
Straight-Line Knowledge Extraction for Multi-Round Protocols

Lior Rotem⋆ and Stefano Tessaro⋆⋆

Abstract. The Fiat-Shamir (FS) transform is the standard approach to compiling interactive proofs
into non-interactive ones. However, the fact that knowledge extraction typically requires rewinding
limits its applicability without having to rely on further heuristic conjectures. A better alternative
is a transform that guarantees straight-line knowledge extraction. Two such transforms were given
by Pass (CRYPTO ’03) and Fischlin (CRYPTO ’05), respectively, with the latter giving the most
practical parameters. Pass’s approach, which is based on cut-and-choose, was also adapted by Unruh
(EUROCRYPT ’12, ’14, ’15) to the quantum setting, where rewinding poses a different set of challenges.
All of these transforms are tailored at the case of three-round Sigma protocols, and do not apply to a
number of popular paradigms for building succinct proofs (e.g., those based on folding or sumcheck)
which rely on multi-round protocols.

This work initiates the study of transforms with straight-line knowledge extraction for multi-round
protocols. We give two transforms, which can be thought of as multi-round analogues of those by
Fischlin and Pass. Our first transform leads to more efficient proofs, but its usage applies to a smaller
class of protocols than the latter one. Our second transform also admits a proof of security in the
Quantum Random Oracle Model (QROM), making it the first transform for multi-round protocols
which does not incur the super-polynomial security loss affecting the existing QROM analysis of the
FS transform (Don et al., CRYPTO ’20).

1 Introduction

The Fiat-Shamir (FS) transform [33] is the most popular approach to making zero-knowledge proofs
non-interactive. The FS transform incurs no overhead, in that if the underlying protocol is a public-
coin interactive proof, the resulting proof size equals the bit length of the communication from the
prover to the verifier. While the transformation was initially cast in the context of three-round
Sigma protocols, it easily generalizes to an arbitrary number of rounds.

The main technical issue with the FS transform is that it requires rewinding to achieve knowledge
extraction (in the random oracle model (ROM) [8]), i.e., one needs to run a successful prover
multiple times (at least twice) to extract a witness for the given instance–this argument typically
relies on the well-known Forking Lemma [58, 7]. This is not only an issue with tightness and concrete
parameters, but also comes with other undesirable features, in that rewinding is often at odds with
proving security under composition, either in the concurrent execution of protocols (e.g., when
proving their UC security [21]) or in recursive composition of zero-knowledge proofs [10]. Shoup
and Gennaro [62] also were first to point out other issues unrelated to composition: They observed
that the single-ciphertext variant of the Naor-Yung paradigm [56] due to Rackoff and Simon [59]
cannot be proved secure when extraction for the underlying NIZK requires rewinding.

The situation is even worse with multi-round protocols. Only recently, a non-trivial analysis
of the FS transform was given [6, 68] by using a very complex rewinding argument. The resulting
soundness guarantees are still weaker than the tight ones obtained in ideal-model proofs [38].

⋆ Stanford University. Email: lrotem@cs.stanford.edu.
⋆⋆ University of Washington. Email: tessaro@cs.washington.edu.

Straight-line extraction. A more flexible alternative is a transformation that offers straight-line
extractability. In the context of the ROM, this means that the RO queries of a successful prover,
which are observable by a knowledge extractor, already provide enough information to reconstruct
the witness, without the need of rewinding. Extending the study of transforms with straight-line
extractability is the main objective of this paper, but before stating our contributions, we briefly
review prior work.

Pass [57] used cut-and-choose techniques to devise the first transform with straight-line ex-
tractability, which applies in particular to any Sigma protocol with special soundness, i.e., a Sigma
protocol with the property that a witness can be extracted from any two accepting transcripts
(a, c, z), (a, c′, z′) such that c ̸= c′. In Pass’s transform, the prover initially commits to 2ℓ successful
transcripts (a, ci, zi) of the protocol, all sharing the first message a, but with different challenges
ci’s. For succinctness, this can be be done with a Merkle Tree (although Pass’s version did not), and
the value of the root of the tree is hashed to obtain an index i∗ ∈ {1, . . . , 2ℓ}. The final proof then
contains the root of the tree (i.e., the commitment to the 2ℓ transcripts), along with (a, ci∗ , zi∗), and
the corresponding opening proof. Intuitively, either the prover commits to at least two accepting
transcripts (with different challenges), which can be extracted for the prover’s RO queries, or the
prover can only convince of the proof validity with probability at most 2−ℓ. One then needs to
parallel repeat the proof λ/ℓ times to achieve soundness error 2−λ. If the original Sigma protocol
generates B-bit transcripts, this leads in particular to proof size of (λℓ + B) · λ/ℓ = λ2 + Bλ/ℓ
bits. Unruh [63, 64, 65] gives a version of this transform with security against quantum attackers,
in the quantum random oracle model (QROM) [12], which however does not allow for a succinct
commitment. The commitment was then made succinct by Don et al. [31].

A more efficient transformation has been proposed by Fischlin [34]. To generate a valid proof,
the prover is asked to solve a “proof of work,” i.e., given the initial message a, the prover attempts
to find a transcript (a, c, z) whose hash starts with ℓ 0’s, and this transcript will end up being the
final proof. A malicious prover that only queries a single transcript (a, c, z) will only succeed with
probability 2−ℓ, and therefore, any prover succeeding with higher probability needs to make queries
corresponding to two valid transcripts associated with different challenges. Then, one repeats λ/ℓ
times to achieve soundness error 2−λ, and the proof size is now B · λ/ℓ, i.e, compared to the
cut-and-choose approach, we have now removed the λ2 term, which is usually dominating.

This paper: Straight-line extraction for multi-round protocols. A key point is that all aforemen-
tioned existing transformations only apply to Sigma protocols with three rounds. However, several
prominent proof systems are not in this class, and specifically require a larger number of rounds. A
typical example consists of protocols based on folding, initially proposed by Bootle et al. [14], further
optimized in [18], and then extended to a number of settings such as bilinear pairings [48, 20], lat-
tices [17, 11], unknown order groups [19], and then generalized to general homomorphisms [3, 4, 5].
These protocols recursively reduce, at each step, proving a statement of size n into proving a smaller
statement of size n/k, and the resulting round complexity is typically O(log(n)/ log(k)). Another
important class of multi-round proof systems stem from the Sumcheck [50] protocol, which under-
lies a number of succinct proof systems (see [67, 69, 60, 15, 23, 46] and the references therein).
Ideas from both Sumcheck and folding protocols where then abstracted by a common abstraction
of sumcheck arguments [16].

It is natural to want to use these protocols in applications where straight-line extractability is
necessary. The lack of a suitable transform raises a natural question, namely:

2

Can we design a general transforms for multi-round protocols that achieves straight-line
knowledge extraction?

This paper answers this question in the affirmative. We provide in fact two transforms. The first one
is a generalization of Fischlin’s transform to multi-round protocols which satisfy a generalized notion
of special soundness. It yields the smallest proofs, but also only applies to protocols with slightly
lower round complexity than those to which our second transform applies, which is a generalization
of Pass’s transform to multiple rounds. For this latter transformation, we also give an analysis
in the Quantum Random Oracle model (QROM), and show that it applies to a broader range of
parameters than our generalized Fischlin transform. In particular, this is the first transformation
for multi-round protocols in the QROM without a super-polynomial security loss for protocols with
super-constant number of rounds.

First transformation. Our first transformation targets (2s+1)-round protocols that achieve a gen-
eralized notion of special soundness, which can be cast as follows: Imagine we are given transcripts
of form (a1, c1, a2, c2, ..., cs, as+1). We can naturally arrange them in a so-called tree of transcripts,
where nodes are labeled by prover messages and edges by challenges. Also, it helps here to think of
responses as being unique, i.e., there is a unique prover response ai+1 that extends a partial tran-
script (a1, c1, a2, c2, . . . , ai, ci). Then, we say a protocol achieves (n1, . . . , ns)-special soundness if a
witness can be efficiently extracted from any transcript tree where all nodes at depth i ∈ {1, . . . , s}
have degree ni.

One could try to first näıvely extend Fischlin’s idea, in that the prover generates a number
of transcripts (a1, c1, a2, c2, ..., cs, as+1), all starting with the same value a1, and hashes them un-
til one of them produces a hash starting with ℓ 0’s. This transcript would then be the actual
proof. This prover will be successful, in expectation, after 2ℓ attempts. Unfortunately, extraction
fails when adopting this strategy, and this is due to the much stronger soundness requirement.
Indeed, a malicious prover can simply fix the first 2s − 1 rounds of a transcript to some sequence

(a1, c1, a2, c2, ..., cs−1, as),, and then create about 2ℓ completions (a1, c1, a2, c2, ..., cs−1, as, c
(i)
s , a

(i)
s+1)

for i = 1, 2, . . ., until one of them hashes to 0ℓ. Clearly, it is not possible to extract a tree of tran-
scripts from the RO queries, which in turn would allow us to compute a witness. Somehow, we have
to instead force the prover to follow a tree structure when querying the RO.

Our key insight here is to bound the range from which the challenges are drawn, in particular
the i-th challenge should be drawn from a set of size ki > ni, where the ki’s are chosen to be
suitably small, e.g., ni = cki for some constant c. Through a combinatorial lemma, we are going to
show that surprisingly, carefully tuning these parameters leads to both an efficient prover as well
a desirable level of knowledge soundness error, which we then amplify using parallel repetition.
One caveat of this transformation is that, in order for the prover to remain efficient, the round
complexity of the protocol can be at most Θ(log λ/ log log λ). Many of the folding schemes can be
instantiated to achieve this round complexity (by choosing a suitable k, in the notation we used
above), but not all. This fact motivates in part looking at our second transformation.

Second transformation. Our second transformation is in some sense the natural generalization of
Pass’s transformation [57] to multi-round protocols. Here, the idea is to commit to a tree T of
transcripts with degrees n1, n2, . . . , ns using a vector commitment. Here, crucially, we interpret the
tree as a vector of prover messages, with the corresponding challenges being generated determinis-
tically (either by following a pre-defined deterministic pattern, or from a random oracle to achieve

3

zero-knowledge). Then, from the commitment, we deterministically derive the index of a path from
the root to the leaves, which is then opened, and included in the proof, along with the valid proof
of opening.

The advantage of this transformation is that the prover complexity only scales with the size of
the tree, which can generally be polynomial for protocols with O(log λ) rounds. The disadvantage
is that it gives a larger proof size due to the inclusion of the opening proofs. However, we also
abstract the transformation as using a generic vector commitment, as opposed to using Merkle
Trees, and one could reduce the proof size by using pairing-based vector commitments (e.g., based
on KZG [43]), at the cost of introducing a non-transparent setup.

QROM security. We also show that our second transformation, when the vector commitment is
specificially instantiated via a RO-based Merkle Tree, also admits a proof of security in the QROM,
which we give using techniques by Chiesa et al. [26] and Zhandry [70]. This implies in particular the
proof for the special case of the succinct Unruh transform for three-round Sigma protocols proved
by Don et al. [31]. In contrast, our first transform is subject to the same limitations as Fischlin’s
transform in the QROM [2].

This is particularly relevant because we do not have any good multi-round transformation in
the QROM to start with, regardless of the issue of straight-line extractability (although, in the
quantum setting, we can benefit even more heavily from straight-line extractability due to the
challenges in handling rewinding). Indeed, Unruh’s transform [63, 64, 65], as originally stated, only
applies to Sigma protocols, and was later only extended to 5-round protocols [24]. In contrast, while
the FS transform has been analyzed in the QROM [30, 29], the concrete security loss is of the order
q2s+1, for a (2s+ 1)-round protocols and q is the number of RO queries, and this gives no security
guarantees for super-constant number of rounds. In particular, no quantum analogue of the tighter
analysis of Attema et al. [6] is known.

Other related work. There have been works aimed at improving the concrete complexity of the
Fischlin transform for the special case of Sigma protocols. These works are orthogonal to ours,
and aim at obtaining better practical parameters and/or achieving other goals thanks to straight-
line extraction. Kondi and shelat [45] give an improvement where the inversion proof-of-work is
replaced by a collision-finding one, thus achieving lower prover complexity. Chen and Lindell [25]
also study the concrete parameters of the Fischlin transform, and adapt it to n-special soundness,
i.e., the case where n transcripts are needed to extract a witness. Lysyanskaya and Rosenblum [51]
used a variant of Fischlin’s transform to formally implement a NIZK functionality in the UC
framework [21]. Dagdelen and Venturi [28] revisited the security of digital signatures built from
Fischlin’s transform.

