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Abstract

Liu et al. (ITCS22) initiated the study of designing a secure posi-
tion verification protocol based on a specific proof of quantumness pro-
tocol and classical communication. In this paper, we study this inter-
esting topic further and answer some of the open questions that are left
in that paper. We provide a new generic compiler that can convert any
single round proof of quantumness-based certified randomness protocol
to a secure classical communication-based position verification scheme.
Later, we extend our compiler to different kinds of multi-round proof of
quantumness-based certified randomness protocols. Moreover, we instan-
tiate our compiler with a random circuit sampling (RCS)-based certified
randomness protocol proposed by Aaronson and Hung (STOC 23). RCS-
based techniques are within reach of today’s NISQ devices; therefore, our
design overcomes the limitation of the Liu et al. protocol that would
require a fault-tolerant quantum computer to realize. Moreover, this is
one of the first cryptographic applications of RCS-based techniques other
than certified randomness.
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1 Introduction
Secure positioning is a sub-domain of information theory where cryptographic
protocols use the geographic location of an entity as the only credential. Al-
though it was formally introduced in [CGMO09], it has been studied before in
other domains such as wireless security [BC93, Bus04, CH05, SP05, SSW03,
VN06, ZLFW06]. Position verification is one of the simplest and most funda-
mental position-based cryptographic functionalities, where the goal is to allow
multiple parties to verify the geographic location of a prover.

In [CGMO09], Chandran et al. proved the impossibility of a classical position-
verification scheme in the standard model. In [Ken11], Kent et al. first proposed
the idea of quantum communication-based position verification under quantum
tagging. Later, in [BCF+14], Buhrman et al. re-initiated the study of this
topic and proved the impossibility of designing an information-theoretically se-
cure quantum communication-based position verification protocol. The authors
provide a generic strategy to attack any position verification protocol using the
instantaneous non-local computation technique proposed by Vaidman [Vai03].
However, for this attack, the malicious provers need to share a doubly expo-
nential (in the security parameter) number of EPR pairs. Later, in [BK11], the
author reduced the entanglement requirement to exponential (in the security
parameter) using port-based teleportation. On the other hand, in [BCF+14],
Buhrman et al. showed if the adversaries do not have access to EPR pairs, then
it is possible to design a secure quantum communication-based position verifi-
cation scheme. Many protocols in the literature achieve security against non-
entangled adversaries, but they become vulnerable to adversaries with an expo-
nential amount of entanglement [CL15, Unr14, JKPPG22, QS15, AEFR+23]. In
the standard model, the security of a quantum communication-based position
verification scheme against adversaries with a polynomially bounded amount
of entanglement remains open. However, in the random oracle model, Unruh
[Unr14] proves the security of a quantum communication-based position verifi-
cation protocol against adversaries with unbounded shared entanglement.

Recently, in [BCS22], Bluhm et al. proposed a noise-robust protocol that
uses only a single qubit quantum resources and some classical communication.
Interestingly, the adversary’s quantum resource for any attack strategy increases
with the classical communication resources in the protocol. Later, inspired
by this result in [BCS22], Allerfoster et al. propose loss-tolerant and noise-
tolerant protocols that are within reach of today’s quantum communication
technology. However, all these protocols still suffer from the distance limitation
of the quantum communication [ABB+23].

In [LLQ22], Liu et al. initiate the study of designing position-verification
protocols that are based on proof of quantumness and classical communication.
The authors show that the proofs of quantumness is necessary to design a secure
classical verifier position-verification protocol. Moreover, the authors prove that
if the prover has access to a fault-tolerant quantum computer, then under the
LWE hardness assumption, one can design a secure classical communication-
based position verification protocol, hence beating the impossibility result pro-
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posed by Chandran et al. [CGMO09].
The classical impossibility result and the results of Liu et al. make clear

that the existence of proofs of quantum are a necessary condition, and that a
specific proof of quantumness can act as a sufficient condition. However, it is
unclear whether proofs of quantumness in general are a sufficient condition for
designing a classical verifier position verification scheme (CVPV). In this paper,
we answer the following question.

What fundamental properties suffice for designing a secure position verifica-
tion scheme with classical verifiers?

In particular, we show a general class of proofs of quantumness which suffice
to enable secure classical position verification. Moreover, the protocol proposed
in [LLQ22] requires, along with the hardness of the LWE assumption, a fault-
tolerant quantum computer (with quantum memory) and the LWE-hardness
assumption. As such, such a protocol is beyond the reach of the current-day
available noisy intermediate scale quantum (NISQ) machines. In this paper, we
further pose the following question, and answer it in the affirmative.

Is it possible to design a classical position verification protocol that can be
implemented using a NISQ device and depends on some other computational
hardness assumption?

1.1 Our Results
In this paper, we make progress toward the first question by proving that in the
quantum random oracle model, a single-round protocol that achieves certified
randomness with classical verifiers is sufficient for the secure position verification
scheme with classical verifiers.

Theorem 1 (Single-Round Compiler - Informal). Suppose there exists a single-
round certified randomness protocol with a classical verifier and computationally
bounded quantum prover, then there exists a position verification protocol with
classical verifiers secure in the quantum random oracle model.

In the literature, most of the existing certified randomness protocols are
multi-round and it is not immediately clear whether we can draw a conclusion
similar to Theorem 1 for the multi-round protocols. Moreover, there are many
ways to extend our single-round compiler to a multi-round one, each with a
different set of advantages and drawbacks. Our first multi-round compiler is
a natural generalization of the single-round compiler, where we construct the
position verification protocol just by composing the single-round protocols in
sequence. However, this compiler works only for the multi-round protocols that
achieve a stronger notion of certified randomness, namely those with the so
called Sequential Decomposition property.

Definition 1 (Sequential Decomposition Property - Informal). A multi-round
PoQ protocol is said to have the sequential decomposition property if the follow-
ing holds: For an unbounded guesser trying to guess the prover’s answer each
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round and is allowed to communicate with the prover after the answer and the
guess are sent to the verifiers, the guesser still fails at least one round with high
probability.

Remark 1. The above definition roughly captures the property that the security
of the multi-round protocol reduces to the security of multiple iterations of the
smaller single-round protocol. This should not be confused with the requirement
that the protocol achieve security under common notions of sequential composi-
tion, which is an altogether separate and stronger property than the sequential
decomposition property defined above.

For such multi-round certified randomness protocols, we get the following
result.

Theorem 2 (Multi-Round Sequential Compiler - Informal). Assume there ex-
ists a multi-round certified randomness protocol, with a classical verifier and a
computationally-bounded quantum prover, that satisfies the sequential decompo-
sition property, then there exists a position verification protocol with classical
verifiers secure in the quantum random oracle model.

Note that most of the existing multi-round certified randomness protocols
with a classical verifier and computationally-bounded quantum provers are ei-
ther based on the post-quantum secure trapdoor claw-free functions with an
adaptive hardcore bit property or based on random circuit sampling [BCM+21a,
AH23]. It is not clear whether these existing protocols would satisfy the se-
quential decomposition property that we need for our multi-round compiler.
Although these protocols provide a lower bound on the smooth min-entropy
conditioned on some side information, our setting allows communication with
an guesser that is allowed to receive a copy of the classical outputs, resulting in
zero entropy.

Fortunately, to be helpful in assisting the guesses, the side information for
the ith round must be present in the ith round, not before or after. Although
the conditional entropy cannot be lower bounded due to communication, it
should not affect the guessing probability. Here, we show that protocols in
Ref [BCM+21a, AH23] indeed satisfy the sequential decomposition property by
proving the following theorem.

Theorem 3 (Existence of Multi-Round Certified Randomness Protocol with
Sequential Decomposition Property - Informal). If a multi-round certified ran-
domness protocol, with a classical verifier and a computationally bounded quan-
tum prover, has non-zero single-round von Neumann entropy “on average” when
it does not abort (e.g. in [AH23, BCM+21a]), then that certified randomness
protocol also satisfy the sequential decomposition property.

We refer to our second multi-round compiler as a rapid-fire compiler. Here,
the verifiers send all the challenges that are related to the multi-round certified
randomness protocol sequentially with a small predetermined time gap. The
difference with the previous approach is that here, the verifiers do not wait
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for the answers to arrive from the prover before sending the next challenge.
This protocol achieves the desired security in the QROM from the multi-round
certified randomness protocols without the sequential decomposition property
like in [BCM+21a, AH23]. We get the following result in this direction.

Theorem 4 (Multi-Round Rapid-Fire Compiler - Informal). Suppose there ex-
ists a multi-round certified randomness protocol with a classical verifier and a
computationally-bounded quantum prover, then under some restricted commu-
nication assumptions, there exists a position verification protocol with classical
verifiers secure in the quantum random oracle model.

Finally, we combine both previous approaches and provide a new compiler
called Sequential Rapid-Fire Compiler that shows prospects in overcoming the
limitations of the previous multi-round compilers.

Theorem 5 (Multi-Round Sequential-Rapid-Fire Compiler - Informal). Con-
sider the multi-round position verification protocol that exists due to Theorem 4.
A sequential compilation of this protocol with communication restrictions within
each repetition but not between repetitions is also a position verification protocol
with classical verifiers secure in the quantum random oracle model.

Later, in Appendix B, we instantiate our compilers with a random circuit
sampling (RCS)–based multi-round certified randomness protocol proposed by
Aaronson and Hung [AH23]. This, along with the recent proposal of [KT24]
to use RCS for quantum cryptography, is one of the first cryptographic appli-
cations of RCS other than certified randomness. Related recent work [MSY24]
explores the minimum complexity assumption needed for protocols such as RCS1

and characterizes it as classically-secure one-way puzzles. Our construction also
achieves advantages over the existing protocol in [LLQ22]. For example, com-
pared to the protocol proposed in [LLQ22], our RCS-based protocol doesn’t
need any fault-tolerant quantum computers to implement. It is within the reach
of NISQ devices and, therefore, can be implemented with near-term quantum
computers. Moreover, unlike the protocol in [LLQ22], our instantiation doesn’t
require any quantum memory, which makes our protocol more implementation-
friendly. Finally, our construction in this paper also achieves a secure position-
verification scheme under the hardness assumption of random circuit sampling,
which is entirely different from the LWE-hardness assumption.

1.2 Paper Organization
In Section 1.3 we outline the main technical ideas. We recall some preliminary
concepts and definitions useful for relevant to our in Section 2. In Section 3,
we provide our compiler for CVPV from single-round certified randomness and
prove the security of the construction, our first major result. In Section 4 we pro-
vide a number of methods of generalizing this compiler to allow for multi-round
certified randomness protocols. Specifically, in Section 4.1 we show that certified

1That is to say, proof of quantumness protocols with inefficient classical verification.
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Figure 1: A spacetime diagram describing the honest interaction between two
verifiers at locations X = 0 and X = 2 and an honest prover located at the
claimed position (for simplicity, located at X = 1 in the diagram). The verifiers
pre-share random values x, y, k, r prior to the start of the protocol, and set
s = ch⊕Gk(x⊕ y) for some family of hash functions {Gk} and ch = Gen(1n; r)
for Gen the verifier functionality of some certified randomness verifier and where
accept(·) determines a boolean function that determines whether the verifiers
accept the provers claim. In all spacetime figures we provide, we implicitly
require that the proper timing constraints are observed in order for the verifiers
to accept.

randomness protocols with a property we refer to as sequential decomposability
suffice to allow for a natural generalization of our compiler for multi-round set-
tings, and in Section 4.2 we prove (with a full proof in Appendix A) that that
a class of natural certified randomness protocols satisfy the necessary property.
In Section 4.3, and Section 4.4 we prove the security of an alternate compilation
method, based on additional timing constraints, which has advantages in the
idealized model at the cost of practical robustness. Finally, in Appendix B, we
show that the well known near-term proposal for certified randomness due to
Aaronson and Hung suffices to instantiate our compiler.

1.3 Technical Overview
Single Round Compiler

We first consider any single-round PoQ-based certified randomness protocol
P = (P, V ), which is modeled as a two-message interactive protocol. In the
first message, the verifier sends a random challenge ch to the prover. In the
second message, it gets back ans as a response. Later, the verifier performs a
verification process Ver to accept or reject the response.
Construction: In our compiler, we consider that the two verifiers (say V1, V2)
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Figure 2: A spacetime diagram describing the honest interaction between two
verifiers at locations X = 0 and X = 2 and two dishonest prover located at
arbitrary positions between V1 and V2 (for simplicity, located at X = 0.5 and
X = 1.5 in the diagram). The provers are allowed to communicate during the
protocol but are non-signaling. Notation and behavior is otherwise analogous to
Figure 1. In particular, verifiers expect to recieve messages at times determined
by honest prover’s position.

in the CVPV protocol have access to a family of cryptographic hash function
{Gk}k∈{0,1}λ : {0, 1}m → {0, 1}n. In addition, they share a random hash key k
and two random inputs x, y ← {0, 1}m. At time t = 0, V1 sends s := Gk(x ⊕
y) ⊕ ch, x, k to the prover P at a claimed location (say X = 1 in Figure 1)
and V2 sends y to P . Upon receiving x, s, k, y from the verifiers, the prover can
recover ch and send back the response ans to the verifiers. The verifiers verify
the position of the prover if the following two conditions are satisfied.

1. Timing Constraint: Both verifiers receive at time t = 2.

2. Consistency Constraint: Both of the received answers are the same.

3. Certified Randomness Constraint: The verification process Ver cor-
responding to the certified randomness protocol accepting the response.

We refer to Figure 1 for the schematic diagram of the compiler. For clarity, we
also depict general adversarial behavior in Figure 2.

Soundness Proof Sketch (Proof Sketch of Theorem 1). We reduce the
soundness of the CVPV protocol above to the certified randomenss property
of P. We first make the connection to certified randomness by imagining an
ideal game, where P1 and P2 are simultaneously given ch and asked to output
the same correct answer ans. If no communication is allowed, then beating this
game violates certified randomness due to no-signalling. Intuitively, certified
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randomness dictates that ans cannot be computed deterministically from ch,
which forces P1 and P2 to perform their own local random computation to
output a valid answer.

In the real security game, the provers P1, P2 effectively receive secret shares
x, y of ch, where x ⊕ y = ch, and then get to perform one round of simulta-
neous communication. If they simply forward their shares, then this would be
equivalent to the ideal game. However, we need to argue that this challenge-
forwarding adversary is optimal. To do so, we rely on the fact that x ⊕ y is
information-theoretically hidden from the provers before they communicate.

One would hope that this in turn hides any useful information about ch
during the same timeframe. Nonetheless, it is not clear how to argue this di-
rectly. Namely, one needs to rule out homomorphic attacks, where P1 performs
a quantum computation on input x, P2 on input y, and then they can each de-
terministically recover the same output ans, which could be obtained by running
the honest prover of P on input ch.

