
Low-Communication Updatable PSI from
Asymmetric PSI and PSU

Guowei Ling, Peng Tang, Weidong Qiu

School of Cyber Science and Engineering, Shanghai Jiao Tong University, Shanghai
200240, China

{gw ling,tangpeng,qiuwd}@sjtu.edu.cn.

Abstract. Private Set Intersection (PSI) allows two mutually untrusted
parties to compute the intersection of their private sets without revealing
additional information. In general, PSI operates in a static setting, where
the computation is performed only once on the input sets of both parties.
Badrinarayanan et al. (PoPETs 2022) initiated the study of Updatable
PSI (UPSI), which extends this capability to dynamically updating sets,
enabling both parties to securely compute the intersection as their sets
are modified while incurring significantly less overhead than re-executing
a conventional PSI. However, existing UPSI protocols either do not sup-
port arbitrary deletion of elements or incur high computational and com-
munication overhead. In this work, we combine asymmetric PSI with
Private Set Union (PSU) to present a novel UPSI protocol. Our UPSI
protocol supports arbitrary additions and deletions of elements, offering
a flexible approach to update sets. Furthermore, our protocol enjoys ex-
tremely low communication overhead, scaling linearly with the size of
the update set while remaining independent of the total set size. We
implement our protocol and compare it against state-of-the-art conven-
tional PSI and UPSI protocols. Experimental results demonstrate that
our UPSI protocol incurs 587 to 755 times less communication overhead
than the recently proposed UPSI protocol (AsiaCrypt 2024) that sup-
ports arbitrary additions and deletions. Moreover, our UPSI protocol has
a significant advantage in low-bandwidth environments due to the excep-
tionally low communication overhead. Specifically, with an input size of
222 and the size of the addition/deletion set being 210, the existing UPSI
protocol requires approximately 1650.45, 1789.5, and 3458.1 seconds at
bandwidths of 200 Mbps, 50 Mbps, and 5 Mbps, respectively, whereas
our UPSI protocol only requires around 13.01, 13.75, and 22.53 seconds
under the same conditions. Our open-source implementation is available
at: https://github.com/ShallMate/upsi.

1 Introduction

Private Set Intersection (PSI) enables two parties, each holding a private set, to
compute the intersection of their sets while revealing nothing beyond the inter-
section itself (except for the size of their inputs). It has found broad application
in a variety of scenarios, such as data mining on private data [1], measuring

https://github.com/ShallMate/upsi

2 Ling et al.

ad conversion rates [2], and private contact discovery [3]. Over the past decade,
PSI has made remarkable progress, with numerous efficient PSI protocols hav-
ing been proposed [4,5,6,7,8,9,10,11,12]. The most efficient PSI protocol [10] can
compute the intersection in approximately one second for input sizes on the order
of one million, requiring only tens of megabytes of communication overhead.

Despite the significant performance breakthroughs achieved by these efficient
PSI protocols, they are restricted to a static setting. Specifically, if the set of
either party changes, even by a single element, a complete PSI execution is re-
quired to obtain the updated intersection. However, in practical applications,
the inputs to the PSI protocol are often subject to continuous changes. For
example, a typical application of a PSI protocol is sample alignment prior to
vertical federated learning [13]. Moreover, the data on both parties may need
to be updated continuously or periodically. If each update to the sets requires
re-executing the PSI protocol, it would result in a significant waste of resources.
A recent work by Badrinarayanan et al. [14] initiates the study of Updatable
PSI (UPSI), which enables two parties to compute the intersection of updated
sets without re-executing a conventional PSI. However, this UPSI protocol only
supports the addition of elements, while deletions are implemented through a
periodic refresh mechanism, referred to as “weak deletion”. Very recently, Badri-
narayanan et al. [15] proposed a revised version of this protocol, which supports
the addition and deletion of elements in UPSI. However, from the experimental
results presented in Table 4 of [15], we observe that this protocol introduces new
challenges, including high computational and communication overhead. Specifi-
cally, it only outperforms a re-execution of the most efficient PSI protocol [10]
under particular conditions, namely when the total input is very large (i.e., 222),
the update set is minimal (i.e., 24), and the available bandwidth is significantly
constrained (i.e., 5 Mbps). Therefore, this raises a natural question:

Could we construct a UPSI protocol that supports arbitrary additions and
deletions of elements and ensures faster performance than re-executing a
conventional PSI in most cases rather than being limited to highly specific

conditions?

1.1 Our Results

This work constructs a UPSI protocol that allows both parties to arbitrarily
add or delete elements from their input sets while incurring significantly lower
computational and communication overhead than the deletion-supporting UPSI
protocol in [15]. Our UPSI is inspired by the UPSI framework based on struc-
tured encryption [16,17] proposed by Agarwal et al. [18]. However, our UPSI
protocol does not rely on structured encryption but instead borrows the idea
of asymmetric PSI and requires an efficient Private Set Union (PSU) protocol.
Additionally, the UPSI protocol proposed by Agarwal et al. [18] provides only a
complexity analysis, with neither experimental results nor code implementation
available, leaving its concrete performance unclear. In Table 1, we compare our
UPSI protocol with previous UPSI protocols [14,15,18] in terms of support for

Low-Communication Updatable PSI from Asymmetric PSI and PSU 3

addition and deletion of elements, computational and communication complex-
ity, availability of code implementations and experimental results, and practical
communication.

Table 1: Summary of our results in comparison to previous work, including sup-
port for addition and deletion of elements, computational and communication
complexity, whether code implementations and experiments, and practical com-
munication ratio are provided. N denotes the size of the entire sets, and Nu

denotes the size of the updated sets. t denotes the number of updates when
parties refresh their sets with weak deletion. k denotes a constant. Since BMX22
[14] and ACG+24 [18] did not provide code, we cannot compare practical com-
munication with them.

Protocol Addition/Deletion Comp. Complexity Comm. Complexity Code/Experiment Practical Communication Ratio

BMX22 (addition-only) [14] Addition O(Nu) O(Nu) Experiment -

BMX22 [14] Weak Deletion O(Nu · t) O(Nu · t) Experiment -

BMS+24 (addition-only) [15] Addition O(Nu · logN) O(Nu · logN) Code & Experiment 5 - 6

BMS+24 [15] Addition & Deletion O(Nu · log2 N) O(Nu · log2 N) Code & Experiment 587 - 755

ACG+24 [18] Addition & Deletion O((logN)k) O(Nu) - -

Ours Addition & Deletion O(Nu · logN) O(Nu) Code & Experiment 1

In summary, our work is the first UPSI protocol to provide comprehensive
experimental results, an open-source implementation, and support for adding
and deleting elements while guaranteeing performance. Furthermore, we present
our results in terms of experiments, computation, and communication.

• Experiments. We implement our UPSI protocol and provide a comprehen-
sive report on its performance under various input sizes, update set sizes, and
bandwidth conditions to strengthen reader confidence in our work. Moreover,
we also compare our protocol with the state-of-the-art UPSI and conventional
PSI protocols, demonstrating the performance advantages of our UPSI proto-
col. Finally, we evaluate the update size threshold at which re-executing the
conventional PSI becomes more efficient than our UPSI protocol.

• Computation. Our UPSI protocol outperforms existing UPSI protocols
in terms of computational overhead. For example, when the input set size is
220 and the update set size is 210, our UPSI protocol achieves over 1300 times
faster runtime compared to the addition/deletion-supporting version in [15], and
over most 20 times faster compared to the version that supports only addition.
Furthermore, our protocol can be up to 18× faster than the state-of-the-art
conventional PSI protocol [10] with a bandwidth of 5 Mbps.

• Communication. Our protocol reduces communication overhead by a
factor of 587 to 755 compared to the state-of-the-art UPSI protocol [15] that
supports both addition and deletion. Additionally, it achieves a 5 to 6 times
reduction compared to the version that supports only addition. Additionally,
our protocol outperforms the conventional PSI protocol [10] by 10 to 2066 times
in all settings.

