
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

cuTraNTT: GPU-based Transposed Number
Theoretic Transform with Low Latency

Homomorphic Encryption for IoT Applications
Supriya Adhikary, Student Member, IEEE, Wai Kong Lee, Member, IEEE, Angshuman Karmakar, Member, IEEE,
Yongwoo Lee, Member, IEEE, Seong Oun Hwang, Senior Member, IEEE, Ramachandra Achar, Fellow, IEEE,

Abstract—Large polynomial multiplication is one of the com-
putational bottlenecks in fully homomorphic encryption imple-
mentations. Usually, these multiplications are implemented using
the number-theoretic transformat to speed up the computation.
State-of-the-art GPU-based implementation of fully homomor-
phic encryption computes the number theoretic transform in two
different kernels, due to the necessary synchronization between
GPU blocks to ensure correctness in computation. This can be
a serious limitation in embedded systems that only have con-
strained computational resources to support the time-consuming
homomorphic encryption. In this paper, we proposed a series
of techniques to improve the performance of number theoretic
transform targeting homomorphic encryption on a GPU device.
Firstly, we proposed to arrange the polynomials in a transposed
manner and skip the last two levels of radix-4 number theoretic
transform, allowing us to completely avoid the block synchro-
nization in NTT implementation. This technique improved the
performance of homomorphic encryption by 1.37× and 1.34×
on RTX 4060 and Jetson Orin Nano respectively, compared to
the conventional approach that uses full NTT without skipping
any levels. However, such an approach also introduces extra
overhead in the subsequent point-wise multiplication, which slows
down the homomorphic multiplication. To reduce this negative
impact, a fast 16× 16 point-wise multiplication implementation
was proposed, which relies on the heavily optimized Toom-
Cook 4-way algorithm. Experimental results show that our
proposed homomorphic multiplication can achieve similar latency
compared to Jung et al. and Yang et al., which are the best results
to date. This shows that the proposed cuTraNTT is able to reduce
the latency of homomorphic encryption without sacrificing the
performance in homomorphic multiplication.

Index Terms—Graphics processing units, fully homomorphic
encryption, polynomial multiplication, and number theoretic
transform.

I. INTRODUCTION

The rapid growth of web technologies and digital communi-
cation in the past few decades has led to a huge increase in data
and the development of data processing technologies. This has
resulted in a data-driven era where use of machine learning,
neural networks, and artificial intelligence based methods
have been used to hyperdrive the innovations in the field of
information processing. However, often these technologies rely

Supriya Adhikary and Angshuman Karmakar are with IIT Kanpur, India.
Wai Kong Lee is with Universiti Tunku Abdul Rahman, Malaysia.
Yongwoo Lee is with Inha University, South Korea.
Seong Oun Hwang is with Gachon University, South Korea.
Ramachandra Achar is with Carleton University, Canada.
Manuscript received April 19, 2021; revised August 16, 2021.

on massive computations performed on this data. Delegated
computing technologies such as cloud computing provide
users with the flexibility to store their data and run data
manipulation routines on their data. However, the storage of
data in the cloud is not always reliable as there is a risk of
data leakage and compromise of user privacy. A 2021 Statista
survey [1] found that 64 percent of respondents were most
concerned about data leakage when it came to cloud privacy
concerns. Therefore, ethical handling of data is crucial to
ensure user privacy is protected.

Laws like The Digital Personal Data Protection Bill of India,
the European Union’s GDPR, the Data Security Regulations
of Israel, the Act on the Protection of Personal Information of
Japan, etc., propose laws and guidelines for ethical handling
of data, but these laws are bound by their specific jurisdictions
and have limited effect outside some specific geographical
region. While traditional cryptography provides security for
data at rest and data in motion, but fails to provide security
for data in use. Cryptographic techniques such as Computation
Over Encrypted Data (COED) are the only solutions with
provable security to achieve data privacy for data in use.
These techniques allow running data manipulation routines on
encrypted data. Thus protecting the privacy and integrity of the
underlying data while allowing applications to process the data
as needed. COED consists of Homomorphic Encryption (HE),
Functional Encryption (FE), and Multi-party Computation
(MPC) techniques. Our research mainly focuses on exploring
HE for privacy-preserving solutions in the context of Fully
Homomorphic Encryption (FHE) for delegated computation.

FHE has attracted a lot of attention in the past decade.
Most FHE instantiations are based on the Ring-Learning with
errors [2]. A major operation for such types of FHE is
the multiplication between two large polynomials of degree
216 where each coefficient can be as large as 1600 bits.
Such large multiplications often constitute the bottleneck in
practical deployment of FHE schemes. Therefore, various
acceleration techniques have been proposed to speed up the
execution of FHE on different hardware platforms, including
ASIC [3], FPGA [4] and GPU [5]–[9]. However, GPUs present
a strong basis for FHE implementations. GPUs provide a ver-
satile platform for implementing and optimizing homomorphic
encryption algorithms, making them a preferred choice for
many applications in this domain. Furthermore, given that

0000–0000/00$00.00 © 2021 IEEE

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

many cloud servers already employ GPUs to expedite AI
and machine learning tasks, the integration of homomorphic
encryption into these systems would be notably seamless.
The field of FHE is highly evolving and any change in
security parameters can be done easily in GPU, unlike other
hardware accelerators that require low-level hardware coding
and configuration.

To deploy FHE on the IoT sensor nodes is a challenging
task due to the heavy computations, especially the polynomial
multiplication. There is only one prior work that focuses
on this direction, which was performed by Natarajan and
Dai [10], but they mainly discuss the memory optimization
techniques in FHE for deployment in embedded devices. Our
work differs from theirs as we focus on the implementation
of number theoretic transform (NTT), which greatly affects
the computational time in FHE. This can allow FHE to be
deployed on IoT sensor nodes with a faster homomorphic
encryption speed compared to the prior work.

In this paper, we present several techniques to improve the
performance of CKKS [11] FHE targeting implementation
on embedded devices equipped with GPU. However, it is
important to note that the proposed method can also be applied
to other RLWE-based FHE schemes such as BGV and BFV.
The contributions are summarized below:

1) NTT is the most time-consuming operation in CKKS
FHE scheme. To mitigate this bottleneck, we proposed
an efficient implementation of NTT on GPU by em-
ploying radix-4 Cooley-Tukey algorithm. On top of
that, our NTT implementation is solely based on 32-
bit arithmetic, because GPU is a 32-bit architecture and
naturally supports 32-bit arithmetic. This is in contrast
to existing implementation that are mostly based on 64-
bit arithmetic [7], [9]. Our radix-4 NTT implementation
is 2% faster than [7] on V100 and 1.2% faster than [9]
on A100.

2) Previous implementation of NTT on GPU platforms
requires two separate kernels, which is not optimal due
to the mandatory synchronization between two kernels.
In this paper, we proposed cuTraNTT, a novel technique
that skips two levels of NTT and arranges the polynomi-
als in a transposed manner, thus allowing us to combine
the two NTT kernels into one. This eliminates the block-
wise synchronization found in previous works [7], [9]
and greatly reduces the latency of NTT. Our cuTraNTT
implementation is 6% and 2% faster than [7] and [9],
respectively.

3) Skipping two levels of radix-4 NTT introduces extra
overhead, whereby the original N point-wise multiplica-
tion becomes N/16 many 16×16 polynomial multiplica-
tion. To reduce the impact of this overhead, we proposed
an optimized parallel implementation of Toom-Cook 4-
way algorithm for the 16×16 polynomial multiplication.
Experimental results show that our proposed parallel
Toom-Cook 4 implementation is 29.25% faster than the
original 16× 16 polynomial multiplication.

4) By incorporating these optimization techniques, our im-
plementation of homomorphic encryption (HENC) is
1.37× faster than the baseline version. However, our

Fig. 1. Secure communication flow for IoT applications protected by FHE.

approach does not provide significant gain for homo-
morphic multiplication (HMULT), due to the overhead
introduced by skipping two levels of NTT. Our HMULT
implementation is only 1.2% faster than [9] on an A100
GPU, but 2% slower than [7] on a V100 GPU. Note
that although our work was developed mainly for GPU
implementation, it also benefits an embedded device
without a GPU. This is because the NTT proposed in
this work is still more efficient than the conventional
NTT, due to skipping the last two levels. Hence, this
technique can also be used in microcontrollers [10].