Straight-line extraction has been used in ideal models other than the ROM. Ghoshal and Tes-
saro [38] leverage straight-line extraction to give tight bounds for folding-type arguments using
the Algebraic Group Model (AGM) [35]. Earlier on, Fuchsbauer, Plouviez, and Seurin [36] used a
simpler version of this technique to prove tight bounds for Schnorr signatures in the AGM.

In the QROM, Chiesa, Manohar, and Spooner [26], building on techniques from Zhandry [70],
proved that the the Micali [55] and BCS [9] non-interactive succinct arguments (build from PCPs
and IOPs, respectively) are knowledge sound. They did not consider, however, the task of compiling
general interactive protocols into non-interactive ones in the QROM.

4

2 Preliminaries

2.1 Special-Sound Multi-Round Proofs

We start by defining multi-round generalizations of special sound arguments. Our definitions follow
those of Attema, Fehr, and Klooß [6]. We assume familiarity with the basic notions of interactive
proofs and arguments, public coin protocols and knowledge soundness, and the reader is referred
to Goldreich [41] and Boneh and Shoup [13] for the necessary background.

In this paper, we will consider (2s+1)-round1 public coin protocols for s ≥ 1, with the following
canonical structure: In all odd rounds, the prover P sends a message to the verifer V , and in all even
rounds, V sends a random challenge from a corresponding challenge space to P . Finally, the verifier
applies a deterministic function onto the input statement and the transcript of the interaction to
determine its final output. We will overload notation and use V to denote this function. That is,
the output of the verifier on input x and transcript t will be denoted by V (x, t). If V (x, t) = 1, we
say that t is an accepting transcript for x.

To define special soundness for such protocols, we will first need to introduce the notion of a
“transcript tree”.

Definition 1. Let s ≥ 1 and let (P, V) be an (2s + 1)-round public coin protocol with challenge
spaces C1, . . . , Cs, and let n1, . . . , ns ∈ N. Let T = (ti1,...,is)∀j∈[s], ij∈[nj] be a vector of N transcripts
for (P, V). We say that T is a (n1, . . . , ns)-transcript tree if for any (i1, . . . , is) ̸= (i′1, . . . , i

′
s) in

[n1]× · · · × [ns], the following conditions hold:

1. (a1, c1, . . . , cj , aj+1) = (a′1, c
′
1, . . . , c

′
j , a
′
j+1).

2. cj+1 ̸= c′j+1.

where ti1,...,is = (a1, c1, . . . , as, cs, as+1) and ti′1,...,i′s = (a′1, c
′
1, . . . , a

′
s, c
′
s, a
′
s+1) and j ∈ {0, . . . , s− 1}

is the maximal index for which (i1, . . . , ij) = (i′1, . . . , i
′
j).

We may sometimes also call a (n1, . . . , ns)-transcript tree a (n1, . . . , ns)-special-soundness tree.
Intuitively, it is helpful to think of a (n1, . . . , ns)-transcript tree for a (2s+1)-round public-coin

interactive protocol (P, V) as a set N transcripts arranged in the following tree structure. The
nodes in this tree correspond to the prover’s messages and the edges to the verifier’s challenges.
Every node at depth i has precisely ni children corresponding to ni pairwise distinct challenges.
Every transcript corresponds to exactly one path from the root node to a leaf.

Definition 2. Let s ≥ 1 and let (P, V) be an (2s + 1)-round public coin argument for a relation
R ⊆ X ×W, and let k1, . . . , ks ∈ N. We say that (P, V) satisfies (n1, . . . , ns)-special-soundness if
there exists a deterministic polynomial-time algorithm E such that the following holds. On input
x ∈ X and a tree of transcripts T that are all accepting for x, E outputs a witness w such that
(x,w) ∈ R.

Finally, we need to define the notion of “quasi-unique responses” for multi-round protocols,
extending a similar notion formalized by Fischlin [34] for Sigma protocols. Essentially, an interactive
argument (P, V) has quasi-unique responses if it is hard to come up with an instance x and two
transcripts t1, t2 that are accepting for x, such that the first point in which they diverge is a prover
message (and not a verifier challenge).

1 By “round” we mean a single message, either from the prover to the verifier or vice versa.

5

Definition 3. Let (P, V) be a (2s+ 1)-round interactive argument. We say that (P, V) has quasi-
unique responses if for every probabilistic-polynomial time algorithm A, there exists a negligible
function ν(·) such that

AdvqurA,(P,V)(λ) := Pr


ai+1 ̸= a′i+1

∧V (x, τ) = 1
∧V (x, τ ′) = 1

:



x, i, a1, . . . , ai,
c1, . . . , ci,

ai+1, . . . , as+1,
ci+1, . . . , cs,

a′i+1, . . . , a
′
s+1,

c′i+1, . . . , c
′
s

← A(1λ)

 ≤ ν(λ),

where τ = (x, a1, c1, . . . , ci, ai+1, . . . , cs, as+1) and τ ′ = (x, a1, c1, . . . , ci, a
′
i+1, . . . , c

′
s, a
′
s+1).

2.2 Non-Interactive Random Oracle Arguments

In this section, we define non-interactive arguments in the random oracle model (ROM), following
the definitions of Ben-Sasson, Chiesa, and Spooner [9]. A non-interactive arguments in the random
oracle model is a natural generalization of non-interactive arguments, where both the prover and
verifier are augmented with oracle access to a random oracleO, chosen uniformly at random from the
set of all functions mapping inputs from some domain D = {Dλ}λ∈N to some range Y = {Yλ}λ∈N.

More precisely, let R ⊆ X ×W be a relation and let LR = {x ∈ X : ∃w ∈ W, (x,w) ∈ R} be
the language induced by R. A non-interactive random oracle argument for R is a pair (P, V), where
P is a probabilistic oracle-aided algorithm, and V is a deterministic algorithm. In this paper, both
algorithms will run in polynomial time in the length |x| of the input and the security parameter
λ ∈ N. We ask that a non-interactive random oracle argument satisfy the standard notion of
completeness.

Definition 4. Let (P, V) be a non-interactive random oracle argument for a relation R ⊆ X ×W.
We say that (P, V) is complete if there exists a negligible function ν(·) such that

Pr
[
V O(1λ, x, π) = 1 : PO(1λ, x)

]
≥ 1− ν(λ)

where the probability is taken the randomness of P and the choice of O.

As for soundness, we require that a non-interactive random oracle argument satisfy the standard
notion of knowledge soundness. Intuitively, this means that a prover P ∗ that can output an accepting
proof for x ∈ X , must “know” a corresponding witness w ∈ W such that (x,w) ∈ R. This is
formalized by the existence of an extractor E, that given access to P ∗ can find a witness w for
x. Looking ahead, for our purposes, the extractor will not need to decide on the responses of the
random oracle to P ∗ (i.e., we will work in the “non-programable” random oracle model [42]), but
it will be important the E observes the queries issued by P ∗ to the oracle.

Definition 5. Let (P, V) be a non-interactive random oracle argument for a relation R ⊆ X ×W.
We say that (P, V) is knowledge sound if there exists an algorithm E such that for every x ∈ X
and every algorithm P ∗, there exists a negligible function ν(·) such that

Pr
[
(x,EP ∗

(1λ, x)) ∈ R
]
≥ ϵP ∗(1λ, x)− ν(λ)

6

where ϵP ∗(1λ, x) = Pr
[
V O(1λ, x, π) = 1 : π ←$ (P ∗)O(1λ, x)

]
. Moreover, E runs in time which is

polynomial in λ, in |x| and in the number of random oracle queries issued by P ∗ on these inputs.
We call E a straight-line extractor if it only invokes P ∗ once.

In the above definition, the notation EP ∗
(1λ, x)) means that E invokes P as a black-box, and

— since P ∗ is an oracle-aided algorithm — E simulates the oracle to P ∗.

Zero Knowledge. For succinctness, we forgo formally defining zero knowledge here, and the reader
is referred to [41, 13, 9, 26] and the references therein.

3 A Communication Efficient-Transformation

In this section, we present our communication-efficient transformation for multi-round special-sound
protocols, that is inspired by the Fischilin transformation for Sigma protocols [34]. We begin by
presenting the transformation and arguing its completeness, and then prove that it compiles special
sound protocols (Definition 2) into non-interactive random oracles arguments.

3.1 Overview

Before presenting the transformation and its analysis in detail, we first highlight the main ideas
that underlie it. The starting point for our transformation is Fischlin’s transformation from Sigma
protocols to non-interactive arguments [34] that is sketched in Section 1. Recall that in Fischlin’s
transformation, given their initial message a, the prover attempts to find a transcript (a, c, z) whose
hash starts with ℓ 0’s, and this transcript will end up being the final proof. This is repeated in
parallel in order to amplify the knowledge soundness of the resulting protocol.

Now, as a simple example, suppose that instead of a three-round Sigma protocol, we want to
compile a five-round protocol that satisfies (2, 2)-special soundness. Recall that this means that to
extract a witness, we need four transcripts of the form

τ1 = (a1, c1, a2, c2, a3)
τ2 = (a1, c1, a2, c

′
2, a
′
3)

τ3 = (a1, c
′
1, a
′
2, c
′′
2, a
′′
3)

τ4 = (a1, c
′
1, a
′
2, c
′′′
2 , a

′′′
3),

where the ais and the cis correspond to prover messages and verifier challenges, respectively.

A first attempt to transform such a protocol into a non-interactive one with a straight-line
extractor, would be to apply Fischlin’s compiler essentially as is: the prover must output a transcript
(a1, c1, a2, c2, a3) whose hash starts with ℓ 0’s, and this is repeated t times over in parallel. If ℓ and
t are set properly and the hash function is modeled as a random oracle, it is indeed the case that
to produce an accepting proof, a prover must query the random oracle O on at least four different
accepting transcripts with the same first message a1 (in at least one of the parallel repetitions).
However, this in and of itself is insufficient for extraction. It is not enough that the prover queries O
on four different transcripts. For extraction to go through, these four transcripts must also induce
a specific tree topology; in our example, a complete binary tree with four leaves.

Indeed, the above idea by itself does not preserve the knowledge soundness of the interactive
protocol. To see why, observe that there is nothing stopping the prover from just keeping (a1, c1, a2)

7

fixed, and resampling (c2, a3) over and over until it finds a transcript whose hash begins with ℓ 0’s.
This will produce four transcripts of the form

τ1 = (a1, c1, a2, c2, a3)
τ2 = (a1, c1, a2, c

′
2, a
′
3)

τ3 = (a1, c1, a2, c
′′
2, a
′′
3)

τ4 = (a1, c1, a2, c
′′′
2 , a

′′′
3),

which does not meet the (2, 2)-special soundness criterion.
A natural idea to counter this specific attack is to limit the number of “admissible” values that

c2 can take. If, for example, we only allow c2 to take values in {1, 2, 3}, then the above attack goes
away. Still, it is not immediately clear that limiting the number of permissible challenges at each
level forces a successful prover to query the random oracle on a complete binary tree of transcripts.
Surprisingly, we manage to show that if the parameters are set correctly, then in at least one of
the parallel repetitions, a successful prover does indeed have to query the random oracle on four
transcripts that form such a tree.

More generally, we show that the above idea generalizes to (2s + 1)-round (n1, . . . , ns)-special
sound interactive arguments, for a wide range of parameters. Our compiler requires that the prover
finds a transcript (a1, c1, . . . , as, cs, as+1) whose hash start with ℓ zeroes, and in addition ci ≤ ki
for some integers ki ≥ ni that parameterize the compiler.2

At the heart of analysis is a new combinatorial lemma, that bounds that number of leaves
that a tree of bounded arity can have, without inducing an (n1, . . . , ns)-special soundness tree. In
particular, we show that a tree of height s+ 1, whose nodes at depth i have at most ki+1 children
either (1) induces an (n1, . . . , ns)-special soundness tree; or (2) has at most ϕ leaves, where ϕ is
some function that depends on n1, . . . , ns and k1, . . . , ks. Intuitively, this means that if we cannot
extract a witness from the random oracles queries of a prover P ∗, then this prover has a bounded
number of trials — namely ϕ trials — to find a transcript whose hash starts with ℓ 0’s. Fortunately,
we show that for carefully chosen parameters, the function ϕ takes small enough values so that
P ∗ has only a negligible probability of producing an accepting proof, while an honet prover (from
whom a witness can be extracted) finds an accepting proof with high probability.

