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Abstract
Fully asynchronous multi-party computation (AMPC) has su-
perior robustness in realizing privacy and guaranteed output
delivery (G.O.D.) against asynchronous adversaries that can
arbitrarily delay communications. However, none of these
protocols are truly practical, as they either have sub-optimal
resilience, incur cumbersome communication cost, or suf-
fer from an online phase with extra cryptographic overhead.
The only attempting implementation—HoneyBadgerMPC
(hbMPC)—merely ensures G.O.D. in some implausible opti-
mistic cases due to a non-robust offline pre-processing phase.

We propose Dumbo-MPC a concretely efficient AMPC-as-
a-service design with all phases G.O.D. and optimal resilience
against t < n/3 malicious parties (where n is the total number
of parties). Same to hbMPC, Dumbo-MPC has a robust (al-
most) information-theoretic online phase that can efficiently
perform online computations, given pre-processed multipli-
cation triples. While for achieving all phases G.O.D., we
design a novel dual-mode offline protocol that can robustly
pre-process multiplication triples in asynchrony. The offline
phase features O(n) per-triple communication in the opti-
mistic case, followed by a fully asynchronous fallback to a
pessimistic path to securely restore G.O.D. in the bad case.
To efficiently implement the pessimistic path, we devise a
concretely efficient zk-proof for product relationship of secret
shares over compact KZG polynomial commitments, which
enables us to reduce the degree of two secret shares’ product
from 2t to t and could be of independent interest.

We also implement and extensively evaluate Dumbo-MPC
(particularly its offline phase) in varying network settings
with up to 31 AWS servers. To our knowledge, we provide the
first implementation of AMPC with all-phase G.O.D. A re-
cent asynchronous triple generation protocol from Groth and
Shoup (GS23) is also implemented and experimentally com-
pared. When n = 31, Dumbo-MPC generates 94 triples/sec
(almost twice of GS23) in the pessimistic case and 349
triples/sec (6X of GS23) in the good case, such that 31 parties
require only 2-8 min to prepare a private Vickrey auction of
100 bidders or 10-36 min for a mixing network of 210 inputs.

1 Introduction

The paradigm of multi-party computation (MPC) as a ser-
vice (MPCaaS) has recently gained significant interests as
a promising approach to privacy-preserving distributed sys-
tems. Particularly, it is often seen as an enticing solution to
overcome the challenge of privacy breaches in blockchains,
thereby enabling private smart contracts [17, 91], anonymous
broadcasts for transaction diffusion [5, 70], and numerous
other tailored decentralized applications [73, 74].

Need for robust MPC in full asynchrony. In many afore-
mentioned scenarios, ensuring G.O.D. is crucial for maintain-
ing the availability of services, particularly in mission-critical
applications where timely response is essential. Consider
the case of MPCaaS-enabled private smart contracts [17, 91]:
clients rely on MPCaaS to evaluate their transactions privately
and deliver execution results based on contract clauses. If MP-
CaaS fails to ensure G.O.D., an adversary could forever block
transaction execution, posing a severe denial-of-service threat
that could completely censor the private smart contracts.

Despite the urgent demand of G.O.D., most practical MPC
implementations [8, 38, 40, 67, 88] fail to provide such ne-
cessity [70]. For many additive secret sharing based MPC
that tolerate n− 1 malicious parties [40, 42, 88], it is inher-
ently impossible to realize G.O.D. Even for many MPC pro-
tocols [8, 39, 41, 54, 56, 62] that are expected to be robust,
their output delivery is conditioned on stringent network syn-
chrony, and unsurprisingly, when they are deployed in an asyn-
chronous network where messages can be arbitrarily delayed
(e.g., MPCaaS servers experience unexpected communication
interruption due to Internet glitches), their G.O.D. could be
violated. Moreover, many MPC protocols [12, 41, 54, 56, 62]
even suffer from privacy leakage in a fully asynchronous net-
work, because they heavily rely on the strong assumption of
network synchrony to “eject” suspiciously malicious nodes
that are temporally unresponsive. As such, they might incor-
rectly eject honest parties in asynchrony, thereby eventually
allowing malicious nodes learn all private inputs.

Given that, it becomes essential to consider more efficient
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design of asynchronous MPC (AMPC), thus ensuring both
privacy and G.O.D. in the unstable or even adversarial Internet
environment to accommodate mission-critical applications.

1.1 Practical Obstacles of AMPC
Nevertheless, it is challenging to design efficient AMPC while
preserving optimal t < n/3 resilience,1 as one cannot distin-
guish a malicious party that sends nothing and an honest party
whose messages are delayed due to network asynchrony. So
the protocol has to proceed once receiving n− t distinct par-
ties’ messages (which might only solicit n−2t honest parties’
messages and therefore omit the rest t honest parties).

Practicality issues of earlier theoretic studies. Despite that
AMPC has been studied for more than 30 years, existing
results are mostly theoretical, and essentially none of them
was ever implemented for various efficiency issues. AMPC
was initially studied in the unconditionally-secure setting
[14, 15, 80, 83], but these early results have tremendous com-
munication cost (at least n4 overhead per gate). Some recent
results with unconditional security reduce the asymptotic over-
head to O(n2) or O(n) per gate, but most of them [32, 34, 78]
only tolerate t < n/4 malicious parties. The only uncondition-
ally secure design that realizes linear per-gate communication
with optimal t < n/3 resilience is a very recent study [55], but
has a prohibitive O(n14) circuit-independent overhead as well
as inferior concrete efficiency (which requires thousands of
secrets to be verifiably shared per triple, even if instantiating
it from best computationally-secure components).2

In the cryptographic setting, the study of AMPC was ini-
tialized by Hirt et al. [63, 64], followed by a few theoretic
improvements [33, 36] using somewhat/fully homomorphic
encryption. Choudhury and Patra [33] realized linear per-gate
communication overhead but have costly (n, t) threshold de-
cryption of somewhat homomorphic encryption in its online
phase (for multiplication gates). Coretti et al. [37] proposed
an asynchronous version of ‘BMR’ [10] with constant rounds,
but it has a costly process using another general-purpose
AMPC to pre-compute distributed garbled circuits. Cohen
[36] adopted threshold fully homomorphic encryption (tFHE)
to get another constant-round AMPC, but it has undesired
online computational cost due to expensive FHE evaluations.

hbMPC: trading robustness for efficiency. Until recently,
an interesting attempt of HoneyBadgerMPC (hbMPC) [70]
gives the first potentially practical (nearly-)asynchronous MP-
CaaS protocol. The work of hbMPC focuses on optimizing a
robust online phase based on Shamir secret sharing [7, 9, 13]
with n/3 resilience in the pre-processing model, with the price
of an adapted non-robust offline phase [12, 41] to pre-process

1Note that the optimal resilience of asynchronous Byzantine agreement
is n/3 [24], implying the same upper bound of resilience of robust AMPCs.

2Looking ahead, we only require n secrets to be shared per triple, which
is concretely more efficient than [55] (and any its computationally-secure
variant) for typical n, as they need to share thousands of secrets per triple.

the needed multiplication triples. However, the overall robust-
ness of hbMPC is impaired: when its non-robust offline phase
is under network attacks, the pre-processing could be stalled;
and subsequently, its online phase might also grind to a halt,
as a result of forever waiting for the replenishment of multipli-
cation triples. That said, the robustness of hbMPC still relies
on a strong assumption that all n parties are honest to cooper-
atively make the offline phase progress. Unfortunately, such
strong assumption could be elusive, especially in adversarial
deployment environments like the open Internet.
GS23: a robust offline but with larger per-gate overhead.
Very recently, Groth and Shoup (GS23) [57] make one step
towards robust asynchronous triple generation by introduc-
ing an optimized asynchronous version of ‘BGW’ [13, 53]
in the cryptographic setting. From a high level, it lets each
party Pi invoke t-degree asynchronous complete (verifiable)
secret sharing (ACSS) to share two secrets ai and bi, and
adds shares from distinct parties to obtain two random shares
JaK and JbK. Then, every party computes JabK2t = JaKJbK as
2t-degree share of ab, and invokes t-degree ACSS again to
re-share JabK2t . When instantiating ACSS from (generalized)
Pedersen’s polynomial commitment, GS23 can let the final
re-sharing of JabK2t also carry some zk-proof for the product
relationship over Pedersen commitments, thus ensuring every-
one to recover a correct t-degree share JabK to complete triple
generation. However, in GS23, each party verifiably shares
3 secrets per triple (two for ai and bi, and one for JabK2t),
which not only incurs concretely inferior performance, but
also causes asymptotically large communication and compu-
tational cost, e.g., the per-triple communication is O(n2) in
the good case and even O(n3) in the bad case.3

Can we harvest both robustness and efficiency in AMPC?
On the one hand, the almost information-theoretic (I.T.) on-
line phase of hbMPC is promisingly performant, capable of
evaluating 8,000+ multiplication gates per second according
to our evaluations in the pre-processing model (cf. Appendix I
for test results), but it suffers from a non-robust offline phase,
resulting in a major vulnerability in a fully asynchronous
network. On the other hand, robust asynchronous offline pro-
tocols like GS23 offer superior robustness but are substantially
less efficient, especially when hbMPC might optimistically
execute in the good case, GS23 attains a throughput that is
only 1/6 of hbMPC, as our evaluations reflect.

Facing this robustness-efficiency trade-off in state-of-the-
art AMPC protocols, 4 we are asking the following question:

Can we push fully asynchronous MPC protocols
with guaranteed output delivery closer to practice

(i.e., as robust as GS23 while as efficient as hbMPC)?

3Though the state-of-the-art batched ACSS [84] attains O(n) amortized
communication cost per secret, its instantiation from Pedersen commitment
like GS23 still incurs O(n2) amortized communication in the bad case.

4Besides closely related studies discussed in Introduction, we also review
else relevant studies and thoroughly discuss their limitations in Appendix A.
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Table 1: Comparison of typical AMPC protocols

Protocols Thld.
(t <)

I.T.
online

asyn.
G.O.D.

comm. / gate

Good Bad

CHP13 [32] n/4 3 3 O(n) O(n)
CP17 [34] n/4 3 3 O(n) O(n)
DXKR23 [43]‡ n/3 3 7 O(n3) −

n/4 3 3 O(n3) O(n3)
hbMPC [70] n/3 3 7 O(n) −

HNP08 [64] n/3 7 3 O(n2) O(n2)
CP15 [33] † n/3 7 3 O(n) O(n)
CHL21 [30] n/3 7 3 O(n2) O(n2)
GS23 [57] n/3 3 3 O(n2) O(n3)

Dumbo-MPC n/3 3 3 O(n) O(n2)

† CP15 performs threshold decryption of somewhat homomorphic encryption
for each multiplication in online, which might cause serious efficiency issue.
‡ DXKR23 gives a random double-sharing protocol to generate t-degree
and 2t-degree shares of the same randomness. However, while using dou-
ble shares for evaluating multiplication gates during the online phase in
asynchrony with n/3 corruptions, the 2t-degree secret shares might fail in re-
constructing (as decoding might fail). Only if a lower non-optimal resilience
(e.g. n/4) is allowed, the robustness of online evaluation can be restored.

1.2 Our Contribution
We answer the question affirmatively by designing a set of
robust and concretely efficient AMPC protocols in the classic
online-offline paradigm, called Dumbo-MPC, with amortized
linear (resp. quadratic) per-gate communication in the good
case (resp. the bad case). To achieve all-phase G.O.D. with
optimal resilience, Dumbo-MPC introduces a throughput-
optimized fully asynchronous offline protocol to robustly and
efficiently pre-process multiplication triples in a batched man-
ner. Dumbo-MPC also inherits hbMPC’s almost I.T. online
phase, which is robust and already promisingly performant in
the pre-processing model, involving only Shamir secret shar-
ing for crucial online efficiency (except for an asynchronous
Byzantine agreement component that we also dedicatedly
optimize). In sum, our contributions are:

• New “hidden evaluation” interface of compact KZG
polynomial commitment for conveniently proving
product relation of committed secret shares. To ap-
ply compact KZG polynomial commitment [66] for re-
ducing the worst-case complexity of GS23, we first de-
vise a new zero-knowledge proof scheme for proving
the product relationship of secret shares committed to
a triple of KZG commitments. For the purpose, we in-
troduce a new “hidden evaluation” interface and prop-
erties to KZG scheme, allowing a party to convert the
binding of secret shares from KZG polynomial commit-
ment into Pedersen commitment. As such, it reduces the
problem of proving product relationship over KZG com-
mitments to the very standard problem of proving that
over Pedersen commitments. When applying our tech-
nique to instantiate Dumbo-MPC using more compact

KZG polynomial commitment, we reduce the worst-case
communication complexity from GS23’s O(n3) per-gate
to O(n2). Moreover, our approach of proving product
relation of Shamir secret shares over KZG commitments
could be of independent interests, e.g., robust publicly
auditable/accountable MPCs [65, 81].

• Robust fully asynchronous offline protocol that can
batchedly pre-process multiplication triples more ef-
ficiently. In addition to our asymptotic improvement of
the worst-case complexity of GS23, we further enhance
concrete efficiency by reducing the number of secrets
to be shared by an additional factor of 3, through a sub-
protocol that extracts random shares using batching for
efficiency. Our approach not only patches the concurrent
composability of the state-of-the-art KZG-based batch
ACSS [84], but also leverages KZG’s homomorphism
to redesign the GS23 protocol to extract t + 1 random
shares from n− t shared secrets via hyper-invertible ma-
trix. More importantly, this still maintains the crucial
convenience of proving product relation of secret shares
for valid triples, as we can compute the linear combi-
nations of KZG polynomial commitments to bind all
extracted random shares. Thereby, our triple generation
only verifiably shares n secrets per triple, as opposed to
that GS23 requires 3n.5

• Optimized offline fast path to harvest performance
with secure fallback to always preserve G.O.D. To
harvest efficiency from optimistic conditions when no
party misbehaves, we add a fast path optimized from
hbMPC [12, 41, 70] to generate triples with amortized
O(n) communication overhead in the good case. To pre-
serve G.O.D., we design a fallback mechanism enabling
honest parties switch to our robust offline protocol when
the fast path fails. The fallback is non-trivial, as a naive
attempt (directly running the robust protocol after the
fast path fails) might cause incorrect online multiplica-
tions due to network asynchrony (e.g., for a multiplica-
tion gate, someones use a triple from the fast path, but
the others use another triple from the robust protocol).
We efficiently resolve the threat by using a conceptually
minimal asynchronous Byzantine agreement for a sin-
gle bit. Moreover, our fast path saves 3 communication
rounds compared to hbMPC, as a bonus of our fallback
mechanism that eliminates the need of broadcasts to
cross-check the consistency of generated triples.

• The first implementation of AMPC with all-phase
G.O.D. and extensive evaluations. Combining with
dedicated optimization of asynchronous consensus com-
ponent for good-case latency, we then implemented a
prototype of Dumbo-MPC. For fair comparison, we also

5Our triple generation not only surpasses GS23 in efficiency but is also
concretely more efficient than many theoretical designs [35, 55] with similar
or even better asymptotic complexities, cf. Appendix A for details.
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implemented GS23 as a by-product. To our knowledge,
we provide the first implementation of AMPC with all-
phase G.O.D., which is also open-sourced.6 Extensive
evaluations were conducted to demonstrate the perfor-
mance of Dumbo-MPC under varying network condi-
tions, such as LAN and WAN settings, involving up to 31
AWS EC2 nodes.7 As a highlight of our experimental re-
sults, Table 2 summarizes the pre-processing latency of
GS23, hbMPC and Dumbo-MPC in a LAN setting for a
task of private Vickrey auction with 100 bidders. Specifi-
cally, when n = 31, GS23 requires more than 13 minutes
to pre-process all 44,571 multiplication triples needed
by the Vickrey auction, and hbMPC might even have an
infinite latency. In contrast, our pessimistic offline path
takes less than 8 minutes, reducing the pre-processing
latency by up to 41% compared to GS23.

Table 2: Pre-processing latency (sec.) for private Vickery
auction with 100 bidders (the bad case, in a LAN setting)

Protocols
Scale n =

10 22 31
hbMPC [70] ∞ ∞ ∞

GS23 [57] 193 464 810

Dumbo-MPC 168 (↓ 13%) 368 (↓ 21%) 474 (↓ 41%)

2 Problem Definition & Technique Overview

For the convenience of readers, we enumerate some notations
widely used throughout the paper in Table 3.

Table 3: Notations

Notation Description
n the total number of parties
t the maximum number of corrupted parties
N the batch size of secret sharing
B the batch size of triple generation
(pki,ski) the public-secret key pair of Pi
JrK, JrK2t (n, t+1) and (n,2t+1) Shamir’s secret shares of r
JrKi a Shamir secret share of r held by party Pi
[n] short for [1, · · · ,n]
Mi j the j-th element of i-th row of matrix M
κ the bit length of security parameter
ε(·) negligible function

2.1 Problem: Asynchronous MPCaaS

Security model. We adopt the standard reliable asynchronous
authenticated network with setup assumptions. We also con-
sider the MPC-as-a-Service (MPCaaS) setting with malicious
clients. Specifically, our model can be formalized as:

6The open-source code-base will soon be announced.
7To assess the feasibility of Dumbo-MPC, we primarily focus on evalu-

ating its offline (which is same to most similar literature [40, 68, 69]) as the
offline is the heaviest component bringing major performance bottleneck.

Public identities and trusted setup. There are n designated
parties {P1, · · · ,Pn} (i.e., servers) that participate in the MPC
protocol. There also exists a public key infrastructure such
that each Pi gets and only gets its own secret key ski and
additionally obtains the public keys {pki}i∈[n] of all parties.
In addition, we assume that the common reference string
(g,gα, · · · ,gαt

,h,hα, · · · , hαt
) ∈ G2t+2 of KZG polynomial

commitment [66] is honestly generated and published, which
can be done through asynchronous distributed protocols [45].

Fully-connected asynchronous p2p network. We consider
a standard asynchronous communication network that con-
sists of secure point-to-point (p2p) channels between each
pair of parties. Messages sent between honest parties can be
arbitrarily delayed by the adversary, but they remain confiden-
tial and must eventually deliver without being tampered.

