
Subliminal Encrypted Multi-Maps and
Black-Box Leakage Absorption

Amine Bahi∗
École Normale Supérieure

Seny Kamara†

MongoDB & Brown University
Tarik Moataz‡

MongoDB

Guevara Noubir§

Northeastern University

Abstract

We propose a dynamic, low-latency encrypted multi-map (EMM) that operates in two modes:
low-leakage mode, which reveals minimal information such as data size, expected response length,
and query arrival rate; and subliminal mode, which reveals only the data size while hiding meta-
data including query and update times, the number of operations executed, and even whether
an operation was executed at all—albeit at the cost of full correctness. We achieve this by
exploiting a tradeoff between leakage and latency, a previously underexplored resource in EMM
design. In low-leakage mode, our construction improves upon existing work both asymptotically
and empirically: it achieves optimal server-side storage, as well as communication and compu-
tational complexity that is independent of the maximum response length. In subliminal mode,
it is the first construction to hide metadata.

To analyze the latency and client-side storage of our construction, we utilize queuing theory
and introduce a new queuing model, which may be of independent interest. To examine its
metadata-hiding properties, we extend standard security definitions to account for metadata
and prove a surprising result: if a scheme is subliminal in that it hides the execution of its
operations, then it absorbs the leakage of any scheme that makes black-box use of it without
sending additional messages. In other words, if a scheme is subliminal, then any scheme that
makes black-box use of it will also be subliminal.

We implement and evaluate our construction, demonstrating that our empirical results align
with our theoretical analysis and that the scheme achieves a median query latency below 10
milliseconds, making it practical for some applications.

∗amine.bahi@ens.psl.eu. Work done in part while at Northeastern University and Mohammed VI Polytechnic
University.

†seny.kamara@mongodb.com.
‡tarik.moataz@mongodb.com.
§g.noubir@northeastern.edu .

1

Contents

1 Introduction 3
1.1 Our Contributions . 6

2 Related Work 9

3 Preliminaries 11
3.1 Queueing Theory . 12
3.2 Queuing Systems . 13

4 Definitions 14

5 EXH: A Subliminal Multi-Map Encryption Scheme 20
5.1 The Construction . 22
5.2 Security Analysis . 23

6 Efficiency Analysis of EXH 26
6.1 A New Queuing Model . 27
6.2 Client-Side Storage . 31
6.3 Query Latency . 33
6.4 Communication Complexity . 33
6.5 Asymptotic Comparison . 34

7 Evaluation 35

A Leakage-Free Encrypted Dictionary 43

2

1 Introduction

Encrypted search algorithms (ESA) are cryptographic primitives that allow one to encrypt their
data while preserving the ability to search/query over it. ESAs have several applications but the
most important is the design of end-to-end encrypted databases. Encrypted databases increase
the security and privacy of data by providing “encryption in use”; that is, data remains encrypted
even while the database management system processes it. ESAs can be designed using a variety of
(sometimes overlapping) cryptographic primitives each leading to solutions that achieve different
tradeoffs between efficiency, security and expressiveness. The security of an ESA is captured by
its leakage profile which describes the information it reveals about the encrypted data and queries.
A leakage profile is itself composed of leakage patterns which are functions that map the data
and queries to some observed leakage. Common leakage patterns include size (i.e., the size of the
dataset), frequency (i.e., the number of occurrences of a data item), query equality (i.e., whether
two queries are for the same item) and response length or volume (i.e., the length of a query’s
response).

Leakage regimes. To help our discussion, we will categorize ESAs into the four following regimes:

• high-leakage: solutions that reveal non-trivial information given only access to the encrypted
data;

• mid-leakage: solutions that reveal minimal information (e.g., size) given access to the en-
crypted data but can reveal non-trivial information about queries and updates given access
to query and update transcripts. Some notable examples include the Z-IDX construction of
[30], the scheme presented in [22], the SSE-1 and SSE-2 constructions of [24] and the πbas
construction of [19]. Mid-leakage ESAs are usually considered practical if their communica-
tion complexity is O(d) and their computational complexity is either O(d) or O(d + log(N)),
where d is the number of data items that need to be returned for a query and N is the size
of the entire dataset.

• low-leakage: solutions that reveal minimal information given both the encrypted data and
query and update transcripts. Notable examples include the construction that underlies the
TWORAM scheme of [28] which we refer to as twoEMM, the AZL scheme of [45] and the
zeroSSE construction of [7]. 1 All currently-known low-leakage ESAs, with the exception of
AZL, have Ω(m) communication and computational complexities, where m is the maximum
response length over all queries. Intuitively speaking, this seems to stem from the fact that
low-leakage solutions need to hide the query equality and volume patterns.

• zero-leakage: solutions that hide everything about the data and queries beyond the size of
the data structure. The only example of a zero-leakage scheme we are aware of is the FZL
construction of [45] which is only partially correct in the sense that it cannot guarantee that
the full response to a query will be returned within a bounded amount of time.

1Though the scheme is called zeroSSE it is a multi-map encryption scheme and not an SSE scheme; though, of
course, it can be used as a building block to construct an SSE scheme. It is also not zero-leakage in the sense of [45]
since it leaks the maximum response length.

3

We stress that these categories are an over-simplification of ESA security and that whether a leakage
pattern is minimal or not is depends on the context in which the solution is used.2 But this rough
categorization approximately captures how ESA designers think about constructions and will be
helpful for our broader discussion. Typically, mid-leakage ESAs are based on structured encryption
and low- and zero-leakage ESAs use a combination of structured encryption and oblivious RAM
(ORAM) techniques. We note, however, that the distinction between structured encryption and
ORAM is not clearly defined. As mentioned in [45], ORAM can also be viewed as a zero-leakage
array encryption scheme from the perspective of structured encryption. Similarly, a zero-leakage
encrypted multi-map (EMM) or even a zero-leakage encrypted dicitonary (EDX) can be trivially
used as an ORAM. This, in part, explains why ORAM and STE techniques seem to combine
naturally as illustrated in several works [28, 45, 26, 29, 7].

Encrypted multi-maps. While there are several kinds of structured encryption schemes, multi-
map encryption schemes are the most studied because EMMs are a core building block for encrypted
relational databases [42, 46, 20, 35], encrypted NoSQL databases [44] and optimal-time searchable
symmetric encryption (SSE) schemes [24, 17, 19]. A multi-map data structure stores a set of la-
bel/tuple pairs and supports get and possibly put operations. A get on a label returns its associated
tuple and a put adds a new label/tuple pair. Multi-map encryption schemes are structured encryp-
tion schemes customized to encrypt multi-maps and to efficiently support get and put operations.

Latency as a resource. The first low- and zero-leakage EMMs that did not rely on black-
box ORAM simulation and that achieve better asymptotic performance than existing low-leakage
EMMs for certain natural workloads were presented in [45]. This was achieved in part by taking
advantage of a new tradeoff between leakage and query latency, a resource that had not been
explicitly considered before. Two static constructions are proposed, AZL and FZL, that leak at query
time the total response length (i.e., the sum of query response lengths) and nothing, respectively.
Their worst-case latency is q · (m/α− 1), where q is the number of queries made so far and α > 1
is a parameter of the scheme that affects the latency. In addition, their worst-case communication
and computation complexity is O((opt + α) · log2 N).3 While the authors show that the latency
improves for specific query and multi-map distributions, in [45], latency is quantified as the number
of queries that must be processed before the query under consideration can be executed. Here, we
will refer to this as the countable latency and note that it is related to but different than the more
standard notion of latency quantified by time which we will refer to as chronometric latency.

Chronometric latency in the stochastic setting. Countable latency is an interesting metric
but it does not capture all the intuition and subtleties of chronometric latency. Furthermore,
the relationship between countable and chronometric latency could be non-linear. For example, if
a scheme is used to process queries that are sampled at regular intervals then the chronometric
latency will be a linear function of the scheme’s countable latency. If, however, the queries are
sampled at arbitrary time intervals then the relationship could be non-linear. To better understand

2Whether a leakage profile is exploitable or not depends on several factors including the distributions from which
the data and queries are sampled from, the auxiliary information the adversary has about them and the number of
queries executed. For a summary of practical leakage attacks see [41] and for a theoretical perspective see [43].

3Note that while FZL is zero-leakage, unlike the other constructions, it is correct only under restricted parameter
choices.

4

chronometric latency we extend the setting in which encrypted search algorithms are normally
studied. In particular, we assume that queries are sampled from a stochastic process rather than
from a simple query distribution. A stochastic process {X(t) : t ∈ T} is a collection of random
variables indexed by a set T . If T ⊆ R≥0 then it is a continuous-time stochastic process and the
index set T can be interpreted as time. Based on the query process, we can define other useful
processes including the arrival and interarrival processes, which determine the number of queries
per time unit and the time elapsed between queries, respectively. Throughout, we will refer to this
analytical framework as the stochastic setting.

With this framework in place, we can now revisit our discussion and restate things more precisely
(but still informally). In particular, the chronometric latency of a scheme is a function of both
its countable latency and of the query interarrival times. This explains why the chronometric
latency can be a non-linear function of the countable latency and also points to a limitation of the
AZL and FZL constructions of [45] which is that their chronometric latency is always a function
of the query interarrival time. To see why, we first recall how the schemes work at a high level.4
Roughly speaking, they transform the input multi-map to a dictionary by replacing every multi-map
label/tuple pair (ℓ, v), where v = (v1, . . . , vn), by a set of label/value pairs {(ℓ∥i, vi) : i ∈ [n + p]},
where p = α− (n mod α) and, for all n < i ≤ n + p, vi is a dummy element. They then store the
label/value pairs in a dictionary and encrypt it using a dictionary encryption scheme. To query
for a multi-map label ℓ1, they query the encrypted dictionary for labels ℓ1∥1, . . . , ℓ∥α. They then
wait until the next multi-map query ℓ2 (which could be such that ℓ2 ̸= ℓ1), add ℓ2 to a local
queue and query the encrypted dictionary on ℓ1∥α + 1, . . . , ℓ∥2α. And so on (n + p)/α times after
which it dequeues a label from its queue and processes it in the same manner. One can see that
these schemes are event-driven in the sense that they can only make progress on responding to a
query (with response length larger than α) when future queries occur. In particular, if the query
interarrival times are large, then the chronometric latency could be large even if the countable
latency is small.

A practical low-leakage EMM. Based on this discussion, it follows that [45] left open the
problem of designing low- and zero-leakage EMMs with good chronometric latency in the sense
that, under natural conditions, it does not depend on the query interarrival time. In this work,
we address this problem but, in doing so, also uncover and achieve significantly stronger security
guarantees than previously known. Specifically, we propose a new dynamic construction we refer
to as EXH that can be used in two modes: a low-leakage mode that achieves full correctness; and
a new security mode we refer to as subliminal mode that offers considerably stronger security than
zero-leakage, also at the expense of full correctness. In low-leakage mode, EXH provides good
chronometric latency, optimal server-side storage, small client-side storage and small communica-
tion and computational complexity. EXH achieves this not only asymptotically, but empirically as
well. In fact, as we show in Section 7, in low-leakage mode the scheme can be considered practical.

Subliminal vs. zero-leakage. As mentioned above, our construction can also be used in a
stronger subliminal mode. Intuitively, the difference between zero-leakage solutions like FZL and
subliminal solutions like EXH is that the former leak metadata such as the number of operations

4For the sake of simplicity, we only describe the piggy-back scheme (PBS) that underlies the AZL and FZL
constructions; and we disregard describing the cache-based and rebuild compilers.

5

executed and their execution times5 whereas the latter do not. In fact, we will show that when used
in subliminal mode, our EXH construction even hides the execution of the operations themselves,
though it reveals some setup or initiation information.

This leads to two natural questions: (1) how can metadata be hidden, given that the server
needs to receive and respond to operations? and (2) how can the hiding of metadata be formalized?
To address the first question, at a high level, EXH hides metadata by sending a sequence of real and
dummy operations on a schedule that is independent of the real operations. One way to view this is
that the scheme creates its own steganographic covertext, allowing it to conceal operations within
it. The second question is also non-trivial because, as we will see in Section 4, standard definitions
in the real/ideal-world paradigm do not capture metadata hiding. Therefore, to properly analyze
the security of our scheme, we will need to extend these definitions.

1.1 Our Contributions

In this work, we consider the problem of designing low-leakage and subliminal EMMs with chrono-
metric latency that does not depend on query interarrival times. Towards this end, we make several
contributions.

Defining subliminal executions. To study the security of our construction and, in particular,
how it hides metadata, we extend the standard notions of security for structured encryption in
several respects. First, we consider adversaries that have access to a global clock. This alone,
however, does not allow us to capture the subliminal properties of a scheme. To see why, recall
that the ideal/real-world security definition for structured encryption requires the existence of a
simulator that can simulate the encrypted structure and the operation executions in such a way
that the adversary cannot distinguish them from real ones, even for adaptively-chosen operations.

The issue with this is that even the simple activation of the simulator can reveal to it metadata
like the time and rank of the operation which, as we will see in Section 4, means that a simulator
could make use of this information in a proof for a scheme that is metadata revealing. To addresss
this, we need to carefully design new security experiments that are sound with respect to metadata
hiding protocols. We show how to do this for: execution time, execution count and whether an
operation was executed at all. We then show that if a scheme is execution-hiding then it also hides
execution times and execution counts and in such a case we say that it is subliminal.

Absorption and black-box design. With our new definitions and models in place, we also
show an interesting and powerful leakage suppression property of subliminal constructions we refer
to as absorption. Specifically, we show that if a scheme is subliminal, then any scheme that makes
black-box use of it (without sending additional messages) becomes subliminal. We believe our
Theorem has interesting consequences for the design of ESAs since it provides a relatively simple
way to design metadata-hiding—and, consequently, zero-leakage—schemes by repeatedly building
on top of simpler subliminal building blocks. In fact, our absorption Theorem justifies the practice
advocated by certain works [36, 42, 45, 29] of designing and analyzing ESAs in a black-box manner
so that the resulting schemes can benefit from improvements in leakage suppression techniques and
low-leakage constructions.

5To see why FZL reveals this information, consider the first multi-map query ℓ1 and note that the time at which
the server receives the first α dictionary queries corresponds to when ℓ1 was issued. Similarly, the time it receives
the second batch of α dictionary queries corresponds to the time at which the second multi-map query was issued.

