
Optimizing Message Range and Ciphertext
Storage in GSW Encryption Using CRT and

PVW-like Compression Scheme

Kung-Wei Hu1, Huan-Chih Wang2, and Ja-Ling Wu3

1 National Taiwan University, Taiwan
r11922141@cmlab.csie.ntu.edu.tw

2 National Taiwan University, Taiwan
whcjimmy@cmlab.csie.ntu.edu.tw

3 National Taiwan University, Taiwan
wjl@cmlab.csie.ntu.edu.tw

Abstract. This paper explores advancements in the Gentry-Sahai-Waters
(GSW) fully homomorphic encryption scheme, addressing challenges re-
lated to message data range limitations and ciphertext size constraints.
We introduce a novel approach utilizing the Chinese Remainder Theorem
(CRT) for message decomposition, significantly expanding the allowable
message range to the entire plaintext space. This method enables unre-
stricted message selection and supports parallel homomorphic operations
without intermediate decryption. Additionally, we adapt existing cipher-
text compression techniques, such as the PVW-like scheme, to reduce
memory overhead associated with ciphertexts. Our experimental results
demonstrate the effectiveness of the CRT-based decomposition in in-
creasing the upper bound of message values and improving the scheme’s
capacity for consecutive homomorphic operations. However, compression
introduces a trade-off, necessitating a reduced message range due to er-
ror accumulation. This research contributes to enhancing the practicality
and efficiency of the GSW encryption scheme for complex computational
scenarios while managing the balance between expanded message range,
computational complexity, and storage requirements.

Keywords: Fully Homomorphic Encryption · GSW · Chinese Remain-
der Theorem · Ciphertext Compression

1 Introduction

Cryptography has significantly evolved with the advent of fully homomorphic
encryption, a groundbreaking concept that enables computations on encrypted
data without requiring decryption. This paper delves into the intricacies of the
Gentry-Sahai-Waters (GSW) fully homomorphic encryption scheme [11], focus-
ing on the challenges and solutions related to the upper bound of message data
ranges and constraints on ciphertext size.

The GSW scheme supports homomorphic addition and multiplication, which
is essential for performing complex computations on encrypted data. However,

2 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

each operation increases the error in the ciphertext, potentially growing exponen-
tially with successive operations. This necessitates mechanisms to control error
growth. The research presented here explores methods to mitigate error accumu-
lation, notably employing the Chinese Remainder Theorem (CRT) for message
decomposition. This approach significantly extends the allowed message range
to the entire plaintext space. However, when using the previous GSW variant
decryption method [10], successful message decryption necessitated meticulous
design, rendering the process unintuitive and cumbersome. Consequently, we
opted for an approximation method [12]. While this approach may theoretically
generate increased noise as the message value grows, the aforementioned message
decomposition technique mitigates this issue. Furthermore, the approximation
method offers enhanced intuitiveness and practicality.

Furthermore, current encryption systems face challenges related to extensive
ciphertext storage requirements. Therefore, this study also examines compres-
sion techniques proposed in [11], aimed at reducing memory overhead associated
with ciphertexts. As the increase in dimension size leads to exponential growth
in time and space complexity, we adopt a vector form of the private key, dif-
fering from the matrix form presented in the original paper. Consequently, our
compression focus shifts from multiple messages to a single message. Due to this
adjustment, only the PVW-like compression scheme remains applicable from the
two compression methods initially proposed in the paper, namely PVW-like and
nearly square gadget matrix.

This paper makes several key contributions to the field of fully homomorphic
encryption, explicitly focusing on improvements and extensions to the Gentry-
Sahai-Waters (GSW) scheme:

1. We propose a novel approach to message range extension in the GSW scheme
by implementing CRT for message decomposition. This method significantly
expands the allowed message range to encompass the entire plaintext space,
enhancing the scheme’s versatility and applicability.

2. We use an approximation method to address the challenges of the previous
GSW variant decryption method [12]. This approach not only improves the
intuitiveness but also the practicality of the decryption process

3. We present a comprehensive examination of ciphertext compression tech-
niques, focusing on reducing the memory overhead associated with cipher-
texts. Our analysis adapts the PVW-like compression scheme to work effec-
tively with our modified encryption system, which utilizes a vector form of
the private key.

These contributions collectively enhance the practicality, efficiency, and applica-
bility of the GSW fully homomorphic encryption scheme, paving the way for its
broader adoption in secure computation scenarios.

1.1 Related Work

Fully Homomorphic Encryption (FHE). In contemporary society, the rapid
development of the Internet, cloud computing, and artificial intelligence has led

3

to a vast amount of personal data being stored and processed remotely. However,
this practice raises significant security concerns. To mitigate these risks, data
must be encrypted before being uploaded to the cloud.

FHE was first introduced by Rivest, Adleman, and Dertouzos [16] in 1978.
However, it wasn’t until 2009 that Gentry proposed the first FHE scheme [8],
which allowed computations on plaintext without decryption. Nevertheless, it
was often limited by excessive noise and large ciphertext dimensions, leading to
decryption failures after a few computations and prolonged computation times.
Subsequently, based on Gentry’s ideas, various novel schemes were proposed.

In the survey paper [13], they categorize all current FHE schemes into four
generations based on their proposal order and mention several simple applica-
tions. The second generation mentioned in the paper includes BV [2, 3], BGV
[1], and B/FV [7] schemes. These can operate in finite fields and allow effec-
tive packing, meaning computations can be performed simultaneously on entire
vectors of integers. However, they don’t handle noise exceptionally well.

The third generation includes schemes like GSW (the focus of our research)
[11], FHEW [6], and TFHE [5]. These schemes aim to address the issue of ex-
cessive noise. Their approach involves converting previous processing methods
into bit-wise operations and improving the bootstrapping technique, proposed
by Gentry in [8] and [9]. These methods can reduce error generation, but they
lack packing support.

Finally, the most famous scheme in the fourth generation is CKKS [4]. Al-
though its bootstrapping technique is relatively inferior to the third generation,
it focuses on optimizing packing or batching, allowing multiple data to be pro-
cessed simultaneously. This reduces the average computation time for individual
operations. Moreover, it can be extended to operations on real numbers.

Ciphertext Compression. Ciphertext compression is a significant research
area within cryptographic systems. Many encryption schemes face the challenge
of producing substantially larger ciphertexts than plaintexts. Compressing ci-
phertexts can enhance data transmission and increase storage efficiency while
maintaining the security of the encrypted data.

Initially, "ciphertext packing" was proposed [14, 1], which involves aggregat-
ing and encrypting multiple plaintexts into a single ciphertext. However, later
research [10] introduced a method that effectively reduces the dimensionality of
the ciphertext while still encrypting multiple plaintexts simultaneously, yielding
better results than previous techniques.

1.2 Organization

This writeup is structured as follows: a) Section 2 provides the background
knowledge for understanding the article. b) Section 3 introduces the GSW en-
cryption process, thoroughly examining each critical design element. c) Sections
4 and 5 address two significant issues in the current GSW scheme: the limited
user message data range and the large ciphertext size. We propose improvements

4 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

or ideas for these problems. d) Sections 6 and 7 present the final experimental
results and conclusions.