Adversary corrupting t < n/3 servers. We consider mali-
cious, static, probabilistic polynomial-time (P.P.T.) bounded
adversaries that can fully control up to t < n/3 corrupted par-
ties. Here “static” means that the adversary chooses parties to
corrupt before the protocol begins. Noticeably, t < n/3 is the
optimal resilience of AMPC protocols with G.O.D. [24].

Probably malicious clients. We focus on the enticing MP-
CaaS model, where k clients submit their private inputs for
secure computation. An inherent limitation of asynchrony
is that up to c honest clients’ inputs may be excluded from
computation (where c is the number of malicious clients),
because waiting for all k inputs might incur infinite time as
corrupted clients might not provide any input. W.l.o.g., we
assume n = k and t = c (i.e., each server plays another role of
client) for presentation simplicity, unless otherwise specified.
Design goals. We aim to achieve concretely efficient AMPC,
featuring robust offline and online phases (as illustrated in Fig-
ure 1), tailored for the MPCaaS setting with optimal resilience
and all-phase G.O.D. More specifically,

Offline phase. Syntactically, n parties (servers) take system
parameters as input, and each party Pi continuously outputs a
linearized sequence of random shares Jr1Ki,Jr2Ki · · · , and an-
other sequence of multiplication triples (Ja1Ki,Jb1Ki,Ja1b1Ki),
(Ja2Ki,Jb2Ki,Ja2b2Ki) · · · . The phase shall satisfy the follow-
ing properties with overwhelming probability:

• Validity: for any j-th position in the output sequence of
random shares, all honest parties must (eventually) hold
consistent t-degree secret shares of some r j; similarly,
for any j-th position in the triples’ sequence, all honest
parties must (eventually) hold consistent t-degree secret
shares of some a j, b j, c j = a jb j.
• Secrecy: it is infeasible for any P.P.T. adversary to predict

r j (resp. a j, b j, a jb j) better than guessing, until the first
honest node Pi spreads out its corresponding secret share.
• Pre-processing liveness (Offline robustness) : all honest

parties’ output sequences are ever-growing.

Online phase. Given the above robust offline phase that
can continuously generate random shares and multiplication
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triples, we then aim at realizing an online phase with MP-
CaaS interfaces to (probably malicious) clients. As such, for
any agreed to evaluate function f (·), the phase can confiden-
tially evaluate f and shall satisfy the next properties with
overwhelming probability:
• Privacy. For any P.P.T. adversary, it learns nothing in

addition to the evaluation result of f .
• Guaranteed output delivery (online robustness). All hon-

est parties (servers) eventually output the evaluation of
f (·) on at least n− t distinct clients’ inputs.

Performance metrics. We are particularly interested in more
efficient AMPC protocols. For the purpose, we primarily con-
sider the key efficiency metric of (amortized) communication
complexity, reflecting the expected number of bits sent by hon-
est parties to generate each random share or multiplication
triple. Moreover, we might estimate the concrete performance
of AMPC protocols according to the number of secrets to be
(verifiably) shared for each generated multiplication triple.
Sometimes, the round of communication is also considered
as another indicator to estimate protocols’ performance.

Random Shares Triples

MVBA

(3) Online Function Evaluation

(2) Inputs Soliciting (Async. Common Subset)

Out:

(0) Offline Pre-Processing

(1) Inputs
masking

Random Shares Triples

MVBA

(3) Online Function Evaluation

(2) Inputs Soliciting (Async. Common Subset)

Out:

(0) Offline Pre-Processing

(1) Inputs
masking

Figure 1: Offline-online paradigm of AMPCaaS

2.2 Challenges and Our Techniques
Challenge I: realize both robustness and efficiency while
reducing the degree of shares’ product. Asynchronous
triple generation is at the heart of AMPC. One might im-
mediately realize a “possible” design by adapting the seminal
BGW protocol [13]: (i) All parties first collectively generate
some t-degree shares JaKt and JbKt of unbiased randomness
a and b, which can be done through a few existing asyn-
chronous protocols [43, 44, 46]; (ii) Everyone locally com-
putes JabK2t = JaKtJbKt , which represents 2t-degree secret
share of ab; (iii) Then, each party invokes a “degree reduction”
phase by re-sharing JabK2t through another t-degree verifiable
secret sharing protocol, such that everyone can interpolate the
received shares to obtain JabKt , i.e., reducing the 2t-degree
JabK2t to t-degree JabKt . The attempt appears to be enticing,
as one seemingly can plug in the state-of-the-art asynchronous
complete secret sharing (ACSS) [3, 84] to instantiate the idea.
However, during degree reduction, t malicious parties can re-
share arbitrary secret instead of the genuine product, making

honest parties fail to decode the correct JabKt in asynchrony
and thus causing the breach of robustness.

Therefore, to guarantee robustness during degree reduction,
GS23 introduces batch ACSS (built from Pedersen’s polyno-
mial commitments) into the BGW framework [57] and uses
zk-proof of product relation over Pedersen commitments to
attest the re-sharing of correct JabK2t = JaKtJbKt as inspired by
Gennaro et al. [53]. However, Pedersen polynomial commit-
ment is large as broadcasting it already causes O(n2) bits, and
GS23 optimizes this by letting ACSS dealer aggregate a batch
of such polynomial commitments (after which, the k-th term
in the aggregated commitment is a generalized Pedersen com-
mitment that binds all polynomials’ k-th coefficients). The
approach has clear drawbacks: (i) it requires a concretely large
number of 3n secrets to be (verifiably) shared per triple, as
every party shares two secrets for generating two random shar-
ings JaK and JbK and then re-shares JaKJbK; (ii) the worst-case
communication cost of the resulting batch ACSS is quadratic
per secret, incurring cubic overhead per triple.

Our approach. We take advantage of succinct and homo-
morphic KZG polynomial commitment to realize an alterna-
tive batch triple generation protocol improving the enticing
approach of GS23, both concretely and asymptotically. This
nevertheless requires us to devise a new zk-proof scheme
attesting the product relation of a triple of secret shares over
KZG commitments. To this end, we introduce the new “hid-
den evaluation” interface to augment the legacy KZG scheme,
enabling each party to compute a Pedersen commitment of a
certain evaluation of the polynomial committed to the given
KZG commitment. Our new interface can convert the proof-
of-product over KZG commitments into the problem of prov-
ing that over Pedersen’s, and hence, we can realize a more
efficient triple generation protocol, as our augmented KZG
scheme enables: (i) instantiate an efficient batch ACSS to-
gether with our careful patch for concurrent compatibility,
thus asymptotically reducing the worst-case communication
by another O(n) factor; (ii) employ a more efficient random-
ness extraction technique via hyper-invertible matrix, reduc-
ing the number of shared secrets per triple from 3n to n.

Challenge II: fallback from fast path to pessimistic path
might cause incorrect online computation. The non-robust
offline protocol adapted from [8, 70] can optimistically gener-
ate triples with an amortized O(n) communication overhead.
However, when some malicious party starts to misbehave, this
fast path protocol might fail to progress. In such bad cases,
fallback is needed to restore robustness. But the tricky effect
of network asynchrony is that some honest parties might al-
ready generate the r-th batch of triples from the fast path,
while some other honest parties only obtain the (r− 1)-th
batch of triples from the fast path, which clearly results in a
serious vulnerability of disagreed outputs after fallback.

Given this, if the honest nodes trivially quit from unrespon-
sive fast path and then immediately start the pessimistic path,
the online computation might no longer be correct, because
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for a multiplication gate, some honest parties might use triple
(JaK,JbK,JabK) generated via fast path but some other parties
might use another triple (Ja′K,Jb′K,Ja′b′K) generated by the
pessimistic path. On the other side, completely withdrawing
all fast path outcome after fallback might resolve the incon-
sistency issue but makes the fast path pointless.

Our approach. To resolve the above inconsistency issue
caused by failed fast path, we take a more careful observation
on the distribution of honest parties’ fast path progress when
they enter fallback. A key finding is that: for the honest parties,
their progresses in the fast path are either the same or have a
variance of at most one, when they detect the fast path failed
or unresponsive. This is a simple fact because our fast path
requires all parties to be responsive as it requires each party
to wait for messages from all parties. If there is any honest
party Pi starts fallback with only obtaining the r-th batch of
fast-path triples, then no honest party can obtain the (r+2)-th
batch of fast-path triples, because Pi would not collaborate
in the (r + 2)-th fast-path triple generation. This hints us
at introducing a variant of asynchronous binary agreement
for reaching consensus among two consecutive values (tcv-
BA) [71]. Namely, every party takes its fast path progress r
as input to tcv-ABA during fallback, then tcv-BA returns a
common value R, using which, the honest parties can reach
a unitary decision on preserving how many fast-path triples
before entering the pessimistic path, thereby resolving any
inconsistency that might cause incorrect online evaluation.

3 Preliminaries

Asynchronous multi-valued validated Byzantine agree-
ment (MVBA) [2, 4, 27, 43, 48, 72, 89] is a variant of asyn-
chronous Byzantine agreement with output satisfying a public
boolean predicate. In particular, MVBA running among n
parties is parameterized by a global predicate Q : X×S→
{True,False}. Here X represents the domain of inputs and S
denotes the domain of each party’s internal states, and Q shall
be (i) monotonic, i.e., it cannot switch from true to false as the
honest party’s state Si evolves, and (ii) eventually unanimous,
i.e., if Q(x,Si) is true due to some honest party Pi’s state Si,
then eventually Q(x,S j) becomes true for every honest party
Pj’s internal state S j. Such MVBA protocol satisfies the next
properties with overwhelming probability: (i) Termination,
if every honest node Pi starts the protocol with input xi and
internal states Si s.t. Q(xi,Si) = True, all honest nodes would
eventually output; (ii) Agreement, any two honest nodes Pi and
Pj output yi and y j, respectively, then yi = y j; (iii) External
Validity, every honest node Pi’s output yi can be (eventually)
valid due to the predicate Q and Pi’s internal states Si.

Asynchronous two-consecutive-value Byzantine agree-
ment (tcv-BA) [71] is an extended asynchronous binary
Byzantine agreement where honest parties input two con-
secutive integers or the same integer. If all honest parties

activate a tcv-BA protocol by inputting a value in {v,v+1}
where v ∈ N, then the following properties would hold with
overwhelming probability: (i) Termination, all honest parties
would output some value; (ii) Agreement, any two honest par-
ties’ outputs are the same; (iii) Validity, if some honest parties
output x, then at least one honest party inputs x.

4 Proof of Product Relation over
KZG Polynomial Commitments

As aforementioned, we focus on improving the efficiency
of the enticing GS23 protocol through succinct and homo-
morphic KZG polynomial commitment. This requires us to
devise a zero-knowledge proof (zk-proof) scheme for the
product relationship of certain polynomial evaluations over
KZG commitments, ensuring that any malicious party either
re-shares the correct product of JabKi

2t = JaKi · JbKi or does
nothing harmful. This section will elaborate on our approach
to realizing such efficient zk-proof over KZG commitments.

KZG Polynomial Commitment w/ Hidden Evaluation
Setup(1κ, t): generate bilinear pairing group G = (e,G,GT ) and
randomly sample α,τ ∈ Zq. Let g be random generator of G, set
h = gτ and return SP = {G ,{gαi

,hαi}ti=0}.
PolyCom(SP,φ(·)): sample random t-degree polynomial φ̂(·), and
compute C = gφ(α)hφ̂(α).

ProveEval(SP, i,φ(·), φ̂(·)): compute wi = gψi(α)hψ̂i(α), where

ψi(x) =
φ(x)−φ(i)

x−i and ψ̂i(x) =
φ̂(x)−φ̂(i)

x−i , output (i,φ(i), φ̂(i),wi).

VerifyEval(SP,C, i,φ(i), φ̂(i),wi): output 1 if e(C/(gφ(i)hφ̂(i)),g) =
e(wi,gα/gi), output 0 otherwise.

Below are hidden evaluation interfaces

HiddenEval(SP, i,wi,φ(i), φ̂(i)): compute Ti = gφ(i)hφ̂(i) and out-
put (i,Ti,ωi) where ωi = wi.

OpenHiddenEval(SP,φ(i), φ̂(i),Ti): if Ti = gφ(i)hφ̂(i), output 1, oth-
erwise output 0.

VerifyHiddenEval(SP,C, i,Ti,ωi): if e(C/Ti,g) = e(ωi,gα/gi), out-
put 1, otherwise output 0.

NOTE: we also use BatchVerifyEval and BatchVerifyHiddenEval
to denote the batch versions of VerifyEval and VerifyHiddenEval,
which simultaneously perform many verifications for efficiency.

Figure 2: Our augmented KZG polynomial commitment
with new hidden evaluation interfaces (KZG PCwHE).

Adding hidden evaluation interfaces. To prove the product
relation of secret shares committed to KZG polynomial com-
mitments, we first introduce new algorithmic interfaces to the
KZG scheme. Informally, these new interfaces enable the fol-
lowing: given a KZG polynomial commitment, a polynomial
evaluation, and the valid evaluation proof, one can compute
the Pedersen commitment of this evaluation and bind this
Pedersen commitment to the given KZG commitment.
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As illustrated in Figure 2, our construction of hidden evalu-
ation stems from the observation that the VerifyEval function
of the KZG scheme only requires a couple of Pedersen-style
commitments, gφ(i)hφ̂(i) and gψ(α)hψ̂(α), to check the equality
of two pairings, which hints at that they could be the expected
hidden evaluation and corresponding proof. We then prove
that our proposed augmented KZG scheme with hidden eval-
uation interfaces satisfies the properties of (i) correctness, (ii)
polynomial binding, (iii) evaluation binding, (iv) hiding and
(v) hidden evaluation’s binding, assuming the hardness of
discrete logarithm and t-strong Diffie-Hellman problems. We
formalize these properties below.
Correctness: Given any SP← Setup(1κ, t) and any φ(·) ∈
Zq[x], if C← PolyCom(SP,φ(·)), then:
• For any output of ProveEval(SP, i,φ(·), φ̂(·)), it can al-

ways pass the verification of VerifyEval.
• For any output of HiddenEval(SP, i,wi,φ(i), φ̂(i)), it can

always be accepted by VerifyHiddenEval.
• For any output of HiddenEval(SP, i,wi,φ(i), φ̂(i)), there

is OpenHiddenEval(SP,φ(i), φ̂(i),Ti) = 1.
Evaluation binding: For any P.P.T. adversary A ,

Pr


SP← Setup(1κ, t);

(C,(i,φ(i), φ̂(i),wi),(i,φ(i)′, φ̂(i)′,w′i))← A(SP) :
VerifyEval(SP,C, i,φ(i), φ̂(i),wi) = 1 ∧

VerifyEval(SP,C, i,φ(i)′, φ̂(i)′,w′i) = 1 ∧φ(i) 6= φ(i)′

≤ ε(κ)

Polynomial binding: For any P.P.T. adversary A ,

Pr



SP← Setup(1κ, t);
(C, I1, I2,{(φ(i), φ̂(i),wi)}i∈I1∪I2)← A(SP)

where I1 ⊂ [n], I2 ⊂ [n],and |I1|= |I2|= t +1 :
∀i ∈ I1∪ I2,VerifyEval(SP,C, i,φ(i), φ̂(i),wi) = 1 ∧
(φ1(·), φ̂1(·))← Interpolate(I1,{φ(i), φ̂(i)}i∈I1) ∧
(φ2(·), φ̂2(·))← Interpolate(I2,{φ(i), φ̂(i)}i∈I2) ∧

φ1(·) 6= φ2(·)


≤ ε(κ)

(Augmented) hiding: The polynomial commitment and all hid-
den evaluations should not reveal any additional information
about the polynomial beyond t shares that are already known
to the adversary. This is an enhanced hiding property of the
original KZG scheme, which now also accounts for outputs
from the hidden evaluation interface. Formally, for any P.P.T.
adversary, a P.P.T. simulator (Sim0,Sim1,Sim2,Sim3) exists,
such that the next two distributions are identical:

Real world:

SP← Setup(1κ, t);(φ(·), I1, I2)← A(SP);

(C, φ̂(·))← PolyCom(SP,φ(·));
∀i ∈ I1,(φ(i), φ̂(i),wi)← ProveEval(SP, i,φ(·), φ̂(·));
∀i ∈ I2,(Ti,ωi)← HiddenEval(SP, i,φ(·), φ̂(·))
: (C,{i,φ(i), φ̂(i),wi}i∈I1 ,{i,Ti,ωi}i∈I2) where |I1| ≤ t


Ideal world:

(SP,st)← Sim0(1κ, t);(φ(·), I1, I2)← A(SP);
(C,c)← Sim1(st);

({wi}i∈I1 ,φ
′(·), φ̂′(·))← Sim2(st,(C,c),{i,φ(i)}i∈I1);

{Ti,ωi}i∈I2 ← Sim3(st,(C,c),φ′(·), φ̂′(·), I2)

: (C,{i,φ(i), φ̂(i),wi}i∈I1 ,{i,Ti,ωi}i∈I2) where |I1| ≤ t



Hidden evaluation’s binding: For all adversaries A ,

Pr


SP← Setup(1κ, t);

(C, i,(Ti,ωi,φ
′(i), φ̂′(i)),(φ(i), φ̂(i),wi))← A(SP) :

VerifyHiddenEval(SP,C, i,Ti,ωi) = 1 ∧
OpenHiddenEval(SP,φ′(i), φ̂′(i),Ti) = 1 ∧

VerifyEval(SP,C, i,φ(i), φ̂(i),wi) = 1 ∧ φ̂′(i) 6= φ̂(i)

≤ ε(κ)

REMARKS. Clearly, our augmented KZG polynomial com-
mitment with hidden evaluation (KZG PCwHE) satisfies all
properties of the original KZG scheme [66]. Additionally, it
provides a convenient interface to convert the binding of a
secret share from a given KZG commitment to another Peder-
sen commitment that not only binds the secret share originally
committed to KZG but also leaks nothing about the secret.
For detailed proofs of KZG PCwHE, cf. Appendix B.

PoK of Product over KZG Commitments PoKProd_KZG

The prover P and the verifier V both know the public state-
ment (SP,Ca,Cb,Cc, ia, ib, ic) where {Cx}x∈{a,b,c} are KZG poly-
nomial commitments and {ix}x∈{a,b,c} are points to evaluate poly-
nomials. P has private witness {(φx(ix), φ̂x(ix),wx)}x∈{a,b,c}, s.t.
∀x ∈ {a,b,c}, VerifyEval(SP,Cx, ix,φx(ix), φ̂x(ix),wx) = 1.

