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Abstract. HFE (that stands for Hidden Field Equations) belongs to
multivariate cryptography and was designed by Jacques Patarin in 1996
as a public key trapdoor suitable for encryption or signature. This orig-
inal basic version is unfortunately known to have a super-polynomial
attack, but as imagined since the beginning, it comes with various vari-
ants, one can describe as combinations of “modifiers”.
In this work, we first present the state of the art of these HFE modifiers,
along with their effect on the complexity of the main cryptanalysis tech-
niques against HFE-based schemes. This allows us, in a second time, to
identify a combination of two modifiers that has not yet been explored
and may still be secure with efficient parameters. Based on our analysis,
we propose a new signature scheme that offers extremely short signature
sizes, with reasonable public key sizes and performance. In particular, we
rely on the classical Feistel-Patarin technique to reduce signature sizes
below two times the security parameter.

1 Introduction

The cryptosystem and signature scheme HFE was created in 1996 by Jacques
Patarin [Pat96b] in order to repair the Matsumoto-Imai cypher [MI88]. In this
initial paper, it was already mentioned that many variants of HFE exist since
many “modifiers” can be added to the scheme. We will call “unmodified” HFE
the simplest variant, i.e HFE with no additional modifiers. In [Pat96b] it was
mentioned that when the degree d of the hidden polynomial is fixed, some poly-
nomial attacks are possible, but at that time the scheme was nevertheless ef-
ficient even with small parameters. Since 1996 many other papers have been
published, with the discovery of many more variants, along with many more
possible attacks. On “unmodified” HFE for example, super-polynomial attacks
were published in [FJ03] even when the degree d increases. Therefore “unmodi-
fied” HFE is at present only interesting for very specific needs: very short public
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signatures and a security level of only about 80 bits (see [PMBK20]), since for
larger security the size of the public key becomes too large.

The two main families of attacks on HFE and HFE variants are direct at-
tacks using Gröbner bases [FJ03], and full key recovery attacks using MinRank
problem. The first MinRank attack was published in [KS99]. Recently great
improvements have been done on these MinRank attacks. In fact many differ-
ent MinRank attacks exist: some that first target the secret matrix T of HFE
[BFP11] and some that will first attack the secret matrix S of HFE. Improve-
ments have also been made in the resolution of the MinRank problem. The first
methods were the use of the so called minor modelling, while today we are using
an improved version called the Support minor modelling [BBB+22].

It is relatively easy to add a simple modifier to resist one of these attacks, but,
as we will see in this paper, it is difficult to resist all of them. In fact, the most
impressive recent cryptanalysis result on HFE variants was the cryptanalysis of
GeMSS done in [TPD21], [BBC+22] by a MinRank attack (following the idea of
Beullens [Beu21] on the rainbow scheme). GeMSS is a HFEv− signature scheme
i.e HFE with modifier v and - (these modifiers will be defined later) submitted
to the NIST-PQ competition. The scheme was broken due to these attacks. The
aim of this paper will be to see if some combination of two HFE variants can
resist all known attacks (Gröbner basis attack, all the MinRank attack variants,
differential attacks etc. . . ). We think that it is also interesting to have a general
view of the state of the art on this subject because there are so many papers on
HFE that the situation may look confusing. As we will see, in encryption we did
not find any solution from the known modifiers. However in signature, one of
the variants, called HFEIP− (for HFE with the Internal Perturbation and the
minus modifier) may still be secure with efficient parameters. Of course, since
the analysis of this design is recent, and since many HFE variants have been
broken, we do not recommend to use it yet for critical application, but rather to
continue the theoretical analysis to see if this variant can really be secure and
resist the test of time.

In this paper we provide a summary of the situation of the research on HFE
variants. We are making in the first part a cryptanalysis on every variant found
on HFE with the most modern attacks available. Hence, we provide cryptanalysis
that were not made on certain variants such a “plus” or “internal perturbation”.
In this section we focus on MinRank attacks and give a slight insight on Gröbner
bases attacks or attacks specific to a said variant. In the second part we propose
a new scheme based on HFE, we also give a set of parameters for this scheme.

2 Preliminary

2.1 Notations

For our notations, the set of all integers between integers a, b (a and b included)
is {a . . . b}. Row vectors and matrices will be written in bold. On this paper we
will sometimes switch to a polynomial notation or a function notation so the

2 of 24



2. PRELIMINARY

function represented by the matrix will sometimes be implicitly called by the
same letter that was used for the matrix. For example the function H will be
associated with the matrix H. We denote by vi the i-th component of a vector
v, and the entries of a matrix M of size nr × nc will be denoted by Mi,j , where
i (resp. j) is an integer in {1..nr} (resp. {1..nc}). If one consider the subsets
I ⊂ {1..nr} and J ⊂ {1..nc}, we use the notation MI,J for the submatrix of M
formed by its rows (resp. columns) with indexes in I (resp. J), and we adopt
the shorthand notation M∗,J = M{1..nr},J and MI,∗ = MI,{1..nc}. We also
denote by |M| the determinant of M. Finally, we use #I to denote the number
of elements of a set I.

A field with q elements is denoted Fq.

For X ∈ Fqn , we define X [] := (Xq0 , . . . , Xqn−1

), that is the vector of the
conjugates of X.

We note In the identity matrix of size n.
Finally we note Trn the well known linear mapping trace defined by Trn :

Fqn → Fq, x 7→
∑n−1

i=0 x
qi

2.2 Univariate and multivariate representations

An extension Fqn of Fq can be classically defined as Fq[α] where α is a primi-
tive element of degree n. Fqn can be then considered as a vector space over Fq

with basis (1, α, . . . , αn−1). So let X be an element of Fqn and (x1, . . . , xn) its
coordinates over this basis, such that X =

∑n
i=1 xiα

i−1. Let Mn be the ma-

trix of Mn×n(Fqn) whose (i, j)-coefficient is α(i−1)qj−1

. One can see that the ith

row of Mn is (αi−1)
[]
. By construction of Mn, we have (x1, . . . , xn)Mn = X []

and therefore also (x1, . . . , xn) = X []M−1
n . So if we define ϕ : Fqn → Fn

q ,

X 7→ X []M−1
n , then ϕ converts X to its coordinates, and vice-versa for ϕ−1.

Additionally, ϕ−1(x1, . . . , xn) =
∑n

i=1 xiα
i−1 can also be seen as the first com-

ponent of (x1, . . . , xn)Mn.

Linear mappings and matrices: The Fq-linear polynomial T(X) =
∑n−1

i=0 tiX
qi

over Fqn , can be represented by the matrix T given by:

T = (ti,j)i,j = Mn


t
[]
0
...

t
[]
n−1

M−1
n .

