
From One-Time to Two-Round Reusable
Multi-Signatures without Nested Forking

Lior Rotem∗ Gil Segev† Eylon Yogev‡

Abstract

Multi-signature schemes are gaining significant interest due to their blockchain applications.
Of particular interest are two-round schemes in the plain public-key model that offer key ag-
gregation, and whose security is based on the hardness of the DLOG problem. Unfortunately,
despite substantial recent progress, the security proofs of the proposed schemes provide rather
insufficient concrete guarantees (especially for 256-bit groups). This frustrating situation has so
far been approached either by relying on the security of seemingly-stronger assumptions or by
considering restricted classes of attackers (e.g., algebraic attackers, which are assumed to provide
an algebraic justification of each group element that they produce).

We present a complementing approach by constructing multi-signature schemes that satisfy
two relaxed notions of security, whose applicability nevertheless ranges from serving as drop-
in replacements to enabling expressive smart contract validation procedures. Our first notion,
one-time unforgeability, extends the analogous single-signer notion by considering attackers that
obtain a single signature for some message and set of signers of their choice. We construct a
non-interactive one-time scheme based on any ring-homomorphic one-way function, admitting
efficient instantiations based on the DLOG and RSA assumptions. Aggregated verification keys
and signatures consist of two group elements and a single group element, respectively, and our
security proof consists of a single application of the forking lemma (thus avoiding the substantial
security loss exhibited by the proposed two-round schemes). Additionally, we demonstrate that
our scheme naturally extends to a t-time scheme, where aggregated verification keys consist of
t+ 1 group elements, while aggregated signatures still consist of a single group element.

Our second notion, single-set unforgeability, considers attackers that obtain any polynomial
number of signatures but are restricted to a single set of signers of their choice. We transform
any non-interactive one-time scheme into a two-round single-set scheme via a novel forking-
free construction that extends the seminal Naor-Yung tree-based approach to the multi-signer
setting. Aggregated verification keys are essentially identical to those of the underlying one-time
scheme, and the length of aggregated signatures is determined by that of the underlying scheme
while scaling linearly with the length of messages (noting that long messages can always be
hashed using a collision-resistant function). Instantiated with our one-time scheme, we obtain

∗Computer Science Department, Stanford University, 353 Jane Stanford Way, Stanford, CA 94305, USA. Email:
lrotem@cs.stanford.edu. Supported by a research grant from Protocol Labs.

†School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904, Israel. Email:
segev@cs.huji.ac.il. Supported by the Israel Science Foundation (Grant No. 1336/22) and by the European Union
(ERC, FTRC, 101043243). Views and opinions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them.

‡Department of Computer Science, Bar-Ilan University, Israel. Email: eylon.yogev@biu.ac.il. Supported by the
Israel Science Foundation (Grant No. 2302/22), European Research Union (ERC, CRYPTOPROOF, 101164375), and
by an Alon Young Faculty Fellowship. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or the European Research Council. Neither the European Union
nor the granting authority can be held responsible for them.

aggregated verification keys and signatures whose lengths are completely independent of the
number of signers.

2

Contents

1 Introduction 1
1.1 Our Contributions . 2
1.2 Overview of Our Approach . 4
1.3 Related Work . 7

2 Preliminaries 8
2.1 Ring-Homomorphic One-Way Functions . 9
2.2 The Forking Lemma . 9
2.3 Additional Cryptographic Primitives . 10

3 One-Time and Single-Set Security for Multi-Signature Schemes 13
3.1 One-Time Unforgeability . 14
3.2 Single-Set Unforgeability . 15

4 One-Time Multi-Signatures via Ring-Homomorphic One-Way Functions 16

5 From One-Time to Single-Set Multi-Signatures 22

References 34

A Extension: A t-Time Multi-Signature Scheme 40

B From One-Time Multi-Signatures to Collision-Resistant Hashing 42

1 Introduction

A multi-signature scheme [IN83, BN06] enables any set of signers, within a large and potentially
permissionless system, to jointly produce a compact signature on a given message. Research on the
design and analysis of multi-signature schemes has recently gained significant renewed interest, as
such schemes were found particularly suitable for blockchain applications. These range from drop-in
replacements for standard signatures (e.g., [BDN18, MPS+19]), to smart contracts with expressive
multi-owner validation procedures (e.g., [BWG+21, Arg22, Sta23]).

Two breakthroughs: Plain PK model and key aggregation. The high-level of suitability
exhibited by multi-signatures to blockchain applications follows mostly due to two major break-
throughs. First, Bellare and Neven [BN06] showed that multi-signature schemes can provide secu-
rity in the plain public-key model, capturing a realistic and permissionless environment, while not
compromising on practicality. Specifically, in this model, each signer locally produces their signing
and verification keys, without engaging in an interactive key-generation process with other signers
or with a registration authority, and without augmenting verification keys with proofs of knowl-
edge that need to be individually verified by all other signers. Second, Boneh, Drijvers and Neven
[BDN18] and Maxwell, Poelstra, Seurin and Wuille [MPS+19] showed that multi-signature schemes
can support non-interactive aggregation of verification keys (in the plain public-key model). There-
fore, once an aggregated verification key has been verified to correspond to a particular set of signers,
any dependence on the number of signers during all future signature verifications may be completely
eliminated. This essentially turns the verification of multi-signatures as practical as (and even fully
compatible with) that of standard signatures.

Following up on earlier constructions (e.g., [OO91, LHL94, MOR01, Bol03, LOS+06, BGO+07,
RY07] and the references therein), this significant progress has led to a host of recent multi-signature
schemes [DEF+19, NRS+20, AB21, BD21, NRS21, BTT22, DOT+22, FSZ22, LK23, PW23, TZ23].
Of particular interest in the blockchain setting are two-round schemes in the plain public-key model
whose security is based on the hardness of the discrete logarithm (DLOG) problem in prime-order
groups, as such schemes may admit practical implementations over standard elliptic curves, such as
Secp256k1 or Curve25519.

Concrete security guarantees in 256-bit groups? As observed by Bellare and Dai [BD21] (and
most recently also by Pan and Wagner [PW23]), despite the substantial recent efforts, the existing
proofs that base the security of the proposed two-round schemes in the plain public-key model on the
hardness of the DLOG problem provide rather insufficient concrete guarantees in 256-bit groups. As
common for DLOG-based signatures, these proofs of security are based on the classic forking lemma
[PS00, BN06], but instead of relying on a single application of the lemma, they rely on two nested
applications – leading to a substantial loss in the provable concrete security.

At a high level, under the widely-accepted assumption that the success probability of any t-time
algorithm in solving the DLOG problem in a group of order p is at most t2/p [Sho97], proofs of
security that rely on two nested applications of the forking lemma seem limited to bounding the
success probability of t-time attackers with roughly

(
t2/p

)1/4. For a 256-bit prime p, such a bound
falls short of providing sufficient concrete security guarantees, especially when compared to the(
t2/p

)1/2 bound resulting from a single application of the forking lemma (as is the case, for example,
with Schnorr signatures, and more generally with signature schemes obtained from identification
protocols via the Fiat-Shamir transform [FS86, Sch91, AAB+02, KMP16]).1

1For simplicity, in the above discussion we did not include additional factors that depend on the number of random-

1

This frustrating situation has so far been approached for DLOG-based schemes in the plain public-
key model via two relaxations: Either relying on the security of a recently-introduced stronger variant
of the DLOG assumption (the interactive XIDL assumption introduced by Bellare and Dai [BD21]),
or by proving security with respect to restricted classes of attackers [AB21, BD21, NRS21, LK23]
(most notably, algebraic attackers, which are assumed to provide an algebraic justification of each
group element that they produce [FKL18, AHK20, BFL20, FPS20, MTT19, RS20]). On the one
hand, these relaxations have indeed led to tighter concrete security bounds. On the other hand,
however, the extent to which the concrete security bounds resulting from these relaxations capture
the security of the relevant schemes relative to hardness of the DLOG problem, is naturally rather
limited.

1.1 Our Contributions

We present a complementing approach for designing multi-signature schemes in the plain public-
key model and obtaining a better understanding of their security: Instead of relying on recently-
introduced assumptions or considering restricted classes of attackers via the algebraic group model,
we construct multi-signature schemes that satisfy relaxed notions of security. Our approach relaxes
the full-fledged notion of security for multi-signature schemes in the plain public-key model by re-
stricting attackers’ abilities to obtain signatures of their choice. This leads us to formalizing two
notions of security, one-time unforgeability and single-set unforgeability, and to construct schemes
that satisfy them. Although our notions are not as strong as the full-fledged one, their applicabil-
ity nevertheless ranges from serving as drop-in replacements to enabling expressive smart contract
validation procedures, as we discuss in Section 1.2.

One-time multi-signatures. Our notion of one-time unforgeability naturally extends the anal-
ogous single-signer notion to the multi-signer setting by considering attackers that obtain a single
signature for some message and set of signers of their choice. We construct a multi-signature scheme
satisfying this notion of security in the random-oracle model based on any ring-homomorphic one-way
function, admitting instantiations based on the DLOG and RSA assumptions [CD98, CFG+15].2

Our scheme’s aggregated verification keys consist of two group elements, and when compared to
the known two-round multi-signature schemes that satisfy the full-fledged notion of security for such
schemes based on the hardness of the DLOG problem without relying on the algebraic group model
[BD21, NRS21, TZ23], our scheme offers:3 (1) non-interactive signing, (2) aggregate signatures that
consist of a single group element, and (3) security proof that consists of a single application of the
forking lemma and thus avoids the substantial security loss resulting from two nested applications
(without restricting adversaries to algebraic ones). In particular, when relying on the hardness of the
DLOG problem, we recover the above-discussed

(
t2/p

)1/2 bound, similarly to single-signer Schnorr
signatures. Although here we focus mainly on the dependence on the order p of the group, we note
that our concrete bound includes additional terms that depend on the number of random-oracle
queries issued by attackers. In addition, we demonstrate that our scheme naturally extends to a
t-time scheme, where aggregated verification keys consist of t+ 1 group elements, while aggregated
signatures still consist of a single group element.

oracle queries and signing queries issued by attackers, but rather focused mainly on the dependence on the order p of
the group.

2We note that a notion of one-time unforgeability in the context of aggregate signatures was introduced by Boneh
and Kim [BK20], as we discuss in Section 1.2.

3It is not clear how to compare the efficiency and concrete security guarantees of our one-time scheme to those of
schemes that satisfy the full-fledged notion of security for multi-signature schemes. See Section 1.3 for more details.

2

Single-set multi-signatures. Our notion of single-set unforgeability considers attackers that ob-
tain any polynomial number of signatures for messages of their choice, but are restricted to requesting
all of these signatures with respect to a single set of signers. In this context, a single set of signers
corresponds to a single vector of verification keys, which may be adversarially chosen based on the
public parameters of the scheme and on the honestly-generated verification key that is attacked. As
we discuss in Section 1.2, this notion already suffices for various applications of multi-signatures,
such as validating blockchain transactions in a wide range of settings.

We show that any one-time multi-signature scheme with non-interactive signing can be trans-
formed into a scheme satisfying our notion of single-set unforgeability, where the signing process of the
resulting scheme consists of two rounds. Our transformation is obtained via a tree-based construction
that relies on standard cryptographic tools, most notably on a non-interactive zero-knowledge proof
system (we rely on these standard tools for overcoming the challenges that arise when extending the
seminal Naor-Yung tree-based signature scheme [NY89] to the multi-signer setting).4

The length of the resulting scheme’s verification keys and aggregated verification keys is inde-
pendent of the number of signers, and the keys themselves are essentially identical to those of the
underlying one-time scheme. The length of the resulting scheme’s signatures and aggregated signa-
tures is also independent of the number of signers, and determined by that of the underlying scheme
while scaling linearly with the length of messages (ℓλ-bit signatures for ℓ-bit messages, where λ is the
security parameter, as in the Naor-Yung transformation5). Instantiated with our one-time scheme,
we obtain verification keys and signatures whose lengths are completely independent of the number
of signers.

Our transformation demonstrates that at least for short messages there is no inherent and signif-
icant security loss when transforming one-time multi-signatures into single-set multi-signatures, and
that our security loss essentially matches that of transforming single-user one-time signatures into
re-usable ones.6 Finally, We note that in the single-signer setting, tree-based signatures that utilize
one-time signatures were initially mostly of foundational interest, whereas additional substantial ef-
forts have demonstrated their practical applicability (see, for example, [BHH+15, AE18, BHK+19,
HK22, KHR+22] and the references therein).

One-time multi-signatures: Structure vs. hardness. Revisiting our one-time multi-signature
scheme, it is quite noticeable that whereas one-time single-signer signatures can be constructed
based on any one-way function [Lam79], our multi-signer scheme is based on the more structured
notion of a ring-homomorphic one-way function. Although such functions admit realizations based
on standard number-theoretic assumptions [CD98, CFG+15], this raises the question of whether
one-time multi-signatures require more structured forms of cryptographic hardness when compared
to one-time single-signer signatures.

Addressing this fundamental question, we prove that one-time multi-signature schemes satisfying
a natural property (which is satisfied by our one-time scheme) cannot be constructed in a fully black-
box manner based on one-way functions. An interesting question for further research is whether this

4We emphasize that we rely on standard non-interactive zero-knowledge proofs, which can be realized based on
well-studied falsifiable assumptions, and that we do not rely on succinct non-interactive arguments of knowledge
(SNARKs) [Mic00, Gro10, GW11, BCI+13, BCS16]. In particular, we do not have any requirements regarding the
length of the resulting proofs (they are not included in our signatures, and only play an intermediate role) and do not
assume any form of proofs of knowledge.

5Without loss of generality, ℓ ≤ λ as otherwise longer messages can first be hashed using a collision-resistant
function.

6The work of Blazy, Kakvi, Kiltz, and Pan [BKK+15] presented a construction of re-usable signatures with a tight
security reduction. However, their starting point was not a one-time signature scheme, but rather a Chameleon hash
function, which is a significant more structured object.

3

can be circumvented via a seemingly less-natural construction.

1.2 Overview of Our Approach

In this section we first briefly discuss the applicability of schemes that satisfy our notions of security.
Then, we present a high-level overview of our constructions.

The applicability of one-time and single-set multi-signatures. Our relaxed notions natu-
rally serve as intermediate notions for obtaining a better understanding of the concrete security of
full-fledged multi-signatures. At the same time, a direct application of one-time multi-signatures is
for validating one-time transactions, such Bitcoin UTXOs [Nak09] (as described by Boneh and Kim
[BK20] in the somewhat incomparable context of one-time aggregated signatures, which we discuss
below). Specifically, a UTXO is spent after validating one or more signatures with respect to the
verification keys committed in the UTXO. Once spent, it cannot be spent again, and the funds are
transferred to a different UTXO. Thus, using a one-time multi-signature scheme for UTXOs can
eliminate any dependence on the number of signers during verification, and to reduce both commu-
nication and storage cost. This comes at the cost of not using the same signing key for more than
one UTXO, and this can be managed, for example, by deriving any number of one-time signing keys
via a single master key for a pseudorandom function (thus, the one-time signing keys need not be
stored, but can instead be reproduced upon demand).

A somewhat less direct application of one-time multi-signatures is for validating standard (i.e.,
reusable) transactions via account abstraction (e.g., [BWG+21, Arg22, Sta23]). At a high level,
account abstraction (among its various features) enables smart contracts to offer arbitrary validation
logic. Already in the single-signer setting, consider a smart contract whose storage includes a one-time
verification key, and whenever the user provides a transaction they provide a signature with respect
to the currently-stored verification key both on the provided input to the smart contract and on a
newly-generated one-time verification key that the contract will store instead of its current one. This
is motivated by the textbook path-based construction of signatures from one-time signatures [KL21],
which is typically presented as a warm-up for the classic Naor-Yung tree-based construction [NY89].
Unlike the textbook construction, here the verification time and signature length do not scale with
the number of previously-generated signatures, since each newly-generated verification key replaces
its predecessor in the contract’s storage.7 Such a mechanism extends to the multi-signer setting in
various ways using a one-time multi-signature scheme, where each transaction additionally updates
the stored aggregated verification key. Here, the advantages of using a one-time multi-signature
scheme with non-interactive signing and concrete security guarantees based on the hardness of the
DLOG problem may be significant.

Finally, for our notion of single-set multi-signatures, where an adversary may observe any polyno-
mial number of signatures for a single set of signers, account abstraction is again useful. Specifically,
for any smart contract whose transactions require validating multiple signers, as long as each signer
allocates a contract-specific signing key that is not used for any other purpose, then single-set se-
curity suffices (and there is no need for any key updates as with one-time multi-signatures). As
discussed above, such contract-specific keys can be derived via a single master key, and thus do not
have to be explicitly stored.

7It should be noted that, over time, such a mechanism may run into various synchronization issues since each
signing key can be used only once. Such issues can be dealt with either by using a t-time multi-signature scheme, or by
using a recovery mode (again, enabled by account abstraction) that allows key updates via a standard multi-signature
scheme. Assuming that such issues are hopefully not-too-frequent, the overall efficiency of the validation procedure
would be determined by that of the one-time scheme.

4

Our one-time multi-signature scheme. The starting point of our one-time scheme is the
Schnorr-based one-time signature scheme designed by Bellare and Shoup [BS08], which was ex-
tended by Boneh and Kim [BK20] to DLOG-based and lattice-based one-time aggregate signature
schemes. Recall that aggregate signature schemes enable to aggregate signatures on any set of mes-
sages, whereas multi-signature schemes enable to aggregate signatures on the same message. As a
result, the schemes of Boneh and Kim do not support aggregation of verification keys, and their
verification time scales linearly with the number of signers. We use a different aggregation method
that is tailored to aggregating signatures on the same message. Once such an aggregated key has
been verified to correspond to a particular set of signers (e.g., in a preliminary phase as discussed
above for blockchain transactions), this enables us to guarantee that the signing and verification
operations are independent of the number of signers.