// Prover P
• PoKProd_KZG.P ({(Cx, ix,φx(ix), φ̂x(ix),wx)}x∈{a,b,c}):

(a) compute HiddenEval(SP, ix,wx,φ(ix), φ̂(ix)) to obtain
(Tx,ωx) for each x ∈ {a,b,c};

(b) invoke the prover of the proof-of-product scheme for values
committed to Pedersen commitments (cf. Figure 13) with
taking {(φx(ix), φ̂x(ix))}x∈{a,b,c} as witness, and obtain the
proof π regarding the product relation of (Ta,Tb,Tc);

(c) output proof = ({(Tx,ωx)}x∈{a,b,c}, π).

// Verifier V
• PoKProd_KZG.V ({(Cx, ix)}x∈{a,b,c},proof):

(a) parse proof as ({(Tx,ωx)}x∈{a,b,c}, π);
(b) verify VerifyHiddenEval(SP,Cx, ix,Tx,ωx)=1 for x∈ {a,b,c};
(c) verify the proof-of-product π regarding (Ta,Tb,Tc) (cf. Fig-

ure 13), return 1 if all checks pass and 0 otherwise.

Figure 3: Zk-proof of product relation for a triple of eval-
uations of polynomials committed to KZG commitments.

Proving product relationship over KZG. Given our aug-
mented KZG scheme with hidden evaluation interfaces, we
realize a convenient way to prove the product relationship of
secret shares over a triple of (publicly known) KZG commit-
ments, as illustrated in Figure 3. In particular, the proposed
proof-of-knowledge zk-proof attests the following statement:

PoKProd_KZG[{(φx(ix), φ̂x(ix),wx)}x∈{a,b,c} :

φa(ia) ·φb(ib) = φc(ic) ∧
VerifyEval(SP,Cx, ix,φx(ix), φ̂x(ix),wx) = 1,∀x ∈ {a,b,c}]

which proves that the secret share φc(ic) committed to KZG
commitment Cc is indeed a correct product of two legitimate
secrets’ shares φa(ia) and φb(ib) that are respectively com-
mitted to two KZG commitments Ca and Cb. Intuitively, the
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proof scheme first computes hidden evaluation as a Pedersen
commitment for each secret share, and then proves the prod-
uct relationship over these derived Pedersen commitments.
In the next section when we instantiate our asynchronous
triple generation protocol, this zk-proof plays a crucial role in
preventing malicious parties from re-sharing arbitrary secrets
instead of the genuine product of two expected shares.

Algorithm 1 Asynchronous random share generation . Code of Pi

Input: N the batch size of BACSS, and other system parameters
Output: rnd_shares = {(Ck,JrkK,Jr̂kK,wk)

N(t+1)
k=1 }

// 1. Invoke BACSS to share randomness
1: Ti← /0, sharesi← /0, rnd_shares← /0

2: activate BACSS_share j instance for every j ∈ [n]
3: uniformly sample N secrets si1, · · · ,siN from Zq
4: invoke BACSS_sharei as dealer to share si1, · · · ,siN

// Each Pi generate n private-public key pairs for IND-CCA PKE,
so the j-th key pair is exclusively used in dealer Pj’s BACSS.
// 2. Select n− t completed BACSS instances

5: upon getting (C jk,Js jkKi,Jŝ jkKi,wi
jk)k∈[N] from BACSS_share j

6: Ti← Ti
⋃
{ j}

7: sharesi← sharesi
⋃
{(C jk,Js jkKi,Jŝ jkKi,wi

jk)k∈[N]}
8: if |Ti|= 2t +1
9: call MVBA using a snapshot of Ti as input and Ti as state

// MVBA’s predicate waits for local Ti is a superset of input
10: wait for MVBA output T , w.l.o.g., let T = {P1, · · · ,P2t+1}

// 3. Extract random shares
11: for k = 1 to N
12: (Jr1kKi, · · · ,Jr(t+1)kKi)←M(Js1kKi, · · · ,Js(2t+1)kKi)T

13: (Jr̂1kKi, · · · ,Jr̂(t+1)kKi)←M(Jŝ1kKi, · · · ,Jŝ(2t+1)kKi)T

14: for l = 1 to t +1

15: Clk =
2t+1
∏
j=1

(C jk)
Ml j , wi

lk =
2t+1
∏
j=1

(wi
jk)

Ml j

16: rnd_shares← rnd_shares
⋃
{(Clk,JrlkKi,Jr̂lkKi,wi

lk)}
17: return rnd_shares

5 Robust AMPC Offline Protocols

The core of Dumbo-MPC is a robust yet still efficient asyn-
chronous offline phase. Building on our previously devised
proof-of-product scheme over KZG commitments, this sec-
tion will elaborate on our robust AMPC offline protocols.

5.1 Asynchronous Random Share Generation
We start by presenting an asynchronous random share genera-
tion (AsyRanShGen) protocol, optimized through batching
for enhanced efficiency, capable of generating t-degree ran-
dom shares with an amortized communication cost of O(κn).
We employ a randomness extraction method utilizing hyper-
invertible matrices (where every square sub-matrix is invert-
ible) [12], which was recently adapted by Das et al. for the
asynchronous setting, though without batching [43].

Patch the concurrent composability for batch ACSS. One
might suggest directly integrating the state-of-the-art batch

asynchronous complete secret sharing (BACSS) hbACSS [84]
into Das et al.’s design to implement a batched AsyRanShGen
protocol.8 Here BACSS allows a dealer to share a batch of se-
crets (s1, · · · ,sN) across the whole network, such that (i) each
honest party Pi would output a batch of N secret shares (where
the k-th output JskKi corresponds to a share of the k-th input
secret sk), or (ii) probably all honest parties eventually output
nothing, if the dealer is malicious. However, we identify a
flaw of the above seemingly viable idea due to lacking concur-
rent composability in the original hbACSS, which might even
cause realistic secrecy attacks allowing a malicious dealer
copy scripts from another honest dealer and thus learn the
secrets (cf. Appendix C.3 for detailed attacks).

We therefore make necessary yet still minimal adaptions of
hbACSS to patch its concurrent composability: (i) use IND-
CCA secure public key encryption (PKE) instead of IND-CPA
PKE in the original hbACSS design; (ii) specify that each
party wouldn’t re-use PKE keys in different dealers’ hbACSS
instances. Such enhancement enables us to prove the crucial
secrecy of concurrent hbACSS instances. Syntactically, we
also explicitly require that the honest parties in BACSS addi-
tionally output N KZG polynomial commitments besides N
secret shares, such that each output KZG commitment fixes a
polynomial whose evaluations correspond to the k-th output
shares of all parties. The communication complexity of this
adapted hbACSS still is O(κnN + κn2 logn). When letting
the batch size sufficiently large such as N ≥ Ω(n logn), the
amortized communication cost is O(κn) per shared secret. For
space limit, we refrain from representing the whole protocol
of the adapted hbACSS, and defer its details to Appendix C.2.

AsyRanShGen protocol. Algorithm 1 describes the protocol
for batchedly generating random shares atop concurrently
composable BACSS protocols, which executes as:

1. Share randomness. Each Pi samples a batch of random
secrets, and subsequently starts as a dealer of one BACSS
protocol to verifiably share them in a batched manner.

2. Solicit sufficient (probably biased) randomness shares.
In the asynchronous setting, one cannot wait for the ter-
minations of all parties’ BACSS protocols, so once a
party Pi outputs in n− t distinct dealers’ BACSS proto-
cols, it activates an MVBA by taking the indices of these
finished BACSS as input. MVBA ensures that all honest
parties can select a common set of n−t BACSS protocols
with distinct dealers, and all honest parties can eventually
obtain shares from these n− t solicited BACSS protocols.

3. Extract uniform randomness via hyper-invertible matrix.
Among the n− t selected BACSS protocols, at least t +
1 of them shall have honest dealers that indeed share
uniform randomness sampled from Zq, and at most t of
them could be chosen by the adversary.

8Note that hbACSS [84] is more preferred than another state-of-the-art
BACSS protocol Bingo [3] due to significantly better concrete efficiency, as
the computation and communication of Bingo are about 3 times of hbACSS.
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Thus, to extract as many as possible random shares
from these n− t BACSS protocols, we leverage the
idea of randomness extraction via Vandermonde ma-
trix M ∈ Z(t+1)×(2t+1)

q , where the j-th row is M j =
(η0

j ,η
1
j , · · · ,η2t

j ) and η j ∈ Zq is distinct for each j. So
given 2t +1 BACSS protocols (each of which batchedly
shares N secrets), the honest parties can extract a number
of (t +1)∗N random shares.
The polynomial commitments and evaluation proofs re-
lated to the extracted random shares can also be locally
computed by each honest party (without interacting), due
to the additive homomorphism of KZG scheme. Soon
in the next subsection, we will leverage these resulting
polynomial commitments for robust triple generation.

Security of AsyRanShGen. The properties of AsyRanSh-
Gen can be summarized as the following security theorem.

Theorem 1 (Termination, Consistency, Secrecy and Random-
ness of AsyRanShGen). If all honest parties activate the
AsyRanShGen protocol (running among n parties against up
to t malicious corruptions), then the following properties hold
with all but negligible probability:
• Termination. All honest parties would eventually output

a set rnd_shares = {(Ck,JrkKi,Jr̂kKi,wi
k)}

N(t+1)
k=1 .

• Consistency. The output rnd_shares of all honest
parties are “consistent”, namely: (i) they carry the
same {Ck}

N(t+1)
k=1 ; (ii) for each (Ck,JrkKi, Jr̂kKi,wi

k) ∈
rnd_shares, VerifyEval(SP,Ck, i,JrkKi, Jr̂kKi,wi

k)=1.
• Secrecy and randomness. The adversary cannot predi-

cate each rk better than guessing over Zq.

We defer the full proof of the above security theorem to
Appendix G.1, as most analysis is rather standard and mir-
rors the literature [18, 43, 58]. Particularly considering that
we already patch the concurrent composability of BACSS,
it enables us construct a simulator that always simulates de-
cryption queried by adversary in face of malicious BACSS
dealers, and such simulated decryption wouldn’t leak secrets
of other concurrent BACSS instances.
Complexities of AsyRanShGen. In the AsyRanShGen pro-
tocol, Θ(n) instances of BACSS are involved. If each BACSS
has a sufficient batch size N = Ω(n logn), the communication
cost of n BACSS protocols becomes O(κn3 logn) in total. Ad-
ditionally, one MVBA protocol with n-bit input is invoked,
and its state-of-the-art instantiation costs O(κn3) bits [4, 47].
In sum, AsyRanShGen can batchedly generate N(t +1) ran-
dom shares with a total communication cost of O(κn3 logn)
bits, which corresponds to an amortized communication com-
plexity of O(κn) per generated random share.

5.2 Asynchronous Random Triple Generation
Here we are ready to present the protocol of asynchronous ran-
dom multiplication triple generation (AsyRanTriGen), which

can be thought of an asynchronous, optimal-resilient, and
batched version of the seminal BGW paradigm and is also
concretely and asymptotically more efficient than GS23.

Algorithm 2 Asynchronous mul. triples generation . Code of Pi

Input: B batch size of triple generation and other system parameters
Output: Beaver_triples = {(JakKi,JbkKi,JckKi)}B

k=1
1: Ti← /0, prod_sharesi← /0, Beaver_triples← /0

// 1. Generate random shares
2: activate AsyRanShGen with taking as input N = (2B/(t +1))

randomness, and wait for AsyRanShGen returns rnd_shares =
{(Ck,JrkKi,Jr̂kKi,wi

k)}k∈[2B]

3: let first half of rnd_shares be {(Cak,JakKi,JâkKi,wi
ak)}k∈[B] and

last half of rnd_shares be {(Cbk,JbkKi,Jb̂kKi,wi
bk)}k∈[B]

// 2. Re-share 2t-degree product
4: for k = 1 to B
5: JckKi

2t ← JakKi · JbkKi

6: (Ci
ck, φ̂

i
ck(·))← PolyCom(SP,φi

ck(·)), s.t. φi
ck(0) = JckKi

2t
7: wi

ck,0← ProveEval(SP,0,φi
ck(·), φ̂

i
ck(·))

8: proofik← PoKProd_KZG.P




(Cak, i,JakKi,JâkKi,wi
ak),

(Cbk, i,JbkKi,Jb̂kKi,wi
bk),

(Ci
ck,0,φck(0), φ̂ck(0),wi

ck,0)




cf. Fig 3 for details of the above proof of product relationship
9: activate BACSS_share′j instance for every j ∈ [n]

10: invoke BACSS_share′i as dealer to re-share {JckKi
2t}k∈[B] using

KZG commitments {Ci
ck}k∈[B] with broadcasting {proofik}k∈[B]

// 3. Wait for n− t completed re-shares of product
11: upon receiving output from BACSS_share′j instance:

12: if PoKProd_KZG.V




(Cak, j),

(Cbk, j),

(C j
ck,0,0)

 , proof j
k

=1 for ∀ k ∈ [B]:

13: prod_sharesi← prod_sharesi
⋃
{(JJckK

j
2tK

i)k∈[B]}
14: Ti← Ti

⋃
{ j}

15: if |Ti|= 2t +1
16: call MVBA′ using a snapshot of Ti as input and Ti as state

// 4. Locally interpolate t-degree share of product
17: wait for MVBA output T , w.l.o.g., let T = {P1, · · · ,P2t+1}
18: for k = 1 to B

19: JckKi←
2t+1
∑

j=1
λ jJJckK

j
2tK

i, where λ j represents the evaluation

of the j-th Lagrange interpolating polynomial at zero point
20: Beaver_triples← Beaver_triples

⋃
{(JakKi,JbkKi,JckKi)}

21: return Beaver_triples

AsyRanShGen protocol. As illustrated in Algorithm 2, the
protocol proceeds through running the following four steps:

1. Batchedly generate random shares. All parties execute
the AsyRanShGen protocol presented in the earlier sub-
section, where each party Pi randomly chooses N = 2B

t+1
secrets to share via its BACSS instance and would ob-
tain {(Ck,JskKi,JŝkKi,wi

k)k∈[2B], i.e., 2B random shares
along with all related KZG commitments and evaluations
proofs. Presentation-wise, we partition the output set into
two halves, denoted as {(Cak,JakKi,JâkKi,wi

ak)}k∈[B] and
{(Cbk,JbkKi,Jb̂kKi,wi

bk)}k∈[B], respectively.
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Figure 4: The overview of asynchronous multiplication triple generation protocol (exemplified without batching).

2. Locally compute 2t-degree shares of products. Given the
output obtained from the AsyRanShGen protocol, every
party Pi computes JckKi

2t = JakKi · JbkKi for each k ∈ [B].
3. Re-share the correct 2t-degree product. Then Pi invokes

another BACSS protocol as dealer to re-share JckKi
2t us-

ing KZG polynomial commitment Ci
ck.

We also require Pi to compute and broadcast some addi-
tional {proofik} attesting the correctness of the re-shared
2t-degree product JckKi

2t . Particularly, each proofik =
{T i

ak,ω
i
ak,T

i
bk,ω

i
bk,T

i
ck,0,ω

i
ck,0,π

i
k} is a zero-knowledge

proof of the product relationship over KZG commitments
Cak, Cbk and Ci

ck (as earlier described in Figure 3). Here
(T i

ak,ω
i
ak) are a hidden evaluation (i.e. a Pedersen com-

mitment) and a hidden evaluation proof regarding KZG
commitment Cak, attesting that T i

ak commits the i-th eval-
uation of the polynomial fixed by Cak; Similarly, ωi

bk
attests T i

bk commits an evaluation of the polynomial fixed
by Cbk at point i; While ωi

ck,0 proves that T i
ck,0 commits

the 0-point secret of the polynomial committed to Ci
ck.

4. Reconstruct t-degree shares of products to obtain triples.
After everyone re-shares its local 2t-degree shares, each
Pi activates another MVBA protocol to decide a common
set of 2t +1 completed re-sharings. Finally, each Pi lo-
cally interpolates the t-degree share JckKi of the product.
As Pi also has shares JakKi and JbkKi, so it can return a
random triple (JakKi, JbkKi, JckKi) for each k ∈ [B].

Security of AsyRanTriGen. The security of AsyRanTriGen
can be summarized by the following theorem.

Theorem 2 (Termination, Validity, and Secrecy of AsyRanTri-
Gen). In an AsyRanTriGen protocol running among n parties
with up to t < n/3 corruptions, each party Pi outputs a batch
of triples {(JakKi,JbkKi,JckKi)}B

k=1, and the following proper-
ties shall hold with all but negligible probability:

• Termination. If all honest parties activate the protocol,
all of them would output {(JakKi,JbkKi,JckKi)}B

k=1.
• Validity. For each k ∈ B and x ∈ {a,b,c}, honest parties

can interpolate their output shares {JxkKi} to obtain a
unique t-degree polynomial whose zero-point is xk, and
the interpolated {xk}x∈{a,b,c} satisfying ak ·bk = ck.

• Secrecy. For any output triple (JakK,JbkK,JckK), adver-
sary learns nothing about ak, bk and ck except ak ·bk = ck.

We provide the intuitions of proofs hereunder, and defer
details of security analysis to Appendix G.2 for space limit:

• For termination, this is trivial, as its violation is reducible
to breach either of (i) the correctness of BACSS; (ii) the
completeness of BACSS; (iii) the termination of MVBA.

• For validity, the arguments are: (i) the random shares JaK
and JbK obtained by honest parties must be consistent to
fixed t-degree polynomials, because they are evaluations
bounded to the same polynomial commitments; (ii) the
honest parties’ secret shares JcK must correspond to the
same t-degree polynomial with c = a ·b, because other-
wise, either the hidden evaluation’s binding of our aug-
mented KZG scheme is violated or the knowledge sound-
ness of the proof of product relationship is breached.

• For secrecy, we construct a P.P.T. simulator using the
setup trapdoor of KZG commitment and black-box simu-
lators of product proof and IND-CCA encryption, so we
can get into a hybrid world where the adversary interacts
with the above simulator, and the adversary’s view in this
hybrid world is computationally indistinguishable from
its view in the real-world execution. Observing that the
adversary in the final hybrid world can only information-
theoretically get t shares of JaK, JbK and JcK, secrecy is
therefore proven in the real-world execution.