Proof. Let’s write T(X) =
∑n

j=1 (
∑n

i=1 xiti,j)α
j−1 using the coordinates over

Fq of T (X). In one hand we have:

T(X)[] = X []


t
[]
0
...

t
[]
n−1

 .
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On the other hand, T(X)[]M−1
n = (x1, . . . , xn)(ti,j). Replacing (x1, . . . , xn) by

X []M−1
n gives

X []M−1
n (ti,j) = X []


t
[]
0
...

t
[]
n−1

M−1
n .

Identifying and multiplying by Mn on the left gives the result. ⊓⊔

2.3 The HFE Cryptosystem

We describe here the HFE cryptosystem mostly as in [Pat96a]: the secret trap-
door is a univariate polynomial over a finite field Fqn :

H(X) =
∑

0≤i,j≤d

αi,jX
qi+qj . (1)

There are two reasons for this special form. First d and mostly D = qd are chosen
not too big so that any equation H(X) = h can be solved efficiently3, and second
the polynomial H has only monomials of degrees that are sum of two powers of
q, so that it has a multivariate representation over Fq that is quadratic.

There are two more elements in the secret key, they are bijective linear map-
pings, that can be represented as univariate polynomials over Fqn : S(X) =∑

0≤i<n siX
qi and T (X) =

∑
0≤i<n tiX

qi .
Finally, the public key is the composition

P = T ◦H ◦ S, (2)

where the structure of H is supposed to be hidden by S and T , and therefore P
is deemed to be hard to invert without the knowledge of S and T . Equivalently,
ϕ ◦ P ◦ ϕ−1 can be used to describe the public key as a multivariate quadratic
system of n equations in n variables.

The HFE polynomial can be used as a trapdoor function both for encryption
and signature. The reason is that it is an almost bijective function: for a random
h, the equation H(X) = h has only one4 solution with probability around e−1.

Encryption: HFE can be used in encryption in the following way. Let a be the
sender and b the receiver. a only has the public key P in its possession and
wants to send the message x = {x1, . . . , xn}. b has the secret key. To encrypt a
computes the vector P (x) = {P1(x1, . . . , xn), . . . , Pn(x1, . . . , xn)} and sends it
to b. To decrypt

1. b inverts the linear map and T and uses the natural morphism to obtain
H(ϕ(S(x)))

3 We assume simply here that the effective degree of H is between qd + 1 and 2qd.
4 When q is odd, an homogeneous equation has a even number of non zero solutions
since H(−X) = H(X).
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2. b then uses an algorithm like Berlekamp to find ϕ(S(x)) (there may be an
ambiguity in the value of ϕ(x) as H got several roots but a sends a small
vector as well to help b decide which root is the right one).

3. Finally b invert S and ϕ to obtain the value of x

Signature: HFE can be used in signature in the following way. Let a be the
signing party and b be the verifier. b only have the public key P in its possession
a has the secret key and wants to sign a message y.

At first a wants to sign the message y = {y1, . . . , yn} to b

1. a must send a vector x = {x1, . . . , xn} that verifies the property

{P1(x1, . . . xn) = y1, . . . , Pn(x1, . . . , xn) = yn}

2. a uses the private key obtain the problem H(ϕ(S(x))) = ϕ−1(T−1(y)), and
then uses a root finding algorithm (such as Berlekamp algorithm) to find a
solution x.

3. a inverts S and ϕ to obtain a message x that verifies the property.
4. a send x to b and b uses the public key to check if

{P1(x1, . . . xn) = y1, . . . , Pn(x1, . . . , xn) = yn}

.

3 Full key recovery attack on HFE

The attacks described in this section aim to find an equivalent secret key for
HFE. The goal is to exploit a rank defect in the HFE structure. Usually, the
tool used is the resolution of a MinRank problem. Hence, we will make a full
introduction of this problem and a way to solve it. In the rest of the paper, we
will call this attack MinRank attack instead of Full key recovery attack by abuse
of language.

3.1 Introduction to the MinRank problem

Being one of the main tool used to attack HFE it is important to make a quick
introduction to the MinRank problem. This problem was first introduced in
[BFS99], the authors proved in this paper the NP-completeness of the problem.
Then it was used by Kipnis and Shamir in [KS99] in order to attack “unmodified
HFE”. Since then, it remained a keystone in the Multivariate Quadratic (MQ)
cryptography. It is a linear algebra problem that involves minimizing the rank
of a linear combination of matrices.

The MinRank problem can be expressed this way:

Definition 1. Let n, m, r, k ∈ N and let M1,M2, . . .Mk n×m matrices over
the field F. The MinRank problem consists to find u1, u2, . . . uk over F such that
rank(

∑k
i=1uiMi) ≤ r.
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3.2 Resolution of the MinRank problem

We will present here a quick explanation on the method used to solve the Min-
Rank problem. We will only introduce the support-minors method as it is the one
used nowadays. This technique was first introduced by Bardet et al. [BBB+22].

Let n, m , r, k ∈ N and let M1,M2, . . .Mk be n × m matrices over the
field F. Let M =

∑k
i=1uiMi such that rank(M) ≤ r then there exist S and C

respectively of size n× r and r ×m such that M = SC. If one considers rj the
j-th row of the matrix M, then the rank of the matrix Rj =

(
rj
C

)
is at most

r. Therefore, all maximum minors of Rj all null, hence we have a new system
where the unknown values are the ui and the maximal minors of C. The system
is nonlinear but can be solved through linearization.

3.3 Application to HFE

First of all we will write the polynomial central map h in a matrix form, us-
ing the Macaulay writing meaning that we write h(X) = XHXt where X =

(X,Xq, . . . , Xqn−1

).

Lemma 1. Let S,T ∈ Mn×n(Fq) then the public key P can be written

P = (P1, . . .Pn) = (SMnH
∗0Mt

nS
t, . . . ,SMnH

∗nMt
nS

t)M−1
n T

where H∗i is the matrix representation of the qith power of the secret polynomial
h.

A detailed proof of this lemma can be found in [BFP11], it is essentially based on
the formula of ϕ and ϕ−1. The main problem in order to recover the secret key
is to find either T or S, once it is done it is relatively easy to find an equivalent
key [BFP11], [TPD21]. We can then extract two different MinRank problems on
HFE, one attacking S the other attacking T.

1. Attack on T. We will first show how to attack T [BFP11].
Let q, n,D be standard HFE parameters, (P1, . . .Pn) the public key and

T,S,H the secret key as defined earlier. Then we have

(P1, . . . ,Pn) = (SMnH
∗0Mt

nS
t, . . . ,SMnH

∗nMt
nS

t)M−1
n T.