3.2 The Transformation

Let (P, V) be a (2s+1)-round public coin interactive argument for a relation R ⊆ X ×W. Without
loss of generality, suppose that the ith verifier challenge is drawn uniformly at random from the
set [Bi] for some Bi ∈ N. This is not a necessary assumption, but it will help us simplify the
presentation. Let T denote the space of transcripts of (P, V) and let A1 denote the space of first
messages by P in the protocol. The compiler is parameterized by 2s + 1 integers k1, . . . , ks ∈ N,
and integeres ℓ ∈ N and t ∈ N. It also uses a hash function H, mapping inputs in At

1 × [t]×X ×T
to outputs in {0, 1}ℓ.

To present our compiler we introduce the following notation. For a vector k = (k1, . . . , ks) ∈ Ns

of s integers, we define the operator incrementk as follows. Informally, incrementk takes as input
a vector c and increments it to the next vector in lexicographical order, under the condition that
the ith entry of the output must not exceed ki for every i ∈ [s]. More formally, on input c =
(c1, . . . , cs) ∈ [k1]× [k2]× · · · × [ks], the operator incrementk does:

2 Suppose for simplicity of presentation that challenges can take arbitrary integer values. Moreover, in this presen-
tation, we ignore zero knowledge, which we discuss later in the section.

8

1. Find the last position i ∈ [s] for which ci < ki. If no such position exists, return ⊥.
2. Return c′ = (c1, . . . , ci−1, ci + 1, 1, . . . , 1).

Equipped with this notation, the the compiler for transforming (P, V) into a non-interactive
argument is presented in Fig. 1. The presentation uses the following observation: Note that the
transcript of an interaction between P and V is completely determined by P ’s inputs — the
instance x and the witness w and randomness r — and V ’s challenges c1, . . . , cs. Hence, when
defining the compiled protocol, we say that we invoke P on (x,w), a vector c of s challenges, and
randomness r to obtain a proof π. By that, we mean that π is the aforementioned induced transcript
of the interaction between P and V . The presentation of the compiler is Fig. 1 also assumes that
(P, V) is perfectly complete, and does not necessarily satisfy zero-knowledge (this depends on the
exact honest-verifier zero knowledge guarantees of (P, V)). In Section 3.6 we discuss how to slightly
modify the construction to lift both of these restrictions.

The non-interactive prover Pni

1. Sample random coins r1, . . . , rt ←$ {0, 1}ρ for t executions of P .
2. For i = 1, . . . , t, invoke P on input (x,w) and randomness ri to obtain a first messages a1,i. Denote

a1 = (a1,1, . . . , a1,t).
3. For i = 1, . . . , t:

(a) Initialize ci ← (1, 1, . . . , 1) ∈ Ns and flagi ← false.
(b) While flagi = false do:

i. Invoke P on (x,w), challenges ci, and randomness ri to obtain a proof πi.
ii. IfH(a1, i, x, πi) = 0ℓ, then set flagi ← true. Otherwise, increment ci by setting ci ← incrementk(ci).
iii. If ci = ⊥, then output ⊥ and abort.

4. Output π ← (π1, . . . , πt).

The non-interactive verifier Vni

1. Parse π as (π1, . . . , πt) and parse πi as (a1,i, c1,i, . . . , as,i, cs,i, as+1,i). Let a1 ← (a1,1, . . . , a1,t).
2. For i = 1, . . . , t:

(a) If for some j ∈ [s], cj,i > ki, then output 0 and terminate.
(b) If V (x, πi) = 0, then output 0 and terminate.
(c) If H(a1, i, x, πi) ̸= 0ℓ, then output 0 and terminate.

3. Output 1.

Fig. 1. The non-interactive argument (Pni, Vni) that results from applying our transformation to a (n1, . . . , ns)-special
sound (2s+ 1)-round protocol (P, V). We use ρ = ρ(|x|, λ) do denote the number of random coins used by P .

Completeness. The following lemma establishes the completeness of the transform. As mentioned,
we first assume that the underlying protocol (P, V) is perfectly-complete, and discuss the imperfect
completeness case later in this section.

Lemma 1. Let (P, V) be a perfectly-complete (2s + 1)-round public coin interactive argument for

a relation R ⊆ X ×W. Then, the non-interactive protocol (Pni, Vni) is (1 − t · e−2−ℓ·K)-complete,
where K =

∏
j∈[s] kj and H is modeled as a random oracle.

Proof. Let (x,w) ∈ R. Say that a vector r = (r1, . . . , rt) is (x,w)-good if for every i ∈ [t] there exists
a vector (c1,i, . . . , cs,i) ∈ [k1] × · · · × [ks] such that H(a1, i, x, πi) = 0ℓ. Here, a1 = (a1,1, . . . , a1,t),

9

where a1,i is the first message of P on input (x,w) and randomness ri, and πi is the transcript of
(P, V) induced by x,w, the randomness ri and the challenges (c1,i, . . . , cs,i). Then, an honest prover
Pni, running on input (x,w) ∈ R produces an accepting proof as long as it samples randomness
(r1, . . . , rt) that is (x,w)-good in Step 1. In what follows we bound the probability for this event.

Let i ∈ [t]. Since H is modeled as a random oracle, it is, in particular, independent of the
randomness r. Hence, we can first fix the randomness r and then sample the oracle H. For every
possible vector ci = (c1,i, . . . , cs,i) of challenges, the probability that H(a1, i, x, πi) = 0ℓ is 2−ℓ.
Moreover, these events are independent for all different choices of ci (since ci is included in the
proof πi, given as input to H). There are a total of K :=

∏
j∈[s] kj possible vectors ci and hence

Pr [r is not (x,w)-good] ≤ t ·
(
1− 2−ℓ

)K
(1)

≤ t · e−2−ℓ·K , (2)

where Eq. (1) follows from a union bound over i ∈ [t]. ⊓⊔

3.3 Knowledge Soundness

The following theorem asserts that a non-interactive random oracle argument that is obtained by
applying our transformation from Section 3.2 to a multi-round special-sound protocol, is indeed
knowledge sound.

Theorem 1. Let (P, V) be a (2s + 1)-round (n1, . . . , ns)-special sound argument for a relation
R ⊆ X ×W, and let (Pni, Vni) be the non-interactive random oracle argument obtained from it using
the transformation from Section 3.2, when the hash function H is modeled as a random oracle.
Then, there exist a straight-line extractor E such that for every x ∈ X , and every algorithm P ∗

there is an algorithm A such that

Pr
[
(x,EP ∗

(1λ, x)) ∈ R
]
≥ ϵP ∗(1λ, x)− AdvqurA,(P,V)(λ)−QP ∗ · (2−ℓ · L)t

where ϵP ∗(1λ, x) = Pr
[
V O(1λ, x, π) = 1 : π ←$ (P ∗)O(1λ, x)

]
, QP ∗ = QP ∗(λ, |x|) is a bound on the

number of random oracle queries issued by P ∗, and L =
∑s

i=1(ni−1)·
∏s

j=i+1 kj ·
∏i−1

h=1(kh−nh+1).
Moreover, E and A run in time which is polynomial in λ, in |x| and in the number of random oracle
queries issued by P ∗ on these inputs.

Our knowledge soundness analysis relies on the following combinatorial lemma, Lemma 2 below.
To state the lemma, we first need to define the notions of a complete tree and a bounded tree.

Definition 6. Let s ∈ N and n1, . . . , ns ∈ N be integers. We say that a tree T is (n1, . . . , ns)-
complete, if for each i ∈ {0, . . . , s− 1}, each node in depth i has ni+1 children.

Definition 7. Let s ∈ N and k1, . . . , ks ∈ N be integers. We say that a tree T is (k1, . . . , ks)-
bounded, if for each i ∈ {0, . . . , s− 1}, each node in depth i has at most ki+1 children.

With these two notions defined, the following lemma bounds the number of leaves that a
(k1, . . . , ks)-bounded tree can have, if it does not contain a (n1, . . . , ns)-complete sub tree.

10

Lemma 2. Let s ∈ N, let n1, . . . , ns ≥ 2, and let k1, . . . , ks be integers such that ki ≥ ni for every
i ∈ [s]. Let T be a (k1, . . . , ks)-bounded tree that does not contain a (n1, . . . , ns)-complete sub-tree.
Then, T has at most ϕ(n1, . . . , ns, k1, . . . , ks) leaves, where

ϕ(n1, . . . , ns, k1, . . . , ks) =
s∑

i=1

(ni − 1) ·
s∏

j=i+1

kj ·
i−1∏
h=1

(kh − nh + 1).

Proof. The proof is by induction on the height s of the tree. For s = 1, the tree T consists of the
root and its children. The root cannot have n1, since otherwise, T contains a n1-complete sub-tree
(which is just a root with n1 children). Indeed, it holds that ϕ(n1, k1) = n1 − 1.

For s > 1, observe that if n1 of the root’s children are themselves roots of (n2, . . . , ns)-complete
trees, then T contains an (n1, . . . , ns)-complete sub-tree. Hence, at most n1−1 of the root’s children
can be roots of (n2, . . . , ns)-complete trees. Call such children “heavy” and all other children “light”.
Since T is (k1, . . . , ks)-bounded, any heavy child can be the root of a sub-tree with at most

∏s
j=2 kj

leaves. On the other hand, by the induction hypothesis, each light child can serve as the root of a
sub-tree with at most ϕ(n2, . . . , ns, k2, . . . , ks), where

ϕ(n2, . . . , ns, k2, . . . , ks) =
s∑

i=2

(ni − 1) ·
s∏

j=i+1

kj ·
i−1∏
h=2

(kh − nh + 1).

Putting everything together, we obtain that the number of leaves in T is bounded by

(n1 − 1) ·
s∏

j=2

kj + (k1 − n1 + 1) ·
s∑

i=2

(ni − 1) ·
s∏

j=i+1

kj ·
i−1∏
h=2

(kh − nh + 1)

= (n1 − 1) ·
s∏

j=2

kj +

s∑
i=2

(ni − 1) ·
s∏

j=i+1

kj ·
i−1∏
h=1

(kh − nh + 1)

=
s∑

i=1

(ni − 1) ·
s∏

j=i+1

kj ·
i−1∏
h=1

(kh − nh + 1).

This completes the proof of the lemma. ⊓⊔

Equipped with Lemma 2, we are now ready to prove Theorem 1, establishing the knowledge
soundness of (Pni, Vni).

Proof (of Theorem 1). Let x ∈ X , λ ∈ N, and a prover P ∗, making at most Q = Q(|x|, λ) queries to
the random oracle. Assume without loss of generality, that before outputting a proof π = (π1, . . . , πt)
for an instance x, P ∗ queries the oracle on O(a1, i, x, πi) for every i ∈ [t], where a1 = (a1, . . . , at)
and aj is the first prover message in πj for every j ∈ [t]. Moreover, assume without loss of generality
that P ∗ only queries the oracle on inputs (a1, i, x, πi) such that the transcript πi is accepting for x.

Fix some vector a1 = (a1,1, . . . , a1,t) of first prover messages. For every i ∈ [t], we define a tree
Ta1,i rooted at a1,i, induced by the queries issued by (P ∗)O(1λ, x) to O. The nodes of Ta1,i are
labeled by prover messages, and the edges are labeled by V ’s challenges. Then, a path from the root
to another node defines a partial transcript for (P, V) in a natural manner, by letting the root’s
label specify the first prover message, the label of the edge going out of the root specify the first

11

verifier’s challenge, and so forth. Generally, the label of the ith node on the path specifies the ith
prover message in the partial transcript, and the label on the jth edge on the path specifies the jth
verifier’s challenge.

We define Ta1,i inductively over the queries of P ∗. Whenever P ∗ issues a new query of the form
(a1, i, x, πi), we append πi to Ta1,i as follows:

1. Parse πi as (a1,i, c1,i, . . . , cs,i, as+1,i).

2. Find the longest prefix of πi that corresponds to a path in Ti starting from the root, and ends
with a prover message. Let (a1,i, c1,i, . . . , aj,i) be that prefix.

3. Extend Ta1,i by appending the path (cj,i, . . . , cs,i, as+1,i) to the node labeled with aj,i.

We are now ready to describe the straight-line extractor E. On input 1λ and an instance x ∈ X ,
and one-time oracle access to P ∗, the extractor E does the following:

1. Run P ∗ on input (1λ, x), recording its random oracle queries.

2. Eventually P ∗ terminates and outputs a proof π for x. If Vni(1
λ, x, π) = 0, then output ⊥ and

abort.

3. For every vector a1 of first prover messages included as an argument in a query issued by P ∗,
construct the t trees Ta1,1, . . . Ta1,t from P ∗ oracle queries as described above.

