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Abstract. There are two security notions for FHE schemes the traditional notion of IND-CPA,
and a more stringent notion of IND-CPAD. The notions are equivalent if the FHE schemes
are perfectly correct, however for schemes with negligible failure probability the FHE param-
eters needed to obtain IND-CPAD security can be much larger than those needed to obtain
IND-CPA security. This paper uses the notion of ciphertext drift in order to understand the
practical difference between IND-CPA and IND-CPAD security in schemes such as FHEW,
TFHE and FINAL. This notion allows us to define a modulus switching operation (the main
culprit for the difference in parameters) such that one does not require adapting IND-CPA
cryptographic parameters to meet the IND-CPAD security level. Further, the extra cost in-
curred by the new techniques has no noticeable performance impact in practical applications.
The paper also formally defines a stronger version for IND-CPAD security called sIND-CPAD,
which is proved to be strictly separated from the IND-CPAD notion. Criterion for turning an
IND-CPAD secure public-key encryption into an sIND-CPAD one is also provided.

Keywords: Fully homomorphic encryption · IND-CPAD security · Modulus switching
· Ciphertext drift · Noise analysis · Implementation

1 Introduction

The last fifteen years have seen rapid advances in the field of fully homomorphic encryption
The initial work of Gentry [23] was truly groundbreaking in that it established not only
(what we now call) a compact somewhat homomorphic encryption (SHE) scheme based on
lattices, but it also presented a method to bootstrap the compact SHE scheme into a fully
homomorphic encryption (FHE) scheme. Gentry’s original scheme was based on properties
of lattices of ideals of algebraic number fields, which are now considered insecure, but in
the intervening years numerous authors have presented FHE schemes based on LWE [10],
ring-LWE [11], NTRU [30], and the approximate integer GCD problem [38].

FHE and Failure Probability: FHE algorithms are much like normal encryption schemes, in
that there is a set of three algorithms: a key generation algorithm, an encryption algorithm,
and a decryption algorithm. The only difference lies in an additional evaluation algorithm
which operates on ciphertexts. For example, given any two ciphertexts c and c′ respectively
encrypting messages m and m′, there exists a public operation � such that c′′ = c � c′ is
an encryption of m′′ = m+m′. Being a fully homomorphic encryption scheme means that
arbitrary functions can be applied to the ciphertexts indefinitely. However, the correctness
of the scheme, i.e., the probability that

m = Decsk

(
Evalek

(
g, (c1, . . . , ck)

))
where m = g(m1, . . . ,mk) and, for all i ∈ {1, . . . , k}, mi = Decsk(ci), is not necessarily
equal to one. The probability that the decryption algorithm returns an incorrect message
is called the failure probability and is denoted perr. Strictly speaking this failure probability
is a function both of the scheme and of g. But for “polynomial” sized functions g we would
like the failure probability perr to be sufficiently small.
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Controlling the Noise: All practical and secure methodologies for fully homomorphic en-
cryption rely on hard lattice problems, accordingly, the resulting ciphertexts must contain
a certain level of noise to guarantee the security of the encryption. The problem is that
computing homomorphically tends to increase the noise level in the ciphertext. As long as
the noise is below a certain threshold, the ciphertext can be decrypted. However, if the
noise grows too much, it may overflow on the data itself, rendering decryption impossible.
To prevent this from happening, a special noise-reduction operation called bootstrapping
can be applied to the ciphertext, effectively resetting the noise to a nominal level. Following
Gentry’s discovery, successive generations of FHE emerged, aiming mostly at controlling
the noise growth in homomorphic computations and/or improving the bootstrapping. Two
approaches in particular have emerged:

– Bootstrapped schemes: FHE schemes are devised with the main goal of reducing as
much as possible the computing overhead induced by the bootstrapping. Examples of
such schemes include FHEW [19], TFHE [17] and its programmable extension [18], and
FINAL [7].

– Leveled schemes: FHE schemes are parametrized so that the circuit representing a given
function can be evaluated homomorphically without resorting to the bootstrap opera-
tion. As homomorphic multiplication introduces the most noise, what typically matters
is the multiplicative depth (or number of levels) of the circuit being evaluated, that
is, the largest sequence of consecutive multiplications. A leveled FHE scheme therefore
provisions a noise budget so as to support L levels of multiplications where L is the
multiplicative depth of the circuit. Examples of such FHE schemes include BFV [8,20],
BGV [9], and CKKS [16].

Beyond Semantic Security: More recent years have seen the need to refine the “standard”
encryption security notions when used with FHE schemes. For example, the recent notion
of IND-CPAD [28] (or indistinguishability under chosen-plaintext attacks with a decryption
oracle) strengthens the usual IND-CPA security notion for FHE schemes. In the IND-CPAD

model, the attacker has additional access to a decryption oracle—the attacker is however
severely restricted to the type of queries it may make to this oracle. More specifically, only
ciphertexts for which the corresponding plaintext is known to the attacker can be submitted
to the decryption oracle. This includes

– honestly generated ciphertexts by the attacker, and
– ciphertexts resulting from the evaluation of a chosen circuit on input ciphertexts whose

matching plaintexts are known to the attacker.

It is important to note in the IND-CPAD model that the circuit being homomorphically
evaluated can be chosen by an IND-CPAD attacker.

Modulus Switching: The key operation affecting the failure probability, and the one which
enables homomorphic operations itself, for the bootstrapped schemes, is that of modulus
switching. Modulus switching [10] is a way to change the modulus defining the ciphertexts
from q to q′, via scaling and rounding. As explained in [9,14], modulus switching is an
essential tool for noise management in leveled fully homomorphic encryption. It is also
an essential tool in bootstrapped fully homomorphic encryption, as it is a key step (for
example) prior the blind rotation with the so-called AP method [2,19] (incl. automorphism-
based variants as for example in [6,27]) or the GINX method [22,17]. In both cases (leveled
and bootstrapped), the challenge is to preserve correctness, namely that the ciphertexts
correctly decrypt.
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Our Contributions: The operation of modulus switching while central for enabling ho-
momorphic operations may invalidate the correctness of the decryption. Worse, it may also
affect the security. For example, the authors of [13,15] demonstrate attack scenarios wherein
IND-CPA secure FHE schemes are not IND-CPAD secure in the presence of decryption fail-
ures. In particular, the authors of [15] even show that the knowledge of failing ciphertexts
may be turned into a key recovery attack in the IND-CPAD model. The attacks in this ex-
tended model apply to any FHE scheme, including to schemes in the first category above;
i.e., the bootstrapped schemes typified by FHEW, TFHE, and FINAL. These attacks are
effective if the failure probability of the underlying FHE scheme is too high. However, if
the failure probability in such schemes is set very low (in order to obtain for example 128
bits of security) then the parameters become prohibitively large. As aforementioned, de-
cryption failures may result from the extra drift noise following a modulus switching. The
main contribution of this paper are new modulus-switching methods that better control
the failure probability.

Remarkably, the new modulus switching operations we introduce do not necessarily
require adapting IND-CPA cryptographic parameters to meet the IND-CPAD security level.
Further, the extra cost incurred by the new techniques is minimal and has an unnoticeable
performance impact in practical applications. Thus, the methods we introduce enable lower
failure probabilities to be deployed in FHE schemes; thus preventing IND-CPAD attacks
as well as enabling smaller parameters. Two generic approaches are described. For each
approach, several implementations featuring different advantages and disadvantages are
presented. The proposed countermeasures against large drift are extensively studied and
analyzed. Numerical experiments with real measurements confirm the results and concrete
parameters we obtain from our analyses. As an illustration, it turns out that one of our
generic defenses typically doubles the strength of the failure probability. For example, a
TFHE parameter set designed to offer a failure probability of perr = 2−64 with the regular
modulus switching operation actually enjoys a failure probability of 2−128 when using our
new modulus switching techniques, at an unnoticeable extra cost.

The second main contribution of this paper is definitional, noting that FHE schemes
are seemingly in a security dilemma. On the one hand, it is generally expected that public-
key cryptosystems are secure against chosen-ciphertext attacks in their practical deploy-
ment [36]. On the other hand, it is well known that FHE cannot meet such strong secu-
rity requirements. The dilemma may be resolved by either embedding IND-CPA secure
FHE schemes into protocols that ensure security even against active attackers [37] or to
strengthen the scheme using additional cryptographic machinery [32]. When attempting to
extend these approaches to approximate schemes or schemes with zero failure probability,
we remark in this paper that the IND-CPAD model may actually not be strong enough, at
least in the public-key setting. The reason is a mismatch between how “honestly generated
ciphertexts” are modeled in the IND-CPAD model and how this is enforced in applications.
In particular, in the corresponding applications the adversary may construct ciphertexts
using the public key (which is the entire point of using a public-key scheme) and is then re-
quired to prove that the ciphertext is well-formed. The mismatch is that in the IND-CPAD

model, the adversary needs to submit the plaintexts to the encryption oracle, where it
does not know or get to choose the randomness, while in applications it may choose the
randomness as long as the resulting ciphertexts are still well-formed.

To address this issue, we provide a stronger notion of IND-CPAD security and clarify its
relationship to the IND-CPAD definition. Perhaps surprisingly, we show that they are not
equivalent, even for public-key schemes. The new security notion precisely captures how
the failure probability needs to be computed in order to claim security in aforementioned
applications. We show possible avenues to achieving it, including an outline of how to use
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our new modulus switching methods to improve security in this extended model, using
TFHE as an example.

2 Preliminaries

Notations: For a positive integer q, we write Z
/
qZ the ring of integers modulo q, which is

identified with
q
−
⌊ q
2

⌋
,
⌈ q
2

⌉
− 1

y
, {−bq/2c, . . . , 0, . . . , dq/2e − 1}. The operator b·e denotes

the rounding to the nearest integer, rounding downwards in the case of a tie. If D is a
probability distribution, a ← D indicates that a is sampled according to D. The uniform
distribution over a set S is written U(S); the notation a

$← S means that a is taken
uniformly at random in S. The cardinality of a set S is denoted by ]S.

2.1 Probability and Statistics

It is useful to review a few basic concepts of probability theory and statistics. For a random
variable X, its expected value, or mean, is denoted by E[X] and its variance, i.e., the
expected value of the squared deviation from the mean, by Var(X).

The normal distribution with mean µ and variance σ2 is written N (µ, σ2), and the
probability density function of a random variable N ∼ N

(
µ, σ2

)
is given by

ϕN (t) = 1
σ·
√
2π
· exp

(
− (t−µ)2

2σ2

)
.