6

Our construction. Our EXH construction is simple and relies on a query-equality-hiding en-
crypted dictionary which we can build using ORAM. Given a multi-map, the client transforms it
into label/value pairs of the form (ℓ∥i, vi), where vi is the ith element of ℓ’s tuple. It then adds a
dummy label/value pair, creates a local structure that maps labels to their tuple size and encrypts
the dictionary before sending it to the server. At this stage, the client creates two local queues,
one for queries and another for updates, and starts two parallel processes that do the following in
a continuous loop: the query process samples a value δ from a distribution DQ; waits δ steps; if the
query queue is empty, it queries the dummy label; otherwise it queries the dequeued label. Similarly,
the update process samples a value δ from a distribution DU; waits δ steps; if the update queue is
empty, it puts a dummy label/value pair. To get a label ℓ, the client retrieves the size of ℓ’s tuple,
nℓ, from the local structure and adds ℓ∥1, . . . , ℓ∥nℓ to the queue. To add or delete a label/tuple
pair (ℓ, v), EXH adds op∥ℓ∥v1, . . . , op∥ℓ∥v#v to the update queue where op ∈ {pairAdd, pairDel}.
The scheme’s communication and computational complexities for both queries and updates are

O

(
µ

λ
· log N

)
,

where λ ∈ R>0 is the arrival rate that controls the rate at which operation are generated and µ ∈
R>0 is the service rate that controls the rate at which the operations are processed. Furthermore, the
server-side storage is O(N), which is optimal. Note that while one can use EXH with arbitrary values
of λ and µ in subliminal mode, full correctness can only be obtained when the size of the queues is
bounded and does not diverge. For get operations, for instance, this occurs when λ·E[R] < µ, where
R is a random variable that determines the tuple lengths of the input multi-map and µ satisfies the
stability condition which is a function of the arrival rate λ. Because of this, the scheme cannot be
subliminal and fully correct. The leakage in low-leakage mode, however, is minimal and consists of
the arrival rate λ and the expected response length E[R]. The communication and computational
complexity are O (E[R] · log N), where E[R] · log N = o(m) in most practical settings.6 This is a
non-trivial improvement over all previously-known dynamic low-leakage EMMs which all achieve
Ω(m), where m is the maximum tuple length.

Latency & stash analysis. To analyze the latency and client-side storage of our construction,
we make use of techniques from queuing theory. We model the client’s queue as a variant of
a batch arrival queuing system where the arrival process is a compound Poisson process with
rate λ and the servicing process is exponentially distributed with rate µ and bound the scheme’s
chronometric latency, client-side storage and communication complexity as a function of λ and µ.
Batch arrival systems model situations where items can arrive in batches which is the case for
both EXH’s queues since the client either inserts nℓ dictionary labels per multi-map query label
ℓ, or, inserts #v dictionary pairs per multi-map label/tuple pair (ℓ, v). An important technical
difference between traditional batch arrival systems and EXH, however, is that with our scheme the
server always processes something; even if the client’s queue is empty (in which case it will process
a dummy query or a dummy put). This seemingly minor difference changes the analysis of the
system considerably. To address this, we introduce a new queuing model we call batch arrival with
dummies and analyze it under different conditions. With this new model, we are able to show that

6The maximum response length of the Enron dataset behaves asymptotically as O(N0.58) whereas the expected
response length behaves as O(N0.18), refer to Section 6.5 for more details.

7

EXH’s chronometric query latency, is upper bounded by

O

(E[R2]
E[R] · (µ− λ ·E[R])

)
.

At this stage, the key thing to notice is that if the arrival rate λ is constant and the servicing rate µ
tends to ∞ then the chronometric latency tends to 0. More intuitively, this guarantees that if the
servicing rate is large enough to handle the arriving queries, then the chronometric latency will be
small even if the arrival rate is large. The chronometric update latency has the same form except
that we replace the random variable R by U which determines the length of the update tuples. In
addition, we show that the size of EXH’s query queue is

O

(
λ ·E[R2]

µ− λ ·E[R])

)
,

which can be made very small with large enough servicing rates. In particular, with high probability,
the queue does not diverge as long as λ · E[R] < µ which is the stability condition. Note that the
stability condition is always satisfied when EXH is used in low-leakage mode, but not necessarily
when it is used in subliminalmode since the system parameters are picked arbitrarily. The size of
the update queue has the same form except that we replace the random variable R by U . As a
concrete example, if the arrival rate is set to λ = 10, the service rate to µ = 40 and if the tuple
length distribution R is geometrically-distributed with parameter p = 0.1, then the client’s queue
will hold 2 elements.

Application to ORAM. We note that multi-maps can simulate arrays with no query amplifi-
cation so an EMM results trivially in an encrypted array. As observed in [45], an oblivious RAM
(ORAM) is an encrypted array that is zero-leakage in the sense that it guarantees that reads and
writes leak nothing about the read index and the write value and index, respectively. Since EXH
can trivially simulate an array, it follows that it results in a subliminal ORAM.

Experimental evaluation. We implement and empirically evaluate our construction and show
that our empirical results are aligned with our theoretical analysis and that it scales. We run EXH
on multi-maps of sizes from 212 to 220 and evaluate the communication complexity, storage, latency
and queue size after performing 105 queries. We also varied the arrival rates to 32, 64 and 128
queries per second following a Poisson process. For N = 220, the communication complexity of a
query is 958KB and 243KB for λ = 32 and λ = 128, respectively. The median latency is below 1
millisecond for both λ = 32 and λ = 64, and below 10 milliseconds for λ = 128. The median queue
size was zero for both λ = 32 and λ = 64 and 6 when λ = 128. The worst-case latency and queue
length for all arrival rates and all sizes of the multi-map was 1.82 seconds and 9, 890 elements,
respectively.

A note on the Poisson process. Our use of the Poisson process to model arrival distributions is
not arbitrary. Poisson processes are known to capture many naturally occurring events, including,
the number of times a web server is accessed, the number of calls arriving at a call center, the
number of emails sent per client, or the number of insurance claims filed during a fixed period
of time, among many others [57]. Since it is challenging to get access to real query logs, there
are numerous papers that model, e.g., web traffic as a Poisson process [15, 47]. Poisson processes

8

are also a good model for aggregate traffic of the kind that results from multiple clients querying
the same encrypted database. More precisely, when n independent and identically distributed
proccesses are aggregated then they result in a Poisson process with rate equal to the sum of the
rates of the individual processes [8]. Note, however, that modeling query arrival times as Poisson
processes results in queries being independent. We believe, however, that this is a natural and
necessary first step since, in order to move towards more complex stochastic processes, one has to
first understand how the system behaves in the independent setting. Finally, it is important to
note that EXH is agnostic to the query, servicing and multi-map distributions and can be analyzed
in any queuing model.

New directions and future work. Our work introduces several new directions of inquiry not
only in encrypted search but also in cryptography in general. These include:

• (closure for black-box constructions) the absorption property we demonstrate for subliminal
constructions represents a form of security closure under black-box use. However, subliminal
execution is an extremely strong security guarantee that may not be necessary in many
settings. This raises the question of whether there are other security properties that are
closed under black-box use.

• (composition) our absorption theorem holds when the calling construction uses a single
execution-hiding building block. Extending our result to constructions that use multiple
execution-hiding components would be interesting. Additionally, constructing execution-
hiding schemes that achieve standard composition notions like Universal Composability (UC) [14]
would also be valuable.

• (correctness) all the zero-leakage and subliminal constructions we know of so far do not
achieve full correctness; that is, they cannot guarantee that every query will be answered
within a bounded amount of time. Demonstrating the existence of fully correct zero-leakage
and subliminal constructions or proving that such constructions cannot exist would be of
great interest.

• (latency) EXH, along with FZL and AZL, demonstrates that latency can be a useful resource
to trade off for decreased leakage. Exploring this trade-off further by designing new low-
latency constructions and by establishing latency versus leakage lower bounds would be very
interesting.

• (subliminal protocols) while we demonstrate the possibility of metadata hiding in the context
of encrypted multi-maps, the notion of subliminal protocols extends naturally to private infor-
mation retrieval (PIR), Secure Multi-Party Computation (MPC). A subliminal PIR scheme
would protect, in addition to the query, the time, number, or even the execution of the queries.
Subliminal (reactive) MPC protocols could work as follows: in cases where only honest par-
ties receive outputs, the protocol would hide—in addition to all partial information about
the inputs beyond what can be inferred from the output—the time, number, or even the
execution of the protocol. In the case where corrupted parties receive outputs, the protocol
would reveal, e.g., at most that an execution occurred in the past. We stress that these are
preliminary ideas meant to motivate new directions and leave it to future work to explore
them in detail.

9

2 Related Work

Structured encryption (STE) was proposed by Chase and Kamara [23] as a generalization of index-
based searchable symmetric encryption (SSE) [59, 24]. While SSE schemes encrypt unstructured
data collections in such a way that they can support keyword search (i.e., return all the documents
that contain a given keyword), STE schemes encrypt data structures in such a way that they can
be privately queried. Special types of STE schemes include dictionary and multi-map encryption
schemes which constitute the main building blocks in the design of optimal-time and sub-linear SSE
schemes [24, 39, 19], efficient encrypted relational databases [42, 46, 66, 65, 20, 35], and efficient
encrypted non-relational databases [43]. STE schemes have been improved along various dimensions
including expressiveness [17, 36, 55, 27], efficiency [24, 19], dynamism [39, 38], security guarantees
[60, 12, 37, 56, 9, 4], I/O efficiency, locality and more recently page efficiency [18, 5, 25, 11].

Leakage (crypt)analysis. The leakage of STE schemes has been studied empirically through
cryptanalysis and, more recently, theoretically through various analytical frameworks. The leakage
patterns that have been cryptanalyzed include the query equality pattern [52, 54, 40], the response
identity pattern [34, 16, 64, 49, 10, 33] and the volume pattern [32, 10] under a variety of assumptions
and distributions. Attempts to formalize and study leakage have also been made including the
Bayesian leakage analysis framework of [44], the leakage inversion framework of [48] and the biased
coin framework of [63].

Leakage suppression and low-leakage constructions. In [45], Kamara, Moataz and Ohri-
menko introduced leakage suppression, which focuses on (general) techniques to reduce the leakage
of STE constructions. In this work, they showed how Goldreich and Ostrovsky’s square-root ORAM
construction [31] can be interpreted as an instance of query equality suppression and generalized
and applied the techniques to suppress the query equality leakage of static encrypted multi-maps.
The authors also propose the AZL and FZL constructions discussed above. George, Kamara and
Moataz [29] extended this initial framework to work in the dynamic setting. In addition to the
schemes that result from general leakage suppression techniques, several concrete low-leakage con-
structions are known [28, 7] which we discussed in the introduction.

Covert computation. In [62], Von Ahn, Hopper and Langford introduce the notion of covert
(two-party) computation. Roughly speaking, a protocol is covert if the output and execution of
the protocol is only revealed to the participants if they all indeed participated and if the result of
the computation is favorable according to some predicate. This was further extended in [21] by
Chandran, Goyal, Ostrovsky and Sahai to the multi-party setting. Our notion of subliminality is
similar but distinct from covertness in the following ways. First, whereas covertness is natural in the
context of secure function evaluation (SFE), subliminality is more suited to reactive functionalities
and, specifically, functionalities that deliver outputs to a single party (e.g., structured encryption
or private function evaluation). With a covert protocol, if the output is unfavorable or if some
parties choose not to participate then the execution is completely hidden even from the parties
themselves. In other words, third parties as well as the participants themselves will not know that
the protocol ever took place. If the output is favorable, however, the participants learn that the
protocol was executed and will receive their output. With a subliminal protocol, on the other hand,
the corrupted party learns that the first round (i.e., the setup/initialization round) occurred but

10

hides the execution of every following round. Note that the security of subliminal protocols is not
defined with respect to favorable outputs.

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite
binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}, and 2[n] is the corresponding power
set. We write x ← χ to represent an element x being sampled from a distribution χ, and x

$← X
to represent an element x being sampled uniformly at random from a set X. The output x of an
algorithm A is denoted by x ← A. Given a sequence v of n elements, we refer to its ith element
as vi. If T is a set then #T refers to its cardinality. Given strings x and y, we refer to their
concatenation as x∥y.

Model of computation. Our model of computation is the concurrent read exclusive write
(CREW) word parallel RAM (PRAM). In this model, the machine has an infinite number of
processors that can ready memory cells at the same time but can only write to a memory cell one
at a time. We also assume memory holds an infinite number of w-bit words and that arithmetic,
logic, read and write operations can all be done in O(1) time. We denote by |x|w the word-length
of an item x; that is, |xw| = |x2|/w. We assume that w = Ω(k) where k is the security parameter.
We also assume that the processors on a machine have access to a global clock; that is, when any
two processors (on possibly different machines) read from the global clock at the same moment,
they receive the same time. We refer to such machines as clocked. We also consider machines whose
processors have access to a timer; that is, each processor has the ability to tell how many time
units have elapsed between two events.

Dictionaries & Multi-maps. A dynamic dictionary DX with capacity n is a collection of n
label/value pairs {(ℓi, vi)i}i≤n that supports Get and Put operations. We denote the label space of
a dictionary by L and the set of labels stored in a dictionary DX by LDX. We write vi = DX[ℓi]
to denote getting the value associated with label ℓi; and DX[ℓi] := vi to denote putting the the
label/value pair (ℓi, vi) in the dictionary. A dynamic multi-map MM with capacity n is a collection
of n label/tuple pairs {(ℓi, vi)i}i≤n that supports Get and Update operations. We denote the label
space of a multi-map by L and the set of labels stored in a multi-map MM by LMM. We write
vi = MM[ℓi] to denote getting the tuple associated with label ℓi. We consider multi-maps that
support both additions and deletions as their update operation. An addition operation adds a
label/tuple pair (ℓ, v) to the multi-map where the label may or may not already exist in the multi-
map. A delete operation removes a set of values v′ from the tuple v of a given label ℓ. It will be
useful for us to make use of a multi-map-to-dictionary transformation. More precisely, we write
DX := τ(MM) to denote the process of transforming a multi-map MM with label space L and value
space V into a dictionary DX over the same spaces. Such transformations are implicitly used in
many constructions including the schemes in [24, 23, 19].

Stochastic processes. A stochastic process {X(t) : t ∈ T} is a set of random variables over a
common probability space that is indexed by an index set T . Here, we will consider ensembles of
stochastic processes which are sets {Xk(t) : t ∈ T, k ∈ N≥1} indexed by both a set T and a security

11

parameter k. For notational convenience we omit the security parameter and refer to stochastic
process ensembles simply as stochastic processes.

Probability generating function (PGF). A PGF of a distribution D is the generating function
P such that P (z) = E[zX] = ∑∞

n=0 pn ·zn, where, for all n ∈ N, pn = Pr [X = n], when the random
variable X ∼ D.