2 Background

2.1 Learning With Error (LWE)

The LWE problem represents a significant challenge in the field of cryptographic
systems and is used to enhance security by adding noise. This technique masks
precise information by injecting minimal noise, hindering unauthorized parties
from straightforwardly deducing sensitive data. Mathematically, the LWE prob-
lem requires identifying a vector s in Zn

q such that sA+ e ≡ b (mod q),

[s1 s2 · · · sn]

a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
...

. . .
...

an,1 an,2 · · · an,m

+[e1 e2 · · · em] = [b1 b2 · · · bm] (mod q).

where A is a matrix in Zn×m
q with n < m, and e denotes a small error vector.

Matrix A and vector b constitute the public key, while vector s acts as the secret
key in cryptographic applications.

Without error vector e, the linear equation sA = b solution can be de-
termined directly using Gaussian elimination. However, introducing e makes
traditional methods such as Gaussian elimination ineffective, thus making the
problem more complicated. This complexity benefits encryption, as it ensures
the system’s security as long as the secret key s remains undisclosed. Even if an
adversary gains access to the public key components A and b, extracting the se-
cret key solely from these elements is exceedingly challenging. Consequently, the
LWE problem is integral to the defense of cryptographic systems, significantly
reducing the likelihood of direct attacks.

2.2 Gadget Matrices

The gadget matrix G plays a crucial role in the GSW (Gentry-Sahai-Waters)
encryption scheme [11], especially when paired with ciphertext flattening or
the BitDecomp operation G−1. This matrix is characterized by its unique abil-
ity to revert the transformations applied by its inverse through the operation
G(G−1(C)) = C, ensuring that the original ciphertext C is recoverable.

Typically, the structure of the gadget matrix G is defined as G = In ⊗
g, where In is the identity matrix of size n, and g is a vector given by g =
(1, 2, · · · , 2⌊log2 q⌋). This definition forms G as a block matrix where each block
is a scaled identity matrix with the scaling factors being powers of 2, up to

5

2⌊log2 q⌋. The specific form of G is illustrated as follows:
1 2 · · · 2⌊log2 q⌋ 0 · · · 0

0 1 2 · · · 2⌊log2 q⌋ · · · 0
...

...
. . .

...
0 0 · · · 1 2 · · · 2⌊log2 q⌋

 .

This structured approach leverages the mathematical properties of the identity
matrix and the geometric progression in g to facilitate the operations required
in the GSW encryption system.

2.3 The Chinese Remainder Theorem

"有物不知其數，三三數之剩二，五五數之剩三，七七數之剩二。問物幾
何？"

The above is a famous ancient Chinese Quiz; it presented an excellent ex-
ample of the CRT, a fundamental principle in number theory used to determine
an unknown number based on its remainders when divided by several coprime
integers. Assuming integers m1,m2, · · · ,mn are pairwise coprime, then for any
integers r1, r2, · · · , rn, the system of equations

C :

x ≡ r1 (mod m1)

x ≡ r2 (mod m2)
...
x ≡ rn (mod mn)

. (1)

has a solution, and the general solution can be constructed as follows:

1. Let M = m1 × m2 × · · · × mn =
∏n

i=1 mi be the product of integers
m1,m2, · · · ,mn, and let Mi = M/mi, ∀i ∈ {1, 2, · · · , n}, i.e., Mi is the
product of the n− 1 integers excluding mi.

2. Let ti = M−1
i be the modular multiplicative inverse of Mi modulo mi:

tiMi ≡ 1 (mod mi), ∀i ∈ {1, 2, · · · , n}
3. The general solution of the system of Equation 1 takes the form: x =

r1t1M1 + r2t2M2 + · · · + rntnMn + kM = kM +
∑n

i=1 ritiMi, k ∈ Z.
In the sense of modulo M, the system of Equation 1 has only one solution:
x =

∑n
i=1 ritiMi.

This solution not only satisfies the original conditions but also demonstrates
the power of the CRT in parallel solving such systems, provided the modules are
coprime to each other. Let us consider a simple illustrative example in Appendix
B.

6 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

2.4 Regev and PVW Encryption

In the Regev encryption scheme [15], a bit σ ∈ {0, 1} is encrypted into a cipher-
text c ∈ Zn+1

q . When this ciphertext is decrypted using a secret key s ∈ Zn+1
q

with the last coordinate being 1, the result is given by ⟨s, c⟩ = ⌈q/2⌋ · σ + e
(mod q), where the error term must be |e| < q/4. This is because the decryption
process involves dividing the result by q/2, and if the residual error is less than
1/2, rounding off the result will yield the correct value. The plaintext space is ex-
panded to p, with p < q to broaden the applicability. In this case, the encrypted
message σ ∈ Zp during decryption leads to ⟨s, c⟩ = ⌈q/p⌋ · σ+ e (mod q), where
the error now needs to be less than q/2p to ensure that rounding the output
yields the correct message σ.

The subsequent PVW encryption system [14] is more widely applicable, al-
lowing the selected message format to be transformed into a vector σ ∈ Zk

p, or
even a matrix

∑
∈ Zk×m

p . Here, the decryption of the two ciphertexts results in
S · c = ⌈q/p⌋ · σ + e (mod q) and SC = ⌈q/p⌋ ·

∑
+E (mod q), with secret key

S = (S′ | I) ∈ Zn×(n+k)
q and now the conditions that the error terms e and E

must be less than q/2p.
Both Regev and PVW encryption systems support homomorphic addition

and multiplication, but a prerequisite is that the error must remain sufficiently
small. Therefore, the plaintext space p cannot be excessively large, as it would
otherwise be challenging to manage.

3 GSW-Like Encryption Scheme

This section introduces the GSW homomorphic encryption scheme [11], which,
despite offering significant data security and privacy advantages, presents con-
siderable challenges, particularly in managing errors and limiting message sizes.

One of the core challenges in homomorphic encryption is the accumulation of
errors during computations in the encrypted domain. Each operation on cipher-
texts introduces an error, which accumulates without intermediate decryption
steps and can grow exponentially with the number of operations performed. This
accumulated error can severely compromise the integrity of decrypted results,
necessitating stringent control mechanisms. Consequently, messages in the GSW
scheme are initially restricted to binary selection.

Subsequently, we considered limiting messages to a selection between 0 and
1 was overly restrictive. Therefore, we attempted to increase the upper bound
of messages to ϕ. This adjustment still maintains secure encryption and accu-
rate decryption of message values. Moreover, by introducing an approximation
method [12] at the output stage of decryption, an additional layer of approxi-
mation error is added. Consequently, the feasible upper bound ϕ must be signif-
icantly reduced, further constraining the operational range and flexibility of the
encryption scheme.

