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Abstract

This is a survey on the One Time Pad (OTP) and its derivatives,
from its origins to modern times. OTP, if used correctly, is (the only)
cryptographic code that no computing power, present or future, can
break. Naturally, the discussion shifts to the creation of long random
sequences, starting from short ones, which can be easily shared. We
could call it the Short Key Dream. Many problems inevitably arise,
which affect many fields of computer science, mathematics and knowl-
edge in general. This work presents a vast bibliography that includes
fundamental classical works and current papers on randomness, pseu-
dorandom number generators, compressibility, unpredictability and
more.

1 The beginning of modern cryptography

There are several books on the history of cryptography, see [52], [60], [10],[8],
[9], [29], [57], [70]. These texts also contain the basics of cryptography.
You can find both the history of cryptography and its modern addresses in
William Easttom’s beautiful book [34].

We can trace the beginnings of modern cryptography back to 1467, the
year of the publication of the book De Cifris, by Leon Battista Alberti. In
this text, an encryption tool is described in detail. There are two concentric
discs, one of which is movable and can rotate inside the other. The symbols
of the alphabet are imprinted on the discs, so that a rotation of a certain
angle corresponds to a permutation of the alphabet itself. The method there-
fore consists in replacing one symbol with another, in a reversible way, as in
the ancient so called monoalphabetic substitution codes. However, there is
a fundamental difference: the permutation may be changed for each letter of
the text. For this reason these are called polyalphabetic substitution codes,
or Vigenère codes. Blaise de Vigenère, in his book Traicté des Chiffres, writ-
ten in 1586, divulged and improved the ideas of Alberti and his successors
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Giovan Battista Bellaso and Giovanni Battista Porta. Vigenère’s fundamen-
tal contribution can be seen in the explicit use of the key (see [8], Chapter
3).

We describe the polyalphabetic substitution method with modern termi-
nology.

We call alphabet a set A of q symbols. S is the set of all permutations
of A. A string of permutations s = σ1 σ2 . . . σk, where σi ∈ S, is a key. We
call k the length of the key. A message M is a string of symbols from A,
M = x1x2 . . . xt.

M is encoded by the function Es in this way

Es(M) = σ1(x1)σ2(x2) . . . σk(xk)σ1(xk+1)σ2(xk+2) . . . (1)

Vigenère’s idea is very effective. The statistic of the message is com-
pletely destroyed. The statistic of the message is the frequency distribution
of the q symbols that appear in the message. An investigation based on the
relative frequencies of letters is useless. However in 1863 Friedrich Kasiski
realized that, if the keyword length k is known, the problem of breaking a
polyalphabetic substitution code can be reduced to that of deciphering k
monoalphabetic codes.

In fact the symbols x1, xk+1, x2k+1, . . . , xhk+1 will be encrypted by the
permutation σ1, the symbols x2, xk+2, x2k+2, . . . , xhk+2 will be encrypted by
the permutation σ2, and so on.

This is a truly algebraic idea: a complex code is broken into the direct
sum of k simple codes.

If the keyword has length k, we construct, taking one letter every k, k
messages, each one of which has been encoded with a single permutation σi.

Finally a statistical attack is used on each of the k messages found (see
e.g. [8], 3.3).

This attack is possible, because a one-letter substitution code does not
change the statistic of the message.

Kasiski himself proposed a method for finding the length of the key, but
today we have much more effective systems, for example the Friedman index.

Despite this weakness, we observe that there are still studies and appli-
cations of Vigenère’s method ([45], [11], [79], [99]).

2



2 The Friedman index

William Friedman, an eclectic scientist ([43]), was one of the most renowned
cryptographers in history. He even studied ([83]) the famous Voynich Manuscript!
He introduced the coincidence index in 1922 ([38]). This is a very fundamen-
tal idea. Given a text T written by using q different characters, the index of
coincidence I(T ) is the probability that by taking at random two symbols in
the text, they are equal. Supposing that T contains n characters and that
the i− th symbol appears ni times, then I(T ) is given by the formula

I(T ) =

q∑
i=1

ni(ni − 1)

n(n− 1)
(2)

By calculating the average of I(T ) for many texts written in a given language
L, we determine a coincidence index for L itself, I(L). We call random lan-
guage R(q) that one in which each of the q characters is randomly selected
with probability 1

q
. Obviously I(R(q)) = 1

q
. If we encrypt a text T with a

Vigenère cipher, with key K, obtaining the ciphertext EK(T ), we will ob-
serve that I(EK(T )) approaches I(R(q)) by increasing the length k of the
key. This fact can be used to determine the length of the key. Let’s take a
couple of examples..