To circumvent this issue, we use a cryptographic hash functionG and encrypt
ch with a one-time-pad using G(x⊕ y). The property we need from G is query-
extractability, and accordingly we show security in the quantum random oracle
model.

Multi-Round Sequential Compiler

For this compiler, we first start with a multi-round (say ℓ-round) certified ran-
domness protocol. Similar to the single-round certified randomness protocol, we
can formulate any ℓ-round certified randomness protocol to a 2ℓ-communication
round interactive protocol, where at round i ∈ [ℓ], the verifier sends a random
challenge chi to the prover and gets back ansi from it. The next round starts
after the verifier receives the answer from the prover.

Construction: The compiler corresponding to such an ℓ-round certified
randomness protocol is a sequential repetition of the interactive portion of the
single-round compiler, followed by the necessary testing of the entire transcript.
Before the beginning of the protocol, i.e., at t = −∞ the verifiers (V1, V2) share
ℓ random hash keys {ki}i∈[ℓ], ℓ random input pairs {(xi, yi)}i∈[ℓ], and ℓ random
challenges {chi}i∈[ℓ] corresponding to the challenges of the certified randomness
protocol. On the i ∈ [ℓ] round, V1 sends si := Gki(xi ⊕ yi) ⊕ chi and V2 sends
yi to the prover P at a claimed location X = 1 (see Figure 3 for reference) at
time ti−1. Upon receiving ki, xi, si, yi, the prover computes chi, and sends back
the answer ansi corresponding to the challenge chi to the verifiers. Suppose,
the verifiers send the challenges at time tsend

i , and receive the answers at time
treci . At the end of the protocol, the verifiers accepts the claimed location of the
prover if the answers satisfy the timing constraint, i.e. treci − tsend

i = 2 for all
i ∈ [ℓ], the consistency check, i.e. ansi = ans′i for all i ∈ [ℓ], and the certified
randomness constraint. We refer to Figure 3 for the schematic diagram of the
protocol and Figure 4 for the behavior of cheating provers.

Difficulty of the Soundness Proof. The adversarial model of all the exist-
ing multi-round certified randomness protocols [AH23, BCM+21a] use entropy
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Figure 3: A spacetime diagram describing the honest interaction between two
verifiers at locations X = 0 and X = 1 and an honest prover located at the
claimed position (for simplicity, located at X = 1 in the diagram). For brevity,
we model the execution of the challenge-response portion of each round of the
multi-round protocol as a black box that provides the relevant randomness,
challenge, and answers from each round, though this abstraction is not used in
our proof. Following some ℓ rounds of the protocols, the verifiers engage in a
final interaction to accept or reject the protocol. As in Figure 1 and elsewhere,
we omit depicting the details of the expected in-round timing constraints, which
are detailed in the text.

accumulation theorem (EAT) to calculate a lower bound on the min-entropy
of the produced outcomes for all the rounds. More precisely, the multi-round
certified randomness protocol in [AH23] models the entire adversary channel as
an entropy accumulation channel (EAT) [DFR20]. Although the original se-
curity analysis in [BCM+21a] did not directly use EAT, later, Merkulov and
Arnon-Friedman show in [MAF23] that the adversarial channel of [BCM+21a]
can indeed be modeled as an EAT channel. The EAT channel that is proposed
in [DFR20] does not allow the prover to communicate its private registers to
the external adversary during the runtime of the protocol. However, in our se-
quential compiler, after the i-th round the malicious provers can communicate
with each other, and exchange their internal registers as well as their answers
for the i-th round. We refer to Figure 4 for an example. This stops us from
applying the security analysis from [DFR20, BCM+21a, AH23] directly. As a
way out, we require that our certified randomness protocols satisfy a stronger
notion of security, namely sequential decomposition that we define informally
in Definition 1 (formally stated in Definition 5).
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Figure 4: A spacetime diagram describing the interaction between two verifiers
at locations X = 0 and X = 1 and two dishonest prover located at arbitrary
positions between V1 and V2 (for simplicity, located at X = .5 and X = 1.5 in
the diagram). The provers are allowed arbitrary setup between protocol rounds,
as in Definition 5. Notation and behavior is otherwise analogous to Figure 3.

Soundness Proof Sketch (Proof Sketch of Theorem 2). Similar to the
soundness proof of the single round protocol, here we also reduce the sound-
ness of the multi-round CVPV protocol to the multi-round certified random-
ness protocol. Here, the only difference is that due to the multi-round nature
of the compiler, we need to consider a multi-round ideal guessing game. In this
ideal guessing game on the i-th round P1 and P2 are simultaneously given chi
and asked to output the same correct answer ansi. Note that, the usual defini-
tion of the certified randomness do not provide any guarantee on the winning
probability of this guessing game. Therefore, we need to add the sequential
decomposition property. Indeed, if no communication is allowed then due to
the sequential decomposition property of the multi-round certified randomness
protocol the winning probability of this guessing game will be negligible. The
rest of the reduction to the real security game is similar to the proof sketch of
Theorem 1. We refer to Theorem 7 for a more detailed analysis.

Sequential Decomposition from Repetition

We strengthen our result on multi-round compilers by showing the existence of
a family of certified randomness protocols that are secure under our notion of
sequential decomposition (Definition 1 or Definition 5 for a more formal version).
In Theorem 3, we prove that certified randomness protocols based on repetition
with single round entropy guarantees, including the well known protocols in
[AH23, BCM+21a], satisfy Definition 5.
Proof Sketch of Theorem 3 We prove Theorem 3 by using the key observation
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that the prover’s answers from the previous rounds do not help the guesser after
the guess is already committed for each round. First, we consider an optimal
adversary (maximum probability of succeeding the proof of quantumness test
of the certified randomness protocol and the consistency check of the sequential
decomposition property) where the prover may send information about previous
answers to the guesser. We then consider a slightly modified adversary that
has the same optimal success probability, but only the guesser is allowed to
send information to the prover. For this modified adversary, the guesser simply
assumes that all guesses are correct thus far. If at least one guess is incorrect,
the protocol has already failed and the adversary strategy from then on does not
matter. If the all guesses are correct, then pretending the answers are always
the same as the guesses results in the correct behavior.

Specifically, we allow the guesser to be unbounded and prepare arbitrary
quantum memory for both the guesser and the prover, and the quantum memory
state is exactly that of the original optimal adversary (conditioned on classical
outcomes on the answers and guesses agreeing with the answers). This adversary
must have the same success probability as the original adversary and is therefore
optimal. Further, the prover is no longer allowed to communicate with the
guesser, and one can lower bound the entropy conditioned on the guesser side
information and upper bound the protocol success probability.

Rapid Fire Compiler

In the CVPV protocols that are based on our sequential compiler, the verifiers
need to wait for the answer to arrive from the prover before starting the next
round. This may introduce some unwanted delay and make the CVPV protocol
time consuming. There may also be certified randomness protocols that do not
satisfy Definition 1. We show that one can overcome this drawback by sending
the challenges without waiting for the responses from the provers. We refer to
this compiler as the rapid fire compiler.

Construction: Similar to the sequential compiler here, the verifiers share
{ki, xi, yi, chi}i∈[ℓ]. Moreover, the verifiers also share a fixed time interval ∆.
During the protocol, verifiers send challenges to the prover in every ∆ interval.
If the protocol starts around time t = 0 then the i-th round starts at time
t = (i − 1)∆. On the i-th round, V1 sends si, xi, ki, and V2 sends yi to P .
Similar to the sequential compiler, after collecting all the responses for the ℓ
rounds, the verifiers accepts the location of the claimed prover if it passes all
the three checks. Note that, here the verifiers send the challenges in every
∆ time intervals, then the verifiers should also receive the answers in ∆ time
interval. Therefore, the total time to run this protocol would be (ℓ − 1)∆ + 2.
For a very small ∆, this is a significant improvement over the sequential protocol
that would require 2(ℓ−1) time to finish. We refer to Figure 5 for the schematic
diagram of this protocol. For clarity, we also provide a schematic of the protocol
when the verifiers are instead interacting with two malicious provers in Figure 6.

Soundness Proof Sketch. For the rapid-fire compiler, if we assume that
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Figure 5: A spacetime diagram describing the interaction between two verifiers
at locations X = 0 and X = 2 and an honest prover located at the claimed
position (for simplicity, located at X = 1 in the diagram). The verifiers pre-
share random values xi, yi, ki, ri for i ∈ [ℓ] prior to the start of the protocol,
and set si = chi ⊕ Gki(xi ⊕ yi) for some family of hash functions {Gk} and
chi = Geni(1

n; r) for Geni the verifier functionality of some multi-round certified
randomness verifier on round i and where accept(·) determines a boolean func-
tion that determines whether the verifiers accept the provers claim based on the
transcript received. Verifiers rapidly send each new challenge every ∆ seconds.

the malicious provers do not communicate the answers to each other during
the runtime of the protocol, then we can directly apply the entropy guarantee
to upper bound the guessing probability without the sequential decomposition
property. However, to satisfy this requirement we need to assume the condition
∆l < 2tcomm applies to the protocol, where tcomm denotes the communication
time between any two malicious provers.

Note that, due to this condition the rapid-fire compiler can only verify
whether the prover is within a range of positions, that satisfy the 2tcomm require-
ment. By reducing ∆, and the number of rounds l one can reduce the 2tcomm
communication time requirement, but that would introduce additional engineer-
ing challenges for the implementation. It can make the protocol less-robust to
noise as well. One possible way to increase the robustness of the protocol just
by sequential or parallel repetition. In this paper, we have studied the impact
of sequential repetition of this compiler, called Sequential Rapid Fire. We refer
to Section 4.4 for the details of this construction.

Instantiation using Random Circuit Sampling (RCS)

We instantiate the protocol using certified randomness based on random circuit
sampling (RCS). Aaronson and Hung [AH23] show that under some models
(e.g. a fully general adversary given oracle access to challenge circuits), passing
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Figure 6: A spacetime diagram describing the interaction between two verifiers
at locations X = 0 and X = 2 and two dishonest prover located at arbitrary
positions between V1 and V2 (for simplicity, located at X = .5 and X = 1.5 in
the diagram). The provers are allowed to communicate during the protocol but
are non-signaling. Notation and behavior is otherwise analogous to Figure 5.

the XHOG test (achieving high average probability pC(z) over choices of C
and output z) implies Ω(n) von Neumann entropy conditioned on quantum side
information, where n is the number of qubits. We formally define the protocols
in Appendix B, shown in Figure 9 and Figure 10. The single round entropy
guarantees are given by Theorem 12 and Theorem 13.

1.4 Open Problems
In this section, we highlight the remaining problems related to classical verifier
position verification.

Security in the Plain Model:

In this paper, we prove the soundness of the compilers in quantum random
oracle model. However, it is crucial to have the security analysis in the plain
model for a practical implementation of this protocol.

Minimum Sufficient Condition for the CVPV:

This paper requires proof of quantumness-based certified randomness to con-
struct the CVPV protocol. However, it is not clear whether this is the most
minimal assumption. We leave the minimum sufficient assumption required to
construct a CVPV protocol as an open problem.
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2 Preliminaries
We now recall a collection of useful definitions and results froim the literature.
Throughout the paper, we denote the security parameter by λ.

2.1 Quantum Information
Random Oracle Model.

Lemma 1 ([BBBV97]). Let A be an oracle algorithm which makes at most T
oracle queries to a function H : {0, 1}m → {0, 1}n. Define |ϕi⟩ as the global state
after A makes i queries, and Wy(|ϕi⟩) as the sum of squared amplitudes in |ϕi⟩ of
terms in which A queries H on input y. Let ϵ > 0 and let F ⊆ {0, 1, . . . , T − 1}×
{0, 1}m be a set of time-input pairs such that

∑
(i,y)∈F Wy(|ϕi⟩) ≤ ϵ2/T .

For i ∈ {0, 1, . . . , T − 1}, let H ′i be an oracle obtained by reprogramming
H on inputs in {y ∈ {0, 1}m : (i, y) ∈ F} to arbitrary outputs. Let |ϕ′T ⟩ be the
global state after A is run with oracle H ′i on the ith query (instead of H). Then,
TD (|ϕT ⟩ , |ϕ′T ⟩) ≤ ϵ/2.

The following lemma states that it is possible to efficiently simulate a random
oracle for a quantum algorithm for which a query-bound is known in advance.

Lemma 2 ([Zha15]). A random oracle H : X → Y is perfectly indistinguishable
from a 2q-wise hash independent hash function H ′ : X → Y against a quantum
algorithm A which makes at most q queries.

2.2 Proof of Quantumness (PoQ)
Definition 2 (PoQ Protocol). A proof of quantumness protocol P = (V, P ) is
an interactive protocol between a classical verifier V and an allegedly quantum
prover P . Naturally, since V is classical, so is all communication. At the end
of the protocol, V either accepts or rejects. P is parametrized by a security
parameter λ and is required to satisfy the following guarantees:

• Correctness: There exists a QPT prover P such that V accepts with
overwhelming probability (1− negl(λ)).

• s-Soundness: For any PPT prover P , the probability that V accepts is
at most s+ negl(λ).

Certified Randomness. A property stronger than soundness is certified ran-
domness. At a high level, certified randomness requires that if a prover P passes
the PoQ protocol, then its output cannot be predicted by a guesser E who:

1. Knows the challenge messages sent by V , and

2. Shares entanglement with P .
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In the most general case, we require this to hold even if P is fully malicious
(a.k.a. a fully general device). We give the formal definition below.

Definition 3 (Certified Randomness). A PoQ protocol P is said to have certi-
fied randomness property if for any QPT prover P , conditioned on V accepting,
it is true with overwhelming probability that

Hmin(Z | CE)ρ ≥ ω (log λ) , where,

• ρ = ρZCDE is the final state of P , with D being the working register.

• C is a classical register containing all the messages sent by V .

• A is the classical register containing the final message sent by P .

• E is arbitrary (possibly entangled) quantum side information of P such
that P does not act on E during the protocol.

2.3 Position Verification with Classical Verifiers
We focus on position verification in one dimension and give the corresponding
definition in the idealized model below. We closely follow the vanilla model of
[LLQ22]. Nonetheless, we remark that our work could be generalized to higher
dimensions and more robust models.

Definition 4 (Position Verification with Classical Verifiers). A position veri-
fication scheme V = (V,X) with classical verifiers is an interactive relativistic
protocol between a set of classical verifiers V = (Vi, Xi)i∈I , where each classical
verifier Vi is located at position Xi ∈ R on the real line, and X ∈ R is the
purported location of a quantum prover. During the protocol, we assume that all
communication happens at the speed of light (1) and all computation is instan-
taneous. We also assume that V can perform a secure setup before the protocol,
and communicate securely during the protocol.

We say that V is complete if there exists an efficient prover P such that if P
is located at X, then the probability that the verifiers V accept with overwhelming
probability.

We say that V is sound if for any collection of efficient, possibly entangled
malicious provers P = (Pj)j∈J , the probability that V accepts is negligibly small.