So we can write

(P1, . . .Pn)T
−1Mn = (SMnH

∗0Mt
nS

t, . . . ,SMnH
∗n−1Mt

nS
t).

We will write U = T−1Mn and W = SMn. Then we have

(P1, . . . ,Pn)U = (WH∗0Wt, . . . ,WH∗nWt).

Let (u0,0, u1,0, . . . , un−1,0) be the first column of U then we have

n−1∑
i=0

u0,iPi = WHWt.
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Recall that

H =

(
A 0
0 0

)
where A is a matrix of size d = logq(D). Hence

rank(

n−1∑
i=0

u0,iPi) = logq(D)

which is small so finding the first column of U reduces to solve a MinRank
instance with k = n and r = logq(D) on the matrices P1, . . . ,Pn.

Remark that the matrix product T−1Mn is special as finding the first column
means finding the whole matrix because one has

∀(i, j) ∈ {0 . . . n− 1} × {1 . . . n− 1}ui,j = uqi,j−1.

Hence, we are able to find T by solving the previous MinRank instance.

2. Attack on S. Now we can do a similar thing in order to attack S. It was
first proposed by Ward Beullens and by Tao et al. [TPD21].

Proposition 1. Retaining the notations U and W from the previous attack, we
have (P1, . . .Pn−1) = (WH∗0Wt, . . . ,WH∗n−1Wt)U−1. Then we obtain

(W−1P1W
−1,t, . . . ,W−1Pn−1W

−1,t) = (H∗0, . . . ,H∗n−1)U−1.

If one notes Q = (U−1)
t

a0...
an

 where ai is the first row of the matrix H∗i

then Q = (U−1)
t

A1

0
A2

 where A1 is an 1× n matrix, and A2 is a (d− 1)× n

matrix and rank(Q) ≤ d where d = logq(D).

Furthermore, using the proposition above and the matrix equation of HFE:

Theorem 1. Let P1, . . . ,Pn matrices of the public key and W the matrix previ-
ously defined. If one notes (w−1

0 , w−1
1 , . . . w−1

n−1) the first row of the matrix W−1,

and bi = (w−1
0 , w−1

1 , . . . w−1
n−1)Pi, then the matrix Z whose rows are the bi has a

rank at most d.

Proof. From the previous proposition we know that the rank of ZW−1t is
bounded by d, hence the rank of Z is bounded by d

We then have a MinRank attack on S with Pi as the matrices, d as the rank
and w−1

i as the target vector. Just like for T, once we have the first row of W−1

we have the whole matrix. Hence, we can recover S.
We will not describe how we recover the whole key once T or S is discovered

as the complexity of the attack is mainly the complexity of solving the MinRank
problem. For more details for the recovery of the totality of the key please refer
to [BFP11], [TPD21].
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3. Complexity of the Attacks. The complexity of these attacks is the same,
as they both only involve solving a MinRank problem. We have a complexity

of O
(
d(n− 1)4

(
2d+1

d

)2
)
)
[BBC+22]. One may note that at first glance the two

attacks are extremely similar, and it seems that there is no point having two
of them. In fact, this is true for plain HFE, however when we consider variants
of HFE we will see that there is often an attack that is more efficient than the
other. It is also important to note that it is possible to use two or more variants
at the same time, indeed published scheme like GeMSS were using two variants
(vinegar and minus). Nevertheless in Section 5 we will only consider variants
used alone.

3.4 About characteristic 2

The MinRank attack requires a discussion on the characteristic on the field and
on the parity of the rank of the HFE central map. Indeed, when used on charac-
teristic 2, the resolution of the MinRank instance may yield too many solutions
if the targeted rank is even. Then some of the solutions must be discarded as
they do not yield an equivalent key. However, previous work on HFE like the
paper [BFP11] found a variant of the attack that has the same complexity that
we mentioned. So in the rest of the paper, we will not mention the special case
of characteristic 2 as it will not change the complexity of the cryptanalysis.

4 Direct attacks on HFE

In this section we will discuss direct attacks on HFE. The aim is not to find
an equivalent key but rather to invert the system in order to find the original
message or forge a signature. Many tools can be used like XL or Gröbner basis,
but we will focus on the Gröbner basis approach. Usually instead of direct attack
we call this attack Gröbner basis attack by abuse of language. We will not
describe the main algorithms used nowadays (F4, F5 [Fau99][Fau02]) rather
present the general ideas on Gröbner basis. Let I be an ideal of F[X1, X2, . . . Xn]
where F is a field. Basically a Gröbner basis is a set of polynomials G that are
generator of I. We add a few properties to make this set G unique for each
ideal I. The set G depends on the order you take on the monomials. For our
purpose the important order will be the lexicographic order. Indeed this order
gives the property that the set G forms a triangular system, in other words
if one considers a set of polynomials {P1(x1, . . . , xn), . . . , Pk(x1, . . . , xn)} then
the lexicographic Gröbner basis of the ideal generated by the Pi will be of the
form: G = {G1(x1), G2(x1, x2), . . . Gm(x1, . . . xn)}. Hence it can be used to find
a solution (x1, . . . , xn) of a system

P1(x1, . . . , xn) = y1
P2(x1, . . . , xn) = y2

...
Pk(x1, . . . , xn) = yk.
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Indeed let G = {G1(X1), G2(X1, X2), . . . Gm(X1, . . . Xn)} be the Gröbner basis
of the ideal generated by P1(X1, . . . , Xn)−y1, . . . , Pk(X1, . . . , Xn)−yk. We then
have an equivalent system of equation:

G1(x1) = 0
G2(x1, x2) = 0

...
Gm(x1, . . . , xn) = 0.

So the resolution is simply to find first x1 as root of G1(X) (with an algorithm
like Cantor-Zassenhauss for finite fields [CZ81]), then the roots of the polyno-
mial G2(x1, X) and so on. In other words, Gröbner bases can be used to solve
multivariate systems of polynomials. We can then use Gröbner bases to attack
HFE and its variants. It will not be a full key recovery like MinRank attacks but
rather a forgery tool in the case of signature or a plain text recovery in the case
of encryption.

The complexity of the computation of a Gröbner basis is hard to determine.
Indeed we can write the complexity as O

(
n+dreg

n

)ω
, (ω is the linear algebra

constant, usually we consider ω ≈ 2.81). The problem is to determine the value
of dreg or “degree of regularity”.