First of all, let’s update the Vigenère cipher, so that we can encode every
byte string.

Symbols are bytes, which are 8-bit numbers, ranging from 0 to 255. A
text T is a string of bytes of length n. Key K is a string of bytes of length
k. We then apply the method (1), where the permutations σi are simply
cyclic shifts of the byte sequence. Coding starts by repeatedly writing K
under T and then adding byte per byte modulo 256. For example, if T =
(144, 90, 69, 102), k = 3 and K = (70, 200, 240) then the text T encrypted
with the key K is

EK(T ) = (144, 90, 69, 102) + (70, 200, 240, 70) mod 256 =

(214, 34, 53, 172)

So from our point of view, a text is simply a finite sequence of bytes. Any
file on our computer can be considered text, reading it one byte at a time.
Notice that we have 256 characters, but each text has its own particular q,
which is the number of distinct bytes that appear in it. Given a text T and
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an integer d, we define Td as the text that is obtained from T taking one
character every d. Finally, we define I(T, d) as the function I(T, d) = I(Td).

Suppose T was encrypted with a key K of length k and CK = EK(T ).
Then all the characters of CK have been encrypted with the same permuta-
tion and, in the graph of I(CK , d), as d varies, we will observe peaks corre-
sponding to the multiples of k. We will then find the length of the key.

Let’s come to the examples. The T text considered is the dante.txt file,
the complete text of the Divine Comedy. It contains 573753 characters.

We calculate the coincidence index of T with the formula (2). In this case
q = 82, because there are 82 different bytes.

We get I(T ) = 0.06217, while the index of a random text with 82 symbols
is 1/82 = 0.01219.

The graph of the function I(T, d), with 1 ≤ d ≤ 200 is

Now we encode T with Vigenère and a random key K with k = 30.
We have C = EK(T ).
The graph of the function I(C, d), with 1 ≤ d ≤ 200 is

In C there are q = 256 distinct characters (i.e. there are all), I(C) =
0.00590 and 1/256 = 0.00390.
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It is clear that the highest peaks are at multiples of 30. The minor
peaks correspond to the length divisors. In this way, by examining only the
ciphertext C, we find out the length of the key!

Note that this technique does not require you to know in which language
the text is written, it does not make direct use of the I(L) index. It is based
solely on the fact that the language used is structured, not casual. That is,
it is based on the difference between I(L) and I(R(q)) . This difference is
seen in the peaks of the graph, which appear when d is a multiple of the
key length. In fact, in this case, the sub-text examined has been encrypted
with a mono-alphabetical substitution code, and therefore it maintains the
statisics of the language L .

So let’s take an example with a completely different type of file, an exe file.
Let’s take the gp.exe file, the executable of the beautiful computer algebra
system Pari/Gp.

This is the graph of I(gp.exe, d), 1 ≤ d ≤ 200

In gp.exe contains 245248 bytes, and q = 256.
We have I(gp.exe) = 0.00640725, while I(R(256))= 0.00390625.
As before we encode gp.exe with Vigenère and a random key K with

k = 30.
We pose S = EK(gp.exe).
The graph of the function I(S, d), with 1 ≤ d ≤ 200 is
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The index of the encoded text S, I(S),dropped from the original 0.00640725
to 0.00397486. Peaks are clearly visible at multiples of 30.

Using the Friedman index, by analyzing the graph of I(S, d), whoever
intercepts the encrypted message S can find out if it has been encoded with
a polyalphabetic substitution code, and know the length of the key, without
knowing anything about the nature of the original text. Obviously, not
knowing the language of the source, it will not be possible, in the decryption
phase, to use a statistical attack.

As noted in [2], although substitution codes are not safe in themselves,
they are used as constituent parts of other, more powerful codes. It is there-
fore important to thoroughly examine the vulnerability of these systems.
And it is necessary to do it automatically, given the immense amount of
data in circulation. Several types of algorithms are used, including genetic
and compression, see [31], [2], [48], [87].

A variant of the Friedman index, called the Progress Index of Coinci-
dence (PIC), was used in [96] to define a good fitness function for a genetic
algorithm that is capable of breaking the Enigma code.