The complementary error function, denoted by erfc, relates to the probability that a random
variable N ∼ N

(
µ, σ2

)
does not lie in [µ − rσ, µ + rσ] for some parameter r ≥ 0. More

precisely, letting p = Pr
[
N ∈ [µ− rσ, µ+ rσ]

]
, one has

Pr
[
N /∈ [µ− rσ, µ+ rσ]

]
= 1− p = erfc

(
r√
2

)
,

which gives, if Φ denotes the cumulative distribution function of N (0, 1), that

Pr
[
N ≤ x

]
=

∫ x

−∞
ϕN (t) dt = 1

2 erfc
(
−x−µ

σ
√
2

)
, Φ

(
x−µ
σ

)
. (2.1)

The following table lists a number of values for 1− p as a function of r.

r 1 2 3 . . . 7.15 9.16 10.29 13.11 16.13

1− p 31.73% 4.55% 0.27% . . . 2−40 2−64 2−80 2−128 2−192

2.2 Fully Homomorphic Encryption

A public-key fully homomorphic encryption (FHE) scheme is given by a tuple of algorithms
(Gen,Enc,Dec,Eval) with the following properties:

– (pk, ek, sk) ← Gen(1λ). On input of the security parameter λ this probabilistic algo-
rithm outputs the public key encryption key pk, the evaluation key ek, and the secret
decryption key sk.

– c ← Encpk(m). On input of the public key pk and a message m ∈ M in the message
space, this probabilistic algorithm outputs a ciphertext c.

– m ← Decsk(c). On input of a (valid) ciphertext c and the secret key sk this returns a
message m.

– c← Evalek
(
g, (c1, . . . , ck)

)
. On input of the evaluation key ek, a function g :Mk →M

and a sequence of k ciphertexts (c1, . . . , ck) this returns a ciphertext c.
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Correctness: We not only require that Decsk
(
Encpk(m)

)
= m, but also that the Eval

function returns with overwhelming probability ciphertexts which encrypt the message
obtained by applying g to the messages encrypted by the input ciphertexts, i.e., if m =
g(m1, . . . ,mk) and, for all i ∈ {1, . . . , k}, mi = Decsk(ci),

m = Decsk

(
Evalek

(
g, (c1, . . . , ck)

))
.

IND-CPAD Security: It has been established that IND-CPA security is not necessarily
sufficient to secure certain FHE applications. Thus the more modern notion, see e.g., [28,29],
is to consider a related notion called IND-CPAD security.

Formally, IND-CPAD considers the indistinguishability experiment IndExp given in
Figure 2.1, for security parameter λ. The underlying security experiment is indexed by a
random bit b ∈ {0, 1}. A common state S is maintained, which is made up of triplets of
the form (m0,m1, c). The components of the jth entry of S are respectively accessed as
S[j].m0, S[j].m1, and S[j].c.

IndExpb(λ)

1. The key generation algorithm is run to obtain keys pk, ek, and sk; (pk, ek, sk) ← Gen(1λ). Let
M denote the message space.

2. The adversary A receives (pk, ek) and is given access to three oracles sharing a common state
S initialized to ∅:

– An encryption oracle Enc that on input a pair of messages (m0,m1) ∈M×M returns the
ciphertext c← Encpk(mb). The state is updated as S ← S ∪ (m0,m1, c).

– An evaluation oracle Eval that on input a function g : Mk → M and a sequence of k
indexes (j1, . . . , jk) ∈ {1, . . . , ]S}k returns the ciphertext c← Evalek(g, S[j1].c, . . . , S[jk].c).
The state is updated as

S ← S ∪
(
g(S[j1].m0, . . . , S[jk].m0), g(S[j1].m1, . . . , S[jk].m1), c

)
.

– A decryption oracle Dec that on input an index j ∈ {1, . . . , ]S} checks whether S[j].m0 =
S[j].m1 and, if so, returns Decsk(S[j].c).

3. The adversary A interacts with the oracles and eventually outputs a bit b′.
4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Fig. 2.1: The IND-CPAD security experiment IndExpb(λ).

Informally, an FHE scheme is perfectly secure for the IND-CPAD security notion if the
best an attacker can do is to guess the value of b at random in the above experiment (i.e.,
the attacker outputs a random bit b′). With such a strategy, the attacker will recover the
value of b with probability 1

2 . The success probability is therefore defined as the distance
between the probability that the guess b′ = b and 1

2 . This is formalized in Definition 2.1.

Definition 2.1. A public-key FHE scheme is IND-CPAD-secure if for any PPT adversary
A, it holds that ∣∣∣Pr[IndExpb(λ) = 1

]
− 1

2

∣∣∣
is negligible in security parameter λ.

3 Strengthening IND-CPAD Security

The IND-CPAD security model, as defined in Figure 2.1, captures the scenario where a user
can only submit honestly generated (or evaluated) ciphertexts for decryption. In particular,
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the model implicitly assumes that, on input a k-variate function g and k indexes j1, . . . , jk,
the evaluation oracle returns a valid encryption of g(S[j1].mb, . . . , S[jk].mb)—or at least,
with high probability. Such an encryption scheme is termed statistically correct in [29].

A different scenario, considered in [13], where a user multiplies a ciphertext by a large
scalar in order to have the noise overflowing the message, will not be considered as an
attack in our model. In order to be considered within the security model, and therefore for
the resulting ciphertext being qualified as ‘honest’, the corresponding scalar multiplication
circuit (modeling function g) should apply bootstrappings when needed to contain the noise
growth.

In this section we formalize and discuss a strengthened version of IND-CPAD security,
which we call strong IND-CPADor sIND-CPAD.

3.1 Strong IND-CPAD

We argue that the definition of IND-CPAD security given in [28] (i.e., Definition 2.1) is
too weak for certain practical applications, at least in the public key setting. The reason
is that in the corresponding security game, an adversary can only submit fresh ciphertexts
to the state S that have been generated using the encryption oracle, which generates the
randomness itself, following the specifications of the scheme. This is very hard, if not
impossible, to enforce in applications where the adversary may generate ciphertexts: even
if the adversary is forced to prove the well-formedness of the ciphertexts, as, for example,
in the protocol in [37] or, implicitly, in the construction in [12], this does not prove that
the encryption randomness was indeed chosen according to the prescribed distribution. In
order to fix this, we need the sIND-CPAD notion.

As formalized in Figure 3.1, the sIND-CPAD model is obtained by modifying the security
experiment from Figure 2.1 by giving the adversary access to another encryption oracle
Enc′. On input of a message m ∈M and encryption randomness r, this oracle returns the
ciphertext c← Encpk(m; r), and updates the state by setting S ← S ∪ (m,m, c). Note that
we cannot simply allow the adversary to submit the randomness for the Left-or-Right-type
oracle Enc, since that would render the definition unachievable.

Definition 3.1. A public-key FHE scheme is sIND-CPAD-secure if for any PPT adversary
A, it holds that ∣∣∣Pr[sIndExpb(λ) = 1

]
− 1

2

∣∣∣
is negligible in security parameter λ.

Interestingly, the idea of taking randomness as an additional input to the encryption or-
acle already appears in [12] for proving security of one of their constructions; cf. Section 6.2
of [12]. However, the notion was not formally defined and the relationship to the IND-CPAD

model remains unclear. Below we show that the two notions are not equivalent and explore
avenues to generically transform an IND-CPAD secure scheme into an sIND-CPAD secure
one.

3.2 Separating IND-CPAD and sIND-CPAD

It is clear that sIND-CPAD implies IND-CPAD, since the oracles available to the adversary
in the IND-CPAD game are a strict subset of the ones in the sIND-CPAD game. We now
show that IND-CPAD does not imply sIND-CPAD, which means that sIND-CPAD is strictly
stronger than IND-CPAD.
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sIndExpb(λ)

1. The key generation algorithm is run to obtain keys pk, ek, and sk; (pk, ek, sk)← Gen(1λ). The
message space is denoted by M and the space of encryption randomness by R.

2. The adversary A receives (pk, ek) and is given access to three oracles sharing a common state
S initialized to ∅:

– An encryption oracle Enc that on input a pair of messages (m0,m1) ∈M×M returns the
ciphertext c← Encpk(mb). The state is updated as S ← S ∪ (m0,m1, c).

– Another encryption oracle Enc′ that on input a message and randomness (m, r) ∈ M×R
returns the ciphertext c← Encpk(m; r). The state is updated as S ← S ∪ (m,m, c).

– An evaluation oracle Eval that on input a function g : Mk → M and a sequence of k
indexes (j1, . . . , jk) ∈ {1, . . . , ]S}k returns the ciphertext c← Evalek(g, S[j1].c, . . . , S[jk].c).
The state is updated as

S ← S ∪
(
g(S[j1].m0, . . . , S[jk].m0), g(S[j1].m1, . . . , S[jk].m1), c

)
.

– A decryption oracle Dec that on input an index j ∈ {1, . . . , ]S} checks whether S[j].m0 =
S[j].m1 and, if so, returns Decsk(S[j].c).

3. The adversary A interacts with the oracles and eventually outputs a bit b′.
4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Fig. 3.1: The sIND-CPAD security experiment sIndExpb(λ).

The two notions are very easily separated when considering symmetric-key schemes. For
example, consider Regev-type encryption. If parameters are chosen properly, the scheme is
IND-CPAD secure. However, in the sIND-CPAD model, choosing the encryption random-
ness of a ciphertext implies that the randomness is known; in particular, for Regev-type
encryption, that means that the adversary knows the noise e and can remove it. This yields
a linear equation in the secret key, which can be recovered after n queries where n denotes
the LWE dimension.

The issue with symmetric-key encryption in the sIND-CPAD model is that a ciphertext
with known randomness may leak information about the secret key. This issue does not
arise in public-key encryption, since here the adversary may construct the ciphertext itself
using the public key. Accordingly, the new oracle does not provide the adversary with any
additional information. So one might wonder if IND-CPAD and sIND-CPAD are equivalent
for public-key schemes. We now show that we can even separate the two notions in the
public-key setting.

Consider an arbitrary IND-CPAD secure public-key FHE scheme. For simplicity, as-
sume its message space is Z2. Modify encryption such that it takes an additional string of
randomness r′ of length λ and define:

Enc′pk(m; r, r′) =

{
Encpk(1−m; r) if r′ = 0λ

Encpk(m; r) otherwise
.