4 Ling et al.

1.2 Technical Overview

From a high-level perspective, our UPSI protocol requires executing an asym-
metric PSI protocol twice, with computational and communication overhead
depending solely on the party with the smaller set. Unlike previous asymmetric
PSI protocols [19,20,21,22], our protocol outputs the result to the party with the
larger set. Furthermore, this process does not require fully homomorphic encryp-
tion [23,24] to protect data privacy and hashing for element alignment between
both parties. Meanwhile, our protocol requires a PSU protocol as a foundational
component, for which several efficient solutions exist, such as those presented in
[26,27,28,29,30]. Now, let us introduce our UPSI protocol step by step from a
high-level perspective. We would like to emphasize that certain specific compu-
tational steps are omitted here to maintain clarity for the reader.

Initialization. Let PX and PY denote the parties holding the original setsX
and Y , respectively. PX and PY can execute an existing two-party PSI protocol,
such as those in [6,8,10], to obtain the intersection I = X ∩ Y .

Deletion. Let PX and PY intend to delete the sets X− and Y −, respectively.

Addition. Let PX and PY intend to add the sets X+ and Y +, respectively.

Compute the intermediate intersection. Let the updated sets of PX and
PY be denoted as X1 and Y1, respectively. PX and PY execute our asymmetric
PSI protocol using X1 and Y +, with PX obtaining T = Y + ∩ X1. Similarly,
PX and PY execute the asymmetric PSI protocol again using X+ and Y1, with
PY obtaining V = X+ ∩ Y1. Note that the computational and communication
overhead of this step is linear in |X+| and |Y +|, and independent of the size of
the entire sets held by both parties.

Compute the intermediate union. PX and PY use T and V as inputs, re-
spectively, and invoke an existing PSU protocol, such as those in [26,27,28,29,30],
with both parties obtaining U = T ∪ V . Subsequently, PX and PY locally com-
pute X− ∩ I and Y − ∩ I, respectively. Both parties invoke the PSU protocol
again, and each receives U ′ = (X− ∩ I) ∪ (Y − ∩ I).

Compute the updated intersection. Finally, each party can locally com-
pute I1 = (I\U ′) ∪ U as the result of X1 ∩ Y1.

It can be observed that our UPSI protocol requires executing a conventional
PSI protocol as a base PSI during the first intersection between the two par-
ties. After both parties update their sets, the UPSI protocol can be executed
repeatedly by following the same steps (except for initialization). Our protocol
is formally described in Figure 4 and is proven secure in the semi-honest model.
It achieves worst-case communication and computation complexity that grows
linearly with the size of the updates and poly-logarithmically with the size of
the entire sets.

2 Related Work

We provide a brief review of PSI, asymmetric PSI, PSU, and UPSI.

Low-Communication Updatable PSI from Asymmetric PSI and PSU 5

PSI. Early PSI protocols were primarily constructed based on the DH key
agreement [31,32]. Due to continuous optimizations in scalar multiplication on el-
liptic curves, primarily through two efficient curves, Curve25519 [33] and FourQ
[34], the efficiency of DH-based PSI protocols has been significantly improved.
The advantages of DH-based PSI protocols are their ease of implementation and
relatively low communication overhead. Consequently, some modern DH-based
PSI protocols [35,36,37] have been proposed in recent years. The state-of-the-art
DH-based PSI protocol, proposed by Rosulek et al. [35], is known to be one
of the fastest and most communication-efficient protocols for small input sizes.
Pinkas et al. [4] constructed an efficient PSI protocol based on Oblivious Trans-
fer (OT) extension [38], which can be considered the origin of highly efficient
OT-based PSI protocols. Since then, many efficient PSI protocols [5,6,7,8] have
been developed, with KKRT16 [6] and CM20 [8] being among the most efficient.
However, compared to DH-based PSI protocols, these protocols sacrifice commu-
nication efficiency in exchange for higher computational efficiency. Fortunately,
this changed with the advent of OKVS [7,39], which provides a convenient way
to represent private sets and facilitates subsequent intersection calculations. Ini-
tially, OKVS was introduced to address the challenge of achieving maliciously
secure PSI protocols, as cuckoo hashing [40] was unsuitable for this purpose. For
further details, please refer to [39]. Consequently, the communication overhead
of the first OKVS-based PSI protocols was high. Garimella et al. [41] addressed
this issue, and Rindal et al. [9] subsequently combined OKVS with a VOLE
protocol [42] to create an efficient PSI protocol with very low communication.
Shortly afterward, Raghuraman et al. [10] improved the OKVS in [9] and com-
bined it with a more efficient VOLE protocol [43], resulting in a state-of-the-art
PSI protocol with extremely low computational and communication overhead.

Asymmetric PSI. Asymmetric PSI, also known as unbalanced PSI, is a
special case of PSI where the set held by one party is significantly smaller than
the set held by the other. In general, the intersection in an unbalanced PSI proto-
col is obtained by the party with the smaller input set. The current asymmetric
PSI protocols are primarily constructed based on fully homomorphic encryption
[23,24]. Chen et al. [19] introduced optimizations to reduce the multiplicative
depth of the function evaluated homomorphically, thereby enhancing efficiency.
Chen et al. [20] and Cong et al. [21] employ a combination of OPRF and fully ho-
momorphic encryption, building upon [19]. This not only enhances performance
but also extends security to the malicious model and enables the protocol to
handle elements of arbitrary bit length. Recently, Mahdavi et al. [22] further
optimized unbalanced PSI through a combination of constant-weight encoding
and hashing techniques.

PSU. Currently, known PSU protocols are generally constructed using two
approaches: additively homomorphic encryption [44] and OT extension [38,43].
We primarily focus on OT-based PSU protocols due to their higher efficiency.
Kolesnikov et al. [26] proposed the first efficient PSU protocol, which features
good practical performance and is several orders of magnitude faster than previ-
ous PSU protocols. Subsequently, Garimella et al. [27] proposed a new PSU pro-

6 Ling et al.

tocol based on oblivious switching [45]. Jia et al. [28] also proposed two shuffle-
based PSU protocols built on the oblivious switching, which they referred to as
the Permute + Share subprotocol. Consequently, the performance of their pro-
tocols is similar to that of [27]. Recently, Zhang et al. [29] proposed two general
constructions for PSU protocols with linear computational and communication
complexity.

UPSI. In contrast to the primitives mentioned above, research on UPSI
has only begun in the past two years, initially proposed and defined by Badri-
narayanan et al. [14]. The UPSI protocol in [14] essentially only supports the
addition of elements, while deletion is achieved through a periodic refreshing
method, which they refer to as weak deletion. Recently, Badrinarayanan et al.
[15] appear to have addressed this issue by proposing new UPSI protocols that
support both the addition and deletion of elements. However, we observe that
their protocols only demonstrate an advantage under very restrictive conditions,
namely, very low bandwidth, tiny update set sizes, and large input sets. Around
the same time, Agarwal et al. [18] also propose a UPSI protocol based on struc-
tured encryption [16,17]. However, they do not provide experimental results and
code, only theoretical analysis. As a result, the concrete performance of this
protocol remains unclear.

3 Preliminaries

3.1 Notation

Let κ and λ denote the computational and statistical security parameters, re-
spectively. Let p be a large prime. Let G be a group of prime order p with
generator g. Let H : {0, 1}∗ → G be a hash function. Let PX and PY denote the
parties holding the original sets X and Y , respectively. Each party intends to
add sets X+ and Y +, and delete sets X− and Y −. The updated sets are denoted
as X1 and Y1. Let the input size and update size for both parties be N and Nu,
respectively.

3.2 Private Set Intersection

The ideal functionality of the PSI protocol is presented in Figure 1. In this
protocol, both parties, PX and PY , hold private sets, denoted as X and Y ,
respectively. They aim to compute the intersection X ∩ Y without revealing
any additional information. Specifically, each party should only learn |X|, |Y |,
and X ∩ Y , while remaining unaware of Y \X and X\Y . The concept of PSI
originated with Meadows et al. [31], initially inspired by the DH key agreement.
In recent years, efficient PSI protocols [6,7,8,9,10] have primarily relied on the
oblivious pseudorandom function protocol.