The index of coincidence is also used in fields other than cryptography.
For example in [100], where a distance between human languages is intro-
duced, and in [39], where the use of this index is proposed to determine new
patterns and evolutionary signatures in DNA sequences.

The Friedman index (also known as the Kappa index) is an important
research tool, and certainly deserves further study on it.

3 Enigmatic Perfection

In polyalphabetic substitution ciphers, the key must be long. The longer
the key, the closer the Friedman index of the text approaches the index of
the random language, and, consequently, the peaks in the graph are hardly
detectable.
Furthermore, of course, the key must be unpredictable.

In Germany, a machine was produced, the Enigma machine, which trans-
formed a plaintext into the ciphertext, changing the permutation used for
each letter that was written. If the source text is formed by the characters
x1, x2, . . . , xn then the xi is encoded with the permutation σi. The permuta-
tions are changed by rotating some disks. The permutations were repeated
periodically, but the period (i.e. the length of the keyword) was very large,
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tens of thousands of characters. The Enigma code was broken by the collec-
tive work of two teams of researchers, resident in England and Poland. The
best known of them is Alan Turing ([25]), one of the founders of computer
science and complexity theory.

For the history and operation of the Enigma machine see [8] Ch. 8, [29]
Ch. 8− 9, [57] Ch. 4− 5, [23], [98], [53].

The events that marked the breaking of the Enigma code were really
interesting, even at a theoretical level and developed, among other things, a
fruitful dispute between algebraists and probabilists, see [70] p. 70− 76.

Trying to decrypt some short messages, encoded with the Enigma ma-
chine, is still a challenge today, and can be very instructive, see [90], [77],
[78].

Tackling the Enigma remains an excellent benchmark for new automatic
decryption methods.

To proceed further, it is useful to reduce the Vigenère method to the
essential. Let us consider the alphabet formed only by the two symbols 0
and 1, the bits. A key is a string of permutations of the alphabet. In our case
there are only two permutations: the identical one and the one that swaps 0
and 1. We can then forget about permutations and instead use the bit XOR,
that is the sum modulo 2. The key becomes a string of bits, 0 stands for
the identical permutation and 1 stands for the swap. We want the key to be
long, so take it as long as the message! We want it to be unpredictable,so
we choose the bits at random!

This is the OTP (One-Time Pad), the central figure of our story.
In [13] it is proved that the inventor of the OTP was Miller, who discov-

ered it about 35 years before the two re-discoverers, Vernam and Mauborgne.
Usually the OTP is called Vernam code or perfect code.

We recall the definition of the OTP code.
The message M is a n bit string, of arbitrary length n. The key K is also

a n bit string.
M = x1, x2, . . . , xi, . . . , xn

k = k1, k2, . . . , ki, . . . , kn

The encrypted massage C is obtained by XORing the bits of the message
with those of the key.

C = c1, c2, , . . . , ci, . . . , cn

where ∀i, ci = xi + ki mod 2.
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Four conditions must be met for the OTP code:

1. the key must be as long as the message

2. the key must be random

3. the key must be used only once

4. the key must be kept secret.

In 1949 Claude Shannon ([92]) proved that the OTP code is (the only)
perfect code. This means that if the text T has been correctly encrypted with
OTP, obtaining the text in cipher C, whoever intercepts C cannot obtain any
information about T , regardless of the computing power at his disposal.

The reason is this: C can come with the same probability from any text
U , of the same length as T .

Even the brute force attack is not effective. If T is long n there are 2n

texts of equal length. And there are 2n keys K. If we take all the keys one
by one and calculate C XOR K we will find, in an unpredictable order, all
the possible messages U , and we will never know which one was really sent!

It is clear that there is a major key management problem in the OTP.
The key must not only possess the qualities 1,2,3,4, but, of course, it must be
shared between those who send the message and those who can legitimately
receive it. Now the question arises, if A and B can share, on a secure channel,
a n bit key, why don’t they directly share the message M , which has the same
length?

There are many ways to overcome these difficulties. OTP has actually
been used in the past, in communications that required a very high degree
of security ([8] p. 103− 115, [52] p. 714− 731).

Particularly interesting was the SIGSALY system, designed to encrypt
telephone conversations.