3 CVPV from Single-Round Certified Random-
ness

We give a generic construction from a (one-round) PoQ scheme P = (P, V )
with certified randomness. The basic idea is as follows: the verifiers will send
two hash inputs x, y from opposing directions such that they reach the alleged
location of the prover at the same time. The challenge ch of P will be computed
via evaluating a secure hash function on input x⊕y. This way, the prover needs
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to receive both x and y before being able to run P . A malicious set of provers
in our CVPV protocol, intuitively, will be forced into two options:

1. Try to (at least partially) run P before receiving both x and y, and fail
the verification of V .

2. Run P with the knowledge of ch at two locations, and try to get a matching
outcome, hence fail due to the certified randomness property.

Without loss of generality, V = (Gen,Ver) has the following syntax:

1. It samples random coins r ← {0, 1}poly(λ).

2. It deterministically generates a challenge ch = Gen(1λ; r) ∈ {0, 1}n, and
sends it to the prover.

3. After receiving an answer ans from the prover, it deterministically verifies
by running Ver(ch, ans; r).

Construction 1. Let {Gk}k∈{0,1}λ : {0, 1}m → {0, 1}n be a cryptographic hash
function family, with m = ω(log λ). We describe the CVPV protocol below:

1. At time t = −∞, the verifiers sample random coins r ← {0, 1}poly(λ) for V ,
a hash key k ← {0, 1}λ, and random inputs x, y ← {0, 1}m. They publish
the hash key k, and set s = Gk(x⊕ y)⊕ ch.

2. At t = 0, V0 sends (x, s) and V1 sends y to the prover simultaneously.

3. The honest prover, located at position 1, computes ch = Gk(x ⊕ y) ⊕ s
and ans← P (ch). He immediately sends ans to both verifiers.

4. V0 expects ans at time t = 2. Similarly, V1 expects ans′ at time t = 2.

5. The verifiers accept iff ans = ans′, and Ver(ch, ans; r) accepts.

Completeness. Completeness follows by completeness of P.

Soundness Proof in QROM.

Theorem 6 (Single-Round). Let P = (V, P ) be a one-round PoQ scheme that
satisfies Definition 3. Then, Construction 1 is a CVPV scheme that is sound
in the quantum random oracle model.

Proof. We will model Gk as a classical random oracle G with superposition
access. We will create a sequence of hybrids.

• Hybrid 0: This is the original CVPV soundness experiment.

• Hybrid 1: In this hybrid, the adversary consists of only two parties: A
at position 0 and B at position 1.
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• Hybrid 2: In this hybrid, we replace the oracle at times t < 1 with the
punctured oracle G⊥, defined as

G⊥(z) =

{
G(z), z ̸= x⊕ y
u, z = x⊕ y

,

where u ∈ {0, 1}n is a uniform string.

• Hybrid 3: In this hybrid, we also replace the oracles accessed by A and
B at time t = 1 with G⊥ defined above. In addition, we give ch as input
to both A and B at time t = 1.

• Hybrid 4: In this hybrid, A and B each get (only) ch as input at time
t = 0, but they are not allowed to communicate. Also, they do not get
access to the oracle G⊥.

Let pi be the optimal success probability of an efficient adversary in Hybrid
i. Let q = poly(λ) be an upper-bound on the total number of oracle queries made
by (A,B). We will show a sequence of claims which suffice for the proof:

Claim 1. p1 ≥ p0.

Proof. This step is standard.2 One can easily perform a reduction where A of
Hybrid 1 can simulate all adversaries in [0, 0.5) in Hybrid 0 and B of Hybrid
1 can simulate all adversaries in (0.5, 1] in Hybrid 0.

Claim 2. |p2 − p1| ≤ negl(λ).

Proof. Suppose the inequality is false for (A,B), i.e. |p2 − p1| < ε for a non-
negligible function ε(λ). Then, by Lemma 1, in Hybrid 2 the query weight on
G(x, y) by A (the case of B being similar) at time t < 1 is lower-bounded by
2ε2/q. Consider the following extractor A′(A):

• A′ receives (x, s) from the challenger and the A register of the initial state
|ψ⟩AB for (A,B). Then A′ samples i← [q] and runs A on input (x, s,A),
measuring the input register of the i-th query made by A to G as z∗. She
outputs y∗ = z∗ ⊕ x.

Now, the probability that A′ outputs y is at least 2ε2/q2 due to no-signalling,
which is a contradiction since A′ has no information about y and 2ε2/q2 >
2−m.

Claim 3. p3 ≥ p2.

Proof. Follows by a simple reduction (A′,B′), which simulates (A,B) in Hybrid
2. A′ forwards (x, s) and B′ forwards y. Furthermore, they use (ch, x, y, s) to
reprogram the oracle G⊥ in order to simulate the oracle G.

2For instance, see [LLQ22].

18



Claim 4. p4 ≥ p3.

Proof. We give a reduction (A′,B′) from Hybrid 3 to Hybrid 4:

• Let (A,B) be an adversary for Hybrid 3 that succeeds with probability
p3.

• At time t = −∞, A′ and B′ prepare the bipartite state |ψ⟩AB shared
between A and B. In addition, they sample a 2q-wise independent hash
function G′ as well as (x, y, s)← {0, 1}m × {0, 1}m × {0, 1}n.

• At time t = 0, A′(t = 0) runs A on input (x, s,A), using G′ as the oracle.
At time t = 1, A′ receives ch from the verifier and runs A(t = 1) with ch
as additional input.

• At time t = 0, B′(t = 0) runs B on input (y,B), using G′ as the oracle.
At time t = 1, B′ receives ch from the verifier and runs B(t = 1) with ch
as additional input.

Observe that since the oracle G⊥ in Hybrid 3 is independent of (x, y, s, ch),
and by Lemma 2, the view of (A,B) is perfectly simulated by the reduction.

Claim 5. p4 ≤ negl(λ).

Proof. Suppose p4 is not negligible for some (A,B). We will break the certified
randomness (Definition 3) of P:

• P holds the A register of |ψ⟩AB prepared by (A,B) at time t < 0. After
receiving ch from the verifier, P runs A(t ≥ 0) and outputs ans which is
sent to the verifier.

• The guesser Q holds register E = B. She eavesdrops ch and runs B(t ≥ 0)
to output ans′.

With probability p4, ans = ans′ and ans is accepted by the verifier (denoted
by event ACC). Thus, we have

p4 ≤ Pr [ans = ans′ | ACC] ≤ 2−Hmin(ans | ch,E)

=⇒ Hmin (ans | ch, E) ≤ log2(1/p4) ≤ O(log λ),

which violates certified randomness (Definition 3).

Remark 2. Note that soundness still holds if the adversary (A,B) get access
to G at time t = −∞. This means we can heuristically instantiate G using an
unkeyed public hash function such as SHA-512.
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4 CVPV from Multi-Round Certified Random-
ness

If the underlying PoQ-based certified randomness protocol uses more than round,
we can naturally generalize our compiler just by composing our single-round
compiler sequentially. We first give a natural way to do this in Section 4.1.
This requires a protocol satisfying the stronger Definition 5 of certified random-
ness with sequential decomposition, but we show that any protocol satisfying
the definition of certified randomness with single round entropy must satisfy
the sequential decomposition property in Appendix A, lending its applicability
to a wide range of possible instantiations. We then give a more clever way in
Section 4.3 and Section 4.4 which is superior in the idealized model at the cost
of practical robustness.

Definition 5 (Multi-round Certified Randomness Protocol with Sequential De-
composition Property). An ℓ-round PoQ protocol P is said to have sequential
decomposition property if no pair of a QPT prover P and an unbounded guesser
Q can succeed in the following security game with non-negligible probability:

• For i ∈ [ℓ], the following steps occur in order:

1. The verifier V of P sends a challenge chi to both P and Q.
2. P sends back an answer ansi.
3. Q outputs a guess ans′i.
4. P and Q can communicate freely and setup again.

• (P,Q) win the game if V accepts and ansi = ans′i for all i ∈ [ℓ].

We also consider a weaker variant of Definition 5 by restricting the communi-
cation round between P and Q, with the difference being highlighted:

Definition 6 (Multi-round Sequential Certified Randomness with Sequential
Decomposition and Restricted Communication). An ℓ-round PoQ protocol P
is said to have sequential certified randomness with restricted communication
if no pair of a QPT prover P and an unbounded guesser Q can succeed in the
following security game with non-negligible probability:

• For i ∈ [ℓ], the following steps occur in order:

1. The verifier V of P sends a challenge chi to both P and Q.
2. P sends back an answer ansi.
3. Q outputs a guess ans′i.
4. P and Q can perform simultaneous single-round communication.

• (P,Q) win the game if V accepts and ansi = ans′i for all i ∈ [ℓ].

Remark 3. For single-round P, Definitions 3 and 5 to 7 all coincide.

We say that two spatially separated parties (A,B) perform one round of simul-
taneous communication at time t if A sends one (classical or quantum) message
to B at time t and vice versa.
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4.1 Sequential Compiler
As before, we give a generic construction from a (multi-round) PoQ scheme
P = (V, P ) which has certified randomness with sequential decomposition (Def-
inition 6).

Construction 2. Let ℓ = poly(λ) be the number of rounds in P. Without loss
of generality, V = (Gen1, . . . ,Genℓ,Ver) has the following syntax:

1. It samples random coins r ← {0, 1}poly(λ).

2. For i = 1, . . . , ℓ:

• It deterministically generates a challenge
chi = Geni(1

λ, ans1, . . . , ansi−1; r) ∈ {0, 1}n.
• It receives an answer ansi from P .

3. It deterministically verifies by running Ver(ch1, ans1, . . . , chℓ, ansℓ; r).

Similarly, P = (P1, . . . , Pℓ) has the following syntax: For i = 1, . . . , ℓ, after
receiving the i-th challenge chi, P computes

ansi ← Pi(ch1, ans1, . . . , chi−1, ansi−1, chi)

and responds with ansi.
Let {Gk}k∈{0,1}λ : {0, 1}m → {0, 1}n be a cryptographic hash function fam-

ily, with m = ω(log λ). We describe the (multi-round) CVPV protocol below:

1. At time t = −∞, the verifiers sample random coins r ← {0, 1}poly(λ) for V
and a hash key k ← {0, 1}λ. For i = 1, . . . , ℓ, they sample random inputs
xi, yi ← {0, 1}m. They publish the hash key k.

2. For i = 1, . . . , ℓ:

• At time t = i−1, V0 computes chi = Geni(1
λ, ans1, . . . , ansi−1; r) and

si = Gk(xi ⊕ yi) ⊕ chi. It sends (xi, si) and expects an answer ansi
at time t = i.

• Similarly, at time t = i − 1, V1. It sends yi and expects an answer
ans′i at time t = i.

• At time t = i− 1/2, the honest prover, located at position 0.5, com-
putes chi = Gk(xi⊕yi)⊕si and ansi ← Pi(ch1, . . . , chi, ans1, . . . , ansi−1).
It immediately sends ansi to both verifiers.

3. The verifiers accept iff ansi = ans′i for all i, and Ver(ch1, ans1, . . . , chℓ, ansℓ; r)
accepts.
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Security Proof in QROM.

Theorem 7 (Sequential Compiler). Let P = (V, P ) be a PoQ scheme that
satisfies Definition 6. Then, Construction 2 is a secure CVPV scheme.

Proof. We will model Gk, where k ← {0, 1}λ, as a random oracle G. We give a
sequence of hybrid experiments below:

• Hybrid 0: This is the original CVPV soundness experiment.

• Hybrid 1: In this hybrid, the adversary consists of only two parties: A
at position 0 and B at position 1. W.l.o.g., (A,B) perform a round of
simultaneous communication at times t = 0, 1, . . . , ℓ− 1.

• Hybrid 2: In this hybrid, we additionally give A and B chi at time t = i
for i = 1, . . . , ℓ.

• Hybrid 2.1-ℓ: We set Hybrid 2.0 to be Hybrid 2 and G0 := G. For
i ∈ [ℓ], we define Hybrid 2.i to be the same as Hybrid 2.(i− 1), except
the oracle Gi−1 is replaced by the reprogrammed oracle Gi, where

Gi(z) =

{
Gi−1(z), z ̸= xi ⊕ yi
ui, z = xi ⊕ yi

,

with ui ← {0, 1}n being a fresh random string.

• Hybrid 3: In this hybrid, A and B only receive chi at time t = i, for
i ∈ [ℓ], and no other input. They do not get access to the oracle Gℓ either.

Let pi be the optimal success probability of an efficient adversary in Hybrid
i. Let q = poly(λ) be an upper-bound on the total number of oracle queries made
by (A,B). We will show a sequence of claims which suffice for the proof:

Claim 6. p1 ≥ p0.

Proof. Follows by a simple generalization of the corresponding claim in the proof
of Theorem 6.

Claim 7. p2 ≥ p1.

Proof. Since we give extra information to the adversary, the success probability
cannot decrease.

Claim 8. Setting p2.0 := p2, p2.i ≥ p2.(i−1) − negl(λ) for i ∈ [ℓ].

Proof. Let i ∈ [ℓ] and (A,B) be an adversary that succeeds in Hybrid 2.(i−1)
with probability p2.(i−1). We will give a reduction (A′,B′) for Hybrid 2.i:

• At times t < i, A′ (resp. B′) runs A (resp. B) using Gi as the oracle.

• At time t = i− 1, A′ sends (xi, si) and B′ sends yi to each other, so that
the messages are received at t = i.
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• At times t ≥ i, A′ and B′ can simulate Gi−1 using (xi, yi, si, chi, Gi) by
reprogramming Gi to output chi ⊕ si on input xi ⊕ yi.

• A′ (resp. B′) outputs what A (resp. B) outputs.

Note that the view of (A,B) as simulated by (A′,B′) differs from Hybrid 2.(i−
1) at times t < i, and only on input xi ⊕ yi to the oracle. Therefore, if the
probability that (A′,B′) succeeds is upper-bounded by p2.(i−1) − ε for some
non-negligible function ε, then by Lemma 1 the total query weight by (A,B) on
input xi ⊕ yi at times t < i must be at least 2ε2/q. Suppose the query weight
by A is at least ε2/q, for the other case is similar. We give an extractor (Ã, B̃)
in Hybrid 2.(i− 1):

• Ã samples j ← [q] and simulates A, stopping the execution at the j-th
query made by A to the oracle Gi−1, measuring the query as z∗. She
outputs y∗ = z∗ ⊕ xi, where xi is received at time t = i− 1 from V0.

• B̃ simulates B.

By assumption, y∗ = yi with probability ε2/q2 > 2−m, which is a contradiction
since yi is information theoretically hidden from Ã at times t < i.

Claim 9. p3 ≥ p2.ℓ.

