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Abstract. Reductions are the workhorses of cryptography. They allow
constructions of complex cryptographic primitives from simple building
blocks. A prominent example is the non-interactive reduction from se-
curely computing a “complex” function f to securely computing a “sim-
ple” function g via randomized encodings.
Prior work equated simplicity with functions of small degree. In this
work, we consider a different notion of simplicity where we require g to
only take inputs from a small number of parties. In other words, we want
the arity of g to be as small as possible.
In more detail, we consider the problem of reducing secure computa-
tion of arbitrary functions to secure computation of functions with arity
two (two is the minimal arity required to compute non-trivial functions).
Specifically, we want to compute a function f via a protocol that makes
parallel calls to 2-ary functions. We want this protocol to be secure
against malicious adversaries that could corrupt an arbitrary number
of parties. We obtain the following results:

– Negative Result: We show that there exists a degree-2 polynomial
p such that no protocol that makes parallel calls to 2-ary functions
can compute p with statistical security with abort.

– Positive Results: We give two ways to bypass the above impossi-
bility result.

1. Weakening the Security Notion.We show that every degree-
2 polynomial can be computed with statistical privacy with
knowledge of outputs (PwKO) by making parallel calls to 2-
ary functions. Privacy with knowledge of outputs is weaker than
security with abort.

2. Computational Security. We prove that for every function
f , there exists a protocol for computing f that makes paral-
lel calls to 2-ary functions and achieves security with abort
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against computationally-bounded adversaries. The security of
this protocol relies on the existence of semi-honest secure obliv-
ious transfer.

– Applications: We give connections between this problem and the
task of reducing the encoding complexity of Multiparty Random-
ized Encodings (MPRE) (Applebaum, Brakerski, and Tsabary, TCC
2018). Specifically, we show that under standard computational as-
sumptions, there exists an MPRE where the encoder can be imple-
mented by an NC0 circuit with constant fan-out.

– Extensions: We explore this problem in the honest majority setting
and give similar results assuming one-way functions. We also show
that if the parties have access to 3-ary functions then we can con-
struct a computationally secure protocol in the dishonest majority
setting assuming one-way functions.

1 Introduction

A key research direction in theoretical cryptography is to construct complex
cryptographic primitives from simple building blocks. This direction has achieved
remarkable success and has led to several fundamental results such as construct-
ing pseudorandom generators [HILL99] and zero-knowledge proofs [GMW86]
from one-way functions, secure multiparty computation protocols from oblivi-
ous transfer [GMW87, Kil88, IPS08], and CCA-secure encryption from injective
trapdoor functions [HKW20]. One such foundational result is a non-interactive
reduction from securely computing a “complex” function f to securely comput-
ing a “simple” function g. This is achieved using randomized encodings [Yao86,
IK00, AIK04] and this approach has been instrumental in constructing round-
optimal secure computation protocols [Yao86, GS18, BL18].

Prior work aimed to minimize the degree of g as much as possible and they
equated simplicity with functions computable by constant degree polynomials.
[IK00, AIK04] showed that under standard cryptographic assumptions, securely
computing any function can be reduced to securely computing a degree-3 func-
tion. [BL18, GS18, GIS18, ACGJ18, ABT18, ABT19, ACGJ19] (using the notion
of multiparty randomized encoding) showed that one can further reduce the (ef-
fective) degree to 2 if we allow local pre-processing of the inputs by the parties.

Our Work. We consider a different notion of simplicity. Specifically, we want
to reduce the task of securely computing some complex n-party function f to
securely computing, in parallel, a set of functions where each function gS takes
inputs only from a proper subset S of the parties (in other words, the arity |S|
of gS is less than n) and delivers the output to all parties. It is trivial to see
that most multiparty party functions—for instance, n-party AND—cannot be
computed, using a single function of arity less than n. So, we need to necessarily
allow parallel calls to several such functions. Our goal is to minimize their arity
as much as possible.
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Our Model. To be more precise, let f be an n-party function and, for a collection
S of k-sized subsets of [n], let {gS}S∈S be a set of functions, where each gS is an
arity-k function taking inputs from parties in the set S and delivers output to all
parties. We say that f securely reduces to {gS} if there is a tuple of randomized
algorithms (Enc,Dec) with the following syntax and satisfying the following two
properties.

– Syntax: Enc is a randomized function that takes in the index i of a party, its
private input xi and a subset S ∈ S such that i ∈ S and outputs xi,S . Dec

takes in
{
gS({xi,S}i∈S)

}
S∈S

and outputs y.4

– Correctness: We want the output y of Dec to be f(x1, . . . , xn).

– Security: Even if an arbitrary subset of the parties get corrupted by an ad-

versary, we want
{
gS({xi,S}i∈S)

}
S∈S

to only reveal the output f(x1, . . . , xn)

and nothing else about the private inputs of the uncorrupted parties.