Complexities of AsyRanTriGen. An AsyRanTriGen proto-
col that generates B triples involves an AsyRanShGen in-
stance generating 2B random shares, n BACSS protocol in-
stances (each of which shares B secrets), and another MVBA
instance. For sufficiently large batch B, the communication of
n BACSS instances with batch size B becomes the dominating
factor, resulting in amortized O(κn2) bits per triple.

6 Adding Fast Path for Triple Generation

Now we elaborate on how to further harvest efficiency from
optimistic conditions using a concretely and asymptotically
more efficient non-robust fast path, with preserving G.O.D.
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for all possible bad cases, through a simplistic yet still fully
asynchronous fallback mechanism.
Fast path protocol. Algorithm 3 describes a non-robust op-
timistic random triple generation protocol (OptRanTriGen)
adapted from [12, 41, 70]. For completeness, we repeat the
protocol here with our tailored optimization (which removes
O(n) broadcasts and thus saves 3 additional rounds), while
deferring its security analysis and the used algorithms of plain
Shamir’s secret sharing to Appendices G.3 and F, respectively.

In OptRanTriGen, each party shares the same random se-
cret to all parties twice, using t-degree and 2t-degree plain
Shamir secret sharing without verifiability. Then, everyone
waits for these shares from all parties in order to extract t +1
random double sharings (Jr1K,Jr1K2t), · · · ,(Jrt+1K,Jrt+1K2t)
optimistically. Finally, all parties try to reduce the degree of
JabK2t to get JabK, by (i) optimistically reconstructing ab− r
by interpolating the 2t-degree shares Jab−rK2t and (ii) adding
JrK and ab− r to get JabK. As such, the fast path can simply
execute a sequence of such OptRanTriGen protocols, as long
as the latest OptRanTriGen instance can output triples in time.

Algorithm 3 OptRanTriGen adapted from [12, 41, 70] . Code of Pi

Input: System parameters
Output: Beaver_triples = {(JakK,JbkK,JckK)t+1

k=1}
// 1. Generate random double sharings

1: uniformly sample a randomness si
2: call Share(si, t) and Share(si,2t), i.e., use t-degree and 2t-

degree plain Shamir secret sharing to share the same si
3: wait for all shares (Js jKi,Js jKi

2t) sent from all n parties {Pj}:
4: (Jr1Ki, · · · ,JrnKi)←M(Js1Ki, · · · ,JsnKi)T

5: (Jr1Ki
2t , · · · ,JrnKi

2t)←M(Js1Ki
2t , · · · ,JsnKi

2t)
T

6: for each Pj ∈ {Pt+2, · · · ,Pn}:
7: Pi exclusively sends (Jr jKi,Jr jKi

2t) to Pj
8: if Pi ∈ {Pt+2, · · · ,Pn}:
9: wait for (JriK j,JriK

j
2t) sent from all n parties {Pj} j∈[n]:

10: verify that both secret shares have the correct degree
11: verify that they can be decoded to get the same r j
12: abort if any verification fails, continue otherwise

//The counterpart of line 12 in [12, 41, 70] reliably broadcasts a
bit (“OK”/“ABORT”) to cross-check the consistency of double
sharing. Our fallback (Alg. 4) allows to remove the broadcasts.

13: rnd_dou_sha←{(Jr1Ki,Jr1Ki
2t), · · · ,(Jrt+1Ki,Jrt+1Ki

2t)}
// 2. Generate random sharings

14: repeat lines 1-12 twice without doing 2t-degree sharing
15: if Pi does not abort in line 14, it obtains 2(t +1) random shares

rnd_sha←{(Ja1Ki,Jb1Ki), · · · ,(Jat+1Ki,Jbt+1Ki)}
// 3. Perform degree reduction

16: for each 1≤ k ≤ t +1: compute JckKi
2t = JakKi · JbkKi

17: invoke BatchRec(Jc1Ki
2t − Jr1Ki

2t , · · · , Jct+1Ki
2t − Jrt+1Ki

2t) and
wait for it returns (c1− r1, · · · ,ct+1− rt+1)

18: for each 1≤ k ≤ t +1: compute JckKi = ck− rk + JrkKi

19: return Beaver_triples = {(JakKi,JbkKi,JckKi)t+1
k=1}

Final protocol of dual-mode triple generation. Clearly, the
fast path built from OptRanTriGen cannot guarantee G.O.D.

Considering the reconstruction of 2t-degree shares in line 15
of Algorithm 3, it has to wait for all parties’ shares to ver-
ify they are consistent w.r.t. a unique 2t-degree polynomial.
That means, if any party crashes, OptRanTriGen would stuck
forever. Therefore, we introduce a fallback mechanism as de-
scribed in Algorithm 4, which can securely restore robustness
in the bad case that the fast path fails to progress in time or
encounters inconsistent verification.

 
 

R
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Figure 5: Dual-mode triple generation with fallback

The subtlety of fallback in an asynchronous network is that
different honest parties might quit the fast path with different
progresses. Figure 5 illustrates how our fallback mechanism
resolves this threat. We first let each party maintain a safe
buffer to temporarily withhold the outputs of the latest two
OptRanTriGen from immediate output (as their immediate
output might cause disagreement if unexpectedly encounter-
ing fallback). Given the safe buffer, once a party Pi aborts in
the r-th OptRanTriGen if detecting misbehavior or timeout, it
can just invoke a two-consecutive-value Byzantine agreement
(tcv-BA) with input r− 1 (i.e., the index of the latest com-
pleted OptRanTriGen). Then, tcv-BA outputs R, and Pi reacts
accordingly, to discard or preserve triples in its safe buffer.
Finally, the honest parties would have totally consistent fast-
path output after tcv-BA completes, and they can activate the
pessimistic path by running AsyRanTriGen to recover G.O.D.

Security analysis of dual-mode triple generation. The se-
curity of Algorithm 4 can be summarized as follows.

Theorem 3 (Validity, Secrecy, and Liveness of Dual-mode
Triple Generation). Algorithm 4 securely realizes the desired
properties of AMPC’s offline phase of multiplication triple.

Here we brief the intuitions of proving the above security
theorem and defer details to Appendix G.3 for space limit:

• For validity, we first prove a lemma: if any honest party
outputs in the r-th OptRanTriGen of fast path, then all
honest parties already output triples up to the (r-1)-th
OptRanTriGen. Then, for the validity and agreement of
tcv-BA, all honest parties must obtain a common R dur-
ing fallback, and R represents an OptRanTriGen instance
where at least an honest party has outputted. Therefore,
all honest parties can finalize consistent fast-path triples
with the same progress according to R-1.
• For secrecy, it is straightforward as both fast and pes-

simistic paths have provable secrecy, and our sequential
composition of them would inherit their secrecy.
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• Liveness is immediate, as (i) everyone can quit from a
failed fast path after timer expires, (ii) the termination of
tcv-BA and AsyRanTriGen then ensure the pessimistic
path to always progress even if in the worst case.

Algorithm 4 Dual-mode offline triple generation . Code for Pi

Input: System parameters
Output: A sequence of multiplication triple shares

// Fast path
1: initialize a timer ∆ that expires after τ

2: initialize safe buffer Pending_1 = /0 and Pending_2 = /0

3: for r ∈ {1,2,3, · · ·}:
4: reset timer ∆ and activate an OptRanTriGenr instance for r
5: if OptRanTriGenr returns Beaver_triplesr before ∆ expires:
6: if Pending_2 not empty: output Pending_2
7: Pending_2 = Pending_1, Pending_1 = Beaver_triplesr
8: else //If OptRanTriGenr either aborts or doesn’t output in time
9: activate tcv-BA with input r−1 and wait for it returns R

//Preserve fast-path triples until the (R-1)-th OptRanTriGen
10: if R = r−2: discard Pending_2 and Pending_1
11: if R = r−1: output Pending_2 and discard Pending_1
12: if R = r: output Pending_2 and Pending_1
13: break

// Pessimistic path
14: while true: run an AsyRanTriGen instance and output its result

Complexities. Our fast path prepares triples with amortized
O(n) communication, in the good case of a synchronous net-
work without actual corruptions. In the worst case, our pes-
simistic path attains an amortized O(n2) per-triple overhead.
Both paths achieve concrete improvements as well: (i) the
fast path reduces the number of communication rounds by
3 compared to hbMPC; (ii) the pessimistic path reduces the
number of shared secrets by a factor of 3 compared to GS23.

7 Towards Efficient AMPC-as-a-Service

Realizing Dumbo-MPC as robust AMPCaaS. Given our ro-
bust offline protocols, we can directly instantiate the robust
offline phase of Dumbo-MPC using them. While for the on-
line phase, it can mostly inherit the already performant and
robust design from hbMPC, which consists of three main sub-
phases: (i) function ordering, (ii) input solicitation and (iii)
function evaluation. Here “function ordering” enables AMPC
servers reach an agreement on the function to evaluate, “input
solicitation” lets AMPC servers gather the private inputs from
a sufficient number of clients (which usually is realized by a
special variant of asynchronous Byzantine agreement known
as asynchronous common subset, and can also be dedicatedly
optimized as discussed in Appendix E), and finally, “function
evaluation” lets AMPC servers privately evaluate the function
on the solicited private inputs.

Notably, each above online sub-phase can be realized via
black-box invocation of standard techniques, and they are
neither the bottleneck of efficiency nor the obstacles to robust-
ness, so our primary focus is the design and implementation

of a more efficient robust offline phase throughout the paper.
For those reasons, we wouldn’t repeat the online phase design
here, and refer readers interested in its details to Appendix E.
Optimizing consensus component. Dumbo-MPC heavily
relies on MVBA—a specific asynchronous Byzantine agree-
ment protocol, to overcome network asynchrony by explicitly
reaching consensus in both the online and offline phases. For
efficiency of this critical component, we put forth the notion
of optimistically terminable asynchronous MVBA (otMVBA)
and give its generic construction. Our otMVBA construction
is an MVBA that can deterministically and responsively ter-
minate in 5 asynchronous rounds, under optimistic conditions
like the network is synchronous and a certain party is honest.

As opposed, earlier MVBAs [4, 47, 59, 72] terminate in
about 7 rounds after at least one invocation of randomized
coin flipping, even if in the best conditions.9 Our core idea
to realize optimistic termination is forbidding the arbitrary
choice of output during the pessimistic case, by enforcing
a non-leader party to either (i) obtain a threshold signature
attesting that no honest party would ever output in the good
case, or (ii) wait for another mutually exclusive threshold
signature fixing the good-case output. Readers interested in
otMVBA can find sufficient details in Appendix H.

8 Implementation and Evaluations

We implemented Dumbo-MPC, especially its offline phase.10

Triple generation protocol of GS23 [57] is also implemented
for fair comparison. We finally evaluate and experimentally
compare Dumbo-MPC, hbMPC [70] and GS23, in different
network settings with varying system scales and different
fault numbers. Note that we do not evaluate the incomparable
protocols like DXKR23 [43] for generating double random
sharing, as their pre-processed 2t-degree secret shares could
fail in reconstruction during the online phase, compromising
either online robustness or optimal n/3 resilience.

8.1 Implementation and Experiment Setup
Implementation. All evaluated protocols are written in the
same language of Python 3 as forks of the open-source im-
plementations of hbACSS [84] and hbMPC [70]. The p2p
channels utilize unauthenticated TCP sockets, and concurrent
tasks are managed by Python’s asyncio library. We use pair-
ing friendly elliptic curve BLS12-381 for Dumbo-MPC, atop
which Boldyreva’s BLS threshold signature [19] and KZG
polynomial commitment [66] are implemented. For GS23, we
use secp256k1 curve to implement Pedersen commitments.
All elliptic curve implementations are from gnark-crypto [23].
We choose a 256-bit prime field for Shamir secret sharing.

9Ditto [52] once presented 2-chain VABA and claimed it as an MVBA
with 5-round optimistic latency, but its recentest version withdraws the result.

10Note that the online phase is not efficiency bottleneck, and it can be
mostly forked from hbMPC [70] with adaptions to its consensus components.
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Experiment setup. We evaluate Dumbo-MPC and GS23
[57] using AWS EC2 c6a.8xlarge instances installing Ubuntu
20.04 LTS and equipped with 32 vCPUs and 64 GB mem-
ory.11 We run tests with varying scales for n = 4, 10, 22, and
31 parties in the same AWS region at Virginia, which reflects
a LAN deployment setting. As an affordable and reproducible
WAN benchmarking approach, we utilize Linux TC tool to re-
strict the upload bandwidth of each instance to 500 Mbps and
set the network’s round-trip time (RTT) to 150 ms, followed
by re-running all tests in this simulated WAN setting.
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Figure 6: Throughput v.s.
batch in AsyRanTriGen.
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scale in the LAN setting.

4 10 22 31
Scale (# of parties)

0

300

600

900

1200

1500

# 
of

 tr
ip

le
s p

er
 se

c. DumboMPC(Asy.)
DumboMPC(Opt.)
hbMPC
GS23

Figure 9: Throughput v.s.
scale in the WAN setting.

4 10 22 31
Scale (# of parties)

0

100

200

300

400

Co
m

m
. (

K
By

te
) DumboMPC(Opt.)

DumboMPC(Asy.)
hbMPC
GS23

Figure 10: Communication
cost per node per triple.

0 5 10 15 20 25 30 35 40
Execution Time (sec.)

0

15000

30000

45000

60000

# 
of

 tr
ip

le
s

DumboMPC
hbMPC
Fallback
GS23

Figure 11: Execution with
fallback for n = 4 (in LAN).

8.2 Evaluation results
Choices of batch size. Dumbo-MPC has a critical parameter
of batch size, which specifies the number of random secrets
taken as input in each triple generation protocol. Clearly, the
throughput of triples is closely related to the choice of batch
size: A larger batch size might render a higher throughput, as a
result of amortizing the fixed overheads, but an unnecessarily
large batch might cause dramatic increment of latency. We
evaluate Dumbo-MPC under varying batch sizes (1000, 5000,
10000, 15000 and 20000) in the LAN setting at different

11Note that we choose the high-profile EC2 instance to accommodate large
memory requirement instead of achieving parallelization speed-up, cf. our
experiments conducted on different EC2 instances (Appendix I.2), which
reveals there is no performance gain through parallelization over extra CPUs.

scales of n= 4, 10, 22 and 31. Figures 6 and 7 plot the trade-
off between throughput and batch size in AsyRanTriGen and
OptRanTriGen, respectively. Clearly, while the batch size
increases, throughput starts to grow rapidly but soon becomes
stable. In almost all scales, the throughput reaches a plateau
after the batch size ≥ 5000, thus leading us to choose a fixed
batch size of 5000 throughout all later experiments.
Triple throughput. Figures 8 and 9 plot the throughput per-
formance of Dumbo-MPC compared with GS23 and hbMPC,
in the LAN and WAN settings, respectively. Though through-
puts of all evaluated protocols decrease while the system scale
is larger, AsyRanTriGen of Dumbo-MPC outperforms GS23
if n≥ 10 in LAN, and is always superior to GS23 in WAN. In
particular, when n = 31, AsyRanTriGen realizes a throughput
of 94 triples/sec in LAN, 2X that of GS23. For our OptRanTri-
Gen protocol, it can optimistically generate 349 triples/sec
when n = 31 in the LAN setting, resulting in a throughput
6X of GS23 and about 10% larger than hbMPC. Moreover,
restricting bandwidth to 500 Mbps and RTT to 150 ms only
causes marginal decrement in triple throughput. When n = 31
in WAN, OptRanTriGen (resp. AsyRanTriGen) generates 339
(resp. 72) triples/sec, 7X (resp. 2X) that of GS23.
Communication cost. Figure 10 reports the amortized per-
node communication for each triple. As expected, OptRanTri-
Gen and hbMPC have the least communication (i.e., constant
per-node overhead about 10 KB for each triple). GS23 ex-
hibits the worst asymptotic behavior and is concretely worse
than AsyRanTriGen, since GS23 needs to share 3n secret per
triple but AsyRanTriGen only shares n secrets per triple.
Performance with fallback. To understand the performance
of the evaluated protocols in the bad case, we examine an ex-
ecution that begins with optimistic conditions and later enters
a bad case due to a malicious party. As Figure 11 plots, al-
though both Dumbo-MPC and hbMPC can outperform GS23
during the good case, hbMPC grinds to a halt when a party
misbehaves (as shown by the red region in Figure 11). Clearly,
Dumbo-MPC achieves the best of both AsyRanTriGen and
OptRanTriGen, harvesting efficiency in good case and simul-
taneously preserving robustness in all situations.
Additional tests. For space limit, we defer more evaluation
results like the impact of crash nodes and the pre-processing
latency of specific tasks (auction and shuffling) to Appendix I.

9 Conclusion

We design Dumbo-MPC—a set of concretely efficient AMPC
protocols in the classic offline-online paradigm, to circumvent
the severe robustness-efficiency trade-off of existing AMPC
protocols like GS23 and hbMPC. Dumbo-MPC is also the
first implemented AMPC with all-phase G.O.D., featuring
a novel dual-mode robust offline phase dedicated optimiza-
tions for each crucial sub-protocols. Extensive experiments
showcase its promising performance in various applications.
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A More Discussions on Related Studies and
Alternative Design Choices

A.1 Related studies

MPC has attracted a great amount of attentions since its for-
mulation in 1980’s, and it has been a subject involving a huge
line of studies. Here we go over a few relevant results and dis-
cuss their limitations in the context of realizing more efficient
fully asynchronous MPC.

MPC protocols based on additive secret sharing, such as
SPDZ [40] and EMP [88] and its descendants [67], can tol-
erate dishonest majority with resilience t < n. However, they
would be aborted if there is any corrupted party, and thus
might fail to realize guaranteed output delivery. The lack of
G.O.D. (or more general, the loss of fairness) is inherent for
any dishonest majority MPC protocols without extra setups.