Definition 2. [DS13] We define B = F[X1, . . . , Xn]/⟨X1
q, . . . , Xn

q⟩ and Bd it’s
degree d subspace. Let P be a set of homogeneous polynomial P = {P1, . . . , Pm} ⊂
Bm

2 .
Let ψd be the map ψd : Bm

d → Bd+2 defined as

ψ(b1, . . . , bm) =

m∑
i=1

biPi

Then
Rd(P1, . . . , Pm) := ker(ψd).

Further let Td(P1, . . . , Pm) be the subspace of trivial relations generated by
the elements

{b(Piej − Pjei)|1 ≤ i < j ≤ m, b ∈ Bd−2},

and
{b(P q−1

i )ei|1 ≤ i ≤ m, b ∈ Bd−2(q−1)}.

Here ei means the i-th unit vector consisting of all zeros except 1 at the i-th
position ei = (0, . . . , 0, 1, 0, . . . , 0). The degree of regularity of a homogeneous
quadratic set is then

Dreg(P1, . . . , Pm) := min{d|Rd−2(P1, . . . , Pm)/Td−2(P1, . . . , Pm) ̸= {0}}.

For a general system of polynomial, it is not possible to compute the degree
of regularity without computing the Gröbner basis. However in the case of HFE,
it is possible to find an upper bound for the degree of regularity [DY13]. The
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upper bound Ding and Yang have found is: (q−1)(d−1)
2 + 2 if q is even and d

is odd, (q−1)d
2 + 2 otherwise (d = logq(D)). This upper bound is close to real

values of degree of regularity. Although this upper bound is as tight as possible,
Petzoldt [Pet17] has found a lower bound allowing us to have a more precise idea
on the value of the degree of regularity. Indeed for q = 2 we have dreg ≥ ⌊d

3⌋+2.
We will keep this value for the rest of the paper.

5 Variants of HFE

5.1 Vinegar (v) variant

The first modifier that we will consider is v. It adds variables yi into the system.
The v stands for vinegar, in an analogue to the scheme UOV (Unbalanced Oil
and Vinegar). To decipher one will fix the vinegar variables and solve the system.
We can define this modifier that way:

Definition 3. Let v ∈ N and y = (y1, . . . , yv), then the new secret polynomial
f : Fqn × Fv

q → Fqn is of the form:∑
i,j∈N,qi+qj≤D

αiX
qi+qj +

∑
i,qi≤D

βi(y)X
qi + γ(y)

where βi : Fv
q → Fqn are linear maps and γ : Fv

q → Fqn is a quadratic map. So

the central map becomes H̃ =

(
H A
B C

)
. where A, B, C are random matrices.

remark however that A =

(
0 0
A′ 0

)
where A’ is a block of size d× v,

B =

(
0 B′

0 0

)
where B’ is a block of size v × d and C a matrix of size v × v

hence the rank of the matrix H̃ is d+ v.

Furthermore, the linear transformations must also change accordingly. Indeed S
is now a full rank linear map Fn+v

q → Fn+v
q . T remains unchanged. If we use the

previous notation U and W recall that W = SMn and U = T−1Mn. Obviously
as S is no more of size n, Mn in W must change. So W becomes W = SM̃n

where M̃n =

(
Mn 0
0 Iv

)
.

We can note that U remains unchanged.
This variant has negligible cost when used in signature as the signer only

needs to solve a system z = Hv(x) where Hv is the central map of a HFEv. In
order to do so he simply fixes randomly the variable v until he is able to find a
solution to the rest of the system.

However, this variant is costly in encryption. In order to decrypt the system,
one must find the exact x that works hence he needs to do a exhaustive search
on the yi which means a cost of qv times the complexity of HFE it means that
it is extremely costly in encryption.
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To make a cryptanalysis of this variant we can do an attack on S. We use
the equation we wrote in the previous section 3 but with the new W = SM̃n:

(W−1P1W
−1,t, . . . ,W−1Pn−1W

−1,t) = (H∗0, . . . ,H∗n−1)U−1.

However the matrixQ previously defined is still of the form:Q = (U−1)
t

A1

0
A2

,

thus the rank has not changed (r = d). The only difference is the number of
equations we get, indeed we now have (n + v)

(
2d+1

d

)
equations. It leads to a

slight increase in complexity, which is now O
(
dn(n+ v − 1)3

(
2d+1

d

)2)
.

If we had done the attack on the other way meaning that we try to break T
we would have had: (P0, . . . ,Pn−1)U = (WH̃∗0Wt, . . . ,WH̃∗nWt). As stated
earlier the rank of the matrix H̃∗0 is now r = d+ v. Which means we now have

a complexity of O
(
(d+ v)(n− 1)4

(
2(d+v)+1

d+v

)2)
.

If we look at the direct attack (Gröbner basis), it seems that the result
resembles what was found for the MinRank attack on T. Indeed one should
replace d by d+ v in the formula we introduced in section 4 (q−1)(d+v−1)

2 + 2 if

q is even and d is odd, (q−1)(d+v)
2 + 2 otherwise. The lower bound becomes for

q = 2, dreg ≥ ⌊d+v
3 ⌋+ 2.

5.2 Minus

The variant − is simply a suppression of some polynomials of the public key of a
unmodified HFE. For example if the public key of a HFE is P = (P0, . . . ,Pn−1)
then the public key a HFE− will be P− = (P0,P1, . . . ,Pn−1−a) where a is the
number of equations that were suppressed. If we rewrite it in a matrix form it
simply means that T is a full rank linear map Fq

n → Fq
n−a. S and Mn remains

unchanged.
This variant cost is almost negligible when using HFE in signature as the

signer can randomly complete the matrix T to make it invertible and solve it
like a unmodified HFE. Indeed, this variant does not change the central map.

However, this variant is costly in encryption. In order to decrypt the system,
one must find the exact x that works hence he needs to do a exhaustive search
on the missing polynomials it means a cost of qa times the complexity of HFE
it means that it is extremely costly in encryption.

We can try an attack on T: we however cannot write

(P0, . . . ,Pn−1)U = (WH∗0Wt, . . . ,WH∗nWt)

as U is not invertible any more we can however rewrite T = T+ ◦ La where
T+ : Fq

n → Fq
n is a bijective extension of T and La is a linear polynomial of

degree qa. It means that our central map is equivalent to a standard HFE with
D′ = qaD [VS17]. We note H̃ = La ◦H. So we now have

(P0, . . . ,Pn−1)T
+−1

Mn = (WH̃∗0Wt, . . . ,WH̃∗nWt).
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5. VARIANTS OF HFE

We have now the same equation as in Proposition 2 but with a target rank of

r = d+ a. So the complexity is now: O
(
(d+ a)(n− 1)4

(
2(d+a)+1

d+a

)2)
.