The modified scheme is still IND-CPAD secure, since the probability that any ciphertext
with r′ = 0λ is added to the global game state S is negligible. So in the IND-CPAD game,
the two schemes are statistically indistinguishable. In contrast, the game is not sIND-CPAD

secure, since an adversary can request an encryption of m with r′ = 0λ, which will be added
to the game state S and decrypts to 1 −m. Accordingly, the scheme is susceptible to the
generic distinguishing attack described in Appendix A.1 in the sIND-CPAD game.

The next natural question is how to achieve sIND-CPAD security. Note that existence
of an sIND-CPAD secure symmetric FHE scheme is trivial as long as an sIND-CPAD se-
cure asymmetric FHE exist, since one can simply keep the public key secret and call it a
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symmetric scheme, see, e.g., [35]. So for the rest of this section, we focus on the public-key
setting.

3.3 A New Definition of Correctness for FHE

At the core of IND-CPAD and sIND-CPAD security of schemes with failure probability
is the precise definition of correctness. Correctness of an FHE scheme can be defined in
(at least) two different ways: either it requires that decryption succeeds with probability 1
(perfectly correct) or with overwhelming probability (statistically correct). An example of
the latter definition is given in [28]:

Definition 3.2. A homomorphic encryption scheme (Gen,Enc,Dec,Eval) is statistically
correct if for all keys (pk, ek, sk) in the support of Gen(1λ), for all circuits g :M` → M
and for all mi ∈M, 1 ≤ i ≤ `, it holds that

Pr
[
Decsk

(
Evalek

(
g, (ci)

`
i=1

))
6= g

(
(mi)

`
i=1

)∣∣∣ci ← Encpk(mi) for 1 ≤ i ≤ `
]

is negligible.

Clearly, perfect correctness is stronger than statistical correctness. For the IND-CPAD

model it is sufficient that an IND-CPA secure scheme is statistically correct as any such
scheme is IND-CPAD secure as proven in [28]. In other words, IND-CPA security and statis-
tical correctness imply IND-CPAD security. This is in contrast to the sIND-CPAD definition.
To see this, notice that the construction in the previous paragraph, separating IND-CPAD

and sIND-CPAD, yields a scheme that is IND-CPA secure (since it is IND-CPAD secure)
and statistically correct, yet it is completely sIND-CPAD insecure. So while IND-CPA se-
curity and statistical correctness imply IND-CPAD security, they do not imply sIND-CPAD

security.
On the other hand, an IND-CPA secure scheme that is perfectly correct is also sIND-CPAD

secure, so IND-CPA security and perfect correctness do imply sIND-CPAD security. We can
adapt the definition of statistical correctness such that it is also sufficient for sIND-CPAD

security:

Definition 3.3 (ACER Correctness). A homomorphic encryption scheme defined by
(Gen,Enc,Dec,Eval) is statistically correct under adversarially chosen encryption random-
ness (ACER) if for all keys (pk, ek, sk) in the support of Gen, for all circuits g :M` 7→ M
and for all (mi, ri) ∈M×R, 1 ≤ i ≤ ` (where R is the randomness space of Enc), it holds
that Decsk

(
Encpk(mi; ri)

)
= mi and

Pr
[
Decsk

(
Evalek

(
g, (ci)

`
i=1

))
6= g

(
(mi)

`
i=1

)∣∣∣ci ← Encpk(mi; ri) for 1 ≤ i ≤ `
]

is negligible.

Notice the probability in the above definition is only over the randomness of Eval, so for
schemes with deterministic Eval it is equivalent to perfect correctness.

Proposition 3.4. Any public-key FHE scheme that is IND-CPA secure and ACER correct
is sIND-CPAD secure.

Proof. The proof is similar to the one showing that for statistically correct schemes, IND-CPA
security implies IND-CPAD security [28], with the additional observation that queries to
the Enc′ oracle in the sIND-CPAD game can be simulated by performing the encryption
using the public key. Decryption queries on such ciphertexts can be answered correctly by
returning the corresponding message due to the perfect correctness of fresh ciphertexts. ut
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We mention that there are further subtleties involved when defining imperfect correct-
ness for FHE, as pointed out in [1], but these are orthogonal to this work, so we do not go
into detail here.

3.4 Achieving ACER Correctness

A tempting approach to achieve ACER correctness could be to apply a random oracle to
the input randomness to obtain the encryption randomness in order to force the latter to
be uniform. Unfortunately, that does not work as we show next. The reason is that the
adversary may still bias the encryption randomness by using rejection sampling.

Consider a standard asymmetric LWE-based additively homomorphic scheme and re-
strict the supported circuit class to circuits with up to k additions. Assume parameters (in
particular the noise distribution) are set up in a way that up to k additions are possible
with failure probability p assuming the noise is indeed sampled from the prescribed centered
distribution over Z, where p is negligible. This means that the scheme is statistically correct.
Apply the transformation that derives the randomness to sample the noise by applying a
random oracle to an input string of randomness in the hope of achieving the same level of
ACER correctness. An adversary can now construct k ciphertexts, where all of them have
noise component with the same sign, simply by trial and error. In expectation this only
requires 2k trial encryptions. Clearly, summing k such ciphertexts will have a higher failure
probability p′ > p, which may be non-negligible. It follows that the scheme is not ACER
correct.

We now give a sufficient condition for statistically correct schemes that allows to
construct an ACER correct scheme. Specifically, if a statistically correct scheme has re-
randomizable ciphertexts, then there is a simple transformation that achieves ACER cor-
rectness. The idea is to re-randomize each input ciphertext before running Eval. Combining
this with Proposition 3.4 shows that if the scheme was IND-CPAD secure before this trans-
formation, the transformed scheme is sIND-CPAD secure.

Proposition 3.5. Let (Gen,Enc,Dec,Eval) be a public-key homomorphic encryption
scheme with ciphertext space C and encryption randomness space R. If the scheme is
statistically correct, Pr[Decsk(Encpk(m)) = m] = 1, and there exists a PPT algorithm
re-rand: C → C such that for any (m, r) ∈M×R the distributions

{
re-rand

(
Encpk(m; r)

)}
and {Encpk(m)} are statistically indistinguishable, then the scheme, where Eval′ is defined
as

Eval′ek
(
g, c1, . . . , c`

)
= Evalek

(
g, re-rand(c1), . . . , re-rand(c`)

)
,

is ACER correct.

Proof. By the definition of statistical correctness, it holds that, for all keys (pk, ek, sk) in
the support of Gen(1λ), for all circuits g :M` →M and for all mi ∈M, 1 ≤ i ≤ `, we have
that

Pr
[
Decsk

(
Evalek

(
g, (ci)

`
i=1

))
6= g

(
(mi)

`
i=1

)∣∣∣ci ← Encpk(mi) for 1 ≤ i ≤ `
]

is negligible. By the property of re-rand, it follows that

Pr
[
Decsk

(
Evalek

(
g, re-rand(ci)

`
i=1

))
6= g

(
(mi)

`
i=1

)∣∣∣ci ← Encpk(mi; r), 1 ≤ i ≤ `
]

is also negligible for all (mi, r) ∈M×R. The proposition follows. ut
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4 Ciphertext Drift

Our main results are based on the concept of ciphertext drift. To understand ciphertext
drift one has to dig into the modulus switching algorithm used in Regev-style [34] FHE
encryption algorithms. To fix notation in Figure 4.1 we present a basic Regev-style encryp-
tion scheme (just the main algorithms and not any homomorphic operations). It should be
noted that the correctness of the decryption requires the noise e present in a ciphertext c
satisfies |e| < ∆/2. Typically, the error distribution χ used in Regev-type is a discretized or
discrete version of the normal distribution N (0, σ2) with mean 0 and (small) variance σ2.

Regev Encryption

Key generation On input security parameter, select positive integers n, t, q with t dividing q, let
∆ = q/t, and define a discretized error distribution χ over Z. Finally, sample a random vector
s = (s1, . . . , sn)

$← U
(
{0, 1}n

)
.

Encryption The encryption of a message m ∈ Z/tZ (viewed as an integer in {0, . . . , t− 1}) is
given by c = (a1, . . . , an, b) ∈ (Z/qZ)n+1 with{

(a1, . . . , an)
$← (Z/qZ)n

b =
∑n

j=1 aj · sj + µ+ e (mod q)

and µ = ∆ ·m, where e ∈ Z is a (small) noise drawn randomly from χ.
Decryption To decrypt c = (a1, . . . , an, b), using s = (s1, . . . , sn), return bµ∗/∆e mod t where

µ∗ = b−
∑n

j=1 aj · sj (mod q).

Fig. 4.1: A simple Regev-style encryption scheme.

4.1 Modulus Switching and the Drift Vector/Error
In Figure 4.2 we define the modulus switching operation for Regev-style encryption. The
modulus switching operation forms the key to the bootstrapped FHE algorithms such
as FHEW, TFHE, and FINAL. It is also the place in these algorithms where the most
ciphertext noise is introduced into the data; and thus the place where the failure probability
of the scheme is most acute.

ModSwitch

With the previous notations for Regev encryption, a Regev ciphertext modulo q, i.e., c =(
a1, . . . , an, b =

∑n
j=1 aj · sj + ∆ · m + e

)
∈ (Z/qZ)n+1, encrypting a message m, is converted

to a Regev ciphertext modulo q′

c̃ = (ã1, . . . , ãn, b̃) ∈ (Z/q′Z)n+1

where

ãj =
⌊

aj

q
· q′

⌉
(mod q′) for 1 ≤ j ≤ n

b̃ =
⌊

b
q
· q′

⌉
(mod q′)

.

Fig. 4.2: The modulus switching operation for Regev-style ciphertexts.

Assume for simplicity that q′ divides q in the modulus switching algorithm in Figure 4.2
(which is the most important case for practical instantiations of FHEW, TFHE, and FI-
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NAL). The drift vector is the vector consisting of the scaling/rounding errors resulting from
modulo switching ciphertext components modulo q to modulo q′. The extra error term re-
sulting from the modulus switching, that adds to the noise already present in the input
ciphertext c, is called the drift noise and is denoted edrift. Hence, writingαj = ãj · q

q′ − aj for some αj ∈
r
− q

2q′ ,
q
2q′

z

β = b̃ · q
q′ − b for some β ∈

r
− q

2q′ ,
q
2q′

z ,

the drift vector is given by (α1, . . . , αn, β) ∈ Zn+1 and the drift noise is given by

edrift = β −
n∑

j=1

αj · sj ∈ Z .