Minimal Arity. If we consider reduction to arity-1 functions, then it is easy
to see that the only functions that can be securely computed are of the form
(h1(x1), h2(x2), . . . , hn(xn)). Hence, to be useful, we need functions with arity 2
or higher.

Why is arity important? Consider the task of securely computing some complex
multiparty function f involving a large number of parties. In such a case, it
is unreasonable to expect all the parties to be online throughout the entire
protocol execution. However, if we can break this complex computation to simple
components of constant arity, then we only need a constant number of parties
to be online for computing every component. Further, the computation of each
component is not dependent on the outputs from other components (since we
only make parallel calls to the functions). Once all the components are computed,
the parties can apply the local decoding procedure to learn the output of the
function f .

Case of Semi-Honest Adversaries. In the semi-honest model, there is an easy
transformation from securely computing a degree-d function (that has an one-to-
one correspondence with degree-d polynomials) to making parallel calls to d-ary
functions. Indeed, we can compute each monomial of the degree-d polynomial
using an d-ary function and add additive secret shares of 0 to each monomial to
ensure that only the output of the polynomial is revealed. Hence, the existing
results about the completeness of degree-2 functions [GS18, GIS18, ACGJ18,
ABT18, ABT19, ACGJ19] (with local pre-processing) can be extended to our

4 We model Dec in this way so that a party that does not contribute any private input
could still learn the output. This is analogous to the notion of output client in the
client-server MPC protocol literature [DI05] and is equivalent to considering publicly
decodable transcripts [ABG+20].
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model of making parallel calls to 2-ary functions. Somewhat surprisingly, these
results do not extend to the malicious setting and this is the focus of this work.

1.1 Our Results

We explore the problem of securely computing n-party functions against mali-
cious adversaries by making parallel calls to 2-ary functions. As argued earlier,
two is the minimum arity needed to compute non-trivial functions. We pro-
vide both positive and negative results and connect this problem to reducing
the encoding complexity of multiparty randomized encodings [ABT18]. We also
provide a couple of extensions to these results by (i) considering the honest
majority setting, and (ii) allowing the arity to be larger than two.

Impossibility of Statistical Security with Abort. Our first result shows that if we
want statistical security, then it is impossible to compute even degree-2 polyno-
mials. Specifically, we give a 3-party function f (that is computable by a degree-2
polynomial) such that no protocol that makes parallel calls to 2-ary functions
achieves statistical security with abort. Formally,

Theorem 1.1. There exists a 3-party function f that can be computed using a
degree-2 polynomial such that no 3-party protocol making parallel calls to 2-ary
functions can compute f with statistical security with abort against a malicious
adversary corrupting two parties.

In the case of three parties with two corruptions, security with abort is equiva-
lent to security with selective abort. Therefore, our impossibility result also rules
out constructions with selective abort.

Positive Results. We give two ways to overcome the above impossibility.

1. We show that if we relax the security requirement to privacy with knowledge
of outputs (PwKO) [IKP10], then every degree-2 polynomial can be securely
computed with statistical PwKO by making parallel calls to 2-ary functions.
PwKO relaxation guarantees that the adversary does not learn anything about
the private inputs of the honest parties except the output of the function but
after learning the output, it can force the honest parties to output an arbitrary
value of its choice. Formally, this is modelled by having the ideal functionality
first give the output of the function to the simulator and the simulator sends
some arbitrary value as the output to the honest parties. All the honest parties
will output the value provided by the simulator.

Theorem 1.2. For every n-party function f computable using degree-2 poly-
nomials, there exists a protocol for computing f that makes parallel calls to
2-ary functions and achieves statistical PwKO against a malicious adversary
that could corrupt an arbitrary number of parties.
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2. A second approach to bypass the impossibility result is to relax the security to
be computational. We show how to extend Theorem 1.2 to securely computing
arbitrary circuits and achieve security with unanimous abort.

Theorem 1.3. Assume the existence of a semi-honest secure oblivious trans-
fer protocol. For every n-party function f , there exists a protocol for computing
f that makes parallel calls to 2-ary functions and achieves security with unan-
imous abort against a computationally-bounded malicious adversary that could
corrupt an arbitrary number of parties.

Application: Reducing the Complexity of MPRE. Theorem 1.3 has an interesting
application to reducing the complexity of the encoding function of Multiparty
Randomized Encoding (MPRE) [GS17, ABT18, ABT19]. MPRE is the analog of
randomized encodings for distributed computation protocols. In a bit more de-
tail, MPRE for computing a multiparty function f comprises of n pre-processing
functions h1, . . . , hn along with an encoder Enc′ and a decoder Dec′. The party
Pi first applies the local pre-processing function hi on its private input and ran-
domness. After this, we apply the encoding function Enc′ on the pre-processed
values. The decoding function Dec′ takes in the output of the encoder and com-
putes the output of f applied on the private inputs of all the parties. For security,
we require that even if an adversary corrupts an arbitrary number of parties,
the output of the encoder only reveals the output of f and nothing else about
the inputs of the honest parties.