With the Sigsaly machine an attempt was made to realize OTP in the
transmission of voice conversations. The voice was digitized and compressed
(to save bandwidth). Eventually it was represented by strings of integers
between 0 and 5. A key string was added to the entry string modulo 6. The
key was simply derived from a 16 inch vinyl record. Obviously, the record
had to be the same for whoever spoke and who received. In the decoding
phase the key was subtracted modulo 6.

SIGSALY was never broken. Turing also took an interest in it and carried
out his own project to improve it ([36], Ch. 7).
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SIGSALY weighed 50 tons, and the record was enough for ten minutes of
broadcast. Nowadays everything has changed, thanks to technology.

We can easily use our laptop to transmit OTP encrypted texts, imitating
the SIGSALY process. My message M is a string of n bits. The only problem
is sharing a string of n bits (the key) with the receiver R. There are billions
of terabytes available on the net! R and I download the same text from the
network (or piece of music, or painting or any digital object), we perform the
same preprocessing operation on it, to destroy any internal structures (for
example we zip the file), we take n bits from a certain position, and we have
the common key K! So I send on the network C = M XOR K, and R, when
it receives C, computes C XOR K.

I could also transmit to R the key K, which I produced, hiding it, by
means of steganography, in an image file, or the like. We can share the
address of a huge database with an algorithm that compute the sequence
of the objects to be used and the starting points. This would provide a
substantially unlimited key, to be used as many times as desired, always
taking different parts. It is a pattern whose technical details can be bridged
in many different ways. This is why there are so many articles that revolve
around similar concepts.

It is not possible to quote all relevant articles, to trace a complete history
of what we might call the actualization of the OTP. See these works and
their bibliographies: [85], [74], [26], [102], [76].

There are very recent applications to new cryptographic methods and
modern technologies, for example to Single Sign-On ([54]) and Wireless Com-
munications ([61]).

A very interesting idea is to put together OTP and DNA. For the funda-
mentals of the theory see [40] and [17].

As observed in ([103]) there are at least two ways to use DNA: manipulate
it directly in a laboratory with biochemical tools, or simply consider it as a
code. The genetic code is a four base sequence A - adenine, C - cytosine, G -
guanine, T - thymine, which can be easily converted into a binary sequence,
by means of substitutions

A→ 00 C → 01 G→ 10 T → 11

These binary strings are manipulated so that they can be used as keys in the
OTP ([18]).

A DNA based (biochemical) method for random key generation and OTP
management is presented in [103]. In [80] a one-time-pad cipher algorithm
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based on confusion mapping and DNA storage technology is proposed. There
is also a very recent implementation in Python ([1]).

4 OTP approximations

One of the advantages of DNA encryption is that you can share keys using
huge databases that are public (e.g. The National Center for Biotechnology
Information).

However, in reality, as we have already noted above, we can try to use
OTP easily. It is sufficient (for example) that one of us gives or sends to the
other one a DVD containing a long string of bits (≈ 1014). The string, with a
particular segmentation and synchronization program, can be used as a key
for many encrypted OTP communications.

Can we trust the keys taken from our disk? Let’s look at the question.
Shannon ([92]) showed that to achieve perfection it is necessary that the
space of the keys be as large as that of the messages. Therefore 2n keys
must be available. That is, any binary string of length n must be available
as a key. The single key used can be any string. What matters is that we
must have chosen it, with uniform probability, in a basket that contains all
the strings of length n. It is therefore not very credible that the conditions
necessary for the application of Shannon’s Theorem are verified.

Our dream would be this: to be able to use a short key, which can be
easily shared on a secure channel, and then use it with OTP in its perfection.
It seems an impossible dream, but it can be realized if we are satisfied with
an approximate perfection.

In a seminal paper from 1992, Ueli M. Maurer presented a new approach
in which a public source of sequences of random bits is used. Let’s see in
detail Maurer’s method.

Suppose that userA wants to sendB the n-bit message M,M = (x1, x2, . . . , xn).
The publicly-accessible R is an array of independent and completely ran-

dom binary random variables. R consists of m blocks of length T . The block
i, with 1 ≤ i ≤ m contains the bits (R[i, 0], R[i, 1], . . . , R[i, T − 1]).

Now A creates a secret key Z, Z = (Z1, Z2, . . . , Zm), where 0 ≤ Zh ≤ T−1
for every h. Z must be chosen from the set (0, 1, . . . , T − 1)m with uniform
probability. A sends Z to B on a secure channel.