Indeed, letting ∆′ = q′/t, it can be verified that

q
q′ ·

[(
b̃−

∑n
j=1 ãj · sj −∆′ ·m

)
mod q′

]
≡ β + b−

∑n
j=1(αj + aj) · sj −∆ ·m (mod q)

= e+ edrift .

If |e+ edrift| < ∆/2, then the mod-switched ciphertext c̃ correctly decrypts to m.

4.2 Affect on FHE Operations: TFHE Case Study

To understand the affect of the drift on FHE operations we examine the implications for
TFHE [17] in particular. For TFHE we have that q and t in Regev’s scheme are both
powers of two, with q � t. A TFHE ciphertext of a message m ∈ Z

/
tZ under private key

s ∈ {0, 1}n is a vector of the form(
a = (a1, . . . , an), b =

∑n
i=1 ai · si +∆ ·m+ e

)
∈ (Z

/
qZ)n+1

for some noise error e satisfying |e| < ∆
2 . The programmable bootstrapping in TFHE enables

to transform an encryption of m into an encryption of f(m) for some function f : Z
/
tZ→

Z
/
tZ; the regular bootstrapping corresponds the function f being the identity map. The

salient feature of this operation is that it resets the noise present in the resulting ciphertext
to a nominal value. We refer the reader to [24] for details.

In very rare cases, namely with failure probability perr, it may happen that the pro-
grammable bootstrapping does not return a TFHE encryption of f(m). The main source
of error originates from the modulus switch occurring prior to the blind rotation.

In TFHE the modulus switching operation maps the modulus from the input ciphertext
modulus q, to the output ciphertext modulus q′ = 2N , which is also a power for two. The
value N here coming from the dimension of a ring-LWE instance. In other words the input
TFHE ciphertext is1

C ←
(
a = (a1, . . . , an), b =

∑n
i=1 ai · si +∆ ·m+ ein

)
∈ (Z

/
qZ)n+1

whilst the output ciphertext is the vector (ã1, . . . , ãn, b̃) ∈ (Z
/
2NZ)n+1 with{

ãi =
⌊
ai
q · 2N

⌉
for i ∈ {1, . . . , n}

b̃ =
⌊
b
q · 2N

⌉ .

1 For more clarity, the noise error present in the input ciphertext is denoted ein ∈ Z.
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The resulting ciphertext fails to decrypt correctly when

f

(⌊
b̃−

∑n
i=1 ãi·si (mod 2N)

2N/t

⌉)
6= f(m) (mod t) .

In order to cover every function f , including the identity map, we need to analyze⌊
b̃−

∑n
i=1 ãi·si (mod 2N)

2N/t

⌉
(4.1)

as an approximation of m.
As aforementioned, elements modulo q (resp. modulo 2N) are represented as integers

in J−q/2, q/2− 1K (resp. J−N,N − 1K). Hence, as shown in Lemma 4.1, we can write ai =
ãi · q

2N − αi for some αi ∈
q
− q

4N , q
4N − 1

y
and b = b̃ · q

2N − β for some β ∈
q
− q

4N , q
4N − 1

y
.

Thus, letting Q′ = q/(2N), we obtain(
b̃−

∑n
i=1 ãi · si −

2N
t ·m

)
mod 2N

=
Q′

(
b̃−

∑n
i=1 ãi · si −

2N
t ·m

)
mod q

Q′

=

(
(b+ β)−

∑n
i=1(ai + αi)si −∆ ·m

)
mod q

Q′

=

(
ein +

(
β −

∑n
i=1 αi · si

))
mod q

Q′ .

We observe that there are two error components in the above expression: ein := Err(C)
and edrift := β−

∑n
i=1 αi · si. Analysing the error values ein and edrift form the backbone of

this paper.
Write q = 2Ω, N = 2ν−1 and Q′ = q

2N = 2Ω−ν where ν < Ω. The following lemma
examines the conversion error when an element of Z

/
qZ is rescaled as Q′ times an element

of Z
/
2NZ.

Lemma 4.1. Let k ∈ Z
/
qZ. Then k̃ :=

⌊
k
q · 2N

⌉
(mod 2N) satisfies Q′ · k̃ = k + κ with

κ ∈ J− q
4N , q

4N − 1K ⊆ Z
/
qZ. Furthermore, if k ← U(Z

/
qZ) then k̃ is uniform over Z

/
2NZ

and κ is uniform over J− q
4N , q

4N − 1K.

Proof. See Appendix B. ut

Let S =
q
− q

4N , q
4N −1

y
. From Lemma 4.1, we have Q′ ·ãi = ai+αj where αi ∈ U(S) and

Q′ ·b̃ = b+β where β ∈ U(S). Since αj is uniform, it follows that E[αi] =
4N
2q

∑q/(4N)−1
j=−q/(4N) j =

2N
q ·

−q
4N = −1

2 and, similarly, E[αi
2] = 4N

2q

∑q/(4N)−1
j=−q/(4N) j

2 = 2N
q

((−q
4N

)2
+ 2

∑q/(4N)−1
j=1 j2

)
=

2N
q

(
q2

16N2 + 2
( q
4N

−1) q
4N

(2( q
4N

−1)+1)

6

)
= q2+8N2

48N2 . We so obtain Var(αi) = E[αi
2] − E[αi]

2 =

q2−4N2

48N2 . Likewise, under the LWE assumption, we have E[β] = −1
2 and Var(β) = q2−4N2

48N2 .
The drift error is defined as edrift = β−

∑n
i=1 αi·si. Noting that E[si] = 1

2 and Var(si) =
1
4

for binary keys, we get

E[edrift] = E[β]− n · E[αi · si] = E[β]− n · E[αi] · E[si]

=
n− 2

4
(4.2)

12



and
Var(edrift) = Var(β) + nVar(si · αi)

= Var(β) + n
(
Var(si)Var(αi) +

Var(si) · E[αi]
2 +Var(αi) · E[si]2

)
=

(n+ 2)q2

96N2
+

n− 4

48
. (4.3)

Remark 4.2. For an even r, instead of representing elements of Z
/
rZ as

q
− r

2 ,
r
2 − 1

y
, we

could consider the balanced set
q
− r

2 ,
r
2

y
and use indiscriminately − r

2 or r
2 . The rounding

operation would then round uniformly at random upwards or downwards in the case of a
tie. The previous analysis can be adapted to this setting. With the previous notations, we
obtain E[αi] = E[β] = 0 and Var(αi) = Var(β) = q2+8N2

48N2 , which leads to

E[edrift] = 0 and Var(edrift) =
(n+ 2)q2

96N2
+

n+ 2

12
.

In practice, this does not change much the variance since the term (n+2)q2

96N2 dominates
(typical parameters include N ∈

{
210, 211, 212

}
and q ∈

{
232, 264

}
).

5 Countermeasures Against Large Drift

In this section we outline two general countermeasures against large drift values for FHE
schemes. Our countermeasures are based on two important observations:

1. A ciphertext that is produced by a partially or fully homomorphic encryption scheme
can easily be transformed to another ciphertext encrypting the same plaintext, under
the same scheme.

2. Modulus switching is a public operation, there are no secrets involved; in particular,
the private key is not required. As a result, the drift vector, resulting from the modulus
switching operation, can be publicly computed from the input ciphertext modulo q and
the resulting mod-switched ciphertext modulo q′.

5.1 Ciphertext Transformation

To explain the first observation, note that if the encryption scheme is additively homomor-
phic, another ciphertext of the same plaintext may be obtained by adding an encryption of
zero. Likewise, if the encryption scheme is multiplicatively homomorphic, one may instead
multiply with an encryption of one. For the FHE schemes considered in this paper, one
may either add an encryption of zero or multiply with an encryption of one to get another
ciphertext encrypting the same plaintext.

In what follows we focus on addition as a way of transforming the ciphertext. We let �
(resp. •) denote the ciphertext addition (resp. multiplication of a ciphertext by a scalar). We
assume that a set of Z encryptions of zero, D1, . . . ,DZ , are provided as public parameters
of the scheme (for example they are included in the evaluation key ek). The process of
adding an encryption of zero to transform a given ciphertext can be deterministic, random,
or pseudo-random.

Let c denote the input ciphertext to our transformation process, we will denote the
transform of c to a new ciphertext encrypting the same value by

c′ ← Transform
(
c, (D1, . . . ,DZ), cnt

)
,
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where cnt is a counter. Upon each call to Transform the counter cnt is incremented by
one. We assume (for ease of exposition) that on the first call to Transform for an in-
put ciphertext c the value of cnt is set to 1. We assume, for syntactic convenience, that
Transform(c, (D1, . . . ,DZ), cnt) with cnt = 0 outputs the input ciphertext c.

The algorithm Transform can be deterministic, random, or pseudo-random.

– Deterministic Transformation Process: Here the input ciphertext c is transformed into
c�Dcnt, for cnt = 1, 2, . . . , Z. If further calls to transformations are needed, ciphertext
can for example be transformed into c�D1 �Dcnt−Z , for cnt = Z + 1, . . . , 2 · Z. And
so on with D2,D3, . . . ,DZ ; next with D1 � D2,D1 � D3, . . . ,D1 � DZ , and so on.
There are numerous possible variants; what matters is to keep the deterministic nature
of the process.

– Random Transformation Process: Here the input ciphertext c is transformed into c�Di

where i is chosen at random in {1, . . . , n}. More generally, the input ciphertext c is
transformed by adding to it a random linear combination of D1, . . . ,DZ ; specifically,
c is replaced with c�R where R = θ1 • D1 � · · ·� θZ • DZ and θ1, . . . , θZ are (small)
random scalars.

– Pseudo-random Transformation Process: This can be seen as a specialization of the
previous case where a pseudo-random linear combination of D1, . . . ,DZ is taken (as
opposed to a random one). This is can be obtained through applying a pseudo-random
function to the input ciphertext, the value cnt, and (potentially) other public parame-
ters.

In the case of a public-key FHE, the encryptions of zero can alternatively be obtained using
the public encryption key and the encryption algorithm. Again, the process of obtaining
such encryptions of zero can be deterministic, random, or pseudo-random depending on
whether the random coins for the encryption process are determined deterministically,
randomly, or pseudo-randomly.