3.3 Private Set Union

We use the PSU protocol as one of the core components of our UPSI protocol.
In contrast to the rapid development of PSI over the past decade, PSU has only

Low-Communication Updatable PSI from Asymmetric PSI and PSU 7

FPSI

There are two parties, PX and PY , who hold private sets X and Y , respectively.
Both parties receive the intersection I = X ∩ Y as the output.

Fig. 1: Ideal functionality FPSI.

recently started to attract attention. Fortunately, several highly efficient OT-
based PSU protocols have already been proposed [26,27,28,29,30]. As shown in
Figure 2, in the PSU protocol, PX holds X and PY holds Y , and they securely
compute X ∪ Y for both parties without revealing X ∩ Y . Similar to the PSI
protocol, the PSU protocol also reveals the input sizes of both parties, i.e., |X|
and |Y |.

FPSU

There are two parties, PX and PY , who hold private sets X and Y , respectively.
Both parties receive the union U = X ∪ Y as the output.

Fig. 2: Ideal functionality FPSU.

3.4 Updatable Private Set Intersection

UPSI is a variant of PSI that allows both parties to compute the intersection
on dynamically updating sets. The concept of UPSI was recently introduced
by Badrinarayanan et al. [14], who also provided an improved version [15]. In
this work, we define UPSI protocols that support both addition and deletion
operations in Figure 3. In our definition, we require an ideal PSI to perform
the initial intersection between both parties. In other words, our UPSI protocol
essentially operates on the updated input sets and the intersection obtained from
the most recent intersection computation.

3.5 Secure Model

The semi-honest model [46] is used in this paper, where a semi-honest adver-
sary may corrupt parties before executing the protocol. In other words, the
parties in the protocol will honestly execute the protocol as agreed. However,
a party corrupted by the adversary will attempt to extract additional informa-
tion from its view. Consider a two-party protocol for computing the function
FΠ(X,Y), where PX has private input X and PY has private input Y . For PX ,
let VIEWΠ

PX
(1κ, X, Y) denote the view of party PX during an honest execution

8 Ling et al.

FUPSI

There are two parties, PX and PY , who hold private sets X and Y , respectively.
Both parties have obtained I = X ∩ Y using either an ideal FPSI or an ideal
FUPSI. FPSI should be used when computing the intersection for the first time.
PX updates its set to X1 by adding X+ and deleting X−. Similarly, PY updates
its set to Y1 by adding Y + and deleting Y −. Both parties receive the updated
intersection I1 = X1 ∩ Y1 as the output.

Fig. 3: Ideal functionality FUPSI.

of Π on input X. This view consists of the input, the random tape, and all mes-
sages exchanged by PX as part of the Π protocol. Similarly, VIEWΠ

PY
(1κ, X, Y)

represents the view of PY . IX and IY denote the outputs of PX and PY in
FΠ(X,Y), respectively.

Definition 1. (Semi-Honest Model) [46]. Π securely realizes FΠ in the presence
of semi-honest adversaries if there exists two simulators SIMΠ

PX
and SIMΠ

PY
such

that

SIMΠ
PX

(1κ, X, IX) ≈ VIEWΠ
PX

(1κ, X, Y),

SIMΠ
PY

(1κ, Y, IY) ≈ VIEWΠ
PY

(1κ, X, Y),

where ≈ denotes computational indistinguishability with respect to the security
parameter κ.

4 Updatable PSI from Asymmetric PSI and PSU

In this section, we formally describe our updatable PSI protocol, which supports
arbitrary additions and deletions based on our asymmetric PSI and any PSU
protocol. Our UPSI protocol can be completed in a constant number of rounds
and is secure in the semi-honest model.

4.1 Component Overview

We begin by introducing the individual components and then combine them to
form our UPSI protocol.

Base PSI. We require an efficient conventional two-party PSI protocol to
perform the initial intersection between the two parties. For efficiency in the
overall protocol, we recommend using the state-of-the-art RR22 [10] to accom-
plish this task. In practice, other efficient PSI protocols can also be used as the
Base PSI here, such as those in [6,7,8,9].

Asymmetric PSI. In our asymmetric PSI protocol, the party with the larger
input set obtains the intersection. For example, when |X| ≫ |Y |, PX and PY

Low-Communication Updatable PSI from Asymmetric PSI and PSU 9

execute the asymmetric PSI protocol, with PX receiving X ∩Y while PY learns
nothing except |X|.

We achieve this asymmetric PSI protocol based on the DH agreement. Specif-
ically, PX and PY can locally compute HX = {H(x)kx} and HY = H(y)ky , re-
spectively, for all x ∈ X and y ∈ Y . Then, PY can send HY to PX , allowing PX

to compute EY = {hkx
y } for all hy ∈ HY and send it back to PY . Subsequently,

PY locally computes H ′
Y = {ek

−1
y

y } for all ey ∈ EY and sends it to PX . Finally,
PX obtains the intersection X ∩ Y by computing HX ∩ H ′

Y . It is evident that
the communication overhead of the above process is solely linear with respect to
|Y |. Moreover, since HX can be precomputed independently by PX , the compu-
tational overhead in the above process is also linearly dependent on the input
size of the party with the smaller set.

We would like to emphasize that if an alternative asymmetric PSI protocol
is available, where the party with the larger set receives the intersection, and
both computational and communication overheads scale linearly with the size
of the smaller set, it can directly replace the asymmetric PSI described here.
Additionally, we note that the asymmetric PSI protocol proposed by Angelou
et al. [47] is similar to the one presented here. However, in [47], the party with
the smaller set receives the intersection, which does not meet the requirements
for constructing UPSI in our context. Furthermore, due to the integration of the
Bloom filter in [47], the protocol suffers from false positives and makes updating
the set (either adding or deleting elements) challenging.

PSU. To instantiate our UPSI protocol, we recommend employing the PSU
protocol by Zhang et al. [29] due to its linear computational complexity. Fur-
thermore, the use of the OKVS proposed by Bienstock et al. [11] can further re-
duce communication costs. However, this may come at the expense of increased
computational overhead. In fact, using these PSU protocols [26,27,28,30] to in-
stantiate our UPSI protocol is feasible, as they have linear communication costs
and do not result in significant performance loss.

4.2 Protocol Construction

We combine all the components mentioned earlier to construct our UPSI pro-
tocol, as illustrated in Figure 4. Our UPSI protocol reveals only the size of the
addition and deletion sets while enabling intersection computation in a constant
number of rounds.

Correctness. In fact, proving the correctness of our protocol essentially
involves demonstrating that the intersection I1 = (I \ U ′) ∪ U holds for X1 and
Y1, where U = T ∪V , T = Y +∩X1, V = X+∩Y1, and U ′ = (X−∩I)∪(Y −∩I).

Theorem 1. Let X and Y be sets with intersection I = X ∩ Y . We let X1 =
(X \X−) ∪X+, Y1 = (Y \ Y −) ∪ Y +, T = Y + ∩X1, V = X+ ∩ Y1, U = T ∪ V ,
and U ′ = (X− ∩ I) ∪ (Y − ∩ I). Then, the updated intersection I1 = X1 ∩ Y1

satisfies I1 = (I \ U ′) ∪ U .