Proof. Let (A,B) be an adversary for Hybrid 2.ℓ that succeeds with probability
p2.ℓ. We give a reduction (A′,B′) that succeeds in Hybrid 3 with the same
probability:

• At time t = −∞, A′ and B′ sample a 2q-wise independent hash function
G′. In addition, they sample (xi, yi, si)← {0, 1}m × {0, 1}m × {0, 1}n for
i ∈ [ℓ].

• A′ simulates A using G′ as the oracle, the sampled values (xi, yi), as well
as the values chi received from V0.

• B′ similarly simulates B using G′ as the oracle, the sampled values yi, as
well as the values chi received from V1.

The view of (A,B) is perfectly simulated since the oracle Gℓ in Hybrid 2.ℓ is
independent of the values (xi, yi, si) for all i ∈ [ℓ]. This is because the oracle
has been reprogrammed on all inputs xi ⊕ yi to remove any such dependence.
Thus, by Lemma 2, G′ simulates an independent random oracle and the proof
is complete.

Claim 10. p3 ≤ negl(λ).

Proof. Follows directly from Definition 6. A plays the role of the prover and B
that of the eavesdropper.
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4.2 Sequential Decomposition from Repetition
This section uses the same notation as Appendix A. Although other multi-round
approaches are possible, the most general sequential compilation approach is
desirable due to practical robustness considerations. Section 4.1 proves that
one can construct CVPV protocols from certified randomness protocols with
the sequential decomposition property. However, the usual notion of certified
randomness (Definition 3) is defined in terms of entropy lower bounds, but we
cannot lower bound the CVPV protocol entropy conditioned on the guesser’s
side information since she can communication with the prover. Therefore, it is
not immediately obvious whether a certified randomness protocol defined with
entropy is a sequential certified randomness protocol (Definition 5) defined by
the guessing probability. We show that for a large class of multi-round certified
randomness protocols, namely those that rely on repetition of single rounds with
entropy bounds ‘on average’, all have the sequential decomposition property.

Definition 7 (Certified Randomness from Repetition). A PoQ protocol P is
said to be certified randomness from repetition if

• The verifier V of P samples ℓ challenges {ch1, . . . , chℓ} in an i.i.d. man-
ner.

• For i ∈ [ℓ], the following steps occur in order:

1. The verifier V of P sends the challenge chi to P .
2. P sends back an answer ansi.
3. V computes a classical output Xi from chi and ansi.

• V accepts if Xn
1 ≡ X1 · · ·Xn = xn1 ∈ ω′, where xn1 is the classical value

of register Xn
1 and ω′ is a set of acceptable values of xn1 that satisfy the

certified randomness test condition.

• For any QPT prover P and verifier V described by the quantum channel
Pi : Ri−1 → XiAiCiRi,Pn ◦ · · · ◦ P1, we have

inf
ν∈Σi(q)

H(Ai|CiE)ν ≥ f(q), where (1)

Σi(q) =
{
νXiAiCiRiE = Pi(ρ)

∣∣∣ρ ∈ S(Ri−1E) ∧ νXi = q
}
, (2)

R is the quantum memory, A is the output register for ans, C is the chal-
lenge register for ch, E is the quantum side information register, S(Ri−1E)
is the set of all quantum states on Ri−1E, q ∈ P, P is the set of density op-
erators corresponding to classical probability distributions on the alphabet
X of Xi, and f is an affine function.

• For h = min
xn
1∈ω′

f (freq(xn1 )) (3)

freq(xn1 )(x) =
|{i ∈ {1, . . . , n} : xi = x}|

n
, (4)

we have h > 0.
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Indeed, in the situation where we only care about the side information in the
challenges or the initial quantum register E that does not evolve, the Markov
chain condition is trivially satisfied since the challenges are generated in an i.i.d.
manner. In such a case, the quantum channel of the protocol is illustrated in Fig.
8(a). Therefore, we can apply the entropy accumulation theorem [DFR20] to a
certified randomness from repetition protocol to lower bound the smooth min-
entropy. Conversely, any protocol that can be proven sound using the entropy
accumulation theorem must satisfy Definition 7. Similarly, for protocols that
are secure under a more general adversary model where the environment may
be updated each round and use the generalized entropy accumulation theorem
of [MFSR22] to prove soundness, they must be secure under the more restricted
model where the environment cannot be updated. They must satisfy Definition
7 since generalized entropy accumulation has a stronger single-round entropy
requirement.

We note that many existing protocols reuse challenges due to the need
for randomness expansion. However, randomness expansion does not concern
CVPV, and generating challenges for every round makes the analysis simpler.

To show that protocols satisfying Definition 7 can be used to construct
CVPV protocols (illustrated in Fig. 8(b)) with the sequential decomposition
property, we first consider an optimal adversary with the largest overall accep-
tance probability Pr[Ω], where Ω denotes the event where the answers pass the
protocol statistical test and all the guesses are correct. We denote the quantum
channel of the n-round optimal adversary asM′∗

n ◦· · ·◦M
′∗
1 . We then construct

a modified adversary M̄′

n ◦ · · · ◦ M̄
′

1 from this optimal adversary, and show
that the modified adversary has the same Pr[Ω]. Then, we show the modified
adversary also satisfies the non-signalling condition required by the generalized
entropy accumulation theorem [MFSR22]. This allows us to lower bound the
smooth min-entropy conditioned on the guesses and other side information of
the modified adversary using the generalized entropy accumulation theorem.
Finally, we derive an upper bound on Pr[Ω] by using the fact that either the
test fails with high probability, or the prover output has high entropy relative to
the guesses and the guesser must fail. A rigorous proof is given in Supplement
Section Appendix A.

Consider an intermediate quantum-classical state for the optimal adversary:∑
ai1c

i
1g

i
1

p∗(ai1c
i
1g
i
1)|ai1ci1gi1⟩⟨ai1ci1gi1|Ai

1C
i
1G

i
1
⊗ ρ∗a

i
1c

i
1g

i
1

RiR′
i
,

where Ri, R′i are prover and guesser quantum memory registers after the ith
round, Ai1Ci1Gi1 are classical registers of the answers, challenges, and guessers
for the first i rounds, lowercase variables are classical values of the respective
registers, p∗ is the probability of the classical outcome, and ρ∗ is the quantum
state on the quantum memory corresponding to the classical outcome. We define
the modified adversary quantum channel M̄′n ◦ · · · ◦ M̄′1 as

M̄′i+1 = Γi+1 ◦ trRi+1R′
i+1
◦M

′∗
i+1 ◦ Γi ◦ trRiR′

i
, (5)
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where Γi : C
i
1G

i
1 → RiR

′
iC

i
1G

i
1 is a quantum channel give by

Γi(ρ) =
∑
ci1g

i
1

Π
ci1g

i
1

Ci
1G

i
1
ρ Π

ci1g
i
1

Ci
1G

i
1
⊗ |ci1gi1⟩⟨ci1gi1| ⊗ ρ

∗gi1c
i
1g

i
1

RiR′
i
, (6)

where Π is the projector onto classical values.
Intuitively, the modified quantum channel first throws the quantum memory

away with trRiR′
i
, and then replaces the memory with another memory state.

An optimal adversary may use the quantum memory depends on the classical
history ai1ci1gi1. Fortunately, this is not an issue. If the guess is incorrect (gi1 ̸=
ai1), then the protocol has already aborted and it does not matter what quantum
memory is supplied to the next round. If the guess is correct (gi1 = ai1), then the
supplied quantum memory supplied by the modified adversary is the same as
that of an optimal adversary (ρ∗g

i
1c

i
1g

i
1

RiR′
i

= ρ
∗ai1c

i
1g

i
1

RiR′
i

). This concludes the proof that
the modified adversary defined in E.q. 5 has the maximum success probability.

Further, since the prover output ai is discarded (here, single round classical
output register is denoted as Ai and the value is denoted as ai, and the single
round challenges and guesses are similarly denoted as CiGi and cigi), the output
side information must be independent on ai. The quantum channel defined in
E.q. 5 satisfies the non-signalling condition. Namely, for all i, there exists
Ri+1 : Ei → Ei+1 such that

trAi+1Ri+1
◦ M̄′i+1 = Ri+1 ◦ trRi

, (7)

where Ei = Ci1G
i
1R
′
i. This is apparent from Fig. 7(c).

However, we only have single round entropy for certified randomness shown
in Fig. 7(a). Namely, H(Ai|CiE) ≥ f(q) for arbitrary input quantum states
over Ri−1E, where f(q) is a function on some test outcome. Instead, in order to
use entropy accumulation for the CVPV protocol, for the channel illustrated in
Fig. 7(c), we need H(Ai|EiẼ) ≥ f(q) for arbitrary input quantum states over
Ri−1Ei−1Ẽ.

Since processing with Gi cannot decrease entropy, H(Ai|CiE) ≥ f(q) for ar-
bitrary states overRi−1E and arbitrary register E impliesH(Ai|Ci−11 Gi−11 R′i−1) ≥
f(q) and similarly H(Ai|Ei) ≥ f(q) before Ni is applied. Further, since Ni does
not change Ci1Gi1, the entropy H(Ai|Ci1Gi1) does not change before or after Ni
and H(Ai|Ci1Gi1) ≥ H(Ai|Ei) ≥ f(q) at the end of channel M′∗

i .
For channel M̄′i, since Γi◦trRiR′

i
outputs a state that only depends on Ci1Gi1,

we must have H(Ai|Ei) = H(Ai|Ci1Gi1) ≥ f(q). Finally, for conditioning on the
arbitrarily entangled register Ẽ, we recognize that the input state toM′∗

i after
Γi−1 ◦ trRi−1R′

i−1
is of the form∑

ci−1
1 gi−1

1

p(ci−11 gi−11 )|ci−11 gi−11 ⟩⟨ci−11 gi−11 | ⊗ ρc
i−1
1 gi−1

1

Ri−1R′
i−1
⊗ σc

i−1
1 gi−1

1

Ẽ
, (8)

where ρ
ci−1
1 gi−1

1

Ri−1R′
i−1
, σ
ci−1
1 gi−1

1

Ẽ
are some density operators over Ri−1R′i−1 and Ẽ

that depend on ci−11 gi−11 . This is to say that the input state to M′∗
i , and
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(a) (b) (c)
_

Figure 7: (a) Original certified randomness protocol quantum channel with one
prover. (b) CVPV protocol quantum channel with one prover and one guesser.
(c) Modified CVPV protocol quantum channel, where crosses represent tracing
over the register. For all subpanels, P ′ is the prover channel, G is the guesser
channel, N is the communication channel, and C is the challenge generation
channel. We also use the notation Ei = Ci1G

i
1R
′
i.
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Figure 8: (a) Quantum channel of a certified randomness from repetition pro-
tocol. (b) Quantum channel of a CVPV protocol built from (a). Notations are
the same as Fig. 7.

therefore the output Ai, is only correlated with Ẽ through classical variables
ci−11 gi−11 . This means conditioning on Ẽ cannot reduce entropy when we are
already conditioning on Ci1Gi1. Hence H(Ai|EiẼ) ≥ f(q).

For an n-round protocol, entropy accumulation implies Hε
min = O(n), and

we can similarly choose the smoothing parameter ε = O(2−n). Combined, we
show that Pr[Ω] = O(2−n), which proves the soundness of the CVPV protocol.
The completeness of CVPV follows from the certified randomness protocol.

4.3 Rapid-Firing
Another way to construct CVPV from multi-round PoQ with CR is rapid-firing.
The idea is to send messages back-to-back in intervals much smaller than the
round-trip communication time. Note that this construction only works if the
challenges are chosen non-adaptively in the PoQ scheme because the verifiers
need to fire the challenges before receiving the answers for previous rounds.

We now describe the construction formally.
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Construction 3. In this construction, we assume the same syntax for P =
(V, P ) as in Construction 2. In addition, we assume that V samples challenges
non-adaptively. That is, if V = (Gen1, . . . ,Genℓ,Ver), then Geni ignores the
inputs ans1, . . . , ansi−1, that is, there exists G̃eni such that

Geni(1
λ, ans1, . . . , ansi−1; r) =: G̃eni(1

λ; r). (9)

Let {Gk}k∈{0,1}λ : {0, 1}m → {0, 1}n be a cryptographic hash function fam-
ily, with m = ω(log λ). Set3 ∆ ∈ (0, 1/(ℓ− 1)). We describe the (multi-round)
CVPV protocol below:

1. At time t = −∞, the verifiers sample random coins r ← {0, 1}poly(λ) for V
and a hash key k ← {0, 1}λ. For i = 1, . . . , ℓ, they sample random inputs
xi, yi ← {0, 1}m. They publish the hash key k.

2. For i = 1, . . . , ℓ:

• At time t = (i−1)∆, V0 computes chi = G̃eni(1
λ; r) and si = Gk(xi⊕

yi) ⊕ chi. It sends (xi, si) and expects an answer ansi at time t =
(i− 1)∆ + 1.

• Similarly, at time t = (i − 1)∆, V1 sends yi and expects an answer
ans′i at time t = (i− 1)∆ + 1.

• At time t = (i−1)∆+1/2, the honest prover, located at position 0.5,
computes chi = Gk(xi⊕yi)⊕si and ansi ← Pi(ch1, . . . , chi, ans1, . . . , ansi−1).
It immediately sends ansi to both verifiers.

3. The verifiers accept iff ansi = ans′i for all i, and Ver(ch1, ans1, . . . , chℓ, ansℓ; r)
accepts.

Security Proof in QROM.

Theorem 8 (Rapid-Firing). Let P = (V, P ) be a PoQ scheme that satisfies
Definition 3, such that V non-adaptively samples challenges. Then, Construc-
tion 3 is a sound CVPV scheme in the quantum random oracle model.

The proof of Theorem 8 is nearly identical to the proof of Theorem 7. The
major difference is that in the final hybrid we reach, the adversary has no time
to communicate anymore due to the rapid-fire design, hence Definition 3 suffices.
For the sake of completeness, we provide the full proof in Appendix C.1.

Remark 4 (Comparison to Sequential Compilation). Rapid-firing is theoret-
ically more advantageous than sequential composition, as the latter requires a
stronger notion of certified randomness. Nonetheless, this is in the idealized
(vanilla) model of CVPV, and in practice the robustness of rapid-firing will be
worse; it will require shorter network delays and shorter computation time.

3While this condition is all we need in the idealized model, in practice the optimal value
of ∆ is not necessarily the smallest possible value, for a small ∆ will make a faster quantum
computer necessary for the prover.
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4.4 Sequential Rapid-Firing
One shortcoming of the rapid-firing CVPV construction is that the number
of messages which can be sent depends on the distance between the provers
and the time it takes the honest prover to respond. Instead, we consider m
sequential rounds of the ℓ-round rapid-firing protocol. Now, although there
may be a practical bound on how large ℓ can be, there is no such bound on m.
In this protocol, we require all rounds pass the consistency check, but only some
fraction α of rounds need to pass the certified randomness test.