5.2 Ciphertext Quality Test

The general idea behind all of our countermeasures is to transform an input ciphertext
modulo q into another ciphertext modulo q using the above transformation process. The
resulting ciphertext is then tested using a so-called quality test. The key observation is that
whilst the ciphertext resulting from this transformation and the input ciphertext are both
ciphertexts modulo q encrypting the same plaintext message, they do not necessarily lead to
the same drift noise. In particular the drift vector of the input and output ciphertexts from
the transform are different, and (by our second important observation mentioned above)
can be publicly computed. The purpose of the quality test is to predict a measure on the
expected drift noise of mod-switching a ciphertext, knowing the corresponding drift vector.

Let T denote the maximum allowed bound on a certain measure of the drift noise. Two
types of quality tests (or a combination thereof) may be used.

– Probabilistic Quality Test: Such a quality test may be used when the drift noise depends
on the private key. The ciphertext modulo q being tested is fixed, only the private key is
unknown. A probabilistic quality test estimates a measure on the drift noise by running
over the random choices of the private key for the fixed ciphertext being tested and
associated drift vector. If the resulting measure is smaller than or equal to T , the test
is declared successful. A probabilistic quality test may suffer for some inaccuracies on
the measure of the drift noise, but this should occur with a probability that can be set
to an arbitrarily small value; in particular, at most perr.

14



– Worst-case Quality Test: Such a quality test may also be used when the drift error
depends on the private key. A worst-case quality test estimates a measure on the drift
noise by assuming the worst private key (regarding the drift noise) for the fixed cipher-
text being tested and associated drift vector. Worst-case means that the measure on
the drift error cannot be larger for another choice of the private key. In some sense, the
test is therefore exact as when it is satisfied, the actual measure on the drift noise is
guaranteed to be smaller than or equal to T , independently of the value of the private
key.

In all cases, when the test fails, another candidate ciphertext modulo q may be tried via
the transformation method above.

5.3 Implementations
Having described the basic philosophy we now examine the two potential quality tests and
consider their advantages and disadvantages.

Probabilistic Drift Defense: This is the variant which is probably most practical to be
used in deployed FHE schemes. For a fixed input LWE-type ciphertext c = (a1, . . . , an, b)
with associated drift vector (α1, . . . , αn, β), the corresponding drift noise is edrift = β −∑n

j=1 αj ·sj . It is important to note that the ciphertext c is fixed. Over the random choices
of the private key s = (s1, . . . , sn), the expectation and variance of the drift noise are given
by

µ := E[edrift] = β −
n∑

j=1

αj · E[sj ] (5.1)

and

σ2 := Var(edrift) =

n∑
j=1

α2
j ·Var(sj) . (5.2)

For example, when s = (s1, . . . , sn) where the sj ’s are chosen uniformly at random in
{0, 1}, one has E[sj ] = 1

2 and Var(sj) = 1
4 and, consequently, µ = β − 1

2

∑n
j=1 αj and

σ2 = 1
4

∑n
j=1 α

2
j . The drift noise in this case is a value in Z. What matters is that it is

not too large in absolute value. The relevant measure for the drift noise is therefore the
absolute value.

Let T denote the bound on the maximum allowed drift noise (in absolute value). This
gives rise to the following probabilistic defense given in Figure 5.1, where r is a parameter
associated to the desired error probability.

It should be noted that |µ|+r ·σ = max(|µ+ r · σ|, |µ− r · σ|). For example, assuming a
normal distribution (which is a heuristic assumption that we will revisit in Section 6.3), the
actual drift noise (i.e., obtained with the actual private key s) corresponding to a drift vector
successfully passing this first quality test will lie in the interval [µ−r ·σ, µ+r ·σ] ⊆ [−T, T ]
with probability 1− erfc(r/

√
2). Thus if one wanted an error probability on the output to

be at least 1− 2−128, then one would select the value r in the algorithm to be greater than
13.11.

Exact Drift Defense: Our second drift defense considers the maximum drift noise a fixed
input LWE-type c = (a1, . . . , an, b) with associated drift vector (α1, . . . , αn, β) can have.
We can assume, without loss of generality, that the key digits sj are drawn in the integer
range JS−, S+K where S− ≤ 0 and S+ > 0. Since the drift noise edrift = β −

∑n
j=1 αj · sj is

a signed value, two sub-cases can be distinguished:
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Probabilistic Defense

cnt← 0;
repeat

c′ ← Transform
(
c, (D1, . . . ,DZ), cnt

)
;

Compute the drift vector (α1, . . . , αn, β) associated to c′;
µ← β −

∑n
j=1 αj · E[sj ];

σ2 ←
∑n

j=1 α
2
j ·Var(sj);

until |µ|+ r · σ ≤ T ;
return c′

Fig. 5.1: Algorithm to transform a ciphertext into one which probabilistically has drift noise
bounded by T .

– Maximally negative drift noise: when sj = S+ for αj > 0 and sj = S− for αj < 0, one
then has edrift = β −

∑
αj>0 αj · S+ −

∑
αj<0 αj · S−;

– Maximally positive drift noise: when sj = S− for αj > 0 and sj = S+ for αj < 0; one
then has edrift = β −

∑
αj>0 αj · S− −

∑
αj<0 αj · S+.

Hence, defining sets J+ =
{
j ∈ J1, nK |αj > 0

}
and J− =

{
j ∈ J1, nK |αj < 0

}
, the maximal

drift noise in absolute value is bounded by

M = max
(∣∣β − S+∑

j∈J+ αj − S−∑
j∈J− αj

∣∣, ∣∣β − S−∑
j∈J+ αj − S+∑

j∈J− αj

∣∣) .

For example, when s = (s1, . . . , sn) where the sj ’s are in {0, 1} (i.e., for S− = 0 and
S+ = 1), the bound M simplifies to

M = max
(∣∣β −∑

j∈J+ αj

∣∣, ∣∣β −∑
j∈J− αj

∣∣) .

Again, letting T denote the bound on the maximum allowed drift noise, this leads to the
exact defense depicted in Figure 5.2.

Exact Defense

cnt← 0;
repeat

c′ ← Transform
(
c, (D1, . . . ,DZ), cnt

)
;

cnt← cnt+ 1;
Compute the drift vector (α1, . . . , αn, β) associated to c′;
Compute the sets

J+ ←
{
j ∈ J1, nK | αj > 0

}
and J− ←

{
j ∈ J1, nK | αj < 0

}
;

M ← max
(∣∣β −∑

j∈J+ αj

∣∣, ∣∣β −∑
j∈J− αj

∣∣);
until M ≤ T ;
return c′

Fig. 5.2: Algorithm to transform a ciphertext into one which has drift noise bounded by T .
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This second defense allows one to guarantee, that the drift noise of the output ciphertext
is always below the maximum bound T (i.e., with probability one), independently of the
actual value of the private key s = (s1, . . . , sn).

5.4 Applications to sIND-CPAD Security of TFHE

Recall from Section 4 that the drift error is the main source of error in TFHE and thus
dominates perr as already observed in [15]. In contrast, the other part of the error ein only
has negligible impact on perr and we will ignore it for the remainder of this subsection
for simplicity. When considering the sIND-CPAD security of TFHE, we need to take into
account the worst-case encryption randomness, meaning that an adversary may choose the
vector a in order to maximize the drift error. This leads to significantly larger error bounds
and worse parameters compared to the IND-CPAD model.

Assume we are considering the public key version of TFHE [25], for which the sIND-CPAD

model is more relevant. As noted above, by using the encryption algorithm one may re-
randomize the ciphertext without changing the underlying plaintext. Applying Proposi-
tion 3.5 we can easily transform an IND-CPAD secure instantiation of public key TFHE
into one that is sIND-CPAD secure with the same security level. (Note, of course, that for
this transformation to indeed maintain the security level, the impact of the remaining part
of the noise, ein, on perr needs to be indeed negligible, even in the worst-case, and fresh ci-
phertexts need to be perfectly correct. These are mild requirements as typical instantiations
of TFHE meet them.)

Finally, it is noteworthy that the countermeasures introduced in the previous subsec-
tions facilitate an analysis of the modulus switching error under adversarially chosen en-
cryption randomness, as done in the next section.

6 Analysis and Experimental Results

In this section, we analyze the proposed drift defenses and derive concrete parameters. Our
analysis relies on well-established heuristic assumptions and are backed up by simulations
that demonstrate the fit with real measurements.

As proved in Lemma 4.1, the components of the drift vector (α1, . . . , αn, β) are consid-
ered as independent (identically distributed) samples of a random variable α following the
uniform distribution U

(
J−A,A− 1K

)
, where A , q

4N .
We focus on binary secret keys (s1, . . . , sn), where si ∼ U

(
{0, 1}

)
, since it turns out

that minimizing the variance of s is the best choice in practice. Thus, we plug E[s] = 1
2 ,

Var(s) = 1
4 , and S− = 0, S+ = 1, into the halting conditions used in the probabilistic and

exact drift defenses defined in Figures 5.1 and 5.2. These analyses readily adapt to other
key distributions.

For both analyses, we will use the following heuristic, motivated by the Central Limit
theorem [5, Theorem 27.1]. A quantitative version is given by the Berry–Esseen inequal-
ity [4], and experiments show it holds tightly in our cases.

Heuristic 6.1. Let X1, . . . , Xn be independent, identically distributed, bounded, random
variables. For large enough n, it is assumed that(∑n

i=1Xi

)
∼ N

(
n · E[X], n ·Var(X)

)
.
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6.1 Probabilistic Test

We analyze here the behavior of the probabilistic defense described in Figure 5.1. For
simplicity and as E[s] 6= 0 for binary secrets, we also ignore the role of β which only
represents a 1

n·E[s] -fraction of the first sum involved in the test.

Therefore, let Y =
∣∣∑n

i=1 αi

∣∣ and Z =
√∑n

i=1 α
2
i . We want to analyze, for a fixed

value r to be determined later, the probability density ϕX(t) of the random variable X :=
E[s] · Y + r

√
Var(s) · Z. This allows setting precisely r so that

Pr
[
E[s] · Y + r

√
Var(s) · Z ≤ T

]
=

∫ T

t=0
ϕX(t) dt ≈ p , (6.1)

where p ∈ ]0, 1] is a success probability that ultimately depends on the targeted number
of trials for the application. We begin by giving in Lemmas 6.2 and 6.3 the probability
densities of Y and Z assuming Heuristic 6.1.

Lemma 6.2. Assuming Heuristic 6.1, the probability density function ϕY of the random
variable Y =

∣∣∑n
i=1 αi

∣∣ is given by

ϕY (t) = 1t≥0 ·
1√

2π · nVar(α)
·
(
exp

(
−(t− nE[α])2

2 · nVar(α)

)
+ exp

(
−(t+ nE[α])2

2 · nVar(α)

))
.

