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Abstract. Indifferentiability is a popular cryptographic paradigm for analyzing the security
of ideal objects—both in a classical as well as in a quantum world. It is typically stated in
the form of a composable and simulation-based definition, and captures what it means for a
construction (e.g., a cryptographic hash function) to be “as good as” an ideal object (e.g., a
random oracle). Despite its strength, indifferentiability is not known to offer security against
pre-processing attacks in which the adversary gains access to (classical or quantum) advice
that is relevant to the particular construction. In this work, we show that indifferentiability is
(generically) insufficient for capturing pre-computation. To accommodate this shortcoming,
we propose a strengthening of indifferentiability which is not only composable but also takes
arbitrary pre-computation into account. As an application, we show that the one-round
sponge is indifferentiable (with pre-computation) from a random oracle. This yields the first
(and tight) classical/quantum space-time trade-off for one-round sponge inversion.

1 Introduction

Hash functions are fundamental objects in cryptography, used in a multitude of applications such as
password storage, integrity checks, and in digital signature schemes. Many real world cryptographic
schemes can only be proven secure in the random oracle model [BR93] (ROM), in which a hash
function is instead treated like an idealized perfectly random function. In this model, adversaries
receieve only black-box access to the hash function, which enables one to prove query lower bounds
justifying the security of a construction. Similarly, the quantum random oracle model [BDF+11]
(QROM) models adversaries as having quantum query-access to an idealized random function.
These tools have since become indispensable in analyzing real world cryptographic systems, both
in the (post-)quantum and the classical setting.

Indifferentiability. In the real world, however, hash functions are built from lower-level building
blocks, such as compression functions or publicly invertible permutations. The structure of these
hashes can lead to attacks: length-extension attacks on Merkle-Damgård are a famous example;
another example is circular-secure encryption when using Davies-Meyer [HK07]. These attacks
work regardless of the lower-level building block, and simply exploit the way the building block is
used in the higher-level protocol.

One possibility is to analyze a given hash construction when used in specific scenarios. A
much better solution [CDMP05] is to ensure that the hash function is indifferentiable from a
random oracle. Indifferentiability was first defined by Maurer, Renner, and Holenstein [MRH04],
and is a composable, simulation-based definition. An indifferentiable hash function is “as good
as” a random oracle, in that we can “lift” any single-stage security property of random oracles—
which capture most of the standard properties—to conclude that the property also holds for an
indifferentiable hash function, provided the underlying building block is modeled as an idealized
object. Indifferentiability therefore ensures that no attacks were introduced in the conversion from
the lower-level building block to the higher-level hash function. Therefore, rather than analyzing
the hash function in every scenario of interest, we can simply prove that it is indifferentiable and
immediately conclude its security.

A strengthening of this notion, called reset indifferentiability, was introduced by Ristenpart,
Shacham, and Shrimpton [RSS11]. This notion requires a stateless simulator, but allows compos-
able security in games with an arbitrary number of stages and adversaries. While numerous positive
results are known for plain indifferentiability (such as domain extension of random oracles, and
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equivalence between ideal ciphers and random oracles [CPS08, HKT11, DS16]), various barriers
apply to reset indifferentiability [RSS11, LAMP12, DGHM13, BBM13]: in particular, domain ex-
tension is not possible. Despite this barrier, Zhandry [Zha21] has used reset indifferentiability to
show, among other things, that ideal ciphers imply fixed size random oracles. In particular, it is
shown that the single-round sponge is weakly reset-indifferentiable (quantum or classical) from a
random oracle, when the rate does not exceed the capacity.

Adversaries with pre-computation. A common and desirable property of a cryptographic scheme
is security against adversaries with some pre-computed advice. In the context of the random
oracle model and other idealized models, this is usually considered in the auxiliary input model
introduced by Unruh [Unr07]. In this model, adversaries are split into an inefficient offline and
efficient online stage, where only a single (potentially small) advice message can be passed from
offline to online. The online adversary then receives a challenge, or more generally must win some
security game with the help of the advice. Many classical and quantum results are known in this
model [CDG18, Yao90, DTT10, Hel80, FN00, CGK19, HXY19, CLQ20, CGLQ20].

The aforementioned works assume a random oracle. As mentioned above, however, hash func-
tions are typically built from lower-level building blocks, and this structure may be exploited in
attacks. A recent line of work therefore has investigated pre-computation attacks on structured hash
functions, giving both attacks and lower-bounds in different settings [CDG18, ACDW20, GK22,
FGK22, ADGL23, Aks24]. There are not, to our knowledge, any known space-time tradeoffs (either
classical or quantum) for inverting the one-round sponge. A natural question is:

Why not just use the stong notion of indifferentiability to lift space-time trade-offs for random
oracles to structured hash functions?

After all, the goal of indifferentiability is to avoid having to analyze a structured hash con-
struction in every conceivable scenario, and instead simply lift existing random oracle results. The
short answer, unfortunately, is that indifferentiability as currently defined simply does not work.
Due to the pre-computation phase, space-time trade-offs are not single-stage games, and since the
pre-computation is inefficient, it is also not a multi-stage game. Therefore, the lifting theorems for
(reset) indifferentiability simply do not apply to space-time trade-offs. In fact, we show that this
is inherent: there is a function which is (strongly, statistical) reset indifferentiable from a random
oracle, but admits a pre-computation attack on function inversion with polynomial-size advice and
polynomial computation. This leads us to ask the following question:

Does this mean that indifferentiability cannot help us understand space-time tradeoffs for
structured hash functions?

2 Our contributions

We now give an overview of our main results.

2.1 (Quantum) indifferentiability with pre-computation

Motivated by the aforementioned counterexample, we introduce a notion of indifferentiability with
pre-computation—a strengthening of plain indifferentiability, in Section 5. In this definition, a
distinguisher is split into an offline and an online part, where the offline part is allowed unbounded
access to some primitive. However, only a limited size message can be passed to the online adversary,
which is bounded. We define indifferentiability by way of a simulator which is also split into two
stages, an inefficient offline and an efficient online simulator, and again allow the simulators to
pass some bounded size advice from offline to online. As our goal is to show (tight) space-time
tradeoffs, rather than restricting to efficient (polynomial time) adversaries we instead phrase our
definitions in a more fine-grained manner, parameterized by advice sizes, query count, and success
probabilities. In strong indifferentiability, the simulator must simulate the adversaries’ interface in
both the offline and online phase, though in weak indifferentiability we instead allow the simulator
to prepare both the advice for the online adversary, as well as for the online simulator.
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In Section 6, we introduce a composition theorem under our definition of indifferentiability with
pre-computation. Informally, this composition theorem says that if construction C is indifferentiable
from construction R, then a security game with pre-computation (for instance a space-time tradeoff
for function inversion) instantiated using C is as secure as one instantiated using R. This statement
holds up to some loss incurred from indifferentiability, which depends on how much advice the
simulator needs as well as how many queries.

Theorem 1 (Informal version of Theorem 4). If construction C is indifferentiable with pre-
computation from construction R, then any security game with a pre-computing adversary which
is secure when instantiated with R remains secure when instantiated with C.

2.2 (Quantum) space-time trade-offs for sponge inversion

In recent years, the National Institute of Standards and Technology (NIST) announced a new
international hash function standard known as SHA-3. Unlike its predecessor SHA-2, which was
rooted in the Merkle-Damgård construction [Mer88, Mer90, Dam87], the new hash function stan-
dard uses Keccak [BDPA11b]—a family of cryptographic functions based on the idea of sponge
hashing [BDPA11a]. This particular approach allows for both variable input length and variable
output length, which makes it particularly attractive towards the design of cryptographic hash
functions. The internal state of a sponge function gets updated through successive applications
of a so-called block function φ : {0, 1}r+c → {0, 1}r+c (which is typically modeled as a random
permutation), where we call the parameters r ∈ N the rate and c ∈ N the capacity of the sponge.

One-round sponge. Suppose that φ : {0, 1}r+c → {0, 1}r+c is a permutation. In the special case
when there is only a single application of the block function, the sponge function Spφ : {0, 1}r →
{0, 1}r takes a simple form which is illustrated in Figure 1; namely, on input x ∈ {0, 1}r, the output
is given by y = Spφ(x), where y corresponds to the first r bits of φ(x||0c). In other words, Spφ is
defined as the restriction of φ onto the first r bits of its output.