An important research direction in the study of randomized encodings is to
minimize the encoding complexity as much as possible [AIK04, AIK07]. Previous
results [GS18, ABT18, GIS18] gave constructions of MPRE where the encoder
could be implemented in NC0. However, the fan-out of the encoder circuit grew
linearly with the number of parties. But using Theorem 1.3, we can construct
an MPRE where the encoding can be done in NC0 with constant fan-out. In
other words, the encoder has constant input and output locality. This encoder is
optimal in the sense that its has constant fan-in, constant fan-out, and constant
depth.

This result is obtained directly from the above theorem by replacing the 2-ary
functions with an existing MPRE secure against malicious adversaries [GS18].
This MPRE construction is based on the existence of a two-round, malicious-
secure oblivious transfer protocol. Since this MPRE computes a two-party func-
tionality, its fan-out is constant and hence, the overall fan-out of the encoder
is constant. This is illustrated in Figure 1.1. As a result, we get the following
corollary.

Corollary 1.4. Assume the existence of a two-round oblivious transfer protocol
secure against malicious adversaries. Then, there is a reduction from securely
computing any multiparty function f against malicious adversaries to securely
computing a NC0 function with constant fan-out against malicious adversaries.

Extensions. We provide the following extensions.
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P1 Pi Pn
.  .  . 

(x1, r1) (xi, ri) (xn, rn)
.  .  . 

xi,{1,i} xi,{i,n}.  .  . 
𝖤𝗇𝖼

x1,{1,n} xn,{1,n}

𝖤𝗇𝖼
x1,{1,i} xn,{i,n}

𝖤𝗇𝖼

x̃i,{1,i} x̃i,{i,n}x̃1,{1,n} x̃n,{1,n}x̃1,{1,i} x̃n,{i,n}

… … … …

… … … ….  .  . 
MPRE.Pre-processingMPRE.Pre-processing MPRE.Pre-processing

MPRE.Enc MPRE.Enc MPRE.Enc

Pre-processing Phase

Encoding Phase

Fig. 1.1. Construction of MPRE where the encoder has constant input and output
locality. Here, Enc denotes the encoder function from Theorem 1.3 and MPRE is for
computing the 2-ary function from Theorem 1.3.

– Honest Majority: When security is required in the presence of an honest ma-
jority, we can replace the assumption of semi-honest secure oblivious transfer
with the weaker assumption of one-way function.

Theorem 1.5. Assume the existence of one-way functions. For every n-party
function f , there exists a protocol for computing f that makes parallel calls to 2-
ary functions and achieves security with unanimous abort against a computationally-
bounded malicious adversary that could corrupt a strict minority of parties.

– 3-ary functions. We further pursue the objective of realizing computational
security with unanimous abort against an arbitrary number of malicious cor-
ruptions based only on the existence of one-way functions. We show that this
is possible if the parties have access to 3-ary instead of 2-ary functions.

Theorem 1.6. Assume the existence of one-way functions. For every n-party
function f , there exists a protocol for computing f that makes parallel calls to 3-
ary functions and achieves security with unanimous abort against a computationally-
bounded malicious adversary that could corrupt an arbitrary number of parties.

1.2 Related Work

Fitzi et al. [FGMO01] considered the problem of constructing secure computation
protocols in the dishonest majority setting with full security (i.e., guaranteed
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output delivery) with help of functions that take inputs from less than n parties.
Without the help of additional functions, achieving fairness (which is weaker
than full security) is impossible [Cle86]. Fitzi et al. showed a negative result
that it is impossible to achieve full security with access to functions of arity
less than n. See [IPP+22] for a detailed discussion on the works constructing
fully-secure protocols with calls to functions with arity n.

Applebaum and Goel [AG21] based on Baum et al.’s result [BOSS20] gave
a black-box protocol for computing any multiparty function by making parallel
calls to constant degree functions and satisfying security with identifiable abort.
This constant degree function takes inputs from all the parties. Their results do
not extend to our setting where we restrict the function to take inputs only from
two parties.

Applebaum et al. [ABG+20] showed that if we restrict our problem to only
include 2-ary functions that give outputs to the two parties that provide inputs,
then it is impossible to achieve statistical security even against semi-honest ad-
versaries. Specifically, they gave a 3-party function that cannot be computed by
any protocol that makes parallel calls to such 2-ary functions with statistical
security against semi-honest adversaries.