Fig. 1 shows the communication flow of IoT applications
secured by FHE. Client 1 represents the sensor nodes in an IoT
system; it is responsible in collecting sensor data, encrypting
the sensitive information, and sharing it with the cloud server.
Main computation (e.g., machine learning) is performed on
the cloud server, which is considered as untrusted domain.
The results of computation can be sent to the Client 1 and 2
for decryption, in which Client 1 must share a homomorphic
encryption (HENC) key with Client 2. Due to the efficient
NTT implementation, our work is especially useful for the
client side, because the latency of HENC is greatly reduced.
This is especially important for IoT applications, wherein
the clients are implemented using embedded devices that
do not have computational power compared to a desktop
workstation. For instance, a Jetson Orin Nano equipped with
an embedded GPU can utilize our solution to perform HENC
more efficiently than the baseline version.

Note that in this work, We focused on the CKKS parameter
with N = 216 because it allows bootstrapping to be performed.
A parameter smaller than that (e.g., N = 215) cannot support
bootstrapping, and a bigger parameter is usually not necessary
as we are already able to evaluate deep circuit with bootstrap-
ping using parameter N = 216.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

II. BACKGROUND

A. Notations for Fully Homomorphic Encryption

This subsection presents the notations used to describe
the FHE operations in this paper. Given a polynomial ring
R = Z[X]/⟨XN +1⟩, where N is a power-of-two integer, the
residue ring modulo an integer q is denoted as Rq = R/qR.
χs and χe are the secret key distribution and error distribution
over R, respectively. Given a set S, a

$← S refers to the
process of sampling a uniformly or distribution S. For an
integer n, we denote the set {i | 1 ≤ i ≤ n} as [n].
[·]q denotes the modular reduction by q. For any polyno-
mial m(X) =

∑N−1
i=0 miX

i ∈ R, we define [m(X)]q =∑N−1
i=0 [mi]qX

i. For a set of moduli C = {q0, q1, · · · qk},
where {qi}0≤i<k are all coprime to each other, we define
[s(X)]C = ([s(X)]q0 , · · · , [s(X)]qk) ∈

∏k
i=0Rqi . We denote

Φn to be a primitive 2n-th root of unity.

B. Overview of RNS-CKKS

There are four major types of operations in CKKS:
• Element-wise RNS operations between polynomials
• NTT and INTT
• Standard basis conversion used in ModUp and ModDown
• Key-switching and HMULT
1) RNS operation: In CKKS, all polynomials are in the

ring Rq , where q is an interger. For RNS-CKKS, we take
q as a product of multiple primes say q = q0 · q1 · · · qℓ−1
and given a polynomial a ∈ Rq , we consider the RNS-
representation of the polynomial (a(i))ℓ−1i=0 ∈

∏ℓ−1
i=0 Rqi . For

operations like addition, subtraction and multiplication, we
apply the operations element-wise1.

2) Number Theoretic transform: For the multiplication of
two polynomials in Rq , where q is prime, the Number The-
oretic transform (NTT) and its inverse (iNTT) are used. For
any prime q satisfying q ≡ 1 (mod 2N), NTT is a mapping

NTT : Rq →
N−1∏
i=0

Zq[X]/⟨X − Φ2i+1
N ⟩

defined as NTT(f(X)) = (f(ΦN), f(Φ3
N), · · · , f(Φ2N−1

N)).
The function iNTT takes (f(ΦN), f(Φ3

N), · · · , f(Φ2N−1
N)) as

input and returns f(X). By converting a polynomial into
its NTT form, the multiplication of two polynomials can
be performed in the frequency domain using the Hadamard
product, which is very efficient. After the Hadamard product,
the results are converted back to ordinary form using INTT
for further computation.

3) ModUp and ModDown: We describe RNS basis de-
composition for the generalized key-switching and the basis
conversion in CKKS. It is used in approximate modulus raising
(ModUp) and approximate modulus reduction (ModDown),
extending and shrinking the RNS basis of a polynomial,
respectively.

Let B = {p0, · · · , pk−1} and Ci = {q0, · · · , qi−1} for
i ∈ [1, L], where {pi}i∈[0,k), {qj}j∈[0,L) are coprime to each

1For multiplication of two polynomials, the polynomials must be in NTT
domain for element-wise multiplication

other. Let P =
∏

p∈B p and Qi =
∏

q∈Ci q for i ∈ [1, L].
Also consider Q̂′′′j =

∏
qi∈SCL

qi ×
∏

pi∈SB∧i̸=j pi and Q̂′′j =∏
qi∈SCL

∧i ̸=j qi×
∏

pi∈SB pi. The Alg. 1 changes the basis of
an input polynomial [a(X)]SCL

∪SB to S ′CL∪S
′
B approximately.

Algorithm 1 ConvSCL
∪SB→S′

CL
∪S′

B
([a(X)]SCL

∪SB)

(Fast Basis Conversion)
Require: polynomial a(X) under moduli basis SCL ∪ SB.
Ensure: polynomial a(X) under moduli basis S ′CL ∪ S

′
B.

1: for qi ∈ S ′CL ∪ S
′
B do

2: [a1(X)]qi ← [
∑

qj∈SCL
[[a(X)]qj · Q̂′′−1j]qj · [Q̂′′j]qi]qi

3: [a2(X)]qi ← [
∑

pj∈SB [[a(X)]pj
· Q̂′′′−1j]pj

· [Q̂′′′j]qi]qi
4: [ã(X)]qi ← [a1(X)]qi + [a2(X)]qi
5: end for
6: return [ã(X)]S′

B∪S′
CL

Given an integer dnum, let α = ⌈L/dnum⌉. The pa-
rameter dnum divides the basis CL into the bases {C′i =
{qj}j∈[iα,iα+α)}. For a given level ℓ of a ciphertext, let
β = ⌈ℓ/α⌉ ≤ dnum. Before key-switching, CKKS first
decomposes the RNS basis Cℓ into {C′i}i∈[0,β), each of which
is extended to the basis Dβ , where Di = B ∪ (∪0≤j<iC′j).
After key-switching, the basis is reduced to Cℓ.

We define Q′ =
∏αβ−1

i=ℓ+1 qi, Q̂ = PQ′, {Q′j =∏(j+1)α−1
i=jα qj}j∈[0,dnum), and Q̂j =

∏dnum−1
i=0∧i̸=j Q

′
j . The

ModUp, ModDown and the decomposition algorithm (Dcomp)
are shown in Alg. 2, Alg. 3 and Alg. 4 respectively.

Algorithm 2 ModUpC′i→Dβ
([a]C′i)

Require: polynomial a under moduli basis C′i in NTT domain.
Ensure: polynomial ã under moduli basisDβ in NTT domain.

1: ([a(X)]C′i)← iNTT([a]C′i)
2: (ã(j))j∈Ai ← (a(j))j∈Ai ▷ Ai = [iα, (i+ 1)α)
3: [ã(X)]Dβ−C′i ← ConvC′i→Dβ−C′i([a(X)]C′i)

4: (ã(j))j∈([0,k+αβ−1]−Ai) ← NTT([ã(X)]Dβ−C′i)

5: return [ã]Dβ
= (ã(0), · · · , ã(k+αβ−1))

Algorithm 3 ModDownDβ→Cℓ(b̃
(0), · · · , b̃(k+αβ−1))

1: [b̃]Dβ−Cℓ ← (b̃(0), · · · , b̃(k−1), b̃(k+ℓ), · · · , b̃(k+αβ−1))

2: [b̃(X)]Dβ−Cℓ ← iNTT([b̃]Dβ−Cℓ)

3: [ã(X)]Cℓ ← ConvDβ−Cℓ→Cℓ([b̃(X)]Dβ−Cℓ)
4: [ã]Cℓ ← NTT([ã(X)]Cℓ)
5: for 0 ≤ j < ℓ do
6: b(j) ← [Q̂−1]qj · (b̃(k+j) − ã(j)) (mod qj)
7: end for
8: return (b(0), · · · , b(ℓ))

4) Key-switching and HMULT: An FHE-mult between two
ciphertexts (HMULT) followed by rescaling, a function adjust-
ing the scaling factor ∆ of the message, reduces one level of
the ciphertext.