We can also try an attack on S: as in [BBC+22] we can write

(W−1P1W
−1,t, . . . ,W−1Pn−1W

−1,t) = (H∗0, . . . ,H∗n−1)U−1.

However this time the rank on the right has not changed (r = d) so we have the
exact same attack so the complexity is still

O

(
d(n− 1)4

(
2d+ 1

d

)2
)
.

If we look at the direct attack (Gröbner), it seems that the result resembles
what was found for the MinRank attack on T. Indeed one should replace d by

d+ a in the upper bound we introduced in section 4 (q−1)(d+a−1)
2 +2 if q is even

and d + a is odd, (q+a)(d)
2 + 2 otherwise. The lower bound becomes for q = 2,

dreg ≥ ⌊d+a
3 ⌋+ 2.

5.3 Plus

The variant + adds random equations on the public key. This means that if
P = (P0, . . . ,Pn−1) is the public key then the public key of HFE+ is P+ =
(P0, . . . ,Pn−1,Pn, . . . ,Pn−1+k) where Pi, n < i : Fq → Fq and k the number
of added equations. Note that the equations of the public key are then linearly
mixed.

This variant has a negligible cost in encryption, as to decipher one can ignore
the added equations. So, it can be inverted. However, it costs qk in signature
because one must first solve the system ignoring the added polynomials and then
check if it is compatible with the added polynomials. Obviously as the n first
polynomials remain untouched by the modifiers we can still find a linear combi-
nation of the n first polynomials of small rank. Hence, we can find a combination
of all the polynomials of small rank.

5.4 Projection

The variant p or projection [CS17] consists in replacing the map S : Fq
n → Fq

n

by S = L ◦ S′ : Fq
n−p → Fq

n where S′ : Fq
n−p → Fq

n−p is full rank and
L : Fq

n−p → Fq
n is a linear polynomial of degree p that is also full rank. This

time W = S′Mn.
The complexity of this variant in encryption, is almost the same as a plain

HFE as to decipher one can ignore the modifier because it is an injective linear
map. So it can be inverted. However it costs a factor qp in signature because
one must first solve the system ignoring the projection and then check if it is
compatible with the projection.
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5. VARIANTS OF HFE

We can try an attack on S: we can write

(W−1P1W
−1,t, . . . ,W−1Pn−1W

−1,t) = (LH∗0Lt, . . . ,LH∗n−1Lt)U−1.

Indeed, taking the first row of each matrix on the right, we have now the same
equation as in Proposition 3 but with a target rank of r = d+p. So the complexity

is now: O
(
(d+ p)(n− 1)4

(
2(d+p)+1

d+p

)2)
[BBC+22]. However, if we do an attack

onT, the equation becomes (P0, . . . ,Pn−1)U = (WLH∗0LtWt, . . . ,WLH∗nLtWt)
and the targeted rank is the rank of the matrix WLH∗0LtWt. However, the p
modifier does not change the rank of the central map. Indeed the rank of H
is at most d so the rank of WLH∗0LtWt is at most r = d because it is a
matrix product. So the complexity is O

(
d(n− 1)4

(
2d+1

d

)2)
. The article [CS17]

made an analysis of the degree of regularity and found that projection had

dreg = (q−1)(d+p)
2 + 2

5.5 Internal plus (+̂)

In this section we are going to describe the internal plus (+̂) variant as introduced
in the paper [FmRPP22]. It adds new equations internally in order to increase
the rank of the central map. By ”internally” we mean two things:

– The final number of public equation is the same as initially (unlike the +
perturbation above)

– The linear transformations S and T are done after the addition of these new
equations

. Formally, let t be the parameter of the modifier, let βi ∈ Fqn for i ∈ {1 . . . t} be

random elements, and p̂i(x) = Trn

(∑
j,k αi,j,kx

qj+qk
)
where αi,j,k are random

element of Fqn and let Q(x) =
∑

i βip̂i(x). The central map of the modifier is
F (x) = H(x) + Q(x) where H(x) is the central map of a “unmodified HFE ”
and Q(x) the polynomial previously defined.

The degree of F (x) is much greater than the degree of H(x). Due to the
presence of Q(x) it will be qn−1. It means that direct methods of resolution such
as Berlekamp algorithm are no longer possible. We can however use the fact that
p̂i(x) is a polynomial in Fq so we can make an exhaustive search of the value of
each p̂i(x) which means that Q(x) can take at most qt possibilities. Thus we end
up with a variant qt times slower in decryption or signature than a “unmodified”
HFE.

It is important to note that the rank of the central map is very likely to be
maximal even with a small t since βi are chosen randomly hence the polynomial
F (x) can have a very high degree. However, it does not mean that MinRank
attacks will not work. We have:

(P1, . . .Pn) = (WF∗0Wt, . . . ,WF∗n−1Wt)U−1,

which gives

(W−1P1W
−1,t, . . . ,W−1PnW

−1,t) = (F∗0, . . . ,F∗n−1)U−1.
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5. VARIANTS OF HFE

Let us note Z = (U−1)
t

a0
...
an

 where ai is the first row of the matrix F∗i. Recall

that for previous attacks on S we had:

Z = (U−1)
t

A1

0
A2

. Unfortunately, it is no longer the case. Indeed, the matrix

that represents F is now full. However, we can decompose F = H + Q. Then

Z = (U−1)
t ×


A1

0
A2

+

q0

...
qn


.

The Froebenius operation being linear we will study the matrix

q0

...
qn

 sep-

arately.

We can write that qi is the first row of the matrix
∑t

i=0 β
qi

i Qi. Indeed Qi is
the representative matrix of the polynomial p̂i(x) whose image is in Fq. Hence
the polynomial is unchanged by the Froebenius.

It means that the rank of the matrix Q is at most t and thus the rank of the

matrix

A1

0
A2

+

q0

...
qn

 is at most r = d+ t.

So the complexity of the attack is the complexity of a MinRank whose target

rank is r = d+ t: O
(
(d+ t)(n− 1)4

(
2(d+t)+1

d+t

)2)
The attack on T r the rank of the central map H is now most likely maximal.

However, an better attack is still possible as it is possible to find a projection
Π such that Π(βi) = 0 then by composing on left and right we obtain a central
whose rank is r = d + t so we obtain the same complexity as the attack on S:

O
(
(d+ t)(n− 1)4

(
2(d+t)+1

d+t

)2)
.