φ
x

0c

y

z

Fig. 1. The one-round sponge.

As an application of our results on indifferentiability, we show that the one-round sponge con-
struction is both quantumly and classically indifferentiable with pre-computation from a random
oracle f : {0, 1}r → {0, 1}r when the rate does not exceed the capacity (see Section 8). Our proof
consists of two parts. First, in Section 7, we use symmetrization techniques and give a (strong,
stateless) simulator with shared randomness which generates a permutation whose sponge-hash
precisely matches a given random function. Next, we show how to remove the shared randomness
at the cost of downgrading to a weak and stateful simulator with a single bit of advice.

Theorem 2 (Informal version of Theorem 7 and Corollary 3). The single-round sponge is
indifferentiable with pre-computation from a random oracle, both quantumly and classically, when
the rate does not exceed the capacity. This holds with unbounded adversaries, either with stateless
strong simulators with shared randomness, or stateful weak simulators that pass a single bit of
advice.

With shared randomness removed, we show in Section 8.2 how to derive tight quantum space-
time tradeoffs for inverting the single-round sponge. To our knowledge, this is the first classical or
quantum space-time tradeoff for sponge inversion. We summarize our results in Table 1.
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Table 1. Summary of our space-time trade-offs in Section 8.2.

Function inversion Sponge inversion
Classical advice, ST = Ω̃(ϵ 2r) ST = Ω̃(ϵ 2r)
classical queries Refs. [Yao90, DTT10] (this work)
Classical advice, ST + T 2 = Ω̃(ϵ 2r) ST + T 2 = Ω̃(ϵ 2r)
quantum queries Ref. [CGLQ20] (this work)
Quantum advice, ST + T 2 = Ω̃(ϵ3 2r) ST + T 2 = Ω̃(ϵ3 2r)
quantum queries Ref. [CGLQ20] (this work)

2.3 Related work

We now briefly discuss several related works on the topic of both (quantum) indifferentiability,
pre-computation and the sponge construction.

Maurer, Renner, and Holenstein [MRH04] first proposed the notion of indifferentiability as a
composable and simulation-based definition for what it means for a construction to be “as good as”
as an ideal object. Ristenpart, Shacham, and Shrimpton [RSS11] observed that indifferentiability
is insufficient for “multi-stage” games, and proposed the notion of reset indifferentiability instead
which requires the simulator to be stateless. Bertoni, Daemen, Peeters and Van Assche [BDPVA08]
proved the indifferentiability of the many-round sponge construction. Carstens, Ebrahimi, Tabia,
and Unruh [CETU18] initiated the study of indifferentiability in the quantum setting, and ana-
lyzed the security of both Feistel networks and the sponge construction under conjectures. Zhandry
[Zha18] introduced the compressed oracle technique, and used it to prove quantum indifferentia-
bility of the Merkle-Damgård construction. Czajkowski, Majenz, Schaffner and Zur [CMSZ19]
proved the quantum indifferentiability of the (many-round) sponge construction in the case when
the block function is modeled as a random function or a random (non-invertible) permutation.
Zhandry [Zha21] showed that the one-round sponge (in the special case when the message length
is roughly half the block length) is quantumly reset-indifferentiable from a random oracle (even if
the adversary has access to the inverse of the permutation). However, contrary to our work, none
of the aforementioned works on indifferentiability take pre-computation into account.

Yao [Yao90] and De, Trevisan and Tulsiani [DTT10] gave (classical) space-time trade-offs for
function inversion. Unruh [Unr07] introduced the auxiliary-input random oracle model. Nayebi,
Aaronson, Belovs and Trevisan [NABT15] generalized space-time trade-offs for function inversion
against quantum adversaries with classical advice. Later, Chung, Liao and Qian [CLQ20] gener-
alized these bounds in the case of quantum advice. Hhan, Xagawa and Yamakawa [HXY19] gave
space-time trade-offs for function (and permutation) inversion in the auxiliary-input quantum ran-
dom oracle model. Chung, Guo, Liu and Qian [CGLQ20] gave the first tight quantum space-time
trade-off for function inversion with both classical and quantum advice. Alagic, Bai, Poremba and
Shi [ABPS24] showed quantum space-time trade-offs for two-sided permutation inversion—the task
of inverting a random but invertible permutation, where the inverter also has access to a punc-
tured inverse oracle. Freitag, Ghoshal and Komargodski [FGK22], and subsequently also Akshima,
Duan, Guo and Liu [ADGL23, Aks24], gave space-time trade-offs for finding short collisions in
the sponge construction. Carolan and Poremba [CP24] gave a (tight) quantum query lower bound
for one-round sponge-inversion via symmetrization techniques. In concurrent work, Majenz, Mala-
volta and Walter [MMW24] also gave (non-tight) quantum query lower bounds for the task of
sponge inversion (in a more general setting) via compressed oracle techniques. Ananth, Mutreja
and Poremba [AMP24] recently gave space-time trade-offs for a simple query problem; namely
that of finding elements in (one-round) sponge hash tables. Notably, none of the aforementioned
works on function inversion result in (either classical or quantum) space-time trade-offs for the
single-round sponge inversion task, as in our work.
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3 Preliminaries

Basic notation. For N ∈ N, we use [N ] = {1, 2, . . . , N} to denote the set of integers up to N .
The symmetric group on [N ] is denoted by SN . In slight abuse of notation, we oftentimes identify
elements x ∈ [N ] with bit strings x ∈ {0, 1}n via their binary representation whenever N = 2n and
n ∈ N. Similarly, we identify permutations π ∈ SN with permutations π : {0, 1}n → {0, 1}n over
bit strings of length n.

Quantum computing. A finite-dimensional complex Hilbert space is denoted by H, and we use
subscripts to distinguish between different systems (or registers); for example, we let HA be the
Hilbert space corresponding to a system A. The tensor product of two Hilbert spaces HA and HB

is another Hilbert space which we denote by HAB = HA⊗HB . We let L(H) denote the set of linear
operators over H. A quantum system over the 2-dimensional Hilbert space H = C2 is called a qubit.
For n ∈ N, we refer to quantum registers over the Hilbert space H =

(
C2
)⊗n as n-qubit states.

We use the word quantum state to refer to both pure states (unit vectors |ψ⟩ ∈ H) and density
matrices ρ ∈ D(H), where we use the notation D(H) to refer to the space of positive semidefinite
linear operators of unit trace acting on H. A unitary U : L(HA) → L(HA) is a linear operator
such that U†U = UU† = IA, where the operator IA denotes the identity operator on system HA.
A quantum algorithm is a uniform family of quantum circuits {Aλ}λ∈N, where each circuit Aλ is
described by a sequence of unitary gates and measurements; moreover, for each λ ∈ N, there exists
a deterministic Turing machine that, on input 1λ, outputs a circuit description of Aλ. We say that
a quantum algorithm A has oracle access to a classical function f : {0, 1}n → {0, 1}m, denoted by
Af , if A is allowed to use a unitary gate Of at unit cost in time. The unitary Of acts as follows
on the computational basis states of a Hilbert space HX ⊗HY of n+m qubits:

Of : |x⟩X ⊗ |y⟩Y −→ |x⟩X ⊗ |y ⊕ f(x)⟩Y ,

where the operation ⊕ denotes bit-wise addition modulo 2. Oracles with quantum query-access have
been studied extensively, for example in the context of quantum complexity theory [BBBV97], as
well as in cryptography [BDF+11, AHU18, AJOP20].

3.1 (Quantum) Indifferentiability

Our notation is based on [CMSZ19] which is close to the original definition of Maurer, Renner, and
Holenstein [MRH04]. The basic idea is that an adversary who is interacting with some cryptographic
system C has access to two interfaces:

– a public interface Cpub
λ (for example, a permutation φ) which is some public interface that takes

as input a certain number of (qu)bits, and outputs a number of (qu)bits.
– a private interface Cpriv

λ (for example, the sponge hash Spφ which uses the permutation φ
internally) which is also some function that takes as input a certain number of (qu)bits and
outputs a number of (qu)bits.

For the purposes of indifferentiability, we will consider constructions where the private interface
is constructed from the public interface (i.e. Cpriv

λ [Cpub
λ ] is an efficient algorithm with an oracle for

Cpub
λ ). We can now define what it means for two interfaces to be indifferentiable.