Given two ciphertexts ct1 and ct2, HMULT multiplies two
ciphertexts. RESCALE performs the rescaling operation for ct.
KeySwitch decomposes the input polynomial [d]Cℓ

into [dj]C′
j
,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Algorithm 4 Dcomp(d(0), · · · , dℓ)
1: d(j) ← 0 ∀j ∈ [ℓ+ 1, αβ − 1]
2: for 0 ≤ i < α do
3: d

(i)
j ← d(jα+1) · [Q′]qjα+i · [Q̂−1j]qjα+i ∀j ∈ [0, β)

4: end for
5: dj ← (d

(i)
j)i∈[0,α) ∀j ∈ [0, β)

6: return d⃗ = (dj)j∈[0,β)

where j ∈ [0, β), extends the moduli of the decomposed
parts using ModUp, multiplies them by an evaluation key,
and finally reduces the moduli to the original level using
ModDown.

Algorithm 5 HMULT(ct1, ct2, evk)
1: ct1 → (a1, b1), ct2 → (a2, b2)
2: d1 ← (a1 ⊙ a2), d3 ← (b1 ⊙ b2)
3: d2 ← (a1 ⊙ b2 + a2 ⊙ b1)
4: (c1, c2)← KeySwitch(d3, evk)
5: return ctmult ← (c1 + d1, c2 + d2)

Algorithm 6 KeySwitch([d]Cℓ , evk)

1: d⃗← Dcomp(d), (dj)j∈[0,β−1]←d⃗

2: [d̃j]Dβ
= (d̃

(0)
j , d̃

(1)
j , · · · , d̃(k+αβ−1)

j) ← ModUp([dj]C′j)
for j ∈ [0, β − 1]

3: for i = 0 to k + αβ − 1 do
4: (c

(i)
0 , c

(i)
1)←

∑β−1
j=0 d̃

(i)
j ⊙ evk(i)

j

5: end for
6: ([c0]Cℓ , [c1]Cℓ)← (ModDown([c0]Dβ

),ModDown([c1]Dβ
))

7: return ([c0]Cℓ , [c1]Cℓ)

C. CKKS Encryption

We consider the following distributions. For a real σ > 0,
DG(σ2) samples a vector in ZN by drawing its coefficient
independently from the discrete Gaussian distribution of vari-
ance σ2. For a real 0 ≤ ρ ≤ 1, the distribution ZO(ρ) draws
each entry in the vector from {0,±1}N , with probability ρ/2
for each of −1 and +1, and probability being zero 1−ρ. The
encryption of CKKS is the RLWE encryption. Given a RLWE
public key (a, b), the CKKS encryption takes a message m,
samples υ ← ZO(0.5), e0, e1 ← DG(σ2) and returns the
encryption as given in Alg. 7. Note that in lines 4 – 6, there are
four NTT operations to convert the polynomials into frequency
domain so that the multiplications in lines 7 – 8 are performed
as point-wise multiplication.

This work mainly focused on improving the HMULT,
KeySwitch and HENC operations in Algorithm 5, Algorithm
6 and Algorithm 7 respectively.

D. Related Works

1) Implementation of FHE on GPUs and Embedded Sys-
tems: Polynomial multiplication is one of the most time-
consuming operations in FHE, which is usually implemen-
tation through NTT. Referring to Algorithm 5, HMULT in

Algorithm 7 HENC(pk,m)

Require: a public key pk of the form (a, b), a message m.
Ensure: Encryption of m as c = (c0, c1) in NTT domain.

1: (a, b)← pk
2: Sample υ′ ← ZO(0.5)
3: Sample e′0, e

′
1 ← DG(σ2)

4: υ ← NTT(υ′)
5: m′ ← NTT(∆ ·m) ▷ ∆ is a scaling factor
6: e0 ← NTT(e′0), e1 ← NTT(e′1)
7: c0 ← υ ⊙ a+m′ + e0
8: c1 ← υ ⊙ b+ e1
9: return (c0, c1)

CKKS requires three NTT, four point-wise multiplication and
three INTT to complete. The number of NTT and INTT
operations in Keyswitch (Algorithm 6 and line 4 in Algorithm
5) varies according to the parameter dnum, but the amount of
computations is generally intensive. Parallelizing polynomial
multiplication on GPUs can provide a huge improvement in
the computational performance of FHE. The first attempt to
achieve this is demonstrated by Wang et al. [12], in which
Strassen’s FFT-based multiplication was implemented on a
GPU following Bailey’s four-step FFT [13]. A subsequent
work, cuHE [14], improved the implementation of polynomial
multiplication on GPU and applied it to support the DHS [15]
somewhat homomorphic encryption (SHE). Following these
development, Al Badawi et al. presented parallel implemen-
tation of FV [5] and RNS-BFV [6] SHE on GPU platform.
The key idea behind these two works is the use of discrete
Galois transform (DGT) that exploits Gaussian primes so that
the NTT computation can be performed on N/2 size. This
saves N/2 twiddle factors, which can be helpful in reducing the
GPU memory bandwidth. A similar approach was adopted by
but [16]. However, DGT requires an extra twisting step, which
can offset the gain in reduced memory bandwidth.

Recently, RNS-CKKS [17] scheme is gaining popularity due
to its ability to process real numbers, which is widely used
in computing artificial intelligence (AI) algorithms. Kim et
al. [18] showcased various techniques to optimize the NTT
implementation on GPU, including different NTT radices and
the choice of memory used (registers vs shared memory).
Building on top of this work, Jung et al. [7] presented a
highly optimized implementation of RNS-CKKS on V100
GPU, including the bootstrapping step, which was not found
in previous works. They fused multiple kernels to avoid
many read/write operations onto the global memory. How-
ever, they did not fuse the NTT kernels due to the data
accessing pattern that requires global synchronization; NTT
is still implemented in two separate kernels. Subsequently,
Shen et al. [8] proposed some tweaks to the implementation
in [7] and reported a slightly improved NTT performance.
However, they did not report the performance of the entire
homomorphic multiplication. Recently, Fan et al. [19] show
that the tensor cores on a GPU can be utilized to compute
NTT without using the asymptotically faster algorithm like
Cooley-Tukey [20]. Although the authors claimed that this

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

approach can achieve a faster performance than Jung et al. [7],
they did not compare the results using the same parameter set.
Hence, the practicality of such an approach is still not fully
verified. Due to this reason, we believe that the work from
Jung et al. [7] and [8] are still having the best performance
to date. In a separate work, Özgün et al. [21] presented
techniques to optimize the radix-2 NTT implementation on
a GPU to handle different polynomial sizes in FHE. The
latest implementation of FHE on GPUs come from Yang et
al. [9], wherein they proposed a software framework to process
BGV, BFV and CKKS schemes. Moreover, they also managed
to eliminate some operations in key-switching to achieve a
slight performance improvement compared to [7]. However,
similar to [7], their NTT implementation also requires at
least two kernels to complete due to the unavoidable global
synchronization.

There is also an attempt to implement FHE on embed-
ded systems [10], wherein the encryption is performed on
embedded systems. The main target of this work [10] is
memory optimization, which is critical due to the limited RAM
available on embedded systems. Such techniques may not be
useful for massively parallel architectures like GPU that aim
at high performance rather than low memory consumption.

2) High-Performance Lattice-based Cryptography with
GPU Acceleration: Due to the NIST standardization ac-
tivity [22], many parallel implementations of lattice-based
cryptographic schemes are proposed and evaluated on GPU
platforms. Similar to FHE, NTT is one of the main bottlenecks
in most of the lattice-based cryptographic schemes. Lee et
al. [23] presented the first parallel implementation of the
Kyber key encapsulation mechanism (KEM). They combine
the first two levels in NTT in order to compute more butterfly
operations using the registers instead of the slower shared
memory. However, this method does not work well for the
remaining NTT levels due to the warp divergence issue. Han
et al. [24] proposed a new level-combination technique to com-
bine all NTT levels, which results in improved performance
compared to the technique in [23]. They have also evalu-
ated this technique on an inner-product functional encryption
(IPFE) scheme. Note that these two works [23], [24] focus on
improving the implementation of NTT with small and medium
length (256 ≤ N < 8192), which is smaller than the NTT
used in FHE. Due to this reason, these implementations do not
need any global synchronization because all computations can
be efficiently computed within individual blocks. In contrast,
NTT used in FHE is computed across different blocks, thus
requiring a global synchronization to avoid data race issues.