Robust MPC in the synchronous setting with honest ma-
jority has been extensively studied [12, 51, 54, 56, 62], and
O(n) per-gate communication complexity has been achieved
in the setting, but their robustness and even privacy might be
violated in an asynchronous network. In particular, dispute
control [11], that is restarting the computation after detecting
and eliminating faulty parties, is used to handle faulty parties
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for t < n/3 [12, 41] and t < n/2 [41, 56, 62] to construct se-
cure MPC protocols in synchronous network. However, such
protocols depending on the ability to time out nodes are vul-
nerable to unresponsive attack [70]. As such, if t honest nodes
are temporarily isolated from the network due to asynchrony,
the honest nodes would be removed from the system, and the
remaining malicious parties may jeopardize the privacy of
(clients’) private inputs. HyperMPC [8] is designed to adapt
to low bandwidth MPC based on [12] in the n/3 setting, and
fails to guarantee output as it works with 2t-shares both in the
offline and online phase. In the offline phase, random double
sharing of security with abort is needed to generate double
shares (e.g., degree-t shares and a degree-2t shares of some
random secrets). During online phase, parties have to recon-
struct 2t-shares, which is infeasible to provide guaranteed
output delivery in n/3 asynchronous setting.

In the asynchronous setting, MPC protocols usually em-
ploy asynchronous agreement protocols (e.g., asynchronous
common subset [16, 47, 60, 76, 90]) to evaluate the function
with only the n− t fastest parties’ inputs. The topic was ini-
tially studied in the setting of computationally-unbounded
adversaries [14, 15, 32, 34, 78, 80, 83]. Perfectly secure asyn-
chronous MPC without any error probability recently was
also designed for (t < n/4) with linear per-gate communica-
tion overhead [1]. Unconditionally secure asynchronous MPC
protocols can also be designed to realize optimal t < n/3 toler-
ance (in the presence of negligible small error probability). In
this setting, the first design [16] incurs O(n11) per-gate com-
munication complexity, and later was improved to O(n5) [79]
and O(n4) [31, 35]. Very recently, Goyal et al. [55] proposed
the first unconditionally secure AMPC with linear per-gate
communication and optimal t < n/3 resilience, but unfortu-
nately, it has a prohibitive O(n14) circuit-independent com-
munication overhead (which might be not surprisingly as the
stringent setting of unconditional information-theory setting
brings extra design overhead).

For computationally secure AMPC using cryptography,
several protocols are proposed based on additive/somewhat
threshold homomorphic encryption [30, 33, 64], where arith-
metic operations are performed on ciphertexts in the online
phase. In [33], threshold somewhat homomorphic encryption
(e.g., BGN cryptosystem [22]) is used as a primitive to con-
struct encrypted MPC protocol, which might take expected
Õ(2

√
w) time to decrypt ciphertext using Pollard’s lambda

method (where w is the bit-length of secret share field), likely
causing its implementation only suitable for Boolean circuits
(or arithmetic circuits defined over very small fields). hbMPC
[70] does not require any homomorphic encryption, and it
is proposed to guarantee output in the online phase but only
provides security with abort in the offline phase (since its
offline requires to reconstruct 2t-shares).

A recent work of Das et al. [43] presents an efficient asyn-
chronous random double sharing (ARDS) protocol, but the
result alone fails to robustly reconstruct 2t-shares while eval-

uating a multiplication gate in the online phase for t < n/3.
Very recently, a couple of studies [57, 82] achieve guaran-
teed output delivery in asynchrony, but with cubic per-gate
communication overhead in the worst case.

Other theoretic asynchronous MPC protocols feature a
constant-round online phase independent of the circuit depth,
making use of different underlying cryptographic primitives,
such as FHE [36] and pseudo-random generator [37]. But
they either exhibit a large communication overhead that is
quadratic in n and linear in circuit size (to privately compute a
distributed version of garbled circuit through another AMPC
protocol like ours) [37], or/and suffer from large online com-
putational cost like expensive FHE self-ootstrappings that are
linear to the circuit’s multiplicative depth [36].

A.2 Efficiency issues of alternative designs
Noticeably, there indeed exist a few alternative design choices
of asynchronous triple generation with asymptotic complex-
ities that are similar to or even better than ours, but their
concrete performance could be problematic. Here we briefly
explain the reasons of their inferior performance.
Possible instantiations of Goyal et al. [55]. The AMPC pro-
tocol of Goyal et al. [55] achieves a communication cost of
O(|C|n+Dn2 + n6κ+ n7) plus O(n2) invocations of ACSS
to share O(|C|) degree-t Shamir sharings, where |C| is circuit
size and D is circuit depth. Though Goyal et al. [55] originally
focus on the information theoretic setting, we nevertheless
can instantiate the protocol by more efficient computationally-
secure components, using the best-possible (computationally-
secure) ACSS [3, 84] and coin flipping [28]. However, for
concrete efficiency, the protocol of Goyal et al. [55] needs
to verifiably share hundreds or thousands of secrets for each
triple, if using their suggested security parameters. Though we
require n secrets to be shared for each triple (which is asymp-
totically worse), our approach is still concretely more efficient
for typical system scales like several dozens of parties.
Possible instantiations of Choudhury et al. [35]. Notice-
ably, if we employ the state-of-the-art computationally-secure
ACSS, such as hbACSS and Bingo, to instantiate the recent
(statistically-secure) AMPC framework from Choudhury et
al. [35], an AMPC with quadratic per-gate communication
overhead can also be realized, but its concrete efficiency is
significantly worse than our design, as it requires 6n secrets
to be shared for generating each triple, which is six times
larger than ours and two times larger than GS23. Shoup and
Smart [82] also observe that a happy path can be embedded to
the AMPC framework of Choudhury et al. [35] by (optimisti-
cally) waiting for messages sent from more than n− f parties,
but this happy path has an execution flow same to the orig-
inal fully asynchronous protocol, which involves too many
redundant communication rounds to circumvent asynchrony,
making it concretely less efficient than our dedicated fast path
particularly tailored for the good case.
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AMPC from tSHE/tFHE. In the Shamir-based tFHE/tSHE
scheme, smudging noise could be amplified by Lagrange co-
efficients during reconstruction, resulting in a modulus in-
crease on the order of O(n!3) [20]. To mitigate this modulus
growth, binary coefficients have been utilized in constructing
tFHE/tSHE schemes, but such approach incurs significant
space overhead, as the size of each secret key share grows to
at least O(n4.2). Some recent works [77, 81] employ a thresh-
oldizer that uses additively shared secret keys to construct
tFHE/tSHE with further using Shamir secret sharing to re-
share each additive key share, but this thresholdizer essentially
requires all nodes to remain online for perform decryption,
otherwise when some party is not responsive due to trigger
some timeout, it would invoke the reconstruction of Shamir
secret sharing to publicly open this lost additive share, mak-
ing it clearly unsuitable for asynchronous settings (because
an asynchronous adversary can force to recover all honest
parties’ additive key shares).

B PCwHE: Definition and Security Proofs

B.1 Definition of PCwHE
For presentation simplicity, Section 4 refrains from giving a
formal definition of polynomial commitment with hidden eval-
uation (PCwHE), and only describes a concrete construction
of such augmented polynomial commitment atop the KZG
scheme. Here for rigorousness, we formally define the notion
of polynomial commitment with “hidden evaluation” below.

Definition 1. A polynomial commitment with hidden evalua-
tion is a tuple consisting of the following algorithms:

• Setup(1κ, t)→SP: given a security parameter κ and an
upper bound t restricting the degree of any polynomial
to be committed, it generates system parameter SP.
• PolyCom(SP,φ(·), φ̂(·))→C: it computes a commitment

C for a given polynomial φ(·) with a random polynomial
φ̂(·) using system parameter SP. PolyCom(SP,φ(·))→
(C, φ̂(·)) also denotes it with a random φ̂(·) as auxiliary
output.
• ProveEval(SP, i,φ(·), φ̂(·)) → (i,φ(i), φ̂(i),wi): given a

point i and polynomials φ(·) and φ̂(·), it returns poly-
nomial evaluations φ(i) and φ̂(i) as well as an evaluation
proof wi.
• VerifyEval(SP,C, i,φ(i), φ̂(i),wi) → {0,1}: it checks

whether φ(i) and φ̂(i) are correct evaluations of the poly-
nomials committed to C at the point i. If the verification
succeeds, it outputs 1, otherwise it returns 0.
• HiddenEval(SP, i,φ(·), φ̂(·))→ (i,Ti,ωi): given a point i

and polynomials φ(·) and φ̂(·), it outputs a hidden evalu-
ation Ti (which can be analog to a commitment of φ(i))
and a hidden evaluation’s proof ωi. Sometimes, we re-
quire another form of HiddenEval′(SP, i,wi,φ(i), φ̂(i))→

(i,Ti,ωi), which takes only evaluations and correspond-
ing proof (instead of the whole polynomials) as input but
can compute the same output.
• OpenHiddenEval(SP,φ(i), φ̂(i),Ti)→ {0,1}: this is ana-

log to the opening of commitment, which verifies
whether φ(i) and φ̂(i) are committed behind Ti, and re-
turns 0 (reject) or 1 (accept).
• VerifyHiddenEval(SP,C, i,Ti,ωi)→{0,1}: given a poly-

nomial commitment C, a hidden evaluation Ti, and a hid-
den evaluation proof ωi, it checks whether Ti commits the
evaluation of the polynomial committed to C at the point
i, and returns a bit of verification result (0 as rejected and
1 as accepted).

Adapting from [66], we require that a polynomial commit-
ment scheme (with hidden evaluation interfaces) shall satisfy
the properties of correctness, polynomial binding, evaluation
binding, hiding and hidden evaluation’s binding, with over-
whelming probability. We wound not repeat them here as they
have been already formalized in Section 4.

B.2 Security proofs of the PCwHE
construction from augmented KZG

Theorem 4. Assuming the hardness of the discrete logarithm
problem and t-strong Diffie-Hellman (t-SDH) problem over
the given bilinear group, the augmented KZG scheme pre-
sented in Figure 2 securely realizes a polynomial commit-
ment scheme with hidden evaluation, i.e., ensures correctness,
polynomial binding, evaluation binding, hiding and hidden
evaluation’s binding with overwhelming probability.

Proof. Here we prove the properties of our augmented KZG
polynomial commitment with hidden evaluation below.
Correctness. This is trivial, as evaluations and hidden evalua-
tions can always pass verification if they and their associating
proofs are correctly computed.
Evaluation binding. Suppose that there exists an adver-
sary A that breaks the evaluation binding property of
commitment C, and computes two tuples (i,φ(i), φ̂(i),wi)
and (i,φ(i)′, φ̂(i)′,w′i) for index i that are both verified by
VerifyEval with non-negligible probability. Then, an algorithm
B that uses A as a sub-routine can be constructed to break
the t-SDH assumption with non-negligible probability. The
detailed proof follows that of Theorem 3.3 in the original
KZG paper [66], and we refrain from repeating it here.
Polynomial binding. Suppose that for the honestly gener-
ated system parameter SP, the adversary A outputs the tu-
ple (C, I1, I2,{(φ(i), φ̂(i),wi)}i∈I1∪I2), where |I1|= |I2|= t+1
and for ∀i ∈ I1∪ I2, (i,φ(i), φ̂(i),wi) is accepted by VerifyEval
regarding the commitment C with non-negligible probability.
Then consider the following two cases:

• I1∩ I2 6= /0: This indicates that there exists at least one in-
dex i ∈ I1 and j ∈ I2 where i = j such that the two tuples
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(i,φ(i), φ̂(i),wi) and ( j,φ( j), φ̂( j),w j) are successfully
verified by VerifyEval. Following from the proof of evalu-
ation binding, we can construct an algorithm B to break
the t-SDH assumption with non-negligible probability.

• I1 ∩ I2 = /0: The adversary A outputs two set of shares
(I1,{φ(i), φ̂(i)}i∈I1) and (I2,{φ(i), φ̂(i)}i∈I2) that are ver-
ified by VerifyEval for the same commitment C where
the index set I1∩ I2 = /0 and |I1|= |I2|= t +1. Then, an
algorithm B can interpolate two polynomials φ1(·) and
φ2(·) where φ1(·) 6= φ2(·). There are two polynomials
φ1(·) 6= φ2(·) that are committed to same commitment
C. By the proof of Theorem 3.3 in [66], we can con-
struct an algorithm B to break the DL assumption with
non-negligible probability.

Therefore, the probability to break the polynomial binding
property is equal to break the t-SDH assumption and DL
assumption, which are negligible.
Hidden evaluation binding. Suppose that for honestly
generated system parameter SP, the adversary A outputs
the tuple (C,(i,φ(i), φ̂(i),Ti,wi),(i,φ(i)′, φ̂(i)′,T ′i ,w

′
i)) where

φ(i) 6= φ(i)′ and φ̂(i) 6= φ̂(i)′, which can be both verified by
VerifyHiddenEval and OpenHiddenEval. Consider the follow-
ing two cases:
• Ti 6= T ′i : this implies that two accepted tuples
(i,φ(i), φ̂(i),wi) and (i,φ(i)′, φ̂(i)′,w′i) are produced for
same index i. However, this violates the evaluation bind-
ing property.

• Ti = T ′i : this indicates that Ti = gφ(i)hφ̂(i) = T ′i =

gφ(i)′hφ̂(i)′ , which breaks the binding property of Pedersen
commitment - this holds as long as computing discrete
logarithms is intractable in G.

Therefore, the probability to break the hidden evaluation bind-
ing property is equal to break the evaluation binding of KZG
commitment and the binding property of Pedersen commit-
ment, which are negligible.
Hiding. We will prove that A’s view is identically distributed
in the real protocol execution and the ideal world through a
sequence of games down below.

• Game 0: This corresponds to the real-world execution.

• Game 1: Same as Game 0 except that the secret key α

and τ is uniformly sampled from known Zq. Game 1 is
indistinguishable from Game 0 as the distribution of SP
is identical in both games.

• Game 2: This corresponds to the simulated world. The
difference between Game 1 and Game 2 is that the com-
mitment, witness, and hidden evaluation are generated
by Sim1, Sim2 and Sim3 of Figure 12. It is obvious that
all witnesses and hidden evaluations can pass the verifi-
cation given the commitment. Consider the worst case
that |I1|= t and |I2|= n, the outputs of the simulator are
(C,{i,φ′(i), φ̂′(i),wi}i∈I1 , {i,Ti,ωi}i∈I2) where C = gc is

uniformly distributed in G, Ti = gφ′(i)hφ̂′(i) and ωi =wi =

g
φ′(α)−φ′(i)

α−i h
φ̂′(α)−φ̂′(i)

α−i . In the real world, there must exist a
hiding polynomial φ̂(·)=(φ′(·)−φ(·)) · τ−1+φ̂′(·) such
that the output is completely identical to that in Game 2.
Thus, Game 2 is identically distributed as Game 1.

Hiding Simulator for KZG with Hidden Evaluation
1. Sim0(1κ, t): choose random trapdoors (α,τ) and run

KZG.Setup(1κ, t) using the trapdoors, then output (SP,st)
where st = (α,τ).

2. Sim1(st): return C←gc where c is uniformly sampled from
Zq.

3. Sim2(SP,(C,c),{i,φ(i)}i∈I1):

(1) set Q← I1 and Q′← /0. Choose i ∈ [n]/I1,φ(i)← Zq and
set Q← Q∪{i} until |Q|> t.

(2) interpolate φ′(·) from {(i,φ(i))i∈Q}.
(3) compute φ̂′(α)← c−φ′(α)

τ
.

(4) set Q′ ← {α}. Choose k ∈ [n], φ̂′(k)← Zq and set Q′ ←
Q′∪{k} until |Q′|= t +1.

(5) interpolate φ̂′(·) from {(k, φ̂′(k))k∈Q′}.

(6) for ∀i ∈ I1, compute wi← g
φ′(α)−φ′(i)

α−i h
φ̂′(α)−φ̂′(i)

α−i .
(7) return ({wi}i∈I1 ,φ

′(·), φ̂′(·)).

4. Sim3(SP,φ′(·), φ̂′(·), I2):

(1) for ∀i ∈ I2, compute Ti← gφ′(i)hφ̂′(i), and

ωi← g
φ′(α)−φ′(i)

α−i h
φ̂′(α)−φ̂′(i)

α−i .
(2) return ({Ti,ωi}i∈I2).

Figure 12: Hiding simulator (Sim0,Sim1,Sim2,Sim3) for
KZG polynomial commitment w/ hidden evaluation.

C Batch ACSS

C.1 Definition
For completeness, we formally define batch ACSS with addi-
tively homomorphic commitment (BACSS) down below.

Definition 2 (BACSS). Syntactically, a (t,n) BACSS protocol
sharing B secrets consists of the next two sub-protocols:

• Share. The dealer inputs a batch of secrets (s1, · · · ,sN)
and samples N t-degree polynomials to share these
secrets to all parties. For every Pi, it can obtain
{(Ck,JskKi,JŝkKi,wi

k)k∈[N]}, namely, the i-th shares of all
secrets, and all corresponding polynomial commitments
and evaluation proofs. Here shares (JskKi,JŝkKi) can be
verified due to polynomial commitment Ck and evalua-
tion proof wi

k, such that JskKi is indeed the evaluation of
polynomial committed to Ck at the point x = i.

• Rec. Each party Pi takes {(Ck,JskKi,JŝkKi, wi
k)k∈[N]} the

output of Share phase as input, such that the honest par-
ties can selectively recover any k-th secret sk.
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BACSS satisfies the basic properties of ACSS: correctness,
termination and secrecy, which are defined as follows.

• Correctness. If the dealer is honest, then for every k ∈
[N], each honest party eventually outputs a share φk(i)
where φk(·) is a random polynomial with φk(0) = sk.

• Completeness. If any honest party receives output, then
for every k ∈ [N], there exists a unique degree-t poly-
nomial φ̃k(·) such that each honest party Pi eventually
outputs φ̃k(i). Moreover, if the dealer is honest, s̃k = sk.

• Secrecy. If the dealer is honest, then a computationally
bounded adversary learns no information about φk(·) ex-
cept for the shares of corrupted parties for every k ∈ [N],
except with negligible probability.

Additionally, we require BACSS to satisfy the next property
of additive homomorphism (over multiple sessions):

• Additive Homomorphism. For each honest party
Pi, if it obtains {(Ck,JskKi,JŝkKi,wi

k)
N′
k=1} from a few

BACSS protocols (i.e., multiple sessions), then for any
s that is a linear combination of (s1, · · · ,sN′), Pi can lo-
cally and deterministically compute its exclusive share
JsKi of s through {JskKi}N′

k=1, a polynomial commitment
C binding some polynomial φ(·) with φ(0) = s through
{Ck}N′

k=1, and also an evaluation proof wi attesting that
JsKi is an evaluation of φ(·) at the point x = i.