Proof. By definition, ΦY (t) := Pr
[
Y ≤ t

]
= Pr

[∑n
i=1 αi ∈ [−t, t]

]
, thus Heuristic 6.1

implies ΦY (t) = Φ
( t−µ

σ

)
− Φ

(−t−µ
σ

)
, where µ = nE[α] and σ2 = nVar(α). Deriving this

expression for t yields the result. ut

Lemma 6.3. Assuming Heuristic 6.1, the probability density function ϕZ of the random
variable Z =

√∑n
i=1 α

2
i is given by

ϕZ(t) = 1t≥0 ·
1√

2π · nVar(α2)
· 2t · exp

(
−(t2 − nE[α2])2

2nVar(α2)

)
.

Proof. Likewise, ΦZ(t) := Pr
[
Z ≤ t

]
= Pr

[
0 ≤

∑n
i=1 α

2
i ≤ t2

]
, which by Heuristic 6.1 is

Φ
(

t2−nE[α2]√
nVar(α2)

)
− Φ

(
−nE[α2]√
nVar(α2)

)
, and deriving for t gives the result. ut

In order to obtain the probability distribution function of X, we make another heuristic
approximation, which is not formally true for non-normal distributions [31], but yields
accurate results in our practical setting.

Heuristic 6.4. Let U be a random variable following a uniform distribution. For a large
enough (fixed) number of samples, it is assumed that the sampled mean and variance of U
behave as independent random variables.

Proposition 6.5. Assuming Heuristics 6.1 and 6.4, the probability density function ϕX of
the random variable X = E[s] · Y + r

√
Var(s) · Z is given by

ϕX(t) =
1

E[s] · r
√
Var(s)

·
∫ t

z=0
ϕY

( t− z

E[s]

)
· ϕZ

( z

r
√
Var(s)

)
dz .

Proof. Heuristic 6.4 allows considering E[s]Y and r
√
Var(s)Z as independent variables, thus

the probability distribution function of their sum is the convolution of ϕE[s]·Y and ϕr
√
Var(s)·Z .

Both can be derived from Lemmas 6.2 and 6.3, using that for any u 6= 0 and random variable
R, ϕu·R(t) =

1
uϕR(

t
u). Finally, as these densities are 0 for negative values, the convolution

ranges over ]0, t[. ut
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Obtaining a closed form for ϕX seems rather involved. Nevertheless, it is reasonably easy
to evaluate numerically, which is sufficient in practice to check the accuracy of Heuristics 6.1
and 6.4 and to set r according to Equation (6.1).

Approximation by a Skew Normal Distribution: We show that the probability density
function given in Proposition 6.5 is close to the probability density function of a skew
normal distribution [3].

For simplicity,2 we consider that α is centered around 0, i.e., E[α] = 0; this is justified
by the fact that E[α] is in practice very negligible compared to other quantities involved.
We further assume the following natural3 heuristic.

Heuristic 6.6. Let N be a random variable following a normal distribution of variance
Var(N) centered at E[N ]. Provided that E[N ] > 0 and that E[N ]√

Var(N)
is large enough (e.g.,

more than a few tens), it is assumed that
√
N ∼ N

(√
E[N ]− Var(N)

4E[N ] ,
Var(N)
4E[N ]

)
.

Proof (Heuristic 6.6). Following the reasoning in the proof of Lemma 6.3,

Pr[0 ≤
√
N ≤ t] =

∫ t

u=0

1√
2πVar(N)

· 2u · exp−1
2

(
u2−E[N ]√
Var(N)

)2
du ,

which after the change of variable v = u2−E[N ]√
4E[N ]

+
√

E[N ]− Var(N)
4E[N ] gives

=

∫ v2

v=v1

√
4E[N ]

2πVar(N) exp−
1
2

(
v−

√
E[N ]−Var(N)/(4E[N ])√
Var(N)/(4E[N ])

)2
dv .

This is the intended normal distribution, although integrated between the new bounds
v1 :=

√
E[N ]

(
−1

2 +
√
1− Var(N)

4E[N ]2

)
and v2 :=

t2−E[N ]√
4E[N ]

+
√

E[N ]− Var(N)
4E[N ] . As v1 <

√
E[N ]
2 , the

lower
∫ v1
−∞ is upper bounded by 1

2 +
1
2 erf

(
E[N ]/

√
Var(N)√
2

)
, which is negligible by hypothesis.

Furthermore, it is easy to verify that

t− v2 ≤
√

E[N ]
(
1−

√
1− Var(N)

4E[N ]2

)
≈

√
E[N ] · Var(N)

8E[N ]2
,

thus
∫ t
v2
≤ (t− v2) ·

√
4E[N ]

2πVar(N) ≈
1

4
√
2π
·
√

Var(N)
E[N ] , less than 0.5% in practice. ut

Combined with Heuristic 6.1, Heuristic 6.6 assimilates the distribution of Z given by

Lemma 6.3 to N
(√

nE[α2]− Var(α2)
4E[α2]

, Var(α
2)

4E[α2]

)
. We stress that, when the bound A on |α| is

not singularly small, we have E[α2]√
Var(α2)

≈
√
5
2 ·
√
n, which is more than enough in practice

for applying the heuristic.

Proposition 6.7. Assuming Heuristics 6.1, 6.4 and 6.6 with E[α] = 0, the probability
density function of X = E[s] · Y + r

√
Var(s) · Z is approximated by

ϕS(t) =
2

ω
· ϕ

( t− ξ

ω

)
· Φ

(
%
( t− ξ

ω

))
,

2 This mostly allows for not splitting ϕY from Lemma 6.2 in two equivalent parts and for not dragging
around translations terms (t± nE[α]) in the computations.

3 Note that by definition of the variance, Var(
√
N) = E[N ]− E[

√
N ]2.
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which is the probability density function of a random variable S following a skew normal
distribution of localisation ξ, scale ω and shape %, where

% =
E[s]

r
√

Var(s)
·

√
nVar(α)

Var(α2)/(4E[α2])
, ω = E[s]

√
nVar(α) ·

√
1 +

1

%2
,

ξ = r
√

Var(s) ·

√
nE[α2]− Var(α2)

4E[α2]
.

Proof. Assuming E[α] = 0 and Heuristic 6.6, the convolution probability density function
given by Proposition 6.5 under Heuristics 6.1 and 6.4 simplifies to

ϕS(t) =

∫ t

y=−∞

2/E[s]√
2π · VY

exp

(
−1

2

(
t− y

E[s] ·
√

VY

)2)
· 1/rs√

2π · VZ
· exp

(
−1

2

(
y − rsEZ

rs ·
√

VZ

)2
)
dy ,

where VY := nVar(α), EZ :=
√
nE[α2]− Var(α2)

4E[α2]
and VZ := Var(α2)

4E[α2]
, according to Lemma 6.2

and Heuristic 6.6, and where rs := r
√

Var(s) for concision. In particular, with these nota-
tions we have ξ = rs · EZ .

Now, notice that by definition of ω and %, E[s]
√

VY = ω
√
1− 1

1+%2
and likewise,

rs
√

VZ = ω
√

1
1+%2

using
(
1 + 1

%2

)
1

1+%2
= 1

%2
. Grouping together the terms inside the expo-

nentials and rearranging those yield, after a few calculations,

− 1

2

[(
(t− ξ)− (y − ξ)

)2
ω2 ·

(
1− 1

1+%2

) +

(
y − ξ

)2
ω2 · 1

1+%2

]
= −1

2

[( t− ξ

ω

)2
+
((1 + %2)(y − t) + %2(t− ξ)

ω%

)2
]

.

The first summand above can be extracted from the integral, and applying the change of
variable u = (1+%2)y−%2ξ−t

ω% to the second summand finally gives

ϕS(t) =
2

ω
√
2π
· exp

(
−1

2

( t− ξ

ω

)2
)
·
∫ %

( t−ξ
ω

)
u=−∞

1√
2π

exp−u2

2
du ,

using for the constant terms that 2/E[s]√
VY

= 2
ω ·

√
1 + 1

%2
and 1/rs√

VZ
=

√
1+%2

ω , which combine

perfectly to build du = 1+%2

ω% dy. ut

The skew normal distribution given by Proposition 6.7 has been well-studied. In particu-
lar, the antiderivative of ϕS(t) is given by Φ

(
t−ξ
ω

)
− 2T

(
t−ξ
ω , %

)
, where Owen’s T function

[33] can be efficiently evaluated (see e.g., [26]). Thus, for any r, the probability p(r) of
passing the quality test is immediately estimated by

p(r) ≈
∫ T

0
ϕS(t) dt = Φ

(T − ξ

ω

)
− 2T

(T − ξ

ω
, %
)

. (6.2)

Given a targetted expected number of trials 1/p, this allows obtaining quick estimates of a
value r such that p(r) ≈ p using binary search.
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6.2 Worst-Case Test

In order to analyze the exact defense defined in Figure 5.2, the components of the drift
vector are partitioned between the positive and negative ones. Thus, each of the |αi| is
considered as an independent sample of a uniform variable |α| following the uniform dis-
tribution U

(
J0, AK

)
, with E

[
|α|

]
≈ q

8N and Var
(
|α|

)
≈ q2

192N2 .
For similar reasons as in Section 6.1, we also ignore β. Our experiments show that this

still yields a fairly close approximation. We start by observing that for a given bound T we
have

Pr[M ≤ T ] = Pr
[(∑

i∈J+ |αi| ≤ T
)
∧
(∑

i∈J− |αi| ≤ T
)]

=

n∑
j=0

Pr
[
]J+ = j

]
· Pr

[(∑
i∈J+ |αi| ≤ T

)
∧
(∑

i∈J− |αi| ≤ T
) ∣∣∣ ]J+ = j

]
.

Conditioned on a fixed size of J+ (thus of J−), the two sums are independent:

Pr[M ≤ T ] =

n∑
j=0

Pr
[
]J+ = j

]
· Pr

[∑
i∈J+ |αi| ≤ T

∣∣ ]J+ = j
]

· Pr
[∑

i∈J− |αi| ≤ T
∣∣ ]J− = n− j

]
.

As long as both sets J+ and J− are large enough, we can apply Heuristic 6.1 in order
to approximate the distribution of

∑
i∈J+ |αi| (resp.