4. If there exists a tree among the constructed trees that contains a (n1, . . . , ns)-transcript tree
(recall Definition 1) as a sub-tree, let T ∗ be that sub-tree. Invoke the special soundness extractor
on (x, T ∗) to obtain a witness w. Output w.

5. If there is no such sub-tree, output ⊥ and abort.

We now turn to analyze the success probability of the extractor. Let acc denote the event
in which P ∗ outputs an accepting proof for x and let tree denote the event in which its ran-
dom oracle queries induce a (n1, . . . , ns)-transcript tree (i.e., that E does not abort in Step 5).
Clearly, by (n1, . . . , ns)-special soundness, the probability that E outputs in accepting transcript
is Pr [acc ∧ tree]. First, observe that

Pr [acc ∧ tree] = Pr [acc]− Pr [acc ∧ ¬tree]
= ϵP ∗(1λ, x)− Pr [acc ∧ ¬tree] , (3)

and we are left with bounding Pr [acc ∧ ¬tree]. Note, that for the event ¬tree to occur at least one
of two cases must occur:

1. No tree constructed by E contains a (n1, . . . , ns)-complete sub-tree; or

2. There is a (n1, . . . , ns)-complete sub-tree in in the trees constructed by E, but it is not a valid
transcript tree per Definition 1.

Denote the first case by small and the second case by collision. Then, it holds that

Pr [acc ∧ ¬tree] ≤ Pr [acc ∧ small] + Pr [acc ∧ collision]

≤ Pr [acc ∧ small] + Pr [collision]

We argue that there exists a probabilistic polynomial-time algorithm A for which

Pr [collision] ≤ AdvqurA,(P,V)(λ). (4)

12

The algorithm A gets x as non-uniform advice, and is defined as E for Steps 1–3. It then checks
if there is a sub-tree in the trees constructed by E, that is (n1, . . . , ns)-complete but it is not a
valid transcript tree. If so, then it must be that this sub-tree contains two transcripts of the form
t1 = (a1, c1, . . . , ci, ai+1, . . . , cs, as+1) and t2 = (a1, c1, . . . , ci, a

′
i+1, . . . , c

′
s, a
′
s+1), where ai+1 ̸= a′i+1.

Otherwise, this sub-tree would have been a valid transcript tree. Hence, A can output t1 and t2
and break the quasi-unique response property of (P, V).

We are left with bounding Pr [acc ∧ small]. For this event to occur, it must be that P ∗ has
produced t accepting transcripts of the form ti = (a1,i, c1,i, . . . , cs,i, as+1,i) such that H(a1, i, x, ti) =
0ℓ for every i ∈ [t]. Moreover, it is the case that for every i ∈ [t], the tree Ta1,i does not contain
a (n1, . . . , ns)-complete sub-tree. Fix some vector a1 that was included as the first argument in a
query made by P ∗ to O. By Lemma 2, each Ta1,i has at most L := ϕ(n1, . . . , ns, k1, . . . , ks) leaves,
where ϕ is as in Lemma 2. This implies that for every i ∈ [t], P ∗ was able to query O on at most L
queries of the form (a1, i, x, t) for some transcript t, and one have these queries resulted in a reply
which is 0ℓ. By a union bound, for every i ∈ [t], this can occur with probability at most 2−ℓ ·L. As
this occurs independently for each i ∈ [t], it follows that the probability that P ∗ finds an accepting
proof for a1 without its queries inducing a transcript tree for x is at most (2−ℓ · L)t. Since P ∗

queries O with at most Q different vectors a1, it follows that

Pr [acc ∧ small] ≤ Q · (2−ℓ · L)t. (5)

Putting Equations (3), (4), and (5), we obtain that the extractor E succeeds with probability
at elast

Pr [acc ∧ tree] ≥ ϵP ∗(1λ, x)− AdvqurA,(P,V)(λ)−Q · (2−ℓ · L)t.

This concludes the proof of the theorem. ⊓⊔

3.4 Parameter Selection

The completeness and knowledge soundness bounds proved above provide a large design space in
which one can select specific parameters to instantiate the compiler. To make them more concrete,
we now provide an example to one manner in which the parameters can be set, but many more
options are possible.

Let (P, V) be a (2s+1)-round (n1, . . . , ns)-special sound interactive argument for some relation
R. To simplify the discussion, suppose that (P, V) has perfectly-unique responses; that is, that for
any adversary A it holds that AdvqurA,(P,V)(λ) = 0. The parameters need setting are: the integers
k1, . . . , ks bounding the number of possible challenges at every round; the integer ℓ ∈ N, which
determines the probability that a transcript hashes to 0ℓ and hence can be included in a proof; and
the integer t which determines that number of parallel repetitions of (P, V).

As a special case of interest, we consider the case where ki = cni for every i ∈ [s], for some
parameter c to be chosen later in the discussion. In this case, the combinatorial bound from Lemma 2
can be bounded as follows:

13

s∑
i=1

(ni − 1) ·
s∏

j=i+1

kj ·
i−1∏
h=1

(kh − nh + 1) =
s∑

i=1

(ni − 1) ·
s∏

j=i+1

cnj ·
i−1∏
h=1

(cnh − nh + 1)

≤
s∑

i=1

ni ·
s∏

j∈[s]\{i}

cnj

= cs−1 · s ·
n∏

i=1

ni

=
K · s
c

,

where K =
∏s

i=1 ki.
Plugging this in to Theorem 1, we obtain a knowledge soundness error of(

K · s
c
· 2−ℓ

)t

.

Now suppose that we set the parameters such that

c ≥ 2 · s ·K · 2−ℓ. (6)

In this case, the knowledge soundness error is at most 2−t.
On the other hand, recall that the guarantee of Lemma 1 gave a completeness error of t·e−2−ℓ·K .

Hence, setting ℓ and c such that
2−ℓ ·K ≥ ln(2t) (7)

yields a completeness error of 1/2. Completeness can be amplified be repeatedly invoking Pni until
an accepting proof is found. In expectation, Pni will have to invoked twice. If we wish to have a strict
upper bound on the running time of the prover, we can invoke Pni for α times with a completeness
error of 2−α.

If we plug the requirement that 2−ℓ ·K ≥ ln(2t) into Eq. (6), we obtain that c ≥ 2 · s · ln(2t).
Example parameters. With the above constraints, we can set the following parameters. First, we
can set t to be equal to the security parameter λ, which will result in a knowledge soundness error
of 2−λ. Then, setting c ≈ s log t = s log λ and ℓ such that 2−ℓ ≈ log λ

N ·logs λ satisfies the constraints

from Eq. (6) and (7) above, where N =
∏s

i=1 ni.
To further understand the implications of this parameter choice, consider two examples:

1. If (P, V) is a constant-round protocol, we obtain t = λ, c ≈ log λ, and ℓ ≈ log
(

log λ
N ·logs λ

)
.

2. The above choice of parameters can also handle the case where (P, V) is has a super-constant
number of rounds. Now, however, we must be careful not to end up with a prover Pni that is
inefficient. Note that at worst, Pni has to construct a (k1, . . . , ks)-complete tree of transcripts.
This requires invoking the underlying prover P for

∏s
i=1 ki = cs ·N times over. For this to be

polynomially-bounded, we need cs to be polynomially-bounded.3 Since we set c ≈ s log λ, then
as long as s = O(log λ

log log λ), the prover Pni is indeed polynomial-time.
3 We also need N to be polynomially-bounded, but generalized special soundness is typically only interesting when
this is the case.

14

3.5 Strong Special Soundness

In the context of Sigma protocols and Fischlin’s original transform, Kondi and shelat [45] observed
that the quasi-unique response property can be lifted, if the original Sigma protocol satisfies a
property which they call “strong special soundness”. A Sigma protocol is strongly special sound,
if extraction is possible from any two distinct transcripts (a, c, z) and (a, c′, z′), even if c = c′ (but
z ̸= z′). We observe that a similar claim holds in our case. We first generalize the notion of strong
special soundness to the multi-round setting.

Definition 8. Let s ≥ 1 and let (P, V) be an (2s+1)-round public coin protocol. Let n1, . . . , ns ∈ N,
and let N =

∏s
i=1 ni. Let T = (ti1,...,is)∀j∈[s], ij∈[nj] be a vector of N transcripts for (P, V). We

say that T is a weak (n1, . . . , ns)-transcript tree if it satisfies Definition 1, where Condition 2 is
replaced with

aj+2 ̸= a′j+2.

We say that (P, V) satisfies (n1, . . . , ns)-strong-special-soundness if there exists a deterministic
polynomial-time algorithm E such that the following holds. On input x ∈ X and a weak tree of
transcripts T that are all accepting for x, E outputs a witness w such that (x,w) ∈ R.

The proof of Theorem 1 immediately implies that our compiler results in a knowledge sound
non-interactive protocol, whenever it is applied to a strongly-special-sound interactive protocol,
even if the latter does not satisfy quasi-unique responses. The reason is that if the event collision
from the proof occurs, than we can directly apply the strong-special-soundness extractor.

A prime example for protocols that do not satisfy quasi-unique response, but do satisfy strong
special soundness, is the OR composition of special sound protocols (see [27, 1, 37, 39, 40] and the
references therein).

3.6 Zero-Knowledge and Imperfect Completeness

Similarly to Fischlin’s transform [34], our compiler results in a zero-knowledge non-interactive argu-
ment, if the underlying protocol (P, V) is simulatable in the following sense: Given an instance x in
the language, and challenges (c1, . . . , cs), there is an efficient simulator that samples (a1, . . . , as+1)
such that (x, a1, c1, . . . , as, cs, as+1) are distributed as in an honest execution of the protocol, con-
ditioned on (c1, . . . , cs) (and hence, in particular, V (x, a1, . . . , as+1) = 1 if the protocol is perfectly
complete). Protocols satisfying quasi-unique response typically satisfy this requirement.

However, our transform also applies to other protocols as well, as discussed above. Therefore,
we would like for it to provide zero-knowledge, even if the underlying protocol (P, V) is just honest-
verifier zero knowledge, and not necessarily simulatable as above. In the context of Sigma protocol,
Kondi and shelat [45] observed that in Fischlin’s protocol, if the prover chooses the challenges
uniformly at random from the set of all possible challenges (instead of iterating over them in a
deterministic manner) than zero knowledge is guaranteed. This is also true in our case, but in our
transformation, a problem arises: we need to bound the number of admissible challenges at every
round, and so we cannot allow the prover to sample arbitrary challenges. To fix this issue, we
can expropriate the choice of challenges from the prover, and use a hash function to sample them
instead.

Concretely, let HChalSet be a hash function from X × [t]× [s]×N to the challenge space (suppose
for simplicity that the challenge space is the same for all rounds). Then, the set of challenges that

15

is admissible it the jth round of the ith parallel repetition is

{HChalSet(x, i, j,m) : m = 1, . . . , kj} .

If HChalSet is modeled as a random oracle, then the compiled protocol is zero knowledge, similarly
to the case in [45].

Observe that an added benefit of this modification is that now the compiled protocol (Pni, Vni)
is complete, even if the underlying protocol (P, V) suffers from some negligible completeness error.
This is because now transcripts sample by Pni are distributed as in a random execution of (P, V).

4 A Transformation Based on Cut-and-Choose

In this Section we present a different transformation from multi-round special-sound protocols to
non-interactive protocols in the random oracle model. The transformation generalizes Pass’s cut-
and-choose-based transformation for Sigma protocols [57] to the multi-round setting. It also further
abstract a basic building block — extractable vector commitments — in a way that allows for more
efficient instantiations.

As promised, the key building block on which the transformation relies is a vector commitment
scheme [49, 22]. Here, we recall the standard syntax of vector commitments, and we postpone the
discussion of security properties to a later stage.

Definition 9. A vector commitment scheme over a domain X = {Xλ}λ∈N is a tuple VC =
(VC.Commit,VC.Open,VC.Verify) of algorithms defined as follows:

– The algorithm VC.Commit is a probabilistic algorithm that receives as input the security param-
eter λ ∈ N and a vector (x1, . . . , xq) ∈ (Xλ)

q, and outputs a commitment vcom and a state
state.

– The algorithm VC.Open is a probabilistic algorithm that receives as input the security parameter
λ ∈ N, a commitment vcom, a state state and an index i ∈ [q], and outputs a proof π.

– The algorithm VC.Verify is a deterministic algorithm that receives as input the security parameter
λ ∈ N, a commitment vcom, an index i ∈ [q], an element x ∈ Xλ and a proof π, and outputs a
bit b ∈ {0, 1}.