C.2 Instantiation with patch
for concurrent compatibility

We instantiate a concurrently composable BACSS on top of
hbACSS [84] using KZG polynomial commitment. In the
instantiation, we patch the original hbACSS in the following
way: (i) a public key encryption with IND-CCA security (in-
stead of IND-CPA) is used for encrypting secret shares; (ii)
Each party Pi selects n public keys {pki1, · · · , pkin}, where
pki j is exclusively used in a BACSS protocol if it has a des-
ignated dealer Pj. The detailed protocol flow mostly inherits
[84] and is presented in Algorithm 5.

Note that in the above description, (Disperse,Retrieve) rep-
resent the tuple of sub-protocols consisting of (batch) asyn-
chronous verifiable information dispersal (AVID) [6, 29, 61].
Disperse enables a dealer verifiably disperse a batch of mes-
sages (e.g. n messages) to the whole network, and Retrieve
enables all parties in the network to help a certain party Pj to
recover some specific dispersed messages (e.g. the j-th dis-
persed message). Since the construction of such batch AVID
is rather standard [84], we refrain from repeating them.

Algorithm 5 BACSS_Sharei(N) (from [84] with our patch for
concurrent composability) . Code for Pi

Setups (that are already established before the protocol executes):

1: each Pi samples n private keys {ski j} j∈[n] for IND-CCA secure
PKE and computes the corresponding public keys pki j = gski j ;

2: publish the set of public keys {pki1, · · · , pkin}i∈[n] for each Pi;
3: publish the common reference string SP of KZG commitment.

Dealer Pl:
if i = l, dealer Pl waits for input secrets (s1, · · · ,sN) and runs:

1: sample N random degree-t polynomial φ1(·), · · · ,φN(·) such
that for k ∈ [N], each φk(0) = sk, where sk is randomly sampled
from Zq

2: C = {C1, · · · ,CN}← {PolyCom(SP,φk(·))}k∈[N] . compute a
batch of polynomial commitments

3: ReliableBroadcast(C)
4: for j = 1 to n . Disperse the shares and witnesses
5: for k = 1 to N
6: {φk( j), φ̂k( j),w j

k}← ProveEval(SP, j,φk(·), φ̂k(·))
7: z j← Encpk jl ({φk( j), φ̂k( j),w j

k}k∈[N])
8: Disperse({z j} j∈[n])

Every party:
// Wait for broadcasts

1: wait to receive C = {C1, · · · ,CN}← ReliableBroadcast
2: wait for Disperse to complete

// Decrypt and validate
3: zi← Retrieve(i)
4: {φk(i), φ̂k(i),wi

k}k∈[N]← Decskil (zi)

5: if BatchVerifyEval(SP,C,{φk(i), φ̂k(i),wi
k}k∈[N]) 6=1 or decryp-

tion fails
6: sendall (Implicate,skil)
7: otherwise, valid shares {(Ck,φk(i), φ̂k(i),wi

k)}k∈[N] are owned,
so sendall OK
// Bracha-style agreement

8: on receiving OK from 2t +1 parties,
9: sendall READY

10: on receiving READY from t+1 parties and do not send READY,
11: sendall READY
12: wait to receive READY from 2t +1 parties,
13: if all owner shares are valid then
14: output shares {(Ck,φk(i), φ̂k(i),wi

k)}k∈[N]

// Handling Implication
15: on receiving (Implicate,sk jl) from some Pj,
16: ignore if already in Share Recovery or pk jl 6= gsk jl

17: z j← Retrieve( j)
18: if BatchVerifyEval(SP,C, j,{φk( j), φ̂k( j),w j

k}k∈[N]) 6= 1 or
decryption fails

19: proceed to Share Recovery below

// Share Recovery
Pi has already received commitment {Ck}N

k=1
1: for each set of t +1 secrets in N
2: if i≤ t +1: C′i ←Ci
3: else
4: C′i ←

t+1
∏

k=1
Cλk

k , where λk is the value of k-th Lagrange inter-

polating polynomial at zero-point
5: if previously receiving valid shares
6: interpolate ψi(·) from {(k,φk(i))}k∈[t+1]
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7: interpolate ψ̂i(·) from {(k, φ̂k(i))}k∈[t+1]
8: for j = 1 to n
9: if j ≤ t +1: w j

i ← wi
j

10: else w j
i ←

t+1
∏

k=1
(wi

k)
λk , where λk is the value of k-th La-

grange interpolating polynomial at zero point
11: send (R1,ψi( j), ψ̂i( j),w j

i ) to Pj
// R1 phase

12: set R1i← /0

13: upon receiving (R1,ψ j(i), ψ̂ j(i),wi
j) from Pj

14: if VerifyEval(C′i , j,ψ j(i), ψ̂ j(i),wi
j) = 1

15: R1i← R1i
⋃
{ j}

16: if |R1i| ≥ t +1
17: interpolate ϕi(·) from {(k,ψk(i))}k∈R1i

18: interpolate ϕ̂i(·) from {(k, ψ̂k(i))}k∈R1i

19: for each Pj
20: send (R2,ϕi( j), ϕ̂i( j)) to Pj

// R2 phase
21: set R2i← /0

22: upon receiving (R2,ϕ j(i), ϕ̂ j(i)) from Pj
23: R2i← R2i

⋃
{ j}

24: if|R2i| ≥ 2t +1
25: robustly interpolate ψi(·) from {(k,ϕk(i))}k∈R2i

26: robustly interpolate ψ̂i(·) from {(k, ϕ̂k(i))}k∈R2i

27: for k = 1 to t +1
28: (k,φk(i), φ̂k(i),wi

k)←ProveEval(SP, i,ψi(·), ψ̂i(·)) .

φk(i) = ψi(k) and φ̂k(i) = ψ̂i(k)
29: output shares {Ck,φi(k), φ̂i(k),wi

k}k∈[t+1]

C.3 Secrecy vulnerability without
our patch of concurrent compatibility

If one carelessly instantiates BACSS directly using the origi-
nal hbACSS [84] without our patch of concurrent compatibil-
ity, there could be a serious threat of privacy when simulta-
neously executing multiple such BACSS protocols. The core
idea of this attack is twofold: (i) a malicious party can obtain
all messages from an honest dealer with non-negligible prob-
ability, and (ii) the malicious party disperses these messages
within its own BACSS, raising a valid implication to recover
the secrets of the honest dealer. Here we describe the con-
crete attack of secrecy, for two concurrent BACSS protocols
(BACSSh and BACSSm), where BACSSh and BACSSm are
executed by n = 7 parties with t = 2 malicious participants
(Pm,Pk), BACSSh has an honest dealer, and BACSSm has a
malicious dealer. The attack is performed as follows:

1. Waiting for up to t messages from the honest dealer. In
BACSSh, the honest dealer Ph computes secret shares for
all parties and encrypts shares using the public key of
party Pj, resulting in ciphertexts z j of size 2λ+ l bits (as-
suming the ciphertext space is λ bits). Through specific
error-correcting coding (e.g., polynomial interpolation),
z j is encoded as (z j0 ,z j1 , · · · ,z j6), where z jm and z jk rep-
resent the first 2λ bits of the ciphertext z j. The dealer
then sends z ji to party Pi for each i ∈ [6].

Noticeably, the adversary can at most receive t messages
from the honest dealer Ph. W.o.l.g., say the adversary
learns z j0 and z j1 for each j ∈ [6].

2. Guess the ciphertext of shares from honest dealer with
non-negligible probability. Since the adversary learns
z j0 and z j1 for each j ∈ [6], it can attempt to guess the
remaining l bits of the ciphertext with a probability of 1

2l .
Here l can be relatively small depending on the chunk-
ing parameter, and w.l.o.g., let us say l is a single bit.
Thus, the adversary can recover all ciphertext fragments
(z j0 ,z j1 , · · · ,z j6) for each j ∈ [6] with high probability.
E.g., when l = 1, the probability of correctly obtaining
all 7 shares’ ciphertext is (1/2)5, which is clearly non-
negligible. 12

Note that the fundamental reason why the adversary can
guess the ciphertext of secret shares is straightforward,
because erasure coding itself would ensure any confiden-
tiality, and the adversary can likely recover the original
message by exploiting its own t encode fragments.

3. Paste messages from honest dealer into the malicious
BACSS instance. In BACSSm, the adversary instructs the
malicious dealer Pm to do:

(a) Copy all polynomial commitments and evaluation
proofs from BACSSh, and paste them into the corre-
sponding messages of BACSSm;

(b) Encode the guessed ciphertext (z0,z1, · · · ,z6) from
the honest dealer, and paste mostly of the correct en-
coding fragments into the corresponding messages
of BACSSm, except for that zk (i.e. the ciphertext
that is supposed to be encrypted by another mali-
cious party’s public key) is replaced by a random
string of bits.

4. Force the secrets to be opened by “implication” in the
malicious BACSS instance. In BACSSm, the malicious
party Pk can send an implication message to all honest
parties. The honest parties can validate the implication
message (as it indeed receives a random string instead
of the genuine ciphertext, thus the decrypted shares are
invalid), and thus will engage in the Share recovery pro-
cedure to recover all the secrets of the honest dealer Ph.

This completes the attack, and with non-negligible proba-
bility, the adversary steals the honest dealer’s secrets.

D Zk-Proof of Product Relationship
over a Triple of Pedersen Commitments

Recall that we reduce the key problem of proving product
relation over KZG polynomial commitments to the prob-
lem of proving product relationship over Pedersen commit-
ments, which is folklore and concretely very efficient [75, 87].

12If the protocol is set up with an authentication channel but not a private
channel, malicious parties can intercept all messages from the honest dealer.
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For completeness, we repeat this standard proof-of-product-
relationship scheme over a triple of Pedersen commitments
in Figure 13. Note that we describe its non-interactive variant
due to Fiat-Shamir heuristic [50], in the random oracle model
of cryptographic hash function H .

Theorem 5. The proof of product scheme over Pedersen com-
mitments (described in Figure 13) satisfies the following prop-
erties in the random oracle model:

• Completeness: if P is honest, then V will accept its proof
with probability 1.

• Proof-of-knowledge: for any PPT adversary P ∗, there
exists a PPT extractorExt interacting with P ∗, such that
if V accepts the proof returned by P ∗with non-negligible
probability, then Ext can extract witness satisfying state-
ment with non-negligible probability.

• Zero-knowledge: for any PPT adversary V ∗, there exists
a simulator S , such that on input any valid statement
(g,h,Ta,Tb,Tc) with satisfying witness, the distribution
of S ’s output is computationally indistinguishable from
that of P ’s output.

Proof of Product over Pedersen Commitments
Both the prover P and verifier V know the public statement
(g,h,Ta,Tb,Tc). P also knows private witness a, â,b, b̂,c, ĉ such
that Ta = gahâ, Tb = gbhb̂ and Tc = gchĉ.

// Prover
• PoKProd_Ped.P ((g,h,Ta,Tb,Tc),(a, â,b, b̂,c, ĉ)):
(a) randomly sample e1, · · · ,e5 ∈ Zp;
(b) compute β = ge1 he2 ,γ = ge3 he4 ,δ = Ta

e3 he5 ;
(c) compute x = H (g||h||Ta||Tb||Tc||β||γ||δ);
(d) compute that

z1 = e1 + xa, z2 = e2 + xâ,
z3 = e3 + xb, z4 = e4 + xb̂,
z5 = e5 + x(ĉ− âb);

(e) let π1 = (β,γ,δ) and π2 = (z1, · · · ,z5);
(f) output π = (π1,π2).

// Verifier
• PoKProd_Ped.V ((g,h,Ta,Tb,Tc),π):
(a) parse π as ((β,γ,δ),(z1, · · · ,z5));
(b) compute x = H (g||h||Ta||Tb||Tc||β||γ||δ);
(c) check that

β · (Ta)
x = gz1 hz2 , γ · (Tb)

x = gz3 hz4 , δ · (Tc)
x = (Ta)

z3 hz5

(d) if all verifications pass, return 1, otherwise return 0.

Figure 13: Non-interactive variant of the folklore proof of
product relation over Pedersen commitments [75, 87].

E Online Phase Protocols

This appendix presents the deferred description of online
phase, which mostly inherits the already-performant online

phase of hbMPC. While executing the online phase, the MP-
CaaS servers first reach a consensus on the description of
functions to evaluate. Then, an input soliciting process is
initiated to determine a consensus on a subset of client in-
puts, utilizing asynchronous consensus primitives. Finally, all
servers evaluate the function using random shares and multi-
plication triples that are pre-prepared in the offline phase. In
greater detail, these steps can be instantiated as follows.
Step 1. Order the functions to evaluate. All clients first
submit the functions to be computed to a “function” pool
(which can be analog to the transaction pool or mempool
in BFT consensus). The MPCaaS servers can execute some
asynchronous atomic broadcast (i.e., BFT consensus) to agree
on the sequence of functions to evaluate, as shown in Figure
14. W.l.o.g., the agreed sequence functions to be evaluated
can be { f2, f1, · · · , fk}.
Step 2. Soliciting (masked) inputs from clients. Each desig-
nated client firstly queries the shares of a certain randomness
that is already pre-shared among the MPCaaS servers, and
thus recovers a randomness mask r that can be used to hide
its actual input m. The mask input m̂ would be r+m.

Then, an input soliciting process executes to let MPCaaS
servers reach a consensus on selecting a subset of k− c dif-
ferent clients’ masked inputs, utilizing an asynchronous con-
sensus common subset (ACS) protocol. Namely, each client
would provide its masked input to ACS, and the output of
ACS would return a set of at least k− c available (masked)
inputs to MPCaaS servers for their online function evaluation.

Once ACS is completed, each MPCaaS server can compute
the secret share JmK of each client’s input by computing m̂−
JrK, where JrK is the share of the pre-processing masking
randomness held by the MPCaaS server.
Step 3. Online evaluation. All servers engage in a standard
robust online phase of secure MPC to evaluate the function,
utilizing random shares and Beaver triples to ensure confiden-
tiality and integrity.
• Addition gate. The server can apply the linear function

on the inputs of the gate to obtain the output.
• Multiplication gate. The server can process t+1 multipli-

cation gates simultaneously and execute the BatchRec al-
gorithm [70] to robustly evaluate the t +1 multiplication
gates. Concretely, let (Jx1K,Jy1K), · · · ,(Jxt+1K,Jyt+1K)
be the inputs to these t + 1 multiplication gates and
(Ja1K,Jb1K,Jc1K), · · · ,(Jat+1K, Jbt+1K,Jct+1K) be the as-
sociated Beaver triples. Inputting (Jx1−a1K, · · · ,Jxt+1−
at+1K) to BatchRec, servers can efficiently and robustly
open (x1 − a1, · · · ,xt+1 − at+1) and similarly obtain
(b1 − y1, · · · ,bt+1 − yt+1)

13. Then each server can lo-
cally computes JxiyiK = (xi − ai)JyiK+ (yi − bi)JxiK−
(xi−ai)(yi−bi)+ JciK for each i ∈ [t +1].

13To improve efficiency of batch reconstruct, each server can maintain a
local blocklist to identify dishonest servers sending incorrect shares, thereby
disregarding shares from servers on the blocklist and minimizing tentative
interpolation. The efficiency of adding blocklist is shown in Appendix I.1.
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After finishing the circuit evaluation, servers can obtain the
secret shared outputs, and reconstruct the final output by col-
lecting enough secret shared outputs.

MVBA

(3) Online Function Evaluation(2) Efficient Inputs Soliciting

(1) Agree on the sequence of evaluated functions

Efficient online
error correcting Out:

Agree on the
sequence of

evaluated functions
via asynchronous
atomic broadcast

Out:

evaluation

Figure 14: Illustration of AMPC’s online phase.

Optimal asynchronous common subset (ACS) for solicit-
ing clients’ inputs. Although the input solicitation step of the
online phase can be built from any black-box ACS to achieve
consensus, the ACS instantiation in hbMPC is sub-optimal as
it incurs expected O(logn) rounds and O(κn3) communica-
tion cost. We instead adapt the state-of-the-art ACS [27, 72]
for input solicitation, making the circuit-independent part of
online cost to be expected O(1) rounds and O(κn2) bits. 14

Particularly, we adopt an asymptotically optimal instantia-
tion of CKPS01 ACS [27] using the communication-efficient
MVBA extension protocol [72], which proceeds as: (i) Each
client initially multicasts an “encrypted” input (that is the
input masked by a randomness shared among AMPC servers)
and a digital signature to all servers; (ii) Subsequently, each
AMPC server waits for a sufficient number of “encrypted” in-
puts signed by distinct clients; (iii) Then, each AMPC server
uses the vector of input-signature pairs from the clients to
invoke a communication-efficient MVBA protocol, and the ex-
ternal validity of MVBA is set to check if there is a sufficient
number of input ciphertexts signed by distinct clients; (iv)
Finally, MVBA returns a common vector of input-signature
pairs to every AMPC server, and the private inputs carried by
this vector would be used by all servers as inputs for function
evaluations.

F Plain Shamir Secret Sharing

Though we mainly adopt asynchronous verifiable secret shar-
ing in our pessimistic offline path for realizing robust and effi-
cient triple generation, we still widely use the plain Shamir se-
cret sharing (adapted for asynchrony) in the optimistic offline

14Note that we assume the number of clients is n and their input is κ-bit.

path and the online phase (to avoid extra cryptographic over-
heads). For reference of the readers, this appendix presents
these standard pertinent algorithms below.

Share. This simply shares a secret s with a reconstruction
threshold t +1 (i.e., t-degree sharing). Specifically, a degree-t
polynomial φ(·) is sampled such that φ(0) = s, and each share
JsK j

t = φ( j) is the evaluation of the polynomial φ(·) at point i.
The following Algorithm 6 presents Share(s, t), which allows
an honest dealer to correctly share a secret s using degree-t
polynomial across a network consisting of n parties.