Our scheme is based on the abstract notion of a ring-homomorphic one-way function, introduced
by Catalano, Fiore, Gennaro and Vamvourellis [CFG+15]. At a high level, we consider an efficiently-
computable homomorphism f : X → Y for cyclic groups X and Y that allows computing linear
operations “in the exponent” over a ring K = Zq for some prime q (in the DLOG-based instantiation,
the prime q corresponds to the order of the cyclic groups8, but in the RSA-based instantiation this
is not the case – see Section 2.1 for a formal definition).

Each signer in our scheme samples x, r ← X , and sets sk = (x, r) and vk = (X,R) = (f(x), f(r))
as their signing key and verification key, respectively. Then, a vector v⃗k = ((X1, R1), . . . , (Xn, Rn))
of verification keys, corresponding to n signers, is aggregated by computing aggvk = (aggX, aggR) =

(
∏n

i=1X
ai
i ,
∏n

i=1R
ai
i), where (a1, . . . , an) = H1

(
v⃗k
)

for a hash function H1. For any message m

and vector v⃗k of verification keys, each signer computes a signature σi = ri + H0 (m, aggvk) · xi for
a hash function H0, and signatures are similarly aggregated by computing aggσ =

∑n
i=1 ai · σi. In

turn, this enables to verify an aggregate signature aggσ with respect to an aggregated verification
key aggvk = (aggX, aggR) by checking whether f(aggσ) = (aggX)H0(m,aggvk) · aggR.

Our security proof models the hash function H0 and H1 as random oracles, and reduces the task
of breaking the one-time unforgeability of the scheme to that of breaking the one-wayness property of
the ring-homomorphic function (see Definition 2.1). Specifically, given any attacker for our scheme,
we construct an inverter that is given X = f(x) for a randomly chosen x, and outputs a pair (x′, d)
such that f(x′) = Xd and d ̸= 0 (note that, in the DLOG-setting d can always be efficiently inverted,
and thus without loss of generality d = 1, but in the RSA-setting this is not the case). At a very high
level, our proof programs the random oracle H0 for embedding the value X in the honestly-generated
verification key given as input to the attacker, while generating R in a way that would be consistent
with the response to the attacker’s single signing query. Then, the proof relies on a single application
of the forking lemma using the random oracle H1 for resampling the value of ai that corresponds
to position of the honestly-generated verification key in the aggregated verification key with respect
to which the attacker produces a forgery. Given two such forgeries, we are then able to efficiently
produce x′ and d as required. The proof naturally contains a variety of challenges for implementing
this high-level idea, and we refer the reader to Section 4 for a complete and formal description.

From one-time to single-set multi-signatures. As mentioned above, our approach is inspired
by the Naor-Yung transformation of a one-time signature scheme into a reusable one [NY89]. Recall
that, in the Naor-Yung transformation, the signer implicitly holds a binary tree of exponential size,
where each node of the tree is associated with a pair of one-time signing and verification keys.
Specifically, for signing ℓ-bit messages, the tree has 2ℓ leaves, where each leaf and each internal node

8In the DLOG-based instantiation, the homomorphism is simply the group exponentiation operation relative to a
given generator.

5

α ∈ {0, 1}≤ℓ ∪ {ε} is associated with a pair (skα, vkα) of one-time keys.9 The keys skε and vkε
corresponding to the root ε serve as the signing key and verification key, respectively, and all other
keys (and randomness that may be needed for using them) do not have to be explicitly generated or
stored, but rather can be produced whenever needed using a pseudorandom function whose key is
additionally included in the signing key.

For signing a message m ∈ {0, 1}ℓ, the signer first uses the signing key skm associated with the
leaf correspond to the binary string m for signing the message m itself. Then, it uses the signing
keys positioned on the path connecting the root ε to the leaf m for certifying the path: For every
j ∈ {0, . . . , ℓ − 1}, the signer uses the key skm|j associated with the internal node corresponding
to the binary string m|j to sign the concatenation of the two verification keys vkm|j0 and vkm|j1
corresponding to its two children in the tree.10 This makes sure that each signing key is used at
most once, thus enabling to rely on the one-time security of the underlying scheme.

Equipped with the Naor-Yung transformation, let us attempt extending it to the multi-signer
setting. As in the single-signer setting, suppose that each signer implicitly holds a tree, where
each node α ∈ {0, 1}≤ℓ ∪ {ε} is associated with a pair (skα, vkα) of keys for a one-time multi-
signature scheme. The keys skε and vkε corresponding to the root ε again serve as the signing key
and verification key, respectively, and all other keys are similarly generated using a pseudorandom
function upon demand. Note that this structure enables to aggregate the root verification keys
vk

(1)
ε , . . . , vk

(n)
ε of any n signers by using the key-aggregation algorithm of the underlying one-time

scheme. More generally, it enables to aggregate not only the root keys, but to implicitly define an
aggregated tree. In the aggregated tree, each node α ∈ {0, 1}≤ℓ∪{ε} is associated with an aggregated
verification key aggvkα that is obtained by aggregating the one-time verification keys vk(1)α , . . . , vk

(n)
α

associated with the node α in the n individual trees.
This observation leads to the following elegant, yet insecure, two-round signing protocol. For

signing a message m with respect to signers with root verification keys vk
(1)
ε , . . . , vk

(n)
ε , each signer

first sends all other signers the 2ℓ verification keys on the path leading from the signer’s root to the
leaf m. At this point, all signers know the verification keys vk

(i)
m|jb for all i ∈ [n], j ∈ {0, . . . , ℓ − 1}

and b ∈ {0, 1}. This enables each signer to compute the aggregated verification keys aggvkm|jb along
the path from the root to the leaf m in the aggregated tree. Now, for each level j ∈ {0, . . . , ℓ − 1},
each signer uses their one-time signing key sk

(i)
m|j to non-interactively compute a signature σ

(i)
m|j on

the concatenation of the two aggregated verification keys aggvkm|j0 and aggvkm|j1 with respect to

the signer set vk
(1)
m|j , . . . , vk

(n)
m|j . Finally, each signer uses their one-time signing key sk

(i)
m to compute

a signature σ
(i)
m on the message m with respect to the signer set vk

(1)
m , . . . , vk

(n)
m . These signatures

are then aggregated for each level j ∈ {1, . . . , ℓ} to produce a signature that consists of ℓ aggregated
one-time signatures. Note that both the length of the resulting signature and the time required
to verify it scale linearly with the length of the message (as in the Naor-Yung scheme), but are
completely independent of the number n of signers.

At this point, we would like to argue that since each one-time signing key is used at most once,
then we can rely on the security of the underlying one-time multi-signature scheme to claim that
our tree-based scheme is secure against attackers issuing any polynomial number of signing queries.
This argument fails, however, if the attacker can request signatures with respect to more than one
set of signers. The reason is that different sets of signers induce different aggregated trees. Consider
an adversary that requests a signature from some signer i with respect to a set S, and then requests

9We denote by {0, 1}≤ℓ the set of all binary strings of length at most ℓ, and by ε the empty string.
10We denote by m|j the leftmost j bits of a binary string m (where m|0 = ε), and we denote by m|jb the binary

string obtained by concatenating the strings m|j and b.

6

a signature from the same signer i with respect to a different set S ′. The first signature includes a
signature with respect to the one-time signing key sk

(i)
ε on information derived from the aggregated

tree corresponding to S, and the second signature includes a signature with respect to the same
one-time signing key sk

(i)
ε on information derived from the aggregated tree corresponding to S ′.

Since the underlying scheme is only guaranteed to be one-time secure, the security of the tree-based
construction breaks down.

Still, one might hope that the construction is secure as long as the attacker issues signature
queries with respect to a single set of signers, eliminating the issue we just described. This coincides
with our single-set notion of security. However, this is not the case. This added restriction is
insufficient because a root verification key may be used by malicious signers for different trees. That
is, a malicious signer can still send different verification keys in the first round of two invocations
of the signing protocol. This again results in two distinct aggregated trees (even though the two
invocations of the signing protocol share the same set of signers).

We resolve this additional challenge by identifying signers not only with their root verification
key, but also with a commitment containing a key for a pseudorandom function from which their
entire tree is derived. Now, in the first round of the signing protocol, each signer sends all one-time
verification keys on the path from their root to the respective leaf, while augmenting each such key
with a non-interactive zero-knowledge proof asserting that it has been generated correctly. From a
foundational standpoint, such proofs can be based on the existence of trapdoor functions11 [FLS90].
For practical instantiations, these NIZK proofs can be based on one of the many recent efficient
protocols12. Crucially, these proofs are not included as part of the resulting signature, but rather
only serve as “proofs of semi-honest behavior” that enable each signer to continue to the second
round of the signing protocol. This describes the high-level intuitive structure of our scheme, and
we refer the reader to Section 5 for a complete and formal description.

1.3 Related Work

DDH-based multi-signatures. Whereas most of the work on multi-signatures in prime-order
groups focused on DLOG-based schemes, several schemes were suggested also based on the DDH
assumption (e.g. [LYG19, FH21, TSS+23, PW23]). As in the single-signer setting, DDH-based
signatures may lead to tighter reductions. Although, when implemented in concrete groups, such
schemes typically do not offer the same efficiency guarantees as DLOG-based ones.

DLOG-based two-round multi-signatures. Existing DLOG-based two-round multi-signature
schemes can be roughly divided into three categories: (1) schemes whose security is established in
the algebraic group model [AB21, BD21, NRS21, LK23], (2) schemes whose security is established
based on interactive variants of the DLOG problem (without relying on the algebraic group model)
[BD21, NRS21], and (3) schemes whose security is established based on the standard DLOG problem
(again, without relying on the algebraic group model) [BD21, NRS21, TZ23]. As discussed in Section
1.1, it is challenging to compare the efficiency and concrete security guarantees of our one-time scheme
to those of the existing DLOG-based schemes, as these schemes satisfy the full-fledged notion of
security for multi-signature schemes. If any comparison can be made, it would seem essential for focus
on category 3, since the schemes in categories 1 and 2 seem to inherently avoid nested applications
of the forking lemma.

11Technically speaking, these have to be certifiably injective and doubly-enhanced [BY96, Gol11, GR13, CL18].
12See [GS08, Gro16, BBB+18, BSBH+18, GWC19, CHM+20, XZS22, GLS+23] and the many references therein for

a highly non-exhaustive list of examples.

7

Focusing on category 3, the schemes of Bellare and Dai [BD21], Nick, Ruffing and Seurin [NRS21],
and Tessaro and Zhu [TZ23] rely on two nested applications of the forking lemma (whereas we rely on
a single application), their verification keys consist of a single group element (whereas our verification
keys consist of two group elements), and their signatures consist of two, two and three group elements,
respectively (whereas our signatures consist of a single group element).

Synchronized multi-signatures. A substantially different tree-based approach, both in terms of
its goals and in terms of its structure, was recently presented by Fleischhacker, Simkin and Zhang
[FSZ22]. They constructed a lattice-based multi-signature scheme in the synchronized model, where
it is assumed that signers share a global notion of time, and the signing algorithm takes the current
time step as an additional input. Most notably, it is additionally assumed that no signer signs more
than one message per time step, and the goal is to aggregate signatures for the same message and
same time step, without knowing the set of signers in advance. Thus, a signature may be aggregated
together with those of any subset of other signers. As noted by Fleischhacker et al. such flexibility
seems particularly useful in the blockchain setting for the task of confirming newly-generated blocks:
Block validators may be synchronized by the number of the block that they sign, each validator does
not sign more than one block in each time period, and validators do not know which of the other
potential validators will actually participate.

In contrast to the synchronized model, we design our scheme in the plain public key model
[BN06], where there is no global notion of time (or any other form of synchronization), and we
aim at aggregating signatures not for a given time step but rather for a given set of signers that
is specified during the signing process. In particular, our scheme guarantees that a signature may
be aggregated only with a specific set of signers that is provided to the signing algorithm as input,
while keeping the verification time independent of the number of signers.

From the technical perspective, as discussed above, our approach relies on trees of exponential
size, which are never explicitly constructed in their entirety. Each of the exponential number of
leaves corresponds to a message-dedicated verification key for a one-time multi-signature scheme,
and the path leading to each leaf is constructed upon demand using a pseudorandom function. In
contrast, for supporting T time periods, Fleischhacker et al. explicitly sample T key pairs, and then
compute a homomorphic Merkle tree with the corresponding T verification keys as its leaves. As a
result, their scheme seems limited to supporting only a polynomial number T of time periods, and
the efficiency of their key-generation algorithm scales linearly with T .

Finally, we note that since messages in their scheme are not signed with respect to a given set of
signers (but rather a signature can be aggregated together with those of any subset of other signers),
the notion of security required from their one-time primitive does not explicitly consider multiple sign-
ers. Specifically, Fleischhacker et al. introduce a notion of single-signer one-time key-homomorphic
signatures, whereas we explicitly introduce a notion of one-time multi-signatures satisfying secu-
rity guarantees tailored to the multi-signer setting, and our tree-based construction can rely on any
multi-signature scheme that satisfies it.

2 Preliminaries

In this section we present the basic notions and the cryptographic primitives and tools that are used
in this work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we
denote by x← X the process of sampling a value x from the distribution X. Similarly, for a set X
we denote by x← X the process of sampling a value x from the uniform distribution over X .

8

2.1 Ring-Homomorphic One-Way Functions

Our construction of a one-time multi-signature scheme relies on the notion of ring-homomorphic one-
way functions, introduced by Catalano, Fiore, Gennaro and Vamvourellis [CFG+15]. This notion
was presented by Catalano et al. as part of their framework for algebraic one-way functions, which
is closely-related to the notion of group-homomorphic one-way functions introduced by Cramer and
Damgård [CD98]. The notion considers function families F = (Setup,Eval) where for any λ ∈ N
and for any function index Ind produced by F.Setup(1λ) it holds that F.Eval(Ind, ·) : XInd → YInd
is an efficiently-computable homomorphism for cyclic groups XInd and YInd that allows computing
linear operations “in the exponent” over a ring KInd. For our purposes, we consider the specific
case where KInd = Zq for some prime q = q(Ind), and note that already this case captures the
known constructions based on the hardness of the discrete-logarithm problem (i.e., the exponentiation
function in a cyclic group) and RSA problem (i.e., the RSA function) as we discuss below [CD98,
CFG+15].

As formalize by Catalano et al. [CFG+15], such a function family F is ring homomorphic if there
exists an efficient algorithm Eval′ such that for any λ ∈ N, Ind produced by Setup(1λ), generators

h1, . . . , hm ∈ XInd, vector of elements W = (W1, . . . ,Wℓ) ∈ X ℓ
Ind where Wi = h

ω
(1)
i

1 · · ·hω
(m)
i

m · Ri, for
some Ri ∈ XInd and some integers ω

(j)
i ∈ Z (note that this decomposition may not be unique), and

vector of integers α ∈ Zℓ, it holds that

Eval′(Ind,A,W ,Ω,α) = h
⟨ω(1),α⟩
1 · · ·h⟨ω

(m),α⟩
m

ℓ∏
i=1

Rαi
i

where A = (A1, . . . , Am) ∈ Ym
Ind is such that Ai = FInd (hi) ,Ω =

(
ω
(j)
i

)
i,j
∈ Zℓ×m, and each product〈

ω(j),α
〉

in the exponent is computed over the ring KInd.
In terms of one-wayness, Catalano et al. formalized the following notion of flexible one-wayness,

asking that given X = FInd(x) for a uniformly distributed x ∈ XInd, it should be infeasible to output
x′ ∈ XInd and d ∈ KInd such that FInd(x

′) = Xd and d ̸= 0KInd
.

Definition 2.1. A ring-homomorphic function family F = (Setup,Eval) is flexible one-way if for
every probabilistic polynomial-time algorithm A there exists a negligible function ν(·) such that

Advhom-ow
F,A (λ)

def
= Pr

[
A(Ind, X) = (x′, d) s.t.

FInd(x′) = Xd and d ̸= 0KInd

]
≤ ν(λ),

where Ind← Setup(1λ), x← XInd and X = FInd(x).

Note that if KInd = Zq, where q is the order of Xλ, then the above definition is equivalent to
the standard notion of one-wayness. In particular, the hardness of computing discrete logarithms in
cyclic groups is equivalent to the flexible one-wayness of the group exponentiation function in such
groups. In addition, Catalano et al. [CFG+15] showed that the RSA function x→ xe mod N in the
subgroup QRN ⊂ Z∗N of quadratic residues (where N is the product of two “safe primes” and thus
QRN is cyclic) is flexible one-way based on the RSA assumption. In this case, KInd = Ze for any
prime e ≥ 3.

2.2 The Forking Lemma

The proof of security for our one-time multi-signature scheme relies on the “forking lemma” of Bellare
and Neven [BN06] (following Pointcheval and Stern [PS00]). Let q ≥ 1 be an integer, and let H, X

9

and Y be a sets such that |H| ≥ 2. Let A be a randomized algorithm that on input (x, h⃗) ∈ X ×Hq

returns either a pair (i, y) ∈ [q]× Y or the dedicated symbol ⊥. Let FA be an algorithm that takes
inputs in X and returns either an output (y, y′) ∈ Y2 or the dedicated symbol ⊥, and is defined as
follows:

1. Sample random coins ρ← {0, 1}∗ for A.

2. Sample h1, . . . , hq ← H and compute out1 = A(x, h1, . . . , hq; ρ).

3. If out1 = ⊥ then return ⊥, and otherwise let out1 = (i, y).

4. Sample h′i, . . . , h
′
q ← H and compute out2 = A(x, h1, . . . , hi−1, h

′
i, . . . , hq; ρ).