7

Key Generation. The generation of the public and secret keys begins with
the random selection of the matrix A from Z(n−1)×m

q , vector t from Zn−1
q , and

a small noise vector e from the distribution χn−1 conforms to an integer-normal
modulo q, where m = n · ℓ to accommodate an expanded message encoding
scheme. The vector b is computed as b = tA + e, following the LWE scheme.
The public key P is then defined as P =

[
−A
b

]
∈ Zn×m

q and the secret key s as
s = [t | 1] ∈ Zn

q , ensuring that the product s×P ≡ e (mod q) confirms the error
model of LWE.

Encryption. The encryption process commences with the selection of the mes-
sage µ from {0, 1}, accompanied by a randomly generated matrix R from {0, 1}m×m.
The ciphertext C is computed using the formula

C = µ ·G+P×R (mod q) ∈ Zn×m
q ,

where G typically represents a gadget matrix facilitating the embedding of µ
within the encryption process.

The range for selecting the message µ was initially limited to between 0 and
1 due to error considerations during the design of the GSW encryption system.
However, we later deemed this restriction overly stringent. Experimental results
indicated that the range could be expanded. Therefore, we attempt to extend the
message range to a new upper bound (denoted as ϕ), aiming to more efficiently
exploit the fault tolerance of the scheme without compromising security. With
the revised approach, encryption now begins with the selection of a message µ
within the range [0, ϕ).

Table 1. Memory requirements for ciphertext before decryption.

n 8 9 10 11 12 13 14 15 16 17 18

Ciphertext Size(KB) 3.625 5.188 7.156 9.578 12.5 15.97 20.03 24.73 30.13 36.25 43.16

n 19 20 21 22 23 24 25 26 27 28

Ciphertext Size(KB) 50.89 59.5 69.03 79.53 91.05 103.6 117.3 132.2 148.2 165.5

Table 1 succinctly illustrates the memory space required to store the selected
message’s encrypted ciphertext under different security parameters. Here, n rep-
resents the security parameter, with higher values indicating greater security
and the ciphertext size is measured in kilobytes (KB). The table shows that the
required memory space also grows as the security parameter increases. Notably,
even at n = 8, a message originally only a few bits in size requires 3.625 KB to
store the ciphertext. This issue is not unique to the GSW encryption scheme;
other existing encryption schemes exhibit similar behavior.

8 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

Decryption. Decryption is executed using the secret key s and the received
ciphertext C as inputs. The decryption formula, as pre-defined, is written as

sC = µ · s×G+ s×P×R (mod q).

Let e′ denote the accumulated error after the decryption is completed. This
above formula can be simplified to:

sC ≡ µ · s×G+ e′ (mod q) ∈ Zm
q . (2)

After applying the decryption formula, an output operation is necessary to derive
the correct message value µ. This process involves separating µ · s ×G from e′

within the decrypted output.

The Decryption Output. In advancing the effectiveness of homomorphic en-
cryption, particularly in the output stages where accurate decryption is crucial,
two approaches will be investigated: a variation of the GSW encryption scheme
[10] and an approximate method [12]. Each aimed to address the complex chal-
lenge of error management.

1. A Variant of GSW [10]. The proposed variant of the GSW encryption
scheme seeks to directly extract and eliminate the error component e′ from
the decryption result. The method involves a matrix M that satisfies two
crucial properties:

Property 1. M = G−1(0) such that GM = 0 (mod q), effectively nullifying
the message-related component in the matrix multiplication due to congru-
ence modulo q.

Property 2. M must be invertible, allowing for the reversal of transforma-
tions applied during the output operation.

Output Steps for the Variant GSW Approach:
– Step 1: Multiply the decryption result by M, isolating e′ as Z = s ·C ·

M = µsGM+ e′ ·M = e′ ·M (mod q), which isolates the error due to
GM = 0 (mod q).

– Step 2: Extract e′ by applying the inverse of M,

ZM−1 = (e′ ·M (mod q)) ·M−1 = e′ (3)

– Step 3: Remove e′ from the original decryption to isolate the message:
sC− ZM−1 = sC− e′ = µsG.

– Step 4: Deduce the message µ is deduced from the known secret key s
and G.

Challenges and Limitations: The critical limitation arises in Equation
3. However, since M and M−1 must exist under different field conditions
— M under finite field conditions and M−1 ideally in the infinite field Z
— this creates a fundamental operational flaw. In practice, M−1 must be

9

determined under mod q, and hence, obtaining such an inverse matrix where
M is nonsingular modulo q becomes infeasible.
Therefore, thinking of possible solutions to the equation requires adjusting
e′ ·M (mod q), which requires the elements in M to be kept very small. This
adjustment is crucial to ensure that when multiplied by e′, each element does
not exceed q − 1. Although this strategy lacks rigor, it represents a feasible
solution. Identifying such M is highly challenging, prompting us to switch to
approximation methods as an alternative. This approach might be preferable
if a more straightforward way can be discovered to determine M.

2. An Approximation Method [12]. This more straightforward approach
does not seek to directly and accurately correct the error but instead mini-
mizes it through comparative analysis :
– Step 1: Directly divide the decryption result by the secret key and the

gadget matrix G, attempting to isolate µ as

sC

sG
= µ · J1,m +

e′

sG
, where J1,m = [1 1 · · · 1] ∈ 1m

=
[
µe
0 µe

1 · · · µe
m−1

]
.

Ideally, this should leave us with the correct message and a small amount
of error. Therefore, the smaller the error, the closer the value at that
position is to the correct result.

– Step 2: Each element resulting from the division is examined to deter-
mine which produces the smallest error, approximated as

∀i, s ·C− µe
i sG = e′i.

The element with the smallest resultant error e′i is considered the closest
approximation to µ.

Challenges and Limitations: However, since this method is essentially an
approximation, it inherently introduces additional deviations, particularly as
the magnitude of the message increases. Consequently, the final calculated
error significantly exceeds the theoretical error, resulting in a substantially
reduced upper bound ϕ. Despite these limitations, this approach provides a
simpler and more convenient alternative than the previous one.

Both approaches offer potential pathways to handle errors in the output
stage of decryption. However, although theoretically robust, the variant GSW
approach faces practical implementation hurdles due to the matrix inversion
issues. On the other hand, while more straightforward and practicable, the ap-
proximate method suffers from error magnification as message values increase.

Homomorphic Operation. Two primary operations in the cryptographic
framework that support homomorphic operations are homomorphic addition
(C+) and homomorphic multiplication (C∗). Let C1 and C2 be ciphertexts, re-
spectively encrypting plaintexts µ1 and µ2. The operations are mathematically
described as follows:

10 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

– Homomorphic addition: C+ = C1 +C2 (mod q)

– Homomorphic multiplication: C∗ = C1 ×G−1(C2) (mod q)

where transforming each element of the ciphertext matrix into its binary repre-
sentations, that is:

C =

c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n
...

...
. . .

...
cn,1 cn,2 · · · cn,n

 =⇒ G−1(C) =

c1,1,0 c1,2,0 · · · c1,n,0

...
...