2 Technical Overview

In Section 2.1, we give the main intuition behind our impossibility result (see
Theorem 1.1). In Section 2.2, we show that if one relaxes the security requirement
to privacy with knowledge of outputs [IKP10], then every degree-2 polynomial
can be computed with parallel calls to 2-ary functions (see Theorem 1.2). In
Section 2.3, we explain how to securely compute arbitrary circuits with (unani-
mous) abort by relaxing to computational security. This assumes the existence
of semi-honest secure oblivious transfer (see Theorem 1.3).

2.1 Impossibility of Achieving Statistical Security

The key intuition behind the impossibility result is that a corrupt party can send
inconsistent inputs in its interaction (via the 2-ary functions) with two different
honest parties. This would allow the adversary to learn additional information
about the private inputs of the honest parties that is not learnable in the ideal
world. However, formalizing this intuition requires great care as we need to
choose an appropriate function for which the impossibility holds and also provide
a formal attack that works against any protocol. We elaborate on this below.

Consider the 3-party function f that takes x1, x2, and x3 belonging to {0, 1, 2}
from P1, P2 and P3, respectively and outputs 1 iff x1 + x2 = x3 mod 3. We
will first argue that f cannot be computed by making parallel calls to 2-ary
functions. We will then show how to extend this impossibility to a function that
is computable by a degree-2 polynomial.

Towards a contradiction, assume that there exists a non-interactive protocol
Π = (Enc, {O{1,2},O{2,3},O{1,3}},Dec) that securely computes f against ma-
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licious adversaries with abort. Here, O{i,j} denotes the 2-ary function that is
invoked between parties Pi and Pj for each distinct i, j ∈ [3].

Consider an adversary A1,2 that corrupts P1 and P2, and makes the calls
to O{1,3} and O{2,3} by honestly emulating P1 and P2 after setting their inputs
to x1 and x2 respectively. Let y{1,3} and y{2,3} be the outputs of O{1,3} and
O{2,3} respectively. At this point, the adversary can learn f(x1, x2, x3) without
even invoking O{1,2}. This can be obtained by honestly computing the output
of O{1,2} in its head and applying the decoder on the outputs of the functions.
The output is guaranteed to be f(x1, x2, x3) by correctness of Π.

The crucial lemma in the impossibility is that for any y′{1,2} in the range of

O{1,2}, the output of Dec(y′{1,2}, y{2,3}, y{1,3}) is either ⊥ or f(x1, x2, x3). Oth-

erwise, the adversary can simultaneously learn f(x1, x2, x3) (by computing this
in its head) and force honest P3 to output a value other than ⊥ or f(x1, x2, x3)
(by sending y′{1,2} as the output of O{1,2}). This is impossible in the ideal world,
thereby, contradicting security of Π.

Appealing to another adversary A1,3 that corrupts P1 and P3, and behaves
analogously to A1,2, we can argue that, for any y′{1,3} in the range of O{1,3}, the

output of Dec(y{1,2}, y{2,3}, y
′
{1,3}) is either ⊥ or f(x1, x2, x3), when y{1,2} and

y{2,3} are, respectively, the outputs of O{1,2} and O{2,3}, when corrupt P1 and
P3 behave honestly.

Finally, consider an adversary A1 that only corrupts P1 and behaves as fol-
lows. A1 samples x1 uniformly and invokes O{1,2} by emulating P1 with input
x1, whereas, it invokes O{1,3} by emulating P1 honestly but with its input set to
x1+1 mod 3. In essence, A1 provides inconsistent inputs while emulating O{1,2}
and O{1,3}.

Let y{1,2}, y{2,3}, and y{1,3} be the outputs of O{1,2}, O{2,3} and O{1,3},
respectively in the real execution of the protocol with A1. A1 then chooses
y′{1,3} and y′{1,2} in the range of O{1,3} and O{1,2} respectively such that z′ =

Dec(y′{1,2}, y{2,3}, y{1,3}) ̸= ⊥ and z = Dec(y{1,2}, y{2,3}, y
′
{1,3}) ̸= ⊥, and out-

puts (z, z′). Note that such y′{1,2} and y′{1,3} will always exist as we can set them
to be the outputs of honest emulations of O{1,2} and O{1,3} with inputs x1 + 1
and x1 respectively. The adversary simply chooses the first string in the range
of these two functions that produces a non-bot output. This is where we use the
fact that the adversary is computationally unbounded as such strings might not
be efficiently computable.