Definition 1 (Indifferentiability).
Let λ ∈ N be the security parameter. A cryptographic system C is (T, ϵ)-indifferentiable from R,

if there exists an efficient (classical or quantum) simulator S and a negligible function ϵ such that,
for any efficient (classical or quantum) distinguisher D making at most T (classical or quantum)
queries to C, it holds that∣∣∣Pr [D[Cpriv

λ [Cpub
λ ],Cpub

λ ] = 1
]
− Pr

[
D[Rpriv

λ ,S[Rpub
λ ]] = 1

]∣∣∣ ≤ ϵ(λ).
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REAL IDEAL

Fig. 2. Schematic representation of indifferentiability of construction C from idealized primitive R. The
arrows denote “access to” the pointed system, and D is the distinguisher.

These notions are very general, encompassing many scenarios in which one would like to reason
about building some idealized primitive R from a different idealized primitive C in a composably
secure fashion. The composition theorem for plain indifferentiability states that a primitive instan-
tiated using the private interface of C is as secure as a primitive instantiated using the private
interface of R in many scenarios. More formally, any security game that is secure against a single
adversary having oracle access to Rpub will also be secure against a single adversary having oracle
access to Cpub, up to the indifferentiability loss [MRH04]. However, security games involving multi-
ple rounds with distinct adversaries are not generically proven secure by indifferentiability [RSS11].
For this, one requires a stronger form called reset indifferentiability, in which the simulator S in
Definition 1 is required to be stateless.

Often, one considers security of a cryptographic system that allows a pre-processing adversary.
Security games in this setting consider an adversary split into two phases: an inefficient offline
phase in which some advice is computed about the underlying primitive (in our case, the interface
for C or R), and an efficient online adversary. The prepared advice is forwarded to the efficient
online adversary, which then receives one or more challenge(s) that are independent of the advice.
This is a more general setting than the single adversary setting of plain indifferentiability, but a
priori it may seem like security of such a game would be implied by reset indifferentiability, as this
is a security game with multiple stages and adversaries. However, we show that this is not the case:
this is because the offline adversary is inefficient, which is not captured by reset indifferentiability.

In fact, even strong notions of indifferentiability do not imply non-trivial space-time trade-offs.
At a high level, the counterexample is a random function with a trapdoor (as both the public and
private interface). Such a function is (reset, statistical, strong, quantum or classical) indifferentiable
from a random oracle for query bounded adversaries, but clearly admits pre-computation attacks
for one-wayness and many other security games which would be secure with a random oracle.

4 Separating reset indifferentiability from pre-computaion

Let Og be an oracle for a function g : {0, 1}2n → {0, 1}n drawn from the distribution which is
uniform random, except on inputs of the form x∥s for some random trapdoor s ∈ {0, 1}n. For such
inputs, define g(x∥s) = x. Let oracle Oh be an oracle for a function h : {0, 1}2n → {0, 1}n drawn
uniformly at random. Note that the distributions of g and h have large total variation distance, but
are quantum query indistinguishable by the one-way to hiding lemma [Unr14]. We will consider
two constructions, C and R, defined as follows.

1. Construction C is defined by Cpub := Og, and Cpriv[Cpub] := Cpub = Og. In other words, both
the public and private interface for C are the same oracle, and they are for a random function
with a trapdoor.

2. Construction R is defined by Rpub := Oh, and Rpriv[Rpub] := Rpub = Oh. In other words, both
the public and private interface for R are the same oracle, and they are for a random function
(with no trapdoor).

Now let S[Rpub] be the trivial simulator which has access to h, and answers queries x as h(x).
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Theorem 3. Construction C is (T, ϵ) strong quantum statistical reset indifferentiable from con-
struction R for any ϵ = O(T 2/2n).

Proof. The interface for R = (Rpub,Rpriv[Rpub]) is simply two oracles for the same random function.
The simulated interface (S[Cpub],Cpriv[Cpub]) is two oracles for a random function, but with a
random trapdoor s such that inputs that end with s are easy to invert. We know that Og and
Oh are quantum query indistinguishable in T queries for any ϵ = O(T 2/2n) [Unr14], and the
interface above is exactly the interface exposed to the adversary in the indistinguishability game
(except two copies of each oracle are exposed; this is straightforward to simulate with one copy).
This shows quantum statistical indifferentiability. The simulator can be seen to not depend on the
distinguisher and be stateless, hence strong and reset.

This proof straightforwardly implies the following corollary, for any choice of either bracketed
item.

Corollary 1. Construction C is (T, ϵ) strong ⟨ classical | quantum ⟩ statistical reset indifferentiable
⟨ with | without ⟩ shared randomness from construction R for any ϵ = O(T 2/2n).

Observe that this corollary is weaker than the one shown above, as the (classical) simulator
can simply ignore it’s randomness. The security bound can be strengthed in the case of a classical
adversary. Observe also that, given advice s ∈ {0, 1}n (which depends on C, e.g. found by an
unbounded adversary querying C), it is straightforward to invert g with no queries. However, h
remains hard to invert even with a much larger amount of advice, e.g. an adversary can succeed with
constant probability having S qubits of advice and T quantum queries only when ST+T 2 = Ω̃(2n)
[CGLQ20].

5 Indifferentiability with Pre-computation

Given the prior counterexample, we see that all but the strongest notions of indifferentiability are
insufficient to inherit security for games that allow for adversaries with pre-computed advice (e.g.
space-time tradeoff lower bounds). We define in this section a notion which captures any security
game allowing unbounded pre-computation.

Strong indifferentiability with pre-computation. To define the strong notion of indifferentiability
with pre-computation, we will have both a pair of fixed simulators S = (S0,S1) and arbitrary
distinguishers D = (D0,D1), where the first in each tuple is unbounded/offline and the second in
each tuple is bounded/online. In the “real world”, the offline distinguisher D0 receives unbounded
access to some interface C. It then forwards S (qu)bits of advice to online distinguisher D1, which
can make T queries to Cpriv and Cpub, and then outputs a bit.

In the “ideal world”, the offline simulator S0 receives unbounded access to the ideal interface R,
which it then uses to implement an interface which offline distinguisher D0 has unbounded access
to. Again D0 forwards S (qu)bits of advice to the online distinguisher D1, but we also allow S0 to
forward Ssim (qu)bits of advice to the online simulator S1. The online distinguisher D1 makes T
queries to Rpriv, as well as an interface simulated by S1 which itself makes Tsim queries to Rpub. As
before, the distinguisher outputs a bit.

Definition 2 (Strong Indifferentiability with Pre-Computation). Let λ ∈ N be the se-
curity parameter. A cryptographic system C is strongly (S, T, Ssim, Tsim, ϵ)-indifferentiable (with
pre-computation) from a system R, if there exists a pair of simulators (S0,S1), where

– S0 is an (classical/quantum) query and computation unbounded algorithm that outputs at most
Ssim (qu)bits, and

– S1 is an efficient (classical/quantum) algorithm making Tsim (classical/quantum) queries,

and a negligible function ϵ(λ) such that, for any pair of algorithms (D0,D1), where

– D0 is an unbounded (classical/quantum) algorithm which outputs S-many (qu)bits and
– D1 is an efficient (classical/quantum) making at most T queries to C,



8

such that the following distinguishing property holds:∣∣∣Pr [D1

[
Cpriv
λ [Cpub

λ ],Cpub
λ ,D0[Cλ]

]
= 1
]
−

Pr
[
D1

[
Rpriv
λ ,S1

[
Rpub
λ ,S0[Rλ]S

]
,D0[S0[Rλ]D]

]
= 1
] ∣∣∣ ≤ ϵ(λ).

Here, we assume that D1 only has access to the interface D0 via its output, i.e., it receives S many
(qu)bits of advice.

The loss of the simulator, Tsim and Ssim, as well as the distinguishing advantage ϵ, will enter into
the bounds inherited through this notion. Naturally, the smaller these quantities are, the tighter
the bounds. We leave our definitions general so as to allow inheriting the tightest possible bounds.

Weak indifferentiability with pre-computation. The weak indifferentiability with pre-computation
game is similar to strong, except the simulator S = (S0,S1) now depends on distinguisher D =
(D0,D1). This allows us to consider offline simulators S0 which prepare both the advice for the
online simulator S1, as well as for the online distinguisher D1. This can reduce to the notion of
strong indifferentiability when the offline simulator S0 internally runs offline distinguisher D0. Our
definition is depicted in Figure 3.