5. If out2 = ⊥ then return ⊥, and otherwise let out2 = (i′, y′).

6. If i′ = i and hi ̸= h′i then return (i, y, y′), and otherwise return ⊥.

The following lemma, due to Bellare and Neven [BN06], relates the probability that FA success-
fully provides an output (other than ⊥) to the corresponding probability of A.

Lemma 2.2 ([BN06]). For any algorithm A and for any distribution D over X it holds that

Pr
x←D

[FA(x) ̸= ⊥] ≥ ϵ ·
(
ϵ

q
− 1

|H|

)
,

where
ϵ = Pr

x←D
h⃗←Hq

[
A
(
x, h⃗

)
̸= ⊥

]
.

2.3 Additional Cryptographic Primitives

In this section we formally define additional basic cryptographic primitives that are used as build-
ing blocks in our construction of a single-set multi-signature scheme: Pseudorandom functions,
collision-resistant hash functions, non-interactive statistically-binding commitment schemes, and
non-interactive zero-knowledge proofs.

Pseudorandom functions. For integers ℓin and ℓout we denote by Funcℓin,ℓout the set of all functions
mapping ℓin-bit inputs to ℓout-bit outputs. We rely on the following standard notion of pseudorandom
functions (e.g., [Gol01]):

Definition 2.3. Let ℓin = ℓin(λ) and ℓout = ℓout(λ) be functions of the security parameter λ ∈ N.
A pseudorandom function is a pair of polynomial-time algorithms Π = (KG,Eval) with the following
two properties:

1. Eval is a deterministic algorithm such that for any λ ∈ N and for any k produced by KG(1λ) it
holds that Eval(k, ·) : {0, 1}ℓin(λ) → {0, 1}ℓout(λ).

2. For every probabilistic polynomial-time algorithm A there exists a negligible function ν(·) such
that

AdvprfΠ,A(λ)
def
=
∣∣∣Pr[AEval(k,·)(1λ) = 1

]
− Pr

[
Af(·)(1λ) = 1

]∣∣∣ ≤ ν(λ),

where the probability is taken over the choices of k ← KG(1λ), and f ← Funcℓin(λ),ℓout(λ), and
over the internal randomness of A.

10

Collision-resistant hash functions. We rely on the standard notion of collision-resistant hash
functions (e.g., [Gol01]):

Definition 2.4. Let ℓin = ℓin(λ) and ℓout = ℓout(λ) be functions of the security parameter λ ∈ N.
A collision-resistant hash family is a pair of polynomial-time algorithms Π = (KG,Eval) with the
following two properties:

1. Eval is a deterministic algorithm such that for any λ ∈ N and for any k produced by KG(1λ) it
holds that Eval(k, ·) : {0, 1}ℓin(λ) → {0, 1}ℓout(λ).

2. For every probabilistic polynomial-time algorithm A there exists a negligible function ν(·) such
that

AdvcrhΠ,A(λ)
def
= Pr

[
A
(
1λ, k

)
= (x, x′) s.t.

x ̸= x′ ∈ {0, 1}ℓin(λ) and
Eval(k, x) = Eval(k, x′)

]
,

where the probability is taken over the choice of k← KG(1λ) and over the internal randomness
of A.

Non-interactive statistically-binding commitment schemes. We rely on the following stan-
dard notion of a non-interactive statistically-binding commitment scheme [Nao91, Gol01]:

Definition 2.5. Let ϵbinding = ϵbinding(λ) be a function of the security parameter λ ∈ N. A non-
interactive ϵbinding-statistically-binding commitment scheme for a message space M = {Mλ}λ∈N is
a triplet of probabilistic polynomial-time algorithms Π = (Setup,Commit,Verify) with the following
properties:

1. Perfect completeness: For every λ ∈ N and m ∈Mλ it holds that

Pr

[
Verify(crs, com, decom,m) = 1

∣∣∣∣ crs← Setup(1λ)

(com, decom)← Commit(crs,m)

]
= 1

where the probability is taken over the internal randomness of Setup, Commit and Verify.

2. Statistical binding: For every λ ∈ N it holds that

Pr

[
∃com,m ̸= m′, decom, decom′ s.t.

Verify(crs, com, decom,m) = Verify(crs, com, decom′,m′) = 1

]
≤ ϵbinding(λ)

where the probability is taken over the choice of crs← Setup(1λ).

3. Computational hiding: For every probabilistic polynomial-time algorithm A = (A1, A2)
there exists a negligible function ν(·) such that

AdvhidingΠ,A (λ)
def
=
∣∣∣Pr[ExphidingΠ,A (0, λ) = 1

]
− Pr

[
ExphidingΠ,A (1, λ) = 1

]∣∣∣ ≤ ν(λ)

for all sufficiently large n, where for each b ∈ {0, 1} the experiment ExphidingΠ,A (b, λ) is defined as:

(a) crs← Setup(1λ).
(b) (m0,m1, st)← A1(1

λ, crs).
(c) (com, decom)← Commit(crs,mb).
(d) b′ ← A2(crs, com, st).
(e) Output b′.

11

Non-interactive zero-knowledge proof systems. We rely on the following standard notion of
a non-interactive simulation-sound zero-knowledge proof system [BFM88, BSM+91, FLS90, Sah99,
SCO+01, Gro06, GOS06, Lin06]:

Definition 2.6. A non-interactive simulation-sound zero-knowledge proof system for a language
L = {Lλ}λ∈N with a witness relation R(L) = {Rλ}λ∈N is a 5-tuple of probabilistic polynomial-time
algorithms Π = (Setup,P,V,Sim1,Sim2) with the following properties:

1. Perfect completeness: For every λ ∈ N and (x,w) ∈ Rλ it holds that

Pr

[
V(1λ, crs, x, π) = 1

∣∣∣∣ crs← Setup(1λ)

π ← P(1λ, crs, x, w)

]
= 1

where the probability is taken over the internal randomness of Setup, P and V.

2. Adaptive zero knowledge: For every probabilistic polynomial-time algorithm A there exists
a negligible function ν(·) such that

AdvzkΠ,A(λ)
def
=
∣∣∣Pr[ExpzkΠ,A(λ) = 1

]
− Pr

[
ExpzkΠ,A,Sim1,Sim2

(λ) = 1
]∣∣∣ ≤ ν(λ)

for all sufficiently large n, where the experiment ExpzkΠ,A(λ) is defined as:

(a) crs← Setup(1λ).

(b) b← AP(1λ,crs,·,·)(1λ, crs).

(c) Output b.

and the experiment ExpzkΠ,A,Sim1,Sim2
(λ) is defined as:

(a) (crs, τ)← Sim1(1
λ).

(b) b ← ASim′2(1
λ,τ,·,·)(1λ, crs), where Sim′2(1

λ, τ, x, w) = Sim2(1
λ, τ, x) if (x,w) ∈ Rλ and

Sim′2(1
λ, τ, x, w) = ⊥ otherwise.

(c) output b.

3. Simulation soundness: For every probabilistic polynomial-time algorithm A there exists a
negligible function ν(·) such that

AdvssΠ,A(λ)
def
= Pr

[
ExpssΠ,A(λ) = 1

]
≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment ExpssΠ,A(λ) is defined as:

(a) (crs, τ)← Sim1(1
λ).

(b) (x, π)← ASim2(1λ,τ,·)(1λ, crs).

(c) Denote by Q the set of Sim2’s query-response pairs.

(d) Output 1 if and only if x /∈ Lλ, (x, π) /∈ Q, and V(1λ, crs, x, π) = 1.

12

3 One-Time and Single-Set Security for Multi-Signature Schemes

In this section we formalize our two notions of security for multi-signature schemes. These notions
are obtained by relaxing the notion of security for multi-signature schemes, formalized by Bellare and
Neven [BN06] and recently refined by Bellare and Dai [BD21], by restricting adversaries’ abilities
to obtain signatures of their choice. In what follows we briefly recall the syntax and correctness
requirement of multi-signature schemes, and then formally present our notions of security in Sections
3.1 and 3.2.

A multi-signature scheme is a six-tuple Π = (Setup,KG,KAgg,Sign,SAgg,Verify) of polynomial-
time algorithms. The setup algorithm Setup receives as input the unary representation of the security
parameter λ ∈ N and outputs public parameters pp. The key-generation algorithm KG receives as
input the public parameters pp, and outputs a signing key sk and a verification key vk. The key-
aggregation algorithm KAgg is a deterministic algorithm that takes as input the public parameters pp
and a vector of verification keys v⃗k, and outputs an aggregated verification key aggvk.13 For schemes
with non-interactive signing, the signing algorithm Sign receives as input the public parameters pp,
a signing key sk, a vector v⃗k of verification keys, and a message m that is taken from a message space
M, and outputs a signature σ. For schemes with interactive signing, the signing algorithm defines
an interactive protocol by additionally receiving as input at each round the relevant party’s internal
state the communication produced by all other parties. The signature-aggregation algorithm SAgg is
a deterministic algorithm that takes as input the public parameters pp, a vector of verification keys
v⃗k, and a vector of signatures σ⃗, and outputs an aggregated signature σ. Finally, the verification
algorithm Verify receives as input the public parameters pp, an aggregated verification key aggvk, a
message m and an aggregated signature σ, and outputs either 0 or 1.

In terms of correctness, we consider the following standard requirement, which we formalize for
simplicity for schemes with non-interactive signing and then discuss its extension to schemes with
interactive signing:

Definition 3.1. A multi-signature scheme Π = (Setup,KG,KAgg, Sign, SAgg,Verify) with non-
interactive signing over a message space M = {Mλ}λ∈N is perfectly correct if for any polynomial
n = n(·), security parameter λ ∈ N, and message m ∈Mλ it holds that

Pr
[
Verify

(
pp,KAgg

(
pp, v⃗k

)
,m,SAgg

(
pp, v⃗k, σ⃗

))
= 1
]
= 1

for v⃗k = (vk1, . . . , vkn) and σ⃗ = (σ1, . . . , σn), where the probability is taken over the choice of
pp← Setup(1λ), and over the choices of (ski, vki)← KG(pp) and σi ← Sign

(
pp, ski, v⃗k,m

)
for every

i ∈ [n].

The above definition extends to schemes with interactive signing by letting (σ1, . . . , σn) denote
the local output of each party in the interactive signing protocol, where each party i ∈ [n] is provided
with

(
pp, ski, v⃗k,m

)
as input. We refer the reader to the work of Bellare and Dai [BD21] for a formal

treatment of the correctness requirement for schemes with interactive signing.
A standard relaxation of the above definition allows for a negligible error probability. Concretely,

our single-set multi-signature scheme presented in Section 5 provides perfect correctness whenever the
vector v⃗k consists of distinct verification keys. Since essentially any notion of security for signature
schemes guarantees that collisions among honestly-generated verification keys may occur only with
a negligible probability, this yields at most a negligible error probability.

13For our framework we view collections of verification keys as vectors and not sets. Note that any set can be
uniquely transformed into a vector by determining an order among its elements (e.g., lexicographic order).

13

3.1 One-Time Unforgeability

For presenting the notion of one-time unforgeability for multi-signature schemes, we focus on multi-
signature schemes with non-interactive signing, and note that the following treatment naturally
extends to schemes with interactive signing (our one-time multi-signature scheme in Section 4 has
non-interactive signing).

This notion of security captures attacks in which an adversary may obtain a single signature
of their choice. Specifically, we consider a security experiment in which the adversary first receives
the public parameters pp of the scheme and an honestly-generated verification key vk. Then, the
adversary may issue a single signing query for some message m with respect to some set of signers
indicated via a vector v⃗k = (vk1, . . . , vkn) of verification keys. Both the message m and the vector
v⃗k of verification keys may be arbitrarily chosen (in polynomial time) by the adversary based on
the public parameters and the honest verification key. Next, the adversary obtains a signature
σ ← Sign(pp, sk, v⃗k,m) produced using the signing key sk corresponding to the honest verification
key vk (note that if vk /∈ v⃗k then the signing algorithm may be defined to output ⊥), and the
adversary’s goal is to output a non-trivial forgery (v⃗k∗,m∗, aggσ∗). The non-triviality of the forgery
is reflected in the fact that vk ∈ v⃗k∗ and (v⃗k∗,m∗) ̸= (v⃗k,m) (i.e., it could not have been directly
obtained as the result of the signing query), and that the aggregated signature aggσ∗ verifies correctly
for the message m∗ with respect to the aggregate verification key corresponding to v⃗k∗.

Definition 3.2. Let t = t(λ) and ϵ = ϵ(λ) be functions of the security parameter λ ∈ N. A
non-interactive multi-signature scheme Π = (Setup,KG,KAgg,Sign, SAgg,Verify) is one-time (t, ϵ)-
unforgeable if for any algorithm A = (A1, A2) that runs in time at most t it holds that

Adv1TimeMS
Π,A (λ)

def
= Pr

[
Exp1TimeMS

Π,A (λ) = 1
]
≤ ϵ(λ)

for all sufficiently large λ ∈ N, where the experiment Exp1TimeMS
Π,A (λ) is defined as follows:

1. pp← Setup(1λ).
2. (sk, vk)← KG(pp).

3.
(
v⃗k,m, st

)
← A1(1

λ, pp, vk).

4. σ ← Sign
(
pp, sk, v⃗k,m

)
.

5.
(
v⃗k∗,m∗, aggσ∗

)
← A2(st, σ).

6. If the following conditions are satisfied then output 1 and otherwise output 0:
(a) vk ∈ v⃗k∗.

(b)
(
v⃗k∗,m∗

)
̸=
(
v⃗k,m

)
(c) Verify

(
pp,KAgg

(
v⃗k∗
)
,m∗, aggσ∗

)
= 1.

In some cases we omit the parameters t and ϵ corresponding to the running time and success prob-
ability of adversaries, respectively, and consider polynomial-time adversaries with negligible success
probabilities. In addition, when considering schemes whose security is analyzed in the random-oracle
model [BR93], we augment all algorithms (including the adversary) with access to the random oracle,
introduce an additional parameter qH that upper bounds the number of direct random-oracle queries
issued by the adversary, and consider all probabilities also over the randomness of the oracle.

14

3.2 Single-Set Unforgeability

Our notion of single-set unforgeability for multi-signature schemes considers adversaries that obtain
any polynomial number of signatures of their choice but are restricted to requesting all of these
signatures with respect to a single set of signers. In this context, a single set of signers corresponds to
a single vector of verification keys, which may be adversarially chosen based on the public parameters
of the scheme and on the honestly-generated verification key that the adversary is attacking.

Looking ahead, our construction of a multi-signature scheme that provides single-set security
consists of a two-round signing protocol: Each party sends one message to all other parties, receives
one message from all other parties, and then produces their output. Following Bellare and Dai
[BD21], for formalizing the security of schemes with an interactive signing protocol, adversaries are
provided access to a stateful signing oracle that enables to initiate sessions and to continue previously-
initiated ones. Specifically, given a multi-signature scheme Π with a two-round signing protocol
Sign = (Sign1,Sign2), we denote by OSign(pp, sk, v⃗k, ·) the corresponding stateful signing oracle that
is provided to the adversary, where pp denotes the public parameters, sk denotes the signing key
corresponding to the honestly-generated verification key vk given as input to the adversary, and
v⃗k denotes the vector of verification keys corresponding to the single set of signers chosen by the
adversary. For this oracle, an adversary may issue two types of queries:

• Session-initiation queries: On query a message m, the oracle first assigns a unique session
identifier sid (e.g., in an incremental manner) and computes (msg1, st)← Sign1

(
pp, sk, v⃗k,m

)
.

Then, it locally stores the pair (sid, st) and outputs (sid,msg1).

• Communication queries: On query a pair (sid,msg2), the oracle first retrieves the stored pair
(sid, st), and then computes and outputs out← Sign2 (st,msg2). If no stored pair exists for the
session identifier sid then the oracle outputs ⊥.

Definition 3.3. Let t = t(λ), qsign = qsign(λ), and ϵ = ϵ(λ) be functions of the security parameter
λ ∈ N. A non-interactive multi-signature scheme Π = (Setup,KG,KAgg,Sign,SAgg,Verify) is single-
set (t, qsign, ϵ)-unforgeable if for any algorithm A = (A1, A2) that runs in time at most t and issues
at most qsign signing queries, it holds that

AdvSSetMS
Π,A (λ)

def
= Pr

[
ExpSSetMS

Π,A (λ) = 1
]
≤ ϵ(λ)

for all sufficiently large λ ∈ N, where the experiment ExpSSetMS
Π,A (λ) is defined as follows:

1. pp← Setup(1λ).
2. (sk, vk)← KG(pp).

3.
(
v⃗k, st

)
← A1(1

λ, pp, vk).

4.
(
v⃗k∗,m∗, aggσ∗

)
← A

OSign(pp,sk,v⃗k,·)
2 (st).

5. If the following conditions are satisfied then output 1 and otherwise output 0:
(a) vk ∈ v⃗k∗.
(b) v⃗k∗ ̸= v⃗k or A2 did not query OSign(pp, sk, v⃗k, ·) with m∗.

(c) Verify
(
pp,KAgg

(
v⃗k∗
)
,m∗, aggσ∗

)
= 1.