We claim that Π is not secure against A1. By our previous two lemmas,
since z and z′ are not ⊥, it has to be the case that z = f(x1, x2, x3) and
z′ = f(x1+1, x2, x3). Thus, A1 simultaneously learns the output of the functions
for two possible inputs of P1. This allows A to learn the value of x3 − x2 with
absolute certainty. However, when x2 and x3 are chosen uniformly at random,
an ideal adversary will fail to guess x2 − x3 with constant probability and thus,
we obtain a contradiction to the security of Π.

https://orcid.org/0009-0000-6620-2754
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Making f to be degree-2. We observe that the same impossibility proof extends if
we consider the function f that checks if x1+x2+x3 = 0 where the + operation
is over GF(22). This can be expressed as a degree-2 polynomial over {0, 1}.

2.2 Securely Computing Degree-2 Polynomials with PwKO

The previous impossibility crucially relied on the honest party either outputting
the correct function output or ⊥. However, this impossibility result does not
extend to the case where the adversary could force the honest party to output
an arbitrary value. Therefore, there is hope of obtaining a protocol that satisfies
statistical privacy with knowledge of outputs (PwKO). However, such a protocol
is highly non-trivial to construct and it needs new techniques. We now explain
our approach to construct such a protocol for computing arbitrary degree-2
polynomials.

For simplicity, let’s assume that each party Pi gets a finite field element xi

as its private input. Let p(·) be a degree-2 polynomial and the parties want to
compute p(x1, . . . , xn) =

∑
i,j∈[n] ci,j · xi · xj . Our goal is to design a protocol

for computing p that makes parallel calls to 2-ary functions and achieves PwKO
against a malicious adversary that corrupts an arbitrary subset of the parties.
In the rest of the overview, we will use O{i,j} to denote the function that is
computed using Pi and Pj ’s inputs.

5

The starting point of our construction is the semi-honest secure protocol for
computing p with parallel calls to 2-ary functions. In this semi-honest secure
protocol, we define O{i,j} to take (xi, si[j]) from Pi and (xj , sj [i]) from party
Pj and to output ci,j · xi · xj + si[j] + sj [i] to every party. For every i ∈ [n],
if Pi chooses {si[j]}j∈[n] as a random secret sharing of 0, then the parties can
add the outputs of all the 2-ary functions to obtain p(x1, . . . , xn). The security
follows since {si[j]}j∈[n] are all random subject to their sum being 0 and thus,
only p(x1, . . . , xn) is revealed. The key challenge is to extend this protocol to be
secure against malicious adversaries.

If we analyze the protocol a bit more carefully, we realize that a malicious
adversary can only mount two kinds of attacks:

– Sending inconsistent inputs. An adversary corrupting Pi could send (xi, ·)
to O{i,j} and (x′

i, ·) (where xi ̸= x′
i) to O{i,j′} for two different parties j, j′.

– Generating bad secret shares. An adversary that is corrupting party Pi

could generate {si[j]}j∈[n] as secret shares of a value other than 0.

Let’s assume for now that the adversary is restricted to sending consistent
private inputs to each 2-ary function. In other words, it is disallowed from mount-
ing the first attack strategy explained above. However, note that this adversary
is still allowed to generate {si[j]}j∈[n] as shares of a value other than 0. If that

5 For simplicity, we allow each pair of parties to potentially invoke a different function
O{i,j}. However, this can be easily modified to compute a single function g that
takes (i, j) as additional input.
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is the case, we argue that the above protocol already satisfies PwKO. At a high-
level, if the real-world adversary generates {si[j]}j∈[n] to be shares of a value
other than 0, then it can be shown that this attack corresponds to adding an
offset to the actual output. Thus, we can have the simulator (in the ideal world)
to add the same offset to the output obtained from the ideal functionality and
make all the honest parties obtain this modified output.

The next step to consider is what happens if the adversary is allowed to send
inconsistent inputs. Can the same protocol be proved to satisfy PwKO? We
explain that this is not the case. First, observe that if the adversary sends xi to
O{i,j} and x′

i to O{i,j′}, then the offset that is added to the real output is given
by ci,j ·(x′

i−xi) ·xj′ . However, this offset depends on the private input of Pj′ and
this is disallowed as per the PwKO definition. Specifically, the adversary is only
allowed to set the output received by the honest parties based on the output of
the function and it cannot depend on the private inputs of the honest parties
in any other way. Therefore, the above protocol as such does not satisfy PwKO.
Hence, we need a mechanism to force the adversary to give consistent inputs to
every 2-ary function.

Key Idea. Suppose we construct a protocol that satisfies the following two prop-
erties.

1. If every corrupted party Pi uses consistent inputs with every honest party, i.e.,
Pi sends the same input xi to every O{i,j} where Pj is honest, then we want
all the honest parties to compute the output of the polynomial subject to the
adversary adding some offset.

2. If a corrupted party sends different xi and xi′ to O{i,j} and O{i,j′} where Pj

and Pj′ are honest, then we want the adversary not to learn any information
about the private inputs of the honest parties. Specifically, we want the outputs
of all the 2-ary functions involving an honest party to be random.