Definition 3 (Weak Indifferentiability with Pre-Computation). Let λ ∈ N be the secu-
rity parameter. A cryptographic system C is weakly (S, T, Ssim, Tsim, ϵ)-indifferentiable (with pre-
computation) from a system R, if, for any pair of algorithms (D0,D1), where

– D0 is a query and computation unbounded (classical/quantum) algorithm which outputs S-many
(qu)bits and

– D1 is an efficient distinguisher (with binary output) making at most T queries to C,

there exists a pair of (classical/quantum) simulators (S0,S1), where

– S0 is a query and computation unbounded (classical/quantum) algorithm that outputs Ssim

(qu)bits, and
– S1 is an efficient (classical/quantum) algorithm making Tsim (classical/quantum) queries,

and a negligible function ϵ(λ) such that the following holds:∣∣∣Pr [D1

[
Cpriv
λ [Cpub

λ ],Cpub
λ ,D0[Cλ]

]
= 1
]
−

Pr
[
D1

[
Rpriv
λ ,S1

[
Rpub
λ ,S0[Rλ]S

]
,S0[Rλ]D

]
= 1
] ∣∣∣ ≤ ϵ(λ).

Here, we assume that D1 only has access to the interface D0 via its output, i.e., it receives S many
(qu)bits of advice.

Additional Variants. Moreover, we consider the following variants which apply to both weak and
strong indifferentiability with pre-computation:

– Computational/statistical/perfect: Computational indifferentiability requires the distin-
guisher D1 to be a computationally efficient algorithm. Statistical indifferentiability requires
D1 to make a bounded number of queries. Finally, perfect indifferentiability refers to the case
when D1 is completely unbounded.

– Computational/statistical simulation: Indifferentiability with computational simulation
requires S1 to be a computationally efficient simulator. Indifferentiability with statistical sim-
ulation requires S1 to be only query-efficient (but computation unbounded).

– Shared randomness: In shared randomness indifferentiability, the simulators S0 and S1 have
access to the same arbitrary-sized set of random coins SR ∈ {0, 1}∗. Note that we do not reveal
this randomness to the distinguisher.

– Classical/quantum: Quantum indifferentiability captures the security against quantum dis-
tinguishers (and also simulators) making classical or quantum queries to their oracles, whereas
classical indifferentiability only considers classical algorithms that make classical queries. In
the context of quantum indifferentiability, we also distinguish between classical and quantum
pre-computation, i.e., whether D1 receives classical or quantum advice from D0.
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REAL IDEAL

Fig. 3. Schematic representation of weak indifferentiability with pre-computation. Arrows denote access
to the pointed to interface, and washed out colors denote inefficient pre-computation, i.e. entities with
unbounded access. Dotted arrows denote forwarded advice.

5.1 Perfect reset indifferentiability suffices for pre-computation

In this section, we observe that if two constructions R, C are perfectly reset indifferentiable, even
for query and computation unbounded adversaries, then any multi-stage security game with (some
or all) adversaries unbounded that is secure in the R model will also be secure in the C model.
This includes our security games with pre-computation as a special case. Further, it holds even in
the case where an unbounded adversary can distinguish with only negligible advantage ϵ (whereas
“perfect indifferentiability” usually requires exactly zero advantage)—we call this notion ϵ-perfect
indifferentiability.

Lemma 1. Suppose that construction C is ϵ-perfect reset indifferentiable from R, and any choice
of the remaining variants. Suppose that the simulator makes (at most) Tsim queries to Rpub to
implement T of the distinguisher’s queries. Then C is (S, T, Ssim, Tsim, ϵ) indifferentiable with pre-
computation from R, for the same choice of remaining variants, and for Ssim = 0, Tsim and ϵ as
defined above, and any number of distinguisher queries T and distinguisher advice size S.

Proof. We will prove the claim separately for strong and weak indifferentiability, though the proofs
proceed analogously for any choice of the remaining variants.

– (Case 1) Strong indifferentiability with pre-computation. Let S[Rpub] be the simulator that
achieves ϵ-perfect reset indifferentiability from R (note that S may also be a function of
some shared randomness). To construct a simulator in the strong indifferentiability with pre-
computation setting S ′ = (S ′0,S ′1), we simply identify S ′0[R] = (S[Rpub],Rpriv) and S ′1[Rpub] =
S[Rpub]. We know that S is stateless, so no advice needs to be passed from S ′0 to S ′1 while run-
ning S. Any distinguisher D′ = (D′

0,D′
1) in the strong indifferentiability with pre-computation

game against S can now be identified with the distinguisher D = D′ in the strong ϵ-perfect
reset indifferentiability game (i.e. D simply runs D′

0 followed by D′
1, passing advice internally

as needed, and outputting the result). By the reset indifferentiability of C from R, this will
distinguish with advantage at most ϵ and hence D′ distinguishes with advantage at most ϵ.

– (Case 2) Weak indifferentiability with pre-computation. Let D′ = (D′
0,D′

1) be a distinguisher
for the indifferentiability with pre-computation game. Identify D′ with a distinguisher D in
the ϵ-perfect reset indifferentiability game of C from R, specifically the distinguisher D which
runs D′ internally in two stages, forwarding advice where necessary. Let S[Rpub] be a stateless
simulator such that D achieves advantage at most ϵ when run using S.
We construct S ′ = (S ′0,S ′1) in the indifferentiability with pre-computation game as S ′0[R] =
D′

0[S[Rpub],Rpriv]D (meaning the offline simulator runs the offline distinguisher with simulator
S and forwards the advice created to D′

1, and nothing to online simulator S ′1) and S ′1[Rpub] =
S[Rpub]. By the ϵ-perfect reset indifferentiability achieved by S we know that D will distinguish
with advantage at most ϵ, which implies that D′ will distinguish with advantage at most ϵ.
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In neither case did we place any constraints on the size of the advice from offline to online distin-
guisher, nor bound the number of queries of online distinguisher, so this holds for any S, T . The
simulator overhead is clearly at most Tsim, as the simulator S receives T online queries in each
case, and there is no advice passed between simulators so Ssim = 0.

Our proof of indifferentiability with pre-computation and shared randomness of the one-round
sponge from a random oracle—Section 8—will first show that the one-round sponge is perfect
reset indifferentiability with shared randomness (a strengthening of [Zha21], Theorem 10), using a
symmetrization argument. However, it is unclear how to remove the shared randomness from the
reset indifferentiability game—in particular, techniques based on extracting randomness from an
oracle such as used in [Zha21], do not work against an adversary that can learn the full oracle, as in
our setting. Restricting to indifferentiability with pre-computation as defined in Section 5, we next
show how to remove the shared randomness from this definition, as needed for the composition
theorem.

5.2 Removing shared randomness from weak indifferentiability

A useful fact we will prove here is that weak (or strong) indifferentiability with pre-computation,
statistical simulation, and shared randomness (and any choice of the remaining variants) implies
weak indifferentiability with pre-computation without shared randomness and statistical simulation
(for the same choice of remaining variants), up to a single bit of loss in the advice size.

Lemma 2. Suppose that C is weakly (S, T, Ssim, Tsim, ϵ) indifferentiable with pre-computation from
R with statistical simulation, shared randomness, as well as with a ⟨computational | statistical | perfect⟩
⟨classical | quantum⟩ distinguisher. Then, the construction C is weakly (S, T, Ssim + 1, Tsim, ϵ) in-
differentiable with precomputation from R with statistical simulation, no shared randomness, and
⟨computational | statistical | perfect⟩ ⟨classical | quantum⟩ distinguisher (for the same choice of
variants as in the premise).

The transformation is depicted in Figure 4.

Proof. Let D = (D0,D1) be a distinguisher for the indifferentiability with pre-computation security
game between C and R, and let S = (S0,S1) be the simulator which witnesses the indifferentiability
with pre-computation and shared randomness, incurring query loss Tsim and advice size loss Ssim.
Let p be the probability that D outputs 1 when run in the “ideal” world, i.e. with simulator S and
system R. From the premise, we know that p is at most ϵ away from the probability that D outputs
1 when run in the “real” world, with no simulator and system C. We will construct an S ′ = (S ′0,S ′1)
which uses no shared randomness and incurs query loss Tsim and advice size loss Ssim + 1, and
causes D to output 1 with probability p as well. Note that this suffices because any distinguisher
for the game with shared randomness is equally well a distinguisher for the game without shared
randomness and vice versa; the distinguisher interfaces match syntactically.