In the following discussion of sequential compilation of the rapid-firing proto-
col, we denote each rapid-firing round combined quantum channel of the verifier,
prover, and guesser as Mi : Ri−1Ei−1 → Ωi, where i ∈ [m], Ri−1, Ei−1 are the
prover and guesser input quantum memory, and Ωi is the event that the ith
rapid-firing round succeeds (both pass the certified randomness test and the
consistency check). We only keep the abort status register Ωi for each round
and traced out any output registers for the answers, guessers, and any other
registers used for certified randomness check. This is because the traced out
registers are only intermediate results used to determine Ωi, and only Ωi ulti-
mately determines if the overall sequentially compiled protocol aborts.

To show asymptotic soundness in m while there is no restriction in com-
munication and setup between rapid-fire rounds, we first show the following
lemma.

Lemma 3. There exists independent states ρR0E0 , ρR1E1 , . . . , ρRm−1Em−1 such
that

Pr [Ωi = 1 ∀i ∈ S]ν ≤
∏
i∈S

Pr [Ωi = 1]Mi(ρRi−1Ei−1)

for any S ⊂ [m] and ν =Mm ◦ · · · ◦M1 (σR0E0
).

Proof. We one-by-one choose the ρRi−1Ei−1
to be optimal in maximizing Pr [Ωi = 1].

Fix S ⊂ [m]. Then,

Pr [Ωi = 1 ∀i ∈ S]ν ≤ sup
ρR0E0

Pr [Ωi = 1 ∀i ∈ S]Mm◦···◦M1(ρR0E0)

= sup
ρR0E0

∏
i∈S

Pr [Ωi = 1|Ωj = 1∀j < i ∈ S]Mi◦···◦M1(ρR0E0)

= sup
ρR0E0

∏
i∈S

Pr [Ωi = 1]
νi(ρR0E0

)
∣∣Ωj=1∀j<i∈S

≤
∏
i∈S

sup
ρ′Ri−1Ei−1

Pr [Ωi = 1]Mi(ρ′Ri−1Ei−1
) = sup

ρR0E0

∏
i∈S

Pr [Ωi = 1]
νi(ρR0E0

)
∣∣Ωj=1∀j<i∈S

≤
∏
i∈S

Pr [Ωi = 1]Mi(ρRi−1Ei−1
) ,

where νi(ρR0E0
) ≡ Mi ◦ · · · ◦ M1 (ρR0E0

), νi(ρR0E0
)
∣∣Ωj = 1∀j < i ∈ S is the

normalized state of νi(ρR0E0
) projected to satisfy the condition Ωj = 1∀j < i ∈

S, and ρRi−1Ei−1
= argmax
ρ′Ri−1Ei−1

Pr [Ωi = 1]Mi
(ρ′Ri−1Ei−1

).
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This allows us to provide an upper bound on the overall protocol success
probability.

Theorem 9. Suppose we have a single-round or rapid-firing protocol such that
the probability of success is upper bounded by p over all possible input quantum
states. An m-round sequential compilation of these protocols must have

Pr

[∑
i

Ωi ≥ αm

]
ν

≤
(ep
α

)⌊αm⌋
. (10)

Proof. We first notice that by a union-bound together with Lemma 3,

Pr

[∑
i

Ωi ≥ αm

]
ν

≤ Pr [∃S, |S| = ⌊αm⌋ , Ωi = 1 ∀i ∈ S]ν

≤
∑
S

Pr [Ωi = 1 ∀i ∈ S]ν ≤
∑
S

∏
i∈S

Pr [Ωi = 1]Mi(ρRi−1Ei−1)

≤
∑
S

p⌊αm⌋ =

(
m

⌊αm⌋

)
p⌊αm⌋ ≤

( e
α

)⌊αm⌋
p⌊αm⌋.

This concludes the proof.
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A CVPV from Certified Randomness through Rep-
etition

A summary of notations used in this appendix is presented in Table 1. In
this appendix, we prove that certified randomness protocols that repeat single
rounds with an average von Neumann entropy lower bound, or more formally
those that satisfy Definition 7, satisfy the sequential decomposition property of
Definition 5 and can be used to construct a CVPV protocol secure under the
quantum random oracle model by Theorem 7.

To proceed, we first provide a formal model of the sequential protocol quan-
tum channels in Appendix A.1. We then consider an optimal adversary with
the largest acceptance probability Pr[Ω] in Appendix A.2. We also construct a
modified adversary from this optimal adversary, and show that the modified ad-
versary has the same Pr[Ω]. Then, we show the modified adversary also satisfies
the non-signaling condition required by the generalized entropy accumulation
theorem in Appendix A.3, which allows us to apply entropy accumulation to
lower bound the entropy of the prover output conditioned on the guesser side
information. Finally, we derive an upper bound on Pr[Ω] by using the fact that
either the certified randomness protocol test condition ω′ fails with high prob-
ability, or the prover output An1 has high entropy relative to the guesser side
information En in Appendix A.4. This concludes the proof of the sequential
decomposition property.

A.1 Protocol Quantum Channels
We first provide a model of the sequential protocol. We model the action of
the verifier V , the prover P , and the guesser Q in the i-th round as a single
map Mi. We denote the register of the classical challenge as Ci, the register
of the classical prover output from P as Ai, the classical guess of the guesser
as Gi. Furthermore, P and Q may share an arbitrary entangled quantum state
on Ri−1 and R′i−1 on input. They then engage in arbitrary communication to
produce an output state on Ri and R′i for the next round. We also use the
notation Ei = Ci1G

i
1R
′
i, where we use the notation Y ji = Yi · · ·Yj to denote the

values of a given set of registers Y between rounds i and j.
The verifier V also computes some test result based on the values in CiAi

each round. Namely, Xi are classical systems with common alphabet X , and
the test can be modeled by the map Ti : AiCi → XiAiCi,

where

Ti (ρAiCi
) =

∑
ai,ci

(
ΠaiAi
⊗ΠciCi

)
ρAiCi

(
ΠaiAi
⊗ΠciCi

)
⊗ |xi⟩⟨xi|Xi

, (11)

where {ΠyY } is the family of projectors on Y to classical values y and xi =
x(ai, ci) for some deterministic function x. Overall, each round can be modeled
by the map

Mi : Ri−1Ei−1 → XiAiRiEi = Ti ◦M′i, (12)
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V, P,Q Verifier, prover, guesser

Ti
Quantum channel of the ith round prover test result computation.
Explanation for the subscript i will be omitted below

Ci Quantum channel for challenge generation, part of the verifier V

Pi
Quantum channel of the certified randomness protocol of V, P
including the test

P ′i
Quantum channel of the certified randomness protocol of V, P
excluding the test

Gi Quantum channel of the guesser G
Ni Quantum communication channel between P and G
Mi Quantum channel of the CVPV protocol of V, P,Q including test
M′i Quantum channel of the CVPV protocol of V, P,Q excluding test

M∗i
Original optimal quantum channel of the CVPV protocol of
V, P,Q including the test

M′∗
i

Original optimal quantum channel of the CVPV protocol of
V, P,Q excluding the test

M̄i
Modified optimal quantum channel of the CVPV protocol of
V, P,Q including the test

M̄′i
Modified optimal quantum channel of the CVPV protocol of
V, P,Q excluding the test, defined by Equation (28)

Ci Register of the challenge of the ith round
Ai Register of the prover’s answer for the ith round
Gi Register of the guesser’s guess for the ith round
Y ji Collection of Yi . . . Yj for any register Y
Ri−1 Quantum memory input of the prover in the ith round
R′i−1 Quantum memory input of the guesser in the ith round
Ei All side information after the ith round, i.e. Ei = Ci1G

i
1R
′
i

Xi Test result register for the ith round

Ω′
Channel to determine if the protocol passes 1. the certified ran-
domness test from Xi, and 2. the consistency check

Ω
Channel to determine if the protocol passes from Cn1A

n
1G

n
1 , i.e.

Ω = Ω′ ◦ Tn ◦ · · · ◦ T1. Also denotes the event of the success

ω′
Function taking the single-round test results Xn

1 and determine if
the certified randomness protocol accepts

W Binary Register determining if the protocol succeeds

Σi(q)
Set of all input states such that after passing through Pi, the
probability distribution on test output Xi is q

Σ′i(q) Same as Σi(q) except for the original optimal channel M̄′∗
i

Σ̄i(q) Same as Σi(q) except for the modified optimal channel M̄′i
Ẽ Purification register of Ri−1Ei−1

Table 1: Table of variables for this Appendix A.
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where M′i : Ri−1Ei−1 → AiRiEi = trXiMi is the quantum channel without
the test computation.

The n-round protocol output state is of the form

ρXn
1 A

n
1RnEn

= (Mn ◦ · · · ◦M1) ρR0E0
, (13)

where ρR0E0
is a density operator on R0E0. Similarly,

ρAn
1RnEn = trXn

1
ρXn

1 A
n
1RnEn = (M′n ◦ · · · ◦M′1) ρR0E0 (14)

for the state without the test result registers.
The verifier finally determines whether to accept the transcript by check-

ing that the outputs pass some test condition Ω. Specifically, define Ω′ :
Xn

1A
n
1G

n
1 →WXn

1A
n
1G

n
1 with action

Ω′(ρ) =
∑

xn
1 ,a

n
1 ,g

n
1

Π
xn
1 a

n
1 g

n
1

Xn
1 A

n
1G

n
1
ρ Π

xn
1 a

n
1 g

n
1

Xn
1 A

n
1G

n
1
⊗ |ω⟩⟨ω|W , (15)

where

ω = ω(xn1a
n
1 g

n
1 ) =

{
ω′(xn1 ) if An1 = Gn1
0 otherwise,

(16)

and ω′ is a deterministic function with target {0, 1}. We can define the full test
operator Ω as

Ω = Ω′ ◦ Tn ◦ · · · ◦ T1. (17)

All of this is to say that the verifier only accepts if 1. some test condition
ω′ on the prover outputs An1 and the challenges Cn1 is satisfied, and 2. the
consistency check passes (i.e. An1 = Gn1 ). The probability of accepting is

Pr[Ω]ρAn
1 RnEn

= Π1
W

[
trXn

1 A
n
1RnEn

◦ Ω
(
ρAn

1RnEn

)]
Π1
W , (18)

where Π1
W is a projector on W to the 1 state.

The state in eq. (14) is built from a sequence of quantum channels, similar
to those considered in entropy accumulation. In the context of randomness ex-
pansion, the guesser’s information about the prover’s output can be bounded
given certain restrictions on this sequence of channels using entropy accumula-
tion theorems, namely the Markov chain or non-signaling condition. However,
in our context of CVPV, we do not have such restrictions on the channels since
P and Q can perform arbitrary communication after Ai, Gi are output each
round.

In fact, if arbitrary communication is allowed, the adversary can simply copy
all Ai to the guesser’s final side information En, which results in zero entropy.
However, to be usefully helpful in assisting the guesses, the side information
for the ith round must be present in the ith round, not before or after. This
exactly what the Markov chain condition and the non-signaling condition in the
entropy accumulation and the generalized entropy accumulation theorem aim
to enforce.
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A.2 Proof of Equal Abort Probability
We first show that modifying any quantum channel by ignoring the prover out-
put does not change the protocol success probability.

Lemma 4. Given a quantum channel Ω◦M′∗
n ◦· · ·◦M

′∗
1 with classical registers

An1C
n
1G

n
1 and intermediate states

ρ∗Ai
1RiEi

=
(
M

′∗
i ◦ · · · ◦M

′∗
1

)
(ρR0E0

)

=
∑
ai1c

i
1g

i
1

p∗(ai1c
i
1g
i
1)|ai1ci1gi1⟩⟨ai1ci1gi1| ⊗ ρ

∗ai1c
i
1g

i
1

RiR′
i
, (19)

a related quantum channel Ω ◦ M̄′n ◦ · · · ◦ M̄′1 defined by

M̄′i+1 = Γi+1 ◦ trRi+1R′
i+1
◦M

′∗
i+1 ◦ Γi ◦ trRiR′

i
, (20)

where Γi : C
i
1G

i
1 → RiEi is a quantum channel give by

Γi(ρ) =
∑
ci1g

i
1

Π
ci1g

i
1

Ci
1G

i
1
ρ Π

ci1g
i
1

Ci
1G

i
1
⊗ |ci1gi1⟩⟨ci1gi1| ⊗ ρ

∗gi1c
i
1g

i
1

RiR′
i
, (21)

has the same probability of accept as the original quantum channel. Formally,

Pr[Ω]ρ∗
An

1 RnEn
= Pr[Ω]ρAn

1 RnEn
(22)

for ρAn
1RnEn =

(
M̄′n ◦ · · · ◦ M̄′1

)
(ρR0E0).

Proof. In general, the quantum memory state ρ∗a
i
1c

i
1g

i
1

RiR′
i

conditioned on any par-
ticular outcome depends on ai1c

i
1g
i
1, and therefore the side information Ei+1

of the next round might depend on ai1, violating the no-signaling condition.
Applying the second half of the optimal adversary yields

ρ∗An
1RnEn

=
(
M

′∗
n ◦ · · · ◦M

′∗
i+1

)
ρ∗Ai

1RiEi

=
∑
ai1c

i
1g

i
1

p∗(ai1c
i
1g
i
1)|ai1ci1gi1⟩⟨ai1ci1gi1|

(
M

′∗
n ◦ · · · ◦M

′∗
i+1

)
ρ
∗ai1c

i
1g

i
1

RiR′
i
. (23)

Therefore, we can express the non-abort probability as

Pr[Ω] =
∑
ai1c

i
1g

i
1

p∗(ai1c
i
1g
i
1) Pr[Ω]

|ai1ci1gi1⟩⟨ai1ci1gi1|(M
′∗
n ◦···◦M

′∗
i+1)ρ

∗ai
1ci1gi1

RiR
′
i

=
∑
ci1g

i
1

p∗(gi1c
i
1g
i
1) Pr[Ω]

|gi1ci1gi1⟩⟨gi1ci1gi1|(M
′∗
n ◦···◦M

′∗
i+1)ρ

∗gi1ci1gi1
RiR

′
i

, (24)

where the second equality holds because applying Ω to states where ai1 ̸= gi1
gives |ω = 0⟩W . Now, let us consider the effect of inserting Γi ◦ trRiR′

i
, which
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leads to an intermediate quantum state(
Γi ◦ trRiR′

i
M

′∗
i ◦ · · · ◦M

′∗
1

)
ρR0E0

=
∑
ai1c

i
1g

i
1

p∗(ai1c
i
1g
i
1)|ai1ci1gi1⟩⟨ai1ci1gi1|ρ

∗gi1c
i
1g

i
1

RiR′
i
.