According [FmRPP22] to the article the degree of regularity is dreg = (q−1)(d+p)
2 +

2

5.6 Internal perturbation (IP)

The idea of this modifier is similar to the vinegar modifier, it was first introduced
in [DS05]. We add a variable Y that is linear combination of X variable, that
combination should be of small rank to be able to invert the system. So we have
a linear map Z : Fqn → Fqn of low rank π. Then the central map f : Fqn →
Fqn is of the form:

∑
i,j∈N,qi+qj≤D αiX

qi+qj +
∑

i,qi≤D βi(Y )Xqi + P̄ (Y ) where

βi : Fqn → Fqn are linear maps and P̄ : Fqn → Fqn is a quadratic map and
Y = Z(X). A description of this modifier can be found in [DS05].
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5. VARIANTS OF HFE

To decrypt one must try to solve the system without the modifier and hope
it will nullify the modifier as well, meaning an increase of a factor qπ times the
complexity to decrypt or to sign compared to “unmodified HFE ”.

In terms of rank, it means that the rank of the central map has increased by
π. It means that when attacking T the target rank will be the one of the central
maps. It means that the attack the complexity will be:

O

(
(d+ π)(n− 1)4

(
2(d+ π) + 1

d+ π

)2
)
.

However, the effect is drastically different when attacking via S. Indeed, recall

that when attacking S one consider the rank of the matrix Q = (U−1)
t

a0
...
an


where ai is the first row of the matrix F ∗i. Although the rank of the F ∗i is d+π
the matrix F ∗i is full. Indeed, the polynomial F (X) have a degree qn − 1. Thus,

one cannot write Q = (U−1)
t

A1

0
A2

.

We cannot evaluate easily the rank of Q, but we have observed that for small
values of π = (1, 2, 3, 4, 5) the rank of Q is far greater than d+ π. For example,
for n = 20, q = 2, D = 9, π = 1 we observe that the rank of Q is between 11 and
15 far greater than d+π = 5. Overall, we have observed that for 1 < π the rank
of the matrix Q is above n/2. It is the rank we will retain for our complexity
evaluation (when π grows the rank quickly becomes far above n/2).

It is important to note that there is another type of attack specific to this
variant. Dubois et al. [DGS07] have found a differential attack on this variant.
They can make a recovery of the kernel of the linear map Z. Once the linear map
is discovered, the internal perturbation can be negated. In the following section
we will note DPy(x) = P (a+x)−P (x)−P (a)+P (0) as the discrete differential
of P in the vector y The key to this attack is the following observation:

– If a is a vector that is not in the kernel of Z then the differential of the public
key in a will be written with the form: DP̃a(x) = DPa(x) +M(x, Z(a)) +
M(a, Z(x)) +DP̄Z(a)(Z(x)), where P̃ is the public key, P is the public key
without the internal perturbation, M the mixing part and P̄ the polynomial
in y.

– However when a is in ker(Z) then DP̃a(x) = DPa(x) +M(a, Z(x)).

Clearly the two forms are quite different. Hence the authors are using these
differences to create a non-deterministic distinguisher that can detect whether
or not an element a is in ker(Z). In order to make a recovery of the kernel to
obtain n distinct element of ker(Z), and the number of element that are in ker(Z)
is qn−π so the number of utilisation of the distinguisher is about n× qπ+1. The
complexity of the attack is then n × qπ+1N . where N is the complexity of the
distinguisher.
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6. SUMMARIES OF THE COMPLEXITIES

The complexity of the distinguisher is difficult to describe briefly. Indeed
its calculation is not given by a simple direct formula but requires to solve
linear systems. Nonetheless our tests showed that on modern parameters the
complexity is high. More details on this matter can be found on the paper
[DGS07]. We have computed the complexity of the attack and found that for
parameters of HFE with q = 2, n = 177, D = 17 (one can note we used red-
GeMSS-128 parameters where we got rid of the modifiers used in GeMSS) with
a rank of the internal perturbation of (1,2,3,4,5). Our results are recapped in
Table 1

IP complexity

1 106.26

2 130.92

3 150.20

4 173.58

5 196.70

Table 1. Complexity of the attack from [DGS07] on HFEIP with q = 2, n = 177,
D = 17, the complexity are given in log2 .

It means that with few of these modifiers we have attacks less effective than
MinRank attacks.

We can also look at a Gröbner basis perspective. This variant is very similar
to the v variant so the degree of regularity is the same. Indeed one should replace

d+ v by d+π in the formula we introduced in Section 4: (q−1)(d+π−1)
2 +2 if q is

even and d is odd, (q−1)(d+π)
2 + 2 otherwise [DY13]. Although the lower bound

was not computed in [Pet17] we can easily conjecture that it will be for q = 2,
dreg ≥ ⌊ r+π

3 ⌋+ 2 due to the similarities with v variant.

6 Summaries of the complexities

In Table 2, 3 we have recapped all complexity results.
Table 2 also shows the cost to sign/decrypt of every variant. These costs do

limit the combinations we are able to use without making the scheme too slow.
We see from these Tables that it is relatively easy to avoid a specific attack, the
problem is to avoid all of them.

For example, in order to avoid Gröbner Basis attacks (i.e direct attacks) we
can have d large or, q large, or v large, or a large, or π large. In signature, v large
or a large, or q large seems to be good solutions since their cost are negligible.
In encryption q large also has small cost with HFE, but the other perturbations
have a non negligible cost.

In order to avoid MinRank T we can have d large, or v large, or a large,
or t large, or π large. In signature v large, or a large have a very small cost.
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7. ON THE SECURITY OF pHFEv−

MinRank T MinRank S Gröbner Basis Signature cost Decryption cost

vanilla d d (q−1)(d)
2

+ 2

v d+v Little effect (q−1)(d+v)
2

+ 2 Negligible O(qv)

+ Little effect Little effect Little effect O(qt) Negligible

- d+a Little effect (q−1)(d+a)
2

+ 2 Negligible O(qa)

p Little effect d+p Little effect O(qp) Negligible

+̂ d+t d+t Little effect O(qt) O(qt)

IP d+ π ≥ n/2 (q−1)(d+π)
2

+ 2 O(qπ) O(qπ)
Table 2. Simplified Table of the effect of each variants on the complexity of the
attacks and their respective cost depending on the mode used. For MinRank we show
here the target rank and for Gröbner Basis the degree of regularity (c.f Table 3 for
the complexities). Here little effect means the same as in vanilla HFE, so rank = d

and degree of regularity deg = (q−1)(d)
2

+ 2. The blank in the vanilla HFE cost is here
because the cost should be read in comparison to a vanilla HFE with similar parameters

However in this table we cannot find an effective (i.e not too costly) perturbation
against this attack. We can notice that in MinRank T we will need almost all
the equations of the public key for the attack (it explains why − and indirectly
v is so efficient).