Exponential distribution. We say that a random variable X is exponentially distributed with
parameter λ ∈ R>0 when its probability density function fX(t) = λ·e−λ·t, for t ≥ 0 and 0 otherwise.
And we usually write X ∼ Exp(λ). An important property of the exponential distribution is that
it is memoryless which means that for s, t > 0, Pr [X > t + s | X > t] = Pr [X > s].

Poisson distribution. We say that a random variable X is Poisson distributed with parameter
λ ∈ R>0, and write X ∼ Pois(λ), if its probability mass function, is Pr [X = n] = λn · e−λ/n!, for
all n ∈ N.

3.1 Queueing Theory

The analysis of our scheme relies on fundamental concepts of the theory of queues. In this section,
we recall some necessary background, including standard queuing systems our model relies on. For
more details on queueing theory we recommend [58].

The Poisson process. A Poisson process is a stochastic counting process that is widely used to
model the number of events that occur in an interval of time. More formally, a stochastic process
{X(t) | t ≥ 0} is a Poisson process with rate λ ∈ R>0 if it verifies the following:

1. X(t) ∈ N counts the number of occurrences of an event between time 0 and time t. In
particular, for all s < t, the quantity X(t) − X(s) represents the number of occurrences
between time s and time t.

2. for any two disjoint time intervals, the number of occurrences during the two intervals is
independent.

3. the number of occurrences in any time interval of length τ is Poisson distributed with param-
eter λ · τ . In particular, for all t, τ > 0, and all n ∈ N, we have Pr

[
X(t + τ) −X(t) = n

]
=

eλ·τ · (λ · τ)n/n!.

Note that the expected number of occurrences within an interval of size τ is equal to λ · τ which
follows from the fact that the distribution is Poisson. And if we set the interval of time τ to 1, then
the expected number of occurrences is λ. Because of this, λ is usually viewed as the arrival rate of
the Poisson process. An important property of the Poisson process is that the inter-arrival times
are exponentially distributed with parameter λ.

The compound Poisson process. As described above, the Poisson process counts the number
of occurrences of a specific event; for example, a customer entering a mall, an individual making
a phone call, or an application sending a query to a database. In the following, we are interested
in a generalization of the Poisson process where the events have weights assigned to them. This

12

models situations where, for example, we would like to keep track not only of the number of
customers that enter a mall but the amount of time each customer spent in the mall. In particular,
the compound Poisson process, also called the stuttering Poisson process, counts the number of
occurrences of an event along with the corresponding weights. We are going to assume that the
weights are independent and identically distributed. More formally, we denote by Wi ∼ W the
random variable that corresponds to the weight of the ith occurrence of the event and by W
the underlying distribution which can be either continuous or discrete. Given a Poisson process
{X(t) | t ≥ 0} with rate λ ∈ R>0 and a sequence of independent and identically distributed
random variables (Wi)i∈N, a compound Poisson process is the stochastic process {C(t) | t ≥ 0}
where C(t) = ∑X(t)

i=0 Wi.

Continuous Markov process. A continuous-time Markov chain (MTMC) {X(t) | t > 0} is a
stochastic process that has two components: a jump chain X and a set of holding time parameters
λi ∈ R>0. The jump chain is a discrete time Markov chain defined with a transition matrix
T = (Ti,j) and an initial distribution µ over a countable set S ⊂ N where Ti,i = 0 and ∑

j∈S Ti,j = 1
for all i ∈ S, and which verifies the following:

• if X(t) = i, then the time until the process changes to a state j ̸= i is exponentially distributed
with parameter λi;

• if X(t) = i, then the probability that the next jump will land at the jth state is equal to Ti,j .

The process verifies the Markov property which is that, for all 0 ≤ t1 < . . . tn < tn+1, the following
holds Pr [X(tn+1) = in+1 | X(tn) = in, · · · , X(t1) = i1] = Pr [X(tn+1) = in+1 | X(tn) = in].

Transition rate matrix. A continuous-time Markov chain (T, µ, (λi)i) can also be characterized
by the transition rate matrix R = (Ri,j) defined as

Ri,j =
{

λi · Ti,j if i ̸= j
λi otherwise.

We can similarly compute the transition matrix T of the jump chain when given the transition rate
matrix R, refer to [9] for more details.

Balance equations. Given a continuous time Markov chain (T, µ, (λi)i∈S) over a countable set
S ⊂ N, if a stationary distribution π = (πi)i∈S can be found, then the balance equations are given
by

πi ·
∑

j∈S\{i}
Ri,j =

∑
j∈S\{i}

πj · Rj,i, (1)

where R is the transition rate matrix. Balance equations represent the probability flow between
the Markov chain states which is fixed and independent of the time.

3.2 Queuing Systems

A queuing system models a queue and allows us to study its behavior with respect to a specific
arrival and servicing processes. The arrival process inserts items into the queue and the servicing

13

process dequeues items one at a time in a first in first out (FIFO) basis.7

Kendall’s notations. Queuing systems can be described using Kendall’s notation, which is
a series of letters and numbers, most commonly a triplet A/S/c, that characterizes the arrival
process, the servicing process, and the number of processing entities.8 The first letter A denotes
the stochastic process of arrivals, the second letter C denotes the servicing distribution, and the
last number c refers to the number of processing servers.

Common queueing systems. One of the most widely used and studied queueing system is
the M/M/1 system where M is a shorthand for memoryless and refers to a Poisson process. The
memoryless property is a result of the inter-arrival times being exponentially distributed. Similarly,
the second letter M is shorthand for memoryless but refers to a servicing distribution that is
exponentially distributed, and finally, the number 1 means that there is a single server processing
the queue. In a batch arrival queueing system, MR/M/1, the elements arrive in batches following
a compound Poisson process such that the weights are R-dsitributed. The servicing distribution is
exponentially distributed and the number of servers is equal to 1.

Little’s law. The number of elements in a queueing system, L, as well as the waiting time of an
element in the queue, W , are related based on Little’s law. In particular, for the M/M/1 system,
L = λ ·W where λ is the arrival rate, whereas L = λ ·E[R] ·W in the case of the MR/M/1 system
where R ∼ R.

4 Definitions

STE schemes can be interactive or non-interactive. Interactive schemes produce encrypted struc-
tures that are queried or updated through an interactive two-party protocol between a client and
a server, whereas non-interactive schemes produce structures that can be queried or updated by
sending a single token. These schemes can also be response-hiding or response-revealing where the
former reveal the response to queries to the server whereas the latter do not. We recall here the
syntax of an interactive response-hiding dynamic structured encryption scheme.

Definition 4.1 (Dynamic structured encryption). An interactive response-hiding dynamic struc-
tured encryption scheme ΣDS = (Setup, Query, Update) for data type DS consists of the following
polynomial time algorithms:

1. (K, st) ← SetupC(1k, DS) is an algorithm that takes as input the security parameter k and a
data structure DS and outputs a secret key K and an (optional) state st.

2. (r, st′; EDS′)← QueryC,S(K, q, st; EDS) is an interactive protocol executed between a client C
and server S. C inputs the secret key K, a query q and state st. S inputs the encrypted data

7Note that while we are limiting our analysis to the FIFO setting, other servicing disciplines such as last-in first-out
or shortest job first are also possible and we leave it as future work to assess the impact of other servicing disciplines
on the efficiency of EXH.

8A more detailed description of a queuing system includes, in addition, the size of the processing unit’s buffer, the
maximum number of elements to process, as well as the service discipline which are all omitted from our notations
for clarity purposes.

14

structure EDS. The protocol outputs a response r and an updated state st′ to the client and
an updated encrypted structure EDS′ to the server.

3. (st′, EDS′) ← UpdateC,S(K, st, u; EDS) is an interactive protocol executed between a client C
and server S. The client inputs a secret key K, a state st and an update operation u.The
server inputs an encrypted structure EDS. The protocol outputs an updated state st′ to the
client and an updated encrypted structure EDS′ to the server.

Standard security. The standard notion of security for STE guarantees that: (1) an encrypted
structure reveals no information about its underlying structure beyond the setup leakage LS; and
(2) the various operations that are supported (e.g., query, add, delete) reveal no information about
the structure and the operations beyond some stateful operation leakage LO. If this holds for
non-adaptively chosen operations then the scheme is said to be non-adaptively secure. If, on the
other hand, the operations can be chosen adaptively, the scheme is said to be adaptively-secure
[24, 23]. Note that the operation leakage is usually broken down into separate leakage functions—
one for each supported operation—but here we consider a single stateful leakage function LO for
all operations. The advantage of this formulation is that it allows us to more easily capture leakage
that is a function of different operations. We note that leakage functions for operations can also
dependent on the structure which is why typically query and, e.g., add leakages are usually take
the structure as input. Here, we will assume that LS and LO share state so when we write, e.g.,
LO(opi) it should be understood that LO can depend on both the structure and the operations
(op1, . . . , opi−1). We now define two experiments that capture adaptive security for structured
encryption:

• Real-world experiment: the experiment takes place between a challenger C and an adversary
A that is given z. For all 1 ≤ i ≤ m = poly(k), A adaptively chooses an operation opi, where
op1 is required to be a setup operation with an adversarially-chosen data structure. For all
i ∈ [m], C and A execute the appropriate protocol for opi with A playing the role of the
server and the challenger playing the role of the client. Finally, the adversary outputs a bit
b ∈ {0, 1}. We refer to the random variable that outputs this bit as RealΣ,A(k)

• Ideal-world experiment: the experiment takes place between an adversary A and a simulator
S that are both given z. For all 1 ≤ i ≤ m = poly(k), A adaptively chooses an operation opi,
where op1 is required to be a setup operation with an adversarially-chosen data structure.
For all i ∈ [m], A and S execute the appropriate protocol for opi with A playing the role of
the server and S playing the role of the client and being given LS(DS) if i = 1 and LO(opi) if
i ̸= 1. Finally, the adversary outputs a bit b ∈ {0, 1}. We refer to the random variable that
outputs this bit as IdealΣ,A,S(k)

Definition 4.2 (Standard security). We say that Σ is (LS,LO)-secure if there exists a PPT sim-
ulator S such that for all PPT adversaries A, for all z ∈ {0, 1}∗:

|Pr[RealΣ,A(k) = 1]− Pr[IdealΣ,A,S(k) = 1]| ≤ negl(k).

Hiding metadata. Extending the standard security definition to capture time, count and execution-
hiding schemes is non-trivial; at least with respect to simulation-based definitions. At a high level,
there are two definitional problems that need to be addressed. The first is formally ensuring that

15

a leakage function be time, count or execution-hiding. 9 The second, more challenging problem, is
ensuring that the security experiment itself does not reveal time, count or execution information.
Towards addressing this, we need to introduce a few conceptual tools. An execution schedule is a
list of times at which a protocol should be executed in the real-world and an activation schedule is
a list of times at which a simulator should be activated in the ideal-world. An execution selection
is a subset of operations that should be executed in the real-world experiment and an activation
selection is a subset of operations for which a simulator should be activated in an ideal-world ex-
periment. We represent a selection over a sequence of m operations as its indicator vector; that is,
an m-bit string with a 1 at the ith position if the ith operation in the sequence is selected and 0
otherwise.

Hiding time. We start by discussing the case of time hiding. Suppose we defined time-hiding
by requiring that a scheme be adaptively-secure in the standard sense but with respect to a time-
hiding leakage function. As we will show, such an approach is not enough because the activation
time of the simulator could reveal information about the operation’s arrival time even if the leakage
function does not. And if this is the case, a protocol that reveals arrival times could be proven
time-hiding with respect to this definition. As a concrete example, consider an arbitrary static
structured encryption scheme Σ with a query protocol that executes instantly and leakage LQ that
we assume is time-independent (for example, one can assume it has no query leakage). Now suppose
that the client executes the query protocol as soon as a query arrives. It is clear that this scheme
reveals query arrival times since the time of execution is equal to the arrival time of the queries and
the latter is observable to the adversary. This protocol, however, can be proven time-hiding with
respect to the above definition by simply using its simulator with its time-independent leakage:
since the simulator is activated as soon as the adversary’s operation is received, the simulated
protocol will be executed at the same time the real protocol would be.

To address this, in addition to time-hiding leakage, we will require that the scheme be simu-
latable even when the simulator’s activation times are adversarially-chosen. More precisely, we let
the adversary adaptively choose a sequence of operations and both an execution and an activation
schedule, with the restriction that the first execution and activation times are equal. In the real-
world experiment, the protocols will be executed at the times dictated by the execution schedule
whereas in the ideal-world experiment the simulator will be activated at the times dictated by the
activation schedule. Note that the scheme mentioned above cannot be proven time-hiding with
respect to this definition. To see why, consider an adversary that outputs a setup operation and
two queries (s1, q2) with execution times (et1, et2) and activation times (at1, at2) such that et1 = at1
and et2 ̸= at2. In the real-world experiment, the query protocol will be executed at time et2 whereas
in the ideal-world experiment the scheme’s simulator will be activated at time at2. And since the
adversary is clocked, it can trivially distinguish between these cases.

Hiding counts. Similar definitional problems occur when we try to define count hiding. Suppose
we defined count hiding by requiring that a scheme be adaptively-secure in the standard sense but
with respect to a count-hiding leakage function. As we will show, such a definition is not enough
because the number of activations could reveal information about the operation count even if the
leakage does not. And, as above, if this is the case then a protocol that reveals counts could

9Since our construction has no query and update leakage in zero-leakage mode, we won’t need to formalize this
but we note that it is relatively easy to do.

16

be proven count-hiding. As an example, consider, as above, an arbitrary static scheme but with
a count-hiding leakage function LQ. It is clear that if we execute the query protocol for each
operation, this scheme will reveal the total number of operations to the server since each execution
is observable by the server. This scheme, however, can be proven count-hiding in the sense above by
simply using its simulator with its count-hiding leakage. Note that since the simulator is activated
once for each of the adversary’s operations, the simulated protocol will be executed the same number
of times the real protocol would be executed.

To address this, in addition to count-hiding leakage, we will require that the scheme be simulat-
able even if the simulator activations are adversarially-chosen. More precisely, we let the adversary
adaptively choose a sequence of operations, an execution selection es and an activation selection as
such that the first execution and activation is 1 (which corresponds to the setup operation being
executed in both cases) and that hw−1(es) ̸= hw−1(as), where hw−1(·) is the Hamming weight,
ignoring the first bit. In the real-world experiment, only the operations in es are executed whereas
in the ideal-world experiment, the simulator will be activated only for the operations in as. Note
that the scheme described above cannot be proven count-hiding with respect to this definition.
To see why, consider an adversary that outputs a sequence of two queries (q1, q2), a selection of
executions es = (1, 1) and a selection of activations as = (1, 0). In the real-world experiment, the
query protocol will be executed for both operations, whereas in the ideal-world experiment the
scheme’s simulator will only be activated for q1. Note that, technically speaking, this hides more
than the counts, it hides the selections.