Let us denote by S[· · · ,SR] a simulator with shared randomness SR ∈ {0, 1}∗. We will consider
simulators where this input is hard coded to value SR (recall that S is computationally unbounded,
so this is valid). We then have two cases.

– (Case 1) For any SR ∈ {0, 1}∗, we have

Pr
[
D1

[
Rpriv
λ ,S1

[
Rpub
λ ,S0[Rpub

λ ,SR]S ,SR
]
,S0[Rpub

λ ,SR]D
]
= 1
]
= p.

In this case, we can simply choose any fixed value for the shared randomness SR and hard-code
it into both offline and online simulators.

– (Case 2) There are two values of shared randomness, SR0,SR1 ∈ {0, 1}∗, such that

Pr
[
D1

[
Rpriv
λ ,S1

[
Rpub
λ ,S0[Rpub

λ ,SR0]S ,SR0

]
,S0[Rpub

λ ,SR0]D

]
= 1
]
=p0

Pr
[
D1

[
Rpriv
λ ,S1

[
Rpub
λ ,S0[Rpub

λ ,SR1]S ,SR1

]
,S0[Rpub

λ ,SR1]D

]
= 1
]
=p1
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and further p0 < p < p1. In this case, we hard-code both SR0 and SR1 into the offline and online
simulators S ′0,S ′1. Then, before running any other computation, S ′0 samples a bit s ∈ {0, 1}
such that

Pr
S′
[s = 1] =

p− p0
p1 − p0

.

After selecting bit s, the constructed offline simulator S ′0 simply runs S[· · · ,SRs], i.e. the initial
simulator with shared randomness hard-coded as dictated by s. In addition to whatever advice
S0 would send, S ′0 also sends the bit s to S ′1. Then, S ′1 runs S1[· · · ,SRs], again hard-coding
the shared randomness as dictated by s. This clearly incurs only an overhead of one (qu)bit of
advice. We now have

Pr
[
D1

[
Rpriv
λ ,S

′

1

[
Rpub
λ ,S

′

0[R
pub
λ ]S

]
,S

′

0[R
pub
λ ]D

]
= 1
]

= p0 · Pr
S′
[s = 0] + p1 · Pr

S′
[s = 1] = p,

which proves the claim.

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 4. The reduction for removing shared randomness for weak indifferentiability. Two values of shared
randomness are hard-coded into the simulator, which then uses bit s to select between them.

6 Composition Framework for Indifferentiability with Pre-Computation

We show here that our proposed notion of indifferentiability with pre-computation implies com-
posed security for a class of security games allowing pre-computing adversaries. This class of games
includes the setting of most space-time tradeoffs as a special case.

6.1 Security games with pre-computation

For the remainder of this section, all objects will in fact be a family indexed by a security parameter
λ; we drop this index for convenience. We will follow the indifferentiability model of Maurer et al.
[MRH04]. In particular, let C be a construction with a private interface Cpriv and a public interface
Cpub as defined in Section 5. The components of a generic security game with pre-computation will
be a cryptosystem P, an enviroment E , a pre-computation adversary A0, and an online adversary
A1. For simplicity, we will quantify efficiency only in terms of number of queries to the interface C;
all entities will be computationally unbounded. We further state our results for quantum queries
and advice with weak indifferentiability, though one could define an analogous framework for
classical queries and/or classical advice and/or quantum or classical computationally bounded
entities and/or strong indifferentiability. The composition theorem proceeds similarly for all such
cases. We do not consider composition theorems with shared randomness, as we will not use them.
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In the following definitions, when we say that two objects “interact”, we mean that they alter-
natively send data back and forth for some number of rounds. The number and order of rounds,
as well as size and type (classical or quantum) of the data is a property of a specific security
game. We will leave our definition general enough to capture any suitable security game. The only
parameters we will need in a general game are the advice size S, and online query count T (which
counts queries made by A1 and cryptosystem P).

Definition 4. An offline adversary A0 is a (computational and query) unbounded quantum algo-
rithm, which interacts with C (both Cpriv and Cpub) for an arbitrary number of rounds, and prepares
an advice state α that is S qubits.

Definition 5. An online adversary A1 is an interactive quantum algorithm, which makes T1
queries to the public interface Cpub, and interacts with the environment E and cryptosystem P.

Definition 6. A cryptosystem P is an interactive quantum algorithm, which makes T2 queries to
the private interface Cpriv, and interacts with the environment E and online adversary A1.

Definition 7. An environment E is an interactive quantum algorithm, which interacts with the
cryptosystem P and online adversary A1. At the end of the experiment, E outputs a bit b.

In Definition 5 and Definition 6, we require that T = T1 + T2. We call the tuple (P,C, E) an
instance of the P cryptosystem in model C. We can also consider a different interface R with a
private interface Rpriv that syntactically matches Cpriv (e.g. if Cpriv is an oracle for a function
from {0, 1}∗ → {0, 1}n, then Rpriv is as well). We call the tuple (P,R, E) an instance of the P
cryptosystem in model R. We are now ready to state our composition theorem.

Theorem 4. Suppose that construction C is (S, T, Ssim, Tsim, ϵ) indifferentiable with pre-computation
from construction R. Let A = (A0,A1) be an attacker in the C model of P with advice size S and
online query count T1, in a game where P makes T2 queries to Cpriv such that T1 + T2 = T . Then
there is an attacker A′ = (A′

0,A′
1) in the R model of P with advice size S + Ssim and online query

count Tsim. This attacker satisfies∣∣∣Pr [E [P[Cpriv],A1[C
pub,A0[C]]

]
= 1
]
−

Pr
[
E
[
P[Rpriv],A′

1[R
pub,A′

0[R]]
]
= 1
] ∣∣∣ ≤ ϵ

The construction of A is depicted in Figure 6, and the proof of correctness is depicted in Figure
7.

Proof. Let S[R] = (S0[R],S1[Rpriv]) be a simulator which is (S, T, Ssim, Tsim, ϵ)-indifferentiable in
the indifferentiability with pre-computation game against interface C, for a certain distinguisher
D = (D0,D1) which will be defined later. We can construct adversary A′ in the R model of P
from the adversary A in the C model of P and the simulator S in a black-box way. In particular,
the pre-processing adversary A′

0 is simply S0[Rpriv], which prepares advice state αA of size S and
αS of size Ssim. The online adversary is then the joint system of the online adversary and online
simulator, A′

1 = A1[S1[R
priv, αS ], αA]. It is clear that this adversary A′ uses S + Ssim qubits of

advice and Tsim quantum queries (note that the original T1 queries by the adversary are now queries
to the simulator, and not to the construction; hence we only need count Tsim).

To show the success probability gap, let δ1 be the probability that the environment E outputs
1 in the C model of P with adversary A, and let δ2 be the probability for the same environment E
outputting 1 in the R model of P with adversary A′. Note that the tuple (E ,P,A1) is a valid online
distinguisher for the indifferentiability with pre-computation game, which we call D1. Similarly, A0

is a valid preprocessing distinguisher, which we call D0. Hence we have a distinguisher D = (D0,D1)
for the indifferentiability with pre-computation game—this distinguisher D is the one which defines
S earlier. Further, it will output 1 with probability δ1 in the ideal world (from the definition of our
security game), and with probability δ2 in the real world (from the construction of A′). Hence, we
must have |δ1 − δ2| ≤ ϵ, demonstrating the claim.
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Fig. 5. The adversary A = (A0,A1) in model C.

Fig. 6. The adversary A′ = (A′
0,A′

1) in model R, constructed from A in model C and the simulator S.
The syntax of A is depicted in Figure 5.

7 Sponge symmetrization

In this section we introduce the relevant background building up to our symmetrization lemma.
This lemma will be the main technical component in showing that the single round sponge is
indifferentiable with pre-computation from a random oracle, when the rate is smaller than the
capacity.

7.1 Group theory

We first define relevant notions in group theory, and recall known results about the symmetric
group SN on N elements. For a more complete overview of the subject, we refer the reader to the
work of James [Jam84]. This presentation follows [CP24].