In order to avoid MinRank S we can have d large, or p large, or t large. A
very small π is also sufficient (against MinRank S it seems that even π = 1 is
sufficient, however due to [DGS07] we need at least π = 3). In signature all of
these perturbations have a cost. However IP (π) seems to be the best solution.
Indeed the IP perturbation increases the rank much faster than it’s counterpart.
In encryption p (projection) seems to be the best solution as it does not cost
much, and IP is also a reasonable good solution due to the rapid increase of the
rank. We can notice that according to [BBC+22], the MinRank S only require
at least 2d+1 of the public key equations (i.e only a small number of the public
equation, unlike MinRank T).

7 On the security of pHFEv−

The HFEv− combination has already been explored for signature schemes, for
example in the GeMSS NIST-PQ submission [CFMR+20]. This scheme has later
been broken in [BBC+22]. The projection variant that we introduced earlier
was quite recently used to try to repair HFEv− and GeMSS [CFMR+20]. This
reparation was first mentioned in [ØSV21]. The new scheme would have been
called pHFEv− . The reason for this scheme was to counter attacks on S because
both variant v and minus don’t have any effect on this attack. However, with
the projection modifier the rank of the matrix we were attacking is increased by
p (projection parameter). Nonetheless as GeMSS is a signature scheme, the use
of the projection variant induces an increase of the complexity of the signature
by a factor qp. Hence in order to have an efficient scheme, p must remain small.
But improvement of S attacks discovered by [BBC+22] made pHFEv− again
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8. NEW SCHEME (HFE IP-)

MinRank T MinRank S Gröbner basis

Vanilla O
(
d(n− 1)4

(
2d+1

d

)2) O
(
d(n− 1)4

(
2d+1

d

)2) (q−1)(d)
2

+ 2

v O
(
(d+ v)(n− 1)4

(
2(d+v)+1

d

)2) O
(
d(n− 1 + v)4

(
2d+1

d

)2) (q−1)(d+v)
2

+ 2

+ O
(
d(n− 1)4

(
2d+1

d

)2) O
(
d(n− 1)4

(
2d+1

d

)2)
Little effect

- O
(
(d+ a)(n− 1)4

(
2(d+a)+1

d+a

)2) O
(
d(n− 1)4

(
2d+1

d

)2) (q−1)(d+a)
2

+ 2

p O
(
d(n− 1)4

(
2d+1

d

)2) O
(
(dp)(n− 1)4

(
2(dp)+1

dp

)2) (q−1)(d+p)
2

+ 2

+̂ O
(
(d+ t)(n− 1)4

(
2(d+t)+1

d+t

)2) O
(
(dp)(n− 1)4

(
2(d+t)+1

d+t

)2) (q−1)(d+t)
2

+ 2

IP O
(
(d+ π)(n− 1)4

(
2(d+π)+1

d+π

)2) ≥ O
(
(n/2)(n− 1)4

(
2(n/2)+1

n/2

)2) (q−1)(d+π)
2

+ 2

Table 3. Table of the complexity of each attack on each variant, for the Gröbner
Basis column we have not written the complexity but the upper bound of the degree
of regularity so the real complexity is O(

(
n+dreg

n

)ω
). The mention Little effect means

that the degree of regularity should not change from a vanilla HFE.

The complexity of MinRank S on IP is likely far above the complexity we wrote, c.f
explanations in the text.

vulnerable. For example, for GeMSS-128 parameters we would require p = 15
to be again above 128 bits of security. It means a signature 215 slower than
GeMSS. With GeMSS specification we can make the estimation that it would
require 24576000M of cycles to sign (M = 106). Obviously, these times are
completely unrealistic. Hence pHFEv− was discarded.

8 New Scheme (HFE IP-)

8.1 Design Rationale

The problem we had with all previous schemes was that either a MinRank at-
tack on S or T was threatening for their security. Technically for all attacks
there exist a countermeasure, but the problem was the cost in complexity of the
countermeasure. To be more specific when we use HFE in signature then we can
use variants like − (minus) that will easily counter attacks through T because
− is not costly in signature. However, it is hard to defend from attacks on S as
we can totally negate − and variants that counter attacks on S are very costly
in signature. On the other hand, in encryption, we can easily counter attacks on
S with variants like p however all variants that protect T are very costly.

Nevertheless, the internal perturbation variant may lead to a new signature
scheme. Indeed, as we have found it is highly effective against attacks on S with
little modifier required. It means that we can have a small rank π for Z between
3 and 5 and avoid all attacks through S which means a reasonable increase of
the complexity of the signature by a factor qπ.

On the other hand, we can avoid attacks on T by adding a lot of − modifier.
Indeed, as we mentioned earlier the − modifier is not costly at all in signature
and it is effective against attacks on T.
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8. NEW SCHEME (HFE IP-)

So our idea is to uses both of these modifiers in order to make a new signature
scheme based of HFE.

In order to further reduce the signature size without being vulnerable to a
meet in the middle attack, we are using the Feistel-Patarin Technique like, for
example, GeMSS. This technique was introduced by Jacques Patarin and can be
found in [Cou03] as a solution to obtain short signatures. Its principle is, as the
name suggests, inspired from a Feistel Scheme.

Naively the signature of a HFE scheme is built in the following way: given
a message y, one needs to find a vector x such that P (x) = B(y), where B is
a hash function. In order to avoid generic attacks such as meet-in-the-middle
attacks or collision attacks on B, we need to choose n to be at least two times
the security parameter. Let us now describe how the 2-round Feistel-Patarin
technique can improve signature sizes.

For now, we will consider that m = n. By abuse of language we note P−1(y)
a solution x of the problem P (x) = y. Dividing the hash of y in two pieces
B(y) = (B1(y), B2(y)), the signature of y would be x = B1(y)⊕ P−1(B2(y)⊕
P−1(B1(y))). We can easily see the similarity with a Feistel scheme with two
rounds. Hence, this definition can easily be extended to a higher number of
rounds.

However in the case of our scheme we have m < n, which creates an issue of
dimension in the definition we gave. Indeed, P−1(B1(y)) has a size of n but B2(y)
is of size m < n due to the use of the minus modifier. It means that it misses
some bits, and that we will need to give for each round k the missing bits ak as
part of the signature. We will then obtain x = (B1(y)||a2)⊕ P−1((B2(y)||a1)⊕
P−1(B1(y))). Overall, the signature will be x||a1||a2|| . . . ||ar each ai has a length
of a the number of missing equations. We can then compute the length of the
signature in bits by (n− a)+Nbite × a where Nite is the number of rounds used
in the Feistel-Patarin.

8.2 Parameters

One of the advantages of the scheme HFE is the fact that we can get short
signatures. Already in 2020 Bros et al. [PMBK20] tried to optimize HFE and
variants parameters in order to get the shortest possible signatures.