. . .
...

c1,1,ℓ−1 c1,2,ℓ−1 · · · c1,n,ℓ−1

c2,1,0 c2,2,0 · · · c2,n,0

...
...

. . .
...

c2,1,ℓ−1 c2,2,ℓ−1 · · · c2,n,ℓ−1

...
...

. . .
...

cn,1,0 cn,2,0 · · · cn,n,0

...
...

. . .
...

cn,1,ℓ−1 cn,2,ℓ−1 · · · cn,n,ℓ−1

where each ci,j ∈ Zq is decomposed into a binary representation such that each
binary bit cx,y,z lies in {0, 1}. The original element ci,j is then expressed as
ci,j = ci,j,0 + 21 · ci,j,1 + · · ·+ 2ℓ−1 · ci,j,ℓ−1, with ℓ = ⌈log2 q⌉.

Performing operations in the encrypted domain without intermediate de-
cryptions presents significant challenges, notably regarding error accumulation
and message size constraints. As a result, the error can increase exponentially
with the number of operations, profoundly affecting the integrity of the decryp-
tion outcome. Therefore, when multiple homomorphic operations are involved, ϕ
must be adjusted downward to prevent the total error from exceeding the decryp-
tion algorithm’s capacity for correction or tolerance. This adjustment restricts
the magnitude of message values that can be securely encrypted and accurately
decrypted after applying homomorphic operations.

4 The CRT-based Decomposition

This section explores expanding the message selection range to the entire plain-
text space ([0, q)), allowing users unrestricted choice. As noted, errors can easily
exceed the tolerance limit when the large message is selected. To address this,
we considered decomposing the large message into multiple smaller values, each
containing minor errors, which can be individually encrypted and decrypted be-
fore recombining them. This approach leads us to consider the previous base
decomposition method (as shown in the middle of Figure 1) or one of our pri-
mary research topics, the "CRT decomposition method," which uses CRT to
expand the message range further (as shown at the bottom of Figure 1).

Our CRT decomposition method solves the issue of the base decomposition
method’s inability to perform homomorphic addition. It allows for multiple con-
secutive operations without intermediate decryption, significantly outperforming
the original non-decomposition method.

11

Fig. 1. Simplified flowcharts for benchmarking schemes are presented in Sections 3
(top), 4.1 (middle), and 4.2 (bottom), respectively.

4.1 Base Decomposition (Figure 1, the middle block)

Key Generation, Decomposition and Encryption. The public key (P)
and secret key (s) generation during the initial key generation stage remain
unchanged. In the encryption phase, to align with our objectives, we now permit
users to select messages without restrictions and denote the allowable range as
µ ∈ [0, q). Previously, the method involved converting µ into its binary form
(µ0, µ1, · · · , µℓ−1), expressed as µ = µ0 + 2 · µ1 + · · · + 2ℓ−1 · µℓ−1 (mod q),
where ∀i, µi ∈ {0, 1} and ℓ = ⌈log2 q⌉. Each bit is independently encrypted and
separately decrypted without affecting each other.

Additionally, as identified in Section 3, the upper bound of a message value
can be as large as ϕ. Thus, the base value can also be increased to ϕ, signifi-
cantly reducing the number of decomposed values. Now, µ can be represented
as (µ0, µ1, · · · , µB−1), expressed as µ = µ0 +ϕ ·µ1 + · · ·+ϕB−1 ·µB−1 (mod q),
where ∀i, µi ∈ [0, ϕ) and B = ⌈logϕ q⌉. This alteration substantially lowers both
the memory requirements and the processing time.

Decryption, Output, and Recombination: The decryption and output
stages proceed as previously. Decryption involves multiplying the secret key s
with the ciphertext C, and the output employs the approximate method. Ini-
tially, the large message is split into smaller messages. During the recombination
stage, the final output is recombined according to µ = µ0+ϕ·µ1+· · ·+ϕB−1·µB−1

(mod q). After computing the result, the original large message is successfully
reconstructed.

12 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

Table 2. All benchmarked vector secret key schemes’ decomposition processes.

Bit Base CRT (Sec. 4.2)

KeyGen.
Public key : P =

[−A
b

]
∈ Zn×m

q ,

and Secret key : s = [t | 1] ∈ Zn
q

Decomp.
Selecting the message µ ∈ [0, q) and R ∈ {0, 1}m×m

(µ0, µ1, · · · , µℓ−1) (µ0, µ1, · · · , µB−1)

µ ≡ µα (mod mα)

µ ≡ µβ (mod mβ)
...

µ ≡ µγ (mod mγ)

Enc.
Encrypting each element into ciphertext by

∀i, s.t. Ci = µi ·G+P×R (mod q) ∈ Zn×m
q

Dec.
Decrypting all ciphertext by

∀i, s.t. sCi = µi · s×G+ ei (mod q) ∈ Zn
q

Output. Approximate method

Recomb. µ =
∑

i 2
iµi µ =

∑
i ϕ

iµi µ =
∑

i µitiMi

4.2 CRT Decomposition (Figure 1, the bottom block)

At this stage, we have decided to implement the CRT for decomposition because
it allows for converting the more significant value into multiple smaller values.
The key generation, encryption, decryption, and output phases adhere to the
principles established in the base decomposition approach. A distinctive feature
of this approach is the methodology used for decomposition and recombination.
Specifically, the CRT is utilized to decompose µ as follows:

µ ≡ µα (mod mα)

µ ≡ µβ (mod mβ)
...

µ ≡ µγ (mod mγ)

,

where the set (mα,mβ , · · · ,mγ) is all the moduli utilized in the CRT. Each
modulus is pairwise coprime and less than ϕ. Recombination also employs the
CRT, formulated as:

µ = µαtαMα + µβtβMβ + · · ·+ µγtγMγ =
∑
i

µitiMi (mod M),

where M = mα ×mβ × · · · ×mγ =
∏

i mi.
These decomposition methods are detailed in Table 2, highlighting the dif-

ferences in the decomposition and recombination stages. These decomposition

13

methods efficiently handle large messages by splitting them, thereby enhancing
the efficiency of our encryption scheme.

4.3 Homomorphic Addition after Decomposition

Now that both the base and CRT decomposition methods have proven effective
in achieving our desired outcomes, it is pertinent to explore our CRT-based
approach’s distinct advantages and contributions. Notably, our method supports
parallel computation, a capability not available in base decomposition methods.
Furthermore, the base decomposition approach frequently encounters issues with
mathematical carry operations, which are inherently absent in our CRT method.
This advancement, therefore, increases the potential and applicability of this
encryption scheme in daily use.

Fig. 2. The processes of the base decomposition (the top row), the CRT decomposition
(the bottom row), and the homomorphic addition (the middle column).

Base Decomposition. The direct conclusion is that base decomposition can-
not perform homomorphic addition after decomposition; the main reason is the
concept of mathematical carry. A mathematical carry is possible when these
decomposed bits or elements are added to the original plaintext domain. How-
ever, when these elements undergo encryption and are represented in ciphertext
form, simulating or implementing carry functions within the encrypted domain
— particularly in matrix formats — presents significant hurdles. This complexity
prevents efficient decryption after such operations.