We argue that the above two properties are sufficient to show PwKO.

– If adversary sends consistent inputs in each execution of a 2-ary function with
an honest party, then the adversary can only send shares that do not add up to
0 or cheat in the executions of 2-ary functions that involve only corrupt parties.
Both these attacks can be translated to the adversary adding some offset to the
output of the polynomial evaluation and hence, our protocol satisfies PwKO.

– If the adversary sends inconsistent inputs to two different honest parties, we
need to show that the adversary learns no information about the private in-
puts of the honest parties and the output obtained by the honest parties is
independent of their private inputs. The first property follows directly as the
outputs of each 2-ary function involving an honest party is random. To argue
the second property, note that the outputs obtained by the honest parties de-
pend only on the random values output by the 2-ary functions involving at
least one honest party and the values provided by the 2-ary functions involving
two corrupt parties. These are independent of the private inputs of the honest
parties as required by PwKO.

https://orcid.org/0009-0000-6620-2754
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However, on close observation, we realize that it is highly non-trivial to satisfy
the second condition. In particular, even if the adversary cheats by sending
inconsistent inputs to any pair of honest parties, then we want this cheating to
be detected in all other 2-ary functions involving at least one honest party and
the adversary should get no information about these outputs. This is especially
challenging since the 2-ary functions do not have any shared randomness and all
the functions are invoked in parallel.

Construction. To construct such a protocol, we tightly couple the outputs of
each 2-ary function. This coupling ensures that even if the output of a single 2-
ary function call gets erased (or equivalently, switched to random), this creates a
“domino effect” and the outputs of all the 2-ary function calls involving at least
one honest party get erased (i.e., switched to random). This allows us to argue
the second condition. Let us explain how this domino effect is created.

We first design a special conditional disclosure of secrets (CDS) protocol that
switches the output of O{j,j′} to random if a corrupt party Pi sends inconsistent
inputs to O{i,j} and O{i,j′} where Pj and Pj′ are honest. If this happens, observe
that sj [j

′] and sj′ [j] are erased from the adversary’s view. This means that each
{sj [k]}k ̸=j′ and {sj′ [k]}k ̸=j is randomly distributed and hence, the outputs of
each 2-ary function O{j,k} for every k ̸= j′ and O{j′,k} for k ̸= j is randomly
distributed. Thus, for every honest party Ph, sh[j] and sh[j

′] get erased from
the adversary’s view and we can continue the above argument to switch the
output of each 2-ary function’s output that involves at least one honest party to
random.

CDS Protocol. A key technical contribution of this work is a construction of a
CDS protocol that switches the output of O{j,j′} if Pi sends inconsistent inputs
to O{i,j} and O{i,j′}.

We build this CDS protocol in two steps. We first build a protocol that has
constant soundness error. That is, even if the corrupt Pi is sending inconsistent
inputs to O{i,j} and O{i,j′}, there is a constant probability that the output of
O{j,j′} is not switched to random. In the second step, we show how to bring
down this soundness error to negligible.

CDS Functionality. For simplicity of notation, let us fix j = 1, j′ = 2 and
i = 3. Assume for simplicity that P3’s private input is a single bit and P1 and
P2’s private inputs used in the CDS protocol are two random bits y1 and y2
respectively. The CDS protocol ensures that if P3’s input to O{1,3} and O{2,3}
are the same then, all the parties can recover y1⊕y2. Else, y1, y2 are hidden from
the view of the adversary. We observe that this is sufficient to erase the output
of O{1,2} as we can add y1 ⊕ y2 to the original output and send this modified
output to each party. If the adversary sends consistent outputs, then every party
can recover y1 ⊕ y2 and use this to unmask the output of O{1,2}. To protect the
privacy of honest parties, we additionally need that CDS protocol not to leak
any information about x3 if P3 was honest.
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Overview of Conditional Disclosure Protocol. We slightly abuse the notation
and we describe our CDS protocol as making parallel calls to 2-ary functions
(O{1,2},O{2,3},O{1,3}). In the final protocol, these CDS computations are baked
into the 2-ary functions.

The following protocol will serve as the starting point for our construction.
P3 sends to both O{1,3} and O{2,3} the same degree-2 polynomial q(x) over F4

sampled uniformly at random subject to q(0) = x3. Inputs of P1 and P2 to O{1,3}
and O{2,3} are, respectively, α1 and α2, which are uniform non-zero elements
of F4. The output of O{1,3} (resp. O{2,3}) is (α1, q(α1)) (resp. (α2, q(α2))). The
function O{1,2} is not used in this construction.