As noted in Section 3.1, when considering schemes whose security is analyzed in the random-
oracle model [BR93], we augment all algorithms (including the adversary) with access to the random
oracle, introduce an additional parameter qH that upper bounds the number of direct random-oracle
queries issued by the adversary, and consider all probabilities also over the randomness of the oracle.

15

4 One-Time Multi-Signatures via Ring-Homomorphic One-Way Functions

In this section we describe our construction of a one-time multi-signature scheme and prove its
security. Our construction is parameterized by the security parameter λ ∈ N and by an integer
n = n(λ) determining an upper bound on the size of supported signer sets. The construction relies
on the following building blocks:

• A ring-homomorphic one-way function F = (F.Setup,F.Eval). As formalized in Section 2.1
following Catalano et al. [CFG+15], recall that for any λ ∈ N and for any function index Ind
produced by F.Setup(1λ) it holds that F.Eval(Ind, ·) : XInd → YInd is a homomorphism for cyclic
groups XInd and YInd that allows computing linear operations “in the exponent” over a ring
KInd = Zq for some prime q = q(Ind) ≥ K(λ), where q is at most the order of the cyclic groups.
For simplifying our notation, for any function index Ind we let FInd(·) = F.Eval(Ind, ·).

• Hash functions H0 and H1 that will be modeled, for the security analysis, as random oracles.
For any function index Ind of the ring-homomorphic function F we assume that H0 : Mλ ×
YInd × YInd → KInd and H1 : (YInd × YInd)n → Kn

Ind, where M =Mλ is the supported message
space of the constructed multi-signature scheme (we can choose, for example, Mλ = {0, 1}λ).
In terms of input lengths, this means that we assume sufficiently long input lengths for H0 and
H1. In terms of output lengths, recall that KInd = Zq for some prime q, where q is at most the
order of the cyclic groups. In practice, this can be realized in a standard manner by producing
sufficiently-long outputs using a cryptographic hash function, and then reducing the results
modulo q to obtain a statistically-small error.

In what follows we first describe our one-time scheme, denoted 1T, and then prove its correctness
and security. For simplicity and for avoiding the introduction of additional notation, when describing
the scheme and proving its security we assume that all signer sets are of size n = n(λ), but we note
that an upper bound on the size of supported signer sets would suffice. In addition, we note that,
in practice our scheme does not essentially require any setup. Specifically, when realizing the ring-
homomorphic one-way function via group exponentiation in a prime-order group [CD98, CFG+15],
the function index Ind consists of the description of the group, which is typically fixed (e.g., standard
256-bit curves such as Secp256k1 or Curve25519).

The scheme 1T = (Setup,KG,KAgg,Sign,SAgg,Verify)

Setup(1λ). On input 1λ the setup algorithm samples Ind← F.Setup(1λ) and outputs pp = Ind.

KG(pp). On input pp as above, the key-generation algorithm samples x, r ← XInd, computes X = FInd(x)
and R = FInd(r), and then outputs (sk, vk) = ((x, r) , (X,R)).

KAgg
(
pp, v⃗k

)
. On input pp as above and v⃗k = (vk1, . . . , vkn), where vki = (Xi, Ri) for every i ∈ [n],

the key-aggregation algorithm computes

(a1, . . . , an) = H1

(
v⃗k
)
∈ Kn

Ind

aggX =

n∏
i=1

Xai
i ∈ YInd

aggR =

n∏
i=1

Rai
i ∈ YInd,

and outputs aggvk = (aggX, aggR).

16

Sign
(
pp, sk, v⃗k,m

)
. On input pp as above, sk = (x, r), v⃗k and m ∈ Mλ, the signing algorithm is

defined as follows:

1. If (FInd(x),FInd(r)) /∈ v⃗k then output ⊥.

2. Otherwise, compute aggvk = KAgg
(
pp, v⃗k

)
, and output

σ = r + H0 (m, aggvk) · x ∈ XInd.

SAgg
(
pp, v⃗k, σ⃗

)
. On input pp as above, v⃗k and σ⃗ = (σ1, . . . , σn), the signature-aggregation algorithm

computes (a1, . . . , an) = H1

(
v⃗k
)
∈ KInd and outputs aggσ =

∑n
i=1 ai · σi ∈ XInd.

Verify (pp, aggvk,m, aggσ). On input pp as above, aggvk = (aggX, aggR), m and aggσ, if

FInd(aggσ) = (aggX)H0(m,aggvk) · aggR

then the verification algorithm outputs 1 and otherwise it outputs 0.

Correctness. Fix any λ ∈ N, any public parameters pp = Ind, and any vector of verification keys
v⃗k = (vk1, . . . , vkn). For every i ∈ [n] let vki = (Xi, Ri), where Xi = FInd(xi) and Ri = FInd(ri).
Then, for any message m it holds that

FInd(aggσ) = FInd

(
n∑

i=1

ai · ri + H0 (m, aggvk) ·
n∑

i=1

ai · xi

)

=

(
n∏

i=1

FInd(xi)
ai

)H0(m,aggvk)

·

(
n∏

i=1

FInd(ri)
ai

)
= (aggX)H0(m,aggvk) · aggR ,

where (a1, . . . , an) = H1

(
v⃗k
)
, and thus the scheme provides perfect correctness.

Security. The following theorem establishes the security of our scheme based on that of the un-
derling ring-homomorphic one-way function (recall Definition 2.1):

Theorem 4.1. Let A be a probabilistic polynomial-time algorithm that issues qH0 = qH0(λ) and qH1 =
qH1(λ) queries to the oracles H0 and H1, respectively. Then, there exists a probabilistic polynomial-
time algorithm I such that for every λ ∈ N it holds that

Adv1TimeMS
1T,A (λ) ≤ (qH0)

2 · qH1 · n ·

(√
Advhom-ow

F,I (λ) +
(qH0)

2 + (qH1)
2

K(λ)
+

1

K(λ)

)

Proof of Theorem 4.1. Let A be a probabilistic polynomial-time algorithm that issues a single
signing query, and issues qH0 and qH1 queries to the oracles H0 and H1, respectively. Without loss of
generality, we assume that A does no query either H0 and H1 more than once with the same input.
We denote by

(
v⃗k,m

)
the signing query issued by A, and by

(
v⃗k∗,m∗, aggσ∗

)
the output provided

by A. By increasing the number of A’s queries to H0 by at most 2, we assume that A always queries
H0 with (m, aggvk) and (m∗, aggvk∗), where aggvk = KAgg

(
pp, v⃗k

)
and aggvk∗ = KAgg

(
pp, v⃗k∗

)
.

Similarly, by increasing the number of A’s queries to H1 by at most 2, we assume that A always
queries H1 with v⃗k and v⃗k∗.

17

We construct a probabilistic polynomial-time inversion algorithm I using Lemma 2.2. Concretely,
we define an algorithm B which simulates the experiment Exp1TimeMS

1T,A to A and enforces some ad-
ditional checks. Then, on input (Ind, X), the algorithm I invokes the forking algorithm FB for B,
guaranteed by Lemma 2.2, to obtain two correlated forgeries which can be used to compute x′ ∈ XInd

and 0 ̸= d ∈ KInd such that FInd(x
′) = Xd.

The algorithm B
(
pp,X, h⃗

)
On input pp = Ind, X = FInd(x), and h⃗ =

(
h(1), . . . , h(qH1

)
)
, the algorithm B is defined as follows:

1. Sample internal randomness

ρ =

(
i∗0, i

∗
1, k

∗, σ,
{
c(i)
}
i∈[qH0

]
,
{(

a
(i)
1 , . . . , a(i)n

)}
i∈[qH1

]

)
,

where:

• i∗0, i
∗
1 ← [qH0

]. Looking ahead, i∗0 and i∗1 are B’s guesses for the indices of A’s H0-queries (m, aggvk)
and (m∗, aggvk∗), respectively.

• k∗ ← [n]. Looking ahead, k∗ is B’s guess for the coordinate in which A will position vk within v⃗k∗.

• σ ← Xpp. Looking ahead, σ is B’s response to A’s signing query.

• c(i) ← KInd for every i ∈ [qH0
]. Looking ahead, these values are B’s responses to A’s H0-queries.

•
(
a
(j)
1 , . . . , a

(j)
n

)
← Kn

Ind for every j ∈ [qH1
]. Looking ahead, these are B’s responses to A’s H1-queries

(except for the k∗-th coordinate a
(j)
k∗ that will be replaced).

2. Set R = FInd(σ) · X−c(i
∗
0)

(assuming that i∗0 is guessed correctly, this defines c(i
∗
0) = H0 (m, aggvk)),

and for every j ∈ [qH1] set a
(j)
k∗ = h(j).

3. Invoke A on input (pp, vk), where vk = (X,R), and respond to A’s oracle queries as follows:

• When A issues a signing query return σ.

• For every i ∈ [qH0], when A issues their ith H0-query return c(i).

• For every j ∈ [qH1], when A issues their jth H1-query return
(
a
(j)
1 , . . . , a

(j)
n

)
.

4. Given A’s output
(
v⃗k∗,m∗, aggσ∗

)
, if all of the following conditions are satisfied then output (j∗, aggσ∗),

where j∗ ∈ [qH1] is the index of the H1-query v⃗k∗, and otherwise output ⊥:

(a) Verify
(
pp, v⃗k∗,m∗, aggσ∗

)
= 1, vk ∈ v⃗k∗, and

(
v⃗k∗,m∗

)
̸=
(
v⃗k,m

)
(i.e., A won the simulated

experiment).

(b) A’s i∗0-th H0-query was (m, aggvk) (i.e., B guessed i∗0 correctly).

(c) A’s i∗1-th H0-query was (m∗, aggvk∗) (i.e., B guessed i∗1 correctly).

(d) v⃗k∗ = (vk∗1, . . . , vk
∗
n) where vk∗k∗ = vk (i.e., B guessed k∗ correctly).

Claim 4.2. For every λ ∈ N it holds that

Pr
[
B
(
pp,FInd(x), h⃗

)
̸= ⊥

]
≥ 1

(qH0)
2 · n

· Adv1TimeMS
1T,A (λ),

where pp = Ind← F.Setup(1λ), x← XInd and h⃗← KqH1
Ind .

18

Proof of Claim 4.2. Let win denote the event in which A wins the simulated experiment, and let
hit denote the event in which the index i∗0 was guessed correctly by B. The choices of i∗1 and k∗ are
completely independent of A’s execution, and therefore can be sampled by B at the end. Hence,

Pr
[
B
(
pp,FInd(x), h⃗

)
̸= ⊥

]
=

1

qH0 · n
· Pr [win|hit] · Pr [hit] (4.1)

=
1

(qH0)
2 · n

· Pr [win|hit]

=
1

(qH0)
2 · n

· Adv1TimeMS
1T,A (λ),

where Eq. (4.1) also follows from the fact that B outputs ⊥ with probability 1 conditioned on hit.
Since conditioned on hit, B perfectly simulates the one-time unforgeability experiment to A, the
claim follows.

Claim 4.2 directly enables us to lower bound the probability that FB(Ind, X) ̸= ⊥ via the forking
lemma (see Lemma 2.2):

Corollary 4.3. For every λ ∈ N it holds that

Pr [FB (Ind,FInd(x)) ̸= ⊥] ≥
Adv1TimeMS

1T,A (λ)

(qH0)
2 · n

·

(
Adv1TimeMS

1T,A (λ)

(qH0)
2 · qH1 · n

− 1

K(λ)

)
,

where Ind← F.Setup(1λ) and x← XInd.

Having described the algorithms B and FB, and analyzed their success probability, we can now
describe the inversion algorithm I. On input (Ind, X), the algorithm I invokes the algorithm FB

provided by the forking lemma (see Section 2.2) on the input (pp, X), where pp = Ind. If the
algorithm FB returns ⊥ then I fails (e.g., I outputs some fixed values x′ ∈ Xλ and d ∈ KInd).
Otherwise, if the algorithm FB returns a triplet (j∗, aggσ∗, aggσ∗∗), then denote by ρ the random
string sampled by FB for running B, where

ρ =

(
i∗0, i

∗
1, k
∗, σ,

{
c(i)
}
i∈[qH0

]
,
{(

a
(j)
1 , . . . , a(j)n

)}
j∈[qH1]

)
,

and denote by h(1), . . . , h(qH1) the sequence of oracle responses sampled by FB for B’s first execution,
and by ĥ(j

∗), . . . , ĥ(qH1) the additional oracle responses sampled by FB for B’s second execution.
That is, using this notation, the algorithm FB first invoked B on the input

(
pp, X, h(1), . . . , h(qH1)

)
to obtain an output

(
v⃗k∗,m∗, aggσ∗

)
from A and an output (j∗, aggσ∗) from B, and then invoked B

on the input
(
pp, X, h(1), . . . , h(j

∗−1), ĥ(j
∗), . . . , ĥ(qH1

)
)

to obtain an output
(

⃗vk∗∗,m∗∗, aggσ∗∗
)

from
A and an output (j∗, aggσ∗∗) from B. The inversion algorithm I then computes and outputs

x′ = aggσ∗ − aggσ∗∗ −
(
h(j
∗) − ĥ(j

∗)
)
· σ ∈ XInd

d =
(
c(i
∗
1) − c(i

∗
0)
)
·
(
h(j
∗) − ĥ(j

∗)
)
∈ KInd.

We now show that as long as the algorithm FB does not return ⊥, then FInd(x
′) = Xd and thus the

inversion algorithm I is successful. Note that both invocations of the algorithm B by the algorithm
FB use the random string ρ, and therefore B uses the same values i∗0, i∗1, k∗, σ,

{
c(i)
}
i∈[qH0]

and{(
a
(j)
1 , . . . , a

(j)
n

)}
j∈[qH1]

for these two executions. In particular it holds that:

19

1. In both executions of B the vector of verification keys v⃗k∗ relative to which A produces the
forgery was provided as input to A’s j∗-th H1-query (this is the query to which A is rewinded
by B). Therefore, since the executions are identical up to the response to the j∗-th H1-query,
and since in both executions the same index k∗ is used for guessing the position of vk∗ and
vk∗∗ in v⃗k∗, it holds that vk∗ = vk∗∗. We let

vk∗ = vk∗∗ = ((X1, R1) , . . . , (Xn, Rn)) .

2. In both executions of B the verification key vk = (X,R) was positioned by A in coordinate
k∗ ∈ [n] of vk∗ and vk∗∗. Therefore, (Xk∗ , Rk∗) = (X,R).

3. In both executions of B, the value returned as the response to A’s i∗1-th query to H0 was
c(i
∗
1). Therefore, in the first execution c(i

∗
1) = H0 (m

∗, aggvk∗) and in the second execution
c(i
∗
1) = H0 (m

∗∗, aggvk∗∗).

Thus, in B’s first execution, we have that

H0 (m
∗, aggvk∗) = c(i

∗
1)

H1

(
v⃗k∗
)
=
(
a
(j∗)
1 , . . . , a

(j∗)
k∗−1, h

(j∗), a
(j∗)
k∗+1, a

(j∗)
n

)
,

and given that A produced a valid forgery it holds that

FInd(aggσ
∗) =

Xh(j∗)
k∗ ·

∏
i∈[n]\{k∗}

X
a
(j∗)
i

i

c(i
∗
1)

·

Rh(j∗)
k∗ ·

∏
i∈[n]\{k∗}

R
a
(j∗)
i

i

 . (4.2)

Similarly, in B’s second execution, we have that

H0 (m
∗∗, aggvk∗∗) = c(i

∗
1)

H1

(
⃗vk∗∗
)
=
(
a
(j∗)
1 , . . . , a

(j∗)
k∗−1, ĥ

(j∗), a
(j∗)
k∗+1, a

(j∗)
n

)
,

and given that A produced a valid forgery it holds that

FInd(aggσ
∗∗) =

X ĥ(j∗)
k∗ ·

∏
i∈[n]\{k∗}

X
a
(j∗)
i

i

c(i
∗
1)

·

Rĥ(j∗)
k∗ ·

∏
i∈[n]\{k∗}

R
a
(j∗)
i

i

 . (4.3)

Therefore, using the facts that Xk∗ = X and Rk∗ = R = FInd(σ) ·X−c
(i∗0) , Equations (4.2) and (4.3)

imply

FInd(aggσ
∗ − aggσ∗∗) = X

c(i
∗
1)·

(
h(j∗)−ĥ(j∗)

)
k∗ ·Rh(j∗)−ĥ(j∗)

k∗

= X
c(i
∗
1)·

(
h(j∗)−ĥ(j∗)

)
·
(
FInd(σ) ·X−c

(i∗0)
)h(j∗)−ĥ(j∗)

= X

(
c(i
∗
1)−c(i

∗
0)
)
·
(
h(j∗)−ĥ(j∗)

)
· FInd

((
h(j
∗) − ĥ(j

∗)
)
· σ
)

which, for the above setting of x′ and d, implies that

FInd(x
′) = FInd

(
aggσ∗ − aggσ∗∗ −

(
h(j
∗) − ĥ(j

∗)
)
· σ
)

= X

(
c(i
∗
1)−c(i

∗
0)
)
·
(
h(j∗)−ĥ(j∗)

)
= Xd.

20

The following claim concludes the proof by bounding the probability that d = 0KInd
. This shows,

in particular, that the scheme’s key-aggregation procedure is collision resistant as a function of the
vector of verification keys that it aggregates.

Claim 4.4. For every λ ∈ N it holds that

Pr

[
I(Ind, X) = (x′, d)

s.t. d = 0KInd

∧ FB(pp, X) ̸= ⊥
]
≤ (qH0)

2 + (qH1)
2

K(λ)
,

where pp = Ind← F.Setup(1λ), x← XInd, X = FInd(x) and the probability is additionally taken over
the internal randomness of the algorithms I and B.