Hiding time and count. To formalize both time-hiding and count-hiding together we re-
quire that the scheme be simulatable even if the time and number of simulator activations are
adversarially-chosen. More precisely, we let the adversary adaptively choose m tuples (op1, et1, es1,
at1, as1), . . . , (opm, etm, esm, atm, asm). In the real-world experiment, the selected operations will be
executed using the appropriate protocol at their scheduled time whereas in the ideal-world experi-
ment the simulator will be activated at the activation times for the selected operations. We define
both experiments more formally as follows:

• Real-world experiment: the experiment takes place between a challenger C and an adversary A
that is given z. For all 1 ≤ i ≤ m = poly(k), A adaptively chooses a tuple (opi, eti, esi, ati, asi),
where op1 is required to be a setup operation with an adversarially-chosen data structure,
et1 = at1 and es1 = as1 = 1. For all i ∈ [m], if esi = 1, C and A execute the appropriate
protocol at time eti with C playing the role of the client and A playing the role of the server.
Finally, A outputs a bit b ∈ {0, 1}. We refer to the random variable that outputs this bit as
Real∞Σ,A(k).

• Ideal-world experiment: the experiment takes place between an adversary A and a simulator
S that are both given z. For all 1 ≤ i ≤ m = poly(k), A adaptively chooses a tuple
(opi, eti, esi, ati, asi), where op1 is required to be a setup operation with an adversarially-
chosen data structure, et1 = at1 and es1 = as1 = 1. For all i ∈ [m], if asi = 1, A and S
execute the appropriate protocol at time ati withA playing the role of the server and S playing
the role of the client and being given LS(DS) if i = 1 and LO(opi) if i ̸= 1. Finally, A outputs
a bit b ∈ {0, 1}. We refer to the random variable that outputs this bit as Ideal∞Σ,A,S(k).

17

Definition 4.3. We say that Σ is (LS,LO)∞-secure if there exists a PPT simulator S such that
for all PPT adversaries A, for all z ∈ {0, 1}∗:∣∣∣Pr[Real∞Σ,A(k) = 1]− Pr[Ideal∞Σ,A,S(k) = 1]

∣∣∣ ≤ negl(k).

Hiding executions. As in the previous two cases, defining subliminality requires the design
of a new experiment. The concern here is that, if a simulator is activated at all, it reveals to the
simulator that an execution took place and this could allow one to prove that an execution-revealing
scheme is execution-hiding. To address this, we will require the scheme to be simulatable even if
the simulator is only activated once at setup and never again.

• Real-world experiment: the experiment takes place between a challenger C and an adversary
A that is given z. For all 1 ≤ i ≤ m = poly(k), A adaptively chooses a tuple (opi, eti, esi),
where op1 is required to be a setup operation with an adversarially-chosen data structure and
es1 = 1. For all i ∈ [m], if esi = 1, C and A execute the appropriate protocol at time eti with
C playing the role of the client and A playing the role of the server. Finally, A outputs a bit
b ∈ {0, 1}. We refer to the random variable that outputs this bit as Real∅Σ,A(k).

• Ideal-world experiment: the experiment takes place between an adversary A and a simulator S
that are both given z. For all 1 ≤ i ≤ m = poly(k), A adaptively chooses a tuple (opi, eti, esi),
where op1 is required to be a setup operation with an adversarially-chosen data structure and
es1 = 1. When i = 1, A and S execute the setup protocol with A playing the role of the
server and S playing the role of the client and being given LS(DS). Finally, A outputs a bit
b ∈ {0, 1}. We refer to the random variable that outputs this bit as Ideal∅Σ,A,S(k).

Definition 4.4 (Subliminality). We say that Σ is (LS)∅-secure if there exists a PPT simulator S
such that for all PPT adversaries A, for all z ∈ {0, 1}∗:∣∣∣Pr[Real∅Σ,A(k) = 1]− Pr[Ideal∅Σ,A,S(k) = 1]

∣∣∣ ≤ negl(k).

Relationship between notions. In the Theorem below, we show that subliminality implies
time and count hiding. Intuitively, this is straightforward since if an adversary does not know
whether an operation was executed or not it cannot learn at what time it was executed.

Theorem 4.5. If Σ is (LS)∅-secure then Σ is (LS,⊥)∞-secure.

Proof. Let S∅ be the simulator guaranteed to exist by the (LS)∅-security of Σ and consider the
simulator S∞ that runs S∅ when it is activated at setup time and does nothing whenever it is
activated again.

We show that if there exists a probabilistic polynomial-time adversary A∞ such that∣∣∣Pr
[

Real∞Σ,A∞(k) = 1
]
− Pr

[
Ideal∞Σ,A∞,S∞(k) = 1

]∣∣∣ ≥ ε(k)

where ε(k) is non-negligible, then there exists a probabilistic polynomial-time adversary B∅ such
that ∣∣∣Pr

[
Real∅Σ,B∅

(k) = 1
]
− Pr

[
Ideal∅Σ,B∅,S∅

(k) = 1
]∣∣∣ ≥ ε(k).

B∅ starts by simulating A∞. For all i ∈ [m], when A∞ outputs (opi, eti, esi, ati, asi), B∅ outputs
(opi, eti, esi). Recall that in Ideal∅Σ,B∅,S∅

(k), the simulator S∅ is activated for the first/setup

18

operation op1. Finally, B∅ outputs whatever A∞ outputs. Notice that if B∅ is in a Real∅Σ,B∅
(k)

experiment, then A∞’s view is the same as in a Real∞Σ,A∞(k) experiment. On the other hand,
if B∅ is an Ideal∅Σ,B∅,S∅

(k) experiment, then A∞’s view is the same as in an Ideal∞Σ,A∞,S∞(k)
experiment. It follows then that

Pr
[

Real∅Σ,B∅
(k) = 1

]
= Pr

[
Real∞Σ,A∞(k) = 1

]
and

Pr
[

Ideal∅Σ,B∅,S∅
(k) = 1

]
= Pr

[
Ideal∞Σ,A∞,S∞(k) = 1

]
from which the Theorem follows.

Absorption. We now show an interesting property of subliminal constructions we refer to as
absorption. Namely, that if a scheme is subliminal then any scheme that makes black-box use of it
as a building block becomes subliminal. To formalize this, we first need to introduce some notation.
If Ω is a structured encryption scheme that makes black-box use of another scheme Σ, we write
Ω[Σ] to refer to the construction that results from instantiating Ω with Σ. We say that Ω makes
singular use of Σ if it does not send any messages other than the messages generated by Σ. Finally,
for any scheme Ω that makes black-box use of a scheme Σ, we denote by (op1, . . . , opm)← ΘΣ

Ω(op)
the process of generating the Σ operations (op1, . . . , opm) produced by the Ω operation op. We are
now ready to state our Theorem.
Theorem 4.6 (Absorption). If Σ is (LS)∅-secure and if Ω makes singular and black-box use of Σ,
then Ω[Σ] is (LS)∅-secure.
Proof. Let SΣ be the simulator guaranteed to exist by the (LS)∅-security of Σ and consider the
simulator SΩ that runs SΣ when it is activated at setup time. We show that if there exists a
probabilistic polynomial-time adversary AΩ such that∣∣∣Pr

[
Real∅Ω,AΩ

(k) = 1
]
− Pr

[
Ideal∅Ω,AΩ,SΩ

(k) = 1
]∣∣∣ ≥ ε(k),

where ε(k) is non-negligible, then there exists a probabilistic polynomial-time adversary BΣ such
that ∣∣∣Pr

[
Real∅Σ,BΣ

(k) = 1
]
− Pr

[
Ideal∅Σ,BΣ,SΣ

(k) = 1
]∣∣∣ ≥ ε(k).

BΣ starts by simulating AΩ. For all i ∈ [m], when AΩ outputs (opi, eti, esi), BΣ computes
(opi,1, . . . , opi,mi

) ← ΘΣ
Ω(opi) and, for all j ∈ [m], outputs (opi,j , eti + ∆j , esi), where ∆j is the

amount of time needed to execute (opi,1, . . . , opi,j−1) and ∆1 = 0. Finally, BΣ outputs whatever
AΩ outputs. Notice that if BΣ is in a Real∅Σ,BΣ

(k) experiment, then AΩ’s view is the same as in
a Real∅Ω,AΩ

(k) experiment. On the other hand, if BΣ is an Ideal∅Σ,BΣ,SΣ
(k) experiment, then AΩ’s

view is the same as in an Ideal∅Ω,AΩ,SΩ
(k) experiment. It follows then that,

Pr
[

Real∅Σ,BΣ
(k) = 1

]
= Pr

[
Real∅Ω,AΩ

(k) = 1
]

and
Pr

[
Ideal∅Σ,BΣ,SΣ

(k) = 1
]

= Pr
[

Ideal∅Ω,AΩ,SΩ
(k) = 1

]
from which the Theorem follows.

19

Modeling leakage. We recall some common leakage patterns:

• the data size, dsize, returns the size of the multi-map which is its number of label/value pairs.

• the label size, lsize, returns the number of labels in the multi-map.

• the query equality, qeq, returns an n × n binary matrix with a 1 at location (i, j) if the ith
query label was the same as the jth query label.

• the response length, rlen, returns the length of the tuple associated to the query label.

• the maximum response length, mrlen, returns the length of the largest tuple in the multi-map.

• the expected response length, erlen, returns the expected response length of the queries.

• the time, time, returns a timestamp of when the query was issued.

• the query and update rate, rate, returns the rate at which the queries and updates arrive.

It is easy to see that the time pattern leaks more than the rate pattern. In particular, one can
derive the latter from the former. However, it is not clear how to compare the expected response
length erlen and the maximum response length mrlen.

5 EXH: A Subliminal Multi-Map Encryption Scheme

In this section, we give a high-level description of EXH, starting from a baseline construction and
highlighting various technical challenges.

Baseline scheme. In the Setup algorithm, the client initializes an empty dictionary DX in which
it will store the label/value pairs of the input multi-map MM, two empty queues QQ and QU, and
an auxiliary dictionary DXst for bookkeeping purposes. More precisely, for every label ℓ ∈ LMM, it
parses MM[ℓ] as (v1, . . . , vnℓ

) and adds (ℓ∥i, vi) to DX. It also keeps track of the length of every
tuple and adds the pair (ℓ, nℓ) to DXst. The client then encrypts the dictionary using any standard
dynamic dictionary encryption scheme ΣDX, sends the encrypted dictionary EDX to the server and
locally stores the secret key K and the state st := (QQ, QU, DXst). In parallel, it starts two servicing
processes, a query servicing process and an update servicing process, that will execute a dictionary-
level get or put with the server in order to process the pairs in the query and update queues. To
query for a label ℓ, it first retrieves nℓ from DXst, and then adds ℓ∥1, . . . , ℓ∥nℓ to the query queue QQ.
To add or delete a label/tuple pair (ℓ, v), it adds pairAdd∥ℓ∥(nℓ+1)∥v1, . . . , pairAdd∥ℓ∥(nℓ+#v)∥v#v
or pairDel∥ℓ∥(nℓ + 1)∥v1, . . . , pairDel∥ℓ∥(nℓ + #v)∥v#v to the update queue QU, respectively. Note
that our approach to deletion is based on lazy deletion where the deleted values persist in the
encrypted structure and are treated similarly to additions. This is a standard approach used by
most dynamic EMMs [19, 12, 13, 4]

The need for independent servicing. It is crucial that the servicing process be independent of
the operation arrivals. To see why, consider a servicing process that waits for the client to enqueue
a query and only then starts to process the queue in its entirety. Such a process would reveal the
time of the query and the response length for the following reason. The former is revealed because

20

the servicing process only executes when a query is added to the queue. For the latter, suppose only
one query occurred. In such a case, the process will start when the query is issued and will only
end when all of its dictionary-level queries are made; revealing exactly the number of values in the
label’s tuple. To address this, the servicing process needs to be independent of the query arrivals.
The same reasoning applies to update operations. In our case, we will make the servicing processes
wait a number of time steps determined by fixed distributions DQ and DU that are independent of
operation arrivals.

The need for dummies. The servicing processes above can lead to empty queues which can
also reveal information. To see why, suppose the client added γ pairs to the query queue QQ while
querying for one or more labels but the queue is currently empty. If the server notices that the
queue is empty, then it can infer that the number of pairs that it processed is the sum of the
response lengths of the client’s queries. That is, it learns the total response length. To address
this, we modify the construction by adding a dummy pair (α, 0) to the dictionary at setup time
and having the query servicing process query it whenever the query queue is empty. Note that
this already requires us to use a dictionary encryption scheme for which the dummy queries are
indistinguishable from real ones. A similar problem also arises in the case of updates where a server
can learn the sum of the lengths of the deleted/added tuples to the multi-map. Similarly, to tackle
this issue, we modify the construction by having the update servicing process perform a dummy put
operation whenever the update queue is empty. Here, a dummy put consists of adding a dummy
pair to the dictionary.10

The need for a operation-equality-hiding EDX. Consider the following example where the
client queries for ℓ1, ℓ2, and then ℓ1 again, where nℓ1 = 1 and nℓ2 = 2. At this stage, QQ holds
(ℓ1∥1, ℓ2∥1, ℓ2∥2, ℓ1∥1) and the server receives four dictionary get tokens (gtk1, gtk2, gtk3, gtk4). If
the dictionary encryption scheme leaks the query equality, the server learns that gtk1 and gtk4 are
for the same label from which it can infer that ℓ1 has a response length of 1 and that there were
either two labels with response length 1 that were processed in between, or a single label with
response length 2. A similar example could be described for update operations where the server
can leverage the update equality to learn the length of the added/deleted tuples. To address this
issue, we use a dynamic dictionary encryption scheme that hides the operation equality pattern.

The need to ignore. When a queuing system’s stability conditions are violated, the queue can
diverge which means that its size can grow to infinity. Stability conditions usually come in the form
of a relationship between the arrival rate and the servicing rate of the system so we could avoid
divergence by setting the rate of the servicing process appropriately. Note that this would leak
information, however, since the server could use its observation of the servicing rate and knowledge
of the system’s stability condition to infer the query arrival rate or the update arrival rate. To
address this, we set the servicing rate of the queues independently of the arrival rate and require
the client to ignore incoming operations if the queue diverges. Note that in this case, the scheme
will not be fully correct.

10Note that trivially adding dummies can lead to non-trivial storage overhead. Instead, a dummy put will consist
of overwriting the same dummy label α. That is, the cost of a dummy put, from a storage standpoint, is almost
inexistent.