Correctness. A vector commitment scheme VC = (VC.Commit,VC.Open,VC.Verify) over a domain
X = {Xλ}λ∈N is correct if for any λ ∈ N, for any polynomial q = q(λ), for any vector (x1, . . . , xq) ∈
(Xλ)

q, and for any index i ∈ [q], it holds that

Pr
[
VC.Verify

(
1λ, vcom, i, xi, π

)
= 1
]
= 1,

where (vcom, state) ← VC.Commit(1λ, (x1, . . . , xq)) and π ← VC.Open(1λ, vcom, state, i); and the
probability is taken over the randomness of all algorithms.

Looking ahead, in terms of security, the knowledge soundness of the compiled argument will
require that the underlying vector commitment schemes satisfies a strong extractability notion,
as well as the standard notion of position binding. We will formalize this notions in Section 4.2
below, when discussing the knowledge soundness of non-interactive random oracle argument that
results from the transformation. Zero-knowledge further requires the standard notion of hiding, as
discussed later in Section 4.2.

16

4.1 The Transformation

We now present our cut-and-choose-based transformation. As in Section 3, the compiled protocol
is defined with respect to an interactive argument (P, V), which is a (2s + 1)-round public coin
argument for a relation R ⊆ X ×W. We will also continue to assume for simplicity of presentation
that the ith verifier challenge is drawn uniformly at random from the set [Bi] for some Bi ∈ N.
Since we are interested in protocols that are (n1, . . . , ns)-special sound per Definition 2, we assume
that Bi ≥ ni for ever i. Similarly to the previous seciton, we first consider the case in which (P, V)
is perfectly complete, and ignore zero knowledge, and later discuss how to get zero knowledge and
handle imperfectly-complete protocols.

The presentation of the compiler will rely on the following notation. For randomness r for P , we
will refer to the (n1, . . . , ns)-tree of transcripts for (P, V) with randomness r. By that, we will mean
a (n1, . . . , ns)-complete tree (recall Definition 6), whose nodes correspond to prover messages in the
following way. We associate each edge at depth i with a verifier challenge from the set [ni]: the edges
going out of roots are assigned the integers 1, . . . , n1 in a pairwise-distinct manner; for each child
of the root, we assign to its outgoing edges the integers 1, . . . , n2 in a pairwise-distinct manner; and
so forth. Then, for i ∈ {0, . . . , s− 1} a node v at depth i is labeled with the prover message at the
i+1 round of (P, V) that is induced by the prover randomness r and the verifier challenges that are
the labels of the edges along the path from the root to v. Since the verifier challenges are the same
for all trees, the tree can be represented by the concatenation of all 1 + n1 + n1n2 + . . .+ n1 · · ·ns

prover messages, ordered in some canonical way (for example, pre-order traversal).
The compiler is presented in Figure 2. It is parameterized by an integer t ∈ N and it makes use

of the following two ingredients:

– A vector commitment scheme VC = (VC.Commit,VC.Open,VC.Verify) with security properties
to be presented later. Denote the space of commitments of VC by C.

– A hash function H mapping inputs in X × C to outputs in [N]t, where N =
∏s

i=1 ni. This
function will be modeled as a random oracle in the security proof.

4.2 Knowledge Soundness in the ROM

We now prove that when our cut-and-choose transformation is applied to a special sound protocol
and H is modeled as a random oracle, then the resulting non-interactive random-oracle argument
is straight-line knowledge sound. To this end, we first define the security properties that we need
the underlying vector commitment to satisfy.

First, we need VC to satisfy the standard notion of position binding. Informally, position binding
means that an efficient adversary cannot open a position in a vector commitment to two different
values.

Definition 10. A vector commitment scheme VC = (VC.Commit,VC.Open,VC.Verify) over a do-
main X = {Xλ}λ∈N is position binding if for any polynomial q = q(λ) and for any probabilistic
polynomial-time algorithm A there exists a negligible function ν(·) such that

AdvposbindVC,q,A (λ) := Pr

 xi ̸= x′i
∧ VC.Verify

(
1λ, vcom, i, xi, π

)
= 1

∧ VC.Verify
(
1λ, vcom, i, x′i, π

′) = 1
: (vcom, i, xi, x

′
i, π, π

′)← A(1λ, q)

 ≤ ν(λ)

for all sufficiently large λ ∈ N.

17

The non-interactive prover Pcnc

1. Sample random coins r1, . . . , rt ←$ {0, 1}ρ for t executions of P .
2. For i = 1, . . . , t, generate the (n1, . . . , ns)-tree Ti of transcripts for (P, V) with randomness ri.
3. Commit to (T1, . . . , Tt) by (vcom, state) ← VC.Commit(1λ, (T1, . . . , Tt)), where each Ti is interpreted as

1 + n1 + n2n1 + . . .+ n1 · · ·ns prover messages.
// overall, vcom is a commitment to a vector of size t · (1 + n1 + n1n2 + . . . + n1 · · ·ns)

4. Compute (j1, . . . , jt)← H(x, vcom).
5. For i = 1, . . . , t, open the prover messages that correspond to the jith path in Ti:

Let ai,1, . . . , ai,s+1 be these prover messages and let fi,1, . . . , fi,t be their positions in the vector (T1, . . . , Tt).
Then, compute πi,1 ← VC.Open(1λ, vcom, state, fi,1), . . . , πi,s+1 ← VC.Open(1λ, vcom, state, fi,t).

6. Output π = (vcom, (ai,g, πi,g)i∈[t],g∈[s+1]).

The non-interactive verifier Vcnc

1. Parse π as (vcom, (ai,g, πi,g)i∈[t],g∈[s+1]).
2. Compute (j1, . . . , jt)← H(x, vcom), and for each i ∈ [t], interpert ji as a vector (ci,1, . . . , ci,s) ∈ [k1]× · · · ×

[ks].
3. For each (i, g) ∈ [t] × [s + 1], verify πi,g by running VC.Verify

(
1λ, vcom, fi,g, ai,g, πi,g

)
, where fi,g is the

location of ai,g in the committed vector (T1, . . . , Tt). If any of the verifications fail, output 0 and terminate.
// note that fi,g can be computed from ji and (n1, . . . , ns)

4. For each i ∈ [t], verify that the transcript τi = (ai,1, ci,1, . . . , ai,s, ci,s, ai,s+1) is accepting for x by invoking
V (x, τi). If any of the transcripts is not accepting, output 0 and terminate.

5. If reached, output 1.

Fig. 2. The non-interactive argument (Pcnc, Vcnc) that results from applying our cut-and-choose-based transformation
to a (n1, . . . , ns)-special sound (2s+ 1)-round protocol (P, V).

18

In addition to position binding, we will require that vcom is straight-line extractable. Intuitively,
this means that there is an extractor E such that whenever an algorithm A outputs a commitment
vcom, E (potentially given some special access to A) can output a vector x = (x1, . . . , xq) and
corresponding proofs π1, . . . , πq that are consistent with vcom. Importantly, E is straight-line, and
does not rewind the algorithm A. This notion is formalized by definition 11 below. The definition
defines extractability with respect to an oracle F . Cases of interest are those in which F is a random
oracle, a generic-group oracle [61, 52], or an empty oracle (in which case, the vector commitment
is extractable in the standard model).

Definition 11. A vector commitment scheme VC = (VC.Commit,VC.Open,VC.Verify) is straight-
line extractable with respect to an oracle F if there exists a polynomial-time algorithm VC.Extract
such that for any polynomial q = q(λ) and for every probabilistic polynomial-time algorithm A,
there exists a negligible function ν(·) such that

AdvextVC,q,A(λ) := Pr

[
VC.VerifyF

(
1λ, vcom, i, xi, πi

)
= 1

∧ VC.VerifyF
(
1λ, vcom, i, x′i, π

′
i

)
= 0

:
(i, vcom, xi, πi)←$ AF (1λ, q)

(x′i, π
′
i)← VC.Extract(1λ, vcom, i, lst)

]
≤ ν(λ)

for all sufficiently large λ ∈ N, where and lst is the list of all oracle queries issued by A.

To simplify notation, we will write VC.Extract(1λ, vcom, lst) as a shorthand for invoking VC.Extract
on vcom and lst on all indices. That is VC.Extract(1λ, vcom, lst) is defined to be:

(VC.Extract(1λ, vcom, 1, lst), . . . ,VC.Extract(1λ, vcom, q, lst))

Instantiations. We discuss two possible instantiations of straight-line extractable vector com-
mitments. The first instantiation is hash-based Merkle-trees [54]. It was previously observed in
the context of arguments of knowledge that Merkle trees are extractable in the random oracle
model, where the hash function used to construct the tree is modeled as an observable random
oracle [44, 55, 66, 9]. Another instantiation, relying on heavier cryptographic machinery, is vector
commitments in idealized group models. As a concrete example, consider KZG commitments [43],
that are extractable in the generic group model [61, 53] and in the algebraic group model [35].4

One the one hand, relying on KZG commitments reduces the proof size: it is possible to provide
an constant-size opening proof for t positions out of a length q committed vector, in contrast to an
opening proof of size t · log q in the case of Merkle trees. On the other hand, KZG commitments
require pairing groups, and are hence more computation intensive compared to the hash-based
Merkle trees. They also require a trusted setup, and are not post-quantum secure.

Theorem 2. Let (P, V) be a (2s + 1)-round (n1, . . . , ns)-special sound argument for a relation
R ⊆ X × W, and let (Pcnc, Vcnc) be the non-interactive random oracle argument obtained from
it using the transformation from Section 4.1, when the hash function H is modeled as a random
oracle. Then, there exist a straight-line extractor E such that for every x ∈ X , and every algorithm
P ∗, there are algorithms A and B such that

Pr
[
(x,EP ∗

(1λ, x)) ∈ R
]
≥ ϵP ∗(1λ, x)− AdvposbindVC,q,A (λ)− AdvextVC,q,B(λ)−QP ∗ ·

(
N − 1

N

)t

4 Tehcnically, the algebraic group model (AGM) was not defined as an oracle model, but it can be rendered as
such by requiring that whenever an algorithm outputs a group element, it queries an oracle with a representation
of it in terms of the previously-seen elements. In this formalization of the AGM, KZG commitments are indeed
extractable per our definition.

19

where ϵP ∗(1λ, x) = Pr
[
V O(1λ, x, π) = 1 : π ←$ (P ∗)O(1λ, x)

]
, QP ∗ = QP ∗(λ, |x|) is a bound on

the number of random oracle queries issued by P ∗, and N =
∏s

i=1 ni and q = t · (1 + n1 + n1n2 +
. . . + n1 · · ·ns). Moreover, E, A, and B run in time which is polynomial in λ, in |x| and in the
number of random oracle queries issued by P ∗ on these inputs.

Proof. Let P ∗ be a prover as in the theorem statement and let x ∈ X . Assume without loss of
generality that before outputting a proof of the form (vcom, (ai,g, πi,g)i∈[t],g∈[s]) for x, P

∗ queries O
on (x, vcom).

Consider the following extractor E, running on input 1λ, x and observing the oracle queries
made by P ∗ to the random oracle O:

1. Invoke π ←$ P ∗(1λ, x). Let lstO denote the set of random oracle queries issued by P ∗ and let
lstF denote the set of F-queries issued by P ∗.

2. For every vcomi such that (x, vcomi) ∈ lstO:

(a) Run ((Ti,1, . . . , Ti,t), (πi,1, . . . , πi,M)) ← VC.Extract(vcomi, lstF), where M = t · (1 + n1 +
n1n2 + . . .+ n1 · · ·ns).

(b) If for some j ∈ [t], Ti,j is a (n1, . . . , ns)-tree of all accepting transcripts, then invoke the spe-
cial soundness extractor (Definition 2) E′ on x and Ti,j , and output the witness w outputted
by E′.

3. If reached, output ⊥ and terminate.

We now turn to analyze the success probability of the extractor E. Denote by goodtree the event
in which there is some O-query (x, vcomi) made by P ∗, such that one of its extracted trees Ti,j is
a (n1, . . . , ns)-tree of all accepting transcripts. Denote by acc the event in which V O(1λ, x, π) = 1
defined over π ←$ (P ∗)O(1λ, x). Clearly,

Pr
[
(x,EP ∗

(1λ, x)) ∈ R
]
= Pr [goodtree]

≥ Pr [acc]− Pr [acc ∧ ¬goodtree]
= ϵP ∗(1λ, x)− Pr [acc ∧ ¬goodtree] . (8)

In the remainder of the proof, we will bound Pr [acc | ¬goodtree]. Let I(T) be a mapping that takes
in a (n1, . . . , ns)-tree of transcripts, and maps it to the first index p ∈ [N] such that the transcript
induced by the path from root to the pth leaf in Ti,j is not accepting. If all transcripts are accepting
I(T) = 0. Suppose the event ¬goodtree occurs. This means that for every vcomi included in a query
(x, vcomi) to O, and every tree Ti,j extracted by E for that vcomi, I(Ti,j) ̸= 0.