Proof of Claim 4.4. Conditioned on the event FB(pp, X) ̸= ⊥, the algorithm I outputs d =(
c(i
∗
1) − c(i

∗
0)
)
·
(
h(j
∗) − ĥ(j

∗)
)
∈ KInd, where c(i∗1), c(i∗0), h(j∗), ĥ(j∗) ∈ KInd and KInd = Zq for some prime

q = q(Ind) ≥ K(λ). Recall, in addition, that according to the forking lemma, if h(j∗) = ĥ(j
∗) then FB

outputs ⊥. Therefore, conditioned on the event FB(pp, X) ̸= ⊥, it holds that h(j
∗) ̸= ĥ(j

∗), and we
are left to consider the event c(i∗1) = c(i

∗
0). Note that these two values are defined already for the first

invocation of B by FB, and conditioned on B(pp, X, h⃗) ̸= ⊥ (which follows from FB(pp, X) ̸= ⊥) it
holds that

c(i
∗
0) = H0 (m, aggvk)

c(i
∗
1) = H0 (m

∗, aggvk∗) .

Now, there are two disjoint events to consider, denoted E and Ē :

Event E: m ̸= m∗ or aggvk ̸= aggvk∗. Here (m, aggvk) ̸= (m∗, aggvk∗), and therefore c(i
∗
0) =

c(i
∗
1) implies that the algorithm A found a non-trivial collision for the random oracle H0 during

B’s first invocation. Such a collision may be found with probability at most (qH0)
2/|KInd| ≤

(qH0)
2/K(λ), and therefore

Pr

[
I(Ind, X) = (x′, d)

s.t. d = 0KInd

∧ FB(pp, X) ̸= ⊥ ∧ E
]
≤ (qH0)

2

K(λ)
. (4.4)

Event Ē: m = m∗ and aggvk = aggvk∗. Note that by the definition of B, if FB(pp, X) ̸= ⊥ then(
m, v⃗k

)
̸=
(
m∗, v⃗k∗

)
and therefore the event Ē implies that the algorithm A produced v⃗k and

v⃗k∗ such that v⃗k ̸= v⃗k∗ and aggvk = aggvk∗. Among the qH1 queries issued by A to the random
oracle H1, there are at most (qH0)

2 potential choices for such v⃗k ̸= v⃗k∗, and we now show that
for each such choice it holds that aggvk = aggvk∗ with probability at most 1/K(λ).

Specifically, let
v⃗k = ((X1, R1), . . . , (Xn, Rn))

and
v⃗k∗ = ((X∗1 , R

∗
1), . . . , (X

∗
n, R

∗
n)) ,

and assume without loss of generality that A issues the H1-query v⃗k before the H1-query v⃗k∗.
Then, if (X1, . . . , Xn) ̸= (X∗1 , . . . , X

∗
n), then by the time A issues that H1 query v⃗k∗ the value

aggX =
∏n

i=1X
ai
i is already fixed, where (a1, . . . , an) = H1

(
v⃗k
)
. Therefore, the probability

over the choice of (a∗1, . . . , a
∗
n) = H1

(
v⃗k∗
)

that aggX∗ =
∏n

i=1(X
∗
i)

a∗i = aggX is at most

21

1/|KInd| ≤ 1/K(λ). An identical argument holds if (R1, . . . , Rn) ̸= (R∗1, . . . , R
∗
n), and overall

we obtain

Pr

[
I(Ind, X) = (x′, d)

s.t. d = 0KInd

∧ FB(pp, X) ̸= ⊥ ∧ Ē
]
≤ (qH1)

2

K(λ)
. (4.5)

The claim now follows by combining Equations (4.4) and (4.5).

Equipped with Corollary 4.3 and Claim 4.4, we have

Pr

[
I(Ind, X) = (x′, d) s.t.

FInd(x′) ̸= Xd or d = 0KInd

]
≤ Pr [FB(pp, X) = ⊥]

+Pr

[
I(Ind, X) = (x′, d)

s.t. d = 0KInd

∧ FB(pp, X) ̸= ⊥
]

≤ 1−
Adv1TimeMS

1T,A (λ)

(qH0)
2 · n

·

(
Adv1TimeMS

1T,A (λ)

(qH0)
2 · qH1 · n

− 1

K(λ)

)

+
(qH0)

2 + (qH1)
2

K(λ)
.

Thus, for any λ ∈ N it holds that

Advhom-ow
F,I (λ) = Pr

[
I(Ind, X) = (x′, d) s.t.

FInd(x′) = Xd and d ̸= 0KInd

]

≥

(
Adv1TimeMS

1T,A (λ)

(qH0)
2 · qH1 · n

− 1

|K(λ)|

)2

− (qH0)
2 + (qH1)

2

K(λ)
,

and therefore

Adv1TimeMS
1T,A (λ) ≤ (qH0)

2 · qH1 · n ·

(√
Advhom-ow

F,I (λ) +
(qH0)

2 + (qH1)
2

K(λ)
+

1

K(λ)

)
.

This settles the proof of Theorem 4.1.

5 From One-Time to Single-Set Multi-Signatures

In this section we show that any one-time multi-signature scheme with non-interactive signing can
be transformed into a multi-signature scheme that satisfies our notion of single-set unforgeability
with a two-round signing protocol. Our construction relies on the following building blocks:

• A multi-signature scheme 1T = (1T.Setup, 1T.KG, 1T.KAgg, 1T.Sign, 1T.SAgg, 1T.Verify) that
is one-time unforgeable with non-interactive signing over a message spaceM = {Mλ}λ∈N. For
simplicity we assume thatMλ = {0, 1}ℓ for some polynomial ℓ = ℓ(λ), and that ℓ is sufficiently
large for enabling the scheme to sign, for example, the concatenation of two verification keys
produced by its key-generation algorithm (otherwise, we can additionally rely on a collision-
resistant hash function in the standard “hash-then-sign” manner). In addition, since the scheme
has non-interactive signing, we assume without loss of generality that its signing algorithm is
deterministic.

22

• A pseudorandom function PRF = (PRF.KG,PRF.Eval), where for each λ ∈ N and for each key
k produced by PRF.KG(1λ) it holds that PRF.Eval(k, ·) : {0, 1}≤ℓ(λ) → {0, 1}ℓ′(λ), and ℓ′(λ) is
the length of the internal random string sampled by the key-generation algorithm 1T.KG.

• A collision-resistant hash function CRH = (CRH.KG,CRH.Eval). As noted below, our usage
of a collision-resistant hash function is in fact not required, and is done for providing a more
direct proof of security.

• A non-interactive statistically-binding commitment scheme COM = (COM.Setup,COM.Commit,
COM.Verify).

• A non-interactive simulation-sound zero-knowledge proof system ZK = (ZK.Setup,ZK.P,ZK.V,
ZK.Sim1,ZK.Sim2) for the language L = {Lλ}λ∈N, where

Lλ =

(
pp1T, crscom,

com, x, vk

)
:

∃ (decom, kPRF, sk) s.t.
COM.Verify (crscom, com, decom, kPRF) = 1 and
(sk, vk) = 1T.KG(pp1T;PRF.Eval(kPRF, x))

 .

Note that even if the security of the scheme 1T is proved in the random-oracle model, then as
long as the key-generation algorithm 1T.KG does not access the random oracle (as with our
scheme in Section 4), then L is an NP-language (assuming, of course, that COM is a standard-
model commitment scheme, and that PRF is a standard-model pseudorandom function [Nao91,
Gol01]). In this case, the single-set security of our construction is proved in the random-oracle
model.

For presenting our scheme, we denote by ε the empty string, we denote by m|i the leftmost i
bits of a binary string m (where m|0 = ε), and we denote by m|ib the binary string obtained by
concatenating the strings m|i and b.

The scheme Π = (Setup,KG,KAgg,Sign,SAgg,Verify)

Setup(1λ). On input 1λ the setup algorithm computes

pp1T ← 1T.Setup(1λ)

crsZK ← ZK.Setup(1λ)

crsCOM ← COM.Setup(1λ)

kCRH ← CRH.KG(1λ),

and returns pp = (pp1T, crsZK, crsCOM, kCRH).

KG(pp). On input pp as above, the key-generation algorithm computes

(skε, vkε) ← 1T.KG(pp1T)

kPRF ← PRF.KG(1λ)

(com, decom) ← COM.Commit (crsCOM, kPRF) ,

and returns sk = (skε, vkε, kPRF, com, decom) and vk = (vkε, com).

KAgg
(
pp, v⃗k

)
. On input pp as above and v⃗k =

((
vk(1)ε , com(1)

)
, . . . ,

(
vk(n)ε , com(n)

))
the key-aggregation

23

algorithm computes

aggvkε = 1T.KAgg
(
pp1T,

(
vk(1)ε , . . . , vk(n)ε

))
tagv⃗k = CRH.Eval

(
kCRH, v⃗k

)
,

and returns aggvk =
(
aggvkε, tagv⃗k

)
.

Sign
(
pp, sk, v⃗k,m

)
. On input pp as above, sk = (skε, vkε, k, com, decom), v⃗k and m ∈ {0, 1}ℓ, the

signing algorithm proceeds as follows:

1. Let v⃗k =
((

vk(1)ε , com(1)
)
, . . . ,

(
vk(n)ε , com(n)

))
. If there is no index i ∈ [n] for which

(vkε, com) =
(
vk(i)ε , com(i)

)
or there is more than one such index, then abort. Otherwise,

denote by k∗ ∈ [n] the unique such index.
2. For any j ∈ {0, . . . , ℓ− 1} and b ∈ {0, 1} compute(

sk
(k∗)
m|jb, vk

(k∗)
m|jb

)
= 1T.KG(pp1T;PRF.Eval(k,m|jb))

π
(k∗)
m|jb = ZK.P

(
crsZK,

(
pp1T, crscom, com,m|jb, vk(k

∗)
m|jb

)
,
(
decom, k, sk

(k∗)
m|jb

))

and send
{(

vk
(k∗)
m|jb, π

(k∗)
m|jb

)}
j∈{0,...,ℓ−1},b∈{0,1}

to all other parties.

3. Upon receiving
{(

vk
(i)
m|jb, π

(i)
m|jb

)}
i∈[n]\{k∗},j∈{0,...,ℓ−1},b∈{0,1}

from all other parties, if there

exists (i, j, b) ∈ ([n] \ {k∗})× {0, . . . , ℓ− 1} × {0, 1} for which vk
(i)
m|jb = vk

(k∗)
m|jb or

ZK.V
(
crsZK,

(
pp1T, crscom, com

(i),m|jb, vk(i)m|jb

)
, π

(i)
m|jb

)
= 0

then abort. Otherwise, compute

v⃗km|jb =
(
vk

(1)
m|jb, . . . , vk

(n)
m|jb

)
for all j ∈ {0, . . . , ℓ− 1} and b ∈ {0, 1}

aggvkm|jb = 1T.KAgg
(
pp1T, v⃗km|jb

)
for all j ∈ {0, . . . , ℓ− 1} and b ∈ {0, 1}

σ
(k∗)
m|j = 1T.Sign

(
pp1T, sk

(k∗)
m|j , v⃗km|j ,

(
aggvkm|j0, aggvkm|j1

))
for all j ∈ {0, . . . , ℓ− 1}

tagv⃗k = CRH.Eval
(
kCRH, v⃗k

)
σ(k∗)
m = 1T.Sign

(
pp1T, sk

(k∗)
m , v⃗km,

(
m, tagv⃗k

))
and output

σ(k∗) =

({(
σ
(k∗)
m|j , vk

(k∗)
m|j0, vk

(k∗)
m|j1

)}
j∈{0,...,ℓ−1}

, σ(k∗)
m

)
.

SAgg
(
pp, v⃗k, σ⃗

)
. On input pp as above, v⃗k and σ⃗ =

(
σ(1), . . . , σ(n)

)
where

σ(i) =

({(
σ
(i)
m|j , vk

(i)
m|j0, vk

(i)
m|j1

)}
j∈{0,...,ℓ−1}

, σ(i)
m

)

24

for every i ∈ [n], the signature-aggregation algorithm computes

aggvkm|jb = 1T.KAgg
(
pp1T,

(
vk

(1)
m|jb, . . . , vk

(n)
m|jb

))
for all j ∈ {0, . . . , ℓ− 1} and b ∈ {0, 1}

aggσm|j = 1T.SAgg
(
pp1T, v⃗km|j ,

(
σ
(1)
m|j , . . . , σ

(n)
m|j

))
for all j ∈ {0, . . . , ℓ},

and outputs

aggσ =

({(
aggσm|j , aggvkm|j0, aggvkm|j1

)}
j∈{0,...,ℓ−1}

, aggσm

)
.

Verify(pp, aggvk,m, aggσ). On input pp as above, aggvk =
(
aggvkε, tagv⃗k

)
, m ∈ {0, 1}ℓ and aggσ,

where
aggσ =

({(
aggσm|j , aggvkm|j0, aggvkm|j1

)}
j∈{0,...,ℓ−1}

, aggσm

)
,

the verification algorithm outputs 1 if and only if the following two requirements are satisfied:

1. 1T.Verify
(
pp1T, aggvkm|j ,

(
aggvkm|j0, aggvkm|j1

)
, aggσm|j

)
= 1 for every j ∈ {0, . . . , ℓ− 1}.

2. 1T.Verify
(
pp1T, aggvkm,

(
m, tagv⃗k

)
, aggσm

)
= 1.

The following theorem captures the security of the scheme Π based on that on its underlying
building blocks. Here, we note that our usage of a collision-resistant hash function for computing
the tags tag

v⃗k
= CRH.Eval

(
kCRH, v⃗k

)
is in fact not required, and is done for providing a more direct

proof of security. Specifically, we could have instead used tag
v⃗k

= aggvkε, and rely on the fact that
the key aggregation of any one-time multi-signature scheme is collision resistant (as effectively shown
by the proof of Claim 4.4 for our one-time scheme).

Theorem 5.1. Let ϵbinding = ϵbinding(λ), qSign = qSign(λ) and ℓ = ℓ(λ) be functions of the security
parameter λ ∈ N, and let A be a probabilistic polynomial-time algorithm that issues qSign signing
queries for ℓ-bit messages. Then, assuming that COM is ϵbinding-statistically binding, there exist
probabilistic polynomial-time algorithms B1, . . . , B6 such that for every λ ∈ N it holds that

AdvSSetMS
Π,A (λ) ≤ ϵbinding(λ) + AdvzkZK,B1

(λ) + AdvhidingCOM,B2
(λ) + AdvprfPRF,B3

(λ)

+AdvssZK,B4
(λ) + AdvcrhCRH,B5

(λ) + (2 · ℓ · qSign + 1) · Adv1TimeMS
1T,B6

(λ).

Proof of Theorem 5.1. Let A be a probabilistic polynomial-time adversary that participates in
the experiment ExpSSetMS

Π,A (λ) by issuing qSign = qSign(λ) signing queries. Note that the signing oracle,
responding to these queries, may invoke the key-generation algorithm 1T.KAgg at most 2 · ℓ · qSign
times during the experiment ExpSSetMS

Π,A (recall that ℓ denotes bit-length of messages). In addition, at
the beginning of the experiment ExpSSetMS

Π,A , the key-generation algorithm 1T.KAgg is invoked once by
Π’s key-generation algorithm KG. Thus, throughout the experiment ExpSSetMS

Π,A , the key-generation
algorithm 1T.KAgg is invoked at most L = 2 · ℓ · qSign + 1 times.

In what follows we describe a sequence of hybrid experiments Exp0, . . . ,Exp5, starting with the
experiment Exp0 = ExpSSetMS

Π,A . Based on the security of the building blocks used in the construction
of the scheme Π, we bound the differences between the adversary’s success probabilities in each
consecutive pair of hybrid experiments, and then show that any adversary participating in experiment
Exp5 may be used to attack the underlying scheme 1T.

Experiment Exp0. This is the original experiment ExpSSetMS
Π,A . Recall that at the beginning of the

experiment, the setup algorithm Setup and the key-generation algorithm KG of the scheme Π

25

are invoked to produce pp = (pp1T, crsZK, crsCOM, kCRH) and vk = (vkε, com) which are provided
A, whereas the signing key sk = (skε, vkε, kPRF, com, decom) is not provided to A.

Experiment Exp1. This experiment is obtained from Exp0 via the following modifications. First,
instead of producing the common-reference string crsZK that is included in the public param-
eters using the setup algorithm crsZK ← ZK.Setup(1λ), it is produced by the simulated setup
algorithm (crsZK, τZK) ← Sim1(1

λ). Second, when the experiment produces one-time signing
and verification keys as(

sk
(k∗)
m|jb, vk

(k∗)
m|jb

)
= 1T.KG(pp1T;PRF.Eval(kPRF,m|jb))

for some k∗ ∈ [n] and for all j ∈ {0, . . . , j − 1} and b ∈ {0, 1}, then instead of computing

π
(k∗)
m|jb = ZK.P

(
crsZK,

(
pp1T, crscom, com,m|jb, vk(k

∗)
m|jb

)
,
(
decom, kPRF, sk

(k∗)
m|jb

))
it uses the simulated prover for computing

π
(k∗)
m|jb = ZK.Sim2

(
τZK,

(
pp1T, crscom, com,m|jb, vk(k

∗)
m|jb

))
.

That is, in this experiment it still holds that
(
pp1T, crscom, com,m|jb, vk(k

∗)
m|jb

)
∈ L, but the

proofs are generated using the trapdoor τZK instead of the witness
(
decom, kPRF, sk

(k∗)
m|jb

)
.