(25)

Applying the rest of the quantum channel
(
M′∗

n ◦ · · · ◦M
′∗
i+1

)
yields

ρXn
1 A

n
1RnEn

=
∑
ai1c

i
1g

i
1

p∗(ai1c
i
1g
i
1)|ai1ci1gi1⟩⟨ai1ci1gi1|

(
M

′∗
n ◦ · · · ◦M

′∗
i+1

)
ρ
∗gi1c

i
1g

i
1

RiR′
i
.

(26)

Therefore,

Pr[Ω] =
∑
ai1c

i
1g

i
1

p∗(ai1c
i
1g
i
1) Pr[Ω]

|ai1ci1gi1⟩⟨ai1ci1gi1|(M
′∗
n ◦···◦M

′∗
i+1)ρ

∗gi1ci1gi1
RiR

′
i

=
∑
ci1g

i
1

p∗(gi1c
i
1g
i
1) Pr[Ω]

|ai1ci1gi1⟩⟨ai1ci1gi1|(M
′∗
n ◦···◦M

′∗
i+1)ρ

∗gi1ci1gi1
RiR

′
i

, (27)

which is identical to the probability of the original optimal adversary. The
only difference between the derivation is that we replace ρ∗a

i
1c

i
1g

i
1

RiR′
i

with ρ
∗gi1c

i
1g

i
1

RiR′
i

everywhere instead of just the final result.
Applying the modified adversary defined in E.q. 20 for all i is simply insert-

ing Γi ◦ trRiR′
i

between all M′∗
i (Γi ◦ trRiR′

i
◦ Γi ◦ trRiR′

i
= Γi ◦ trRiR′

i
). Since

the final Γn ◦ trRnR′
n

does not change An1Cn1Gn1 , the final probability Pr [Ω] does
not change.

This allows to construct a modified optimal adversary channel that ignores
prover outputs.

Lemma 5. For quantum channel M̄′n ◦ · · · ◦ M̄′1 such that

M̄′i+1 = Γi+1 ◦ trRi+1R′
i+1
◦M

′∗
i+1 ◦ Γi ◦ trRiR′

i
, (28)

where

M
′∗
n ◦· · ·◦M

′∗
1 , ρ

∗
R0E0

= argmax
N ′

n◦···◦N ′
1∈poly,ρR0E0

∈S(R0E0)

Pr[Ω](N ′
n◦···◦N ′

1)ρR0E0
, (29)

and S(R0E0) is the space of all density operators on R0E0, we have

sup
N ′

n◦···◦N ′
1∈poly,ρR0E0

∈S(R0E0)

Pr[Ω](N ′
n◦···◦N ′

1)ρR0E0
= Pr[Ω](M̄′

n◦···◦M̄′
1)ρ∗R0E0

.

(30)

Proof. By Lemma 4,

Pr[Ω](M̄′
n◦···◦M̄′

1)ρ∗R0E0

= Pr[Ω](M′∗
n ◦···◦M

′∗
1 )ρ∗R0E0

. (31)

By definition of M′∗
n ◦ · · · ◦ M

′∗
1 , ρ

∗
R0E0

and the supremum, this completes the
proof.
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A.3 Proof of Entropy
Lemma 6. The quantum channel defined in E.q. 28 satisfies the non-signalling
condition. Namely, for all i, there exists Ri+1 : Ei → Ei+1 such that

trAi+1Ri+1
M̄′i+1 = Ri+1 ◦ trRi

. (32)

Proof. This is satisfied by setting

Ri+1 = trAi+1Ri+1Γi+1 ◦ trRi+1R′
i+1
◦M

′∗
i+1 ◦ Γi ◦ trR′

i
. (33)

Since the modified adversary satisfies the non-signalling condition, we can
apply entropy accumulation theorem to bound the unpredictability of zi from
the perspective of the guesser, which is bounded by Hmin(A

n
1 |En). To do this,

we need a lower bound on the single-round von Neumann entropy. Namely, for
q ∈ P and P a set of probability distributions on the alphabet X of Xi, we need

inf
ν∈Σi(q)

H(Ai|EiẼ)ν ≥ f(q), (34)

where Ẽ is isomorphic to Ri−1Ei−1, and

Σ̄i(q) =
{
νXiAiRiEiẼ

= Ti ◦ M̄
′

i(ρ)
∣∣∣ρ ∈ S(Ri−1Ei−1Ẽ) ∧ νXi

= q
}
. (35)

Here, f(q) is called the min-tradeoff function, and it is an affine function.
However, M̄′i are modified quantum channels and we do not have an entropy

lower bound for them. Given some entropy lower bound on the original quantum
channels M′∗

i , we wish to establish a lower bound for M̄′i. We proceed with
this task by first showing some useful lemmas about conditional entropy.

Lemma 7. For state ρ on quantum system ABC where C is classical and
ρ =

∑
c p(c)|c⟩⟨c|C ⊗ σcA ⊗ ηcB,

H(ABC) = H(C) +H(A|C) +H(B|C). (36)

Proof. First, we note that ρ is block diagonal. Further, each sub-block of C = c
is in a product form σcA⊗ηcB . Say σcA has eigenvalues λca and ηcB has eigenvalues
λcb. Note that the eigenvectors are not the same for different c in general. Still,
σcA ⊗ ηcB has eigenvalues λcaλcb for all possible a, b. Overall, ρ has eigenvalues
p(c)λcaλ

c
b for all a, b, c. The entropy of the system is identical to a classical

system with probability distribution p(abc) = p(c)p(a|c)p(b|c), and the entropy
is H(ABC) = H(C) +H(A|C) +H(B|C).

Lemma 8. For state ρ on quantum system ABC where C is classical and
ρ =

∑
c p(c)|c⟩⟨c|C ⊗ σcA ⊗ ηcB, we have H(A|BC) = H(A|C).
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Proof. Using Lemma 7,

H(A|BC) =H(ABC)−H(BC)

= (H(C) +H(A|C) +H(B|C))− (H(C) +H(B|C)) = H(A|C).

This now allows us to reduce the entropy of the modified adversary con-
ditioned on quantum registers (which we need to apply generalized entropy
accumulation theorem) to entropy conditioned on classical registers only.

Lemma 9. For input quantum state σ ∈ S(Ri−1Ei−1Ẽ) and

νXiAiRiEiẼ
=
(
Γi ◦ trRiR′

i
◦ Ti ◦M

′∗
i ◦ Γi−1 ◦ trRi−1R′

i−1

)
σ, (37)

we have H(Ai|EiẼ)νAiEiẼ
= H(Ai|Ci1Gi1)νAiC

i
1Gi

1

.

Proof. We know that trRiR′
i
σ ∈ S(Ci−1Gi−1Ẽ). Further,

νAiEiẼi
= trXiRi

νXiAiRiEiẼ

=trXiRi
◦ Γi ◦ trRiR′

i
◦ Ti ◦M

′∗
i ◦ Γi−1 ◦ trRi−1R′

i−1
σ

=trRi
◦ Γi ◦ trXiRiR′

i
◦M

′∗
i∑

ci−1
1 gi−1

1

p(ci−11 gi−11 )|ci−11 gi−11 ⟩⟨ci−11 gi−11 | ⊗ ρ∗g
i−1
1 ci−1

1 gi−1
1

Ri−1R′
i−1

⊗ σc
i−1
1 gi−1

1

Ẽ

=trRi
◦ Γi ◦

∑
ci−1
1 gi−1

1

p(ci−11 gi−11 )|ci−11 gi−11 ⟩⟨ci−11 gi−11 | ⊗ ηc
i−1
1 gi−1

1

AiCiGi
⊗ σc

i−1
1 gi−1

1

Ẽ

=trRi

∑
ci1g

i
1

p(ci1g
i
1)|ci1gi1⟩⟨ci1gi1| ⊗ ρ

∗gi1c
i
1g

i
1

RiR′
i
⊗ ζc

i
1g

i
1

Ai
⊗ σc

i−1
1 gi−1

1

Ẽ

=
∑
ci1g

i
1

p(ci1g
i
1)|ci1gi1⟩⟨ci1gi1| ⊗

(
ρ
ci1g

i
1

R′
i
⊗ σc

i−1
1 gi−1

1

Ẽ

)
⊗ ζc

i
1g

i
1

Ai
, (38)

where

p(ci−11 gi−11 )σ
ci−1
1 gi−1

1

Ẽ
= ⟨ci−11 gi−11 |trRi−1R′

i−1
σ|ci−11 gi−11 ⟩ ∈ S(Ẽ), (39)

trẼσ
ci−1
1 gi−1

1

Ẽ
= 1, (40)

trXiRiR′
i
◦M

′∗
i |ci−11 gi−11 ⟩⟨ci−11 gi−11 |ρ∗g

i−1
1 ci−1

1 gi−1
1

Ri−1R′
i−1

= |ci−11 gi−11 ⟩⟨ci−11 gi−11 |ηc
i−1
1 gi−1

1

AiCiGi
,

(41)
since trXiRiR′

i
◦M′∗

i cannot change Ci1Gi1 (this is because Ci1Gi1 are committed
classical variables that cannot be changed), and

p(ci1g
i
1)ζ

ci1g
i
1

Ai
= p(ci−11 gi−11 )⟨cigi|η

ci−1
1 gi−1

1

AiCiGi
|cigi⟩, (42)

trAiζ
ci1g

i
1

Ai
= 1. (43)
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Finally, by Lemma 8, we have

H(Ai|EiẼ)νAiEiẼ
= H(Ai|Ci1Gi1)νAiC

i
1Gi

1

. (44)

Lemma 10. For Γi defined in E.q. 21 and ν′ =
(
Γi ◦ trRiR′

i

)
ν, we have

H(Ai|Ci1Gi1)ν = H(Ai|Ci1Gi1)ν′ . (45)

Proof. Since Γi ◦ trRiR′
i

does not modify AiCi1Gi1, we have

νAiCi
1G

i
1
= trXiRiR′

i
ν = trXiRiR′

i

(
Γi ◦ trRiR′

i

)
ν = ν′AiCi

1G
i
1
, (46)

which means the two entropy quantities must be equal.

We now show that if we have a lower bound on the entropy conditioned on
Ci1G

i
1 for the original optimal adversary, then we also have a lower bound on the

entropy conditioned on quantum side information for the modified adversary.

Lemma 11. For the quantum channel defined in E.q. 28, if

inf
ν′∈Σ′

i(q)
H(Ai|Ci1Gi1)ν′ ≥ f(q), (47)

where

Σ′i(q) =
{
νXiAiRiEi = Ti ◦M

′∗
i (ρ)

∣∣∣ρ ∈ S(Ri−1Ei−1) ∧ νXi = q
}
, (48)

q ∈ P, and P is the set of probability distributions on the alphabet X of Xi, then

inf
ν∈Σ̄i(q)

H(Ai|EiẼ)ν ≥ f(q), (49)

where Ẽ is isomorphic to Ri−1Ei−1, and

Σ̄i(q) =
{
νXiAiRiEiẼ

= Ti ◦ M̄
′

i(ρ)
∣∣∣ρ ∈ S(Ri−1Ei−1Ẽ) ∧ νXi

= q
}
. (50)

Proof. By Lemma 9,

inf
ν∈Σ̄i(q)

H(Ai|EiẼ)ν = inf
ν∈Σ̄i(q)

H(Ai|Ci1Gi1)ν . (51)

Define ρ∗ ∈ S(Ri−1Ei−1Ẽ) and ν∗
XiAiRiEiẼ

= Ti ◦ M̄
′

i(ρ
∗) as anything that

satisfies the following conditions. First, ν∗Xi
= q, which implies ν∗ ∈ Σ̄i(q).

Second, for all ρ ∈ S(Ri−1Ei−1Ẽ) and νXiAiRiEiẼ
= Ti ◦ M̄

′

i(ρ) such that
νXi = q, we have H(Ai|Ci1Gi1)ν∗ ≤ H(Ai|Ci1Gi1)ν . By definition, we have

inf
ν∈Σ̄i(q)

H(Ai|Ci1Gi1)ν = H(Ai|Ci1Gi1)ν∗ , (52)

41



Further,

ν∗XiAiRiEi
= trẼν

∗
XiAiRiEiẼ

=
(
trẼ ◦ Γi ◦ trRiR′

i
◦ Ti ◦M

′∗
i ◦ Γi−1 ◦ trRi−1R′

i−1

)
ρ∗

=
(
Γi ◦ trRiR′

i

) (
Ti ◦M

′∗
i

) [(
Γi−1 ◦ trRi−1R′

i−1Ẽ

)
ρ∗
]

=
(
Γi ◦ trRiR′

i

) (
Ti ◦M

′∗
i

)(
ρ′Ri−1Ei−1

)
(53)

=
(
Γi ◦ trRiR′

i

)
µ∗XiAiRiEi

. (54)

Therefore, by Lemma 10,

H(Ai|Ci1Gi1)ν∗ = H(Ai|Ci1Gi1)(Γi◦trRiR
′
i

)
µ∗
XiAiRiEi

= H(Ai|Ci1Gi1)µ∗ (55)

Since the quantum channel Γi ◦trRiR′
i
does not act on Xi and ν∗ ∈ Σ̄i(q), we

must have µ∗Xi
= ν∗Xi

= 1. Further, µ∗XiAiRiEi
=
(
Ti ◦M

′∗
i

)(
ρ′Ri−1Ei−1

)
for

some ρ′ ∈ S(Ri−1Ei−1). Together, these two conditions means that µ∗XiAiRiEi
∈

Σ′i(q) by the definition of Σ′i(q). As a result,

H(Ai|Ci1Gi1)µ∗ ≥ inf
ν∈Σ′

i(q)
H(Ai|Ci1Gi1)ν′ . (56)

Combining E.q. 51, 52, 55, 56, and 47 yields

inf
ν∈Σ̄i(q)

H(Ai|EiẼ)ν = inf
ν∈Σ̄i(q)

H(Ai|Ci1Gi1)ν = H(Ai|Ci1Gi1)ν∗

= H(Ai|Ci1Gi1)µ∗ ≥ inf
ν∈Σ′

i(q)
H(Ai|Ci1Gi1)ν′ ≥ f(q). (57)

Now that we derived the bound on the required single round von Neumann
entropy of the modified adversary, we can apply entropy accumulation to it.

Lemma 12. For Σ′i(q) defined in Lemma 11, M̄′i defined in E.q. 28, M̄i =
Ti ◦ M̄′i, ω′ a set of possible outputs on Xn

1 , if

inf
ν′∈Σ′

i(q)
H(Ai|Ci1Gi1)ν′ ≥ f(q), (58)

then,
Hε

min(A
n
1 |En)M̄n◦···◦M̄1

(ρR0E0)|ω′ ≥ nh− c1
√
n− c0, (59)

where

h = min
xn
1∈ω′

f (freq(xn1 )) (60)

freq(xn1 )(x) =
|{i ∈ {1, . . . , n} : xi = x}|

n
, (61)
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and c0, c1 are as defined in Corollary 4.6 in [MFSR22], correcting the typo where
g(ε) should be

g(ε) = − log2(1−
√

1− ε2) (62)

and replacing Pr[Ω] with Pr[ω′].