10 Ling et al.

ΠUPSI

Initialization:
1. PX and PY randomly sample kx and ky from Z∗

p, respectively.
2. PX and PY locally compute HX = {H(x)kx} and HY = {H(y)ky} for all x ∈ X and
y ∈ Y , respectively.
3. PX and PY invoke an ideal FPSI, and both parties receive the intersection I = X ∩ Y .
Deletion:
4. If X− ̸= ∅, then PX computes DX = {H(x−)kx} for all x− ∈ X−, and then updates
HX = HX\DX .
5. If Y − ̸= ∅, then PY computes DY = {H(y−)ky} for all y− ∈ Y −, and then updates
HY = HY \DY .
Addition:
6. If X+ ̸= ∅, then PX computes AX = {H(x+)kx} for all x+ ∈ X+, and then updates
HX = HX ∪AX .
7. If Y + ̸= ∅, then PY computes AY = {H(y+)ky} for all y+ ∈ Y +, and then updates
HY = HY ∩AY .
Compute the intermediate intersection:
8. PY randomly samples k′

y from Z∗
p. Subsequently, PY computes A′

Y = {H(y+)k
′
y} for all

y+ ∈ Y + and sends A′
Y to PX . Then, PX computes EY = {a′

y
kx} for all a′

y ∈ A′
Y and

returns it to PY . After that, PY computes H+
Y = e

k′
y
−1

y for all ey ∈ EY . Finally, PY sends
H+

Y to PX in a random order. PX then computes H+
Y ∩HX to obtain T = Y + ∩X1.

9. Similarly, PY can obtain V = X+ ∩ Y1.
Compute the intermediate union:
10. PX and PY invoke an ideal FPSU, and both parties then receive U = T ∪ V .
11. PX and PY locally compute X− ∩ I and Y − ∩ I, respectively.
12. PX and PY invoke an ideal FPSU, and both parties then receive U ′ = (X−∩I)∪(Y −∩I).
Compute the updated intersection:
13. PX and PY can locally compute I1 = (I\U ′) ∪ U .
The next UPSI operation:
14. PX and PY prepare the new X+, X− and Y +, Y −, respectively, and redefine the current
X1 as X and the current Y1 as Y . They then re-execute all the phases above except for
the initialization.

Fig. 4: Our complete UPSI protocol.

Proof. We will demonstrate that I1 = (I \ U ′) ∪ U by proving both inclusions:

I1 ⊆ (I \ U ′) ∪ U,

(I \ U ′) ∪ U ⊆ I1.

• I1 ⊆ (I \ U ′) ∪ U : Let z ∈ I1. Then z ∈ X1 and z ∈ Y1.

Case 1: If z ∈ I, then z ∈ X and z ∈ Y . Since z ∈ X1, it must either not be
deleted from X (i.e., z /∈ X−) or be re-added (i.e., z ∈ X+). Similarly, z ∈ Y1

implies z /∈ Y − or z ∈ Y +. Since z ∈ I and z ∈ I1, z ∈ I \ U ′ holds if z /∈ U ′

(i.e., z /∈ X− and z /∈ Y −).

Case 2: If z /∈ I, then for z ∈ X1 ∩ Y1 while z /∈ I, it must be the case that
z was added to at least one of the sets: If z ∈ Y + and z ∈ X1, then z ∈ T . If
z ∈ X+ and z ∈ Y1, then z ∈ V . Therefore, z ∈ U = T ∪ V .

Combining both cases, we have z ∈ (I \ U ′) ∪ U .

• (I \ U ′) ∪ U ⊆ I1: Let z ∈ (I \ U ′) ∪ U .

Low-Communication Updatable PSI from Asymmetric PSI and PSU 11

Case 1: If z ∈ I \ U ′, then z ∈ I and z /∈ U ′ hold. Therefore, z /∈ X− and
z /∈ Y − due to z /∈ U ′, implying z ∈ X1 and z ∈ Y1. Hence, z ∈ I1.

Case 2: If z ∈ U , then z ∈ T and z ∈ V due to U = T∪V . If z ∈ T = Y +∩X1,
then z ∈ Y + implies z ∈ Y1, and z ∈ X1. If z ∈ V = X+ ∩ Y1, then z ∈ X+

implies z ∈ X1, and z ∈ Y1. Combining both subcases, we have z ∈ I1.

Since both inclusions hold, we conclude that: I1 = (I \ U ′) ∪ U .

4.3 Complexity Analysis

We comprehensively analyze the computational and communication complexities
of Protocol 4 here. We conduct a detailed analysis of the complexities at each
phase of the UPSI protocol to determine its overall complexity. We would like
to emphasize that this analysis does not include the initialization phase, as it
comprises a base PSI and preparatory steps that can be implemented using an
efficient conventional PSI protocol, such as those in [6,7,8,9,10]. The repeated
execution of the remaining phases alone constitutes our UPSI protocol. For the
sake of discussion, we assume |X| = |Y | = N and |X+| = |Y +| = |X−| = |Y −| =
Nu. Let h denote the cost of hashing, and e denote the cost of exponentiation.

Deletion. Both parties perform O(Nu · (h + e) + Nu logN) computations.
This phase incurs no communication overhead.

Addition. The computational complexity of this phase is the same as that
of the deletion phase, with no communication overhead.

Compute the intermediate intersection. In step 8, PY and PX performs
O(Nu · (h+ 2e)) and O(Nu · e) computations, respectively. The communication
overhead is O(3 · |G| · Nu). Step 9 is identical to Step 8, except that PX and
PY interchange roles. Therefore, both PX and PY perform O(Nu · (h + 3e))
computations in this phase, requiring a total communication cost ofO(6·|G|·Nu).

Compute the intermediate union. This phase mainly involves two in-
vocations of the PSU protocol. We can see that the input size for these two
PSU protocol invocations is at most Nu in the worst case. Therefore, accord-
ing to the existing efficient PSU protocols [26,27,28,29,30], the computational
complexity and communication complexity of this phase are O(Nu) (or possibly
O(Nu · logNu)) and O(Nu), respectively.

Compute the updated intersection. The computational cost for both
parties in this step is O(Nu), with no communication cost required.

In summary, the computational complexity and communication complexity of
our UPSI protocol can be summarized as O(Nu · logN) and O(Nu), respectively.

4.4 Updatable PSI Security Proof

It is evident that the number of elements each party adds and deletes, i.e., |X+|,
|Y +|, |Y −|, and |X−|, is revealed. This might be an unavoidable form of leakage,
as it has been a persistent issue in previous UPSI protocols [14,15,18]. Our UPSI
protocol relies on the DDH assumption.

12 Ling et al.

Decisional Diffie-Hellman (DDH) Assumption. Let G be a cyclic group
of prime order p with generator g. Let a, b, c be sampled uniformly at random
from Zp. The DDH assumption states that

(ga, gb, gab) ≈ (ga, gb, gc).

Theorem 2. Let H be a random oracle. The protocol ΠUPSI realizes FUPSI against
a semi-honest adversary under the DDH assumption, assuming the existence of
ideal FPSI and FPSU in the semi-honest model.

Proof. Since PX and PY are symmetric, we only need to prove that no addi-
tional information is revealed when either party is corrupted. Without loss of
generality, we assume that PX is the corrupted party, while PY remains honest.
Before Step 8 of the protocol, that is, prior to the Compute the intermediate
intersection phase, all operations are local computations except for the invoca-
tion of the ideal FPSI. Thus, simulating this part of the process is trivial. PX will
receive A′

Y = {H(y+)k
′
y} for all y+ ∈ Y + from PY . Using a sequence of hybrid

arguments, we show that the corrupted PX cannot distinguish the elements in
A′

Y from random values in G.
H0: This is the view of PX in the real execution of ΠUPSI when it receives

A′
Y .

H1,i: For i ∈ {1, · · · , Nu}, the same as H0 except that we replace H(y+)k
′
y in

A′
Y with random gi ∈ G.
H2: The view of PX as output by the simulator when it finishes receiving

A′
Y .
We argue that H1,i−1 and H1,i are indistinguishable to PX . If any PPT

adversary A can distinguish the two hybrids, we devise a challenger C who can
break the DDH assumption. C is given (g, ga, gb, gc) and needs to decide whether
c is random or c = ab. C can program H(·) to return gb on input y+, and we

let ga = gk
′
y . C receives the challenge mask ϵ. Note that C does not know that

ϵ belongs to H1,i−1 or H1,i. C sends ϵ to A, and then A determines whether
ϵ belongs to H1,i−1 or H1,i. If c = ab, the mask ϵ = gc, otherwise ϵ = gi
(since gi is random). If A judges that ϵ belongs to H1,i−1, then C outputs that
c = ab; otherwise outputs that c is random. Therefore, we can see that if A can
distinguish the mask part of two hybrids, then C can break the DDH assumption
with the same probability.