Let avoidi denote the event in which the response (h1, . . . , ht) ← O(x, vcomi) to the ith query
(x, vcomi) made by P ∗ to O satisfies hj ̸= I(Ti,j) for every j ∈ [t]. Let avoid = ∪i∈[Qp∗]avoidi. Then,
by a union bound, it holds that

Pr [avoid ∧ ¬goodtree] ≤ Pr [avoid | ¬goodtree]
≤ Qp∗ · Pr [avoidi | ¬goodtree]

≤ Qp∗ ·
(
N − 1

N

)t

.

20

Now, by total probability, we have that

Pr [acc ∧ ¬goodtree]
= Pr [acc ∧ ¬goodtree ∧ avoid] + Pr [acc ∧ ¬goodtree ∧ ¬avoid]

≤ Qp∗ ·
(
N − 1

N

)t

+ Pr [acc ∧ ¬avoid] (9)

Consider the event acc ∧ ¬avoid. In this event, there exist i ∈ [Qp∗] and j ∈ [t], such that the
following holds. Let (h1, . . . , ht) = O(x, vcomi). Then, two conditions are satisfied:

– The hjth path in Ti,j , as extracted by E, is not accepting.
– The proof outputted by P ∗ containes vcomi, and t vectors of prover messages (a1, . . . ,at)

together with corresponding opening proofs, such that: (1) aj , together with the challenges
that correspond to the hj path, constitutes is an accepting (P, V)-proof for x; and (2) the
corresponding opening proofs are valid.

There are two options. Either the opening proofs provided by E for the hjth path in Ti,j are
all valid or not. Denote by valid the event in which they are. Then,

Pr [acc ∧ ¬avoid] = Pr [acc ∧ ¬avoid ∧ valid] + Pr [acc ∧ ¬avoid ∧ ¬valid] (10)

Observe that since P ∗ provides valid openings for the same positions of the vector committed
to by vcomi, the event acc ∧ ¬avoid ∧ ¬valid corresponds to breaking extractability. Hence, this
immediately gives an adversary B for which

AdvextVC,q,B(λ) = Pr [acc ∧ ¬avoid ∧ ¬valid] .

Moreover, since the prover messages extracted by E do not map to an accepting transcript, they
are in particular different than the P messages to which P ∗ opens the same positions of the vector
committed to by vcomi. Hence, the event Pr [acc ∧ ¬avoid ∧ valid] corresponds to breaking position
binding. Hence, this immediately gives an adversary A for which

AdvposbindVC,q,A (λ) = Pr [acc ∧ ¬avoid ∧ valid] .

Together with Eq. (8), (9), and (10) yields the theorem.

Zero-Knowledge and Imperfect Completeness. Achieving zero knowledge and handling in-
teractive protocols with negligible completness error can be done analogously to as discussed in
Section 3.6. One additional consideration here, is that since we are committing to entire trees of
transcripts via a vecotr commitment scheme, we need this scheme to be hiding in the standard
sense: Seeing a vector commitment vcom and and openings to a set L ⊆ [q] of positions in the
vector, reveals no information about the committed values in positions [q] \ L. See, for example,
Catalano and Fiore [22] for a formal definition.

Improved efficiency via subvector commitments. In our compiler, the prover is required
to open (2s + 1) · t positions at the same time. Hence, we can reduce the proof size by relying on
extractable “subvector commitments” [47]; this are vector commitments that allow for more efficient
batch openings of many positions. In particular, KZG commitments admit such batch openings,
where an opening proof for multiple vector entries has size that is independent of the number of
opened positions, as it consists of just one group element (see, for example, [32]).

21

5 Security in the QROM

In this section, we prove that the a specific instantiation of the cut-and-choose transformation from
Section 4 is secure in the quantum random oracle model (the QROM). In the QROM (see [12]
for a definition and discussion), a quantum adversary can query the oracle in superposition, which
greatly complicates the extraction argument. The fact that the aforementioned transformations
admit straight-line extractors is a step in the right direction, since they get rid of elaborate rewinding
arguments (recall the discussion in the introduction) that are hard to carry out in the quantum
setting without overly disturbing the state of the prover from which we wish to extract the witness.
However, note that although these (classical) extractors are straight-line does not mean that they
carry over to the quantum setting. The issue is that these extractors heavily rely on the observability
of oracle queries issued by the prover. In the quantum setting, where queries can be quantum states,
observing a query means measuring it, which could disturb the prover. To circumvent this issue, we
rely on a toolkit developed in the works of Zhandry [70] and Chiesa, Manohar, and Spooner [26],
and prove that a concrete instantiation of the transformation from Section 4 is indeed knowledge
sound in the QROM.

5.1 The Transformation

We first begin by explicitly defining the transformation that is secure in the quantum random oracle
model. The transformation is a concrete realization of the cut-and-choose based transformation
from Section 4, where the vector commitment scheme VC is instantiated using a Merkle tree [54].
In the proof of knowledge soundness, the hash function underlying the Merkle tree will be treated
a (quantum) random oracle.

Merkle trees. We briefly recall the instantiation of a vector commitment scheme using Merkle
trees. Such commitments are defined with respect to hash function Hcom : X × X → X , where X
is the domain of vector entries.5 Suppose that we wish to commit to a vector x = (x1, . . . , xq) of
length q = 2d for some d ∈ N; if q is not a power of 2, the vector is padded with dummy elements.
Then, the VC.Commit algorithm computes a list (vk,i)k∈[d],i∈[2k] of elements defined as recursively
as follows:

∀i ∈ [q], vd,i := xi

∀h ∈ {d− 1, . . . , 0}, ∀i ∈ [2h], vh,i := Hcom(vh+1,2i−1, vh+1,2i)

The commitment is then rt := v0,1. Visually, we think of this list of values as arranged in the form
of a complete binary tree: v0,1 is the root of the tree, and each vh,i for h ∈ [d] and i∈ [2h] has
vh+1,2i−1 as its left child and vh+1,2i as its right.

If hiding is required, then VC.Commit first pads x with dummy elements between each two
consequtive elements of x. For example, if X = {0, 1}λ, then VC.Commit first constructs x′ =
(x1, 0

λ, x2, 0
λ, . . . , xq, 0

λ), and then commits to x′ as before.
An opening proof that xi is the ith entry in the vector committed to by rt consists of the values

along the co-path from vd,i to the root rt; that is, the list of siblings of all nodes on the path from
vd,i to rt. To verify this proof, VC.Verify computes the values along the path from vd,i to the root,
using xi, the co-path values included the proof and the hash function Hcom. It accepts if and only
if the computed root value v0,1 is equal to the commitment value rt.

5 We implicitly assume that X is sufficiently large so that collision are hard to find.

22

When the cut-and-choose transformation with Merkle trees is applied to a (2s + 1)-round in-
teractive argument, we denote the resulting non-interactive argument by (Pmcnc, Vmcnc).

5.2 Detour: Games and Their Instability

Before proving that (Pmcnc, Vmcnc) is knowledge sound in the QROM, we first need to introduce
technical tools from Chiesa et al. [26] and Zhandry [70] on which we rely. We focus here only on
the preliminaries necessary for our result, and present them in a way that is specifically tailored
to our needs. For a more comprehensive and detail account of the framework of Chiesa et al. and
Zhandry, the reader is referred to their works [70, 26].

First, we briefly recall the notions of oracle games and database games.

Oracle games. Let X = {Xλ}λ∈N,Y = {Yλ}λ∈N and C = {Cλ}λ∈N be sets (where for each λ ∈ N,
the projections Xλ,Yλ, and Cλ are finite) and let q = q(λ) ∈ N. A game is a subset of the product
X q × Yq × C. We say that a quantum adversary A wins the game G if it outputs (x,y, c) ∈ G.

An oracle game G, defined with respect to a random oracle O : X → Y, additionally requires
that x,y outputted by the adversary correspond to input-output pairs under O. That is, a quantum
adversary A wins the game G if it outputs (x,y, c) ∈ G, and in addition O(xi) = yi for all i ∈ [q].
We define the advantage of an adversary A in an oracle game G as

AdvG,o
A (λ) := Pr

[
(x,y, c) ∈ G

∀i ∈ [q], O(xi) = yi
: (x,y, c)←$ AO(1λ)

]
where the probability is also over the choice of O uniformly at random from the set of all functions
from X to Y.
Database games. We first introduce the notion of databases and some related notation. A
database D in an associative mapping from values from some domain X to some range Y. The
support of D, Supp(D) is the set of all X elements who appear in D, and the image of D, Im(D),
is the set of all y ∈ Y such that there is an x ∈ Supp(D) for which D(x) = y. The notation
D + [x → y] is defined as: if x ∈ Supp(D), the the value of D(x) is changed to y. Otherwise, the
mapping D(x) = y is added to D.

We now define database games. A database game is defined similarly to an oracle game, but
with two modifications: first, the random oracle is simulated to A by a simulator; and second, the
output (x,y) is not the output of A, but rather a record of the simulated query-response pattern.

More precisely, a database game is additionally defined by a simulator Sim. For a quantum
adversary A, the process Sim(A, 1λ) is a quantum algorithm that simulates the random oracle to
A(1λ) using the compressed phase oracle of Zhandry [70]. Details omitted, the simulator maintains
a “database register” D that, intuitively speaking, records the state of the simulated phase oracle
throughout the simulation.

When A halts, the simulation Sim(A) then outputs the result of measuring the database registers
in the computational basis. We will overload notation and use D to denote the result of this
measurement. We say that A wins the database game G, if there are vectors x′ and y′ that are
consistent with the measured database D, and an element c′, such that (x′,y′, c) ∈ G. Formally,
we define the advantage of A to be:

AdvG,db
A (λ) := Pr

[
∃(x′,y′, c′) ∈ G

s.t. ∀i ∈ [q], D(xi) = yi
: D ←$ Sim(A, 1λ)

]
23

The following lemma was proven by Zhandry [70]. Roughly, it says that an adversary that wins
in an oracle game for a base game G also wins in the related database game.

Lemma 3. Let X ,Y, C be sets, let q = q(λ) ∈ N, and let G ⊆ X q × Yq × C be a base game. For
any quantum adversary A and every λ ∈ N, it holds that√

AdvG,o
A (λ) ≤

√
AdvG,db

A (λ) +
√

q/|Y|.

The instability of database games. Lemma 3 above reduces the task of bounding the advantage
of an adversary A in winning an oracle game to the task of bounding its advantage in winning the
corresponding database game. In order to bound the latter, Zhandry [70] and Chiesa et al. [26] have
come up with a lifting theorems that help tie the maximum adversarial advantage in a database
game to a combinatorial property of the classical variant of the same database game.

Following Chiesa et al., we first define the notion of a database property. Our definition uses
the following notation: For sets X and Y, we denote by D(X ,Y) the set of all databases mapping
inputs from X to outputs in Y.

Definition 12. A database property P for databases mapping inputs in X to outputs in Y is a
subset of D(X ,Y). The negation of P is denoted by ¬P and is defined by ¬P := D(X ,Y) \ P.

Equipped with this definition, we can define the “flip” probability of a property. Essentially,
the flip probability of a property with respect to an integer q, is the probability that one additional
query can take a database with q queries from P to ¬P or vice versa. The definition uses the
notation Dq(X ,Y) to denote the set of all databases of size at most q from X to Y.

Definition 13. The flip probability from database property P to property Q, with resecpt to q ∈ N,
denoted flip(P → Q, q), is defined by

flip(P, q) := max
D∈Dq(X ,Y)∩P

{
max

x∈X\Supp(D)

{
Pr

y←$Y
[(D + [x→ y]) ∈ Q]

}}
The instability of P with respect to q queries is then defined as follows.

Definition 14. The instability I(P) of a database property P with respect to an integer q ∈ N is
defined by

I(P, q) := max {flip(P → ¬P, q), flip(¬P → P, q)}

We now get to the main technical tool that we will use in the proof of knowledge soundness for
our compiler. The following lemma is implicit in Zhandry [70] and extended and made explicit by
Chiesa et al. [26]. It relates the probability that the output D of a database game with an adversary
making q oracle queries belongs to a database property P to the instability I(P, q) of this property.

Lemma 4. Let q = q(λ), and let A be a quantum algorithm making at most q queries to the random
oracle. Then, for any database property P, it holds that

Pr
[
D ∈ P : D ←$ Sim(A, 1λ)

]
≤ q2 · 6I(P, q).