3) Incomplete NTT: Incomplete NTT refers to a technique
to skip some levels of NTT computation in exchange for
more work to be performed on point-wise multiplication.
For instance, if we skip the last level of radix-2 NTT, we
must perform 2 × 2 polynomial multiplication instead of
the common 1 × 1 point-wise multiplication. Chung et al.
[25] utilized incomplete NTT to speed up the computation
of polynomial multiplication on some NIST candidates (e.g.,
Saber) that do not have an NTT-friendly ring. Becker et al.
[26] illustrated that by combining incomplete NTT with some
efficient modular reduction techniques, one can achieve a good

speed-up on ARM Cortex-A processors with NEON Single
Instruction Multiple Data (SIMD).

III. PROPOSED IMPLEMENTATION OF NTT ON GPUS

A. Reducing Synchronizations of radix-4 Implementation

Radix-2 Cooley-Tukey [20] is an algorithm commonly used
in various NTT implementations on hardware and software.
Based on the analysis by Özgün et al. [21], for a polynomial
with length N = 216, five global synchronizations are required
to complete the computation of radix-2 NTT. However, they
did not provide any discussion for other radices (e.g., radix-4,
-8 and -16). In this subsection, we provide a detailed analysis
of the case of radix-4 and briefly discuss the case of radix-8
and -16.

Algorithm 8 Radix-4 NTT [27]
Require: A vector a of length N , ΦN be the 2N -th primitive

root of unity, ω4 be the 4-th primitive root of unity.
Ensure: A← NTT (a) in 2-bit reversed order.

1: Precompute the twiddle factors:
2: r ← 0
3: for p = log4 N − 1 to 0 do
4: J ← 4p

5: ωm ← ΦJ
N

6: for k = 0 to N/(4J)− 1 do
7: wa1[r]← ω

brv2(k)+1
m

8: wa2[r]← ω
2(brv2(k)+1)
m

9: wa3[r]← ω
3(brv2(k)+1)
m

10: end for
11: end for
12: Radix-4 NTT:
13: r ← 0
14: for p = log4 N − 1 to 0 do
15: J ← 4p

16: for k = 0 to N/(4J)− 1 do
17: w1 ← wa1[r]
18: w2 ← wa2[r]
19: w3 ← wa3[r]
20: r ← r + 1
21: for j = 0 to J − 1 do
22: t0 ← a[4kJ + j] + a[(4k + 2)J + j] · w2

23: t1 ← a[4kJ + j]− a[(4k + 2)J + j] · w2

24: t2 ← a[(4k+1)J+j]·w1+a[(4k+3)J+j]·w3

25: t3 ← a[(4k+1)J+j]·w1−a[(4k+3)J+j]·w3

26: A[4kJ + j]← t0 + t2
27: A[(4k + 1)J + j]← (t1 + t3) · ω4

28: A[(4k + 2)J + j]← t0 − t2
29: A[(4k + 3)J + j]← (t1 − t3) · ω4

30: end for
31: end for
32: end for
33: return A

Referring to Algorithm 8, the twiddle factors can be pre-
computed before the NTT computation starts (lines 3 – 11).
There are total log4N − 1 levels (line 14), in which N refers
to the polynomial length. For each NTT level, the indexing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

0 16384 32768 49152

1024 17408 33792 50176

18432 34816 51200

19456 35840 52224

2048

3072

24576 40960 573448192

0

1

2

3

8

Level-7, stride = 16384
Block

0 4096 8192 12288

1024 5120 9216 13312

6144 10240 14336

7168 11264 15360

2048

3072

56320 60416 6451252224

0

1

2

3

15

Level-6, stride = 4096
Block

20480 36864 5324840964

20480 24576 28672163844

0 1024

4096

62464 63488 6451261440

0

1

2

3

15

Level-5, stride = 1024
Block

0 256 512 768

4532 4608 4864

8448 8704 8960

12544 12800 13056

61696 61952 62208

0

1

2

3

15

Level-4, stride = 256
Block

17408 18432 19456163844

16640 16896 17152163844

2048 3072

5120 6144 7168

8192 9216 10240 11264

12288 13312 14336 15360

4096

8192

12288

61440

3840

7936

12032

16128

20224

65280

28672 45056 614401228812

31744 48128 645121536015

8

12

36864 40960 45056327688

53248 57344 614404915212

33024 33280 33536327688

49408 49920 501764915212 52992

36608

33792 34816 35840327688

50176 51200 522244915212

0

2

Level-7Block

1

3

0

2

Level-7Block

1

3

Proposed

r a r b r c r d

r a r b r c r d r a0 r b0 r c0 r d0

r a r b r c r d

r d3

1024

2048

3072

4096

r a1

17408

33792

50432

62464

16 blocks, 1024 threads
4 blocks, 256 threads

16 blocks, 1024 threads

Fig. 2. Index patterns in Radix-4 NTT: 16 blocks and 1024 threads

patterns changes according to the values J (line 15), k (line
16) and j (line 21). This affects the way we implement the
parallel NTT on a GPU across multiple blocks. Each step of
radix-4 NTT computes four butterfly operations (lines 22 –
29).

Assuming that N = 216, there will be 65536 coefficients
in a polynomial; we can distribute the computation of NTT
to 16 different GPU blocks, wherein each block handles 4096
coefficients. Fig. 2 shows the patterns of indices in radix-4
NTT for the first four levels, wherein there are 16 GPU blocks
and 1024 threads/block. Referring to level-7, block 0 processes
coefficients 0–1023, 16384–17407, 32768–33791 and 49152–
50175, which are consumed by block 0, 4, 8 and 12 in level-
6. Due to this reason, we have to wait for all computations
in level-7 to complete, before moving on to level-6. This
implies that after computing level-7, synchronization across
all blocks (block-wise synchronization) is required so that the
race condition does not occur. In addition, since each block in
level-6 is accessing data from other blocks, we need to store
the intermediate results from level-7 in the global memory
instead of the fast shared memory. In contrast, level-5 and
level-4 do not show this restriction. Referring to level-5, block
0 processes coefficients 0–1023, 1024–2047, 2048–3071 and
3072–4095, which are consumed by block 0 in level-4. Hence,

all the computations can be performed within the same block,
and no block-wise synchronization is required. This pattern is
also observed in the remaining levels of radix-4 NTT. Note that
since we are using 1024 threads, the computations in level-4
are divided into four sections, and each section is processed
by 256 threads (i.e., r a0, r a1, r a2, ..., r d3).

In summary, two synchronizations are required in the radix-
4 implementation: one after level-7 and another one after level-
6. This is lesser than radix-2 implementation demonstrated by
Özgün et al. [21]. Following this method, we also found that
one synchronization is required after the first level NTT in
radix-8 and radix-16 implementation. Note that we can also
allocate fewer threads per block (e.g., 512 or 256) and increase
the total GPU blocks, but this does not affect the synchroniza-
tion points required. Note that block-wise synchronization is
a time-consuming process that should be avoided whenever
possible.

A careful observation of Fig. 2 reveals that level-7 and level-
6 can be combined into one kernel. Since we know that the
coefficients processed by block 0 are consumed by blocks 0,
4, 8 and 12 in level-6, we can combine these four blocks
into one. In other words, block 0 in level-7 processes indices
that can be used by level-6 immediately; a similar observation
applies to the other blocks. In this way, the proposed technique

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

0 10240

Level-5, stride = 1024
Block

0

Level-4, stride = 256
Block

33283072

r a0 r a1 r a2 r a3 r b0 r b1 r b2 r b3

256 512 768

r c0 r c1 r c2 r c3 r d0 r d1 r d2 r d3

1280 2304 2560 28161512 1768 2048 38403584

0 256 3328 768

r a0 r a1 r a2 r a3 r b0 r b1 r b2 r b3

1024 2048 3096

r c0 r c1 r c2 r c3 r d0 r d1 r d2 r d3

1280 2304 2560 28161536 1792512 38402816

4096 5120 742471684352 4608 4864 5376 6400 6656 69125632 5888 6144 793676801

4096 5120 74247168 4352 4608 48645376 6400 6656 69125632 58886144 793676801

16 blocks, 256 threads

0

Level-3, stride = 64Block

0 64 448192256 3840 320 384 39683904 128 4032

4096 4160 454442884352 7936 4416 4480 80648000 4224 81281

0

Level-1, stride = 4Block

0 4 281216 4080 20 24 40884084 8 4092

4096 4100 412441084112 8176 4116 4120 81848180 4104 81881

0

Level-0, stride = 1Block

0 1 724 4092 5 6 40944093 2 4095

4096 4097 410340994100 8188 4101 4102 81908189 4098 81911

1024 threads

Fig. 3. Top: Combine level-5 and -6 in radix-4 NTT with N = 216. Bottom: Optimize the read/write pattern in level-1 and -0.

managed to remove the block-wise synchronization between
level-7 and -6. Moreover, the intermediate results from level-7
can be stored directly in registers and consumed by level-6,
which reduces the expensive global memory accesses.