PX also receives EX = {a′x
ky} for all a′x ∈ A′

X , where A′
X = {H(x+)k

′
x}.

Note that this process in Step 9 is omitted in the description of Protocol 4, as it

is almost identical to Step 8. Additionally, PX will receive H+
Y = {ek

′
y
−1

y } for all
ey ∈ EY from PY . The methods used to prove that PX cannot distinguish the
elements in EX and H+

Y from random values in G are similar to those for A′
Y ,

and thus will not be repeated here.
The remaining parts of the protocol consist entirely of local computations,

except for the two invocations of the ideal FPSU. Therefore, the simulation of
the remaining parts of the protocol is trivial.

Low-Communication Updatable PSI from Asymmetric PSI and PSU 13

In summary, our UPSI protocol is secure against semi-honest adversaries.

5 Evaluation

In this section, we provide a comprehensive evaluation of our work, including
the performance of our UPSI protocol under different network environments and
various parameters, the conditions under which a new conventional PSI protocol
should be reused when the updated set size exceeds a certain threshold, and a
comparison with state-of-the-art protocols. Our implementation is available on
GitHub: https://github.com/ShallMate/upsi.

5.1 Experimental Setup

We used workstations with Intel(R) Xeon(R) Gold 6230R CPU @ 2.10 GHz,
with 52 cores, and having 128 GB RAM. The experiment runs on the CentOS
system. Our UPSI protocols is implemented using the YACL library1, which is a
C++ library that contains common cryptography, network and I/O modules. We
set the computational security parameter κ = 128 and the statistical security
parameter λ = 40. We evaluate the performance of our protocol under both
LAN and WAN settings. We simulate the WAN connection using the Linux “tc”
command. We simulate the LAN connection with 0.2 ms RTT network latency
and 1 Gbps network bandwidth. For the bandwidth in the WAN setting, we
follow the configuration of Badrinarayanan et al. [15] and present our results at
200 Mbps, 50 Mbps, and 5 Mbps with an RTT latency of 80 ms. We use the
FourQ curve [34] to instantiate G and SHA512 for the hash function H. We use
the PSU protocol proposed by Kolesnikov et al. [26] to instantiate our UPSI
instead of the linear-computation-cost PSU proposed by Zhang et al. [29], as
their provided source code is written in Java2. We observe that our protocol
remains efficient using [26]. We would like to emphasize that if the PSU protocol
by Zhang et al. [29] were used, the performance of our protocol might be even
better than what is demonstrated in this paper. For the base PSI used to compute
the initial intersection between both parties, we choose the state-of-the-art two-
party PSI proposed by Raghuraman et al. [10]. For the sake of presenting the
results, we assume |X| = |Y | = N and |X+| = |Y +| = |X−| = |Y −| = Nu.

5.2 The Performance of Our UPSI

We present the specific performance of our UPSI protocol under different values
of N and Nu, as well as various network environments. We set N ∈ {219, 220, 221,
222, 223, 224} andNu ∈ {27, 28, 29, 210, 211, 212, 213, 214, 215, 216}. In previous works
[14,15], the performance was shown only up to N = 222 and Nu = 212. We pro-
vide as many parameters as possible to give readers a better understanding of
the performance of our protocol.

1 https://github.com/secretflow/yacl
2 https://github.com/alibaba-edu/mpc4j

https://github.com/ShallMate/upsi
https://github.com/secretflow/yacl
https://github.com/alibaba-edu/mpc4j

14 Ling et al.

Table 2: Communication cost (in MB) and running time (in seconds) of the
initialization phase under different values of N .

N 219 220 221 222 223 224

Running Time (s) 3.46 7.67 16.7 36.9 82.7 176.7

Comm. (MB) 26.1 51.9 103.4 206.6 412.9 825.6

Table 3: Communication cost (in MB) and running time (in seconds) of our
protocol under different values of N and Nu, and various network environments.

N Nu Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

219

27 0.65 1.37 1.81 1.91 3.08

28 1.27 1.55 2.01 2.2 4.5

29 2.45 2.18 2.7 3.07 7.49

210 4.88 3.12 3.76 4.49 13.27

211 9.65 5.08 5.96 7.41 24.79

220

28 1.27 2.75 3.21 3.4 5.7

29 2.45 3.11 3.63 4.0 8.41

210 4.88 4.33 4.98 5.71 14.49

211 9.65 6.35 7.24 8.68 26.06

212 19.3 10.6 11.97 14.87 49.57

221

29 2.45 5.94 6.47 6.84 11.25

210 4.88 7.38 8.03 8.76 17.54

211 9.65 9.19 10.07 11.52 28.9

212 19.3 13.2 14.58 17.47 52.18

213 38.5 21.1 23.47 29.25 98.61

222

210 4.88 12.5 13.18 13.92 22.7

211 9.65 15.0 15.89 17.34 34.72

212 19.3 18.8 20.24 23.13 57.83

213 38.5 26.9 29.3 35.08 104.44

214 77.1 43.8 48.09 59.65 198.33

223

211 9.65 28.4 29.27 30.72 48.09

212 19.3 31.9 33.3 36.19 70.9

213 38.5 40.0 42.37 48.16 117.52

214 77.1 55.1 59.39 70.95 209.63

215 153.9 87.2 95.33 118.42 395.6

224

212 19.3 58.6 60.0 62.89 97.59

213 38.5 65.6 67.97 73.75 143.11

214 77.1 83.2 87.42 98.98 237.66

215 153.9 119.5 127.62 150.72 427.89

216 307.8 193.1 208.93 255.11 809.28

Low-Communication Updatable PSI from Asymmetric PSI and PSU 15

First, we present the costs of our UPSI protocol during the initialization
phase. Essentially, this is not part of the pre-computation for our UPSI protocol
and only needs to be executed once. The cost of this phase mainly depends on N
and is linear with respect to it. This phase primarily requires a single execution
of the base PSI protocol, as well as pre-computation by both parties for the
masks used in the subsequent asymmetric PSI. We present the communication
cost (in MB) and running time (in seconds) of the initialization phase of our
UPSI under different values of N in Table 2. We can see that when N = 224,
both parties require 176.7 seconds and 825.6 MB of communication to complete
the initialization phase. Fortunately, this phase is essentially a setup phase and
only needs to be executed once. Therefore, we do not include the costs of the
initialization phase in the subsequent UPSI evaluations. Note that the communi-
cation cost for the base PSI here is slightly higher than executing a one-way PSI
protocol by Raghuraman et al. [10] alone, as the party receiving the intersection
needs to send it to the other party.

Next, in Table 3, we present the communication cost (in MB) and running
time (in seconds) of our protocol under different values of N and Nu and various
network environments. We can see that the communication cost of the proposed
UPSI protocol is independent of N and primarily grows linearly with Nu. Since
our UPSI protocol enjoys extremely low communication costs, it can quickly
obtain the updated intersection even under very low bandwidth conditions. For
example, with a bandwidth of 5 Mbps, both parties can complete the UPSI
protocol in 5.7 seconds when N = 220 and Nu = 28. When dealing with large-
scale data, our protocol can quickly complete the computation of the updated
intersection. For example, when N = 224 and Nu = 212, our UPSI protocol
completes the intersection computation in 58.6, 60.0, 62.89, and 97.59 seconds
under LAN, 200 Mbps, 50 Mbps, and 5 Mbps WAN settings, respectively. It can
be observed that our protocol is efficient even with large-scale data and under
low bandwidth conditions.