21

Low-leakage mode. Note that the scheme can achieve full correctness at the cost of leaking
information about the arrival rates of both queries and updates as well as the expected response
and update lengths. For this, the user can set the service rates appropriately so that the stability
conditions holds for both queues. We refer the reader to Section 6.5 for more details.

5.1 The Construction

The EXH construction makes black-box use of an operation-equality-hiding and response-hiding
dynamic dictionary encryption scheme and is parametrized with two servicing distributions, DQ
and DU, two bounds mxQ and mxU set to the maximum amount of memory available for the
query queue and the update queue, and an upper bound ub set to the maximum number of added
or deleted label/value pairs that the client wants to store in the structure. The construction is
described below and its detailed pseudo-code is in Figures 1 and 2.

Setup. The setup protocol is an interactive protocol between the client and the server. The client
inputs the security parameter 1k and the multi-map MM whereas the server has no input. The client
first initializes a data dictionary DX : {0, 1}γ → {0, 1}θ+1, two empty queues QQ and QU, an empty
multi-map MMst : {0, 1}k → {0, 1}⋆, an empty dictionary DXst : {0, 1}γ → {0, 1}log(#MM+ub), and a
counter cnt. For every label ℓ ∈ LMM, the client parses MM[ℓ] as (v1, . . . , vnℓ

), adds (ℓ∥i, pairAdd∥vi)
to DX, for all i ∈ [nℓ], and adds the pair (ℓ, nℓ) to DXst. The client also adds a dummy pair
(α, pairAdd∥0θ) to DXst. The client and server execute the setup protocol of the underlying dictio-
nary encryption scheme ΣDX,

(K, stDX; EMM)← ΣDX.Setup(1k, DX;⊥),

which outputs a key K and a state st := (DXst, stDX, MMst, QQ, QU, cnt) to the client and an
encrypted multi-map EMM := EDX to the server. Finally, the client starts both the query and
update servicing processes (in parallel), which each takes as input the key K and the state st from
the client and the encrypted multi-map EMM from the server.

Get. The client inputs a key K, a label ℓ and a state st. The client first initializes an empty
set Result and parses the state st as (DXst, stDX, MMst, QQ, QU, cnt). It then checks if the size
of QQ exceeds mxQ and if so aborts. It then increments the counter cnt and sets id := cnt.
This id is a unique identifier for the query which will help map the query responses back to the
query. This is useful because responses can be delayed due to our use of queues and the queue
discipline.11 The client then retrieves the response length nℓ := DXst[ℓ] and adds the triplets
(id, ℓ∥1, false), . . . , (id, ℓ∥nℓ, true) to QQ. The boolean flag added at the end of every triplet helps
identify the final element to process for a given query. The client then waits until the server
processes all of the triplets in QQ with the identifier id. Note that the responses to each triplet gets
added gradually to the MMst[ℓ]. The client then parses every element in MMst[ℓ] as op∥v; if op is
an addition, it adds the value v to Result; otherwise, it removes the value v from Result. Finally,
the client sets MMst := MMst − id, and outputs Result.

11We consider a first-come, first-serve (FCFS) discipline so the queries will be processed in the order of their arrivals.
In this case, the multi-map MMst stores one entry at most. However, our scheme is designed to support other queueing
disciplines such as the shortest job queue discipline where queries with the shortest response are prioritized, and in
this case, the multi-map MMst stores several responses which correspond to different queries.

22

Update. The client inputs a key K, an update u, and a state st. The client first parses the
update u as (op, ℓ, v) and the state st as (DXst, stDX, MMst, QQ, QU, cnt). It then checks if the size
of QU exceeds mxU and if so aborts. The client then retrieves the response length nℓ := DXst[ℓ]
and adds the triplets (op, ℓ∥(nℓ + 1), v1), · · · , (op, ℓ∥(nℓ + #v), v#v) to the queue QU. Finally, the
client updates the new tuple length of ℓ by setting DXst[ℓ] := nℓ + #v.

The query servicing protocol. The query servicing protocol is an interactive protocol between
the client and the server. It is parametrized with a distribution DQ that specifies how the queue is
serviced and takes as input the key K and the state st from the client and the encrypted multi-map
EMM from the server. It starts an infinite loop and samples δ ← DQ and waits δ time steps. If the
queue is non-empty, it dequeues an element (id, ℓ⋆, flag) and executes

(r, stDX;⊥)← ΣDX.GetC,S(stDX, ℓ⋆; EDX).

It then sets MMst[id] := MMst[id] ∪ {r}. Otherwise, if the queue is empty, it executes

(pairAdd∥0θ, stDX;⊥)← ΣDX.GetC,S(stDX, α; EDX),

where α is a dummy element. Moreover, if flag = true, the protocol outputs (done, id) which implies
that the processing of the query with identifier id has been completed.

The update servicing protocol. The update servicing protocol is an interactive protocol be-
tween the client and the server. It is parameterized with a distribution DU that specifies how the
queue is serviced and takes as input the key K and the state st from the client and the encrypted
multi-map EMM from the server. It starts an infinite loop, samples δ ← DU and waits δ time steps.
If the queue is non-empty, it dequeues an element (op⋆, ℓ⋆, v⋆) and executes

(stDX;⊥)← ΣDX.PutC,S(stDX, ℓ⋆, op⋆∥v⋆; EDX).

Otherwise, if the queue is empty, it executes

(stDX;⊥)← ΣDX.PutC,S(stDX, α, pairAdd∥0θ; EDX),

where α is a dummy element.

5.2 Security Analysis

We now prove the security of EXH.

Theorem 5.1. If ΣDX is (Ldx
S ,⊥)-secure then EXH is (LS ◦ τ)∅-secure.

Proof. Let SDX be the simulator guaranteed to exist by the adaptive security of ΣDX and consider
the simulator SEXH that, given leakage

(
Ldx

S (τ(MM)),DQ,DU, ub
)
, outputs EMM := EDX where

EDX← SDX
(
setup,Ldx

S (τ (MM)) , ub
)

where τ is the mapping that takes as input a multi-map MM
and outputs a dictionary DX as described in Line 5 and Line 6 in Figure 1. The simulator then
starts two parallel processes that do the following:

• query process: while true, it samples δQ ← DQ, uses its clock to wait for δQ steps and uses
SDX(get,⊥) to simulate a get operation.

23

Let γ, θ, mxQ, mxU, ub ∈ N≥1, DQ and DU be probability distributions and ΣDX = (Setup, Get, Put)
be a response-hiding dynamic dictionary encryption scheme. Consider the scheme EXH =
(Setup, Get, Update) with label space LMM = {0, 1}γ and value space VMM = {0, 1}θ defined as fol-
lows:

• SetupC,S(1k, MM):

1. C initializes a dictionary DX : {0, 1}γ → {0, 1}θ+1;
2. C initializes a dictionary DXst : {0, 1}γ → {0, 1}log(#MM+ub);
3. C initializes two empty first-in first-out queues QQ and QU and a counter cnt := 0;
4. C initializes an empty multi-map MMst : {0, 1}k → {0, 1}⋆;
5. for all labels ℓ ∈ LMM,

(a) C parses MM[ℓ] as (v1, · · · , vnℓ
);

(b) for all i ∈ [nℓ], C sets DX[ℓ∥i] := pairAdd∥vi;
(c) C sets DXst[ℓ] := nℓ;

6. C sets DX[α] := 0θ;
7. C computes (K, stDX, EDX)← ΣDX.Setup(1k, ub, DX);
8. output the key K and the state st := (DXst, stDX, MMst, QQ, QU, cnt) to C and EMM := EDX

to S;
9. C and S start the query and update queue processes

QServicingDQ
C,S

(
K, st; EMM

)
and UServicingDU

C,S

(
K, st; EMM

)
.

• GetC,S(K, st, ℓ):

1. C initializes an empty set Result;
2. C parses st as (DXst, stDX, MMst, QQ, QU, cnt) and DXst[ℓ] as nℓ;
3. C checks if the size of QQ is larger than mx and if so aborts;
4. C computes id := cnt and set cnt := cnt + 1;
5. for i ∈ [nℓ − 1], C computes QQ.enqueue

(
(id, ℓ∥i, false)

)
;

6. C computes QQ.enqueue
(
(id, ℓ∥nℓ, true)

)
;

7. C holds until it receives (done, id) from the queue process QServicingDQ
C,S;

8. for all e ∈ MMst[id]
(a) parse e as op∥v;
(b) if op = pairAdd, set Result := Result ∪ {v}, otherwise set Result := Result \ {v};

9. C computes MMst := MMst − id and outputs Result.

Figure 1: Our EXH construction (part 1).

24

• UpdateC,S(K, st, u; EMM):

1. C parses u as (op, ℓ, v), st as (DXst, stDX, MMst, QQ, QU, cnt) and DXst[ℓ] as nℓ;
2. C checks if the size of QU is larger than mxU and if so aborts;
3. for i ∈ [#v], C computes QU.enqueue

(
(op, ℓ∥(nℓ + i), vi)

)
;

4. C set DXst[ℓ] := nℓ + #v and outputs the updated state.

• QServicingDQ
C,S(K, st; EMM):

1. while true,
(a) sample δ ← DQ and hold δ time steps;
(b) parse EMM as EDX and st as (DXst, stDX, MMst, QQ, QU, cnt);
(c) if QQ.peek ̸= ⊥,

i. compute e← QQ.dequeue;
ii. parse e as (id, ℓ⋆, flag);

(d) otherwise, set ℓ⋆ := α;
(e) compute (r, stDX;⊥)← ΣDX.GetC,S(stDX, ℓ⋆; EDX);
(f) if ℓ⋆ ̸= α, compute MMst[ℓ⋆] := MMst[ℓ⋆] ∪ r;
(g) if flag = true, send (done, id) to C.

• UServicingDU
C,S(K, st; EMM):

1. while true,
(a) sample δ ← DU and hold δ time steps;
(b) parse EMM as EDX and st as (DXst, stDX, MMst, QQ, QU, cnt);
(c) if QU.peek ̸= ⊥,

i. compute e← QU.dequeue;
ii. parse e as (op⋆, ℓ⋆, v⋆);

(d) otherwise, set op⋆ := pairAdd, ℓ⋆ := α and v⋆ := 0θ;
(e) compute (stDX;⊥)← ΣDX.PutC,S(stDX, ℓ⋆, op⋆∥v⋆; EDX).

Figure 2: Our EXH construction (part 2).

25

• update process: while true, it samples δU ← DU, uses its clock to wait for δU steps and uses
SDX(put,⊥) to simulate a put operation.

It remains to show that for all probabilistic polynomial-time adversaries A, the probability that
RealEXH,A(k) outputs 1 is negligibly close to the probability that IdealEXH,A,SEXH(k) outputs 1.
Notice that RealEXH,A(k) is the same as IdealEXH,A,SEXH(k), except that in the latter EDX is
replaced with the output of

SDX
(
setup,Ldx

S (τ (MM))
)

and step 5 of QServicing and UServicing is replaced with a simulated execution of Get with SDX(get,⊥)
and with a simulated execution of Put with SDX(Put,⊥), respectively.

We do this by showing that if there exists a probabilistic polynomial-time adversary AEXH for
which ∣∣∣Pr

[
Real∅EXH,AEXH

(k) = 1
]
− Pr

[
Ideal∅EXH,AEXH,SEXH

(k) = 1
]∣∣∣ ≥ ε(k),

where ε(k) is non-negligible, then there exists a probabilistic polynomial-time adversary BDX such
that

|Pr [RealΣDX,BDX(k) = 1]− Pr [IdealΣDX,BDX,SDX(k) = 1]| ≥ ε(k)

which violates the security of ΣDX.
BDX starts by simulating AEXH. When AEXH outputs (op1, et1, at1), where op1 = (setup, MM),

BDX outputs op1 = (setup, τ(MM)) at time et1 and passes the messages it receives back and forth to
AEXH. From then on, BDX ignores AEXH’s operations and starts two processes that work as follows.
The first repeatedly samples δQ ← DQ, waits δQ steps and outputs an operation op = (query, ℓ),
where ℓ is an arbitrary label. The second, repeatedly samples δU ← DU, waits δU steps and outputs
an operation op = (update, u), where ℓ and v are arbtirary elements of the label and value space,
respectively.

Notice that if BDX is in a RealΣDX,BDX(k) experiment, then AEXH’s view is the same as in a
Real∅EXH,AEXH,SEXH

(k) experiment. On the other hand, if BDX is in an IdealΣdx,BDX(k) experiment
then AEXH’s view is as in an Ideal∅EXH,AEXH,SEXH

(k) experiment.

6 Efficiency Analysis of EXH
In this section, we analyze EXH with respect to query latency, update latency, client and server
storage, and communication complexity. At the end of this section, we will compare the asymptotic
behavior of EXH to state of the art low-leakage schemes. Note that EXH is the only construction
that is subliminal not only in the chronometric setting but even in the standard setting. To make
the presentation of this section simpler, we describe our model as well as state all our theorems
for the case of queries. The results for updates can be derived in the exact same way where we
only change the response length, query arrival and query service distributions with their analogous
distributions.

26

6.1 A New Queuing Model

To analyze the efficiency of EXH, it is necessary to define and analyze the queueing model under
which EXH operates. In particular, we introduce a new queueing system we call the batch arrival
model with dummies and analyze it with respect to latency and queue size.

The need for a new queuing model. For our analysis, we assume that queries arrive following a
Poisson process with rate λ ∈ R>0 and that the servicing distribution is an exponential distribution
with parameter µ ∈ R>0. In EXH, a query for ℓ gets transformed into nℓ elements that get added
simultaneously to the queue Q. This is a compound Poisson process that captures a batch arrival
behavior (refer to Section 3.1 for more details). However, contrary to a traditional batch arrival
model, our system always processes an element; either a dummy element if the queue is empty or
a real element otherwise. While this may seem like an insignificant change, it makes the analysis
of the queue size much more complex than anticipated.

The batch arrival model with dummies. We write MR/M/1 to represent our queueing sys-
tem. Here, the response lengths of the multi-map follow a discrete distribution R, and M refers
to the servicing being exponentially distributed but where the server either processes a real or a
dummy element. We denote by Ri the discrete random variables with a countable support S ⊂ N
that represent the response lengths of the queries and we write Pr [Ri = k] = ck, for all k ∈ S.
Based on the description of the queueing system, and by modeling the behavior of the system as a
continuous Markov chain process, we can generate the transition rate matrix R which is equal to

R =

−λ 0 λ · c1 λ · c2 λ · c3 · · ·
µ −(µ + λ) λ · c1 λ · c2 λ · c3 · · ·
0 µ −(µ + λ) λ · c1 λ · c2 · · ·
0 0 µ −(µ + λ) λ · c1 · · ·
...

...
...