14 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

Moreover, even if a technique exists to manage to carry within a matrix
of encrypted elements, executing parallel computations efficiently remains a
formidable challenge due to the nature of carries. Consequently, performing ho-
momorphic additions becomes inefficient, complex, and occasionally unfeasible
if decompositions are conducted using base decomposition.

CRT Decomposition. However, our CRT decomposition avoids carrying is-
sues, facilitating parallel computation, as shown in Figure 2. However, an addi-
tional limitation arises: it must be ensured that the aggregate of selected mes-
sages (

∑
j µ

j) remains below the modulus value M to avoid operational failures.
Despite this limitation, the CRT decomposition method allows for the selection
of messages without constraints and effectively supports homomorphic addition,
even over many consecutive operations without interruption. Therefore, this lim-
itation is acceptable.

5 Ciphertext Compression

Table 1 shows that key encryption requires significant memory, even with a small
security parameter. For example, when n = 8, a message that might initially
be just a few bits can expand to require 3.625 KB. Moreover, such a small
security parameter is insufficient for real-world applications, which might need
n = 128 or more for adequate security. In this scenario, the storage space required
becomes even more unimaginable. Therefore, any method that can compress
these schemes would be incredibly beneficial.

[10] proposes a compression method applicable to the GSW encryption scheme,
introducing two compression techniques: "PVW-like" and "Nearly Square Gad-
get Matrix." The method in the paper compresses ciphertexts resulting from the
encryption of multiple messages simultaneously. However, in our study, we focus
on compressing ciphertexts from the encryption of a single message. Addition-
ally, since the "Nearly Square Gadget Matrix" method is designed for multiple
messages, our compression discussion will only cover the PVW-like method. The
details of the "Nearly Square Gadget Matrix" method will be included in Ap-
pendix A.4. It’s crucial to compare these methods to understand their strengths
and limitations. In terms of effectiveness, the paper’s approach, which compresses
multiple messages simultaneously, will naturally be more impressive than com-
pressing a single message. However, our proposed PVW-like method for single
message compression holds promise and could offer significant benefits in specific
scenarios.

5.1 The PVW-like Scheme

Ideas and Concepts. Before introducing their compression process, let us
explain the concept behind their method first. The top and bottom portions
of Figure 3 show the uncompressed and compressed processes of the PVW-like
scheme, respectively.

15

Fig. 3. The architectures are associated with PVW-like schemes without compression
(the upper part) and compression (the lower part).

The top section, which shows the uncompressed process, follows the same idea
of base decomposition introduced in section 4. Initially, the message is converted
to binary form, and after decryption and output, it is converted back to decimal
form.

Our understanding of their compression method is that it combines these
steps earlier in the process. Specifically, instead of waiting until the final de-
cryption and output stages to combine the results, the combination happens
immediately after each small message is encrypted. This early combination is
the core idea behind their compression method.

Key Generation and Encryption. Let us start by introducing the entire
compression process. First, the key generation is the same as before, resulting in
a pair of public key P and secret key s.

During the encryption, a message is selected, and the two decomposition
methods mentioned earlier can be used: base decomposition and CRT decom-
position. After decomposing the message into smaller values, each value is en-
crypted separately.

For this explanation, we will assume the base decomposition method is used
with a base of 2. Therefore, the larger message µ is decomposed into smaller mes-
sages, denoted as (µ0, µ1, · · · , µℓ−1), and the encrypted ciphertexts are (C0,C1,
· · · ,Cℓ−1).

Compression. The next critical step is compression. The PVW-like compres-
sion method was chosen for this purpose. Given that the ciphertext now takes

16 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

the form of a matrix, the original combination formula is no longer applicable
and has been transformed into

C∗ =
∑
i

Ci ×G−1(f · 2i · T ′) (mod q) ∈ Zn
q .

In the above equation, Ci represents the ciphertext generated by encrypting all
previous small messages, and T ′ =

[
0n−1

1

]
∈ Zn

q is a particular vector of length
n, where only the last coordinate is one and all others are 0, as illustrated in
the lower part of Figure 3. This vector T ′ plays a vital role in the compression
process. As a result, what would have initially required ℓ ciphertexts of size n×m
can now be effectively reduced to a single vector of length n, thereby achieving
the desired compression.

This compression method combines all small messages immediately after en-
cryption, effectively reducing the ciphertext size. Consequently, we have adapted
the formulas for various decomposition methods, as illustrated in

Base Decomposition: C∗ =
∑
j

Cj ×G−1(f · ϕj · T ′) (mod q) ∈ Zn
q

CRT Decomposition: C∗ =
∑
k

Ck ×G−1(f · tk ·Mk · T ′) (mod q) ∈ Zn
q .

For base decomposition f is equal to ⌈q/p⌋, where q represents the modulus of the
encryption domain and p represents the modulus of the plaintext domain, which
is the message range that users can choose from. For the CRT decomposition,
f = ⌈q/M⌋, where M is the product of all the moduli in the CRT decomposition
and also represents the plaintext domain.

Decryption and Its Output. Next, we similarly observe the decryption sce-
nario after compression. That is,

Decryption: s×C∗ =
∑
i

s×Ci ×G−1(f · 2i · T ′)

=
∑
i

(µisG+ e′i)×G−1(f · 2i · T ′)

=
∑
i

f · 2i · µi · s× T ′ +

e′︷ ︸︸ ︷∑
i

e′i ×G−1(f · 2i · T ′) (4)

= f · µ · s× T ′ + e′ = f · µ+ e′ (mod q). (5)

In Equation 4, it is evident that the previously distributed error is indeed recom-
bined. Consequently, it can be inferred that to ensure the smooth operation of
the entire encryption scheme at this stage, the upper bound of the message range
must be further reduced. Moreover, given that the dimensions after compression
are significantly smaller than those of a single ciphertext, the upper bound ϕ is

17

likely to decrease even more noticeably. Furthermore, the result after decryption
in Equation 5 resembles the output of PVW decryption. Therefore, we follow
the derivation of the PVW output method in this context.

Output:
⌈
sC∗

f

⌋
=

⌈
f · µ+ e′

f

⌋
= µ (mod p), with ∥ e′ ∥< f

2
. (6)

However, applying this method to CRT decomposition increases the likelihood
of failure. This is due to the limitations encountered during the original CRT
recombination. In the final step of CRT, the combined sum is calculated under
the modulus M, yielding an unknown value. The result tends to be very large
without performing this modulo M operation. In this context, after dividing
by f , the output method directly yields a value between 0 and M − 1, rather
than the expected significant result by CRT. This discrepancy results in a high
failure rate in experiments. The experiments revealed that if the result of q/M
is an exact integer or the decimal produced after division is tiny, the method is
more likely to succeed. However, this requires careful selection and testing of the
CRT’s modulus set (mα,mβ , · · · ,mγ) to ensure proper functionality.