5.3 The Threshold of Nu

In most cases, Nu should be much smaller than N . However, determining the
threshold at which Nu grows large enough that running UPSI becomes less
efficient than executing a conventional PSI with updated inputs is crucial, and
previous works [14,15,18] seem to have overlooked this aspect. We experiment
with different values of N and Nu to evaluate the threshold of Nu at which
our UPSI protocol becomes less efficient than directly re-executing the state-
of-the-art conventional two-party PSI protocol [10]. We consider this a crucial
experiment, as there may be a threshold value of Nu beyond which executing
the UPSI protocol could be less efficient than re-running a new conventional
two-party PSI. As shown in Figure 5, we present a comparison of our UPSI
protocol with [10] under different bandwidths and updated set sizes when N ∈
{219, 220, 221, 222, 223, 224}. We summarize the threshold N t

u results for different
values of N and various bandwidths in Table 4 for the convenience of readers.
For example, when N = 224, as long as |N+| ≤ 217 and |N−| ≤ 217, executing

16 Ling et al.

our UPSI protocol with a bandwidth of 5 Mbps will definitely be faster than
executing [10]. Although 217 still has a significant gap compared to 224, this
is an impressive result compared to previous works. For example, the current
state-of-the-art UPSI [15] that supports addition and deletion has an actual N t

u

of only 24 under the same parameters. In other words, we have expanded this
threshold by at least 213 (8192) times in this setting. Therefore, it is clear that
our protocol indeed addresses the problem we posed in the introduction. We have
successfully constructed a UPSI that supports arbitrary additions and deletions
of elements while ensuring faster performance than re-executing a conventional
PSI in most cases, rather than being limited to highly specific conditions.

(a) N = 219 (b) N = 220

(c) N = 221 (d) N = 222

(e) N = 223 (f) N = 224

Fig. 5: Comparison with RR22 [10] under different bandwidths and updated set
sizes when N ∈ {219, 220, 221, 222, 223, 224}.

Low-Communication Updatable PSI from Asymmetric PSI and PSU 17

Table 4: Let N t
u be a threshold for Nt, beyond which it becomes more efficient

to re-run RR22 [10] rather than executing our UPSI protocol.

N 219 220 221 222 223 224

N t
u (200 Mbps) 28 29 210 211 213 214

N t
t (50 Mbps) 210 211 212 213 214 216

N t
t (5 Mbps) 212 213 214 215 216 217

Table 5: Communication cost (in MB) and running time (in seconds) of our
protocol in comparison with prior work. If the existing work is optimal, we
highlight it in green; if our work is optimal, we highlight it in red. We did not
record experimental results with a running time exceeding two hours.

N Nu Protocol Comm. (MB)
Total Running Time (s)

LAN 200Mbps 50Mbps 5Mbps

220

- RR22 [10] 51.88 1.41 4.4 12.19 105.57

24

BMS+24 [15]

0.50 1.52 1.95 2.02 2.52

26 1.95 5.49 5.99 6.28 9.79

28 (addition-only) 7.57 22.8 23.58 24.71 38.34

210 29.61 87.6 89.48 93.92 147.22

24

BMS+24 [15]

58.7 101.2 104.54 113.34 219.0

26 231 363.3 375.25 409.9 825.7

28 (addition & deletion) 922 1398.4 1445.25 1584.6 3256.8

210 3687 5543.5 5727.75 6280.8 -

24

Ours

0.10 2.18 2.58 2.6 2.78

26 0.34 2.34 2.76 2.81 3.42

28 1.28 2.70 3.16 3.36 5.66

210 4.88 4.18 4.82 5.56 14.34

222

- RR22 [10] 206.65 8.17 18.87 49.77 420.57

24

BMS+24 [15]

0.53 1.62 2.05 2.13 3.08

26 2.06 5.45 5.95 6.26 9.97

28 (addition-only) 8.03 23.6 24.4 25.61 40.06

210 31.5 92.4 94.38 99.1 155.8

24

BMS+24 [15]

61.6 108.3 111.78 121.02 231.9

26 243 402 414.55 451.0 888.4

28 (addition & deletion) 927 1603.7 1650.45 1789.5 3458.1

210 - - - - -

24

Ours

0.10 10.13 10.54 10.55 10.73

26 0.34 10.48 10.9 10.95 11.56

28 1.28 10.87 11.33 11.53 13.83

210 4.88 12.37 13.01 13.75 22.53

18 Ling et al.

5.4 Comparison with State-of-The-Art Protocols

We compare our UPSI protocol with the existing optimal conventional PSI pro-
tocol [10] and UPSI protocol [15]. In [15], there is also a UPSI protocol that
only supports addition operations, which we have included in the comparison
to demonstrate the efficiency of our protocol. We present the communication
cost (in MB) and running time (in seconds) of our protocol in comparison with
[10,15] in Table 5.

We summarize our experimental results in terms of communication improve-
ment, computation improvement, and overall running time.

Communication Improvement. Our protocol outperforms RR22 [10] by
10 - 2066 × in all settings. When N = 222 and Nu = 24, the communication
cost of RR22 is 206.65 MB, whereas our protocol requires only 0.1 MB. Addi-
tionally, our protocol achieves a 5 - 6× reduction compared to the version that
supports only addition in [15]. When N = 222 and Nu = 210, it requires 31.5
MB of communication, whereas our UPSI needs only 4.88 MB. Our protocol re-
duces communication overhead by 587 - 755× compared to the state-of-the-art
UPSI protocol [15] that supports both addition and deletion. When N = 220

and Nu = 210, it requires 3687 MB of communication, whereas our UPSI still
needs only 4.88 MB. It can be observe that our protocol enjoys extremely low
communication cost compared to existing works. Therefore, our UPSI protocol
has a significant advantage in terms of communication overhead.

Computation Improvement. Our protocol achieves up to a 21× reduction
in computation overhead compared to the version that supports only addition in
[15]. Specifically, when N = 220 and Nu = 210, it takes 87.6 seconds to complete
the protocol, whereas our UPSI protocol requires only 4.18 seconds in the LAN
setting. Furthermore, our protocol reduces computation overhead by 46 - 1326×
compared to the state-of-the-art UPSI protocol [15] that supports both addition
and deletion. For example, when N = 220 and Nu = 210, it takes 5543.5 seconds
to complete the protocol, whereas our UPSI protocol still requires only 4.18
seconds. It is evident that our UPSI protocol also has a significant advantage in
terms of computation overhead compared to [15].

Overall Running Time. The end-to-end running time of our protocol be-
gins to outperform the version that supports only addition in [15] when Nu ≥ 26

for N = 220 and Nu ≥ 28 for N = 222. In these settings, our protocol can be over
20× faster than the latter. For example, when N = 220 and Nu = 210, the latter
requires 93.92 seconds to complete the protocol, whereas our protocol only needs
5.56 seconds with a bandwidth of 50 Mbps. In comparison with the version that
supports both addition and deletion in [15], our UPSI demonstrates an advan-
tage in overall running time across all settings. Our protocol can be up to 1188×
faster than the state-of-the-art UPSI protocol [15] that supports both addition
and deletion. Specifically, when N = 220 and Nu = 210, it takes 5727.75 seconds
to complete the intersection computation, whereas our UPSI requires only 4.82
seconds with a bandwidth of 200 Mbps. Furthermore, our UPSI also has an ad-
vantage in overall running time compared to state-of-the-art conventional PSI
[10] across all settings. Our protocol can be up to 18× faster than [10]. Specif-

Low-Communication Updatable PSI from Asymmetric PSI and PSU 19

ically, when N = 222 and Nu = 210, [10] takes 420.57 seconds to complete the
intersection computation, whereas our UPSI requires only 22.53 seconds with
a bandwidth of 5 Mbps. Therefore, we can see that our protocol also has an
advantage in end-to-end running time due to its extremely low communication.

In summary, our protocol has significant advantages over the current optimal
protocols in terms of communication improvement, computation improvement,
and overall running time.

6 Limitations and Discussion

This section primarily discusses some limitations of our UPSI protocol and out-
lines our future work.