This is not a conditional disclosure protocol since it does not reveal y1 ⊕ y2
in an honest execution. But, it hides (honest) P3’s input from colluding P1, P2.
P1 and P2 learn the evaluation of q(x) on at most two non-zero values. This
perfectly hides x3 from the collusion for the same reason a 2-private Shamir
secret sharing is perfectly secure. Furthermore, if P1 and P2 are honest, with
at least 1/9 probability, all honest parties detect if a corrupt P3 uses distinct
values of x3 for computing inputs to O{1,3} and O{2,3}. Because, in this case,
P3’s inputs to O{1,3} and O{2,3}, say q1(x) and q2(x), respectively, are distinct
degree-2 polynomials (if degree is more than 2, the functions output ⊥). Hence,
there exists a non-zero α ∈ F4 on which both these polynomials evaluate to
distinct values.6 With probability 1/9, (honest) P1 and P2 would choose α1 = α
and α2 = α, respectively, in which case, the function outputs reveal that q1(x) ̸=
q2(x), resulting in all honest parties aborting the protocol.

Next, we tweak this protocol so that y1 ⊕ y2 is revealed if the evaluation
of the polynomial(s) on α1 and α2 are not in conflict, and is perfectly hidden
if α1 = α2 and q1(α1) ̸= q2(α2). We achieve this as follows. We use O{1,2} to
output a list {y1⊕ y2⊕ θp⊕ϕp}p, where p ranges over all polynomials of degree
at most 2 over F4, and θp and ϕp are one-time pads chosen by P1 and P2 to
mask the secret. The behavior of O{1,3} is modified such that, for each p, it
gives up the value of θp only if p(α1) = q1(α1), where q1 is the polynomial input
by P3 to O{1,3}. Similarly, for each p, O{2,3} reveals ϕp for each p such that
p(α1) = q2(α1), where q2 is the polynomial input by P3 to O{2,3}. If there exists
a p such that p(α1) = q1(α1) and p(α2) = q2(α2), then by recovering θp and ϕp,
the decoder can unmask y1 ⊕ y2. Clearly such a p exists when P3 is honest and,
hence, q1 = q2. However, if a corrupt P3 provides distinct polynomials q1 and q2,
and P1 and P2 chose α1 and α2 that coincide with α such that q1(α) ̸= q2(α),
then there is no p for which θp and ϕp are simultaneously revealed by O{1,3} and
O{2,3}, respectively. This ensures that, with a constant probability (specifically,
1/9), y1 ⊕ y2 remains completely hidden from corrupt P3, when P1 and P2 are
honest. Note that, privacy of an honest P3 is still preserved: revealing the set of
polynomials that agree with a randomly chosen polynomial q that evaluates to
x3 on 0 on any non-zero α1 and α2 of P1 and P2’s choosing does not reveal x3.

6 Note that any two distinct degree-2 polynomials can have the same evaluation on at
most two points on the finite field.
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This protocol has a clear flaw that allows a rushing P3 to choose q1 ̸= q2
without getting caught by honest parties: P3 can learn α1 chosen by P1 from
the output of O{1,3}. And, by looking at the polynomials that agree with q1 on
α1, it adaptively chooses q2(x) such that q1(0) ̸= q2(0). Then, the parties will
never detect that q1 ̸= q2 irrespective of the value of α2. This attack (in fact, all
attacks in general from P3) can be circumvented by ensuring that α1 and α2 are
hidden from the adversary until the outputs of all 2-ary functions are revealed.
We achieve this by appropriately masking the variables in the output of the
functions that are sensitive to the value of α1 and α2 and ensuring that these
masks can be removed only when the outputs of all function calls are known.

Boosting Soundness. The above protocol ensures that if P3 sends inconsistent
input, then with 1/9 probability, y1 ⊕ y2 remains hidden. To boost this proba-
bility to be very close to 1, we use the parallel repetition. In particular, we run
the above protocol k times in parallel and wherein each repetition, P3 chooses
random polynomials q1 and q2 with the same constant term.7. We additionally
set the secrets of P1 and P2 to be the XOR of the secrets used in each repetition.
This construction guarantees that for an adversary to learn information about
the secrets of P1 and P2, it should not get caught in each of the k repetitions.
The probability of this event is upper bounded by ( 89 )

k (which is negligible in
k).

2.3 Relaxing to Computational Security

We now explain how to bootstrap the protocol for computing degree-2 polyno-
mials with PwKO to computing arbitrary functions with stronger security guar-
antees. We do this by relaxing the security to be computational. Recall that the
impossibility result only holds against computationally unbounded adversaries.

Let f be an arbitrary multiparty function that is computable by a poly-sized
circuit. Consider an augmented functionality g that takes in (xi, ski) from party
Pi where ski is a signing key for a digital signature scheme. For each i ∈ [n], g
first computes y = f(x1, . . . , xn). It then signs y using ski for each i ∈ [n] to
obtain the signature σi. Finally, g outputs (y, σ1, σ2, . . . , σn).