Proof. By Lemma 11, for Σ̄i(q) defined in Lemma 11,

inf
ν∈Σ̄i(q)

H(Ai|EiẼ)ν ≥ f(q). (63)

Applying Corollary 4.6 of [MFSR22] completes the proof, which is valid because
of Lemma 6.

A.4 Proof of the Sequential Decomposition Property
Although EAT bounds the ε-min-entropy instead of the min-entropy, we can
use the following relation.

Lemma 13. For a classical probability distribution ρ over random variable X,

Hmin(X) ≥ − log2

(
ε+ 2−H

ε
min

)
. (64)

Proof. Consider x∗ρ = argmaxx Pr[X = x]ρ and pmax,ρ = Pr[X = x∗ρ]ρ. By
definition of the min-entropy, pmax,ρ = 2−Hmin(X)ρ . Consider a classical dis-
tribution ρ′ in the ε-ball of ρ. Maximization of the min-entropy over such a
classical state gives the smooth min-entropy due to the definition of the smooth
min-entropy in Definition 6.9 and Lemma 6.13 of of [Tom15]. For classical dis-
tributions, the TVD distance between ρ and ρ′ must be less than ε. Define
x∗ρ′ = argmaxx Pr[X = x]ρ′ and pmax,ρ′ = Pr[X = x∗ρ′ ]ρ′ .

Either x∗ρ = x∗ρ′ or x∗ρ ̸= x∗ρ′ . If x∗ρ = x∗ρ′ , we must have ε ≥ TVD[ρ, ρ′] ≥
|pmax,ρ − pmax,ρ′ |, and therefore pmax,ρ ≤ pmax,ρ′ + ε.

If x∗ρ ̸= x∗ρ′ , we must have ε ≥ TVD[ρ, ρ′] ≥ |pmax,ρ − Pr[X = x∗ρ]ρ′ |, and
therefore pmax,ρ ≤ Pr[X = x∗ρ]ρ′ + ε. Note that Pr[X = x∗ρ]ρ′ is the probability
of measuring from ρ′ the maximum probability string of ρ. Since x∗ρ ̸= x∗ρ′ , we
have Pr[X = x∗ρ]ρ′ ≤ pmax,ρ′ by definition of pmax,ρ′ , and pmax,ρ ≤ pmax,ρ′ + ε.

Since in both cases, pmax,ρ ≤ pmax,ρ′ + ε, we have

Hmin(X)ρ = − log2 pmax,ρ ≥ − log2 (pmax,ρ′ + ε) . (65)

Finally, since by definition of the smooth min-entropy in Definition 6.9 of
[Tom15], Hε

min(X)ρ ≥ Hmin(X)ρ′ = − log2 pmax,ρ′ ,

Hmin(X)ρ ≥ − log2

(
2−H

ε
min(X)ρ + ε

)
. (66)

However, this lemma is only for unconditional min-entropy, which does not
directly apply. We now use similar arguments to show this for conditional min-
entropy.
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Lemma 14. For a classical probability distribution ρ over random variables
X,Y ,

Hmin(X|Y )ρ ≥ − log2

(
2−H

ε
min(X|Y )ρ + ϵ

)
. (67)

Proof. We closely follow the same arguments presented in the proof of Lemma
13. Consider x∗ρX|Y =y

= argmaxx Pr[X = x]ρX|Y =y
, where ρX|Y=y = ⟨y|ρ|y⟩.

Define pmax,ρX|Y =y
= Pr

[
X = x∗ρX|Y =y

]
ρX|Y =y

. Consider a distribution ρ′ in

the ε-ball of ρ. Maximization of the min-entropy over such a classical state
gives the smooth min-entropy due to the definition of the smooth min-entropy
in Definition 6.9 and Lemma 6.13 of of [Tom15]. Similarly, we define x∗ρ′

X|Y =y

and pmax,ρ′
X|Y =y

.
We must have

ε ≥TVD[ρ, ρ′] (68)

≥
∑
y

∣∣∣∣Pr[Y = y]ρ · pmax,ρX|Y =y
(69)

− Pr[Y = y]ρ′ · Pr
[
X = x∗ρX|Y =y

]
ρ′
X|Y =y

∣∣∣∣ (70)

≥
∣∣∣∣∑
y

Pr[Y = y]ρ · pmax,ρX|Y =y
(71)

−
∑
y

Pr[Y = y]ρ′ · Pr
[
X = x∗ρX|Y =y

]
ρ′
X|Y =y

∣∣∣∣. (72)

Since Pr
[
X = x∗ρX|Y =y

]
ρ′
X|Y =y

≤ pmax,ρ′
X|Y =y

by definition of pmax,ρ′
X|Y =y

, we

have ∑
y

Pr[Y = y]ρ · pmax,ρX|Y =y
≤
∑
y

Pr[Y = y]ρ′ · pmax,ρ′
X|Y =y

+ ϵ. (73)

Therefore, we have

Hmin(X|Y )ρ = − log2

(∑
y

Pr[Y = y]ρ · pmax,ρX|Y =y

)
(74)

≥ − log2

(∑
y

Pr[Y = y]ρ′ · pmax,ρ′
X|Y =y

+ ϵ

)
, (75)

where the definition of conditional min-entropy for classical distributions follow
E.q. 6.26 of [Tom15]. Finally, since by definition of the smooth min-entropy in
Definition 6.9 of [Tom15],

Hε
min(X|Y )ρ ≥ Hmin(X|Y )ρ′ = − log2

(∑
y

Pr[Y = y]ρ′ · pmax,ρ′
X|Y =y

)
, (76)
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we have
Hmin(X|Y )ρ ≥ − log2

(
2−H

ε
min(X|Y )ρ + ϵ

)
. (77)

Further, for a CVPV protocol based on certified randomness with acceptance
probability p, the CVPV acceptance probability is

Pr[Ω] ≤ min
(
p, 2−Hmin

)
. (78)

This is because the guessing probability is given by the exponential of the con-
ditional min-entropy for classical variables as shown in E.q. 6.27 of [Tom15].

To more explicitly show asymptotic soundness, we prove the following the-
orem.

Lemma 15. For the modified quantum channel defined in E.q. 28 and h defined
in E.q. 60, if h > 0, then the n-round protocol has Pr[Ω] ≤ O(2−n).

Proof. Lemma 12 shows that to achieveHε
min = O(n), we can tolerate c0 = O(n)

and c1 = O(
√
n). To achieve this, we can tolerate g(ε) = O(n) and Pr[ω′] =

O(n) with suitably chosen constants such that c0 and c1 are sufficiently small
and Hε

min > 0. To achieve this, we can have Pr[ω′] = O(2−n) and ε = O(2−n).
In this case,

Hmin ≥ − log2

(
ε+ 2−H

ε
min

)
= O(n) (79)

Pr[Ω] ≤ min
(
Pr[ω′], 2−Hmin

)
= min(O(2−n), O(2−n)) = O(2−n). (80)

Finally, we have a bound on the probability of the protocol not aborting in
the adversarial setting for soundness. According to Definition 5, P and Q can
communicate and setup arbitrarily only after ansi, ans′i are provided. Therefore,
we can model the ith round CVPV protocol quantum channel as

M∗i = Ti ◦ Ni ◦ (P ′i ◦ Gi) ◦ (Ci ⊗ I) , (81)

where I is identity over Ri−1Ei−1, Ci : C → Ci is a channel from complex
number to the challenge, Gi : CiEi−1 → Ei where Ei = Ci1G

i
1R
′
i, P ′i : CiRi−1 →

AiRi, Ni : RiEi → RiEi is the arbitrary communication and setup channel,
and Ti : AiCi → Xi is the test channel.

Theorem 10. Given a PoQ protocol for h defined in 60, if h > 0 for all single-
round QPT channelsM∗i of the form of E.q. 81, then the protocol is a sequential
certified randomness protocol.

Proof. For the modified quantum channel, if h > 0 is satisfied, then the n-round
protocol has Pr[Ω] ≤ O(2−n) due to Lemma 15. Finally, by Lemma 4, for the
original channel, the acceptance probability is identical.
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Additionally, to show that any certified randomness from repetition satisfy-
ing Definition 7 is a sequential certified randomness protocol, we need to show
h > 0 for channelM∗i is implied by h > 0 channel Pi.

Theorem 11. An ℓ-round PoQ protocol P is a sequential certified random-
ness protocol if it is a certified randomness from repetition, and performs the
consistency check and timing check of CVPV.

Proof. Consider M∗i defined in E.q. 81. Since Ni does not change AiCi1Gi1, it
does not affect H(Ai|Ci1Gi1). Therefore, we have

H(Ai|Ci1Gi1)M∗
i (ρRi−1Ei−1

) = H(Ai|Ci1Gi1)Ti◦(P′
i⊗Gi)◦(Ci⊗I)(ρRi−1Ei−1

) (82)

≥ H(Ai|Ei)Ti◦(P′
i⊗Gi)◦(Ci⊗I)(ρRi−1Ei−1

). (83)

Further, since Gi does not act on Ai,

H(Ai|Ei)Ti◦(P′
i⊗Gi)◦(Ci⊗I)(ρRi−1Ei−1

) ≥ H(Ai|CiEi−1)Ti◦P′
i◦(Ci⊗I)(ρRi−1Ei−1

).

(84)
Moreover, Ti ◦ P ′i ◦ (Ci ⊗ I) is exactly the ith round certified randomness from
repetition quantum channel Pi. This is because for the challenges to be gener-
ated by the verifier independent of any other information, which is required by
Definition 7, the channel must have this form. Therefore,

H(Ai|Ci1Gi1)M∗
i (ρRi−1Ei−1

) = H(Ai|CiEi−1)Pi(ρRi−1Ei−1
), (85)

and therefore

inf
ν′∈Σ′

i(q)
H(Ai|Ci1Gi1)ν′ ≥ inf

ν∈Σi(q)
H(Ai|CiEi−1)ν ≥ f(q), (86)

where Σ′i(q) is defined in Lemma 11 and Σi(q), f(q) are as in Definition 7.

Corollary 1. All results in Section 4.1 hold for PoQ scheme P = (V, P ) that
is certified randomness from repetition.

B Instantiation
For a specific instantiation of a CVPV protocol, we consider certified randomness
from random circuit sampling (RCS) [AH23]. In particular, it is appealing for
near-term implementation due to the fact that RCS is already demonstrated
experimentally and classical simulation is believed to be hard. Crucially, the
protocol is based on solving the heavy output generation problem.

Definition 8 (Heavy Output Generation). A quantum algorithm A given C ∼
D is said to solve b-XHOG if it outputs a bitstring z such that

E
C∼D

[
E

z∼AC
[pC(z)]

]
≥ b

N
.
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[AH23] showed that any quantum algorithm given oracle access to C and
passes b-XHOG must output samples with conditional von Neumann entropy at
least Ω(n) (Theorem 13).

Specifically, for the single round analysis, RCS-based certified randomness
yields different bounds on the von Neumann entropy under different models. De-
note the single round output as A, the challenge as C, and any side information
as E.

One model that is considered is the semi-honest adversary, where the prover
may be entangled with an guesser but performs ideal quantum measurement.

Theorem 12 (Theorem 6.4 of [AH23]). Consider a semi-honest adversary per-
forming ideal measurement on a state sharing some entanglement with register
E while solving b-XHOG for b ≥ (1−ε)N

N+1 , A is a length-n bitstring, and C is an
n-qubit quantum circuit from the Haar measure. We have

Pr
C∼Haar(N)

[H(A|E)ψ ≥ (0.99− ε)n] ≥ 1−O(N−0.02). (87)

where ψ is the output state.

Finally, a fully general device given oracle access to C is considered.

Theorem 13 (Corollary 7.16 of [AH23]). Consider a T -query adversary solving
(1 + δ)-XHOG, A is a length-n bitstring, and C is an n-qubit quantum circuit
from the Haar measure. For T = poly(n), δ = Ω(1), and η ∈ (0, 1], we have

H(A|CE)ψ ≥ (1− η)δn−O(log n), (88)

where ψ is a quantum state N−Ω(δη)-close to the output of the adversary.

B.1 Protocols
The above single round results allow them to use the entropy accumulation
theorem to define a multi-round protocols that outputs certified smooth min-
entropy for each case. Moreover, for randomness expansion, fresh randomness
is only consumed on logarithmically many rounds to generate fresh challenge
circuits.

We see that the semi-honest adversary model and the random oracle model
allows one to obtain a bound on the von Neumann entropy with quantum side
information, and the respective RCS-based certified randomness protocols are
certified randomness from entropy accumulation protocols satisfying Definition
7. We have omitted discussions of a general device in Section 5 of [AH23] since
does not consider quantum side information, and Definition 7 is not satisfied.

We describe below a protocol in Fig. 9 that instantiates CVPV based on
Theorem 12, which is closely related to Fig. 2 of [AH23]. The completeness of
the protocol follows from the completeness of the original protocol in [AH23],
and the soundness follows from the application of the entropy accumulation
theorem.
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We note that [AH23] claims to prove entropy accumulation of the protocol
in Theorem 6.6 from Corollary 6.5, which is incorrect. Since the theorem states
entropy is Ω(mn) with overwhelming probability over choices of C, where m is
the number of rounds, the proof should be built on Theorem 6.4 (or Theorem 12
in reproduced here). It is straightforward to apply Corollary 6.5 for entropy
accumulation, however, but the resulting theorem should no longer contain the
clause ‘with probability 1− 2−Ω(n) over the choices of C’ and the entropy needs
to be conditioned on the challenge circuits as well.

Input: the qubit count n, the number of rounds ℓ, the score parameter δ ∈ [0, 1]
and the fraction of test rounds γ = O((log n)/ℓ).
Protocol:
V sample C ∼ Haar(N) and sends C to P .
For i ∈ [ℓ]:

1. V1 receives Ai ∈ {0, 1}n and V2 receives A′i ∈ {0, 1}n

2. V aborts if the timing requirement fails

3. V aborts if Ai ̸= A′i

V samples Ti ∼ Bernoulli(γ) for all i ∈ [ℓ].
Let t = |{i : Ti = 1}|. V aborts if 1

t

∑
i:Ti=1 pC(Ai) < (1 + δ)/N .

Figure 9: CVPV protocol against a semi-honest adversary.

For an instantiation based on Theorem 13, we use following protocol in Fig.
10. However, the protocol in Fig. 10 is very different from the protocol in Fig. 4
of [AH23]. Specifically, we do not reuse the circuit and therefore do not perform
the test by summing the scores over epochs. The main reason for this choice
is that we do not believe the application of entropy accumulation in [AH23] is
correct, which we discuss in the supplement Section B.2.

In both cases, the original entropy accumulation theorem does not apply
since Theorem 12 and 13 give entropy lower bounds for some scores, and the
score is averaged over all rounds. This is in contract to bounding the entropy
given some probability distribution. We discuss how to address this issue in the
supplement Section B.3.