Using Z, A builds the key K, to be used with OTP.
We set S[h] = (R[h, Zh+j−1] mod T ) with 1 ≤ h ≤ m and j = 1, . . . , n.
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Finally the OTP key is K = ⊕m
h=1S[h].

A sends to B the message C = K⊕M . Even B can calculate K, because
he knows Z and R is public, and finds M = K ⊕ C.

We always assume that T � n. R contains L = mT random bits. The
binary length of the secret key Z is ≈ m log2 T . Those who know Z must
examine only mn of the L bits, that is a very small fraction n/T . Let’s
imagine that the opponent can, with the best strategy (even probabilistic),
examine N bits. Mauer proves that if a certain event E occurs, the code is
safe in Shannon’s sense, i.e. the opponent cannot obtain any information
about the plaintext X from the ciphertext C. The nature of the event E is
not important, what matters is its probability, P (E). Maurer proves that
P (E) = 1− nδm. This probability is extremely high, because δ = N

L
.

Maurer’s Theorem is based on the fact that the opponent is storage-
bounded, and can only examine a delta fraction of the bits of R.

Let’s take an example. I want to send B a document X containing 227

bits, about 100 Mb. With the classic OTP I would have to share with B
a random string (the key) of 100 Mb. Instead, I apply Maurer’s method
assuming m = 40 and T = 1010. Suppose that opponent’s limit forces him
to examine no more than 1/3 of R, i.e. delta = 1/3. I create a secret key
Z, which will be about 1328 bits long, as m log2(T ) ≈ 1328. I share Z with
B, and send the encrypted text C. By intercepting C, the opponent cannot
have any information about X, with probability 1− 227(1/3)40 = 1− 10−11.

Mauer’s idea was revived, modified and perfected by Rabin and others,
see [28], [82], [88].

In [88] the short key dream is essentially fulfilled. The final key, which
complies with Shannon’s requirements, is created through an ingenious pro-
cess of manufacturing intermediate keys. With an iterative method, the au-
thor shows that the relationship between key length and data can be made
as small as desired, at the cost of increased computational complexity. So,
surprisingly, the birth of quantum computers or other extremely powerful
devices will not facilitate the breaking of the code (which is impossible, as
we know) but will make the encoding of messages with OTP very fast, and
the key very short!
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5 The Need for Randomness

We need randomness in everyday life. Pizza or pasta tonight? We flip a coin,
or do odds and evens. As Hayes says in [47], there is a real Randomness
Industry. Inside each slot machine there is a special chip that continuously
calculates random numbers. Immense amounts of random numbers are used
every second around the world in video games, simulations, optimization
algorithms, probabilistic algorithms, Monte Carlo methods and, we know,
cryptography.

Any cryptographic system requires the use of keys. A sure rule is that
there are no secure systems with keys that are too short, for the simple reason
that, if the key is n bits long, with a brute force attack it is enough to find
all 2n keys. On the other hand, with a key of a few hundred bits we would
like to encrypt messages of many thousands of bits.

We limit ourselves in this survey to stream codes, direct emanations of
our OTP, which can be considered their prototype.

It is important to note that many block ciphers, for example AES, can
be used as stream codes, using techniques such as Output Feedback (OFB)
and others, recommended by NIST ([32], [33]).

In general, the encoding in a stream code occurs exactly as in OTP. We
have a stream of binary messages m1, ..,mt, .. and keys k1, .., kt.., we get a
stream of encrypted messages cj = mj ⊕ kj.

The key stream is generated from an initial secret and, of course, random
key K. If A and B want to communicate, they share K and both generate
the same key stream. For reference texts see [86] and [55].

During the 10th International Conference on the Theory and Application
of Cryptology and Information Security (2004), Adi Shamir gave a lecture
entitled Stream Ciphers: Dead or Alive? ([91]). In his presentation, Shamir
talked about a decline of stream ciphers, unlikely to be reversed in the near
future. However, the author highlighted two particular areas, in which stream
ciphers could have maintained priority. He said “I believe that stream ciphers
will remain competitive in two types of applications: a) hardware oriented
scheme with exceptionally small footprint (gates, power consumption, etc)
b) software oriented scheme with exceptionally high speed”

These considerations sparked a lively discussion and in the same year
(2004) eSTREAM: the ECRYPT Stream Cipher Project was launched. The
competition ended in 2008. A full description of the finalists can be found in
this book [84]. For a survey on stream ciphers see [50].
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The research focuses on particularly fast or light stream codes.
Among the fastest codes there are Rabbit ([16]) and Salsa family ([14],

[73]).
Lightweight Cryptographic Algorithms are increasingly important in the

IoT. They are especially needed when dealing with small medical implants,
battery-powered handheld devices, embedded systems, RFID and Sensor
Networks, see Nist Internal Report [69]. A detailed study of Low Energy
Stream Ciphers is here [7].

