.e., the order of appearance during encryptions)
and the y-axis shows the residual values. Under k = k∗, residuals are uniformly distributed along
with the encryption process, adhering to homoscedasticity and independence. However, they be-
come erratic and volatile given an incorrect subkey. Together with the above findings, these two
observations corroborate Lemma 3.

3. LRA is advantageous for evaluators. In Fig 12 we compare the estimated coefficients of evaluators
and adversaries who have equivalent strength, i.e., based on entirely identical measurements and
degree. The only advantage of evaluators is the knowledge of subkey. As illustrated, excluding
the effects of multicollinearity, confidence intervals are equal in length for all explanatory variables
under the same subkey. It is noteworthy that the estimated results are more accurate for evaluators
under k = k∗, as evidenced by their confidence intervals being shorter than those of k ̸= k∗.
Naturally, this will facilitate better statistical tests or model building in further applications of
LRA. This observation corroborates Theorem 3.

5.3 Experimental Analyses on Estimated Outcomes
Experimental results of the third experiment are provided in Figs. 13∼15. To validate the asymptotic
convergence behaviors of the regression outcomes, we choose the Sum of Absolute Errors (SAE) as the
evaluation metric. The summation is performed over subkeys to fully verify the theorems, i.e., errors for
all subkeys should reduce to zero. By Equ.(25), for the regression coefficients, SAE (βi) =

∑
k∈K |βi(k)−

∆
(k)
SB−DoM(i)|. For the regression intercept, SAE (β−1) =

∑
k∈K |β−1(k)−(E{Lq}− 1

2∆
(k)
M−DoM)|. This veri-

fication will also directly support Equ.(27). By Equ.(29), for the coefficient of determination, SAE (R2) =∑
k∈K |R2(k)− ρadj(k)|. The term ρadj is the adjusted version by PVE. For comparison we also provide

results of the original ρ. Our observations are:

1. Theorem 4 and 5 for LRA hold true in practice. In Fig. 13(a) for AES, under any given Q, there
are a total of eight regression coefficients (plotted as blue crosses) plus one intercept (plotted as
a red cross). As the number of measurements increase, the SAE approaches zero rapidly. Similar
phenomena are observed in Fig. 14(a) for PRESENT (four regression coefficients plus one intercept)
where the higher SNR leads to perfect verification with much smaller SAE-s. It is noteworthy that
the red crosses representing the intercepts have higher SAE values in overall. This is mainly because
they relate to the differential values of M-DoM which are sums of those from SB-DoM, thereby
aggregating their errors.
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Figure 13: Relationships between LRA and traditional techniques (AES): (a): β and ∆; (b): R2 and ρ.
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Figure 14: Relationships between LRA and traditional techniques (PRESENT): (a): β and ∆; (b): R2 and ρ.
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Figure 15: Collapsed function enhanced LRA and its relationships with G-DoM (AES): (a): β and ∆; (b): R2

and ρ.

2. Theorem 6 for LRA holds true in practice. In Fig. 13(b)∼14(b), the green crosses represent
the original Pearson’s correlation coefficients and the brown ones indicate the adjusted versions
by PVE. For the adjusted ρ, for both AES and PRESENT, the instantaneous decays of SAE to
zero complete our verification. However, the SAE-s under the Pearson’s ρ maintain high levels and
tend to constant under large measurement set. From distinguisher’s perspectives, LRA and CPA
achieve similar performance with high success rates in these cases. So, there are only constant
differences between their distinguishing values which do not affect the attack result.

3. Theorem 7 for LRA holds true in practice. In the experiment, we arbitrarily divide the binary bits
of the intermediate variable into four bit groups of varying length: {{x[5]}, {x[2]}, {x[1], x[7]}, {x[6], x[8], x[3]}}.
We discard the fourth bit x[4]. This allows a robust verification of the theorem. Let {g1, g2, g3, g4}
denote the bit groups. Under this setting, the SAE-s for the intercept and the four regression
coefficients corresponding to the collapsed outputs are calculated as: SAE (βi) =

∑
k∈K |βi(k) −

∆
(k)
G−DoM(gi)|. For the regression intercept, SAE (β−1) =

∑
k∈K |β−1(k)−(E{Lq}− 1

2

∑
i ∆

(k)
G−DoM(gi))|.

As shown in Fig. 15, again, the small SAE-s verify the correctness and robustness of this theorem.
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6 Conclusions
This paper centers around LRA within the field of side-channel. We address the fundamental problems
of why and how to use LRA and theoretically elaborate its connections with traditional side-channel
techniques. We also study the state-of-the-art combined LRA with the collapse functions. In the future,
we will extend our research to more advanced scenarios such as ridge and Lasso leakage regression [15].
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