Algorithm 6 Share(s, t) . Code for Pi

1: Pi samples a random degree-t polynomial φ(·) with φ(0) = s
2: for j = 1 to n
3: send JsK j = φ( j) to party Pj

Interpolation in asynchrony. Algorithm 7 outlines the stan-
dard approach for robustly decoding t-degree sharing in an
asynchronous setting (t < n/3) [12, 70]. Initially, a party
attempts to interpolate a degree-t polynomial φ(·) upon re-
ceiving any t +1 shares. If the resulting φ(·) matches the first
2t +1 received shares, it is deemed correct. In case of failure
in the optimistic scenario, a party must await additional shares
to attempt error correction. In the worst case, with t incorrect
shares received, 3t +1 total shares are required for correcting
t errors and determining a degree-t polynomial coinciding
with all 2t +1 honest shares.

Algorithm 7 Robust-Interpolate(l,JsK) [12, 70] . Code for Pl

1: send share JsKi to Pl
2: if i = l
3: wait for receiving sufficient shares of s: {JsK j} j∈[n] up to t

erasures (JsK j ∈ Zq
⋃
{⊥})

4: case of t erasures:
5: interpolate a polynomial φ from any t +1 points
6: if φ coincides with all 2t +1 point
7: return φ

8: else
9: return ⊥

10: case of t− e erasures:
11: run RSDecode decoding to correct up to e errors and re-

turn φ

Batch reconstruction. Algorithm 8 describes the amortized
batch public reconstruction (BatchRec) of t-sharings in the
(t < n/3) setting [12, 41, 70]. The approach involves us-
ing a Vandermonde matrix M to expand the shared secrets
Js1K, · · · ,Jst+1K into a set of shares Jy1K, · · · ,JynK. In the first
round, each party Pi invokes Robust-Interpolate(i,JyiK) to re-
construct a share yi. In the second round, each party Pi utilizes
Robust-Interpolate(i,yi) to reconstruct a polynomial encod-
ing s1, · · · ,st+1.

Algorithm 8 BatchRec(Js1K, · · · ,Jst+1K) [70]
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1: let M be the (n, t +1) Vandermonde matrix Mi j = η
j
i evaluating

a degree-t polynomial at (η1, · · · ,ηn)
2: compute (Jy1K, · · · ,JynK)T := M(Js1K, · · · ,Jst+1K)
3: invoke Robust-Interpolate(i,JyiK) to decode yi
4: invoke Robust-Interpolate(i,yi) to decode s1, · · · ,st+1
5: return s1, · · · ,st+1

G Security Proofs of Offline Protocols

G.1 Proof of AsyRanShGen
Below is the deferred security proof of AsyRanShGen. We
will prove its properties of termination, consistency, secrecy
and randomness, one by one, as follows.

Lemma 1 (Termination). All honest parties would eventually
output a set rnd_shares={(Ck,JrkKi,Jr̂kKi, wi

k)}
N(t+1)
k=1 .

Proof. In the AsyRanShGen protocol, the underlying primi-
tives are BACSS protocol and MVBA protocol. According to
termination property of BACSS protocol, the BACSS pro-
tocol will eventually terminate and output shares (along
with corresponding commitments and evaluation proofs)
{(C jk,Js jkKi,Jŝ jkKi, wi

jk)
N
k=1} for each honest party. For the

MVBA protocol, the termination property ensures that every
honest party will terminate with set T . By the deterministic
random extraction algorithm, each honest party can locally
compute the set rnd_shares = {(Ck,JrkKi,Jr̂kKi,wi

k)}
N(t+1)
k=1 .

Therefore, the AsyRanShGen protocol will terminate.

Lemma 2 (Consistency). For all honest parties, their output
rnd_shares sets are “consistent”. Here “consistent” means:
(i) their {Ck}

N(t+1)
k=1 are same; (ii) for each (Ck,JrkKi,Jr̂kKi,

wi
k)∈rnd_shares, VerifyEval(SP,Ck, i,JrkKi,Jr̂kKi,wi

k)=1.

Proof. The termination property of MVBA protocol enables
all honest parties to agree on the output T (T ≥ n− t), in
which all BACSS instance is terminated at all honest par-
ties. That is, after completing MVBA protocol every hon-
est party Pi has obtain shares {(C jk,Js jkKi,Jŝ jkKi,wi

jk)
N
k=1}

from party Pj ( j ∈ T ). According to the correctness prop-
erty of BACSS protocol and binding property of KZG com-
mitment scheme, any subset of t + 1 shares Js jkK lies on
the polynomial φ jk(·) committed to C jk and unique identity
φ jk(0) = s jk. Then, every honest party Pi can compute random
shares {(Ck,JrkKi,Jr̂kKi,wi

k)
N(t+1)
k=1 } by Vandermonde matrix

determined by MVBA’s output T . The linear combination
in random extraction phase and the additive homomorphic
property of BACSS protocol ensure that every honest party Pi

outputs the correct shares {(Ck,JrkKi,Jr̂kKi,wi
k)

N(t+1)
k=1 }, where

any subset of t +1 shares JrkK lie on the polynomial φk(·) that
committed to Ck and has unique identity φk(0) = rk.

Lemma 3 (Randomness and Secrecy). For each output
(Ck,JrkK, Jr̂kK,wk) ∈ rnd_shares, the adversary cannot predi-
cate rk better than guessing over Zq.

Proof. In the following, we will prove AsyRanShGen proto-
col satisfies randomness and secrecy.

Randomness. In the AsyRanShGen protocol, each party
obtains the shares {Js jKi} j∈T from party Pj with secret
s j. At least t + 1 secrets are uniformly sampled from Zq
(w.l.o.g., {s1, · · · ,st+1}), and at most t secrets are sampled
from an arbitrary distribution independent of Zq (w.l.o.g.,
{st+2, · · · ,s2t+1}). Then, (r1, · · · ,rt+1) = M(s1, · · · ,s2t+1) =
M[t+1](s1, · · · , st+1) + M[t+1,2t+1](st+2, · · · ,s2t+1) where

M[t+1] = (Mi j)
j∈[t+1]
i∈[t+1] is invertible by the definition of

hyper-matrix, and M[t+1,2t+1] = (Mi j)
j∈[t+2,2t+1]
i∈[t+1] . The vec-

tor (s1, · · · ,st+1) is uniformly random in Zt+1
q , thus

M[t+1](s1, · · · ,st+1) + M[t+1,2t+1](st+2,s2t+1) is uniformly
random in Zt+1

q . Since {st+2, · · · ,s2t+1} are sampled from
an arbitrary distribution independent of Zq, it follows
that M[t+1](s1, · · · ,st+1)+M[t+1,2t+1](st+2, · · · ,s2t+1) are uni-
formly random in Zt+1

q , i.e., r1, · · · ,rt+1 are uniformly random
in Zt+1

q .

Secrecy. The following games are designed to prove the se-
crecy of AsyRanShGen protocol. Let H denote the set of
honest parties, and C denote the set of corrupted parties.

Game 0. The adversary A that has corrupted t parties in-
teracts with the remaining honest nodes to run the AsyRan-
ShGen protocol, mirroring the real-world execution of the
AsyRanShGen protocol.

Game 1. The simulator randomly samples α,τ from Zq,
and publishes {g,h = gτ,(gα, · · · ,gαt

),(hα, · · · ,hαt
)} as com-

mon reference string. Then, the simulator participates in the
BACSS_share protocol and the MVBA protocol on behalf
of all honest parties belonging to H . Note that for those
BACSS_share j ∀ j ∈ H , the simulator would pick random
polynomials φ j(·), φ̂ j(·) as input to BACSS_share j. Also
note that each corrupted party Pi (i ∈ C ) would receive
{(C j,Js jKi,Jŝ jKi,wi

j)} j∈T , where Js jKi = φ j(i),Jŝ jKi = φ̂ j(i).
The distributions of Game 1 and Game 0 are trivially iden-

tical, as the simulator just generates common reference strings
and runs other sub-protocols on behalf of honest parties in
the exactly same way without any additional change.

Game 2. Instead of running BACSS_share j, the simulator
simulates BACSS_share j scripts sent to the corrupted parties
with only t,n,α,τ and shares {Js jKi} j∈H ,i∈C . Such simulation
can be done by the following steps:

• The simulator randomly picks φ′j(0) ∈ Zq for ∀ j ∈ H ,
and uses φ′j(0) and shares {Js jKi}i∈C to interpolate a
polynomial φ′j(·). Then, the simulator uses the trapdoor
τ to compute φ̂′j(i)) = (φ j(i)− φ′j(i))τ

−1 + φ̂ j(i)), and
sends (C j,φ

′
j(i), φ̂

′
j(i),w

i
j) to corrupted party Pi (i ∈ C ).

• The simulator replaces all encrypted shares sent to the
honest party by the ciphertext of encrypting {0∗} string
with equal length of plain-text. In the different sessions,
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distinct encryption keys of intended receivers are used
to encrypt plaintext. Thus, the adversary learns nothing
about the ciphertexts sent to the honest parties.

• In the Share Recovery phase, the adversary can initiate
the implication of a specific party and require honest
parties to publish the received message of the implicated
party (i.e., access the decryption oracle of the implicated
party). This falls into the following two cases:

1) if the implicated party is an honest party, the simula-
tor can call the IND-CCA simulator to respond with ⊥
indicating decryption failure.

2) if the implicated party is a corrupted party, the simu-
lator can use the IND-CCA simulator to construct valid
decryption of ciphertext that received from the implicated
party on behalf of honest parties.

The difference between Game 2 and Game 1 arises from
the manner in which shares are generated, and the distribution
of shares received from the implicated party. The distribution
of commitment, hide randomness, and witness is identical to
the distribution in Game 1. The unconditional hiding property
of the KZG commitment scheme reveals no additional infor-
mation about the honest shares. Different encryption keys are
used in each dealing session to encrypt messages, preventing
the adversary from learning the shares of honest parties in the
implication. The IND-CCA security of the encryption scheme
guarantees that the distribution of shares of the implicated
party is identical to the distribution in Game 1. Thus, the
distribution of Game 2 is the same as Game 1.

Then, the adversary A can obtain shares {Js jKi} j∈H ,i∈C ,
{si}i∈C and random shares {JrkKi}k∈[t+1], and construct
the following equation system (w.l.o.g., assume H =
{P1, · · · ,Pt+1} and C = {Pt+2, · · · ,P2t+1}):

s1 +η1s2 + · · ·+ηt
1st+1− r1 =−(ηt+1

1 st+2 + · · ·+η2t
1 s2t+2)

...
s1 +ηt+1s2 + · · ·+ηt

t+1st+1− rt+1 =−(ηt+1
t+1st+2 + · · ·+η2t

t+1s2t+2)

The above equation system has t +1 equations with 2t +2
unknown values. The probability to obtain {si,ri}k∈t+1 is
negligible. Again, even t shares {Js jKi} j∈H ,i∈C that are fully
determined by the adversary where |C | = t, the adversary
still learns no additional information of honest parties’ se-
crets {s j} j∈H and secrets {rk}k∈[t+1]. Therefore, the shares
{JrkK}k∈[t+1] are uniform and random.

Moreover, even if random shares {Jr1K, · · · ,JrtK} have all
been opened and t secrets {r1, · · · ,rt} are public, the above
equation system still has t +2 unknowns but only t +1 equa-
tions. This guarantees that the last remaining random shar-
ing Jrt+1K would remain secrecy even if all other secrets
{Jr1K, · · · ,JrtK} have been revealed. As the distribution of
Game 2 is identical to the real world execution, thus the se-
crecy in the real world (Game 0) is proven.

G.2 Proof of AsyRanTriGen
Hereunder is the deferred full security proof of AsyRanSh-
Gen. We will prove its properties of termination, validity, and
secrecy, one by one, as follows.

Lemma 4 (Termination). If all honest parties activate the
AsyRanShGen protocol, then any honest party would output
{(JakK,JbkK,JckK)}B

k=1.

Proof. In the AsyRanTriGen protocol, the underlying prim-
itives are the AsyRanShGen protocol and MVBA protocol.
According to termination property of AsyRanShGen protocol,
the AsyRanShGen protocol will eventually terminate and out-
put a set random shares (along with corresponding commit-
ments and evaluation proofs) {(Cak,JakKi,JâkKi,wi

ak)}k∈[2B]
for each honest party Pi. For the MVBA protocol, the
termination property ensures that every honest party will
terminate with the same set T . After MVBA completes,
each honest party locally interpolates t-degree share of
product with shares of parties in T , and outputs triples
{(JakK,JbkK,JckK)}B

k=1.

Lemma 5 (Validity). (i) For each k ∈ B and x ∈ {a,b,c},
the honest parties can interpolate their output shares JxkK to
obtain a unique t-degree polynomial whose zero-point is xk,
despite the adversary; (ii) for every k ∈ B, the interpolated
{xk}x∈{a,b,c} satisfying ak ·bk = ck.

Proof. Suppose there exists an adversary A that can break
the validity property. Then we can use A as a sub-routine
to obtain the scripts when executing the AsyRanTriGen
protocol. That is ({JakK,JbkK,JckK,Tak,Tbk,Tck,πk}k∈[N])←
A({JakK,JbkK}k∈[N]) where ck 6= ak · bk. The above scripts
fall into the following cases:

1. The hidden evaluations (Tak,Tbk,Tck) fail to satisfy the
product relation, which breaks the binding property of
Pedersen commitment scheme.

2. The product proof πk fails to prove that (Tak,Tbk,Tck)
satisfies the product relation, which breaks the soundness
property of proof of product protocol.

3. All random share JakK or JbkK do not lie in a unique
t-degree polynomial, which breaks the consistency prop-
erty of AsynShTriGen protocol.

4. All random share JckK do not interpolate a unique t-
degree polynomial, which violates the completeness and
additive homomorphism of BACSS.

Therefore, the AsyRanShGen protocol satisfies validity.

Lemma 6 (Secrecy). For any generated multiplication triple
(JakK,JbkK,JckK), the adversary learns nothing about ak, bk
and ck except that ck is the product of ak and bk.
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Proof. In the following games, we will prove that the ad-
versary learns nothing from asynchronous triples generation
except ck is the product of ak and bk.

Game 0. The adversary A runs the AsyRanTriGen protocol
with t corruptions, which corresponds to real world execution.

Game 1. The simulator randomly samples α,τ from Zq,
and publishes {g,h = gτ,(gα, · · · ,gαt

),(hα, · · · ,hαt
)} as com-

mon reference string. Then, the simulator participates in
the BACSS_share protocol and the MVBA protocol on be-
half of all honest parties belonging to H . Note that for
those BACSS_share j ∀ j ∈H , the simulator would pick ran-
dom polynomials φ j(·), φ̂ j(·) as input to BACSS_share j on
behalf of the dealer. Also note that each corrupted party
Pi (i ∈ C ) would receive {(C j,Js jKi,Jŝ jKi,wi

j)} j∈T , where
Js jKi = φ j(i),Jŝ jKi = φ̂ j(i).

The distributions of Game 1 and Game 0 are trivially iden-
tical, as the simulator just generates common reference strings
and runs other sub-protocols on behalf of honest parties in
the exactly same way without any additional change.

Game 2. Instead of running BACSS_share j in the AsyRan-
ShGen, the simulator simulates BACSS_share j scripts sent to
corrupted party with only t,n,α,τ and shares {Js jKi} j∈H ,i∈C .
Concretely, the simulator randomly picks φ′j(0) ∈ Zq for
∀ j ∈ H , and uses φ′j(0) and shares {Js jKi}i∈C to inter-
polate a polynomial φ′j(·). The simulator uses the trap-
door τ to compute φ̂′j(i) = (φ j(i)− φ′j(i))τ

−1 + φ̂ j(i), and
sends (C j,φ

′
j(i), φ̂

′
j(i),w

i
j) to party Pi (i ∈ C ). Then, each

party runs MVBA and random extraction to produce ran-
dom shares. After completing AsyRanShGen protocol, each
party Pi (i ∈ [n]) possesses two shares {(Ca,JaKi,JâKi,wi

a)}
and {(Cb,JbKi,Jb̂Ki,wi

b)}. Then, each party Pi follows the
AsyRanTriGen protocol to run BACSS_sharei and MVBA,
and outputs triples (JaK,JbK,JcK). Each corrupted party
Pi (i ∈ C ) possesses {(Cc j,φc j(i), φ̂c j(i),wi

c j)} j∈H and

{proofs j} j∈H where proofs j = (w j
a,w

j
b,w

j
c,0,T

j
a ,T

j
b ,T

j
c ,π j).

Note that, in the Share Recovery phase of BACSS, the sim-
ulator can always simulate valid messages of honest parties
received from the implicated party since the underlying public
key encryption scheme has IND-CCA security. Specifically,
the adversary can initiate implication of a specific party and
require honest parties to publish the received message of the
implicated party (i.e., access the decryption oracle of the im-
plicated party). This falls into the following two cases:

1) if the implicated party is an honest party, the simulator
can call the IND-CCA simulator to respond with⊥ indicating
decryption failure.

2) if the implicated party is a corrupted party, the simulator
can use the IND-CCA simulator to construct valid decryption
of ciphertext that received from the implicated party on behalf
of honest parties.

The difference between Game 2 and Game 1 arises from
the manner in which shares are generated, and the distribution

of shares received from the implicated party. The distribution
of commitment, hide randomness, and witness is identical to
the distribution in Game 1. The unconditional hiding property
of the KZG commitment scheme reveals no additional infor-
mation about the honest shares. Different encryption keys are
used in each dealing session to encrypt messages, preventing
the adversary from learning the shares of honest parties. The
IND-CCA security of encryption scheme guarantees that the
distribution of shares of the implicated party is identical to
the distribution in Game 1. Thus, the distribution of Game 2
is the same as Game 1.

Game 3. Instead of running BACSS_share j in the
AsyRanTriGen, the simulator simulates the transcripts sent
to corrupted parties with only t,n,α,τ and {JJcK j

2tK
i =

φc j(i),JĉKi = φ̂c j(i)}i∈C , j∈H . For each j ∈ H , the simu-
lator random samples φ′c j(0) from Zq, and uses φ′c j(0)

and {JJcK j
2tK

i}i∈C to interpolate a polynomial φ′c j(·). Then,
the simulator uses the trapdoor τ to compute φ̂′c j(i) =

(φc j(i) − φ′c j(i))τ
−1 + φ̂c j(i) and compute ĉ′j = (JcK j

2t −
φ′c j(0))τ

−1 + φ̂c j(0). This ensures that the underlying

commitment T j
c = gφ′c j(0)hĉ′j remains unchanged. Finally,

the simulator sends (Cc j,φ
′
c j(i), φ̂

′
c j(i),w

i
c j) and proofs j =

(w j
a,w

j
b,w

j
c,0,T

j
a ,T

j
b ,T

j
c ,π j) to party Pi (i ∈ C ) on behalf of

honest party Pj.
The difference between Game 3 and Game 2 is that we

simulate the transcripts sent to the corrupted parties in the
BACSS protocol. The distribution of hide randomness is iden-
tical to the distribution in Game 2. Thus, Game 3 maintains
the same distribution as Game 2.