First, our UPSI protocol is secure in the semi-honest model but does not
provide security against malicious adversaries. To the best of our knowledge, no
maliciously secure UPSI protocol has been proposed so far. Therefore, we leave
the construction of a maliciously secure UPSI protocol as an open problem and
a direction for our future work.

Secondly, our UPSI protocol is a two-way UPSI, meaning that both parties
obtain the intersection. Therefore, our work may not be suitable for PSI scenarios
where only one party needs to obtain the intersection. However, this does not
imply that our work is without value. For example, in vertical federated learning
[13], the first step is usually to use a PSI protocol for sample alignment, where
all parties typically need to obtain the intersection. In the next section, we also
provide some application scenarios for the UPSI protocol proposed in this paper
to illustrate its strong practical significance. However, we still want to improve
our UPSI protocol to allow only one party to receive the intersection, which is
currently included in our future work.

We plan to address the above two limitations in future work and welcome
further research aimed at improving our UPSI protocol.

7 Applications

In this section, we present three application scenarios for our UPSI protocol to
illustrate its practical role.

Vertical Federated Learning. Vertical federated learning [13] is a highly
favored approach for joint model training in the industry. It refers to multiple
companies possessing different feature spaces for the same set of samples, aiming
to improve model accuracy through feature expansion. The prerequisite for ver-
tical federated learning is achieving privacy-preserving entity alignment, which
involves identifying the common sample IDs across all companies. In fact, this
task is typically accomplished using a PSI protocol. However, in practice, data is
not stable and actually requires continuous updates. Here we cite a passage from
Meta’s paper [48]: “But a typical scenario is for one party’s dataset of records
to be large and stable for some time, while the other party’s dataset arrives in a

20 Ling et al.

streaming fashion and in small batches. For example, parameters of a machine
learning model can be continuously updated as new batches of records arrive.”
This means that if we use a conventional PSI protocol, we would need to exe-
cute it multiple times to continually perform privacy-preserving entity alignment.
Although they also use a PSI variant called streaming PSI to attempt to address
this issue, this construction is not efficient due to the expensive homomorphic
encryption involved (taking up to about two hours to complete the intersection
computation for input sizes less than 224 on a c5.18xlarge AWS instance). As
shown in Table 3, with our protocol, the entire computation can be completed
in less than 20 seconds for an update size of 212 (4096), even taking only around
97 seconds under a 5 Mbps bandwidth. Furthermore, in the vertical federated
learning scenario, all participating parties need to obtain the intersection (oth-
erwise, they cannot know which samples are involved in model training). Thus,
our UPSI protocol is well-suited for vertical federated learning.

Medical Data Sharing. PSI is also frequently used for privacy-preserving
medical data sharing [49,50]. At the same time, we know that medical data,
such as epidemic monitoring and case tracking, requires frequent data updates.
For example, during the COVID-19 pandemic, the number of new hospital cases
and test results can change rapidly. The updatable feature of the UPSI protocol
enables hospitals to quickly add the latest data to the intersection, assisting
relevant departments and hospitals in obtaining real-time analyses. Furthermore,
the capability for dynamic updates also facilitates long-term collaborative case
analysis. Suppose a hospital identifies a new case or updates test data. In that
case, it can swiftly integrate the new information into the intersection via the
UPSI protocol, ensuring that all collaborating parties receive the most timely
information. If multiple hospitals identify cases of the same patient with a specific
disease, the parties can conduct in-depth analyses based on the intersection data
to explore information such as causes and treatment options. This cross-hospital
collaboration facilitates knowledge sharing and enhances overall diagnostic and
treatment outcomes. Due to the considerable performance advantages of our
UPSI compared to previous works, it can assist hospitals in quickly performing
these frequently updated intersection computations.

Social Network Analysis. PSI has been widely used in social networks
[51,52,53]. Social platforms can identify overlapping users and update their so-
cial graphs without disclosing user privacy, thereby providing users with a richer
social experience and cross-platform services. When building user social graphs
across multiple social platforms, each platform has a large user base, making it
relatively expensive to perform a PSI protocol. However, the friend lists and in-
terests of these users may change frequently. Therefore, using a conventional PSI
protocol would result in significant resource waste. Each platform can use UPSI
to address this issue. Moreover, since each platform needs to update its own
social graph, they all require to obtain the intersection. As a result, our UPSI
protocol is a viable solution worth considering for this scenario, as it demon-
strates highly efficient performance compared to previous works in a setting
that requires updating sets.

Low-Communication Updatable PSI from Asymmetric PSI and PSU 21

In fact, the application scenarios for UPSI are not limited to the three we
have listed. Since data inherently requires constant updates, the usefulness of
our UPSI protocol becomes increasingly evident.

8 Conclusion

In this work, we construct a UPSI protocol that supports arbitrary additions
and deletions of elements, offering faster performance compared to re-executing
a conventional PSI in most scenarios without being restricted to specific condi-
tions. Experimental results demonstrate that our UPSI protocol is substantially
more efficient than the existing state-of-the-art UPSI protocol, achieving two to
three orders of magnitude improvements in both computational and communi-
cation costs. Finally, we also provide some applications of the proposed UPSI
protocol to demonstrate how our protocol can play a significant role in practical
scenarios.

9 Acknowledge

This work was supported by the National Key Research and Development Pro-
gram of China under Grant 2023YFB3106501.

References

1. Atsuko Miyaji, Kazuhisa Nakasho, and Shohei Nishida. Privacy-preserving inte-
gration of medical data - A practical multiparty private set intersection. J. Medical
Syst., 41(3):37:1–37:10, 2017.

2. Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set inter-
section based on OT extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35, 2018.

3. Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and
Christian Weinert. Mobile private contact discovery at scale. In 28th USENIX
Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-
16, 2019, pages 1447–1464, 2019.

4. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set in-
tersection based on OT extension. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014, pages 797–812, 2014.

5. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten
Holz, editors, 24th USENIX Security Symposium, USENIX Security 15, Washing-
ton, D.C., USA, August 12-14, 2015, pages 515–530. USENIX Association, 2015.

6. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Aus-
tria, October 24-28, 2016, pages 818–829. ACM, 2016.

7. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight
private set intersection from sparse OT extension. In Alexandra Boldyreva and

22 Ling et al.

Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part III, volume 11694 of Lecture Notes in Computer Science,
pages 401–431. Springer, 2019.

8. Melissa Chase and Peihan Miao. Private set intersection in the internet setting
from lightweight oblivious PRF. In Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2020, Part III, volume 12172 of Lecture
Notes in Computer Science, pages 34–63. Springer, 2020.

9. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast OPRF and circuit-psi
from vector-ole. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Part
II, volume 12697 of Lecture Notes in Computer Science, pages 901–930. Springer,
2021.

10. Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS
and subfield VOLE. In ACM SIGSAC Conference on Computer and Communi-
cations Security, Los Angeles, CA, USA, November 7-11, 2022, pages 2505–2517.
ACM, 2022.

11. Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-optimal
oblivious key-value stores for efficient psi, PSU and volume-hiding multi-maps.
In Joseph A. Calandrino and Carmela Troncoso, editors, 32nd USENIX Security
Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023, pages
301–318. USENIX Association, 2023.

12. Guowei Ling, Fei Tang, Chaochao Cai, Jinyong Shan, Haiyang Xue, Wulu Li, Peng
Tang, Xinyi Huang, andWeidong Qiu. P2frpsi: Privacy-preserving feature retrieved
private set intersection. IEEE Trans. Inf. Forensics Secur., 19:2201–2216, 2024.

13. Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye,
Ye Ouyang, Ya-Qin Zhang, and Qiang Yang. Vertical federated learning: Concepts,
advances, and challenges. IEEE Trans. Knowl. Data Eng., 36(7):3615–3634, 2024.

14. Saikrishna Badrinarayanan, Peihan Miao, and Tiancheng Xie. Updatable private
set intersection. Proc. Priv. Enhancing Technol., 2022(2):378–406, 2022.