However, trying each modulus one by one is impractical. Therefore, we at-
tempted to modify the output method. We understand that their method treats
the decrypted result directly as a scalar, so they subsequently divide by f , al-
lowing the result to be mapped back to the original plaintext space. However,
"division by f" seemed somewhat unreasonable in implementation. In Equation
6, f ·µ+e′ is, in fact, a result in the finite field q. In finite fields, division should
be performed using the multiplicative inverse of f , denoted as f−1, rather than
directly dividing by f . Therefore, we attempted to change the output method
to sC∗ ·f−1. To verify the correctness of the formula and its security, we further
divided the scenarios into those with and without error. That is,

No error: sC∗ · f−1 = f · µ · f−1 = µ (mod q) (7)

With error: sC∗ · f−1 = (f · µ+ e′) · f−1 = µ+ e′ · f−1 (mod q).

In Equation 7, both the base and CRT decomposition methods work without
issues. The computed result will match the more significant value produced by
the original CRT before performing modulus M. Thus, performing an additional
step of modulus M yields the correct result, indicating that this approach is
feasible.

However, when testing for security by introducing noise, e′ becomes multi-
plied by a scalar, significantly increasing the noise. Maintaining |e′ · f−1| within
0.5 becomes almost impossible, leading to failure in execution for any decompo-
sition method when an error is added. Consequently, our proposed adjustment,
although mathematically sound, fails to balance the trade-off effectively—the
inability to control the noise amount results in overall failure.

6 Experiment

We present a comparative analysis and experimental results of CRT decom-
position and compression techniques. This study examines the impact of our

18 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

proposed CRT decomposition method and compression technique on the upper
bound ϕ, as well as observes the consecutive computational iterations achiev-
able by the CRT decomposition method without decryption. We aim to verify
whether these modifications align with our hypotheses. The actual numerical
data used in the figures are provided in Appendix C.

6.1 Upper bound ϕ

Figure 4 represents the upper bound results of the CRT decomposition method
and compression technique. It contains four entries: the last three represent the
upper bound ϕ for operations without (denoted as Without), with the CRT de-
composition method (denoted as CRT) and the compression technique (denoted
as Compression). In contrast, the first entry indicates the minimum number of
moduli. The horizontal axis denotes the security parameters, while the left ver-
tical axis in both tables represents the upper bound ϕ, displayed logarithmically,
and the right vertical axis represents the number of moduli.

Fig. 4. Comparative Analysis of CRT Decomposition and Compression Methods on
the Upper Bound ϕ of Message Range.

Several conclusions can now be drawn as follows:

1. It can be observed that, our proposed CRT decomposition method signifi-
cantly increases the upper bound. Regardless of n, users can freely choose
messages within the entire plaintext space without restriction.

2. As hypothesized, compression leads to a cumulative effect of errors, signifi-
cantly reducing the upper bound of the message range, even below that of

19

the undecomposed original method. This considerably constrains the user’s
range of choices. The PVW-like compression method proposed in [10] is
particularly well-suited for this scenario. Due to error considerations, the
original PVW encryption system also restricts the plaintext space.

3. The original "Without decomposition’s" upper bound ϕ indirectly affects
the upper bound results and the number of moduli required for applying the
CRT decomposition method. For example, when n = 8, the upper bound is
7, so the CRT moduli can only be chosen from the range 2 to 7. To achieve
the theme of restriction-free, at least three values are needed to exceed 27.
Therefore, if the upper bound could be increased, only two values would be
needed to reach the goal.

6.2 Sequential computation

Fig. 5. Comparing the number of consecutive operations that can be performed with-
out decomposition (Sec. 3) and with CRT decomposition (Sec. 4.2) under different
parameter combinations, all with a message range of [0, q).

However, practical applications rarely involve just a single operation. There-
fore, it is essential to observe how this encryption scheme, after our modifica-
tions, performs multiple consecutive additions without decryption. As illustrated
in Figure 5, we analyze the performance under varying security parameters. The
first two labels in the table represent the minimum and maximum consecutive
operations observed in 1,000 repeated tests using our CRT method (described
in Section 4.2). The remaining two labels indicate the minimum and maximum
operations for the original GSW method without decomposition (Section 3). The

20 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

vertical axes display the number of operations, while the left axis pertains to our
method, and the right axis corresponds to the original approach.

Several conclusions can be drawn accordingly:

1. Our method outperforms the original GSW scheme across almost every se-
curity parameter. Unlike the original method, it consistently permits at least
one operation, which allows a maximum of one operation.

2. As the parameter n increases, the range of both minimum and maximum
operations expands for our method. In contrast, the original method remains
limited to one or two operations, which aligns with our expected outcomes.
Since the original method can only process messages within the range of ϕ,
expanding this range will only make a single operation more difficult.

Our proposed CRT decomposition method facilitates unrestricted message
selection and supports parallelized addition operations and continuous, unin-
terrupted computations. However, these performance gains come at the cost of
increased memory space, as the message is divided into smaller values for repre-
sentation, which may also result in slightly longer computation times.

7 Future Works and Conclusions

In conclusion, this research has effectively demonstrated the utility of CRT in
expanding the range of encrypted messages within the GSW encryption scheme.
By integrating CRT, the scheme now supports a larger message range and adapts
existing ciphertext compression techniques for practical applications. These en-
hancements are crucial for deploying secure cryptographic systems, where flexi-
bility and efficiency are paramount.

Given that [10] initially applied compression methods to the GSW matrix se-
cret key scheme, and [17] subsequently referenced [10], categorizing it among var-
ious multikey FHE schemes that enhance ciphertext processing, our future work
will focus on extending our current research to multikey scenarios. Moreover, as
multikey schemes align more closely with contemporary real-world applications,
successfully adapting our method to multikey scenarios could significantly en-
hance the potential and feasibility of implementing GSW encryption schemes in
practical contexts.

We recognize that during compression, errors reaccumulate within the same
ciphertext, significantly increasing the likelihood of decryption failure. Conse-
quently, users must substantially reduce the upper bound of the message range
when selecting messages. This trade-off necessitates a careful balance between
compression ratio and error tolerance, particularly when handling sensitive or
large-scale data. To address this challenge, we propose exploring decompression
techniques that could redistribute the reaccumulated errors, potentially miti-
gating the issues introduced by compression. This work has the potential to
significantly advance the practical applicability of FHE in real-world scenarios.