Game 4. A runs the protocol as Game 3 except that we
simulate the transcripts of proof of product protocol. By The-
orem 5, there exists a simulator that can generate the tran-
scripts π′ j on behalf of honest party Pj ( j ∈ H ), which has
the identical distribution of transcripts generated by the proof
of product protocol. Thus, the distribution of Game 4 is the
same as Game 3.

Lastly, consider the view of A in Game 4. The perfect zero
knowledge property reveals nothing about the underlying
witness (JaK,JbK,JcK). A learns at most t shares of a, b and c,
which reveals no information about the secrets a, b and c. The
soundness and perfect zero knowledge ensures that A learns
nothing except the fact c = a ·b.

Since Game 0 has the same distribution as Game 4, the
AsyRanTriGen protocol satisfies the secrecy property.

G.3 Proof of dual-mode triple generation

Lemma 7 (Mostly Consistency of Fast Path). If some honest
parties have outputted in the k-th OptRanTriGen, then all
honest parties have already outputted consistent triple shares
in the (k−1)-th OptRanTriGen.
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Proof. When some honest parties have successfully out-
putted triple shares in the k-th shot, it implies that they
must have received all shares of all parties in the instance
OptRanTriGenk−1. This indicates that neither party has ex-
perienced a timeout or detected inconsistent shares. Thus,
all honest party can generate consistent triple shares in the
(k−1)-th shot of OptRanTriGen instance.

Lemma 8 (Fast Path Secrecy). For any beaver triples shares
(JakK,JbkK,JckK) outputted in the fast path, the adversary
learns nothing except ck = ak ·bk.

Proof. The security of the (n, t + 1) Shamir secret sharing
scheme ensures that less than or equal to t shares reveal no in-
formation about the remaining share. Thus, the random shares
JakK,JbkK keep secrecy. With random shares JaK and JbK, all
parties can locally compute JabK2t = JaK · JbK, and they can
attempt to perform degree reduction to get JabK by (i) open-
ing 2t-degree share JabK2t − JrK2t to get ab− r and (ii) then
adding JrK and ab− r to get JabK. As random double shares
mask triple shares during the degree reduction, the secrecy of
triple shares relies on that of random double shares. We claim
that the random double shares remain secrecy below. The ad-
versary knows (at most) t of the input shares {Js1K, · · · ,JsnK}
(those provided by corrupted players), and t of the output
shares {Jr1K, · · · ,JrnK} (with k > t, those reconstructed to-
wards corrupted players). When fixing these 2t shares, there
are 4t +2 unknowns for total n = 3t +1 equations. The ad-
versary cannot learn Jr1K, · · · ,Jrt+1K and Jr1K2t , · · · ,Jrt+1K2t .
Hence, the outputted random double shares are uniformly
random, unknown to the adversary.

Lemma 9 (Unitary Fallback). Conditioned on that all honest
parties initially entered the fast path, if any honest party exits
the fast path, then all honest parties will leave the phase and
invoke tcv-BA.

Proof. An honest node leaves a fast path, due to either of the
following two reasons: (1) the fast path cannot make progress
in time (i.e. fails to output triples before timeout), or (2) it
detects inconsistent triple shares. For both situations, once
any honest node exits, all honest parties will at least realize
the timeout and then enter the tcv-BA phase.

Lemma 10 (Fallback Termination and Consistency). If all
honest parties enter tcv-BA, then all of them would eventually
enter the pessimistic path with consistent secret shares of
fast-path triples.

Proof. We first prove that tcv-BA must terminate. By
Lemma 7, all honest will input the shot number of the lat-
est successful OptRanTriGen instance to the tcv-BA, where
the input of honest parties to tcv-BA is either of two consec-
utive shot numbers. Thus, due to the termination of tcv-BA,
the primitive must terminate.

Second, all honest parties must obtain a common R from
tcv-BA by the validity and agreement of tcv-BA, and R
represents a fast path shot where at least one honest party
has outputted. All honest parties with R can decide to out-
put or discard the triples in the two safe buffers Pending_1
and Pending_2. Thus, all honest parties would preserve the
consistency of triple after fast path (as an implication of
Lemma 7).

Theorem 3 (Validity, Secrecy, and Liveness of Dual-mode
Triple Generation). Algorithm 4 securely realizes the desired
properties of AMPC’s offline phase of multiplication triple.

Proof. We prove the dual-mode triple generation satisfies the
following properties: validity, secrecy, and liveness.
Validity. The validity of fast path follows from Lemma 10,
that is all honest parties would output consistent triples in
the same shot of fast path after the tcv-BA terminates. The
validity of AsyRanTriGen (c.f. Lemma 5) further ensures
that the honest parties can output consistent triples in the
pessimistic path.
Secrecy. The secrecy stems from the fact that both fast and
pessimistic paths have secrecy, c.f., Lemma 8 and Theorem 6.
Liveness. The dual-mode triple generation consists of three
phases: fast path, tcv-BA phase and pessimistic path. Lemma
9 guarantees that all honest parties can leave a failed fast
path without “getting stuck” and enter the tcv-BA phase; then
Lemma 10 ensures the honest parties eventually enter the
pessimistic path; finally, the termination of AsyRanTriGen
ensures the pessimistic path can output an ever-growing se-
quence of triples’ shares in the worst case (c.f. Lemma 4).

H MVBA with Optimistic Termination

We give a generic construction of optimistically terminable
asynchronous multi-value validated Byzantine agreement (ot-
MVBA) from any MVBA (as Algorithm 9 describes), which
has two main phases and an accompanying daemon:
• Optimistic path: This fast path has a simple 5-round

execution flow with a linear number of messages to ex-
change via a designated leader, and it executes as: leader
VALUE−−−−→parties PREVOTE−−−−−→leader

PREVOTEQC−−−−−−−→parties VOTE−−−→leader
VOTEQC−−−−−→parties. If an honest party can complete these
steps before a timer expires, then it makes an output,
performs another multicast of FINISH message carrying
the output and the 2nd “vote” quorum certificate (QC),
and finally terminates;
• Fallback path: If a party has not yet received a valid

“vote” QC from leader upon the timer expires, it enters
the fallback path and immediately multicasts FALLBACK
message, which carries a “pre-vote” QC together with
leader’s proposal (if receiving them) or just contains a
signature on “no QC received”. Then, it waits for n− f
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FALLBACK messages from distinct parties, if there is at
least one FALLBACK message carrying valid “pre-vote”
QC, then invokes an underlying MVBA protocol with
this FALLBACK message, otherwise, all n− f FALLBACK
messages carry signatures on “no QC received”, then
invokes the underlying MVBA protocol with the party’s
own input (together with the received n− f signatures on
“no QC received”). Finally, the party waits for MVBA
returns, and outputs what MVBA outputs.
• Termination Daemon: Noticeably, it is possible that

some honest party might have outputted and terminated
before timeout, so the fallback path’s MVBA might lack
honest parties to participate and cannot return anything.
Nevertheless, we let honest parties multicast a FALL-
BACK message before terminating, and then let each party
wait for a valid FALLBACK message. Such that, a party
can output the value carried by FALLBACK message, then
multicasts the same message and terminates.

Algorithm 9 Optimistically Terminable MVBA (otMVBA) for Pi
with session identifier (SID) built from an underlying MVBA

Input: xi satisfying Q(xi) = True
Output: some value satisfying the predicate Q

1: start a timer that expires after ∆

2: P̀ ← Permute({Pi}i∈[n]) using SID as seed and select the 1st
party as leader

// Optimistic path for every node
3: upon receiving VALUE(x`) from P̀ :
4: wait for x` satisfying Q(x`) = True
5: σ1

i ← Signi(SID||“prevote”||H(x`))
6: send PREVOTE(σ1

i ) to P̀
7: wait for PREVOTEQC(h, Σ1) from P̀ :
8: verify h = H(x`) and Σ1 contains n− f valid “prevote”

signatures signed by different nodes
9: σ2

i ← Signi(SID||“vote”||H(x`))
10: send VOTE(σ2

i ) to P̀
11: wait for VOTEQC(h, Σ2) from P̀ :
12: verify h = H(x`) and Σ2 contains n− f valid “vote”

signatures signed by different nodes
13: multicast FINISH(“terminate”, x`, Σ2) message to all nodes
14: output x` and terminate

// Optimistic path for leader only
15: if P̀ = Pi:
16: multicast VALUE(x`) message to all parties
17: wait for n− f PREVOTE(σ1

j ) messages carrying valid sig-
natures {σ1

j}|n− f | on SID||“prevote”||H(x`) from distinct Pj

18: multicast PREVOTEQC(H(x`), Σ1 = {( j,σ1
j)}|n− f |) to all

19: wait for n− f VOTE(σ2
j ) messages carrying valid signatures

{σ2
j}|n− f | on SID||“vote”||H(x`) from distinct Pj

20: multicast VOTEQC(H(x`), Σ2 = {( j,σ2
j)}|n− f |) to all

// Fallback path for every party (which would decide to still use
the leader’s input or some other party’s valid input)

21: upon timer expires (before receiving valid Σ2 and terminating):
22: if receive valid Σ1: multicast FALLBACK(“leader”, x`, Σ1)

23: else: . receive neither VOTEQC Σ2 nor PREVOTEQC Σ1

24: σ0
i ← Signi(SID||“no QC received”)

25: multicast FALLBACK(“non-leader”, ⊥, σ0
i ) to all

26: wait for valid FALLBACK(∗, ∗, ∗) from n− f parties
27: if n− f received FALLBACK messages contain at least
28: one valid FALLBACK(“leader”, x`, Σ1):
29: invoke MVBA with input (“leader”, x`, Σ1)
30: else: . receive n− f FALLBACK(“non-leader”, ⊥, σ0

j )
31: invoke MVBA with (“non-leader”, xi, {( j,σ0

j)}n− f )
32: wait for MVBA returns (∗, x, ∗)
33: output x and wait for MVBA terminates to terminate

// Predicate Q′(x) of the underlying MVBA in fallback path:
34: parse x as (“leader”, x`, Σ1) or (“non-leader”, x j , Σ0)
35: if former case: check Σ1 contains n− f valid signatures on x`
36: else: check Σ0 has n− f valid signatures on SID||“non-leader”

and Q(x j) = True

// Termination daemon for every node
37: upon receive FINISH(“terminate”, x`, Σ2) from any party:
38: verify Σ2 has n− f valid signatures on SID||“vote”||H(x`)

from distinct parties
39: multicast FINISH(“terminate”, x`, Σ2) message to all parties
40: output x` and terminate

The above otMVBA construction satisfies all desired prop-
erties of MVBA defined in Section 3, and additionally, realizes
the next “ optimistic deterministic termination” property.

Definition 3 (Optimistic deterministic termination). An
asynchronous (multi-valued) validated byzantine agreement
protocol is said optimistically deterministically terminable, if
it satisfies the next property:

• While network is synchronous, there exists a non-empty
set of optimistic conditions, such that all honest nodes can
output and terminate, deterministically and responsively.

Informally, when the selected leader is honest and the net-
work stays synchronous, all honest parties can output and
terminate from otMVBA without invoking any randomized
subroutines in 5 asynchronous rounds; and even if in the worst
case, all honest parties can still decide a unitary output sat-
isfying the external validity condition, in expected constant
rounds. The security properties of our otMVBA construction
can be formalized as the next theorem.

Theorem 6. The otMVBA protocol described in Algorithm 9
satisfies agreement, termination, external validity and opti-
mistic deterministic termination, conditioned on that the un-
derlying invoked MVBA protocol satisfies agreement, termi-
nation, and external validity.

Proof. Here we prove agreement, termination, external valid-
ity, and optimistic deterministic termination one by one.

Termination. To prove the property, we argue that all hon-
est parties would output and terminate, in either of lines 14,
33, or 40 of Algorithm 9. We consider the next two cases:
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Case 1): Some honest party outputs in line 14/40. If any
honest party outputs from the fast path in line 14/40, then at
least this honest party would multicast a valid FINISH mes-
sage. As such, all honest parties must eventually output and
terminate, because they at least would receive this valid FIN-
ISH message, and then output and terminate in line 40.

Case 2): None of honest parties output in line 14/40. If
none honest party outputs from the fast path in line 14/40, then
the condition in line 26 must be triggered for every honest
party, because at least the n− f honest parties would multicast
FALLBACK messages. So all honest parties would enter the
underlying MVBA protocol with valid proposal. Thus, all
honest parties would output and terminate in line 33.

In both cases, all honest parties would eventually output
and terminate.

Agreement. We prove that any two honest parties Pi and
Pj would have the same output, by considering the next cases:

Case 1): Both Pi and Pj output in line 33. In this case, the
outputs of Pi and Pj trivially are equal, as they are both from
the underlying MVBA, which satisfies agreement.

Case 2): Both Pi and Pj output in line 14 or 40. In this case,
Pi and Pj also have the same output, because there is only a
unique value having a valid quorum certificate Σ2.

Case 3): Pi outputs in line 14/40 and Pj in line 33. This case
is more involved, and we can consider the following fact: If an
honest party Pi outputs in line 14/40, then the condition of line
30 wouldn’t be triggered for any honest party Pj, with all but
negligible probability. This fact is true, because if Pi outputs
in line 14/40, then there is no sufficient honest nodes sending
FALLBACK(“non-leader”, ⊥, σ0

j ) messages. Therefore, the
output of MVBA must be validated by a certificate Σ1, which
is also same to the value validated by certificate Σ2, indicating
that Pi and Pj must output the same value (as their outputs are
validated by Σ1 and Σ2, respectively).

In all above cases, the honest parties have the same output.

External Validity. This is trivial to see, as all parties check
the external validity condition before signing, indicating any
output is verified by at least f +1 honest parties.

Optimistic Deterministic Termination. To prove the de-
sired property, considering an honest dealer P̀ and syn-
chronous network, it is clear to see that the honest leader
P̀ can always generate a valid quorum certificate Σ2 regard-
ing its input x`, after four rounds of communication. As such,
after one more round of communication, all parties can re-
ceive the valid FINISH(“terminate”, x`, Σ2) message, and then
output and terminate according to line 40. In such good case,
no randomized subroutine is ever invoked.

I Additional Experiments

I.1 Benchmarking online phase
To evaluate the efficiency of the (almost) I.T. online phase
mostly inherited from hbMPC, we execute a typical mixing-
net task among 4 AWS EC2 instances (c6a.8x charge), to
shuffle a varying number of distinct clients’ inputs. Table 4
reports the test results. We also evaluate an optimization to
fasten online error correction in the malicious setting, via a
local blocklist (banning senders of incorrect t-degree shares),
which was earlier implemented in hbMPC [70] as well. In
sum, the online phase can efficiently evaluate the circuit of
mixing-net, evaluating the function with 4096 inputs in 133
seconds with up to 4 EC2 instances. This can be translated
into a rate of consuming about 9000 triples per second.

Clearly, the already performant and robust online phase
is neither the bottleneck of efficiency nor the weak point of
robustness. This fact validates our key design choice of inherit-
ing the almost I.T. online phase and focusing on improving the
efficiency of robust offline protocols, as the offline protocols
are the primary obstacles to both robustness and efficiency.

Table 4: Online performance of evaluating a switching net-
work for shuffling 4096 messages [70] (n = 4).

# of
inputs

# of
triples

Execution time Consumption rate (per/sec.)

blocklist blocklist (w.o) blocklist blocklist (w.o)

64 4608 0.61 0.77 7589 6023
128 13444 1.65 1.69 8128 7967
256 32768 3.88 4.23 8449 7739
512 82944 10.27 10.92 8079 7597
1024 204800 23.38 24.11 8759 8495
2048 495616 55.91 56.72 8866 8739
4096 1179648 133.81 141.03 8816 8365
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Figure 15: Throughput of AsyRanTriGen (n = 4) when
testing with c6a.8xlarge and c6a.4xlarge instances.

I.2 Types of AWS instances
Figure 15 visualizes the throughput of our asynchronous triple
generation protocol when executed on different types of AWS
EC2 instances, including high-profile c6a.8xlarge instances
(with 48 vCPUs) and low-profile c6a.4xlarge instances (with
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16 vCPUs). It is evident that the potential for parallelization
using high-profile instances does not improve throughput.
However, we still stick with the high-profile EC2 instances
during benchmarking, due to the large memory requirements,
in particular to accommodate the memory required by large
system scales.

I.3 Throughout with different crash faults
To evaluate the performance of our offline protocols with
varying number of faulty parties, we compare Dumbo-MPC
with GS23 and hbMPC, in scenarios involving (i) a single
crash node and (ii) t crash nodes for different scales with
n =4, 10, 22 and 31 parties. All tests are executed with the
same batch size of 5000 in the LAN setting. As illustrated
in Figure 16, hbMPC remains zero throughputs since it must
always wait for messages from all nodes, lacking fault toler-
ance. The throughputs of Dumbo-MPC and GS23 decrease
as the system scale increases, and Dumbo-MPC starts to out-
perform GS23 when n≥ 10. When n = 31 with t = 10 faults,
Dumbo-MPC realizes a throughput of 116 triples/sec, which
can generate triples 40% faster than GS23 under the exactly
same experiment setting.
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Figure 16: Triple throughput under different number of
crash nodes (batch size is 5000).

I.4 Pre-processing latency for typical tasks
To demonstrate the feasibility of Dumbo-MPC for realistic
applications, we further evaluate the pre-processing latency of
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Figure 17: Latency of pre-processing sufficient triples for
Vickery auction and Switching network.

Dumbo-MPC regarding two typical tasks—Vickrey auction
[86] and switching network [70], as illustrated in Figure 17.
The former task requires 44,571 triples for 100 inputs, and the
latter one needs 204,800 triples for 210 inputs. The pessimistic
path of Dumbo-MPC (AsyRanTriGen) takes about 8 minutes
and 36 minutes to complete the pre-processing of these two
tasks, respectively. In contrast, GS23 needs twice time for the
same pre-processing tasks.
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