Conditional instability. Chiesa et al. have generalized the notion of instability as follows.

24

Definition 15. Let P and Q be two database properties and let q ∈ N. The conditional flip prob-
ability for a database property P, conditioned on Q, with resecpt to q ∈ N, denoted flip(P|Q, q), is
defined by

flip(P|Q, q) := flip(¬P ∩Q → P ∩Q, q).

The conditional instability I(P|Q, q) is defined as

I(P|Q, q) := max {flip(P|Q, q), flip(¬P|Q, q)} .

We will need the following proposition from Chiesa et al. [26].

Proposition 1. Let P and Q be two database properties and let q ∈ N. Then,

I(P ∪Q, q) ≤ I(P|¬Q, q) + I(Q, q).

5.3 Knowledge Soundness

We now turn to prove the knowledge soundness of the Merkle-tree based transformation when
it comes to quantum provers in the quantum random oracle model (QROM). The definition of
knowledge soundness in the QROM is the same as in the classical ROM (Definition 5), allowing
both the prover P ∗ and the extractor E to be quantum algorithms. Jumping ahead, the simulator
of the random oracle by E to P ∗ will now be done using Zhandry’s compressed phase oracle
technique [70].

Let s and n1, . . . , ns be integers, let (P, V) be a (2s+1)-round (n1, . . . , ns)-special sound inter-
active argument for a relation R ⊂ X × Y, and let (Pmcnc, Vmcnc) be the non-interactive argument
obtained by applying the Merkle-tree-based cut-and-choose transformation described in Section 5.1
to (P, V). With the above technical tools, we are ready to argue that the knowledge soundness of
(Pmcnc, Vmcnc) in the QROM. As a first step, we define an oracle game that corresponds to a prover
P ∗ convincing the verifier in (Pmcnc, Vmcnc) to accept.

In (Pmcnc, Vmcnc), the prover outputs a proof π that consists of:

1. t vectors (a1, . . . ,at) of P -messages.

2. The root rt of the Merkle tree commitment to these (s+ 1) · t messages.

3. Corresponding opening proofs for each of the (s+ 1) · t prover messages {ai,g}i∈[t],g∈[s+1]. Each
of these opening proofs is the co-path from ai,g to rt.

A prover P ∗ convinces the verifier Vmcnc to accept if:

1. All opening proofs check out. For each opening proof, this means that the chain of s hash
evaluations, induced by ai,g and the elements in the opening proof, results in rt.

2. For each i ∈ [t], V accepts (x, ai,1, ci,1, . . . , ai,s, ci,s, ai,s+1). Here, (j1, . . . , js) := H(x, rt), and
(ci,1, . . . , ci,s) is ji interpreted as a vector in [n1]× · · · × [ns].

The oracle game Gmcnc is defined very similarly, but we additionally impose the restriction,
that the adversary participating in the game does not only output a proof π, but also explicitly
outputs all of the query-answer pairs occurring in the verification of the proof by Vmcnc. It is easy
to see that a prover P ∗ that makes q′ random oracle queries and convinces the verifier Vmcnc to
accept with probability ϵ immediately gives rise to an algorithm A wins Gmcnc with probability ϵ

25

and makes q = q′ + O(t · log(t · s)) queries. The adversary A just invokes P ∗ on the instance x to
obtain a proof π, and then outputs the set of query-answer pairs occurring in the verification of π.

Hence, in the proof of knowledge soundness, we will be interested in extracting a witness w for
x from an adversary A making q queries to the oracle and wins in Gmcnc. The existence of such an
extractor is established in the following theorem.

Theorem 3. Let (Pmcnc, Vmcnc) be a non-interactive argument as described above. Then, (Pmcnc, Vmcnc)
is knowledge sound in the quantum random oracle model.

Before proving the theorem, let us briefly remark that although the protocol is defined with
respect to two hash functions (Hcom implementing the random oracle and H implementing the
challenge generation from Section 4), both of which will be modeled as random oracles in the
security proof, the framework described in Section 5.2 still immediately applies. This is beacuse we
can think of both random oracles as being implemented via a single random oracle, with a selection
bit as input, specifying which of the two hash functions is invoked and separating their domains.
For concreteness, the bound that we will prove will also assume that Hcom has outputs of length at
least λ bits, and that prover messages in (P, V) are at least λ-bits long (if the latter is not satisfied,
we can pad them when committing to them using a Merkle tree).

We now prove Theorem 3, adapting the techniques developed in Chiesa et al. [26] to our setting.

Proof. We prove that there exists a polynomial-time quantum extractor E, such that for every
x ∈ X and every polynomial-time quantum algorithm A participating in Gmcnc, it holds that

Pr
[
(x,EA(1λ, x)) ∈ R

]
≥ AdvGMCNC,o

A (λ)− 2
√
q/2λ − q2 · 6

(
2q/2λ + ((N − 1)/N)t

)
To define the extractor E, we first need to define an helper (classical) algorithm, which we will

call Etree. This algorithm takes in a database D : X × X → X of oracle query-answer pairs, and
an element rt ∈ X , and a depth parameter d, and outputs the binary tree of height at most d of
elements that hash to rt, if such a tree uniquely exists.

Specifically, Etree(D, rt, d) does:

1. If rt is not in the image of D, output ⊥ and terminate.
2. Set h← 1, S ← {(rt, ε)}, and V ← (rt, ε).
3. While S contains an element (v, h) with h ∈ {0, 1}<d:

(a) Remove an element (v, h) with h ∈ {0, 1}<d from S.
(b) If v is the result of collision, output ⊥ and terminate.
(c) Otherwise, if v ∈ Im(D), then let (u0, u1) be the unique pre-image of v in D.
(d) Update S ← S ∪ {(u0, h∥0), (u1, h∥1)} and V ← V ∪ {(u0, h∥0), (u1, h∥1)}.

4. Output the set V.

Observe that the set V encodes the entire tree: for each element (v, h), v encodes the label of the
hash value corresponding to that node, and h encodes its position in the tree.

We can now define the extractor E. On input (1λ, x) and access to a quantum adversary A, E
does:

1. Compute the quantum state |Sim(A)⟩ by simulating the A and its oracle access.
2. Measure the database register of |Sim(A)⟩ to obtain classical database D.
3. For every rt in the image of the database:

26

(a) Extract the tree T ← Etree(D, rt, log(M · t)).

(b) Interpret the leaves at depth log(M · t) of T as a collection of t trees T1, . . . , Tt (some of
them may be empty, if there are no corresponding leaves at this depth). That is, leaves
jM, . . . , jM + M − 1 at depth d, for j = 1, . . . , t, are interpreted as the nodes of the tree
Tj , in the order in which they are committed to according to the compiler (e.g., pre-order
traversal).

(c) If any Ti corresponds to a complete (n1, . . . , ns)-tree of accepting transcript, then use the
special soundness extractor to extract a witness w. Output w and terminate.

We now turn to analyze the success probability of the extractor E.

We define the following database properties:

– Note that E finds a witness whenever the database D measured at the end of the simulation of A
induces a (n1, . . . , ns)-transcript tree. Denote the set of all such databases, where the transcript
tree can be obtained by E by querying Etree(D, rt, log(M · t)), by PE,rt.

– Denote the set of all databases that win the database game of Gmcnc by PG. That is, PG is the
property that the database contains query-answer pairs that result in Vmcnc accepting.

– Denote by Pv,rt the set of all databases in which the verifier accepts a proof that contains rt
as the Merkle tree commitment. Moreover, this proof is contained in the output of the tree
extractor Etree(D, rt, log(M · t)).

– Finally, let Pcol denote the set of all databases containing a collision.

Note that

PG ⊆ Pcol ∪

(⋃
rt

Pv,rt

)
. (11)

This is true, since if D ∈ PG, then this means that it contains a root rt and the opening proofs
corresponding to H(x, rt). If additionally, D ∈ ¬Pcol, then these opening proofs will be found and
outputted by Etree(D, rt, log(M · t)).

27

Hence, we can deduce that

Pr
[
(x,EA(1λ, x)) ∈ R

]
= Pr

[
D ∈

⋃
rt

PE,rt

]

≥ Pr

[
D ∈ PG ∩

(⋃
rt

PE,rt

)]

= Pr [D ∈ PG]− Pr

[
D ∈ PG ∩

(⋂
rt

¬PE,rt

)]

≥ Pr [D ∈ PG]− Pr

[
D ∈

(
Pcol ∪

(⋃
rt

Pv,rt

))
∩

(⋂
rt

¬PE,rt

)]
(12)

≥ Pr [D ∈ PG]− Pr

[
D ∈ Pcol ∪

(⋃
rt

¬PE,rt ∩ Pv,rt

)]
(13)

= AdvGMCNC,db
A (λ)− Pr

[
D ∈ Pcol ∪

(⋃
rt

¬PE,rt ∩ Pv,rt

)]

≥ AdvGMCNC,db
A (λ)− q26I

(
Pcol ∪

(⋃
rt

¬PE,rt ∩ Pv,rt

)
, q

)
, (14)

where Eq. (12) is by total probability, Eq. (13) follwos from Eq. (11), and Eq. (14) follows from
Lemma 4.

By Lemma 3, we have that

AdvGMCNC,db
A (λ) ≥ AdvGMCNC,o

A (λ)− 2

√
AdvGMCNC,o

A (λ) · q/|X |

≥ AdvGMCNC,o
A (λ)− 2

√
q/2λ

We are left with bounding I (Pcol ∪ (
⋃

rt ¬PE,rt ∩ Pv,rt) , q). By Proposition 1, it holds that

I

(
Pcol ∪

(⋃
rt

¬PE,rt ∩ Pv,rt

)
, q

)
≤ I (Pcol, q) + I

(⋃
rt

¬PE,rt ∩ Pv,rt
∣∣∣¬Pcol, q

)

First, note that

I (Pcol, q) ≤ q/2λ.

This is because if D ∈ Pcol then it will forever remain in Pcol. On the other hand, if D ∈ ¬Pcol,
then tue qth query brings it to Pcol if and only if it collides with one of the previous queries, which
happens with probability less than q/2λ.

We now conclude the proof by bounding I
(⋃

rt ¬PE,rt ∩ Pv,rt
∣∣∣¬Pcol, q). Let D be a database

with less than q queries, and denote by D′ the data base D′ := D + [x → y] after the qth query.
Consider two cases:

28

– D ∈ (
⋃

rt ¬PE,rt ∩ Pv,rt) ∩ ¬Pcoll. In particular, this means that there exists a root r̂t such that
D ∈ ¬PE,r̂t ∩ Pv,r̂t. Since we are conditioning on the database remaining in ¬Pcoll, it must be
that after the qth query, it is still the case that D′ is still in Pv,r̂t. Hence, in order for D′ to be in
¬ (
⋃

rt ¬PE,rt ∩ Pv,rt)∩¬Pcoll = (
⋂

rt PE,rt ∪ ¬Pv,rt)∩¬Pcoll, it must be that D′ ∈ PE,r̂t. In other

words, the result of the qth query completes a transcript tree rooted at r̂t. Since D ∈ Pv,r̂t, the
hash tree rooted at r̂t is defined before the qth query, and includes less than q nodes. For that
tree to be complete after the qth query, the result of this query has to be one of these q nodes,
which happens with probability at most q/2λ.

– D ∈ ¬ (
⋃

rt ¬PE,rt ∩ Pv,rt)∩¬Pcoll = (
⋂

rt PE,rt ∪ ¬Pv,rt)∩¬Pcoll. Then, in order for the qth query
to put D′ in (

⋃
rt ¬PE,rt ∩ Pv,rt)∩¬Pcoll, there must be some r̂t such that D ∈

(
PE,r̂t ∪ ¬Pv,r̂t

)
∩

¬Pcoll but D′ ∈
(
¬PE,r̂t ∩ Pv,r̂t

)
∩¬Pcoll. It cannot be that D ∈ PE,r̂t, since otherwise, D

′ ∈ PE,r̂t,
since we are conditioning on D′ having no collisions. Hence, it must be that D ∈ ¬Pv,r̂t but
D′ ∈ ¬PE,r̂t∩Pv,r̂t. In other words, the q query produced an accepting proof without there being
a complete (n1, . . . , ns)-transcript tree in D′. If the qth query is to H, then the same argument
from the proof of Theorem 2 shows that D′ ∈ D ∈ Pv,r̂t with probability at most ((N − 1)/N)t.
If the qth query is to Hcom, then it puts D′ in ¬PE,r̂t ∩ Pv,r̂t only if it hits an element already

in D. This, as above, occurs with probability at most q/2λ.