A direct reduction to the adaptive zero-knowledge property of the proof system ZK (see Definition
2.6) yields the following claim:

Claim 5.2. There exists a probabilistic polynomial-time algorithm B1 such that for every λ ∈ N it
holds that

|Pr [Exp0(λ) = 1]− Pr [Exp1(λ) = 1]| ≤ AdvzkZK,B1
(λ).

Experiment Exp2. This experiment is obtained from Exp1 by modifying the distribution of the
commitment com that is included in the verification key vk = (vkε, com): Instead of comput-
ing (com, decom) ← COM.Commit (crsCOM, kPRF), the experiment computes (com, decom) ←
COM.Commit

(
crsCOM, 0|kPRF|

)
. Note that the key kPRF is still sampled and used for deriving

randomness for generating the one-time signing and verification keys.

A direct reduction to the computational hiding property of the commitment scheme COM (see
Definition 2.5) yields the following claim:

Claim 5.3. There exists a probabilistic polynomial-time algorithm B2 such that for every λ ∈ N it
holds that

|Pr [Exp1(λ) = 1]− Pr [Exp2(λ) = 1]| ≤ AdvhidingCOM,B2
(λ).

Experiment Exp3. This experiment is obtained from Exp2 by producing the one-time signing and
verification keys using true randomness instead of using the pseudorandom function. That is,
instead of computing(

sk
(k∗)
m|jb, vk

(k∗)
m|jb

)
= 1T.KG(pp1T;PRF.Eval(kPRF,m|jb))

26

for some k∗ ∈ [n] and for all j ∈ {0, . . . , ℓ − 1} and b ∈ {0, 1}, the experiment samples
r
(k∗)
m|jb ← {0, 1}

∗ of the appropriate length, and computes(
sk

(k∗)
m|jb, vk

(k∗)
m|jb

)
= 1T.KG

(
pp1T; r

(k∗)
m|jb

)
.

The experiment stores all of the one-time signing and verification keys that it produces, and
whenever such keys are used more than once (i.e., on signing queries corresponding to in-
tersecting paths from the root ε to different leaves), the corresponding one-time signing and
verification keys are reused (or, equivalently, produced again using the same random strings).

A direct reduction to the security of the pseudorandom function PRF (see Definition 2.3) yields
the following claim:

Claim 5.4. There exists a probabilistic polynomial-time algorithm B3 such that for every λ ∈ N it
holds that

|Pr [Exp2(λ) = 1]− Pr [Exp3(λ) = 1]| ≤ AdvprfPRF,B3
(λ).

Experiment Exp4. This experiment is obtained from Exp3 by modifying its output in some cases,
as follows. If there exists a one-time signing key produced by the experiment Exp3 that is used
for signing more than one message then Exp4 outputs 0, and otherwise it outputs the output
of Exp3.

The following claim upper bounds the difference between the adversary’s success probabilities
in the experiments Exp3 and Exp4 based on the simulation soundness property of the proof system
ZK (see Definition 2.6) and on the statistical binding property of the commitment scheme COM (see
Definition 2.5):

Claim 5.5. Assuming that COM is ϵbinding-statistically binding, there exists a probabilistic polynomial-
time algorithm B4 such that for every λ ∈ N it holds that

|Pr [Exp3(λ) = 1]− Pr [Exp4(λ) = 1]| ≤ 2 · AdvssZK,B4
(λ) + ϵbinding(λ).

Proof of Claim 5.5. Recall that the adversary A is restricted to issuing signing queries with respect
to a single vector of verification keys. We denote this vector by

v⃗k =
((

vk(1)ε , com(1)
)
, . . . ,

(
vk(n)ε , com(n)

))
,

and we denote by k∗ ∈ [n] the unique integer for which it holds that (vkε, com) =
(
vk

(k∗)
ε , com(k∗)

)
,

where vk = (vkε, com) is the honest verification key provided as input to the adversary (note that
without loss of generality such an integer exists and it is unique since otherwise the adversary
obtains no responses to signing queries). Additionally, denote by

{(
sk

(k∗)
α , vk

(k∗)
α

)}
α∈{ε}∪{0,1}≤ℓ

the

subset of one-time signing and verification keys used by experiment Exp3 for responding to the A’s
signing queries (note that not all of these keys have actually being generated, but rather a subset
that corresponds to the paths from the root ε to the leaves corresponding to the signed messages).
Denote by ReUsedKey the event in which on these pairs is used for signing more than one message
in experiment Exp3, then by the definition of experiment Exp4 it holds that

|Pr [Exp3(λ) = 1]− Pr [Exp4(λ) = 1]| ≤ Pr [ReUsedKey] .

27

Consider now an execution of Exp3 in which some signing key sk
(k∗)
α was used for signing more than

one message. Note that a signing key sk
(k∗)
α for α ∈ {0, 1}ℓ is always used for signing exactly one

message (which is the message
(
α, tag

v⃗k

)
). Therefore, it must be that α ∈ {ε} ∪ {0, 1}<ℓ, and thus

sk
(k∗)
α was used for signing the concatenation of two aggregated verification keys. Moreover, since all

signing queries are issued with respect to the same “root” keys vk(1)ε , . . . , vk
(n)
ε , then there must exists

a signing key sk
(k∗)
α for α ∈ {0, 1}ℓ that was used for signing more than one message with respect to

the same vector of verification keys v⃗kα =
(
vk

(1)
α , . . . , vk

(n)
α

)
. We denote the two signing operations

as

σ(k∗)
α = 1T.Sign

(
pp1T, sk

(k∗)
α , v⃗kα, (aggvkα0, aggvkα1)

)
σ̂(k∗)
α = 1T.Sign

(
pp1T, sk

(k∗)
α , v⃗kα,

(
ˆaggvkα0, ˆaggvkα1

))
where (aggvkα0, aggvkα1) ̸=

(
ˆaggvkα0, ˆaggvkα1

)
. This means that for some b ∈ {0, 1}, the adversary

provided two inputs
(
vk

(i)
αb, π

(i)
αb

)
and

(
v̂k

(i)

αb, π̂
(i)
αb

)
such that vk

(i)
αb ̸= v̂k

(i)

αb , and these were used for

computing the aggregated verification keys aggvkαb ̸= ˆaggvkαb after verifying the proofs π(i)
αb and π̂

(i)
αb .

However, except with probability ϵbinding, the common-references string crscom is such that com(i)

uniquely determines a key k
(i)
PRF for the pseudorandom function, and therefore at most one of the keys

vk
(i)
αb and v̂k

(i)

αb was actually produced using the randomness PRF.Eval
(
k
(i)
PRF, αb

)
. That is, although

both proofs pass verification, it must hold that either(
pp1T, crscom, com

(i), αb, vk
(i)
αb

)
/∈ L

or (
pp1T, crscom, com

(i), αb, v̂k
(i)

αb

)
/∈ L.

This leads to an algorithm B4 that participates in the simulation-soundness experiment ExpssZK,B4
(λ)

by simulating the experiment Exp3 to A, where crsZK is generated by Sim1 and provided as input
to B4, and where B4 generates proofs using oracle access to Sim2 (recall Definition 2.6). Whenever
B4 observes

(
vk

(i)
αb, π

(i)
αb

)
and

(
v̂k

(i)

αb, π̂
(i)
αb

)
such that vk(i)αb ̸= v̂k

(i)

αb and both pass verification as above,
then B4 outputs ((

pp1T, crscom, com
(i), αb, vk

(i)
αb

)
, π

(i)
αb

)
with probability 1/2 and ((

pp1T, crscom, com
(i), αb, v̂k

(i)

αb

)
, π̂

(i)
αb

)
with probability 1/2. We observe that the proofs π(i)

αb and π̂
(i)
αb could not have been previously provided

by the oracle Sim2 to the algorithm B4 as responses to the queries
(
pp1T, crscom, com

(i), αb, vk
(i)
αb

)
or
(
pp1T, crscom, com

(i), αb, v̂k
(i)

αb

)
, respectively (if such queries were issued). Specifically, for the

internal nodes α0 and α1, the algorithm B4 queries the oracle Sim2 only with the two instances(
pp1T, crscom, com

(k∗), αb, vk
(k∗)
αb

)
for b = 0 and b = 1. However, as instructed in Steps 1 and 3 of the

algorithm Sign, the algorithm B4 aborts the signing protocol if either vk(k
∗)

αb = vk
(i)
αb or vk(k

∗)
αb = v̂k

(i)

αb .
Therefore, the algorithm B4 does not query the oracle Sim2 with either

(
pp1T, crscom, com

(i), αb, vk
(i)
αb

)

28

or
(
pp1T, crscom, com

(i), αb, v̂k
(i)

αb

)
. This means that for the algorithm B4 it holds that

AdvssZK,B4
(λ) ≥ 1

2
·
(
Pr [ReUsedKey]− ϵbinding(λ)

)
≥ 1

2
·
(
|Pr [Exp3(λ) = 1]− Pr [Exp4(λ) = 1]| − ϵbinding(λ)

)
as required.

Experiment Exp5. This experiment is obtained from Exp4 by modifying its output in some cases,
as follows. Denote by v⃗k the vector of one-time verification keys with respect to which A issues
signing queries, and denote by ⃗̂

vk the vector of verification keys included in A’s output. If
v⃗k ̸= ⃗̂

vk and CRH.Eval
(
kCRH, v⃗k

)
= CRH.Eval

(
kCRH,

⃗̂
vk
)

then Exp5 outputs 0, and otherwise
it outputs the output of Exp4.

A direct reduction to the collision resistance property of the function family CRH (see Definition
2.4) yields the following claim:

Claim 5.6. There exists a probabilistic polynomial-time algorithm B5 such that for every λ ∈ N it
holds that

|Pr [Exp4(λ) = 1]− Pr [Exp5(λ) = 1]| ≤ AdvcrhCRH,B5
(λ).

The following claim upper bounds the success probability of the adversary A in the experiment
Exp5 based on the security of the one-time multi-signature scheme 1T:

Claim 5.7. There exists a probabilistic polynomial-time algorithm B6 such that for every λ ∈ N it
holds that

Pr [Exp5(λ) = 1] ≤ L · Adv1TimeMS
1T,B6

(λ).

Proof of Claim 5.7. Let B6 be the algorithm that on input crs1T and vk1T participates in the
experiment Exp1TimeMS

1T,B6
by emulating the experiment Exp5 to the algorithm A as follows. First, the

algorithm B6 computes (crsZK, τZK) ← Sim1(1
λ), crsCOM ← COM.Setup(1λ), kCRH ← CRH.KG(1λ),

and (com, decom) ← COM.Commit
(
crsCOM, 0|k|

)
. Then, recall that in the experiment Exp5, the

algorithm B6 generates at most L = 2 · ℓ · qSign + 1 one-time signing and verification keys. The
algorithm B6 samples v ← [L], determining the index of the one-time verification key for which vk1T
will be used instead of sampling a fresh key pair. In particular, if v = 1 then B6 sets vkε = vk1T, and
otherwise B6 samples (skε, vkε) ← 1T.KG(pp1T). Next, B6 invokes the algorithm A on the public
parameters pp = (pp1T, crsZK, crsCOM, kCRH) and the verification key vk = (vkε, com), and responds
to A’s signing queries as follows.

When A issues a signing query of the form
(
v⃗k,m

)
, where

v⃗k =
((

vk(1)ε , com(1)
)
, . . . ,

(
vk(n)ε , com(n)

))
,

the algorithm B6 first verifies that there is a unique k∗ ∈ [n] for which (vkε, com) =
(
vk

(i)
ε , com(i)

)
,

and otherwise responds with ⊥. Then, for any j ∈ {0, . . . , ℓ − 1} and b ∈ {0, 1}, the algorithm B6

samples r
(k∗)
m|jb ← {0, 1}

∗ of the appropriate length, and computes(
sk

(k∗)
m|jb, vk

(k∗)
m|jb

)
= 1T.KG

(
pp1T; r

(k∗)
m|jb

)
π
(k∗)
m|jb = ZK.Sim2

(
τZK,

(
pp1T, crscom, com,m|jb, vk(k

∗)
m|jb

))
,

29

with the exception of setting vk
(k∗)
m|jb = vk1T for the v-th key vk

(k∗)
m|jb that is produced as part of the

emulation whenever v > 1 (recall that the case v = 1 was already handled differently by setting vkε =

vk1T). The algorithm B6 responds to the signing query with
{(

vk
(k∗)
m|jb, π

(k∗)
m|jb

)}
j∈{0,...,ℓ−1},b∈{0,1}

. In

addition, when A issues a signing query of the form{(
vk

(i)
m|jb, π

(i)
m|jb

)}
i∈[n]\{k∗},j∈{0,...,ℓ−1},b∈{0,1}

,

corresponding to an earlier signing query of the form
(
v⃗k,m

)
, the algorithm B6 first verifies that

for all (i, j, b) ∈ ([n] \ {k∗})× {0, . . . , ℓ− 1} × b ∈ {0, 1} it holds that

ZK.V
(
crsZK,

(
pp1T, crscom, com

(i),m|jb, vk(i)m|jb

)
, π

(i)
m|jb

)
= 1

and vk
(i)
m|jb ̸= vk

(k∗)
m|jb, and otherwise responds with ⊥. Then, the algorithm B6 computes

v⃗km|jb =
(
vk

(1)
m|jb, . . . , vk

(n)
m|jb

)
for all j ∈ {0, . . . , ℓ− 1} and b ∈ {0, 1}

aggvkm|jb = 1T.KAgg
(
pp1T, v⃗km|jb

)
for all j ∈ {0, . . . , ℓ− 1} and b ∈ {0, 1}

σ
(k∗)
m|j = 1T.Sign

(
pp1T, sk

(k∗)
m|j , v⃗km|j ,

(
aggvkm|j0, aggvkm|j1

))
for all j ∈ {0, . . . , ℓ− 1}

σ(k∗)
m = 1T.Sign

(
pp1T, sk

(k∗)
m , v⃗km,m

)
,

with the exception of accessing the signing oracle 1T.Sign(pp1T, sk1T, ·, ·) for obtaining the signature
σ
(k∗)
m|j or σ

(k∗)
m corresponding to the v-th one-time verification key that is produced as part of the

emulation (recall that the v-th one-time verification key was set to vk1T and thus its corresponding
signing key sk1T is not known to B6). The algorithm B6 locally stores all signatures produced
throughout the emulation, so that no signature has to be recomputed, and no query to the oracle
1T.Sign(pp1T, sk1T, ·, ·) has to be repeated (as specified above, we assume without loss of generality
that the signing algorithm 1T.Sign is deterministic). The algorithm B6 responds to the signing query
with

σ(k∗) =

({(
σ
(k∗)
m|j , vk

(k∗)
m|j0, vk

(k∗)
m|j1

)}
j∈{0,...,ℓ−1}

, σ(k∗)
m

)
.

At some point, the algorithm A produces an output
(
⃗̂
vk, m̂, ˆaggσ

)
and halts. We let

⃗̂
vk =

((
v̂k

(1)

ε , ˆcom(1)
)
, . . . ,

(
v̂k

(n)

ε , ˆcom(n)
))

tag ⃗̂
vk

= CRH.Eval
(
kCRH,

⃗̂
vk
)

ˆaggvkε = 1T.KAgg
(
pp1T,

(
v̂k

(1)

ε , . . . , v̂k
(n)

ε

))
ˆaggσ =

({(
ˆaggσm̂|j ,

ˆaggvkm̂|j0,
ˆaggvkm̂|j1

)}
j∈{0,...,ℓ−1}

, ˆaggσm̂

)
.

In addition, as above, we denote by v⃗k =
((

vk
(1)
ε , com(1)

)
, . . . ,

(
vk

(n)
ε , com(n)

))
the vector of ver-

ification keys relative to which A issued signing queries (recall that there is only one such vector).
For determining its output, the algorithm B6 first checks whether or not the event {Exp5(λ) = 1}

30

occurs, when the event is defined within the probability space induced by the emulation. If the event
{Exp5(λ) = 1} does not occur, then B6 outputs ⊥. Otherwise, note that if the event {Exp5(λ) = 1}
does occur, then since A issued all signing queries with respect to the same vector of verification keys
v⃗k, the fact that no signing key was used to sign more than one message implies that A’s signing
queries and their corresponding responses uniquely define the values

v⃗km|jb =
(
vk

(1)
m|jb, . . . , vk

(n)
m|jb

)
for all j ∈ {0, . . . , ℓ− 1} and b ∈ {0, 1}

aggvkm|jb = 1T.KAgg
(
pp1T, v⃗km|jb

)
for all j ∈ {0, . . . , ℓ− 1} and b ∈ {0, 1}

for each message m for which a signing query was issued. Equipped with this observation, if the
event {Exp5(λ) = 1} occurs then the algorithm B6 determines its output by distinguishing between
the following three disjoint cases:

Case I: If
(
vk

(1)
ε , . . . , vk

(n)
ε

)
̸=
(
v̂k

(1)

ε , . . . , v̂k
(n)

ε

)
, then B6 outputs

v⃗k∗ =
(
v̂k

(1)

ε , . . . , v̂k
(n)

ε

)
m∗ =

(
ˆaggvk0, ˆaggvk1

)
aggσ∗ = ˆaggσε

Case II: Else, if there exists j ∈ {0, . . . , ℓ − 1} for which aggvkm̂|j = ˆaggvkm̂|j but it holds

that
(
aggvkm̂|j0, aggvkm̂|j1

)
̸=
(

ˆaggvkm̂|j0,
ˆaggvkm̂|j1

)
(including the case where aggvkm̂|j0 or

aggvkm̂|j1 were not at all generated during B6’s responses to A’s signing queries), then B6

outputs

v⃗k∗ =
(
vk

(1)
m̂|j , . . . , vk

(n)
m̂|j

)
m∗ =

(
ˆaggvkm̂|j0,

ˆaggvkm̂|j1

)
aggσ∗ = ˆaggσm̂|j

for the minimal such j ∈ {0, . . . , ℓ− 1}.