We propose 8 sets of parameters that we can regroup in two groups of four.
The first group is a set of parameters for each expected security 80, 128, 192, 256
bits that tries to optimize the size of the signature but with no regard to the time
to sign. The nomenclature of the scheme will be “HFEsIP− * ” where s stands
for Short Signature and * the expected security. The second group of four set
of parameters for each expected security 80, 128 ,192, 256 that tries to optimize
the size of the signature but with reasonable time to sign. The nomenclature of
the scheme will be “HFEfIP− * ” where f stands for Fast Signature and * the
expected security.

Here on Table 4 is the scheme built to optimize the size of signature but too
slow to be used.
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8. NEW SCHEME (HFE IP-)

Name param. (q,n,D,π,a) Cycles to sign |pk| (KB) |sign| (b) Nite

HFEsIP− 80 (2, 102, 513, 2, 2) 3735M 66 113 4

HFEsIP− 128 (2, 182, 513, 4, 11) 42296M 356 204 3

HFEsIP− 192 (2, 283, 513, 4, 27) 133564M 1286 337 3

HFEsIP− 256 (2, 385, 513, 3, 43) 213304M 3177 468 3

Table 4. Parameter and performance of a HFEsIP− schemes

Name Param. (q,n,D,π,a) Cycles to sign |pk| (KB) |sign| (b) Nite

HFEfIP− 80 (2, 107, 17, 2, 7) 35M 73 128 4

HFEfIP− 128 (2, 189, 17, 3, 17) 56M 387 223 3

HFEfIP− 192 (2, 289, 17, 3, 33) 120M 1341 355 3

HFEfIP− 256 (2, 390, 17, 4, 48) 160M 3260 486 3

Table 5. Parameter and performance of a HFEfIP− schemes

The second set of parameters (Table 5) or HFEfIP− is the set we consider
the most efficient as it is reasonably fast and still have very good signature size.
On the other hand, the first set of parameters should be more considered as a
demonstrators as the slow signature limits its uses. Note that we did not mention
the verification time because it is extremely faster than the time to sign.

Performance results. Our results are estimates of the real number of cycles
required to sign, as we made our tests using the reference implementation of
GeMSS (HFEv−) and estimated the impact of the IP modifier. We could not
use the optimized version as it did not allow for re-parametrization. The code was
made in C++ and used the library NTL for the operations on F2. Benchmarking
was done on an Intel Core i7-10850H CPU with 32GB of RAM.

8.3 Cryptanalysis

In this section we will give security complexity for HFEfIP−, we have similar
results for HFEsIP−. The complexity of the direct attack depends on the degree
of regularity dreg of the public key which satisfies dreg ≥ ⌊ r+π+a

3 ⌋+ 2. We have
then the following lower bound for the complexity in the following table 6.

Name Security

HFEfIP− 80 99 bits

HFEfIP− 128 164 bits

HFEfIP− 192 245 bits

HFEfIP− 256 326 bits

Table 6. Complexity of direct attacks based on Gröbner basis over HFEfIP− with
their respective parameters.
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8. NEW SCHEME (HFE IP-)

Name Security

HFEsIP− 80 98 bits

HFEsIP− 128 163 bits

HFEsIP− 192 244 bits

HFEsIP− 256 326 bits

Table 7. Complexity of direct attacks based on Gröbner basis over HFEsIP− with
their respective parameters.

As this variant uses internal perturbation we have to take into account the
differential attack of Dubois et al [DGS07]. With the parameters of HFEfIP−
128 we have found a complexity of 2150 far above the level of security of 128 bits.
For HFEfIP− 80 we have found a complexity of 2130. For all other parameters
the attack fails as the advantage of the opponent is far too small (almost 0).

We can also try MinRank attacks. Because of the presence of minus and IP
modifiers the target rank via T will be d+a+π. For MinRank attacks that target
S we require an evaluation of the rank of the target matrix. Indeed, we know
that minus modifier have no effect on this attack however we have no proper
formula for the effect of IP. The tests we have performed however showed that
we can expect a very high rank, namely at least n/2 for a parameter of IP = 1.
In reality for the parameters we used, our tests showed that we ought to obtain
almost a full rank matrix. But in the following Table 8 we will keep a pessimistic
lower bound for the rank of n/2.

Name Attack on T Attack on S

HFEfIP− 80 81 bits 240 bits

HFEfIP− 128 128 bits 406 bits

HFEfIP− 192 195 bits 609 bits

HFEfIP− 256 257 bits 812 bits

Table 8. Complexity of the best MinRank attacks (in bold) over HFEfIP− with their
respective parameters.

Name Attack on T Attack on S

HFEsIP− 80 81 bits 228 bits

HFEsIP− 128 128 bits 392 bits

HFEsIP− 192 195 bits 597 bits

HFEsIP− 256 257 bits 803 bits

Table 9. Complexity of the best MinRank attacks (in bold) over HFEsIP− with their
respective parameters.
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9. CONCLUSION

Obviously, the results show that any attack on S with the current form
of MinRank is impossible. The attack on T remains our best attack, and any
moderate improvement in the complexity of the attack could be countered by
increasing a. Note that this would not dramatically worsen our performance, the
size of the signature or the public key. On the other hand, it seems unlikely that
an attack on S in its current form could threaten our scheme without a way to
somehow eliminate the effect of the IP variant.

9 Conclusion

Consequently to the new MinRank attacks that broke the NIST submission
GeMSS, it is generally considered that HFE and all its variants do not allow in-
teresting signatures with a security of at least 128 bits. This is because the size of
the public key would then be unrealistic (although for 80 bits of security unmod-
ified HFE is still competitive but for most usage 80 bits remains insufficient).
In this article however, we showed that a small range of parameters still offers a
good security against all known attacks (with 128 or even 256 bits of security)
and a reasonable time to sign. Furthermore, with these parameters we obtain
very short signatures (less than 2λ bits where λ is the required security). This
is the variant HFEIP−. It uses two modifiers, namely IP and minus. Both are
required to counter all attack types, especially MinRank attacks. Naturally only
the future will tell if this range of parameters remains unbroken or if new attacks
will make this scheme vulnerable again. Hence, we do not recommend using this
scheme for sensitive applications. The most important aspect of this scheme is
that it currently offers the shortest public key signatures (quantum resistant or
not). For example, ECDSA (Elliptic Curve Digital Signature Algorithm) is only
able to have signatures at least three time the length of the security parameter
or up to 2.5 in some variants (and is not post quantum), while we can get with
HFE IP - a signature length less than twice the size of the security parameter
and still expect it to be post quantum.
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