Let SN denote the symmetric group consisting of permutations which act on the set [N ] :=
{1, ..., N}. For a subset A ⊂ [N ], let SA denote the maximal subgroup of SN which fixes every
element in the complement of A, i.e. [N ] \A. Now let A1, ..., Al be a partition of [N ] such that the
disjoint union satisfies

⊔
i∈[ℓ]Ai = [N ].

Definition 8 (Young subgroup). A subgroup H of the symmetric group SN is a Young subgroup
if it can be expressed as H = SA1

× ...× SAl
, where × denotes the internal direct product and the

collection of subsets {Ai}i∈[ℓ] forms a partition of [N ].

The concept of a double coset, which we review below, will also be relevant.
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Fig. 7. The reduction from the constructed adversary in the R model to a distinguisher D = (D0,D1) for
the indifferentiability game between C and R.

Definition 9 (Double cosets). Let H,K be subgroups of a group G. The double cosets of G under
(H,K), denoted H⧹G⧸K, are the sets of elements which are invariant under left multiplication
by H and right multiplication by K. In particular,

H⧹G⧸K =
{
{hxk : h ∈ H, k ∈ K} : x ∈ G

}
.

It is well-known that G is the disjoint union of its double cosets for any subgroups H,K ≤ G.
We focus on the double cosets of the symmetric group SN , specifically those generated by Young
subgroups. These subgroups admit the following characterization, adapted from Jones [Jon96] and
James [Jam84].

Theorem 5 ([Jon96], Theorem 2.2). Let H,K be Young subgroups of SN , with corresponding
partitions A1, ..., Al (for H) and B1, ..., Bm (for K). Let π ∈ SN and C = HπK be the correspond-
ing double coset. Any other permutation π′ ∈ SN is in C if and only if for all i ≤ l, j ≤ m we have
|Ai ∩ π′Bj | = |Ai ∩ πBj |.

Intuitively, the above characterization says that the double cosets defined by Young subgroups
(H,K) correspond to sets of permutations which look the same if one only considers how they
distribute the elements of each Bj among the different Ai’s. Two permutations π, π′ are in the
same double coset if and only if for every Ai, Bj both π and π′ send the same number of elements
from Bj to Ai. This characterization combined with the following lemma is a key component of
our reduction.

Theorem 6 ([Wil], Theorem 4.4). For any subgroups H,K of a (finite) group G with x, g ∈ G
both in the same (H,K) double coset, there are exactly |x−1Hx ∩K| ways of choosing h ∈ H and
k ∈ K such that g = hxk.

As a corollary, it follows that selecting random symmetrizing elements from H and K suffice
to give a random element of the double coset.

Lemma 3. For any subgroups H,K of a (finite) group G with x ∈ G, let h ∼ H and k ∼ K be
uniform random. Then g = hxk is uniform random over the double coset HxK.

Proof. Fix some g ∈ HxK from the double coset of x. The number of ways to choose an h ∈ H
and a k ∈ K such that hxk = g is independent of g; hence for any g, the probability of obtaining
g = hxk is the same.
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7.2 Symmetrization lemma

In this section, we construct a symmetrized permutation φ from a random function f such that the
sponge hash of φ exactly matches the function f (at least when r ≤ c), and φ is exponentially close
to uniform random. Furthermore, a query to φ or φ−1 can be implemented with a single query to
f . At a high level, we pick symmetrizing permutations such that the double cosets consist exactly
of permutations with the same sponge hash. We use the notation n = r+ c, and λ = min(r, c). We
assume r ≤ c which implies r = λ.

Lemma 4 (Symmetrization of the one-round sponge). Let f : {0, 1}r → {0, 1}r be a random
function. Let C ⊂ S2n be a subset of permutations on n-bit strings where n = r + c and r ≤ c,
such that φ ∈ C if and only if Spφ = f . Then there exists a (quantum or classical) algorithm
that samples a random φ ∼ C, and can implement queries to φ and φ−1 each with a single query
to f . Further, φ cannot be distinguished from a random permutation with advantage greater than
O(2−r/2).

Proof. Define the transversal permutation πf in terms of the random function f : {0, 1}r → {0, 1}r.
Then, for x ∈ {0, 1}r, y ∈ {0, 1}r, and g ∈ {0, 1}n−2r (observing that g may be the empty string)

πf (x∥g∥y) =y ⊕ f(x)∥g∥x. (1)

This construction is such that Spπf = f , e.g. the functions have the same truth table. Note also that
both πf and π−1

f can be implemented using a single query to f . To construct the right symmetrizing
subgroup, define the singleton sets Bz for all z ∈ {0, 1}r as

Bz := {z∥0c}, (2)

and define B⊥ as the complement of all Bz, e.g.

B⊥ := {0, 1}n \ ∪z∈{0,1}rBz. (3)

We now observe that the sets {Bz}z∈{0,1}r∪{⊥} define a partition of {0, 1}n. Thus, we can define
the corresponding right symmetrizing Young subgroup K ≤ S2r+c as

K :=
{
σ ∈ S2r+c : σ(Bz) = Bz, ∀z ∈ {0, 1}r ∪ {⊥}

}
. (4)

For the left symmetrizing subgroup, define the sets Ax ⊂ {0, 1}n as

Ax :={x∥y : y ∈ {0, 1}c}, (5)

which are easily seen to partition the set {0, 1}n. The {Ax}x∈{0,1}r sets therefore define the left
symmetrizing Young subgroup H ≤ S2r+c with

H :=
{
ω : ω(Ax) = Ax,∀x ∈ {0, 1}r

}
. (6)

Suppose we now sample ω ∼ H and σ ∼ K uniformly at random and symmetrize πf to create a
new permutation φ. In particular, we let

ω ∼H, σ ∼ K, φ := ω ◦ πf ◦ σ. (7)

Remark 1. If we let G := S2n , then the double cosets H⧹G⧸K are exactly sets of permutations
which have the same sponge hash. In particular, π, π′ are in the same double coset if and only if
Spπ = Spπ

′

To see the above, recall the generic characterization that two permutations are in the same
young double cosets if they distribute the elements of each Bi among the Aj in exactly the same
way, Theorem 5. There are two directions to show.

(→) Suppose π, π′ define the same sponge hash function. Then for any z ∈ {0, 1}r, we have π(z∥0c)[:
r] = π′(z∥0c)[: r], and hence if π(Bz) ⊂ Ai then π′(Bz) ⊂ Ai. The Bz are singleton sets, so
this gives the equation

|π(Bz) ∩Ax| = |π′(Bz) ∩Ax|, for all x, z ∈ {0, 1}r. (8)
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The distribution of Bz determine the distribution of B⊥ as

|π(B⊥) ∩Ax| = |Ax| −
∑

z∈{0,1}r

|π(Bz) ∩Ax| (9)

and similarly for π′. Therefore, the equality holds for all x, z including z = ⊥.
(←) Similar to the above argument, but in reverse; the implications go both directions.

We have from Remark 1 above and the symmetrization lemma (Lemma 3) that φ is uniform
random over all permutations having the same sponge hash function as π. From Lemma 5 in
Appendix A, we have that the sponge hash of π can be distinguished from the distribution induced
by the sponge hash of a truly random permutation with advantage O(2−r/2), even given the full
truth table of the sponge. It follows from our symmetrization argument that φ can be distinguished
from a uniform random permutation with advantage O(2−r/2), even given the whole truth table.

8 Indifferentiability (with Pre-Computation) of the One-Round Sponge

In this section we show that the one-round sponge is ϵ-perfect4 strongly reset indifferentiable with
shared randomness, for exponentially small ϵ, both quantumly and classically. This strengthens
a result of [Zha21], which proved statistical instead of perfect indifferentiability, i.e. security only
against query bounded adversaries. As a corollary, we then have that the one-round sponge is
strongly indifferentiable with pre-computation and shared randomness from Lemma 1. We can
then remove the shared randomness from this definition at the cost of switching to weak indifferen-
tiability with computationally unbounded simulator through Lemma 2. With this result in place,
we illustrate how our composition theorem implies a tight space-time tradeoff for the one-round
sponge inversion. More broadly, our composition theorem allows the one-round sponge to inherit
any space-time tradeoff of a random oracle.