B. Combining Multiple Levels in Radix-4 NTT Implementation

Level-5 to level-0 radix-4 NTT can be computed within
each block; this allows us to store the intermediate results for
each level on the shared memory. Inspired by the technique
proposed by Lee et al. [23], we found that level-5 and level-
4 can also be combined. Referring to Fig. 3, we proposed
to compute level-5 and level-4 with 256 threads/block. In
this way, we can store the intermediate results for level-5
onto 16 different registers, which are consumed by level-4.
For instance, level-5 writes the results of index 512 onto
register r a2, which is consumed by level-4 r c0. Similarly,
the result of block 1 level-5 r b0 is consumed by level-4
r a1. This effectively reduces the accesses to shared memory
between level-5 and -4. However, this technique also reduces
the parallelism within a block by 4× (from 1024 to 256). To
combine with level-3, we need to reduce the parallel threads
to 64 and use 64 registers to store the intermediate results.
This can eventually harm the performance of NTT because the
excessive use of registers and reduced parallel threads affect
the computational occupancy on a GPU. Hence, we only apply
this technique to level-5 and level-4.

C. Optimizing the Remaining levels in Radix-4 NTT
The remaining levels in radix-4 NTT are computed on the

shared memory, wherein avoiding bank conflicts is important
to achieve good performance. We propose to optimize the write
patterns in these levels to reduce the number of bank conflicts.
Referring to Fig. 3 level-1, after reading the data from shared
memory (stride of 16) and performing the butterfly operations,
the intermediate results are stored onto the same indices,
causing bank conflicts. To avoid this issue, we proposed to
store these intermediate results in the indices of the next level.
For instance, level-1 can store the NTT results on indices of
level-0, which effectively removes the write bank conflicts
entirely. However, we can still not remove the read bank
conflicts due to the specific memory patterns in NTT. Note
that this technique can also be applied to level-2 to remove the
write bank conflicts, but the performance gain is not significant
for level-3 since it does not have any bank conflicts.

Besides that, level 3 – level 0 needs to read the twiddle
factors in a stride of 64, 16, 4 and 1, respectively. These
twiddle factors are stored on the global memory; they cannot
be cached on the constant memory due to their huge size.
Strided read on global memory reduces the performance
seriously, which should be avoided whenever possible. To
resolve this issue, we propose to compute the twiddle factors
on the fly for these four levels.

IV. PROPOSED TRANSPOSED HENC AND HMULT
For a prime q, NTT maps a polynomial f(X) ∈ Rq

to (f(ΦN), f(Φ3
N), · · · , f(Φ2N−1

N)), where ΦN is the 2N -

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

th primitive root of unity. The NTT over a polynomial
ring Zq[X]/⟨ϕ(X)⟩ uses the fact that q is chosen such that
ϕ(X) =

∏k−1
i=0 ϕi(X) and we can define NTT of a polynomial

f(X) ∈ Zq[X]/⟨ϕ(X)⟩ as (f(X) (mod ϕ0(X)), · · · , f(X)
(mod ϕk−1(X))).

Now consider N = n1×n2, then Φn1 = Φn2

N is the 2n1-th
primitive root of unity. Also, observe that

XN + 1 =

n1−1∏
i=0

(Xn2 − Φ2i+1
n1

) (1)

Therefore, we define NTTn2
(f(X)) = (F0, F1, · · · , Fn1−1)

where Fi = f(X) (mod Xn2 − Φ2i+1
n1

) for 0 ≤ i ≤ n1 − 1.
Consider the polynomial f(X) as

f(X) =

N−1∑
i=0

fiX
i (2)

For any 0 ≤ i < N , we can write i = pn2+ q where 0 ≤ p <
n1 and 0 ≤ q < n2. Therefore,

f(X) =

n1∑
p=0

n2∑
q=0

fpn2+qX
pn2+q

=

n2∑
q=0

(
n1∑
p=0

fpn2+q (X
n2)

p

)
Xq (3)

This implies for 0 ≤ i < n1

Fi = f(X) (mod Xn2 − Φ2i+1
n1

)

=

n2∑
q=0

(
n1∑
p=0

fpn2+q

(
Φ2i+1

n1

)p)
Xq (4)

Consider the polynomial fn2,q(Y) =
∑n1

p=0 fpn2+qY
p.

This is a polynomial in the ring Zq[X]/⟨Xn1 + 1⟩
and the NTT transformation of this polynomial is
(fn2,q(Φ

1
n1
), fn2,q(Φ

3
n1
), · · · , fn2,q(Φ

2n1−1
n1

)). Now, for
any 0 ≤ i < n1

Fi =

n2∑
q=0

fn2,q(Φ
2i+1
n1

)Xq (5)

Therefore to compute NTTn2
(f(X)) we first have to compute

NTT transformation of the polynomials fn2,q(Y) for each
0 ≤ q < n2. Observe that if we can consider all the coefficients
of f(X) as an n1×n2 matrix as shown in Fig. 4, then the i-th
column of the matrix corresponds to the polynomial fn2,i(Y).
To compute multiplication of two polynomials f(X), g(X) ∈
Rq , first we compute NTTn2

(f(X)) = (F1, · · · , Fn1−1)
and NTTn2(g(X)) = (G1, · · · , Gn1−1) using the above-
mentioned method. Let h(X) be the multiplication of f(X)
and g(X) inRq then, we compute Hi := Fi ·Gi mod (Xn2−
Φ2i+1

n1
) and compute h(X) using the inverse of NTTn2

.

A. cuTraNTT: Computing NTT with Only One GPU Kernel

The optimized radix-4 NTT presented in Algorithm 8 re-
quires one block-wise synchronization (see Section III-A).
Careful observation shows that we can remove this synchro-
nization by representing a polynomial in a transposed form
and skipping the remaining two NTT levels. Supposed that

Fig. 4. Transposed form of a polynomial with length N = 216

a0 a1 a15

a16 a17 a31

a16 a17 a31

a65520 a65521 a65525

n1 =
4096

n2 = 16

B
lo
ck

0

B
lo
ck

1

B
lo
ck

15

Fig. 5. Transposed form of a polynomial with length N

we want to perform NTT transformation on a polynomial
A = <a0, a1, a2, . . . aN> and we have taken B blocks and
each block holds 4096 elements from the polynomial A.
Consider a polynomial with N = 216; we rearrange the
polynomial coefficients following Fig. 4, in which n1 = 4096
and n2 = 16, which is also illustrated in Fig. 5. Each column
is of the form <ai+k× 4096

N
: k = 0, 1, 2, . . . , 4095>, where

N = 65536 and i runs from 0 to 15. With 16 GPU blocks,
each block taking one column, we can easily transform the full
polynomial up to 6 levels without any synchronization. The
remaining two levels (level 1 and 0) are skipped in cuTraNTT,
at expense of a more costly Hadamard product, which will be
explained in the next sub-section.

B. Optimizing the Hadamard Product

The conventional way to apply NTT for accelerating poly-
nomial multiplication requires us to first transform the inputs
into NTT domain, then perform a Hadamard product, which
is frequently referred to as point-wise multiplication because
it only performs 1 × 1 Hadamard product. In this way, the
computation time of polynomial multiplication can be greatly
reduced. The proposed cuTraNTT skipped the last two levels
(L1 and L0) of the radix-4 NTT and speed up the NTT com-
putation, which is usually the bottleneck in FHE. However,
we need to perform additional work on the Hadamard product

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

so that the computation of polynomial multiplication can be
correct. In particular, instead of performing a 1×1 Hadamard
product, we need to perform 16 × 16 Hadamard product. In
other words, we have shifted the bulk computation from NTT
to the Hadamard product.