15. Saikrishna Badrinarayanan, Peihan Miao, Xinyi Shi, Max Tromanhauser, and
Ruida Zeng. Updatable private set intersection revisited: Extended functionali-
ties, deletion, and worst-case complexity. Cryptology ePrint Archive, 2024.

16. Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure.
In Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, pages 577–594, 2010.

17. Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions. In Pro-
ceedings of the 13th ACM Conference on Computer and Communications Security,
CCS 2006, Alexandria, VA, USA, October 30 - November 3, 2006, pages 79–88,
2006.

18. Archita Agarwal, David Cash, Marilyn George, Seny Kamara, Tarik Moataz, and
Jaspal Singh. Updatable private set intersection from structured encryption. IACR
Cryptol. ePrint Arch., page 1183, 2024.

19. Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from ho-
momorphic encryption. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 1243–1255, 2017.

Low-Communication Updatable PSI from Asymmetric PSI and PSU 23

20. Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from
fully homomorphic encryption with malicious security. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, pages 1223–1237, 2018.

21. Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia
Iliashenko, Kim Laine, and Michael Rosenberg. Labeled PSI from homomorphic
encryption with reduced computation and communication. In CCS ’21: 2021 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event,
Republic of Korea, November 15 - 19, 2021, pages 1135–1150, 2021.

22. Rasoul Akhavan Mahdavi, Nils Lukas, Faezeh Ebrahimianghazani, Thomas
Humphries, Bailey Kacsmar, John A. Premkumar, Xinda Li, Simon Oya, Ehsan
Amjadian, and Florian Kerschbaum. PEPSI: practically efficient private set inter-
section in the unbalanced setting. In 33rd USENIX Security Symposium, USENIX
Security 2024, Philadelphia, PA, USA, August 14-16, 2024, 2024.

23. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) LWE. In IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 97–106, 2011.

24. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In Innovations in Theoretical Com-
puter Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages 309–325,
2012.

25. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Algorithms - ESA
2001, 9th Annual European Symposium, Aarhus, Denmark, August 28-31, 2001,
Proceedings, pages 121–133, 2001.

26. Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set
union from symmetric-key techniques. In Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the Theory and Application of Cryptology
and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part
II, pages 636–666, 2019.

27. Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal
Singh. Private set operations from oblivious switching. In Public-Key Cryptography
- PKC 2021 - 24th IACR International Conference on Practice and Theory of
Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part II,
pages 591–617, 2021.

28. Yanxue Jia, Shifeng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu. Shuffle-
based private set union: Faster and more secure. In 31st USENIX Security Sym-
posium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, pages
2947–2964, 2022.

29. Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin. Linear private
set union from multi-query reverse private membership test. In 32nd USENIX
Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11,
2023, pages 337–354, 2023.

30. Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, and Dawu Gu. Scalable private set
union, with stronger security. In 33rd USENIX Security Symposium, USENIX
Security 2024, Philadelphia, PA, USA, August 14-16, 2024, 2024.

31. Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for
use in the absence of a continuously available third party. In IEEE Symposium on
Security and Privacy, pages 134–137, 1986.

24 Ling et al.

32. Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg. Enhancing privacy
and trust in electronic communities. In Stuart I. Feldman and Michael P. Wellman,
editors, Proceedings of the First ACM Conference on Electronic Commerce (EC-
99), Denver, CO, USA, November 3-5, 1999, pages 78–86. ACM, 1999.

33. Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Public Key
Cryptography - PKC 2006, 9th International Conference on Theory and Practice
of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings,
pages 207–228, 2006.

34. Craig Costello and Patrick Longa. Fourq: Four-dimensional decompositions on a
q-curve over the mersenne prime. In Advances in Cryptology - ASIACRYPT 2015
- 21st International Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part I, pages 214–235, 2015.

35. Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for
small sets. In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors,
CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications Se-
curity, Virtual Event, Republic of Korea, November 15 - 19, 2021, pages 1166–1181.
ACM, 2021.

36. Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection pro-
tocols with linear complexity. In Radu Sion, editor, Financial Cryptography and
Data Security, 14th International Conference, FC 2010, Tenerife, Canary Islands,
Spain, January 25-28, 2010, Revised Selected Papers, volume 6052 of Lecture Notes
in Computer Science, pages 143–159. Springer, 2010.

37. Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying
secure computing: Private intersection-sum-with-cardinality. In IEEE European
Symposium on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-
11, 2020, pages 370–389. IEEE, 2020.

38. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In Dan Boneh, editor, Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Com-
puter Science, pages 145–161. Springer, 2003.

39. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from paxos: Fast,
malicious private set intersection. In Anne Canteaut and Yuval Ishai, editors, Ad-
vances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part II, volume 12106 of Lecture Notes in Computer Sci-
ence, pages 739–767. Springer, 2020.

40. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Algorithms - ESA
2001, 9th Annual European Symposium, Aarhus, Denmark, August 28-31, 2001,
Proceedings, pages 121–133, 2001.

41. Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
Oblivious key-value stores and amplification for private set intersection. In Tal
Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, Au-
gust 16-20, 2021, Proceedings, Part II, volume 12826 of Lecture Notes in Computer
Science, pages 395–425. Springer, 2021.

42. Phillipp Schoppmann, Adrià Gascón, Mariana Raykova, and Benny Pinkas. Make
some ROOM for the zeros: Data sparsity in secure distributed machine learning. In

Low-Communication Updatable PSI from Asymmetric PSI and PSU 25

Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2019, London, UK, November 11-15, 2019, pages 1335–1350.
ACM, 2019.

43. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE
and oblivious transfer from hardness of decoding structured LDPC codes. In Tal
Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, Au-
gust 16-20, 2021, Proceedings, Part III, volume 12827 of Lecture Notes in Computer
Science, pages 502–534. Springer, 2021.

44. Fei Tang, Guowei Ling, Chaochao Cai, et al. Solving small exponential ECDLP in
ec-based additively homomorphic encryption and applications. IEEE Trans. Inf.
Forensics Secur., 18:3517–3530, 2023.

45. Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits in MPC an
efficient framework for private function evaluation. In Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Pro-
ceedings, pages 557–574, 2013.

46. Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptol., 13(1):143–202, 2000.

47. Nick Angelou, Ayoub Benaissa, Bogdan Cebere, William Clark, Adam James Hall,
Michael A. Hoeh, Daniel Liu, Pavlos Papadopoulos, Robin Roehm, Robert Sand-
mann, Phillipp Schoppmann, and Tom Titcombe. Asymmetric private set inter-
section with applications to contact tracing and private vertical federated machine
learning. CoRR, abs/2011.09350, 2020.

48. Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, et al. Private matching
for compute. IACR Cryptol. ePrint Arch., page 599, 2020.

49. Yalian Qian, Jian Shen, Pandi Vijayakumar, and Pradip Kumar Sharma. Profile
matching for iomt: A verifiable private set intersection scheme. IEEE J. Biomed.
Health Informatics, 25(10):3794–3803, 2021.

50. Mohammed Ramadan and Shahid Raza. Secure equality test technique using
identity-based signcryption for telemedicine systems. IEEE Internet Things J.,
10(18):16594–16604, 2023.

51. Ghita Mezzour, Adrian Perrig, Virgil D. Gligor, and Panos Papadimitratos.
Privacy-preserving relationship path discovery in social networks. In Cryptol-
ogy and Network Security, 8th International Conference, CANS 2009, Kanazawa,
Japan, December 12-14, 2009. Proceedings, pages 189–208, 2009.

52. Pili Hu, Sherman S. M. Chow, and Wing Cheong Lau. Secure friend discovery via
privacy-preserving and decentralized community detection. CoRR, abs/1405.4951,
2014.

53. Jingwei Hu, Yongjun Zhao, Benjamin Hong Meng Tan, Khin Mi Mi Aung, and
Huaxiong Wang. Enabling threshold functionality for private set intersection pro-
tocols in cloud computing. IEEE Trans. Inf. Forensics Secur., 19:6184–6196, 2024.

	Low-Communication Updatable PSI from Asymmetric PSI and PSU