Case III: Else, B6 outputs

v⃗k∗ =
(
vk

(1)
m̂ , . . . , vk

(n)
m̂

)
m∗ =

(
m̂, tag ⃗̂

vk

)
aggσ∗ = ˆaggσm̂.

This concludes the description of the algorithm B6, and now we turn to analyzing its success
probability in the experiment Exp1TimeMS

1T,B6
. The algorithm B6 perfectly emulates the experiment Exp5

to A, and therefore

Adv1TimeMS
1T,B6

(λ) = Pr
[
Exp1TimeMS

1T,B6
(λ) = 1

]
= Pr [Exp5(λ) = 1] · Pr

[
Exp1TimeMS

1T,B6
(λ) = 1

∣∣∣Exp5(λ) = 1
]
, (5.1)

where, as noted above, the event {Exp5(λ) = 1} is defined within the probability space induced by
the emulation. Note that, conditioned on the event {Exp5(λ) = 1}, no one-time signing key used
throughout the emulation was used to sign more than one message, and in addition:

31

1. vk = (vkε, com) ∈ ⃗̂
vk and the algorithm A did not issue a signing query

(
⃗̂
vk, m̂

)
.

2. 1T.Verify
(
pp1T, ˆaggvkm|j ,

(
ˆaggvkm|j0,

ˆaggvkm|j1

)
, ˆaggσm|j

)
= 1 for every j ∈ {0, . . . , ℓ− 1}.

3. 1T.Verify
(
pp1T, ˆaggvkm̂,

(
m̂, tag ⃗̂

vk

)
, ˆaggσm̂

)
= 1.

We now show that, conditioned on the event {Exp5(λ) = 1}, then in each of Case I, Case II and Case
II it holds that Exp1TimeMS

1T,B6
(λ) = 1 with probability at least 1/L over the choice of v ← [L] (which is

independent of A’s view):

Case I: In this case, if v = 1 (an event that occurs with probability 1/L), then vkε = vk1T (recall
that vk1T is the one-time verification key provided to B6 at the beginning of the experiment
Exp1TimeMS

1T,B6
). We now verify that the three conditions required for Exp1TimeMS

1T,B6
(λ) = 1 are

satisfied:

• Since (vkε, com) ∈ ⃗̂
vk =

((
v̂k

(1)

ε , ˆcom(1)
)
, . . . ,

(
v̂k

(n)

ε , ˆcom(n)
))

and vkε = vk1T, then

vk1T ∈
(
v̂k

(1)

ε , . . . , v̂k
(n)

ε

)
= v⃗k∗.

• Since 1T.Verify
(
pp1T, ˆaggvkε,

(
ˆaggvk0, ˆaggvk1

)
, ˆaggσε

)
= 1, it holds that

1T.Verify
(
pp1T,KAgg

(
pp1T, v⃗k

∗
)
,m∗, aggσ∗

)
= 1T.Verify

(
pp1T, ˆaggvkε,

(
ˆaggvk0, ˆaggvk1

)
, ˆaggσε

)
= 1

• Since B6 queried the signing oracle 1T.Sign(pp1T, sk1T, ·, ·) exactly once, and the input to
this query was

((
vk

(1)
ε , . . . , vk

(n)
ε

)
, (aggvk0, aggvk1)

)
, and since in Case I we have(

vk(1)ε , . . . , vk(n)ε

)
̸=
(
v̂k

(1)

ε , . . . , v̂k
(n)

ε

)
,

this means that B6 did not query the signing oracle with(
v⃗k∗,m∗

)
=
((

v̂k
(1)

ε , . . . , v̂k
(n)

ε

)
,
(

ˆaggvk0, ˆaggvk1

))
.

Case II: Let j ∈ {0, . . . , ℓ − 1} be the minimal integer for which aggvkm̂|j = ˆaggvkm̂|j but it

holds that
(
aggvkm̂|j0, aggvkm̂|j1

)
̸=
(

ˆaggvkm̂|j0,
ˆaggvkm̂|j1

)
(or that aggvkm̂|j0 or aggvkm̂|j1

were not at all generated during B6’s responses to A’s signing queries), and let v⃗km̂|j =(
vk

(1)
m̂|j , . . . , vk

(n)
m̂|j

)
. In this case, if v ∈ [L] equals the index of the verification key vk

(k∗)
m̂|jb

(an event that occurs with probability 1/L), then vk
(k∗)
m̂|jb = vk1T. We now verify that the three

conditions required for Exp1TimeMS
1T,B6

(λ) = 1 are satisfied:

• Since vk
(k∗)
m̂|jb ∈

(
vk

(1)
m̂|j , . . . , vk

(n)
m̂|j

)
= v⃗k∗ and vk

(k∗)
m̂|jb = vk1T, then vk1T ∈ v⃗k∗.

32

• Since 1T.Verify
(
pp1T, ˆaggvkm̂|j ,

(
ˆaggvkm̂|j0,

ˆaggvkm̂|j1

)
, ˆaggσm̂|j

)
= 1 and aggvkm̂|j =

ˆaggvkm̂|j , it holds that

1T.Verify
(
pp1T,KAgg

(
pp1T, v⃗k

∗
)
,m∗, aggσ∗

)
= 1T.Verify

(
pp1T, ˆaggvkm̂|j ,

(
ˆaggvkm̂|j0,

ˆaggvkm̂|j1

)
, ˆaggσm̂|j

)
= 1

• Since B6 queried the signing oracle 1T.Sign(pp1T, sk1T, ·, ·) at most once, and the input to
this query (if existed) was((

vk
(1)
m̂|j , . . . , vk

(n)
m̂|j

)
,
(
aggvkm̂|j0, aggvkm̂|j1

))
,

and since in Case II we have(
aggvkm̂|j0, aggvkm̂|j1

)
̸=
(

ˆaggvkm̂|j0,
ˆaggvkm̂|j1

)
,

this means that B6 did not query the signing oracle with(
v⃗k∗,m∗

)
=
((

vk
(1)
m̂|j , . . . , vk

(n)
m̂|j

)
,
(

ˆaggvkm̂|j0,
ˆaggvkm̂|j1

))
.

Case III: In this case, if v ∈ [L] equals the index of the verification key vk
(k∗)
m̂ (an event that occurs

with probability 1/L), then vk
(k∗)
m̂ = vk1T. We now verify that the three conditions required

for Exp1TimeMS
1T,B6

(λ) = 1 are satisfied:

• Since vk
(k∗)
m̂ ∈

(
vk

(1)
m̂ , . . . , vk

(n)
m̂

)
= v⃗k∗ and vk

(k∗)
m̂ = vk1T, then vk1T ∈ v⃗k∗.

• Since 1T.Verify
(
pp1T, ˆaggvkm̂,

(
m̂, tag ⃗̂

vk

)
, ˆaggσm̂

)
= 1, and since in Case III we have

KAgg
(
pp1T, v⃗k

∗
)
= aggvkm̂ = ˆaggvkm̂, it holds that

1T.Verify
(
pp1T,KAgg

(
pp1T, v⃗k

∗
)
,m∗, aggσ∗

)
= 1T.Verify

(
pp1T, ˆaggvkm̂,

(
m̂, tag ⃗̂

vk

)
, ˆaggσm̂

)
= 1

• The algorithm A did not issue the signing query
(
⃗̂
vk, m̂

)
, and therefore if ⃗̂

vk = v⃗k this

means that A did not issue any signing query with the message m̂. Therefore, if ⃗̂
vk = v⃗k,

then B6 did not query the oracle 1T.Sign(pp1T, sk1T, ·, ·) even once.

In addition, if ⃗̂
vk ̸= v⃗k, it may be that A issued the signing query (v⃗k, m̂), and then B6

queried the oracle 1T.Sign(pp1T, sk1T, ·, ·) exactly once. However, the input to this query
was

((
vk

(1)
m̂ , . . . , vk

(n)
m̂

)
,
(
m̂, tag

v⃗k

))
, and since tag

v⃗k
̸= tag ⃗̂

vk
this means that B6 did not

query the signing oracle with(
v⃗k∗,m∗

)
=
((

vk
(1)
m̂ , . . . , vk

(n)
m̂

)
,
(
m̂, tag ⃗̂

vk

))
.

33

Using the fact that Case I, Case II and Case III correspond to disjoint events, we obtain

Pr
[
Exp1TimeMS

1T,B6
(λ) = 1

∣∣∣Exp5(λ) = 1
]
≥ 1

L
,

and then Equation (5.1) yields

Adv1TimeMS
1T,B6

(λ) ≥ Pr [Exp5(λ) = 1] · 1
L
.

Putting together Claims 5.2–5.7, there exist probabilistic polynomial-time algorithms B1, . . . , B6

such that for every λ ∈ N it holds that

AdvSSetMS
Π,A (λ) = Pr [Exp0(λ) = 1]

≤ |Pr [Exp0(λ) = 1]− Pr [Exp1(λ) = 1]|
+ |Pr [Exp1(λ) = 1]− Pr [Exp2(λ) = 1]|
+ |Pr [Exp2(λ) = 1]− Pr [Exp3(λ) = 1]|
+ |Pr [Exp3(λ) = 1]− Pr [Exp4λ) = 1]|
+ |Pr [Exp4(λ) = 1]− Pr [Exp5λ) = 1]|
+Pr [Exp5λ) = 1]

≤ ϵbinding(λ) + AdvzkZK,B1
(λ) + AdvhidingCOM,B2

(λ) + AdvprfPRF,B3
(λ)

+AdvssZK,B4
(λ) + AdvcrhCRH,B5

(λ) + L · Adv1TimeMS
1T,B6

(λ),

where L = 2 · ℓ · qSign + 1. This settles the proof of Theorem 5.1.

References

[AAB+02] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signa-
tures via the Fiat-Shamir transform: Minimizing assumptions for security and forward-
security. In Advances in Cryptology – EUROCRYPT ’02, pages 418–433, 2002.

[AB21] H. K. Alper and J. Burdges. Two-round trip Schnorr multi-signatures via delinearized
witnesses. In Advances in Cryptology – CRYPTO ’21, pages 157–188, 2021.

[AE18] J.-P. Aumasson and G. Endignoux. Improving stateless hash-based signatures. In Cryp-
tographers’ Track at the RSA Conference, pages 219–242. Springer, 2018.

[AHK20] T. Agrikola, D. Hofheinz, and J. Kastner. On instantiating the algebraic group model
from falsifiable assumptions. In Advances in Cryptology – EUROCRYPT ’20, pages
96–126, 2020.

[Arg22] Argent. Part I: WTF is account abstraction. Available at https://www.argent.xyz/
blog/wtf-is-account-abstraction/, 2022.

[BBB+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In IEEE Symposium on Security
and Privacy, pages 315–334, 2018.

34

https://www.argent.xyz/blog/wtf-is-account-abstraction/
https://www.argent.xyz/blog/wtf-is-account-abstraction/

[BCI+13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive
arguments via linear interactive proofs. In Proceedings of the 10th Theory of Cryptogra-
phy Conference, pages 315–333, 2013.

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In Proceedings of
the 14th Theory of Cryptography Conference, pages 31–60, 2016.

[BD21] M. Bellare and W. Dai. Chain reductions for multi-signatures and the HBMS scheme.
In Advances in Cryptology – ASIACRYPT ’21, pages 650–678, 2021.

[BDN18] D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller blockchains.
In Advances in Cryptology – ASIACRYPT ’18, pages 435–464, 2018.

[BFL20] B. Bauer, G. Fuchsbauer, and J. Loss. A classification of computational assumptions in
the algebraic group model. In Advances in Cryptology – CRYPTO ’20, pages 121–151,
2020.

[BFM88] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applica-
tions. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
pages 103–112, 1988.

[BGO+07] A. Boldyreva, C. Gentry, A. O’Neill, and D. H. Yum. Ordered multisignatures and
identity-based sequential aggregate signatures, with applications to secure routing. In
Proceedings of the ACM Conference on Computer and Communications Security, pages
276–285, 2007.

[BHH+15] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS: Prac-
tical stateless hash-based signatures. In Advances in Cryptology – EUROCRYPT ’15,
pages 368–397, 2015.

[BHK+19] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and P. Schwabe. The
SPHINCS+ signature framework. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), pages 2129–2146. ACM, 2019.

[BK20] D. Boneh and S. Kim. One-time and interactive aggregate signatures from lattices.
Available at https://crypto.stanford.edu/~skim13/agg_ots.pdf, 2020.

[BKK+15] O. Blazy, S. A. Kakvi, E. Kiltz, , and J. Pan. Tightly-secure signatures from chameleon
hash functions. In Public Key Cryptography – PKC ’15, pages 256–279, 2015.

[BN06] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general
forking lemma. In Proceedings of the ACM Conference on Computer and Communica-
tions Security, pages 390–399, 2006.

[Bol03] A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
Gap-Diffie-Hellman-group signature scheme. In Public Key Cryptography – PKC ’03,
pages 31–46, 2003.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In Proceedings of the 1st ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

35

https://crypto.stanford.edu/~skim13/agg_ots.pdf

[BS08] M. Bellare and S. Shoup. Two-tier signatures from the Fiat-Shamir transform, with
applications to strongly unforgeable and one-time signatures. IET Information Security,
2(2):47–63, 2008.

[BSBH+18] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. Cryptology ePrint Archive, Paper 2018/046,
2018.

[BSM+91] M. Blum, A. D. Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge.
SIAM Journal on Computing, 20(6):1084–1118, 1991.

[BTT22] C. Boschini, A. Takahashi, and M. Tibouchi. MuSig-L: Lattice-based multi-signature
with single-round online phase. In Advances in Cryptology – CRYPTO ’22, pages 276–
305, 2022.

[BWG+21] V. Buterin, Y. Weiss, K. Gazso, N. Patel, D. Tirosh, S. Nacson, and T. Hess. EIP-4337:
Account abstraction using Alt mempool [DRAFT]. Ethereum Improvement Proposals,
no. 4337 (available at https://eips.ethereum.org/EIPS/eip-4337), 2021.

[BY96] M. Bellare and M. Yung. Certifying permutations: Noninteractive zero-knowledge based
on any trapdoor permutation. Journal of Cryptology, 9(3):149–166, 1996.

[CD98] R. Cramer and I. Damgård. Zero-knowledge proofs for finite field arithmetic; or: Can
zero-knowledge be for free? In Advances in Cryptology – CRYPTO ’98, pages 424–441,
1998.

[CFG+15] D. Catalano, D. Fiore, R. Gennaro, and K. Vamvourellis. Algebraic (trapdoor) one-way
functions: Constructions and applications. Theoretical Computer Science, 592:143–165,
2015.

[CHM+20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. Marlin: Prepro-
cessing zkSNARKs with universal and updatable SRS. In Advances in Cryptology –
EUROCRYPT ’20, pages 738–768, 2020.

[CL18] R. Canetti and A. Lichtenberg. Certifying trapdoor permutations, revisited. In Proceed-
ings of the 16th Theory of Cryptography Conference, pages 476–506, 2018.

[DEF+19] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs.
On the security of two-round multi-signatures. In IEEE Symposium on Security and
Privacy, pages 1084–1101, 2019.

[DOT+22] I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi. Two-round n-out-of-n
and multi-signatures and trapdoor commitment from lattices. Journal of Cryptology,
35(2):14, 2022.

[FH21] M. Fukumitsu and S. Hasegawa. A tightly secure DDH-based multisignature with public-
key aggregation. International Journal of Networking and Computing, 11(2):319–337,
2021.

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications.
In Advances in Cryptology – CRYPTO ’18, pages 33–62, 2018.

36

https://eips.ethereum.org/EIPS/eip-4337

[FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string. In Proceedings of the 31st Annual IEEE Symposium
on Foundations of Computer Science, pages 308–317, 1990.

[FPS20] G. Fuchsbauer, A. Plouviez, and Y. Seurin. Blind Schnorr signatures and signed ElGamal
encryption in the algebraic group model. In Advances in Cryptology – EUROCRYPT
’20, pages 63–95, 2020.

[FS86] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology – CRYPTO ’86, pages 186–194, 1986.

[FSZ22] N. Fleischhacker, M. Simkin, and Z. Zhang. Squirrel: Efficient synchronized multi-
signatures from lattices. In Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), pages 1109–1123, 2022.

[GLS+04] R. Gennaro, D. Leigh, R. Sundaram, and W. S. Yerazunis. Batching Schnorr identifi-
cation scheme with applications to privacy-preserving authorization and low-bandwidth
communication devices. In Advances in Cryptology – ASIACRYPT ’04, pages 276–292,
2004.

[GLS+23] A. Golovnev, J. Lee, S. Setty, J. Thaler, and R. S. Wahby. Brakedown: Linear-time
and field-agnostic SNARKs for R1CS. In Advances in Cryptology – CRYPTO ’23, pages
193–226, 2023.

[Gol01] O. Goldreich. Foundations of Cryptography – Volume 1: Basic Techniques. Cambridge
University Press, 2001.

[Gol11] O. Goldreich. In a world of P= BPP. In Studies in Complexity and Cryptography, pages
191–232. Springer, 2011.

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. Non-interactive zaps and new techniques for
NIZK. In Advances in Cryptology – CRYPTO ’06, pages 97–111, 2006.