Everything we have seen requires the use of random bit strings.

6 Randomness

Let us begin by remarking that these bit (or number) sequences are produced
by programs running on ordinary computers, and are therefore completely
deterministic.

Calling them random seems strange. In fact they are said pseudo random.
Their generators are called PRNG, Pseudo Random Number Generators.

Thousands of articles have been and will be written about them ([12]).
What do we mean by a random sequence?
Goldreich, in [44], summarizes the basic concepts of the three main the-

ories very well.

1. In his Information Theory (1948) Shannon characterizes perfect ran-
domness as the extreme case in which the string of symbols does not
contain any redundancy, i.e. there is a maximum amount of informa-
tion.

2. Solomonov (1960), Kolmogorov (1963) and Chaitin (1965), founded the
second, computational theory. The complexity of a string is essentially
the length of the smallest program that can generate it. In essence, if
a string is truly random, a program must contain it in order to express
it.

3. Blum, Goldwasser, Micali and Yao began, in the years 1982 − 84, the
third theory which pays attention to the actual computation. A se-
quence is random if we do not have computational procedures to dis-
tinguish it from a uniform distribution.
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Chaitin-Kolmogorov’s theory is fascinating, because it makes it possible
to deal with the randomness of a single string, without resorting to any
probability distribution ([22], [19], [62], [30], [93], [37]).

According to it we see that three concepts are essentially equivalent: ran-
domness, incompressibility and unpredictability.

This is also in accordance with our intuition. A random event cannot be
predictable, and in order to compress a string of bits it needs to have some
regularity.

There are many efficient compression algorithms available today. The
compressed text is expected to approach a random text. In this context,
some compressors are studied in [56], and it is proved that arithmetic coding
seems to produce perfectly random output.

If we delve into the subject, several surprises await us.

7 Incompressibility

We say that a string of n bits is c-incompressible if it cannot be compressed
more than c bits. A simple counting argument ([62], p. 117) shows that
there are at least 2n − 2n−c + 1 c-incompressible strings. So there is at least
one n-bit string that cannot be compressed even by one bit, at least half of
the strings are 1-incompressible, the three quarts are 2-incompressible and
so on.

The extreme majority of strings are very little compressible, and therefore
highly random!

Can any relationship exist between the infinity of prime numbers and the
incompressibility of information?

There are many different proofs of the infinity of primes. Often they are
based on the fact that if the primes were finite, something would happen
which is false. We have also made one [21]. If primes were finite, N would
be a field!

A proof I love is due to Chaitin (see [19] p. 361). If primes were finite,
almost everything would be compressible.

Suppose there are only k primes, p1, p2, ..., pk. Given an integer N > 1,
by the unique factorization theorem, we will have

N = pe11 p
e2
2 · · · p

ek
k

Clearly we have k ≤ log2N and ∀i, ei ≤ log2N .

14



The number N is identified precisely by the string of exponents e1, ..., ek.
These exponents are integers ≤ log2N and can therefore be expressed (each)
by log2 log2N bits.

In conclusion, every integer N can be expressed by

k log2 log2N (3)

bits.

Let us take a string M containing m bits. This uniquely identifies an
integer N of m bits, of order 2m.

By (3) N , and hence M , is determined by a string of k log2m bits.

There exists m0 such that

∀m > m0 m > k log2m

From this we deduce that all sufficiently long bit strings are compressible!
But we know very well that this is not true.
What if we insist on compressing everything?
Of course this is possible, if we accept that we cannot go back, that we

lose information. For example, given a message M of n bits, with n large, we
can decide to take the first 128 bits of M. This does not seem very useful.

However, it would be convenient to create, for each message M of length
n, a kind of 128-bit fingerprint, which would uniquely identify it. This is
clearly impossible, if n > 128, but hashing techniques try to come close to
this dream.