21

References

1. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

2. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) lwe. In: 2011 IEEE 52nd Annual Symposium on Foundations of Com-
puter Science. pp. 97–106 (2011). https://doi.org/10.1109/FOCS.2011.12

3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe
and security for key dependent messages. In: Annual cryptology conference. pp.
505–524. Springer (2011)

4. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and Infor-
mation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23.
pp. 409–437. Springer (2017)

5. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

6. Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less
than a second. In: Annual international conference on the theory and applications
of cryptographic techniques. pp. 617–640. Springer (2015)

7. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

8. Gentry, C.: A fully homomorphic encryption scheme. Stanford university (2009)
9. Gentry, C.: Computing arbitrary functions of encrypted data. Communications of

the ACM 53(3), 97–105 (2010)
10. Gentry, C., Halevi, S.: Compressible fhe with applications to pir. In: Theory of

Cryptography Conference. pp. 438–464. Springer (2019)
11. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-

rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in
Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I. pp. 75–92. Springer (2013)

12. Hedglin, N., Phillips, K., Reilley, A.: Building a fully homomorphic encryption
scheme in python (2019), https://github.com/hedglinnolan/GSW-Homomorphic-
Encryption-Python

13. Marcolla, C., Sucasas, V., Manzano, M., Bassoli, R., Fitzek, F.H., Aaraj, N.: Survey
on fully homomorphic encryption, theory, and applications. Proceedings of the
IEEE 110(10), 1572–1609 (2022)

14. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Annual international cryptology conference. pp. 554–
571. Springer (2008)

15. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: 37th annual ACM symposium on Theory of computing. pp. 84–93 (2005).
https://doi.org/10.1145/1060590.1060603

16. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Foundations of secure computation 4(11), 169–180 (1978)

17. Yuan, M., Wang, D., Zhang, F., Wang, S., Ji, S., Ren, Y.: An examination of multi-
key fully homomorphic encryption and its applications. Mathematics 10(24), 4678
(2022)

22 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

A Matrix Secret Key

A.1 Learning With Error (LWE)

Find a S ∈ Zn0×k
q matrix s.t. SA+E = B (mod q) under a small error E, where

A ∈ Zk×m
q with k < m, s1,1 · · · s1,k

...
. . .

...
sn0,1 · · · sn0,k

a1,1 · · · a1,m

...
. . .

...
ak,1 · · · ak,m

+

 e1,1 · · · e1,m
...

. . .
...

en0,1 · · · en0,m

 =

 b1,1 · · · b1,m

...
. . .

...
bn0,1 · · · bn0,m

 .

A.2 Single Key

KeyGen. Initially, the matrix A ∈ Zk×m
q , S ∈ Zn0×k

q , and small E ∈ χn0×m

are selected randomly, where for some small ϵ > 0 s.t. n0 ≈ 2k/ϵ, n1 =
n0 + k and m = n1 · ℓ. Subsequently, the matrix B = SA + E ∈ Zn0×m

q

is calculated. Finally, the public key, represented by P =
[−A

B

]
∈ Zn1×m

q ,
and the secret key, represented by S = [S | In0

] ∈ Zn0×n1
q , are generated,

ensuring that S×P = E (mod q).
Enc. Selecting the message µ ∈ [0, ϕ) and R ∈ {0, 1}m×m, and encrypting into

ciphertext by C = µ ·G+P×R (mod q) ∈ Zn1×m
q .

Dec. Using the secret key (S) and ciphertext (C), and the result is computed
using formula SC = µ ·S×G+S×P×R = µ ·S×G+E′ (mod q) ∈ Zn0×m

q .
Output. The approximate method is adopted because it is more straightforward

and convenient to understand.

A.3 All Decomposition Process

In this study, Table 3 illustrates the processes of all decomposition methods. The
term ’Bit’ indicates using base decomposition with a base of 2, corresponding to
the approach in [10]. The entire process differs only in the decomposition and
recombination stages.

Users can initially select message values from any range in the decomposition
stage. The next step involves decomposition based on the respective methods,
where all element in each decomposition method falls within the interval [0, ϕ).
In other words, ∀i, s.t. µi ∈ [0, ϕ).

Finally, in the recombination stage, all elements obtained from the output
are recombined according to their respective combination methods to reconstruct
the user’s initially selected message.

A.4 Ciphertext Compression

Under a matrix secret key, the compression of ciphertext involves compressing
multiple messages together, as proposed in [10]. The effectiveness of this com-
pression method is expected to be significantly better than compressing a single
message using a vector secret key.

23

Table 3. All benchmarked matrix secret key schemes’ decomposition processes.

Bit [10] Base CRT

KeyGen.
Public key : P =

[−A
B

]
∈ Zn1×m

q ,

and Secret key : S = [S | In0] ∈ Zn0×n1
q

Decomp.
Selecting the message µ ∈ [0, q) and R ∈ {0, 1}m×m

(µ0, µ1, · · · , µℓ−1) (µ0, µ1, · · · , µB−1)

µ ≡ µα (mod mα)

µ ≡ µβ (mod mβ)
...

µ ≡ µγ (mod mγ)

Enc.
Encrypting each element into ciphertext by

∀i, s.t. Ci = µi ·G+P×R (mod q) ∈ Zn1×m
q

Dec.
Decrypting all ciphertext by

∀i, s.t. SCi = µi · S×G+ Ei (mod q) ∈ Zn0×m
q

Output. Approximate method

Recomb. µ =
∑

i 2
iµi µ =

∑
i ϕ

iµi µ =
∑

i µitiMi (mod M)

Following the approach in [10], the goal is to compress n2
0 messages si-

multaneously. Subsequently, using bit decomposition will result in n2
0 · ℓ ele-

ments. Therefore there will also be n2
0 · ℓ ciphertexts after encryption, denoted

as Cu,v,w ∈ Zn1×m
q , where u, v ∈ [n0] and w ∈ [ℓ]. Both the original compression

methods, PVW-like and nearly square gadget matrix, can be utilized.

PVW-like.

Compression. At this point, the compression formulas corresponding to each
decomposition method become

Bit Decomposition =⇒ C∗ =
∑
u,v,w

Cu,v,w ×G−1(f · 2w · T ′
u,v) ∈ Zn1×n0

q

Base Decomposition =⇒ C∗ =
∑

U,V,W

CU,V,W ×G−1(f · ϕW · T ′
U,V) ∈ Zn1×n0

q

CRT Decomposition =⇒ C∗ =
∑
i,j,k

Ci,j,k ×G−1(f · tk ·Mk · T ′
i,j) ∈ Zn1×n0

q ,

where f remains the same as previously mentioned, and T ′
u,v =

[
0k×n0
Tu,v

]
=[

0k×n0
eu ⊗ ev

]
∈ Zn1×n0

q , Tu,v = eu ⊗ ev is an n0 × n0 matrix with only the posi-
tion (u, v) is 1, and all other positions are 0. Additionally, eu represents a vector
of length n0, with the u-th position as one and all other positions being 0.

24 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

This transforms the original bit decomposition of n2
0×ℓ matrices of size n1×m

into a single n1×n0 matrix. The compression effect is far superior to the previous
vector secret key method. However, because it now includes a significantly more
significant amount of messages, the total error after compression will encompass
the error from all these messages.