∑
i∈J− |αi|) by a normal distribution of

variance ]J± ·Var(|α|) centered at ]J± · E[|α|].
This leaves the case when either ]J+ or ]J− is small. Luckily, the probability of this event

can be easily bounded using Chernoff bound. For this, notice that ]J+ as a random variable
follows the binomial distribution B

(
n, 12

)
. The Chernoff bound applied to ]J+ yields, for

0 < δ < 1,
Pr

[∣∣]J+ − n/2
∣∣ > δn/2

]
≤ 2e−

δ2n
6 .

Hence, for any (small) ε > 0, we can set δ =
√
6 ln(2/ε)/n, which in turn ensures that

Pr
[∣∣]J+ − n/2

∣∣ ≥ δn/2
]
≤ ε. Putting things together with Equation (2.1), we thus obtain

p ≤ Pr[M ≤ T ] ≤ p+ ε, where

p =
1

2n+2

(1+δ)n
2∑

j=(1−δ)n
2

(
n

j

)
· erfc

 jq
8N − T√

j
96

q
N

 · erfc
 (n−j)q

8N − T√
n−j
96

q
N

 . (6.3)

Whilst this is not a very elegant formula, it can be easily numerically computed for
concrete parameters and extensive experiments suggest it is accurate.

Numerical Experiments: In order to verify the bound given by Equation (6.3), we considered
the following setup: we applied the technique to a random ciphertext until the result was
smaller than T , and averaged over 50 experiments the measured number of required re-
randomizations.

For sample parameters q = 264, n = 841, N = 2048 and T = 258.65, Equation (6.3)
yields p ≈ 2−9.2. Over 50 experiments the measured average number of re-randomizations
was about 29.4, which indicates that our estimation for p is fairly accurate. In comparison,
in order to bound the error with probability 1 without the drift defense, we need to assume
worst-case bounds for all αi and β combined with a worst-case key, which yields T =
(n+1)q
4N ≈ 260.7. This is more than four times larger and therefore leads to less performant

parameter choices.
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6.3 Validating the Heuristics and Concrete Parameters

In this subsection, we experimentally validate the accuracy of the heuristics used in the
analysis of the probabilistic drift defense, and study the practical impact of this new tech-
nique on existing sets of parameters for binary secrets.

We consider sets of parameters taken from the TFHE-RS library [39] and designed for
boolean and 4-bit payloads. Typically, these parameters are selected so as to ensure that a
ciphertext resulting from a programmable bootstrapping correctly decrypts to the expected
plaintext except with probability at most perr. We stress that the TFHE-RS library has been
designed to obtain IND-CPA security, not with IND-CPAD security in mind, thus error
probabilities are set to be less than 2−128. In a recent update,4 the value of perr in the
TFHE-RS library has been lowered to 2−64. For completeness and to ease the comparison
with other papers as, e.g., [15], we also include the corresponding outdated parameters5

that were designed for perr < 2−40. This is summarized in Table 6.1.

Table 6.1: Considered sets of parameters from TFHE-RS library [39] for boolean and 4-bit
payloads. Parameters marked with † (perr ≈ 2−40) are outdated.

Set Name in TFHE-RS q n N k perr r0

Z40†
b DEFAULT_PARAMETERS 232 722 512 2 2−40 7.15

Z40†
4b PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M40 264 761 2048 1 2−40 7.15

Z64
b DEFAULT_PARAMETERS_KS_PBS 264 739 512 3 2−64 9.16

Z64
4b PARAM_MESSAGE_2_CARRY_2_KS_PBS_GAUSSIAN_2M64 264 834 2048 1 2−64 9.16

In particular, the value of perr is set so as to ensure that the absolute value of the
drift error is below a certain threshold T = r0

√
Var(edrift), where Var(edrift) is given by

Equation (4.3) and r0 verifies perr = erfc
(
r0√
2

)
. In this section we aim to show that the

parameters chosen in TFHE-RS to achieve IND-CPA security, using the traditional modulus
switch, can achieve strong-IND-CPAD security using our new modulus switching operations
with very negligible overhead.

Validating the Post-Test Distribution Heuristic: In order to convert the threshold parame-
ters in the probabilistic defense into a decryption failure probability after a bootstrapping
as done in Section 5, we need to assume that, for a fixed drift vector passing the quality test,
the distribution of the drift error under random binary secret keys is a normal distribution
N (µ, σ), where µ and σ are given by Equations (5.1) and (5.2) respectively.

To justify this heuristic, we generated several drift vectors based on parameter set Z64
4b

passing the quality test with r = 13.4 and T = 257.76. For each of them, we sampled 216

binary secret keys and plotted the distribution of the drift error against the expected normal
distribution. A few examples are shown in Figure 6.2 and additional graphs can be found in
Appendix C, which convincingly demonstrate the plausibility of the heuristic assumption.

Validating Statistical Heuristics: In order to validate experimentally the analyses of Sec-
tion 6.1, and in particular the relevance of Heuristics 6.1, 6.4 and 6.6, we sampled 106

random drift vectors (including β) for each set of parameters.
As shown in Figure 6.3 for, e.g., r = 13.11, the measured distribution of X matches

perfectly the curve of ϕX computed from Proposition 6.5. We also feature its approximation
4 Git commit 400ce27beb5bea8fdc68826ad437099ec62680d0, September 25th, 2024.
5 See, e.g., Git commit d1fe49fa2fae36d39ba9f779b7b71e785b66c3b2.
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Fig. 6.2: Measured vs. expected drift distribution for several drift vectors passing the quality
test for parameter set Z64

4b (T = 257.76) and r = 13.4.

Fig. 6.3: Probability density function of X for parameter set Z64
4b and r = 13.11: i. measured

from 106 random drift vectors (light blue histogram), ii. computed from Pr. 6.5 on 103

evaluation points (purple line), and iii. approximated by the skew normal distribution
from Pr. 6.7 (dashed orange line).

by the skew normal distribution defined by Proposition 6.7; concretely, both curves are
superposed.

Furthermore, we compared the measured value of E[Z] with the estimation given by
Heuristic 6.6. This appears in Table 6.4; in practice, the estimation is so accurate that we
only report one value for E[Z].

Concrete Security for a Given Number of Trials: Finally, setting a reasonable target prob-
ability of passing the quality test, namely p ∈

{
1
50 ,

1
100 ,

1
1000

}
, we derived the corresponding

value of rnew using a binary search based either on Proposition 6.5, or on the skew normal
distribution from Proposition 6.7. We further validated experimentally that the average
number of trials for the obtained rnew is indeed close to 1/p. The resulting probability
of failure pnew, for the given set of parameters patched with the new modulus switching
technique using the found rnew, is obtained from pnew = erfc

(
rnew√

2

)
.

All these results are detailed in Table 6.4. As a conclusion, the analysis of Section 6.1
is very accurate experimentally. Numerical values show that the new probabilistic drift
defense roughly doubles the logarithm of the failure probability of a parameter set using
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Table 6.4: Impact of the probabilistic drift defense on TFHE-RS parameters, depending on
the expected number of trials (p−1) for the quality test with threshold T .

Set q n N T E[Z] p−1 rnew ] trials log2 p
−1
new

Z40†
b 264 722 512 227.30 224.96 50 10.244 49.0 79.39

100 10.313 98.3 80.42
1000 10.495 1008.8 83.18

Z40†
4b 264 761 2048 257.33 254.99 50 10.238 48.8 79.30

100 10.304 99.5 80.30
1000 10.482 989.0 82.99

Z64
b 264 739 512 259.67 256.97 50 13.152 49.1 128.83

100 13.235 99.3 130.41
1000 13.459 1014.2 134.75

Z64
4b 264 834 2048 257.76 255.06 50 13.132 49.5 128.44

100 13.210 100.1 129.94
1000 13.422 1063.7 134.02

only 50 re-randomizations. This is completely unnoticeable, as a modulus switch typically
takes 1/150 000th of the time of the blind rotation.

Acknowledgements: The authors would like to thank Benoît Libert for useful discussions
and feedback on the paper.
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A Attacks Against Failing Circuits

In this appendix, we review attacks presented in [15] and specifically apply them in the
context of TFHE. The attacks target failing circuits. For illustration purposes, as in [15],
we consider boolean circuits with an and gate.

A.1 A Generic Distinguishing Attack

Suppose a boolean circuit that takes k+1 boolean variables (X,X1, . . . , Xk) on input and
outputs the boolean variable Z = X ∧ Y where Y ← C∗(X1, . . . , Xk) for some boolean
circuit C∗; see Figure A.1. Boolean variable X is private and is unknown to the attacker.
The goal for the attacker is to tell with probability non-negligibly larger than 1/2 if X = 0
or if X = 1. The attacker can freely choose the values of (X1, . . . , Xk) and the sub-circuit
C∗.

Consider the specific IND-CPAD security game between a challenger and an attacker
for the functions considered in Figure A.1 given in Figure A.2. The challenger chooses a
secret bit b. The attacker wins if bit b is correctly guessed at the end of the game. Later
we will show that the probability that the attacker correctly guesses b (i.e., Pr[b′ = b]) in
the above game is strictly larger than 1

2 . Recall that a probability of 1
2 corresponds to a

random guess.

A.2 A Key Recovery Attack

The knowledge of failing ciphertexts can be turned into a key recovery attack once a
defective programmable bootstrapping is identified. As an illustration, suppose we have a
simple circuit consisting of a single and gate.
The and of two boolean values X and Y can be obtained by returning the most significant
bit of X + Y (mod 4). Over encrypted data, evaluating the msb is carried out through a
programmable bootstrapping.

We use the notations of Section 4 where recall we defined the drift error as edrift = β −∑n
i=1 αi si. Suppose that a ciphertext incorrectly decrypts. This occurs when the drift error

present in the ciphertext is large (i.e., above a certain threshold). Using vector notation,
defining the drift vector as δ := (α1, . . . , αn, β), the drift error can be rewritten as

edrift = 〈(−s, 1), δ〉 .

A larger drift error means that the secret vector (−s, 1) is more ‘aligned’ with the drift
vector δ. Furthermore, when si = 0, the corresponding αi can take any value as it has then
no impact on the drift error. These two observations lead to the attack in Figure A.4.
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C∗

X X1 · · · Xk

and

Y

Z

Fig. A.1: A boolean circuit computing the and of boolean variables X and Y ←
C∗(X1, . . . , Xk).

Attack-1

1. The challenger chooses uniformly at random a bit b ∈ {0, 1}. The challenger also runs the key
generation algorithm and provides the attacker with a copy of the public encryption key pk and
of the evaluation key ek. Finally, the challenger maintains a state S.