Algorithm 9 k × k Schoolbook-Multiplication(a, b, w)
1: for i = 0→ 2k − 1 do
2: c[i]← 0
3: end for
4: for i = 0→ k − 1 do
5: for j = 0→ k − 1 do
6: c[i+ j]← c[i+ j] + a[i] · b[j]
7: end for
8: end for
9: for i = 0→ k − 1 do

10: c[i]← c[i] + w · c[k + i]
11: end for

Referring to Algorithm 9, a simple way to perform k × k
Hadamard product using schoolbook-multiplication can be
easily parallelized. Since there are no dependency issues, we
can launch many threads, each thread computing one k × k
coefficient. For instance, if N = 216 and we skip 2 levels
of radix-4 NTT, we need to perform 16 × 16 Hadamard
product. We can implement this by using 16 blocks, each block
having 256 threads, each thread computing 16 polynomial
multiplications, each multiplication is 16 × 16 (lines 4 – 6).
Although this method is easily parallelizable, the performance
is very slow compared to the 1× 1 Hadamard product.

To reduce the latency of Hadamard Product in our imple-
mentation, we proposed a parallel version of Toom-Cook-
4 [28] 16 × 16 Hadamard Product. Referring to Algorithm
10, one 16 × 16 polynomial is broken into four 4 × 4
multiplications, followed by the evaluation step in the Took-
Cook algorithm (lines 3 – 26). Line 27 – 29 perform the
point-wise multiplication in the Took-Cook algorithm, which
is essentially a 4×4 schoolbook multiplication (see Algorithm
9). Followed by this is the interpolation step in the Took-Cook
algorithm (lines 30 – 53). Finally, lines 54 – 56 show the
final reduction step, which returns the final results of 16× 16
Hadamard Product.

C. Applying cuTraNTT and Toom-Cook-4 to HMULT and
HENC

Referring to Algorithm 5, there are three NTT and three
iNTT used in HMULT, which can benefit from our heavily
optimized cuTranTT implementation. However, there are also
four Hadamard products (lines 3 and 4) and a few smaller
Hadamard products (Algorithm 6, line 4). This shows that
HMULT performance is heavily affected by the Hadamard
products, and the potential speed-up from using cuTraNTT
is offset by the slow Hadamard products due to skipping
two NTT levels. On the other hand, HENC (Algorithm 7)
requires four NTT operations (lines 4 – 6), but only two
Hadamard products (lines 7 and 8). In this case, we can
leverage the proposed cuTranTT implementation to speed up

Algorithm 10 16× 16 Toom-Cook-4(a, b, w) [28]
1: for i = 0→ 31 do res[i]← 0
2: end for
3: for i = 0→ 3 do
4: (r0, r1, r2, r3)← (a[4i], a[4i+1], a[4i+2], a[4i+3])
5: r4 ← r0 + r2; r5 ← r1 + r3
6: r6 ← r4 + r5; r7 ← r4 − r5
7: aw3[i]← r6; aw4[i]← r7
8: r4 ← 8r0 + r2
9: r5 ← 4r1 + r3

10: r6 ← r4 + r5
11: r7 ← r4 − r5
12: aw5[i]← r6; aw6[i]← r7
13: r4 ← 8r3 + 4r2 + 2r1 + r0
14: aw2[i]← r4; aw7[i]← r0; aw1[i]← r3
15: (r0, r1, r2, r3)← (b[4i], b[4i+ 1], b[4i+ 2], b[4i+ 3])
16: r4 ← r0 + r2; r5 ← r1 + r3
17: r6 ← r4 + r5; r7 ← r4 − r5
18: bw3[i]← r6; bw4[i]← r7
19: r4 ← 8r0 + r2
20: r5 ← 4r1 + r3
21: r6 ← r4 + r5
22: r7 ← r4 − r5
23: bw5[i]← r6; bw6[i]← r7
24: r4 ← 8r3 + 4r2 + 2r1 + r0
25: bw2[i]← r4; bw7[i]← r0; bw1[i]← r3
26: end for
27: for i = 1→ 7 do
28: wi ← 4× 4 Schoolbook-Multiplication(awi, bwi, w)
29: end for
30: for i = 0→ 3 do
31: for j = 0→ 7 do
32: rj ← wj+1[i]
33: end for
34: r1 ← r1 + r4; r5 ← r5 − r4
35: r3 ← 2−1(r3 − r2)
36: r4 ← r4 − r0 − 64r6; r4 ← 2r4 + r5
37: r2 ← r2 + r3; r1 ← r1 − r2 − 64r2
38: r2 ← r2 − r0 − r6
39: r1 ← r1 + 45r2
40: r4 ← 24−1(r4 − 8r2)
41: r5 ← r5 + r1
42: r1 ← 18−1(16r3 + r1)
43: r3 ← −r3 − r1
44: r5 ← 2−1r1 − 60−1r5
45: r2 ← r2 − r4; r1 ← r1 − r5
46: res[4i]← res[4i] + r6
47: res[4i+ 1]← res[4i+ 1] + r5
48: res[4i+ 2]← res[4i+ 2] + r4
49: res[4i+ 3]← res[4i+ 3] + r3
50: res[4i+ 4]← res[4i+ 4] + r2
51: res[4i+ 5]← res[4i+ 5] + r1
52: res[4i+ 6]← res[4i+ 6] + r0
53: end for
54: for i = 0→ 15 do
55: res[i]← res[i] + w · res[i+ 16]
56: end for
57: return (res[0], · · · , res[15])

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

HENC, wherein the effect of slow Hadamard products is less
significant compared to HMULT.

V. EXPERIMENTAL PERFORMANCE AND DISCUSSIONS

This section presents the experimental results of cuTraNTT
and its application to the CKKS FHE scheme. The experiment
was carried out on three different platforms, which is detailed
in Table I.

TABLE I
EXPERIMENTAL PLATFORMS

Platform-1 Platform-2 Platform-3
Desktop Cloud Embedded

Workstation System System
GPU RTX 4060 A100 V100 Jetson Orin

Nano
CUDA Cores 3072 8192 5120 1024
Architecture Lovelace Ampere Volta Ampere
Comp. Cap. 8.9 8.0 7.0 8.7
Clock (GHz) 1.830 1.410 1.246 625
Memory BW 272 1935 900 69(GB/s)
No. of SM 24 80 64 8
CUDA SDK CUDA 12.2

CPU Intel Intel Xeon ARM Cortex®
i7-14700K Gold 6150 -A78AE

Clock (GHz) 3.70 2.2 1.5

Platform-1 is a desktop workstation equipped with Intel
Core i7-14700K CPU and an RTX 4060 GPU. Platform-2
is the Digital Research Alliance of Canada Cloud system
[29] that allows flexible configuration to use a V100 or an
A100 GPU. Note that RTX 4060 is a popular consumer-grade
GPU, while V100 and A100 are server-grade GPU with much
higher performance in terms of computation and memory
bandwidth. On the other hand, Platform-3 is an embedded
system consisting of an ARM Cortex-A78 processor and a
small embedded GPU with 1024 CUDA cores. Platform-1 and
-3 are used to simulate the client-side computation, wherein
many HENC operations are performed. Platform-2 acts as a
server-side unit that mainly computes HMULT operations.

A. Micro-benchmarking Radix-4 NTT Implementation on RTX
4060

Table II shows the results of the techniques proposed
in this section. The baseline implementation, without any
optimization techniques applied, can complete one NTT with
length 216 in 30.53µs; it is implemented by using 16 blocks,
and each block contains 256 threads. After combining the
first four levels (L7 – L4), the performance is improved by
1.25×. By applying the optimized write patterns on shared
memory, together with the computations of twiddle factors on
the fly, we can complete the NTT computation in 22.41µs,
which speeds up the computation by 1.36× compared to the
baseline version. It is also 1.06× and 1.02× faster than the
previous work [7] and Phantom [9], respectively. This shows
that our radix-4 NTT implementation using 32-bit arithmetic
can achieve a good performance compared to 64-bit arithmetic
used by [7], [9]. By skipping the last 2 levels (L0 and
L1), we achieve a 1.82× speed-up compared to the baseline
implementation.