8.1 Proof of Indifferentiability

Theorem 7. Let r, c ∈ N with r ≤ c and λ = min(r, c) be parameters. Let φ : {0, 1}r+c → {0, 1}r+c

be a random permutation. Then, the (one-round) sponge construction C with

Cpriv
λ = Spφ and Cpub

λ = (φ,φ−1)

is strong, ⟨ classical | quantum ⟩, is ϵ-perfect reset indifferentiable (shared randomness) from a
random oracle R, where for a random f : {0, 1}r → {0, 1}r, the interfaces Rpriv = Rpub correspond
to an oracle for f , and where ϵ = O(2−r/2).

Proof. We will prove the result for quantum distinguisher, though the proof proceeds similarly
for classical. Let D be an unbounded quantum algorithm which makes queries to C. Consider the
following sequence of hybrid experiments:

Game1 : This hybrid corresponds to the real world. The adversary D receives access to the
(single-round) sponge construction C with

Cpriv
λ = Spφ and Cpub

λ = (φ,φ−1)

where φ : {0, 1}r+c → {0, 1}r+c is a random permutation and r ≤ c. Define the event

Game1 :=
[
b = 1 : b← D[Spφ, (φ,φ−1)]

]
.

Game2 : This corresponds to the following intermediate experiment. The adversary D receives
access to the (single-round) sponge construction C with

Cpriv
λ = Spφ̂ and Cpub

λ = (φ̂, φ̂−1)

where φ̂ : {0, 1}r+c → {0, 1}r+c is a permutation which is generated as follows:
4 This means that query unbounded adversaries have advantage at most ϵ
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Algorithm 1: Symr,c(f)

Input: Parameters r, c ∈ N and a truth table for a function f : {0, 1}r → {0, 1}r.
Output: Truth table for a permutation φ̂ : {0, 1}r+c → {0, 1}r+c.

1 Let π : {0, 1}r+c → {0, 1}r+c be the permutation with

π(x∥g∥y) := y ⊕ f(x)∥g∥x.

2 For z ∈ {0, 1}r, let Bz = {z∥0c} and B⊥ = {0, 1}n \ ∪z∈{0,1}rBz;
3 For x ∈ {0, 1}r, let Ax = {(x∥y) : y ∈ {0, 1}c};
4 Sample a random permutation σ from the Young subgroup K ≤ S2r+c with

K = {σ ∈ S2r+c : σ(Bz) = Bz,∀z ∈ {0, 1}r ∪ {⊥}};

5 Sample a random permutation ω from the Young subgroup H ≤ S2r+c with

H = {ω ∈ S2r+c : ω(Ax) = Ax,∀x ∈ {0, 1}λ};

6 Output a truth table for the permutation φ̂ = ω ◦ π ◦ σ.

1. Sample a uniformly random function f : {0, 1}r → {0, 1}r.
2. Run φ̂← Symr,c(f) using the symmetrization procedure in Algorithm 1.

We define the corresponding hybrid event by

Game2 :=
[
b = 1 : b← D[Spφ̂, (φ̂, φ̂−1)]

]
.

Game3 : This hybrid corresponds to the ideal world. The adversary D receives access to interfaces
which are simulated by the following stateless simulator Swhich has access to a random oracle
f : {0, 1}r → {0, 1}r and a common source of shared randomness SR ∈ {0, 1}∗. This is the
simulator for the interface (φ̂, φ̂−1): it answers queries using the permutation φ̂← Simf

r,c(· ;SR)
which can be evaluated via oracle calls to the random oracle f and shared randomness SR ∈
{0, 1}∗, where Simf

r,c(· ;SR) is the procedure in Algorithm 2 which internally calls f .
We define the corresponding event for the ideal world by

Game3 :=
[
b = 1 : b← D[f,S[f, SR]]

]
.

First, we show the following:

Claim.
|Pr [Game2]− Pr [Game1]| ≤ O(2−r/2).

The claim follows from sponge symmetrization, Lemma 4. In particular, it was shown that distin-
guishing the truth table of a uniform random φ from the truth table of a symmetrized φ constructed
from a random f : {0, 1}r → {0, 1}r can be done with advantage at most O(2−r/2). The permuta-
tion φ uniquely determines Spφ in both Game1 and Game2, so this suffices to prove the claim.
Finally, we observe the following:

Claim.
Pr [Game3] = Pr [Game2] .

Proof. Note that in the previous experiment, Game2, we already introduced a perfectly random
function, which is now featured as a random oracle. To prove the claim, it suffices to argue that a
sufficiently long shared random strong SR ∈ {0, 1}∗ enables the of simulator S to run Algorithm
2 to generate the same symmetrizing permutations σ ∼ K and ω ∼ H on each query (despite
being stateless). Define N = 2r+c and recall that H,K ≤ SN are both Young subgroups. Let
B = {Bz}z∈{0,1}r∪{⊥} denote the invariant sets with respect to K, and let A = {Ax}x∈{0,1}r

denote the invariant sets for H. Then,

K ∼=
∏

Ai∈A

Ai and H ∼=
∏

Bj∈B

Bj .
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Algorithm 2: Simf
r,c(xin ;SR)

Input: Parameters r, c ∈ N, an oracle for a function f : {0, 1}r → {0, 1}r, an input string
xin ∈ {0, 1}r+c, and a random string SR ∈ {0, 1}∗.

Output: An output string yout ∈ {0, 1}r+c.
1 For z ∈ {0, 1}r, let Bz = {z∥0c} and B⊥ = {0, 1}n \ ∪z∈{0,1}rBz;
2 For x ∈ {0, 1}r, let Ax = {(x∥y) : y ∈ {0, 1}c};
3 Use a subset of the random coins in SR ∈ {0, 1}∗ to assign a random permutation σ from the

Young subgroup K ≤ S2r+c with

K = {σ ∈ S2r+c : σ(Bz) = Bz,∀z ∈ {0, 1}r ∪ {⊥}};

4 Use another subset of the random coins in SR ∈ {0, 1}∗ to assign a random permutation ω from
the Young subgroup H ≤ S2r+c with

H = {ω ∈ S2r+c : ω(Ax) = Ax, ∀x ∈ {0, 1}λ};

5 Output yout = φ̂(xin), where φ̂ is the symmetrized permutation φ̂ = ω ◦ πf ◦ σ and where
πf : {0, 1}r+c → {0, 1}r+c can be evaluated with an oracle call to f via

πf (x∥g∥y) := y ⊕ f(x)∥g∥x.

Hence, the claim is essentially just a consequence of the coupon collector problem5.

Putting everything together, we get that∣∣∣Pr [D[Spφ, (φ,φ−1)] = 1
]
− Pr

[
D
[
f,S[f, SR]]

]
= 1
]∣∣∣ ≤ O(2−r/2).

We can lift ϵ-perfect reset indifferentiability to the analogous notion of indifferentiability with
pre-computation, as in the following corollary.

Corollary 2. Let r, c ∈ N with r ≤ c and λ = min(r, c) be parameters. Let φ : {0, 1}r+c →
{0, 1}r+c be a random permutation. Then, the (one-round) sponge construction C with

Cpriv
λ = Spφ and Cpub

λ = (φ,φ−1)

is strong, ⟨ classical | quantum ⟩, and perfect (S, T, Ssim, Tsim, ϵ)-indifferentiable (with pre-computation
and shared randomness) from a random oracle f : {0, 1}r → {0, 1}r for any parameters S and T ,
where Ssim = 0 and Tsim = T , and where ϵ = O(2−r/2).

Proof. Follows from Theorem 7 and Lemma 1.

This further implies weak indifferentiability with shared randomness and a statistical simulator.
Using Lemma 2, we can lift this to weak indifferentiability with pre-computation and without shared
randomness at the cost of a single bit of loss in advice size, with the remaining variants set the
same way.

Corollary 3. Let r, c ∈ N and r ≤ c, with λ = r be parameters. Let φ : {0, 1}r+c → {0, 1}r+c be a
random permutation. Then, the (one-round) sponge construction C with

Cpriv
λ = Spφ and Cpub

λ = (φ,φ−1)

is weak, ⟨ classical | quantum ⟩ and perfect (S, T, Ssim, Tsim, ϵ)-indifferentiable with pre-computation
and a statistical simulator, but not shared randomness, from a random oracle f : {0, 1}r → {0, 1}r
for any parameters S and T , where Ssim = 1, Tsim = T , and ϵ = O(2−r/2).