B.2 Issues with the Protocol in [AH23]
For the protocol in Fig. 4 of [AH23], the ith round quantum channelMi is the
joint system of V and P . Moreover, V takes the previous round circuit Ci−1
as one of the inputs and set Ci = Ci−1 if Ti = 0 or Ci ∼ Haar(N) otherwise.
Similarly, P also takes Ci−1 as one of the inputs along with a quantum memory
Ri−1. For this channel, the single round entropy H(Ai|CiE) where P takes
on input a quantum state over Ri−1E is not given by Theorem 13, since Ci ∼
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Input: the qubit count n, the number of rounds ℓ, the score parameter δ ∈ [0, 1]
and the fraction of test rounds γ = O((log n)/ℓ).
Protocol:
For i ∈ [ℓ]:

1. V sample Ci ∼ Haar(N) and sends Ci to P .

2. V1 receives Ai ∈ {0, 1}n and V2 receives A′i ∈ {0, 1}n

3. V aborts if the timing requirement fails

4. V aborts if Ai ̸= A′i

V samples Ti ∼ Bernoulli(γ) for all i ∈ [ℓ].
Let t = |{i : Ti = 1}|. V aborts if 1

ℓ

∑
i:Ti=1 pCi(Ai) < (1 + δ)/N .

Figure 10: CVPV protocol against a T -query adversary.

Haar(N) is required for Theorem 13.

H(Ai|CiE) = (1− γ)H(Ai|CiETi = 0) + γH(Ai|CiETi = 1) (89)

To see this more explicitly, consider the case where P takes a classical state
as input in memory Ri−1. Let the classical state be an output of an honest
prover with input Ci−1. For a T -query P , P is allowed to simply output this
classical state if Ci = Ci−1. The conditional entropy H(Ai|Ri−1) in this case
is zero. Therefore, there should not be entropy accumulation over any rounds
with Ti = 0.

We now describe mathematically where this breaks:

H(Ai|CiTiE)ν =
∑
C

Pr
Ti

[Ci = C]H(Ai|TiE,Ci = C)ν

=
∑
C

Pr
Ti

[Ci = C]H(Ai|E,Ci = C)ν

= γ
∑
C

h(C)H(Ai|E,Ci = C)ν + (1− γ)H(Ai|E,Ci = Ci−1)ν

= γH(Ai|CiE)ν + (1− γ)H(Ai|E,Ci = Ci−1)ν ,

where h(C) is the probability of sampling C for a random challenge, and the
second equality follows from the fact that once C is fixed, Ai and Ti are inde-
pendent. To bound the entropy independent of a γ scaling factor, we need to be
able to bound single-round entropy (with side information) for other distribu-
tions. In our case, we need to bound single-round entropy for point distributions
which is clearly impossible.

One may argue that this type of argument could be used against certi-
fied randomness based on post-quantum secure trapdoor claw-free functions
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[BCM+21b]. Indeed, [BCM+21b] explicitly discusses this issue that entropy ac-
cumulation theorem requires that single-round entropy bound for all possible
input states, including those that are computationally inefficient strings. As a
result, [BCM+21b] presents significant additional analysis to show that entropy
accumulates in the protocol, and nontrivial work was presented in [MAF23] to
use the entropy accumulation theorem.

It is plausible that similar techniques may be applied to the analysis of
[AH23] to the randomness expansion protocol, but we do not consider it here.
In our setting, we do not require randomness expansion, and Ci can be sampled
each round. This avoids the complications due to circuit reuse, and the entropy
accumulation theorem can be directly applied to Theorem 13.

B.3 Issues with Entropy Accumulation
The single-round entropy lower bounds are in Theorem 12 and 13 are condi-
tioned on the output achieving some score (e.g. b in b-XHOG), and the min-
tradeoff functions used in [AH23] are defined for continuous scores. As a result,
[AH23] developed a modified entropy accumulation theorem, which requires the
Markov chain condition. However, for the arguments in Section A, we prove
that the modified adversary satisfies the non-signalling condition which allows
us to apply generalized entropy accumulation. To apply the entropy accumu-
lation theorem in [AH23] to the modified adversary, we have to show that the
modified adversary also satisfies the Markov chain condition.

Consider the modified adversary defined in E.q. 28. For the ith round chan-
nel output, we relabel Ci1Gi1 as Ii, and we haveM′i+1 : RiEi → Ai+1Ri+1R

′
i+1Ii+1.

Further, copy the classical values of Ii into another register I ′i and send Ei =
I ′iR
′
i as input to the guesser next round. Formally, the new quantum channel

becomes
M′′i+1 : RiEi → Ai+1Ri+1Ei+1Ii+1 = Λi+1M′i+1, (90)

where Λi : Ii → IiI
′
i is the classical channel that copies Ii into I ′i.

It should be noted that In1 has n − i copies of CiGi. Nevertheless, we have
Hε

min(A
n
1 |Cn1Gn1 ) = Hε

min(A
n
1 |In1 ), and therefore bounding Hε

min(A
n
1 |In1 ) is suffi-

cient for the protocol soundness.

Lemma 16. For the quantum channel defined in E.q. 90, for some R′, the
Markov chain condition Ai ↔ Ii ↔ Ii+1 is satisfied:

ρAiIiIi+1 = IAi ⊗R′IiIi+1←Ii(ρAiIi). (91)
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Proof.

ρAiIiIi+1
=
(
trAi+1Ri+1Ei+1

)
ρAi+1AiRi+1Ei+1Ii+1Ii (92)

=
(
trAi+1Ri+1R′

i+1I
′
i+1

Λi+1 ◦M′i+1 ◦ Λi
)
ρAiRiR′

iIi
(93)

=
(
trR′

i+1

(
trAi+1Ri+1

M′i+1

)
◦ Λi

)
ρAiRiR′

iIi
(94)

=
(
trR′

i−1REi+1←Ei
◦ trRi

◦ Λi
)
ρAiRiR′

iIi
(95)

=
(
trR′

i+1
REi+1←I′i ◦ trR′

i
◦ Λi

)
ρAiR′

iIi
(96)

=
(
trR′

i+1
REi+1←I′i ◦ Λi

)
ρAiIi , (97)

where the third equality holds because trI′i+1
Λi+1 = IIi+1

, the forth equality
holds due to Lemma 6, and the fifth equality holds for suitably definedREi+1←I′i
due to E.q. 32.

As a result, we can bound Hε
min(A

n
1 |Cn1Gn1 ) by bounding Hε

min(A
n
1 |In1 ) in-

stead with the entropy accumulation theorem of [AH23]. We can expand the
definition of certified randomness from entropy accumulation to the case where
the min-tradeoff function is for a score. To do this, we simply need to change q
for Σi(q) into a score s, and define h as h = mins f(s). With this expanded def-
inition, the protocols in Fig. 9 and 10 are certified randomness from repetition
due to Theorem 12 and 13, and they are therefore CVPV protocols.

Finally, we note that the choices of the min-tradeoff function in the applica-
tion of entropy accumulation theorem of [AH23] are incorrect. Specifically, when
using the entropy accumulation theorem in Section 4 of [AH23], f(δ)→ f(δ/γ)
and δ → γδ should be applied for the general adversary without side informa-
tion due to the fact that the test channel performs the test with probability
γ only. The analysis of our CVPV protocols are immune from this issue as
we effectively have γ = 1 since every round is tested. As for the semi-honest
and general T -query adversary, similar changes should be adopted, but we leave
rigorous analysis regarding this to future work.

The change f(δ) → f(δ/γ) and δ → γδ has no effect on the linear term of
the accumulated entropy, but it makes the correction term more significant due
to the change in ∥∇f∥∞. Otherwise, the current theorems in [AH23] of accu-
mulated entropy gives entropy completely independent of the test probability
γ. This is implausible since higher γ should lead to lower acceptance probabil-
ity at fixed entropy (fixed adversary), which should increase the entropy if the
acceptance probability should be fixed.

We show this more formally and illustrate this for the general adversary
without side-information case of Section 5 of [AH23], and leave the other two
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cases for future work. The test score state for each round i is given by

Mi(σRi−1
)Wi

= (1− γ) |⊥⟩ ⟨⊥|+ γ Pr
C,z⃗∼A(C)

[∑
i

pC(zi) <
bk

N

]
|0⟩ ⟨0|

+ γ Pr
C,z⃗∼A(C)

[∑
i

pC(zi) ≥
bk

N

]
|1⟩ ⟨1| ,

where | ⊥⟩ denotes the state on the test outcome register Wi that the round is
not a test round, |0⟩ is the test failed to pass the XEB test, and |1⟩ is the test
succeeded. From this, we know that we have an entropy bound of

H(Ai|Ci)νAiCi
≥ B

2

bPrC,z⃗∼A(C)

[∑
i pC(zi) ≥

bk
N

]
− ϵ− 1

b− 1
=
B

2

b
⟨1|νWi

|1⟩
γ − ϵ− 1

b− 1
.

Notice that what this means is that we have a min-tradeoff function fmin given
by

fmin(p) =
B

2

bp(1)γ − ϵ− 1

b− 1
,

where p is a probability distribution over register Wi and p(1) ≡ Pr [Wi = 1].
Note that this is the usual notion of min-tradeoff function with probability
distributions as the argument, not the version with scores as the argument as
required by [AH23]. One can in principle carry out the analysis using the second
type as well, but the two types coincide in the analysis for general adversary
without side information since the score for each round is a probability.

Now, applying the usual entropy accumulation theorem [DFR20], we have
that

Hϵs
min(Z

m
1 |Cm1 Tm1 E)ρZCTE|Ω ≥ m

B

2

bq − bδ
γ − ϵ− 1

b− 1
− V
√
m

√
log

2

Pr [Ω]
2
ϵ2s

where V = log(1 + 2kn) + ⌈ Bb
2γ(b−1)⌉.

C Missing Proofs
In this section, we provide the additional proofs missing from the main body
for brevity and due to similarity with already provided proofs.

C.1 Proof of Theorem 8
Proof. As in the proof of Theorem 7, we will consider hybrid experiments:

• Hybrid 0: This is the original CVPV soundness experiment.

• Hybrid 1: In this hybrid, the adversary consists of only two parties: A
at position 0 and B at position 1. W.l.o.g., (A,B) perform a round of
simultaneous communication at times t = 0,∆, . . . , (ℓ− 1)∆.
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• Hybrid 2: In this hybrid, we additionally give A and B chi at time
t = (i− 1)∆ + 1 for i = 1, . . . , ℓ.

• Hybrid 2.1-ℓ: We set Hybrid 2.0 to be Hybrid 2 and G0 := G. For
i ∈ [ℓ], we define Hybrid 2.i to be the same as Hybrid 2.(i− 1), except
the oracle Gi−1 is replaced by the reprogrammed oracle Gi, where

Gi(z) =

{
Gi−1(z), z ̸= xi ⊕ yi
ui, z = xi ⊕ yi

,

with ui ← {0, 1}n being a fresh random string.

• Hybrid 3: In this hybrid, A and B only receive chi at time t = (i−1)∆+1,
for i ∈ [ℓ], and no other input. They do not get access to the oracle Gℓ
either.

Let pi be the optimal success probability of an efficient adversary in Hybrid
i. Let q = poly(λ) be an upper-bound on the total number of oracle queries made
by (A,B). We will show a sequence of claims which suffice for the proof:

Claim 11. p1 ≥ p0.

Proof. Follows by a simple generalization of the corresponding claim in the proof
of Theorem 6.

Claim 12. p2 ≥ p1.

Proof. Since we give extra information to the adversary, the success probability
cannot decrease.

Claim 13. Setting p2.0 := p2, p2.i ≥ p2.(i−1) − negl(λ) for i ∈ [ℓ].

Proof. Let i ∈ [ℓ] and (A,B) be an adversary that succeeds in Hybrid 2.(i−1)
with probability p2.(i−1). We will give a reduction (A′,B′) for Hybrid 2.i:

• At times t < (i− 1)∆+ 1, A′ (resp. B′) runs A (resp. B) using Gi as the
oracle.

• At time t = (i − 1)∆, A′ sends (xi, si) and B′ sends yi to each other, so
that the messages are received at t = (i− 1)∆ + 1.

• At times t ≥ (i−1)∆+1, A′ and B′ can simulateGi−1 using (xi, yi, si, chi, Gi)
by reprogramming Gi to output chi ⊕ si on input xi ⊕ yi.

• A′ (resp. B′) outputs what A (resp. B) outputs.

Note that the view of (A,B) as simulated by (A′,B′) differs from Hybrid 2.(i−
1) at times t < (i−1)∆+1, and only on input xi⊕yi to the oracle. Therefore, if
the probability that (A′,B′) succeeds is upper-bounded by p2.(i−1)− ε for some
non-negligible function ε, then by Lemma 1 the total query weight by (A,B)
on input xi ⊕ yi at times t < (i− 1)∆ + 1 must be at least 2ε2/q. Suppose the
query weight by A is at least ε2/q, for the other case is similar. We give an
extractor (Ã, B̃) in Hybrid 2.(i− 1):
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• Ã samples j ← [q] and simulates A, stopping the execution at the j-th
query made by A to the oracle Gi−1, measuring the query as z∗. She
outputs y∗ = z∗ ⊕ xi, where xi is received at time t = (i− 1)∆ from V0.

• B̃ simulates B.

By assumption, y∗ = yi with probability ε2/q2 > 2−m, which is a contradiction
since yi is information theoretically hidden from Ã at times t < (i− 1)∆.

Claim 14. p3 ≥ p2.ℓ.

Proof. Let (A,B) be an adversary for Hybrid 2.ℓ that succeeds with probability
p2.ℓ. We give a reduction (A′,B′) that succeeds in Hybrid 3 with the same
probability:

• At time t = −∞, A′ and B′ sample a 2q-wise independent hash function
G′. In addition, they sample (xi, yi, si)← {0, 1}m × {0, 1}m × {0, 1}n for
i ∈ [ℓ].

• A′ simulates A using G′ as the oracle, the sampled values (xi, yi), as well
as the values chi received from V0.

• B′ similarly simulates B using G′ as the oracle, the sampled values yi, as
well as the values chi received from V1.

The view of (A,B) is perfectly simulated since the oracle Gℓ in Hybrid 2.ℓ is
independent of the values (xi, yi, si) for all i ∈ [ℓ]. This is because the oracle
has been reprogrammed on all inputs xi ⊕ yi to remove any such dependence.
Thus, by Lemma 2, G′ simulates an independent random oracle and the proof
is complete.

Claim 15. p3 ≤ negl(λ).

Proof. Follows from the certified randomness property (Definition 3). A plays
the role of the prover and B that of the eavesdropper. Note that the no-signalling
condition is satisfied because (ℓ−1)∆ < 1, which means no message can be sent
between A and B in time from the first challenge until the last.
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