TABLE II
BENCHMARKING THE PROPOSED IMPROVEMENTS ON RADIX-4 NTT

IMPLEMENTATION.

Techniques1 N Word Size Time (µs) Speed-up

Baseline

216 32-bit

30.53 1.00
Comb. L7 and L6 27.47 1.11
Comb. L5 and L4 24.39 1.25
Opt. L3 to L0 22.41 1.36
NTT-Skip-2 3 12.34 1.82
[9]2

216 64-bit 22.95 1.06
[7]2 23.85 1.02

1 The experiments were carried out on an RTX 4060 GPU.
2 The open-sourced software from the authors was executed on

the same RTX 4060 GPU.
3 Skipping L0 and L1, see Section IV-A.

TABLE III
PERFORMANCE OF DIFFERENT IMPLEMENTATIONS OF HADAMARD

PRODUCT ON RTX 4060.

Hadamard Product 1 Execution time (µs)
RTX 4060 Speed-up

1× 1 point-wise 49.88 1
16× 16 point-wise 99.46 0.50
Proposed Toom-Cook-4 16× 16 point-wise 76.95 0.65
1 The experiments were carried out with 66 polynomials, each polynomial

having the size of N = 216.

B. Performance of the proposed Toom-Cook 4-way Hadamard
Product

Table III shows the performance of different implementa-
tions of Hadamard products on an RTX 4060 GPU with 66
polynomials, each with 216 coefficients. If we do not skip any
NTT levels, the Hadamard product only performs 1×1 point-
wise multiplication, which takes only 49.88µs to complete.
Skipping two levels of NTT can achieve very fast timing
performance, but the Hadamard product becomes 2× more
expensive (99.46 µs). To reduce this detrimental effect, we
proposed the optimized Toom-Cook-4 Hadamard product (see
Algorithm 10, effectively reducing the time to 76.95µs, which
is 29.25% faster. However, it is still slower than the 1 × 1
point-wise multiplication, and this is the trade-off that cannot
be avoided if we skip the last two levels in NTT computation.

C. Comparison with state-of-the-art implementations

Table IV shows the results of the proposed cuTraNTT
applied to CKKS scheme on various GPU platforms. Our
HMULT implementation achieved similar performance com-
pared to the state-of-the-art [7], [9]. In particular, our HMULT
is 2.0% slower than [7] on a V100 GPU and 1.2% faster
than [9] on an A100 GPU. This shows that although the
proposed cuTraNTT can effectively reduce the latency of
NTT computation, it suffers from the slow Hadamard product,
which offsets the performance gain from NTT. On a Jetson
Orin Nano, the HENC algorithm using full NTT takes 15.18ms
to complete, while the version using cuTraNTT only takes
11.32ms. The HENC is sped up by 1.37×, which can be
significant in a practical use case. We observed a similar level
of speed up in HENC when the experiments were carried
out on a desktop GPU RTX 4060, where the performance is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE IV
EXPERIMENTAL RESULTS OF THE PROPOSED CUTRANTT APPLIED TO CKKS FHE SCHEME

Execution time (ms)
Phantom [9] Over100x [7] Ours

log N 16 16 16
log Q 1420 1220 1693 1693
log QP 1720 1580 2364 2364
L 34 29 32 32
dnum 7 5 3 3
GPU V100 V100 A100 RTX 4060 Jetson Orin Nano
HMULT (cuTraNTT) 2188 1609 2960 3021 2162 5048 -
HENC (Full NTT) - - - - 1532 15177
HENC (cuTraNTT) - - - - 1120 11312

improved by 1.34×. From these experimental results, we can
summarize that the proposed cuTraNTT is useful for reducing
the latency in HENC, which is typically executed on edge
devices with constrained resources, and it only marginally
affects the performance of HMULT.

VI. CONCLUSIONS

cuTraNTT, a transposed version of NTT implementation,
was proposed in this paper. By skipping the last two levels and
rearranging NTT in a transposed form, the NTT computation
can be performed with only one kernel. This removed the need
for block-wise synchronization, thus allowing a very efficient
NTT implementation on GPU platforms, which can be very
useful to HENC. The extra overhead introduced by cuTraNTT
on the HMULT was minimized by utilizing the proposed
parallel Toom-Cook-4 implementation. Experimental results
show that cuTraNTT applied to CKKS FHE achieved similar
latency performance compared with state-of-the-art [7], [9]
on HMULT but achieved significant improvement on HENC.
The findings from this paper can be used by the IoT sensor
nodes to efficiently encrypt sensitive data so that it can be
performed by the untrusted third party (i.e., cloud server). In
the future, we plan to extend this work to support machine
learning applications in the encrypted domain. Various packing
methods will be explored to leverage the proposed cuTraNTT
for accelerated performance.

ACKNOWLEDGMENT

Wai-Kong Lee and Seong Oun Hwang were supported
by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (Ministry of Science and
ICT) (No. RS-2024-00340882). Wai-Kong Lee was also par-
tially supported by the Ministry of Higher Education (MoHE),
Malaysia, through the Fundamental Research Grant Scheme
(FRGS/1/2021/ICT07/UTAR/01/1).

REFERENCES

[1] A. Borgeaud, “Top cloud security concerns worldwide 2021,” Jun
2023. [Online]. Available: https://www.statista.com/statistics/1172265/
biggest-cloud-security-concerns-in-2020/

[2] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learn-
ing with errors over rings,” in Advances in Cryptology – EUROCRYPT
2010, H. Gilbert, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 1–23.

[3] M. V. Beirendonck, J. D’Anvers, F. Turan, and I. Verbauwhede, “FPT:
A fixed-point accelerator for torus fully homomorphic encryption,” in
CCS. ACM, 2023, pp. 741–755.

[4] J. Bertels, M. V. Beirendonck, F. Turan, and I. Verbauwhede, “Hardware
acceleration of FHEW,” in DDECS. IEEE, 2023, pp. 57–60.

[5] A. Al Badawi, B. Veeravalli, C. F. Mun, and K. M. M. Aung, “High-
performance fv somewhat homomorphic encryption on gpus: An imple-
mentation using cuda,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 70–95, 2018.

[6] A. Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and
K. Rohloff, “Implementation and performance evaluation of rns variants
of the bfv homomorphic encryption scheme,” IEEE Transactions on
Emerging Topics in Computing, vol. 9, no. 2, pp. 941–956, 2019.

[7] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x
faster bootstrapping in fully homomorphic encryption through memory-
centric optimization with gpus,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 114–148, 2021.

[8] S. Shen, H. Yang, Y. Liu, Z. Liu, and Y. Zhao, “Carm: Cuda-accelerated
rns multiplication in word-wise homomorphic encryption schemes for
internet of things,” IEEE Transactions on Computers, 2022.

[9] H. Yang, S. Shen, W. Dai, L. Zhou, Z. Liu, and Y. Zhao, “Phantom:
a cuda-accelerated word-wise homomorphic encryption library,” IEEE
Transactions on Dependable and Secure Computing, 2024.

[10] D. Natarajan and W. Dai, “Seal-embedded: A homomorphic encryption
library for the internet of things,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 756–779, 2021.

[11] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I 23. Springer, 2017, pp. 409–
437.

[12] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Exploring the
feasibility of fully homomorphic encryption,” IEEE Transactions on
Computers, vol. 64, no. 3, pp. 698–706, 2013.

[13] D. H. Bailey, “Ffts in external of hierarchical memory,” in Proceedings
of the 1989 ACM/IEEE conference on Supercomputing, 1989, pp. 234–
242.

[14] W. Dai and B. Sunar, “cuhe: A homomorphic encryption accelerator
library,” in Cryptography and Information Security in the Balkans: Sec-
ond International Conference, BalkanCryptSec 2015, Koper, Slovenia,
September 3-4, 2015, Revised Selected Papers 2. Springer, 2016, pp.
169–186.

[15] Y. Doröz, A. Shahverdi, T. Eisenbarth, and B. Sunar, “Toward practical
homomorphic evaluation of block ciphers using prince,” in Financial
Cryptography and Data Security: FC 2014 Workshops, BITCOIN and
WAHC 2014, Christ Church, Barbados, March 7, 2014, Revised Selected
Papers 18. Springer, 2014, pp. 208–220.