Proof. Follows from Corollary 2 and Lemma 2.
5 In fact, to generate a random permutation π ∈ SN only O(N logN) random bits suffice on average. The

probability of failure can be further suppressed with additional amounts of randomness. Since the shared
random string SR ∈ {0, 1}∗ can in principle be unbounded, we did not analyze the length explicitly.
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8.2 Space-Time Trade-Offs for Sponge Inversion

In this section we illustrate how a (tight) quantum space-time trade-off for single-round sponge
inversion is a special case of our composition theorem. In other words, we consider Spφ : {0, 1}r →
{0, 1}r, where φ : {0, 1}r+c → {0, 1}r+c is a random permutation, in the case of non-uniform
quantum adversaries that make T quantum queries to φ,φ−1 and take S qubits of quantum advice
(which may depend arbitrarily on φ). We will here assume that r ≤ c. Chung et al. [CGLQ20]
show that any quantum algorithm which finds a pre-image of a randomly generated image f(x)
with probability ϵ using S qubits of advice, where f is a random function f : [N ]→ [M ], satisfies
a space-time trade-off

ϵ ≤ Õ

(
3

√
S · T + T 2

min(N,M)

)
.

If S is classical advice, then [CGLQ20] manage to get a slightly better bound, namely

ϵ ≤ Õ
(
S · T + T 2

min(N,M)

)
.

From the characterization in Corollary 3, we can simply apply Theorem 4, our composition
theorem, to obtain a time-space tradeoff for the one-round sponge by lifting a result which is known
for random oracles. Note that this applies for both classical and quantum space-time tradeoffs, and
both classical and quantum advice. We will illustrate this procedure for sponge inversion, though
it applies more generally.

Sponge inversion. We prove the following space-time trade-off relations for one-round sponge
inversion.

Theorem 8 (Space-time trade-off for sponge inversion). Let r, c ∈ N be integers such that
r ≤ c. Any (classical or quantum) inverter A = (A0,A1) for the one-round sponge construction
Spφ : {0, 1}r → {0, 1}r which consists of a pair of algorithms, where

– A0 prepares S (qu)bits of advice α (depending arbitrarily on φ),
– A1 receives α and makes T (classical/quantum) queries to either φ or φ−1,

and where A succeeds with non-trivial6 probability ϵ = ω(2−r/2) for a random permutation φ :
{0, 1}r+c → {0, 1}r+c, must obey the space-time trade-offs:

– (Classical advice and queries:)

ϵ ≤ O
(
ST

2r

)
– (Classical advice and quantum queries:)

ϵ ≤ Õ
(
ST + T 2

2r

)
.

– (Quantum advice and queries:)

ϵ ≤ Õ

(
3

√
ST + T 2

2r

)
.

Proof. Note that these bounds are all known to hold for inverting a random function f : {0, 1}r →
{0, 1}r. The first is due to Yao [Yao90] and De et al. [DTT10], and the second and third due
to Chung et al [CGLQ20]. We will show how the function inversion game can be modelled as a
security game with pre-computation, as defined in Section 6.

Let us consider quantum queries and quantum advice, though the proof proceeds similarly for
all three cases.
6 We remark that this requirement in our theorem statement can be relaxed at the cost of including an

additional additive term of O(2−r/2) in each of the space-time trade-offs.



20

Function inversion. Parties will receive oracle access to an idealized random function R with

Rpriv = f and Rpub = f

where f : {0, 1}r → {0, 1}r is a random function. The adversary is denoted A = (A0,A1). The
offline adversary A0 receives unbounded access to R, and the online adversary receives access
to Rpub. The cryptosystem P has access to the function through Rpriv, and the environment
E interacts with P (it will not need to interact with A in this game). The game proceeds as
follows.
1. Offline adversary A0 receives unbounded access to R, which it uses to prepare an S qubit

state |αA⟩, which is forwarded to A1.
2. Cryptosystem P samples a random x ∼ {0, 1}r, and computes y = f(x) using private

interface Rpriv. It forwards y to A1.
3. Online adversary A1 returns some x′ ∈ {0, 1}r to P. The cryptosystem P then checks

whether f(x′) = y, puts the result in a bit b ∈ {0, 1}.
4. Cryptosystem P forwards b to the environment E , which then outputs b.

Sponge inversion. Parties will receive oracle access to the (single-round) sponge construction C
with

Cpriv = Spφ and Cpub = (φ,φ−1)

where φ : {0, 1}r+c → {0, 1}r+c is a random permutation. The adversary is denoted A =
(A0,A1). The offline adversary A0 receives unbounded access to C, and the online adversary
receives access to Cpub. The cryptosystem P has access to the sponge hash Cpriv, and the
environment E interacts with P (it will not need to interact with A in this game). The game
proceeds as follows.
1. Offline adversary A0 receives unbounded access to C, which it uses to prepare an S qubit

state |αA⟩, which is forwarded to online adversary A1.
2. Cryptosystem P samples a random x ∼ {0, 1}r, and computes y = Spφ(x) using private

interface Cpriv. It forwards y to A1.
3. Online adversary A1 returns some x′ ∈ {0, 1}r to P. The cryptosystem P then checks

whether Spφ(x′) = y, puts the result in a bit b ∈ {0, 1}.
4. Cryptosystem P forwards b to the environment E , which then outputs b.

Observe that both games are instances of a security game with pre-computation as described in
Section 6. Furthermore, the cryptosystem P and environment E are the same in each game, hence
these two are the same game, with the first in the R model and the second in the C model. The
cryptosystem P makes T2 = 2 queries to the private interface. Now suppose that an S, T adversary
wins the game Sponge inversion (i.e. inversion as defined by P, E in model C) with probability
ϵ. It follows from Theorem 4 that there is an S +1, T +2 adversary winning Function inversion
(i.e. inversion as defined by P, E in model R) with probability at least ϵ − O(2−r/2). This proves
the claim for quantum advice and queries. A similar line of reasoning, using the appropriate notion
of indifferentiability with pre-computation, proves the remaining two claims.

Note that significantly improving these bounds would imply new circuit lower bounds, by a
result of Corrigan-Gibbs and Kogan [CGK19]. In particular, note that a time-space tradeoff lower
bound for sponge inversion implies a similar time-space tradeoff lower bound for function inversion.
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A Technical lemmas

In this section we will show that the full truth table of Spφ for a random permutation φ, and
the full truth table of a random function from r bits to r bits, can be distinguished with only
exponentially small probability. This holds even when given a sample that is the entire truth table
of these two functions; this will be necessary to show that our symmetrization procedure is sound.

Lemma 5. Let D1 be the uniform distribution on functions from {0, 1}r → {0, 1}r. Let D2 be
the distribution on functions from {0, 1}r to {0, 1}r induced by sampling φ : {0, 1}n → {0, 1}n
uniformly at random and taking Spφ. Then the maximum distinguishing advantage of an algorithm
A given a sample (i.e. a full truth table) from D1 or from D2 satisfies∣∣∣∣ Pr

f∼D1

[A(f) = 1]− Pr
f∼D2

[A(f) = 1]

∣∣∣∣ ≤ O(2−λ/2
)
.

Proof. We begin with an alternative characterization of D1. Consider drawing a random f ′ :
{0, 1}n → {0, 1}r, and then defining f : {0, 1}r → {0, 1}r as f(x) := f ′(x||0c); f is the sample. The
restriction of a random function is still a random function, so this characterization is equivalent,
i.e. f is a uniform random function from r bits to r bits.

Now we will use Lemma 6 to upper bound the maximum distinguishing advantage given a
sample of one of the two truth tables. We can build a (classical) adversary for the game defined in
Lemma 6 which queries the 2r inputs of the form x||0c to obtain a truth table of size 2r × r. We
can information-theoretically distinguish a truth table that came from a truly random function (f ′
above, note that in this case we have the truth table of f) from those that come from a truncated
permutation (φ above, note that in this case we have the truth table of Spφ) with advantage ADV.
We use q = 2r classical queries to the extended function/truncated permutation f/φ to construct
the truncated function, and have m = n− λ, so from Lemma 6 we have

ADV = O

(
2r

2
2n−λ

2

)
= O

(
2−λ/2

)
.

We have used the following lemma from Gilboa and Gueron.

Lemma 6 ([GG21]). A (classical) adversary which makes q queries to either

1. a random function f : {0, 1}n → {0, 1}n−m, or
2. a random permutation φ : {0, 1}n → {0, 1}n where the last m bits are discarded (i.e. not

learned)

can distinguish with advantage O
(

q

2
n+m

2

)
.
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