Decryption. The decryption of the bit decomposition compressed ciphertext is
then performed as follows:

S×C∗ =
∑
u,v,w

S×Cu,v,w ×G−1(f · 2w · T ′
u,v)

=
∑
u,v,w

(µu,v,wSG+ Eu,v,w)×G−1(f · 2w · T ′
u,v)

=
∑
u,v,w

f · 2w · µu,v,wST
′
u,v +

E′︷ ︸︸ ︷∑
u,v,w

Eu,v,w ×G−1(f · 2w · T ′
u,v)

= f ·
∑
u,v

µu,vST
′
u,v +E′ = f ·

Z︷ ︸︸ ︷∑
u,v

µu,vTu,v +E′,

where Z ∈ [p]n0×n0 . After decryption and output, these n0 × n0 messages are
represented using a matrix, with each message placed according to its fixed
position,

Z =

µ0,0 µ0,1 · · · µ0,n0−1

µ1,0 µ1,1 · · · µ1,n0−1

...
...

. . .
...

µn0−1,0 µn0−1,1 · · · µn0−1,n0−1

 ∈ Zn0×n0
p .

Nearly Square Gadget Matrix

Compression. At this point, we switch to another variant, the nearly square
gadget matrix. The compression formula also changes. That is,

Bit Decomposition =⇒ C∗ =
∑
u,v,w

Cu,v,w ×G−1(2w · T ′
u,v ×H) ∈ Zn1×n2

q

Base Decomposition =⇒ C∗ =
∑

U,V,W

CU,V,W ×G−1(ϕW · T ′
U,V ×H) ∈ Zn1×n2

q

CRT Decomposition =⇒ C∗ =
∑
i,j,k

Ci,j,k ×G−1(tk ·Mk · T ′
i,j ×H) ∈ Zn1×n2

q ,

which now includes an additional term, "H." According to the text, "H" is a
nearly square matrix similar to the gadget matrix G, with dimensions n0 × n2,
where n2 = n0(1+ϵ/2). This matrix "H" has special correlations and properties
with a corresponding matrix called the "public trapdoor" matrix F . That is,

25

– Property (a): F = H−1(0) ∈ Zm×m such that HF = 0 (mod q), effectively
nullifying the message-related component in the matrix multiplication due
to congruence modulo q.

– Property (b): F has small entries (≪ q).
– Property (c): F must be invertible over R, allowing for the reversal of

transformations applied during the output operation (but not over Zq).

Decryption and Output. This variant compression method also affects the de-
cryption process for bit decomposition. That is,

S×C∗ =
∑
u,v,w

S×Cu,v,w ×G−1(2w · T ′
u,v ×H)

=
∑
u,v,w

(µu,v,wSG+ Eu,v,w)×G−1(2w · T ′
u,v ×H)

=
∑
u,v,w

2w · µu,v,wST
′
u,vH +

E′︷ ︸︸ ︷∑
u,v,w

Eu,v,w ×G−1(2w · T ′
u,v ×H)

=
∑
u,v

µu,vST
′
u,vH +E′ = (

Z︷ ︸︸ ︷∑
u,v

µu,vTu,v)×H +E′,

where the term Z is similar to the one used in the PVW-like method. Next, we
can proceed with the output. That is,

– Step 1: Multiply the decryption result by the public trapdoor F , isolating
E′ as Z = S × C∗ × F = Z × H × F + E′ × F = E′ × F (mod q), which
isolates the error due to HF = 0 (mod q) in Property (a).

– Step 2: Extract E′ by applying the inverse of F ,

ZF−1 = (E′ × F (mod q))× F−1 = E′. (8)

– Step 3: Remove E′ from the original decryption to isolate the message:
SC∗ − ZF−1 = SC∗ −E′ = Z×H.

– Step 4: Deduce the message Z is deduced from the known H.

However, we thought this approach has the same issues and methodology de-
scribed in the previous Equation 3. Since in Equation 8, E′ × F (mod q) and
F−1 exist under different field conditions, this is theoretically unreasonable. [10]
provides an example of a public trapdoor F , which is

F =

F ′ 0 · · · 0
0 F ′ · · · 0
...

...
. . .

...
0 0 · · · F ′

 and F ′ =

pt−1 pt−2 · · · p 1
1 pt−1 · · · p2 p
p 1 · · · p3 p2

...
...

. . .
...

...
pt−2 pt−3 · · · 1 pt−1

26 Kung-Wei Hu, Huan-Chih Wang, and Ja-Ling Wu

where q = pt − 1 for some integers p and t. However, F is nonsingular in the
finite field q, rendering it unusable. To make it operational, the requirement in
Property (b) is that the values of F are much smaller than q. This approach
may succeed, aligning with the previously considered solution.

B Chinese Remainder Theorem Example

Find the smallest integer solution to the following congruence equations.
x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

.

Step-by-Step Solution by Using CRT

Step-1. Verify Coprimality and Calculate Product M

• The moduli 3, 5, and 7 are pairwise coprime.
• Calculate the product of the moduli 3× 5× 7 = M is 105.

Step-2. Calculate Mi for each modulus

• M1 = M/3 = 105/3 = 35
• M2 = M/5 = 105/5 = 21
• M3 = M/7 = 105/7 = 15

Step-3. Find the Multiplicative Inverse ti ≜ (Mi)
−1 mod mi

• For M1 = 35, we need t1 such that t1 × 35 ≡ 1 (mod 3). Testing small
values, t1 = 2 works as 2× 35 = 70 ≡ 1 (mod 3).

• For M2 = 21, we need t2 such that t2× 21 ≡ 1 (mod 5). Here, t2 = 1 works
as 1× 21 = 21 ≡ 1 (mod 5).

• For M3 = 15, we need t3 such that t3× 15 ≡ 1 (mod 7). Here, t3 = 1 works
as 1× 15 = 15 ≡ 1 (mod 7).

Step-4. Compute x Using the CRT Reconstruction Formula

• Using the formula x =
∑

i rit1Mi (mod M) where ri are the remainders.
That is,

x = 2 · 2 · 35 + 3 · 1 · 21 + 2 · 1 · 15 = 233 ≡ 23 (mod 105).

Thus, the solution to the above congruence system is x = 23.

C Numerical Data for Figures

27

Table 4. Numerical results depicted in Figure 4.

n Without CRT (ϕ) With CRT (ϕ) Compression (ϕ) Number of Moduli
8 7 128 3
9 8 256 3
10 15 512 2 3
11 23 1024 2 3
12 30 2048 3 3
13 58 4096 4 3
14 78 8192 6 3
15 169 16384 9 2
16 259 32768 15 2
17 383 65536 25 2
18 649 131072 38 2
19 1106 262144 64 2
20 2724 524288 101 2
21 4961 1048576 174 2
22 8881 2097152 266 2
23 16851 4194304 567 2
24 40185 8388608 1052 2
25 78165 16777216 1787 2
26 138984 33554432 3970 2
27 277512 67108864 5911 2
28 750000 134217728 9853 2

Table 5. Numerical results depicted in Figure 5.

n 14 15 16 17 18 19 20 21 22 23 24 25 26 27

CRT min 1 1 2 2 3 4 7 10 11 15 19 27 34 43

CRT Max 14 20 22 33 41 53 79 92 113 118 152 167 165 207

Original min 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Original Max 2 2 2 2 2 2 1 1 1 1 2 1 2 1