Concretely, the main difference between our model and MR/M/1 queuing system is that there is no
real zero state in our model, as our system will always either process a dummy or a real element.
From a modeling standpoint, we set our zero state to represent the setting where the system is
processing a dummy element, and we set the one state to represent the setting where the system is
processing a real element. For states larger than two, the matrix is the same as the transition rate
matrix of a MR/M/1 system.

Analysis. For our analysis, we make use of the concept of continuous Markov chain processes.
Assuming that the queuing system reaches a steady state, which is a function of the system param-
eters, we denote by pi, for i ∈ S, the ith element of the stationary distribution of the continuous
Markov chain. In particular, pi denotes the probability that the system has size i, for i ∈ S, when
time t→∞, i.e., after a large number of queries.12 We also denote by P (z) and C(z) the probabil-
ity generating functions of the stationary distribution (pn)n≥0 and the response length distribution
(cn)n≥0, respectively. In Theorem 6.1, we compute a closed form of the probability generating

12Recall that when the system has i elements, the queue length is at least equal to i − 1 as the server processes at
most one element at a time.

27

0 1 2 · · ·
µ µ

λ1
λ1

(a) Transition rate diagram for the three initial states.

0 1 2 · · · n · · · ∞
µ µ µ µ µµ

λn−1
λn−1

λn−2
λk

λ

(b) Transition rate diagram for the nth state when n ≥ 2.

Figure 3: Transition rate diagram for the MR/M/1 queueing system.

function P of the MR/M/1 queueing system as well as the probability that the system exceeds
size ν ∈ N in the steady phase. Based on this main result, we will derive the expected size of the
system in Corollary 6.3 and the expected latency in Corollary 6.4. Due to space constraints, all of
the proofs of the theorems and corollaries are in the appendix.

Theorem 6.1. Given a MR/M/1 queueing system with arrival rate λ ∈ R>0, servicing rate µ ∈ R>0
and discrete response length distribution R, the probability that the system exceeds ν ∈ N elements
is

∑∞
n=ν P (n)(0)/n!, where P (n)(0) is the nth derivative of P at point 0 when it exists, and for

|z| ≤ 1,

P (z) =
∞∑

n=0
pn · zn =

(1− ρ

1 + λ · µ−1

)
·
(

µ + λzC(z)
µ− λzC(z)

)
,

where C(z) = (C(z)− 1) · (z − 1)−1, ρ = λ ·E[R] · µ−1 and R ∼ R.

Proof. The transition rate matrix is equivalent to the following set of balance equations which can
also be extracted from the transition rate diagram in Figure 3.

−λp0 + µp1 = 0 for n = 0
−λp1 − µp1 + µp2 = 0 for n = 1

−(λ + µ)pn + µpn+1 + λ
n−1∑
k=1

pn−kck + λcn−1p0 = 0 for n ≥ 2

Recall that for |z| ≤ 1, we have

P (z) =
∞∑

n=0
pnzn and C(z) =

∞∑
n=1

cnzn

28

Multiplying the balance equations above with zn and summing all the terms we obtain

−(λ + µ)
∞∑

n=1
pnzn + µ

∑
n=0

pn+1zn + λ
∞∑

n=2

n−1∑
k=1

pn−kckzn + λp0
(∞∑

n=2
cn−1zn − 1

)
= 0

⇔ −(λ + µ)
(
P (z)− p0

)
+ µ

z

(
P (z)− p0

)
+ λ

(
P (z) · C(z)− p0C(z)

)
+ λp0

(
zC(z)− 1

)
= 0

⇔ P (z)
(
− (λ + µ) + µ

z
+ λC(z)

)
+ µp0 −

µ

z
p0 + λp0C(z)(z − 1) = 0,

where the second equality holds as the double sum represents a convolution
∞∑

n=2

n−1∑
k=1

pn−kckzn =
∞∑

n=1

n∑
k=1

pn−kckzn −
∞∑

n=1
p0cnzn = P (z) · C(z)− p0C(z).

Given the equality above, we obtain

P (z) = −µ · z−1 · p0(z − 1)− λp0C(z)(z − 1)
λ(C(z)− 1)− µ · z−1 · (z − 1)

= −µ · z−1 · p0 − λp0C(z)
λ · (C(z)− 1) · (z − 1)−1 − µ · z−1

= p0 ·
µ + λzC(z)
µ− λzC(z)

,

where C(z) = (C(z)− 1) · (z − 1)−1. To compute the value of p0, we solve the equation above for
z = 1. First, notice that

P (1) =
∞∑

n=0
pn = 1 and C(1) =

∞∑
n=0

cn = 1.

Using the l’Hopital Rule, we also obtain that

C(1) = lim
z→1

C(z) = lim
z→1

C ′(z) = lim
z→1

∞∑
n=1

ncnzn−1 = lim
z→1

∞∑
n=1

ncn = E[R],

where X ∼ R. Plugging C(1), C(1), and P (1) above, we obtain

p0 = 1− ρ

1 + λ · µ−1

where ρ represents the rate of the batch and is equal to λ · E[R] · µ−1. Finally, using Taylor’s
expansion on P , we obtain that

P (z) =
∞∑

n=0

P (n)(0)
n! zn =

∞∑
n=0

pnzn,

which holds true when the nth derivative of P at point 0 exists. The probability that the system
exceeds ν elements is therefore

∞∑
n=ν

pn =
∞∑

n=ν

P (j)(0)
j! .

29

Remark. Theorem 6.1 gives us the probability distribution of the number of elements (or sub-
tokens) in the system—recall that a sub-token is in the system either when waiting in the queue
or when being processed by the server. Deriving the concrete quantity can be achieved for certain
response-length distributions as we are going to show below in the case of the geometric distribution,
but can be impossible for others.

The geometric case. Consider the case where the response length distribution is a geometric
distribution with parameter γ ∈ R>0 such that cn = Pr[Ri = n] = (1 − γ) · γn−1, for all n ≥ 1,
where Ri ∼ Geoγ for all i ∈ N.

Corollary 6.2. Given a MGeo/M/1 queueing system with arrival rate λ ∈ R>0, servicing rate
µ ∈ R>0 and geometric response length distribution Geoγ for γ ∈ R>0, the probability that the
system exceeds ν ∈ N elements is equal to

λ · µ−1 · (1− ρ)
1− γ − λ · µ−1 ·

(
γ + λ · µ−1

)ν−2
,

where ρ = λ ·E[R] · µ−1 and R ∼ Geoγ.

Proof. First notice that the probability generating function of the response length C can be con-
cretely calculated such that

C(z) =
∞∑

n=1
cn · zn =

∞∑
n=1

(1− γ) · γn−1zn = z · (1− γ)
1− γz

.

We can also calculate C such that

C(z) = C(z)− 1
z − 1 = z · (1− γ)− 1 + γz

(z − 1) · (1− γz) = 1
1− γz

.

Given these quantities and based on the result of Theorem 6.1, we can now concretely calculate P
such that

P (z) =
(1− ρ

1 + λ · µ−1

)
·
(

µ + λzC(z)
µ− λzC(z)

)
=

(1− ρ

1 + λ · µ−1

)
· µ + λz2 · (1− γ) · (1− γz)−1

µ− λz · (1− γz)−1

=
(1− ρ

1 + λ · µ−1

)
· µ · (1− γz) + λz2 · (1− γ)

µ · (1− γz)− λz

=
(1− ρ

1 + λ · µ−1

)
· 1− γz + λ · µ−1 · z2 · (1− γ)

1− (γ + λµ−1)z

=
(1− ρ

1 + λ · µ−1

)
·
(1

1− (γ + λµ−1)z −
γz

1− (γ + λµ−1)z + λ · µ−1 · z2 · (1− γ)
1− (γ + λµ−1)z

)
=

(1− ρ

1 + λ · µ−1

)
·
(∞∑

n=0
(γ + λµ−1)nzn − γ

∞∑
n=0

(γ + λµ−1)nzn+1 + λµ−1(1− γ)
∞∑

n=0
(γ + λµ−1)nzn+2

)

=
(1− ρ

1 + λ · µ−1

)
·
(∞∑

n=0
(γ + λµ−1)nzn − γ

∞∑
n=1

(γ + λµ−1)n−1zn + λµ−1(1− γ)
∞∑

n=0
(γ + λµ−1)n−2zn

)

30

From the above equality, we can rewrite the nth term of P , pn, for n ≥ 2, such that

pn =
(1− ρ

1 + λ · µ−1

)
·
(

(γ + λµ−1)n − γ(γ + λµ−1)n−1 + λµ−1(1− γ)(γ + λµ−1)n−2
)

=
(1− ρ

1 + λ · µ−1

)
·
(

γ + λµ−1
)n−2

·
(

(γ + λµ−1)2 − γ(γ + λµ−1) + λµ−1(1− γ)
)

=
(1− ρ

1 + λ · µ−1

)
·
(

γ + λµ−1
)n−2

·
(

(λµ−1)2 + λµ−1
)

= λ

µ
·
(

1− ρ

)
·
(

γ + λ · µ−1
)n−2

.

Finally, computing the probability to exceed ν ≥ 2 elements in the system is equal to
∞∑

n=ν

pn = λ

µ
·
(

1− ρ

)
·

∞∑
n=ν

(
γ + λ · µ−1

)n−2
= λ · µ−1 · (1− ρ)

1− γ − λ · µ−1 ·
(

γ + λ · µ−1
)ν−2

Based on the result of Corollary 6.2, one can note that as long as γ +λ ·µ−1 < 1, the probability
of exceeding ν elements in the system exponentially decreases as function of ν. In the remainder
of this section, we focus on deriving the expected behavior of the system (and therefore of the
queue) which only depends on the existence of the first and second moments of the response length
distribution R.

6.2 Client-Side Storage

Using Theorem 6.1, we compute the number of elements (or sub-tokens) in the system, L, in
Corollary 6.3.

Corollary 6.3. Given a MR/M/1 queueing system with arrival rate λ ∈ R>0, servicing rate µ ∈
R>0 and discrete response length distribution R, then

L = 1 + E[R]
1 + µ/λ

+ λ

µ
· E[R] + E[R2]

2(1− ρ) ,

where ρ = λ ·E[R] · µ−1 and R ∼ R.

Proof. Based on Theorem 6.1, we know the exact value of the probability generating function P .
To calculate the expected number of sub-tokens in the system, it suffices to calculate the first
derivative of P and evaluate it at 1 since L = P (1)(1).

P (1)(z) = p0 ·
d

dz

(
µ + λzC(z)
µ− λzC(z)

)

= p0 ·
λ · (C(z) + zC(1)(z)) · (µ− λzC(z)) + λ · (C(z) + zC

(1)(z)) · (µ + λzC(z))(
µ− λzC(z)

)2 . (2)

31

On the other hand, we have

C(1) =
∞∑

n=0
cn = 1 and C(1)(1) =

∞∑
n=0

n · cn = E[R] and C(1) = E[R],

where the third equality was derived in the proof of Theorem 6.1. To obtain the value of C
(1)(1),

we apply the l’Hopital Rule twice such that

lim
z→1

C
(1)(z) = lim

z→1

(z − 1)C(2)(z)
2(z − 1) = lim

z→1

(z − 1)C(3)(z) + C(2)(z)
2 = lim

z→1

∞∑
n=1

n(n− 1)
2 ·cn = E[X(X − 1)]

2 .

where C
(1)(z) =

(
C(1)(z)(z − 1) − (C(z) − 1)

)
· (z − 1)−2 and R ∼ R. By evaluating P at z = 1

in Equation 2 and by replacing the values of C(1), C(1)(1), C(1), and C
(1)(1) by their concrete

quantities derived above, we obtain

P (1)(1) = p0 ·
λ(1 + E[R])(µ− λE[R]) + λ · 2−1(E[R] + E[R2])(µ + λ)

(µ− λ ·E[R])2

= p0 ·
λ

µ

(1 + E[R])(1− ρ) + 2−1(E[R] + E[R2])(1 + λ/µ)
(1− ρ)2

= λ

µ

(1 + E[R])(1− ρ) + 2−1(E[R] + E[R2])(1 + λ/µ)
(1− ρ) · (1 + λ/µ)

= 1 + E[R]
1 + µ/λ

+ λ

µ
· E[R] + E[R2]

2(1− ρ) .

Relationship to MR/M/1 systems. Note that the expected number of sub-tokens is very close
to the standard MR/M/1 queueing system. In particular, the expected number of sub-tokens in
MR/M/1 is

L = λ

µ
· E[R] + E[R2]

2(1− ρ) ,

(refer to [58] for more details). So MR/M/1 systems like EXH incur an additive overhead of
(1 + E[R])/(1 + µ/λ).

Example. Consider a setting with arrival rate λ = 10, service rate µ = 400, and a geometric
response length distribution with parameter p = 0.1. Then, the expected number of sub-tokens in
the system is equal to 2.

Client and server storage. The client-side storage is equal to the size of the queue, L, described
above plus the size of the additional bookkeeping structures which are O(#LMM). The server-
side storage complexity is equal to the server-side storage complexity of the underlying encrypted
dictionary. Using the LDX construction described in Appendix A as the underlying EDX, EXH has
server-side storage complexity O(N).

32

6.3 Query Latency

Leveraging Corollary 6.3 as well as Little’s Law, we can calculate the latency W of a query. We
state our results in the following corollary.

Corollary 6.4. Given a MR/M/1 queueing system with arrival rate λ ∈ R>0, servicing rate µ ∈
R>0 and discrete response length distribution R,

W ≤
(1 + E[R]

1 + µ/λ
+ L

)
· (λ ·E[R])−1 + E[R] · µ−1,

where L is the expected number of sub-tokens in the MR/M/1 queueing system and R ∼ R.

Proof. Using Little’s Law, the latency of a sub-token is P (1)(1) · (λ ·E[R])−1. Assuming the worst-
case, where the sub-token was the first sub-token in a query, we obtain

W ≤ P (1)(1) · (λ ·E[R])−1 + E[R] · µ−1

≤
(1 + E[R]

1 + µ/λ
+ L

)
· (λ ·E[R])−1 + E[R] · µ−1.

Example. For arrival rate λ = 10, service rate µ = 400, and geometric response length distribu-
tion with parameter p = 0.1, the expected latency per query is at most 0.045 units of time. A unit
of time can be thought of as a second if the arrival and service rates are per second as well.

6.4 Communication Complexity

The communication complexity of EXH depends on the parameters of the queueing model but
also on the complexity of the underlying encrypted dictionary scheme ΣDX. In particular, if ΣDX is
instantiated with LDX (described in Appendix A) using OptORAMa [6] or the non-recursive variant
of Path ORAM [61] as the underlying encrypred array scheme, its communication complexity is
O(log N), where N is the number of pairs in the dictionary DX.