Hash functions are very important in cryptography. A hash function H
transforms a message M of any length n into a string of fixed length m.
Typically m is 128 or 256.

A cryptographic hash function H must satisfy two conditions:
- given y = H(x) it must be computationally difficult to find x
- it must be computationally difficult to determine x and x′ such that

H(x) = H(x′)
Two other properties, not easily formalized, are required in practice.
The hash H(x) must appear random (here we go again) even if H is

perfectly deterministic. It is also required that H is sensitive to initial con-
ditions. In the sense that, if we change a single bit in x, about half of the
bits of H(x) change.
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Hash functions are public and intensively used, see Ch. 9 of [34], Ch. 7
of [49].

Hash functions have a thousand uses, ranging from database indexing
to electronic signature (it is much faster to sign H(M) than M). They are
used in many cryptographic protocols, such as bit commitment and password
management. Precisely in this last area we have patented a system that
contains a rather interesting hash function,based on the Chinese Remainder
Theorem ([81]).

As is known, bitcoin was introduced by Satoshi Nakamoto in 2008 ([75]).
Hash functions are the real engine of the so-called mining that bitcoin uses:
one must find an x such that H(x) ≤ t, where t is a target 256 bits string, see
Ch. 2 of [27] and 10.5 of [49]. Thanks to bitcoins, through hash functions,
randomness passes directly into the economy, and earning capital becomes
a worldwide lottery. Bitcoin mining involves an enormous consumption of
energy. For an in-depth analysis of the impact of bitcoins on the economy
and the environment, see [5].

8 Unpredictability

We say that a sequence of bits S = (bn) is unpredictable if it passes the
next bit test ([58], §6.1), i.e. if there is no polynomial time algorithm which,
receiving the first n−1 bits of S as input, returns the nth bit with probability
p > 1/2.

In a truly masterful article ([15]) L. Blum, M.Blum and M. Shub examined
the predictability of two PRNG.

One of them is the quadratic generator.
Let N = pq, where p, q are primes congruent to 3 modulo 4. We choose

an integer x0, the seed.
Then we produce the sequence

xn+1 = x2n mod N

The random bit sequence generated is bn = xn mod 2.
The authors prove that the sequence bn is unpredictable, as long as you

don’t know how to factor N .
In their article BBS studied a second generator, besides the quadratic

one, the 1/P generator, which is truly remarkable.
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P is a prime number, and b is a basis. If b generates the multiplicative
group Z∗P , the expression of 1/P in base b has period P − 1. We can thus
obtain very large periods, since today it is easy to find prime numbers with
hundreds of digits.

If b generates Z∗P , you get long strings of b−digits, which pass the statis-
tical tests with good results.

Surprisingly BBS show that the 1/P generator is easily predictable: in
fact it is sufficient to know 2l consecutive digits (where l is the length of P in
the base b) to deduce the entire period. The method is based on continued
fractions.

In general, the length of the period alone does not guarantee security. For
example the Mersenne Twister has a huge period, 219937 − 1 but, as stated
by the authors themselves (see ([67])), it is not suitable for cryptographic
purposes: indeed the output of the algorithm becomes a linear recurring
sequence by applying a simple linear transformation.

In prediction problems, it is natural to use Soft Computing or Artificial
Intelligence techniques.

A few years ago, with Mario Giacobini and Pierre Liardet ([20]), we stud-
ied the prediction capabilities of Finite State Automata (FSA), evolving pop-
ulations of automata using Genetic Algorithms.

The underlying idea was to use the evolutive ability of prediction of the
algorithm to get measures of the randomness of the sequence. Among other
things we found that

- the evolved prediction skills are in inverse proportion to the period
length of the considered sequence;

- the evolution of FSAs prediction skills seems to be directly linked to the
linear complexity of the sequences considered.

These last two conclusions make us hope that the evolution of FSAs could
be used as a measure of the randomness character of a binary string.

In ([95]) T. Smith considers automata of different types for the prediction
of infinite strings with various types of periodicity.

These machines, called predictors, can have multiple heads that at each
step move along the assigned infinite sequence, read the symbol, change state
and make a guess about the next symbol before it appears. This interesting
paper describes new prediction algorithms for the classes of purely periodic,
ultimately periodic, and multilinear words.