[GR13] O. Goldreich and R. D. Rothblum. Enhancements of trapdoor permutations. Journal
of Cryptology, 26(3):484–512, 2013.

[Gro06] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In Advances in Cryptology – ASIACRYPT ’06, pages 444–459, 2006.

[Gro10] J. Groth. Short non-interactive zero-knowledge proofs. In Advances in Cryptology –
ASIACRYPT ’10, pages 341–358, 2010.

[Gro16] J. Groth. On the size of pairing-based non-interactive arguments. In Advances in
Cryptology – EUROCRYPT ’16, pages 305–326, 2016.

[GS08] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In
Advances in Cryptology – EUROCRYPT ’08, pages 415–432, 2008.

[GW11] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing, pages 99–108, 2011.

37

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Paper 2019/953, 2019.

[HK22] A. Hülsing and M. A. Kudinov. Recovering the tight security proof of SPHINCS+.
Cryptology ePrint Archive, Paper 2022/346, 2022.

[IN83] K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital multisig-
natures. NEC Research & Development, 71:1–8, 1983.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permu-
tations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pages 44–61, 1989.

[KHR+22] M. A. Kudinov, A. Hülsing, E. Ronen, and E. Yogev. SPHINCS+C: Compressing
SPHINCS+ with (almost) no cost. Cryptology ePrint Archive, Paper 2022/778, 2022.

[KL21] J. Katz and Y. Lindell. Introduction to Modern Cryptography (3rd Edition). CRC
Press, 2021.

[KMP16] E. Kiltz, D. Masny, and J. Pan. Optimal security proofs for signatures from identification
schemes. In Advances in Cryptology – CRYPTO ’16, pages 33–61, 2016.

[Lam79] L. Lamport. Constructing digital signatures from a one way function. Technical Report
SRI-CSL-98, SRI International Computer Science Laboratory, 1979.

[LHL94] C. Li, T. Hwang, and N. Lee. Threshold-multisignature schemes where suspected forgery
implies traceability of adversarial shareholders. In Advances in Cryptology – EURO-
CRYPT ’94, pages 194–204, 1994.

[Lin06] Y. Lindell. A simpler construction of CCA2-secure public-key encryption under general
assumptions. Journal of Cryptology, 19(3):359–377, 2006.

[LK23] K. Lee and H. Kim. Two-round multi-signatures from Okamoto signatures. Mathematics,
11(14), 2023.

[LOS+06] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters. Sequential aggregate sig-
natures and multisignatures without random oracles. In Advances in Cryptology – EU-
ROCRYPT ’06, pages 465–485, 2006.

[LYG19] D. Le, G. Yang, and A. A. Ghorbani. A new multisignature scheme with public key ag-
gregation for blockchain. In Proceedings of the 17th International Conference on Privacy,
Security and Trust, pages 1–7, 2019.

[Mic00] S. Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000.

[MOR01] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures: extended
abstract. In Proceedings of the 8th ACM Conference on Computer and Communications
Security (CCS), pages 245–254, 2001.

[MPS+19] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille. Simple Schnorr multi-signatures with
applications to Bitcoin. Designs, Codes and Cryptography, 87(9):2139–2164, 2019.

38

[MTT19] T. Mizuide, A. Takayasu, and T. Takagi. Tight reductions for Diffie-Hellman variants
in the algebraic group model. In Topics in Cryptology – CT-RSA ’19, pages 169–188,
2019.

[Nak09] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://www.bitcoin.
org/bitcoin.pdf, 2009.

[Nao91] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–
158, 1991.

[NRS+20] J. Nick, T. Ruffing, Y. Seurin, and P. Wuille. MuSig-DN: Schnorr multi-signatures
with verifiably deterministic nonces. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 1717–1731, 2020.

[NRS21] J. Nick, T. Ruffing, and Y. Seurin. MuSig2: Simple two-round Schnorr multi-signatures.
In Advances in Cryptology – CRYPTO ’21, pages 189–221, 2021.

[NY89] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic appli-
cations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pages 33–43, 1989.

[OO91] K. Ohta and T. Okamoto. A digital multisignature scheme based on the Fiat-Shamir
scheme. In Advances in Cryptology – ASIACRYPT ’91, pages 139–148, 1991.

[PS00] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signa-
tures. Journal of Cryptology, 13:361–396, 2000.

[PW23] J. Pan and B. Wagner. Chopsticks: Fork-free two-round multi-signatures from non-
interactive assumptions. In Advances in Cryptology – EUROCRYPT ’23, pages 597–627,
2023.

[RS20] L. Rotem and G. Segev. Algebraic distinguishers: From discrete logarithms to decisional
Uber assumptions. In Proceedings of the 18th Theory of Cryptography Conference, pages
366–389, 2020.

[RY07] T. Ristenpart and S. Yilek. The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In M. Naor, editor, Advances in Cryptology –
EUROCRYPT ’07, pages 228–245, 2007.

[Sah99] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 543–553, 1999.

[Sch91] C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

[SCO+01] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-
interactive zero knowledge. In Advances in Cryptology – CRYPTO ’01, pages 566–598,
2001.

[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances in
Cryptology – EUROCRYPT ’97, pages 256–266, 1997.

39

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

[Sim98] D. R. Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? In Advances in Cryptology – EUROCRYPT ’98, pages
334–345, 1998.

[Sta23] StarkWare. Account abstraction: Improving security and user experience for
mainstream crypto adoption. Available at https://medium.com/starkware/
account-abstraction-improving-security-and-user-experience-for-
mainstream-crypto-adoption-eb57cb09023, 2023.

[TSS+23] K. Takemure, Y. Sakai, B. Santoso, G. Hanaoka, and K. Ohta. More efficient two-round
multi-signature scheme with provably secure parameters. Cryptology ePrint Archive,
Paper 2023/155, 2023.

[TZ23] S. Tessaro and C. Zhu. Threshold and multi-signature schemes from linear hash func-
tions. In Advances in Cryptology – EUROCRYPT ’23, pages 628–658, 2023.

[XZS22] T. Xie, Y. Zhang, and D. Song. Orion: Zero knowledge proof with linear prover time.
In Advances in Cryptology – CRYPTO ’22, pages 299–328, 2022.

A Extension: A t-Time Multi-Signature Scheme

In this section we show that our one-time multi-signature scheme, described in Section 4, naturally
extends to a t-time multi-signature scheme without introducing any additional assumptions.

The t-time scheme’s verification and aggregated verification keys consist of t+1 group elements,
whereas signatures still consist of a single group element. At a high level, the extension relies on
ideas developed originally for batch identification schemes, such as the batch Schnorr identification
scheme constructed by Gennaro, Leigh, Sundaram and Yerazunis [GLS+04].

For extending our one-time scheme, the key-generation algorithm invoked by each signer samples
x(1), . . . , x(t), r ← XInd, computes X(1) = FInd

(
x(1)

)
, . . . , X(t) = FInd

(
x(t)
)
, R = FInd(r), and then

outputs
(sk, vk) =

((
x(1), . . . , x(t), r

)
,
(
X(1), . . . , X(t), R

))
.

For aggregating n verification keys, a vector v⃗k = (vk1, . . . , vkn) of verification keys, where vki =(
X

(1)
i , . . . , X

(t)
i , Ri

)
for every i ∈ [n], is aggregated by computing

(a1, . . . , an) = H1

(
v⃗k
)
∈ Kn

Ind

aggX(j) =

n∏
i=1

(
X

(j)
i

)ai
∈ YInd for every j ∈ [t]

aggR =
n∏

i=1

Rai
i ∈ YInd,

and outputting the aggregated verification key

aggvk =
(
aggX(1), . . . , aggX(t), aggR

)
.

For signing a message m with respect to an aggregated verification key aggvk, each signer first
computes β = H0 (m, aggvk) and then uses their signing key ski =

(
x
(1)
i , . . . , x

(t)
i , ri

)
for computing

40

https://medium.com/starkware/account-abstraction-improving-security-and-user-experience-for-
https://medium.com/starkware/account-abstraction-improving-security-and-user-experience-for-
mainstream-crypto-adoption-eb57cb09023

a signature σi = ri +
∑t

j=1 β
j · x(j)i . The signatures σ1, . . . , σn are then aggregated exactly as in the

one-time scheme 1T by computing aggσ =
∑n

i=1 ai · σi, and the verification algorithm verifies that

FInd(aggσ) = aggR ·
t∏

j=1

(
aggX(j)

)βj

.

In terms of correctness, letting β = H0 (m, aggvk), it holds that

FInd(aggσ) = FInd

(
n∑

i=1

ai · σi

)

= FInd

 n∑
i=1

ai · ri +
t∑

j=1

βj ·
n∑

i=1

ai · x(j)i

=

(
n∏

i=1

FInd(ri)
ai

)
·

t∏
j=1

(
n∏

i=1

FInd(xi)
ai

)βj

= aggR ·
t∏

j=1

(
aggX(j)

)βj

,

and thus the scheme provides perfect correctness.
In terms of security, the extended analysis is obtained from the proof of Theorem 4.1 by following

the exact same structure, while enabling the algorithm B to respond to A’s t signing queries. This
is done via the following two main modifications. First, the algorithm B guesses the indices of A’s
H0-queries {(mi, aggvki)}i∈[t] and (m∗, aggvk∗), where m1, . . . ,mt are the messages for which A issues
signing queries, and aggvk1, . . . , aggvkt are the corresponding aggregated verification keys. This leads
to a security loss of qt+1

H0
, instead of q2H0

as in the one-time scheme (similar to the loss in the batch
protocol of Gennaro et al. [GLS+04]), which is still polynomial for any constant t ≥ 1. Second, given
X = FInd(x), the algorithm B needs to define the honest verification key vk =

(
X(1), . . . , X(t), R

)
that will be provided to the algorithm A. This is done by sampling responses β1, . . . , βt ← KInd

that will be provided by B to A’s H0-queries that correspond to the t signing queries, as well as
signatures σ1, . . . , σt ← Xpp that will be provided by B as responses to A’s signing queries. Letting
X(1) = FInd

(
x(1)

)
, . . . , X(t) = FInd

(
x(t)
)
, and R = FInd(r) for unknowns x(1), . . . , x(t) and r, the

following linear equations must be satisfied:

σ1
...
σt

 =

1 β1 . . . βt
1

...
. . .

1 βt . . . βt
t

 ·

r

x(1)

...
x(t)

Note that whenever the values β1, . . . , βt are distinct, then the above matrix has full rank. Therefore,
for any fixing of one of the x(i)’s to unknown value x, there is a unique (and linear) solution for the
remaining x(j)’s and r. Relying on this fact, the algorithm B uniformly samples an index i← [t], sets
X(i) = X, and can then compute the values of the remaining X(j)’s and R in a linearly homomorphic
manner given X, σ1, . . . , σt and β1, . . . , βt (note that the case t = 1 corresponds to the proof of
Theorem 4.1).

41

B From One-Time Multi-Signatures to Collision-Resistant Hashing

In this section we show that a collision-resistant hash function can be constructed in a black-box
manner from any one-time multi-signature scheme satisfying a natural property (which is satisfied
by our one-time multi-signature scheme in Section 4). The property asks that the scheme’s key-
generation algorithm defines an injective mapping of its randomness to its verification keys. We
refer to this property as “randomness-injective key generation”, and an interesting open problem is
to study the extent to which this property is essential in this context. Given that one-way functions
cannot be used in a black-box manner to construct a collision-resistant hash function [Sim98], this
rules our various natural construction of one-time multi-signature schemes based on one-way function.

Note that, in addition to randomness-injective key generation, one must also always assume
that the scheme’s key-aggregation algorithm produces rather short keys. Otherwise, any one-time
single-signer scheme (which can be constructed based on any one-way function [Lam79]) can be
used to construct a one-time multi-signer scheme in a black-box manner by concatenating individual
verification keys for producing an aggregated verification key.

Our result shows that, unlike the case of standard (i.e., single-user) one-time signatures, a one-
time multi-signature scheme with short keys (and randomness-injective key generation) cannot be
constructed based on any one-way function in a black-box manner [IR89]. This justifies, in some
sense, the fact that our one-time multi-signature scheme is based on an assumption that seems
stronger than the assumption that one-way functions exist. Specifically, our one-time multi-signature
scheme is based on any ring-homomorphic one-way function, which is a significantly more structured
primitive when compared to plain one-way functions.

In what follows we describe the construction and prove its collision resistance based on the
security of the underlying one-time multi-signature scheme. Let 1T = (1T.Setup, 1T.KG, 1T.KAgg,
1T.Sign, 1T.SAgg, 1T.Verify) be a one-time multi-signature scheme over the message space M =
{0, 1}. We denote by ℓ = ℓ(λ) the bit-length of the randomness provided to the key-generation
algorithm 1T.KG.

The function family CRH = (KG,Eval)

KG(1λ). On input 1λ the key-generation algorithm computes

pp ← 1T.Setup(1λ)

(sk0, vk0) ← 1T.KG(1λ)

and outputs k = (pp, vk0).

Eval(k, x1, . . . , xn). On input k = (pp, vk0) and x = (x1, . . . , xn) ∈
(
{0, 1}ℓ

)n the evaluation algorithm
computes

(ski, vki) ← 1T.KG(pp;xi) for all i ∈ [n]

y = 1T.KAgg(pp, vk0, vk1, . . . , vkn)

and outputs y.

In terms of compression, note that if there exists any n = n(λ) for which the scheme’s key-
aggregation algorithm aggregates n+1 keys into an aggregated key of length less than n · ℓ bits, then
the function family CRH is compressing. This holds, in particular if the length of aggregated keys is
independent of the number of signers, as in our one-time multi-signature scheme from Section 4.

The following theorem captures the collision resistance of the function family CRH based on the
security of the one-time multi-signature scheme 1T. As discussed above, the theorem assumes that,

42

for the key-generation algorithm 1T.KG, different random strings lead to different verification keys.
Formally, we assume that for any λ ∈ N, for any pp generated by 1T.Setup(1λ) and for any x ̸=
x′ ∈ {0, 1}ℓ(λ) it holds that vk ̸= vk′, where (sk, vk) = 1T.KG(pp;x) and (sk′, vk′) = 1T.KG(pp;x′).
We refer to this property as “randomness-injective key generation”, and note once again that it is
satisfied in particular by our one-time multi-signature scheme from Section 4.

Theorem B.1. Assuming that the scheme 1T has randomness-injective key generation, then for
any probabilistic polynomial-time algorithm A there exists a probabilistic polynomial-time algorithm
B such that for every λ ∈ N it holds that

AdvcrhCRH,A(λ) ≤ Adv1TimeMS
1T,B (λ).

Proof of Theorem B.1. Let A be a probabilistic polynomial-time algorithm that participates in
the collision-resistance experiment ExpcrhCRH,A, and consider the algorithm B that participates in the
experiment Exp1TimeMS

1T,B as follows. On input (pp, vk0), the algorithm B invokes the algorithm A on
input k = (pp, vk0) to obtain x = (x1, . . . , xn) and x′ = (x′1, . . . , x

′
n). If x = x′ or CRH.Eval(k, x) =

CRH.Eval(k, x′) then B outputs ⊥ and halts. Otherwise, B computes

(ski, vki) ← 1T.KG(pp;xi) for all i ∈ [n]

v⃗k = (vk0, vk1, . . . , vkn)

σi = 1T.Sign
(
pp, ski, v⃗k, 0

)
for all i ∈ [n]

(sk′i, vk
′
i) ← 1T.KG(pp;x′i) for all i ∈ [n]

v⃗k′ =
(
vk0, vk

′
1, . . . , vk

′
n

)
,

and queries the signing oracle with
(
v⃗k, 0

)
to obtain a signature σ0. Then, the algorithm B outputs

v⃗k∗ = v⃗k′

m∗ = 0

aggσ∗ = 1T.SAgg (pp, (σ0, σ1, . . . , σn)) .

For analyzing the success probability of the algorithm B, note that CRH.Eval(k, x) = CRH.Eval(k, x′)

implies 1T.KAgg
(
pp, v⃗k

)
= 1T.KAgg

(
pp, v⃗k′

)
, and therefore the correctness of the scheme 1T im-

plies that

1T.Verify
(
pp, 1T.KAgg

(
pp, v⃗k∗

)
,m∗, aggσ∗

)
= 1T.Verify

(
pp, 1T.KAgg

(
pp, v⃗k′

)
, 0, 1T.SAgg (pp, (σ0, σ1, . . . , σn))

)
= 1T.Verify

(
pp, 1T.KAgg

(
pp, v⃗k

)
, 0, 1T.SAgg (pp, (σ0, σ1, . . . , σn))

)
= 1.

In addition, the description of B guarantees that vk0 ∈ v⃗k∗, and the assumption that 1T has
randomness-injective key generation together with the fact that x ̸= x′ guarantee that v⃗k ̸= v⃗k′,
and therefore B did not query the signing oracle with

(
v⃗k∗,m∗

)
. Therefore, it holds that

Adv1TimeMS
1T,B (λ) ≥ AdvcrhCRH,A(λ).

43

	Introduction
	Our Contributions
	Overview of Our Approach
	Related Work

	Preliminaries
	Ring-Homomorphic One-Way Functions
	The Forking Lemma
	Additional Cryptographic Primitives

	One-Time and Single-Set Security for Multi-Signature Schemes
	One-Time Unforgeability
	Single-Set Unforgeability

	One-Time Multi-Signatures via Ring-Homomorphic One-Way Functions
	From One-Time to Single-Set Multi-Signatures
	References
	Extension: A t-Time Multi-Signature Scheme
	From One-Time Multi-Signatures to Collision-Resistant Hashing