Corollary 6.5. Given a MR/M/1 queueing system with arrival rate λ ∈ R>0, servicing rate µ ∈
R>0 and discrete response length distribution R, the expected communication complexity per query
is O

(µ
λ · log N

)
.

Remark. While Corollary 6.6 holds for any choice of parameters λ and µ, the latency and the
expected size of the system do not. From Theorem 6.1 and its subsequent corollaries, we know
that the rate ρ should be strictly smaller than 1 to achieve a stable system which then implies that
ρ = λ · E[R]/µ < 1 for R ∼ R. In other words, the expected communication complexity of EXH
when its queue is stable is lower bounded by O(E[R] · log N).

Corollary 6.6. If ρ→ 1, the worst-case communication complexity per query is

O

(
opt · log N

)
.

33

Scheme Comm. & Comp. Rounds Client State Storage Correctness Dynamism Leakage Patterns
πbas [19] O (opt) O (1) O (1) O(N) ✓ X dsize, qeq, rlen, time

twoEMM [28] O
(
m · k · log2 s

)
O(1) O(1) O(N) ✓ ✓ lsize, mrlen, time

AZL [45] O
(
(α + opt) · log2 s

)
O(opt/α) Ω(s) O(α · s + N) ✓ X dsize, trlen, time

FZL [45] O
(
(α + opt) · log2 s

)
O(opt/α) Ω(s) O(α · s + N) X X dsize, time

zeroSSE [7] O (m · log (N/m)) O(1) O(s) O(N) ✓ ✓ dsize, mrlen, time
EXH (low-leakage) O(E[R] · log N) O(E[R]) O

(
s + E[R2]

)
O(N) ✓ ✓ dsize, erlen, rate

EXH (subliminal) O(µ · λ−1 · log N) O(µ · λ−1) O
(
s + λ·E[R2]

µ−λ·E[R]

)
O(N) X ✓ dsize

Table 1: Asymptotic comparison between EXH and other low-leakage constructions. N denotes
the number of label/value pairs in the multi-map, s denotes the number of labels, m denotes
the maximum response length and k denotes the security parameter. We use opt to denote the
optimal time to retrieve the response of any label ℓ. We omit the size of the value space θ the
communication, computation and storage complexities.

The corollary follows from the fact that the probability to have a dummy being processed in
MR/M/1 is equal to p0 = (1− ρ)/(1 + λ · µ−1). This implies that the server always process a real
token and never wastes resources processing a dummy token. Note however that the as a result of
ρ being close to 1, the query latency will significantly increase and tends to ∞.

6.5 Asymptotic Comparison

In Table 1, we compare the asymptotic behavior of EXH to low-leakage EMMs. We assume that
EXH is instantiated using LDX which itself instantiated using a logarithmic-bandwidth ORAM such
as OptORAMa [6]. We also include the mid-leakage construction πbas as a baseline. To simplify
our presentation, we provide the asymptotic efficiency of all the schemes as a function of the initial
size of the multi-map, N , the initial maximum response length, m, as well as the initial number
of labels, s. In particular, the underlying assumption we are making here is that the maximum
size of the multi-map is ub = O(N), the maximum response length after ub updates is O(m) and
the maximum number of labels is O(s). This simplifies our asymptotic analysis but also helps us
compare the efficiency of EXH with static schemes like [45].

Low-leakage mode. In low-leakage mode, λ · E[R] < µ and λ · E[U] < µ so that the stability
conditions of the queues are satisfied. One can observe in Table 1 that the communication and
computational complexity of EXH is independent of the maximum response length m and is O(E[R]·
log N). We would like to highlight that this is a significant improvement over existing constructions
since E[R] is usually asymptotically dominated by m (see the Enron example below). The round
complexity is O(E[R]) and the client state is O(s + E[R2]). Similarly, note that both the round
complexity and the client state are independent of m which is highly desirable as we discuss in
Section 7. The server storage is O(N) which is similar to low- and mid-leakage schemes. Finally,
EXH’s query and update latency is equal to

O

(E[R2]
λ ·E[R]

)
and O

(E[U2]
λ ·E[U]

)
,

where E[R] and E[R2] and E[U] and E[U2] denote the expected value and the second moment of the
response length distribution R and the update length distribution U of the multi-map, respectively.

34

Subliminal mode. In this mode, the servicing rate µ ∈ N>0 is a public parameter that is
independent of any other paramter including the arrival rate λ and the expected response length
E[R]. One can see in Table 1 that EXH has a communication and computational complexity that
is independent of the maximum response length m. The behavior of EXH in this mode varies
as a function of the relationship between µ, λ and E[R]. In particular, given a fixed service
rate µ > λ · E[R], EXH’s stability condition holds and the scheme will always output correct
results. The communication and computational complexities however will vary substantially as a
function of how close µ and the product λ · E[R] are. If λ · E[R] = O(µ), then EXH’s efficiency
behaves exactly the same as in the low-leakage mode. On the other hand, if λ · E[R] = o(µ), the
communication and computation complexity get worse and are ω(E[R] · log N). On the other hand,
if the stability condition is violated, then EXH always outperforms the low-leakage mode but at the
cost of correctness. In particular, the latency will be unbounded which implies that some queries
are never going to be executed. Finally, we would like to emphasize that in subliminal mode, EXH,
achieves the best leakage profile we are aware of at the expense of correctness and an increase in
latency. More precisely, EXH only leaks the size of the data structure, dsize, and has query and
update latency

O

(E[R2]
E[R] · (µ− λ ·E[R])

)
and O

(E[U2]
E[U] · (µ− λ ·E[U])

)
,

when µ > λ ·E[R] and ∞ otherwise.

The Enron dataset case. While the expected response length E[R] is by definition smaller
than the maximum response length m, we were interested in better understanding their asymptotic
behavior as a function of the multi-map size, N . For this, we sampled different subsets of the Enron
dataset [3], and noticed that the maximum response length, the expected response length E[R] and
the second moment of the response length E[R2] are O(N0.58), O(N0.18) and O(N0.64), respectively.
One can observe that E[R] = o(m). In this case, the communication and computational complexity
of EXH in low-leakage mode is asymptotically dominated by those of twoEMM, AZL, FZL and
zeroSSE.

7 Evaluation

In this section, we empirically evaluate EXH and show that it practically scales.

Implementation. We implemented EXH in C++ with 1, 373 lines of code. The network layer was
implemented using the Asio library [1]. We used the Boost library to instantiate a lock-free queue
for the client queue [2], and used OpenSSL [51] as the cryptographic library with AES-CTR-128 as
the symmetric encryption scheme. Finally, we make use of the non-recursive variant of Path ORAM
[61] to instantiate the underlying oblivious RAM primitive in LDX. Note that even though it is not
the ideal choice when it comes to client storage, it is concretely efficient.

Datasets. We use the Enron email dataset [3] which is a publicly available collection of emails of
around 150 Enron employees. The total uncompressed size of the dataset is equal to 1.32GB. An
important characteristic of the Enron dataset is that it follows a Zipf-like distribution where a large

35

number of keywords appears in a small number of documents. The Zipf distribution, in particular,
has been widely shown to capture keyword frequencies in text [50] and is used to analyze various
structured encryption schemes [37, 43].

Evaluation setup. For our empirical evaluation, we use a machine with an AMD Ryzen 7 5700x
processor and 32GB of RAM in a local network. As a first step, we parse the Enron dataset using
the Clusion parser [53] and randomly generate 5 multi-maps of sizes 212 to 220 and with maximum
response lengths between 25 and 7, 844. The multi-maps map keywords to document ids. Query
arrivals follow a Poisson process for which we vary the arrival rate λ to capture different loads. In
particular, we chose λ = 32 queries per second for a small query load, λ = 64 queries per second
for a medium query load, and λ = 128 queries per second for a high query load. With respect to
the service rate µ, we simply set it to be the inverse of the time needed by the server to process
a sub-token; and as such, µ varies as a function of the size of the multi-map and the efficiency of
the Get protocol of the underlying scheme. While the queries arrive following a Poisson process,
the keywords that are queried are chosen uniformly at random from the set of keywords in the
multi-map.13 Throughout our evaluation, we generate 10, 000 queries and terminate the process
independently of whether the queue is empty or not and gather various statistics.14 In particular,
we are interested in the following metrics:

• Storage: the number of bits required to store the encrypted structure.

• Communication complexity: the number of bits exchanged to execute a single query.

• Latency: the time it takes in milliseconds to receive the query response. We study various
statistics including the median, the 75th percentile p75, and the maximum latency.

• Queue size: the length of the queue. We study various statistics including the median, the
75th percentile p75 and the maximum size.

Server-side storage. Our evaluation shows that EXH storage overhead scales with N . Specifi-
cally, for N = 212, EXH structure requires 1.81MB whereas it requires 512MB for N = 220.

Communication complexity. Figure 4a shows the communication complexity per query in
KBytes as a function of the size of the multi-map for three different arrival rates λ ∈ {32, 64, 128}.
Our empirical results are aligned with our theoretical analysis which showed that the communication
of EXH, for fixed µ and λ, grows as a function of log N rather than the maximum response length m.
This is crucial from a practical standpoint as it shows that EXH can scale to much larger datasets.
As an instance, EXH requires 958KB to execute a single query when N = 220 and λ = 32. EXH’s
communication complexity drops significantly when λ = 128, requiring only 242.89KB to execute
a single query. This drop in communication complexity per query when increasing λ hints to a
situation where the queue was extremely stable (or always empty). In particular, at λ = 128, the
queue receives more elements to process than at λ = 32, which implies that the server, at a higher
arrival rate, processes less dummy queries – effectively using the bandwidth.

13In most practical scenarios, queries are usually made for keywords that have a small response lengths. Changing
the uniform distribution to such a skewed distribution will only make our results better compared to the two baselines.
We chose not to do that to provide a more fair comparison.

14We noticed that increasing the number of queries beyond 10, 000 queries has no effect on any of our efficiency
metrics since the system has already reached a steady state.

36

(a) Communication complexity. (b) Query latency.

(c) Queue size.

Figure 4: Communication complexity per query in KBytes, latency in milliseconds, and queue size.
Both latency and queue size include the following statistics: p25, the median or p50, the p75, and
the maximum or p100. The maximum is represented either as a circle or a bar depending on its
proximity to the other statistical metrics.

Latency. Figure 4b shows various latency statistics as a function of the size of the multi-map when
λ ∈ {32, 64, 128}. For all arrival rates and all sizes of the multi-map, EXH maintained a median
latency below 10 milliseconds, a p75 latency below 166 milliseconds and a maximum latency below
1.82 seconds. In particular, the latency slightly increases as we increase the size of the multi-map.
More precisely, the latency is function of both E[R2] and E[R] which themselves depend of the size
of the multi-map N . As an example, the expected response length at N = 212 is equal to 1.92
whereas at N = 220, the expected response length is equal to 23.32.

Client-side storage. Figure 4c shows various queue size statistics as a function of the size of the
multi-map when λ ∈ {32, 64, 128}. For all arrival rates and all sizes of the multi-map, EXH has a
median queue size equal to 6, a p75 queue size equal to 811, and a maximum queue size equal to
9, 890. In particular, we observe that when λ < 128, the queue was (almost) always empty, whereas

37

at λ = 128, the queue started queueing more elements. This is an indication that the system rate
ρ is getting closer to 1. As discussed above, this is also an indication that the server is processing
less dummy elements at λ = 128 when compared to λ = 32.

Completion ratio. EXH completed all 10, 000 queries for all arrival rates and all multi-map sizes.

References

[1] Asio C++ Library. https://think-async.com/Asio/.

[2] Boost C++. https://www.boost.org.

[3] Enrom Email Dataset. https://www.cs.cmu.edu/˜enron/.

[4] Ghous Amjad, Seny Kamara, and Tarik Moataz. Injection-secure structured and searchable
symmetric encryption. Cryptology ePrint Archive, 2023.

[5] G. Asharov, M. Naor, G. Segev, and I. Shahaf. Searchable symmetric encryption: Optimal
locality in linear space via two-dimensional balanced allocations. In ACM Symposium on
Theory of Computing (STOC ’16), STOC ’16, pages 1101–1114, New York, NY, USA, 2016.
ACM.

[6] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and Elaine
Shi. Optorama: optimal oblivious ram. In Advances in Cryptology–EUROCRYPT 2020: 39th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II 30, pages 403–432. Springer, 2020.

[7] Léonard Assouline and Brice Minaud. Weighted oblivious ram, with applications to searchable
symmetric encryption. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology -
EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part I, volume
14004 of Lecture Notes in Computer Science, pages 426–455. Springer, 2023.

[8] Dimitri Bertsekas and Robert Gallager. Data networks. Athena Scientific, 2021.

[9] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-optimal oblivious
key-value stores for efficient psi, psu and volume-hiding multi-maps. Cryptology ePrint Archive,
2023.

[10] Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage abuse attacks. In
Network and Distributed System Security Symposium (NDSS ’20), 2020.

[11] Angèle Bossuat, Raphael Bost, Pierre-Alain Fouque, Brice Minaud, and Michael Reichle. Sse
and ssd: page-efficient searchable symmetric encryption. In Advances in Cryptology–CRYPTO
2021: 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, Au-
gust 16–20, 2021, Proceedings, Part III 41, pages 157–184. Springer, 2021.

[12] R. Bost. Sophos - forward secure searchable encryption. In ACM Conference on Computer
and Communications Security (CCS ’16), 20016.

38

https://think-async.com/Asio/
https://www.boost.org
https://www.cs.cmu.edu/~enron/

[13] R. Bost, B. Minaud, and O. Ohrimenko. Forward and backward private searchable encryption
from constrained cryptographic primitives. In ACM Conference on Computer and Communi-
cations Security (CCS ’17), 2017.

[14] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
IEEE 42nd Annual Symposium on the Foundations of Computer Science (FOCS 2001), pages
111–126. IEEE, 2001.

[15] Jin Cao, William S Cleveland, Dong Lin, and Don X Sun. On the nonstationarity of in-
ternet traffic. In Proceedings of the 2001 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pages 102–112, 2001.

[16] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against searchable
encryption. In ACM Conference on Communications and Computer Security (CCS ’15), pages
668–679. ACM, 2015.

[17] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable search-
able symmetric encryption with support for boolean queries. In Advances in Cryptology -
CRYPTO ’13. Springer, 2013.

[18] D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In Advances in
Cryptology - EUROCRYPT 2014, 2014.

[19] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu,
and Michael Steiner. Dynamic searchable encryption in very-large databases: Data structures
and implementation. In Network and Distributed System Security Symposium (NDSS ’14),
2014.