2. The attacker selects a boolean circuit C∗ and boolean inputs X1, . . . , Xk such that
C∗(X1, . . . , Xk) = 0.

3. For 1 ≤ j ≤ k:
– The attacker submits the pair (m0,m1)← (Xj , Xj) for encryption.
– The challenger computes and returns c ← Encpk(Xj) to the attacker; the challenger also

updates S as S[j]← S(Xj , Xj , c).
4. The attacker submits the pair (m0,m1) ← (0, 1) for encryption. The challenger returns c ←

Encpk(b) to the attacker and updates S as S[k + 1]← (0, 1, c).
5. The attacker defines the function

g1 : {0, 1}k → {0, 1}, (X1, . . . , Xk) 7→ C∗(X1, . . . , Xk)

and asks for the homomorphic evaluation of g1 on state indexes (1, . . . , k). The challenger
evaluates c← Evalek(g1, S[1].c, . . . , S[k].c) and returns c to the attacker. The challenger updates
S as

S[k + 2]←
(
C∗(X1, . . . , Xk), C∗(X1, . . . , Xk), c

)
= (0, 0, c).

Recall that Y ← C∗(X1, . . . , Xk) = 0 by construction; cf. Step 2.
6. The attacker defines the function

g2 : {0, 1} × {0, 1} → {0, 1}, (X,Y ) 7→ X ∧ Y

and requests its homomorphic evaluation on state indexes (k+1, k+2). The challenger computes
c← Evalek(g2, S[k+ 1].c, S[k+ 2].c) and returns c to the attacker. The challenger updates S as
S[k + 3]← (0 ∧ 0, 1 ∧ 0, c) = (0, 0, c).

7. The attacker submits index j = k+3 for decryption. The challenger checks that S[k+3].m0
?
=

S[k+3].m1 if and only if 0 ?
= 0 which is clearly satisfied. The challenger returns Z′ ← Decsk(S[k+

3].c) to the attacker.
8. The attacker outputs the guess b′ ← Z′.

Fig. A.2: IND-CPAD Attack using the circuits from Figure A.1.
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and

X Y

Z

Fig. A.3: A boolean and gate computing Z ← X ∧ Y .

Attack-2

1. Repeatedly calling the decryption oracle, the attacker collects T failing ciphertexts C(j) ←
(a

(j)
1 , . . . , a

(j)
n , b(j)) with 1 ≤ j ≤ T ;

2. The attacker computes the corresponding drift vectors

(α
(j)
1 , . . . , α(j)

n , β(j)) (1 ≤ j ≤ T ) .

3. For 1 ≤ i ≤ n:
– The attacker observes the distribution of

{
α
(j)
i

}
1≤j≤T

.
– If the distribution is (close to) uniform, the attacker deduces that si = 0; otherwise, that

si = 1.
4. The attacker outputs s← (s1, . . . , sn).

Fig. A.4: Key Recovery Attack Based on the Circuit in Figure A.3.

Clearly, a higher value for T increases the chances of successfully recovering secret key s.
The authors of [15] report the recovery of 596 out of 600 secret key bits from 8434 failing
ciphertexts in one of their experiments.

A.3 Analysis

We analyze the security implications of the two previous games. We consider the security
goals of (i) indistinguishability of ciphertexts (IND) and (ii) security against key recovery
(KR) when access to a decryption oracle is provided for honestly generated (or evaluated)
ciphertexts.

IND-CPAD Security: We start by evaluating the success probability of an attacker in
the previous distinguishing attack in Figure A.1. We let E1 (resp. E2) denote the event
that the ciphertext resulting from the homomorphic evaluation of g1 (resp. g2) is incorrect,
and let p1 (resp. p2) denote the event probability. Writing Y ′ ← Decsk(S[k + 2].c) and
Z ′ ← Decsk(S[k + 3].c), we have the following table:

E1 E2 Y ′ Z ′

false false 0 0
false true 0 1
true false 1 b
true true 1 ¬b
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We so obtain

Pr[b′ = b] = Pr[b = Z ′]

= Pr[b = 0] · (1− p1) · (1− p2) + Pr[b = 1] · (1− p1) · p2 +
Pr[b = b] · p1 · (1− p2) + Pr[b = ¬b] · p1 · p2

= 1
2 · (1− p1) · (1− p2) +

1
2 · (1− p1) · p2 + p1 · (1− p2)

= 1
2 + p1 ·

(
1
2 − p2

)
.

Hence, the success probability of the attacker, Pr[b′ = b]− 1
2 , is

p1 ·
(
1
2 − p2

)
≈ p1

2

since in practice p2 � 1
2 . This success probability is negligible provided that p1 is also

negligible.

KRD Security: The security notion of KRD (or security against key recovery attacks) is
related to that of IND-CPAD. Formally, the security experiment of Figure 2.1 is modified
by

1. restricting the encryption oracle to queries of the form (m,m);
2. requiring the adversary A to output a secret key sk′ at the end of the attack.

The output of the experiment is defined to be 1 if sk′ = sk, and 0 otherwise.
The key recovery attack as described in Figure A.4 considers a simple circuit comprising

just one programmable bootstrapping. It is worth remarking that to conduct the attack,
the attacker needs to know the input of a failing programmable bootstrapping.

– When circuits just contain one programmable bootstrapping, the correspondence be-
tween a failing ciphertext and a failing programmable bootstrapping is immediate. An
adversary will need about 1

perr
decryption queries to discover a failing programmable

bootstrapping.
– Things are more complicated for circuits comprising multiple programmable bootstrap-

pings. For a circuit comprising w programmable bootstrappings, the probability that
at least one is failing is

1− (1− perr)
w ≈ w · perr .

The key recovery attack however requires identifying exactly which programmable
bootstrapping failed. If this is guessed at random, an adversary will still need about(
1
w (w · perr)

)−1
= 1

perr
decryption queries to discover a failing programmable bootstrap-

ping.

This analysis seems to indicate that limiting the number of decryption queries might
constitute an effective way to prevent the recovery of the key. Unfortunately, as we show
hereafter, this conclusion does not necessarily hold true.

For certain scenarios, there may be better attack strategies! Here is one. Suppose that
perr = 2−E . The adversary builds ‘iterative’ sub-circuits where the output of the previous
operation serves as an input for the next one. More specifically, letting M the message
space, consider a set of (injective) functions Fj :M→M and define{

Y1 = F1(X)

Yj = Fj(Yj−1) for 2 ≤ j ≤ 2E .
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Circuit C∗ :M→M is defined as C∗ = F2E ◦F2E−1 ◦ · · · ◦ F1. If C∗ is evaluated homomor-
phically on an encryption of a message X then the resulting ciphertext corresponding to
the encryption of Z ← C∗(X) = F2E

(
F2E−1

(
. . .F1(X)

))
has a very good chance of incor-

rectly decrypting—recall that perr = 2−E . Assuming that the functions Fj are evaluated via
programmable bootstrappings, the attacker can efficiently locate the failing programmable
bootstrapping through a binary search by checking whether the corresponding ciphertext is
correct or not by probing the decryption oracle. In more detail, the attacker checks whether
the encryption of Y2E−1 is correct. If so, the failing programmable bootstrapping occurs for
some j ∈

q
2E−1 + 1, 2E

y
; if not, the failing programmable bootstrapping occurs for some

j ∈
q
1, 2E−1

y
. The attacker iterates the search on the failing intervals until there is one

candidate left for j. This requires in total E+1 calls to the decryption oracle (the first call
being used to check that the encryption of Z is indeed incorrect).

B Proof of Lemma 4.1

There are two cases to consider.

1. 4N = q: Suppose that k ∈
q
− q

2 ,
q
2 − 1

y
is even. Then

⌊
k
q · 2N

⌉
= k

2 and
⌊
k+1
q · 2N

⌉
=⌊

k
2 + 1

2

⌉
= k

2 . We deduce that k̃ ∈ J−q/2
2 , q/2−2

2 K = J−N,N − 1K and each value occurs
exactly twice. We also deduce that κ = Q′ ·

⌊
k
q · 2N

⌉
− k = 2 · 12 − k = 0 or κ =

Q′ ·
⌊
k+1
q · 2N

⌉
− (k + 1) = 2 · k2 − (k + 1) = −1.

2. 4N < q: We decompose the interval for k as
q
− q

2 ,
q
2 − 1

y
=

q
− q

2 ,
q
2 −

q
4N

y
∪

q q
2 −

q
4N +

1, q2 − 1
y

so that

⌊
k
q · 2N

⌉
∈

{
J−N,N − 1K if k ∈

q
− q

2 ,
q
2 −

q
4N

y

{N} if k ∈
q q
2 −

q
4N + 1, q2 − 1

y .

In the latter case, since k̃ =
⌊
2N · kq

⌉
(mod 2N) ∈ Z

/
2NZ, we have k̃ = −N when

k ∈
q q
2 −

q
4N + 1, q2 − 1

y
. Therefore, we observe that

k̃ =



−N if k ∈
q q
2 −

q
4N + 1, q2 − 1

y
∪

q
− q

2 ,−
q
2 + q

4N

y

−N + 1 if k ∈
q
− q

2 + q
4N + 1,− q

2 + 3q
4N

y

−N + 2 if k ∈
q
− q

2 + 3q
4N + 1,− q

2 + 5q
4N

y

...
N − 1 if k ∈

q
− q

2 + (4N−3)q
4N + 1,− q

2 + (4N−1)q
4N

y

.

It can be verified that each sub-case has a range of cardinality q/(2N) for t. As a result,
each possible value for k̃ ∈

q
−N,N − 1

y
occurs exactly q/(2N) times and, in turn,

Q′ · k̃ − k ∈
{ q
4N − i | 1 ≤ i ≤ q

2N

}
. Letting S =

{ q
4N − i | 1 ≤ i ≤ q

2N

}
, it can be

rewritten as

S =
{ q
4N − (−i+ q

2N ) | 1 ≤ −i+ q
2N ≤

q
2N

}
=

{
− q

4N + i | 0 ≤ i ≤ q
2N − 1

}
=

q
− q

4N , q
4N − 1

y
.

Consequently, in all cases, if k ← U(Z
/
qZ) then k̃ ∈ U(Z

/
2NZ) and κ = Q′ · k̃ − k ∈

U
({ q

4N − i | 1 ≤ i ≤ q
2N

})
.
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C Supplementary Experimental Data
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Fig. C.1: Measured vs. expected drift distribution for several drift vectors passing the quality
test for parameter set Z64

4b (T = 257.76) and r = 13.4.
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