Taking everything together, we obtain that

Pr
[
(x,EA(1λ, x)) ∈ R

]
≥ AdvGMCNC,o

A (λ)− 2
√
q/2λ − q2 · 6

(
2q/2λ + ((N − 1)/N)t

)
,

completing the proof of the theorem.

Acknowledgments

Lior Rotem is supported by the Simons Foundation and a research grant from Protocol Labs.
Stefano Tessaro was supported in part by NSF grants CNS-2026774, CNS-2154174, a JP Morgan
Faculty Award, a CISCO Faculty Award, and a gift from Microsoft.

References

1. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys. In Y. Zheng, editor, ASI-
ACRYPT 2002, volume 2501 of LNCS, pages 415–432. Springer, Berlin, Heidelberg, Dec. 2002.

2. A. Ambainis, A. Rosmanis, and D. Unruh. Quantum attacks on classical proof systems: The hardness of quantum
rewinding. In 55th FOCS, pages 474–483. IEEE Computer Society Press, Oct. 2014.

3. T. Attema and R. Cramer. Compressed Σ-protocol theory and practical application to plug & play secure
algorithmics. In D. Micciancio and T. Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 513–543. Springer, Cham, Aug. 2020.

4. T. Attema, R. Cramer, and S. Fehr. Compressing proofs of k-out-of-n partial knowledge. In T. Malkin and
C. Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 65–91, Virtual Event, Aug. 2021.
Springer, Cham.

5. T. Attema, R. Cramer, and M. Rambaud. Compressed Σ-protocols for bilinear group arithmetic circuits
and application to logarithmic transparent threshold signatures. In M. Tibouchi and H. Wang, editors, ASI-
ACRYPT 2021, Part IV, volume 13093 of LNCS, pages 526–556. Springer, Cham, Dec. 2021.

6. T. Attema, S. Fehr, and M. Klooß. Fiat-shamir transformation of multi-round interactive proofs. In E. Kiltz and
V. Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 113–142. Springer, Cham, Nov.
2022.

29

7. M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma. In
A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press,
Oct. / Nov. 2006.

8. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In D. E.
Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM CCS 93, pages 62–73. ACM Press,
Nov. 1993.

9. E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In M. Hirt and A. D. Smith, editors,
TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60. Springer, Berlin, Heidelberg, Oct. / Nov. 2016.

10. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping for SNARKS
and proof-carrying data. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC, pages
111–120. ACM Press, June 2013.

11. D. Boneh and B. Chen. LatticeFold: A lattice-based folding scheme and its applications to succinct proof systems.
Cryptology ePrint Archive, Report 2024/257, 2024.

12. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry. Random oracles in a quantum
world. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer,
Berlin, Heidelberg, Dec. 2011.

13. D. Boneh and V. Shoup. A graduate course in applied cryptography (version 0.6). 2023. cryptobook.us.
14. J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-knowledge arguments for arithmetic

circuits in the discrete log setting. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 327–357. Springer, Berlin, Heidelberg, May 2016.

15. J. Bootle, A. Chiesa, Y. Hu, and M. Orrù. Gemini: Elastic SNARKs for diverse environments. In O. Dunkelman
and S. Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 427–457. Springer,
Cham, May / June 2022.

16. J. Bootle, A. Chiesa, and K. Sotiraki. Sumcheck arguments and their applications. In T. Malkin and C. Peikert,
editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 742–773, Virtual Event, Aug. 2021. Springer,
Cham.

17. J. Bootle, V. Lyubashevsky, N. K. Nguyen, and G. Seiler. A non-PCP approach to succinct quantum-safe zero-
knowledge. In D. Micciancio and T. Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
441–469. Springer, Cham, Aug. 2020.

18. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE Computer
Society Press, May 2018.

19. B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers. In A. Canteaut and Y. Ishai,
editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706. Springer, Cham, May 2020.

20. B. Bünz, M. Maller, P. Mishra, N. Tyagi, and P. Vesely. Proofs for inner pairing products and applications. In
M. Tibouchi and H. Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS, pages 65–97. Springer,
Cham, Dec. 2021.

21. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS, pages
136–145. IEEE Computer Society Press, Oct. 2001.

22. D. Catalano and D. Fiore. Vector commitments and their applications. In K. Kurosawa and G. Hanaoka, editors,
PKC 2013, volume 7778 of LNCS, pages 55–72. Springer, Berlin, Heidelberg, Feb. / Mar. 2013.

23. B. Chen, B. Bünz, D. Boneh, and Z. Zhang. HyperPlonk: Plonk with linear-time prover and high-degree custom
gates. In C. Hazay and M. Stam, editors, EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages 499–530.
Springer, Cham, Apr. 2023.

24. M.-S. Chen, A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe. SOFIA: MQ-based signatures in the
QROM. In M. Abdalla and R. Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, pages 3–33. Springer,
Cham, Mar. 2018.

25. Y. Chen and Y. Lindell. Optimizing and implementing fischlin’s transform for uc-secure zero knowledge. IACR
Commun. Cryptol., 1(2):11, 2024.

26. A. Chiesa, P. Manohar, and N. Spooner. Succinct arguments in the quantum random oracle model. In D. Hofheinz
and A. Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 1–29. Springer, Cham, Dec. 2019.

27. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness
hiding protocols. In Y. Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 174–187. Springer, Berlin,
Heidelberg, Aug. 1994.

28. Ö. Dagdelen and D. Venturi. A second look at Fischlin’s transformation. In D. Pointcheval and D. Vergnaud,
editors, AFRICACRYPT 14, volume 8469 of LNCS, pages 356–376. Springer, Cham, May 2014.

30

cryptobook.us

29. J. Don, S. Fehr, and C. Majenz. The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more.
In D. Micciancio and T. Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 602–631.
Springer, Cham, Aug. 2020.

30. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the Fiat-Shamir transformation in the quantum
random-oracle model. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of
LNCS, pages 356–383. Springer, Cham, Aug. 2019.

31. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Efficient NIZKs and signatures from commit-and-open protocols
in the QROM. In Y. Dodis and T. Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages
729–757. Springer, Cham, Aug. 2022.

32. D. Feist and D. Khovratovich. Fast amortized KZG proofs. Cryptology ePrint Archive, Paper 2023/033, 2023.
33. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In

A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Berlin, Heidelberg, Aug.
1987.

34. M. Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors. In V. Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer, Berlin, Heidelberg, Aug. 2005.

35. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In H. Shacham and
A. Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer, Cham, Aug. 2018.

36. G. Fuchsbauer, A. Plouviez, and Y. Seurin. Blind Schnorr signatures and signed ElGamal encryption in the
algebraic group model. In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of
LNCS, pages 63–95. Springer, Cham, May 2020.

37. J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using signatures. In
E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 177–194. Springer, Berlin, Heidelberg, May
2003.

38. A. Ghoshal and S. Tessaro. Tight state-restoration soundness in the algebraic group model. In T. Malkin and
C. Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS, pages 64–93, Virtual Event, Aug. 2021.
Springer, Cham.

39. A. Goel, M. Green, M. Hall-Andersen, and G. Kaptchuk. Stacking sigmas: A framework to compose Σ-protocols
for disjunctions. In O. Dunkelman and S. Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of
LNCS, pages 458–487. Springer, Cham, May / June 2022.

40. A. Goel, M. Hall-Andersen, G. Kaptchuk, and N. Spooner. Speed-stacking: Fast sublinear zero-knowledge proofs
for disjunctions. In C. Hazay and M. Stam, editors, EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages
347–378. Springer, Cham, Apr. 2023.

41. O. Goldreich. The Foundations of Cryptography, Volume 1: Basic Tools. Cambridge University Press, Cambridge,
UK, 2001.

42. D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. In D. Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 21–38. Springer, Berlin, Heidelberg, Aug. 2008.

43. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their applications.
In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Berlin, Heidelberg, Dec.
2010.

44. J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th ACM STOC,
pages 723–732. ACM Press, May 1992.

45. Y. Kondi and a. shelat. Improved straight-line extraction in the random oracle model with applications to
signature aggregation. In S. Agrawal and D. Lin, editors, ASIACRYPT 2022, Part II, volume 13792 of LNCS,
pages 279–309. Springer, Cham, Dec. 2022.

46. A. Kothapalli and S. T. V. Setty. HyperNova: Recursive arguments for customizable constraint systems. In
L. Reyzin and D. Stebila, editors, CRYPTO 2024, Part X, volume 14929 of LNCS, pages 345–379. Springer,
Cham, Aug. 2024.

47. R. W. F. Lai and G. Malavolta. Subvector commitments with application to succinct arguments. In A. Boldyreva
and D. Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 530–560. Springer, Cham, Aug.
2019.

48. R. W. F. Lai, G. Malavolta, and V. Ronge. Succinct arguments for bilinear group arithmetic: Practical structure-
preserving cryptography. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors, ACM CCS 2019, pages
2057–2074. ACM Press, Nov. 2019.

49. B. Libert and M. Yung. Concise mercurial vector commitments and independent zero-knowledge sets with short
proofs. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 499–517. Springer, Berlin, Heidelberg,
Feb. 2010.

31

50. C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. In 31st
FOCS, pages 2–10. IEEE Computer Society Press, Oct. 1990.

51. A. Lysyanskaya and L. N. Rosenbloom. Universally composable Σ-protocols in the global random-oracle model.
In E. Kiltz and V. Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 203–233. Springer,
Cham, Nov. 2022.

52. U. Maurer. Abstract models of computation in cryptography. In N. P. Smart, editor, Cryptography and Coding,
pages 1–12, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

53. U. M. Maurer. Abstract models of computation in cryptography (invited paper). In N. P. Smart, editor, 10th
IMA International Conference on Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer, Berlin,
Heidelberg, Dec. 2005.

54. R. C. Merkle. A digital signature based on a conventional encryption function. In C. Pomerance, editor,
CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer, Berlin, Heidelberg, Aug. 1988.

55. S. Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Computer Society Press, Nov.
1994.

56. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In 22nd
ACM STOC, pages 427–437. ACM Press, May 1990.

57. R. Pass. On deniability in the common reference string and random oracle model. In D. Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 316–337. Springer, Berlin, Heidelberg, Aug. 2003.

58. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology,
13(3):361–396, June 2000.

59. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack.
In J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 433–444. Springer, Berlin, Heidelberg, Aug.
1992.

60. S. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. In D. Micciancio and T. Ris-
tenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 704–737. Springer, Cham, Aug. 2020.

61. V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor, EUROCRYPT’97,
volume 1233 of LNCS, pages 256–266. Springer, Berlin, Heidelberg, May 1997.

62. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack. Journal of
Cryptology, 15(2):75–96, Mar. 2002.

63. D. Unruh. Quantum proofs of knowledge. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 135–152. Springer, Berlin, Heidelberg, Apr. 2012.

64. D. Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle model. In E. Oswald and M. Fis-
chlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 755–784. Springer, Berlin, Heidelberg,
Apr. 2015.

65. D. Unruh. Computationally binding quantum commitments. In M. Fischlin and J.-S. Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 497–527. Springer, Berlin, Heidelberg, May 2016.

66. P. Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In R. Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 1–18. Springer, Berlin, Heidelberg, Mar. 2008.

67. R. S. Wahby, I. Tzialla, a. shelat, J. Thaler, and M. Walfish. Doubly-efficient zkSNARKs without trusted setup.
In 2018 IEEE Symposium on Security and Privacy, pages 926–943. IEEE Computer Society Press, May 2018.

68. D. Wikström. Special soundness in the random oracle model. Cryptology ePrint Archive, Report 2021/1265,
2021.

69. T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra: Succinct zero-knowledge proofs with optimal
prover computation. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of
LNCS, pages 733–764. Springer, Cham, Aug. 2019.

70. M. Zhandry. How to record quantum queries, and applications to quantum indifferentiability. In A. Boldyreva
and D. Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 239–268. Springer, Cham,
Aug. 2019.

32

	Straight-Line Knowledge Extraction for Multi-Round Protocols
	Introduction
	Preliminaries
	Special-Sound Multi-Round Proofs
	Non-Interactive Random Oracle Arguments

	A Communication Efficient-Transformation
	Overview
	The Transformation
	Knowledge Soundness
	Parameter Selection
	Strong Special Soundness
	Zero-Knowledge and Imperfect Completeness

	A Transformation Based on Cut-and-Choose
	The Transformation
	Knowledge Soundness in the ROM

	Security in the QROM
	The Transformation
	Detour: Games and Their Instability
	Knowledge Soundness