[20] David Cash, Ruth Ng, and Adam Rivkin. Improved structured encryption for sql databases via
hybrid indexing. In Applied Cryptography and Network Security: 19th International Confer-
ence, ACNS 2021, Kamakura, Japan, June 21–24, 2021, Proceedings, Part II, pages 480–510.
Springer, 2021.

[21] Nishanth Chandran, Vipul Goyal, Rafail Ostrovsky, and Amit Sahai. Covert multi-party com-
putation. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07),
pages 238–248. IEEE, 2007.

[22] Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted
data. In Applied Cryptography and Network Security (ACNS ’05), volume 3531 of Lecture
Notes in Computer Science, pages 442–455. Springer, 2005.

[23] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances in
Cryptology - ASIACRYPT ’10, volume 6477 of Lecture Notes in Computer Science, pages
577–594. Springer, 2010.

[24] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. In ACM Conference on Computer and Com-
munications Security (CCS ’06), pages 79–88. ACM, 2006.

39

[25] I. Demertzis and C. Papamanthou. Fast searchable encryption with tunable locality. In ACM
International Conference on Management of Data (SIGMOD ’17), SIGMOD ’17, pages 1053–
1067, New York, NY, USA, 2017. ACM.

[26] Ioannis Demertzis, Dimitrios Papadopoulos, and Charalampos Papamanthou. Searchable en-
cryption with optimal locality: Achieving sublogarithmic read efficiency. In Advances in Cryp-
tology - CRYPTO ’18, pages 371–406. Springer, 2018.

[27] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. Rich queries on
encrypted data: Beyond exact matches. In European Symposium on Research in Computer
Security (ESORICS ’15). Lecture Notes in Computer Science, volume 9327, pages 123–145,
2015.

[28] S. Garg, P. Mohassel, and C. Papamanthou. TWORAM: efficient oblivious RAM in two rounds
with applications to searchable encryption. In Advances in Cryptology - CRYPTO 2016, pages
563–592, 2016.

[29] Marilyn George, Seny Kamra, and Tarik Moataz. Structured encryption and dynamic leakage
suppression. In Advances in Cryptology - EUROCRYPT 2021, 2021.

[30] E-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography Archive,
2003. See http://eprint.iacr.org/2003/216.

[31] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Jour-
nal of the ACM, 43(3):431–473, 1996.

[32] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Pump up the
volume: Practical database reconstruction from volume leakage on range queries. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, pages 315–331. ACM, 2018.

[33] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Learning
to reconstruct: Statistical learning theory and encrypted database attacks. In 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019,
pages 1067–1083. IEEE, 2019.

[34] M. Saiful Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In Network and Distributed System Security
Symposium (NDSS ’12), 2012.

[35] Charanjit Jutla and Sikhar Patranabis. Efficient searchable symmetric encryption for join
queries. In Advances in Cryptology–ASIACRYPT 2022: 28th International Conference on the
Theory and Application of Cryptology and Information Security, Taipei, Taiwan, December
5–9, 2022, Proceedings, Part III, pages 304–333. Springer, 2023.

[36] S. Kamara and T. Moataz. Boolean searchable symmetric encryption with worst-case sub-
linear complexity. In Advances in Cryptology - EUROCRYPT ’17, 2017.

40

http://eprint.iacr.org/2003/216

[37] S. Kamara and T. Moataz. Computationally volume-hiding structured encryption. In Advances
in Cryptology - Eurocrypt’ 19, 2019.

[38] S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption. In
Financial Cryptography and Data Security (FC ’13), 2013.

[39] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In
ACM Conference on Computer and Communications Security (CCS ’12). ACM Press, 2012.

[40] Seny Kamara, Abdelkarim Kati, Jamie De Maria, Tarik Moataz, Andrew Park, and Amos
Treiber. MAPLE: MArkov Process Leakage attacks on Encrypted Search. Technical Report
2023/810, IACR ePrint Cryptography Archive, 2023. https://eprint.iacr.org/2023/810.

[41] Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, Amos Treiber, and Michael
Yonli. Sok: Cryptanalysis of encrypted search with leaker–a framework for leakage attack
evaluation on real-world data. In 2022 IEEE 7th European Symposium on Security and Privacy
(EuroS&P), pages 90–108. IEEE, 2022.

[42] Seny Kamara and Tarik Moataz. SQL on structurally-encrypted databases. In Advances in
Cryptology–ASIACRYPT 2018: 24th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6, 2018,
Proceedings, Part I 24, pages 149–180. Springer, 2018.

[43] Seny Kamara and Tarik Moataz. Bayesian leakage analysis: A framework for analyzing leakage
in encrypted search. Technical Report 2023/813, IACR ePrint Cryptography Archive, 2023.
https://eprint.iacr.org/2023/813.

[44] Seny Kamara and Tarik Moataz. Design and analysis of a stateless en-
crypted document database, 2023. https://www.mongodb.com/collateral/
stateless-document-database-encryption-scheme.

[45] Seny Kamara, Tarik Moataz, and Olya Ohrimenko. Structured encryption and leakae sup-
pression. In Advances in Cryptology - CRYPTO ’18, 2018.

[46] Seny Kamara, Tarik Moataz, Stan Zdonik, and Zheguang Zhao. Opx: An optimal relational
database encryption scheme. Technical report, IACR ePrint Cryptography Archive, 2020.

[47] Thomas Karagiannis, Mart Molle, Michalis Faloutsos, and Andre Broido. A nonstationary
poisson view of internet traffic. In IEEE INFOCOM 2004, volume 3, pages 1558–1569. IEEE,
2004.

[48] Evgenios M. Kornaropoulos, Nathaniel Moyer, Charalampos Papamanthou, and Alexandros
Psomas. Leakage inversion. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. ACM, nov 2022.

[49] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Improved reconstruction at-
tacks on encrypted data using range query leakage. IACR Cryptology ePrint Archive, 2017:701,
2017.

[50] Wentian Li. Random texts exhibit zipf’s-law-like word frequency distribution. IEEE Transac-
tions on information theory, 38(6):1842–1845, 1992.

41

https://eprint.iacr.org/2023/810
https://eprint.iacr.org/2023/813
https://www.mongodb.com/collateral/stateless-document-database-encryption-scheme
https://www.mongodb.com/collateral/stateless-document-database-encryption-scheme

[51] The OpenSSL Library. See http://www.openssl.org.

[52] C. Liu, L. Zhu, M. Wang, and Y.-A. Tan. Search pattern leakage in searchable encryption:
Attacks and new construction. Inf. Sci., 265:176–188, May 2014.

[53] T. Moataz and S. Kamara. Clusion. https://github.com/encryptedsystems/Clusion.

[54] Simon Oya and Florian Kerschbaum. Hiding the access pattern is not enough: Exploiting
search pattern leakage in searchable encryption. In USENIX Security Symposium, pages 127–
142, 2021.

[55] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S.-G. Choi, W. George, A. Keromytis,
and S. Bellovin. Blind seer: A scalable private dbms. In Security and Privacy (SP), 2014
IEEE Symposium on, pages 359–374. IEEE, 2014.

[56] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. Mitigating leakage in secure
cloud-hosted data structures: Volume-hiding for multi-maps via hashing. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, pages 79–93. ACM, 2019.

[57] George Rasch. The poisson process as a model for a diversity of behavioral phenomena. 1963.

[58] John F Shortle, James M Thompson, Donald Gross, and Carl M Harris. Fundamentals of
queueing theory, volume 399. John Wiley & Sons, 2018.

[59] D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted data. In
IEEE Symposium on Research in Security and Privacy, pages 44–55. IEEE Computer Society,
2000.

[60] E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption with small
leakage. In Network and Distributed System Security Symposium (NDSS ’14), 2014.

[61] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path oram: An
extremely simple oblivious ram protocol. In ACM Conference on Computer and Communica-
tions Security (CCS ’13), 2013.

[62] Luis Von Ahn, Nicholas Hopper, and John Langford. Covert two-party computation. In
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 513–
522, 2005.

[63] Charles V. Wright and David Pouliot. Early detection and analysis of leakage abuse vulnera-
bilities. IACR Cryptol. ePrint Arch., page 1052, 2017.

[64] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power of
file-injection attacks on searchable encryption. In USENIX Security Symposium, 2016.

[65] Zeguang Zhao, Seny Kamara, Tarik Moataz, and Stan Zdonik. Kafedb: a structurally-
encrypted relational database management system. Technical report, 2020.

[66] Zheguang Zhao, Seny Kamara, Tarik Moataz, and Stan Zdonik. Encrypted databases: From
theory to systems. In Conference on Innovative Data Systems Research (CIDR ’21), 2021.

42

http://www.openssl.org
https://github.com/encryptedsystems/Clusion

A Leakage-Free Encrypted Dictionary

LDX is a leakage-free dictionary scheme that makes a black-box use of a leakage-free array encryp-
tion scheme ΣRAM = (Setup, Access). The scheme is detailed in Figure 5 and works as follows.

Setup. The setup protocol is an interactive protocol between the client and the server. The client
inputs a security parameter 1k, an upper bound ub, and a dictionary DX whereas the server inputs
a security parameter 1k. It first parses the dictionary DX as a set of label/value pairs {ℓ, vℓ}ℓ∈LDX .
It also initializes an empty dictionary DXst as well as an array RAM of size ub. The dictionary DXst
will map every label ℓ to the index in which the value vℓ will be stored. For each ℓ ∈ LDX, we place
vℓ in the next empty cell of the array and update DXst accordingly. For all j ∈ {#LDX +1, · · · , ub},
set RAM[j] := 0k. Finally, the client and the server compute

(K, stRAM, ERAM)← ΣRAM.SetupC,S

(
(1k, RAM); 1k

)
and the client outputs the key K, the state st := (DXst, stRAM) whereas the server outputs the
encrypted dictionary EDX := ERAM.

Get. The get protocol is an interactive protocol between the client and the server. The client
inputs a key K, a state st, and a label ℓ, whereas the server inputs the encrypted dictionary EDX.
It first parses the state st as (DXst, stRAM), computes the address addr := DXst[ℓ] and then the client
and the server compute

(
(stRAM, v), ERAM

)
← ΣRAM.AccessC,S

(
K, stRAM,

(
read, addr

)
; ERAM

)
;

the client outputs the value v along with the updated state st := (DXst, stRAM) whereas the server
outputs the updated encrypted dictionary EDX := ERAM.

Put. The put protocol is an interactive protocol between the client and the server. The client
inputs a key K, a state st, and a label/value pair (ℓ, v), whereas the server inputs the encrypted
dictionary EDX. It first parses the state st as (DXst, stRAM), computes the address addr := DXst[ℓ]
and then the client and the server compute

(
stRAM, ERAM

)
← ΣRAM.AccessC,S

(
K, stRAM,

(
write, addr, v

)
; ERAM

)
;

the client outputs the updated state st := (DXst, stRAM) whereas the server outputs the updated
encrypted dictionary EDX := ERAM.

Efficiency. Assuming that we instantiate the leakage-free array encryption scheme using the op-
timal oblivious RAM construction optORAMa [6], LDX has a communication and time complexity
equal to O(log ub), a storage complexity equal to O(ub · θ) and a client state that is O(1). Note
however that when using LDX as a building block of EXH, we do not need an ORAM with a constant
client state as EXH locally keeps track of various state information including DXst and the queues
QQ and QU. Given this observation, one can use the non-recursive Path ORAM construction [61]

43

as it is simpler, concretely more efficient (very small hidden constants in the asymptotics), has a
logarithmic communication and time complexity, and has a single round-trip. Readers may notice,
however, that the client needs to store a position map that has a size equal to O(ub · log ub) which
can be comparable to the storage complexity of the server when θ = O(log ub). In other words,
using the non-recursive version of Path ORAM when instantiating LDX only makes sense in settings
where θ = ω(log ub).

Leakage. LDX is a leakage-free dictionary where the setup leakage is composed of the upper
bound on the size of the dictionary ub whereas the operation leakage for both queries and puts is
null. We state more formally the security guarantees of LDX in the following theorem. The proof
is omitted as it follows trivially from the security guarantees of ORAM.

Theorem A.1. If ΣRAM is (dsize,⊥)-secure, then LDX is (dsize,⊥)-secure.

44

Let γ, θ ∈ N≥1 and ΣRAM = (Setup, Access) be an array encryption scheme. Consider the scheme
LDX = (Setup, Get) with label space LDX = {0, 1}γ and value space VDX = {0, 1}θ defined as follows:

• SetupC,S(1k, params, DX; 1k):

1. parse DX as {ℓ, vℓ}ℓ∈LDX and params as ub;
2. initialize an empty dictionary DXst and an array RAM of size ub;
3. initialize a counter addr := 0;
4. for all ℓ ∈ LDX,

(a) set RAM[addr] := vℓ;
(b) set DXst[ℓ] := addr;
(c) increment the counter addr;

5. for all j ∈ {#LDX + 1, . . . , ub}, set RAM[j] := 0k;
6. set cnt := addr;
7. the client C and the server S compute

(K, stRAM, ERAM)← ΣRAM.SetupC,S

(
(1k, RAM); 1k

)
8. the client C outputs the key K, the state st := (stRAM, DXst, cnt, ub) whereas the server S

outputs EDX := ERAM.

• GetC,S(K, st, ℓ; EDX):

1. st as (stRAM, DXst, cnt, ub), DXst[ℓ] as addr, and EDX as ERAM;
2. compute

(
(stRAM, v), ERAM

)
← ΣRAM.AccessC,S

(
K, stRAM,

(
read, addr

)
; ERAM

)
;

3. the client C outputs the updated state st and the value v whereas the server outputs the
updated encrypted dictionary EDX := ERAM.

• PutC,S(K, st, ℓ, v; EDX):

1. parse st as (stRAM, DXst, cnt, ub) and EDX as ERAM;
2. if cnt > ub, abort;
3. if DXst[ℓ] ̸= ⊥, set addr := DXst[ℓ]; otherwise,

(a) set addr := cnt;
(b) increment the counter cnt and set DXst[ℓ] := cnt;

4. compute

(
stRAM, ERAM

)
← ΣRAM.AccessC,S

(
K, stRAM,

(
write, addr, v

)
; ERAM

)
;

5. the client C outputs the updated state st whereas the server outputs the updated encrypted
dictionary EDX := ERAM.

Figure 5: LDX: a leakage-free dictionary.

45

	Introduction
	Our Contributions

	Related Work
	Preliminaries
	Queueing Theory
	Queuing Systems

	Definitions
	EXH: A Subliminal Multi-Map Encryption Scheme
	The Construction
	Security Analysis

	Efficiency Analysis of EXH
	A New Queuing Model
	Client-Side Storage
	Query Latency
	Communication Complexity
	Asymptotic Comparison

	Evaluation
	Leakage-Free Encrypted Dictionary