The sequence of the digits of Pi (in any basis) is believed to be random
(see §10). Therefore, the results of Fa and Wang are surprising. In ([35])
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Fenglei Fa and Ge Wang use Neural Networks to make predictions on the
bits of Pi. Their neural networks predict the next bit (of 6 bit strings) with
probability > 1/2.

The authors also apply the method to strings generated by PRNG. They
conclude that neural networks, even very simple ones, can extract useful
information for prediction from the data (if we are not in the presence of
maximum entropy, or total disorder).

In the remarkable article by Taketa et al. [97] it is observed that neural
networks learn to predict the next bit with a particular sensitivity to the
linear complexity of the sequence.

The field of machine learning in pseudorandom sequence prediction is just
beginning and is truly fascinating.

9 Pseudo Random Number Generators

Most of us would like to have a TRNG (Truly Random Number Generator)
available. On the net there are several sources, see www.random.org. A now
classic is www.fourmilab.ch/hotbits: HotBits are generated by timing succes-
sive pairs of radioactive decays detected by a Geiger-Müller tube interfaced
to a computer.

This may not necessarily be the best choice. As Donald Knuth observes
in [59] p. 145, ”a truly random sequence will exhibit local nonrandomness”;
there will certainly be, for example, sequences consisting of a million consec-
utive zeros. OTP would send a million bits as plain text!

Here, as we said, we make do with PRNGs.
At the beginning of the chapter on random numbers (now a classic of the

subject, recommended to all), Knuth recalls a fact from his youth. He built
a very complicated algorithm to generate random sequences. Unfortunately
when it was activated on the computer, sequences were observed that were
repeated with a very short period! This is Knuth’s ([59], p.5) conclusion:

“The moral of this story is that random numbers should not be generated
with a method chosen at random. Some theory should be used. ”

Theory, examples and applications can be found here: [34] Ch. 12, [51]
and [58].

[51] is particularly suitable for engineers and programmers, and also con-
tains valuable information on the actual use of many programs.

Also in [58] there is a particular attention to programming. It is a very
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well written text, rich in content. I found enjoyable the use of the Monty Hall
Dilemma ([72], Ch.3) which is proposed, with C-code and concrete examples,
as a test of randomness!

Cryptography requires random sequences of a particular type: see the
overview [66] which states that one of the most important characteristics is
that of unpredictability. In the survey [3], in addition to these problems,
quasi-random numbers are also considered.

In practice it is not possible to know a priori the qualities of a PRNG,
it must be subjected to batteries of randomness tests. Many of them are
currently in use, we quote Ent, Diehard, NIST, TestU01. See [58] Ch. 4,
[51] Ch. 8 − 11, the important article of Shen [94] and the recent ACM
recommendations [63].

10 Irrational Randomness

As we saw in §4, talking about DNA and the ideas of Mauer and others,
OTP can be realized starting from a large and public database of random
bits (or numbers). If really big, we wouldn’t even need to change it. Users
only need to share the access points and formatting algorithms. This is a
great idea, and it is revived periodically, in ever new ways.

In [24] the author wonders if it would be better to extract rather than
expand. The classical OTP is revisited, then the expansion paradigm is
compared to the idea of extraction. Users A and B only need to share a
”mother pad”. Gualtieri in [46] suggests using the sequence of the digits
of Pi. Naturally then each author proposes his own method to manage the
common source of randomness.

But are Pi’s digits really random? Marsaglia’s authoritative opinion is
positive, see [64] and [65]. There has been much debate on the question,
see for example [41], [6] and [42]. Empirically π seems to pass all tests of
randomness ([71]).

We try to understand how random π is also in a qualitative way, mainly
visual, look at the beautiful Walking on real numbers ([4]). π is indistinguish-
able from the sequences generated by PRNG even in the fractals produced
by Chaos Games ([89]). It seems that the first to walk on the π digits was
Venn ([101]). Pi was developed in base 8, and each digit 0, .., 7 was associ-
ated with a direction. Of course numbers other than π can be used, we have
uncountable choices! Venn’s idea is used below to see the first 4000 digits of
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π, e and cos(1) (left to right)

, ,

I believe that visualizing the numbers in a meaningful way is a very important
project to pursue, we are only at the beginning of a great adventure!

To conclude, we can say that the Short Key Dream can also be realized
in a different way: just whisper in your friend’s ear (assuming the necessary
technical details have been shared) ”cos(5)”.
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