[16] P. G. M. Alves, J. N. Ortiz, and D. F. Aranha, “Faster homomorphic
encryption over gpgpus via hierarchical dgt,” in Financial Cryptography
and Data Security: 25th International Conference, FC 2021, Virtual
Event, March 1–5, 2021, Revised Selected Papers, Part II 25. Springer,
2021, pp. 520–540.

[17] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography–SAC 2018: 25th International Conference, Calgary, AB,
Canada, August 15–17, 2018, Revised Selected Papers 25. Springer,
2019, pp. 347–368.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[18] S. Kim, W. Jung, J. Park, and J. H. Ahn, “Accelerating number theoretic
transformations for bootstrappable homomorphic encryption on gpus,”
in 2020 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 2020, pp. 264–275.

[19] S. Fan, Z. Wang, W. Xu, R. Hou, D. Meng, and M. Zhang, “Tensorfhe:
Achieving practical computation on encrypted data using gpgpu,” in
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2023, pp. 922–934.

[20] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[21] Ö. Özerk, C. Elgezen, A. C. Mert, E. Öztürk, and E. Savaş, “Efficient
number theoretic transform implementation on gpu for homomorphic
encryption,” The Journal of Supercomputing, vol. 78, no. 2, pp. 2840–
2872, 2022.

[22] “Post-quantum cryptography: Round 1 submissions.” [Online].
Available: https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-1-submissions

[23] W.-K. Lee and S. O. Hwang, “High throughput implementation of post-
quantum key encapsulation and decapsulation on gpu for internet of
things applications,” IEEE Transactions on Services Computing, vol. 15,
no. 6, pp. 3275–3288, 2021.

[24] K. H. Han, W.-K. Lee, A. Karmakar, J. M. B. Mera, and S. O. Hwang,
“cufe: High performance privacy preserving support vector machine with
inner-product functional encryption,” IEEE Transactions on Emerging
Topics in Computing, 2023.

[25] C.-M. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C.-J. Shih,
and B.-Y. Yang, “Ntt multiplication for ntt-unfriendly rings: New speed
records for saber and ntru on cortex-m4 and avx2,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, pp. 159–188, 2021.

[26] H. Becker, V. Hwang, M. J. Kannwischer, B.-Y. Yang, and S.-Y. Yang,
“Neon ntt: Faster dilithium, kyber, and saber on cortex-a72 and apple
m1,” Cryptology ePrint Archive, 2021.

[27] X. Chen, B. Yang, S. Yin, S. Wei, and L. Liu, “Cfntt: Scalable radix-
2/4 ntt multiplication architecture with an efficient conflict-free memory
mapping scheme,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 94–126, 2022.

[28] J. M. Bermudo Mera, A. Karmakar, and I. Verbauwhede, “Time-memory
trade-off in toom-cook multiplication: an application to module-lattice
based cryptography,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2020, no. 2, pp. 222–244, 2020.

[29] “Digital research alliance of canada,” https://alliancecan.ca/en/, 2021,
accessed: 2024-08-19.

Supriya Adhikary (Student Member, IEEE) re-
ceived his B.Sc. degree in Mathematics and M.Sc.
degree in Pure Mathematics from University of
Calcutta. He received his M.Tech degree in Cryp-
tology and Security from Indian Statistical Institute,
Kolkata, and currently, he is a Ph.D. student at the
Indian Institute of Technology, Kanpur, India.

Wai-Kong Lee (Member, IEEE) received the
B.Eng. in Electronics and M.Eng.Sc. degree from
Multimedia University in 2006 and 2009 respec-
tively. In between 2009 – 2012, he served as R&D
engineer in several multinational companies includ-
ing Agilent Technologies (now known as Keysight)
in Malaysia. He obtained Ph.D. degree in Engineer-
ing from University Tunku Abdul Rahman, Malaysia
(UTAR) in 2018, where he served as an assistant
professor and deputy dean (R&D) for Faculty of
Information and Communication Technology. From

2020 - 2023, he was a post-doctoral researcher in Gachon University, South
Korea. Currently, he serves as an associate professor in UTAR. His research
interests include cryptographic engineering, GPU computing, numerical al-
gorithms, lightweight machine learning, Internet of Things (IoT) and energy
harvesting.

Angshuman Karmakar (Member, IEEE) received
the BE degree in computer science and engineering
from Jadavpur University, Kolkata, and the MTech
degree in computer science and engineering from
the Indian Institute of Technology, Kharagpur. He
received his doctorate from Katholieke Universiteit
Leuven, Belgium for his dissertation titled “Design
and implementation aspects of post-quantum cryp-
tography”. He is one of the primary designers of the
post-quantum Saber key-encapsulation mechanism
scheme which is one of the finalists in the National

Institute of Standards and Technology’s post-quantum standardization proce-
dure. He is currently an FWO post-doctoral fellow in the COSIC research
group of KU Leuven. Earlier, he worked as an engineer in Citrix R&D India
Ltd, Bangalore, and as a research intern at Microsoft Research, Redmond,
USA. His research interest spans different aspects of lattice-based post-
quantum cryptography and computation on encrypted data.

Seong Oun Hwang (Senior Member, IEEE) re-
ceived the B.S. degree in mathematics from Seoul
National University, in 1993, the M.S. degree in
information and communications engineering from
the Pohang University of Science and Technology,
in 1998, and the Ph.D. degree in computer science
from the Korea Advanced Institute of Science and
Technology, in 2004, South Korea. He worked as
a Software Engineer with LG-CNS Systems, Inc.,
from 1994 to 1996. He worked as a Senior Re-
searcher with the Electronics and Telecommunica-

tions Research Institute (ETRI), from 1998 to 2007. He worked as a Professor
with the Department of Software and Communications Engineering, Hongik
University, from 2008 to 2019. He is currently a Professor with the Department
of Computer Engineering, Gachon University. His research interests include
cryptography, cybersecurity, and artificial intelligence. He is an Editor of ETRI
Journal.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

Ramachandra Achar (Fellow, IEEE) received the
B. Eng. degree in electronics engineering from Ban-
galore University, India in 1990, M. Eng. degree in
micro-electronics from Birla Institute of Technology
and Science, Pilani, India in 1992 and the Ph.D.
degree in Electrical Engineering from Carleton Uni-
versity in 1998. Dr. Achar currently is a professor
in the department of electronics engineering at Car-
leton University. Prior to joining Carleton university
faculty (2000), he served in various capacities in
leading research labs, including T. J. Watson Re-

search Center, IBM, New York (1995), Larsen and Toubro Engineers Ltd.,
Mysore (1992), Central Electronics Engineering Research Institute, Pilani,
India (1992) and Indian Institute of Science, Bangalore, India (1990). His
research interests include signal/power integrity analysis, circuit simulation,
parallel and numerical algorithms, EMC/EMI analysis and mixed-domain
analysis. Dr. Achar is a practicing Professional Engineer of Ontario and is a
Fellow of IEEE and a Fellow of Engineers Institute of Canada.

Dr. Achar has published over 200 peer-reviewed articles in international
transactions/conferences, six multimedia books on signal integrity and five
chapters in different books. Dr. Achar received several prestigious awards,
including Carleton university research achievement awards (2010 & 2004),
NSERC (Natural Science and Engineering Research Council) doctoral medal
(2000), University Medal for the outstanding doctoral work (1998), Strategic
Microelectronics Corporation (SMC) Award (1997) and Canadian Microelec-
tronics Corporation (CMC) Award (1996). He was also a co-recipient of the
IEEE best transactions paper award for T-AdvP (2007) and T-CPMT (2013).
His students have won numerous best student paper awards in international
forums. He is a founding faculty member of the Canada-India Center of
Excellence, chair of the joint chapters of CAS/EDS/SSC societies of the IEEE
Ottawa Section, and is a consultant for several leading industries focused on
high-frequency circuits, systems and tools.

Yongwoo Lee (Member, IEEE) received his B.S.
degree in Electrical Engineering and Computer Sci-
ence from the Gwangju Institute of Science and
Technology, Korea, in 2015. He obtained his M.S.
and Ph.D. degrees in Electrical and Computer Engi-
neering from Seoul National University, Korea, in
2017 and 2021, respectively. Prior to his current
role as an Associate Professor at Inha University,
he worked as a Staff Researcher at the Samsung
Advanced Institute of Technology (SAIT). His pri-
mary research interests focus on privacy-enhancing

technologies.