8

The parties use an effective degree-2 MPRE with semi-malicious security
against arbitrary corruptions (see Definition 4.2) for computing the function g.9

The parties use the previous protocol with PwKO to compute the pre-processing
phase and the encoding function for the MPRE.10 The parties also use the 2-ary
functions to broadcast the verification key vki corresponding to ski. The parties

7 We can modify the 2-ary function to output ⊥ if the constant terms are not the
same.

8 A similar transformation was used in [IKSS22] to obtain security with unanimous
abort from PwKO.

9 Such an MPRE was constructed in [ABT18, GS18] assuming the existence of a
semi-honest secure oblivious transfer.

10 Note that we can extend the previous protocol to first apply a local function on the
parties private inputs and then compute a degree-2 polynomial on the outputs of
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then use the MPRE decoder to learn the output of g. The parties finally check
if each σi is a valid signature on y under the verification key vki. If any of the
checks do not pass, the party aborts.

Note that from the security of the PwKO protocol, the adversary only learns
the output of degree-2 polynomial computation on the pre-processed values and
this corresponds to the output of the encoding function of the MPRE. From
the MPRE security, this encoding can be generated only given the output of g,
and the inputs and randomness of the corrupted parties. If the adversary sends
some other value as the output to the honest parties, then it corresponds to
sending a tampered MPRE encoding. Note that all the honest parties will get
the same output (y′, σ′

1, . . . , σ
′
n) as the decoding for MPRE does not require any

secret state. If y ̸= y′, it follows from the security of the digital signature scheme
that each honest party will abort. If y = y′, but some signature check does not
pass, then once again all the honest parties will abort as the verification check
is publicly computable. The only case where all the honest parties will output y
is when y = y′ and all the verification checks pass.

Extensions. We observe that the same construction can be instantiated with a
degree-2 MPRE with semi-malicious security in the honest majority setting to
obtain a protocol secure against malicious adversaries that corrupt a minority
of the parties. [ABT18][Theorem 1.2] constructed such an MPRE assuming one-
way functions. The complexity of this construction is polynomial in the number
of parties and the size of the circuit representing the function. Using this MPRE
construction, we obtain a protocol in our model that computes any function
with unanimous abort against a computationally-bounded malicious adversary
corrupting a strict minority of the parties. The security of this construction
relies on one-way functions. We also show that if the parties have access to 3-ary
functions (instead of 2-ary), then we can rely on the MPRE construction from
Beaver et al. [BMR90] to give an analogous result in the dishonest majority. The
security of this protocol again relies on the existence of one-way functions.

3 Open Problems

We highlight some interesting problems left open by our work.

– Minimizing Assumption in Dishonest Majority. Assuming the existence
of one-way functions, 3-ary functions can be used to achieve computational
security with unanimous abort against an arbitrary number of corruptions.
Similarly, 2-ary functions can be used to achieve the same against a strict
minority of corruptions. We leave open the possibility of achieving security with
abort with parallel calls to 2-ary functions in the dishonest majority setting
based on one-way functions. This work also leaves open the (im)possibility

these local functions. This allows us to compute the pre-processing phase inside the
2-ary functions and thus, allowing us to rely on an MPRE that is secure against
semi-malicious adversaries.
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of unconditional security with unanimous abort even with parallel calls to
(n− 1)-ary functions.

– Using Private Decoders.Our impossibility result relied on the decoder to be
public, i.e., not have any secret state. One way to get around our impossibility
in the statistical setting is to resort to using private decoders (which take the
secret state of a party as an additional input) and settling for security with
selective abort, where the adversary may select the set of honest parties who
are denied the output of the computation. [ABT18][Theorem 1.1] showed the
existence of a perfectly secure degree-2 MPRE (hence, perfectly secure semi-
malicious degree-2 MPRE) in the honest majority setting for any function
that is computed by a branching program. Hence, using our CDS construction
(which is secure against dishonest majority), we can securely compute any
branching program with statistical PwKO when there is an honest majority.
We can then use a standard transformation from PwKO to selective abort
described in [IKP10]. This transformation uses a Message Authentication Code
(MACs) and the private decoding is needed so that the parties can check the
validity of the tags.
We leave open the possibility of achieving statistical security with selective
abort for arbitrary corruptions using private decoding. An astute reader may
have noticed that the construction sketched above gives rise to such a protocol
if there exists a statistical degree-2 MPRE for arbitrary corruptions or a statis-
tical degree-2 RE. Hence, the existence of such MPRE or RE–a long standing
open problem–acts as a barrier to proving the impossibility of constructing
such protocols with private decoding.

– Achieving Identifiable Abort. Our protocols do not satisfy identifiable
abort security which guarantees that at least one of the corrupt parties can be
detected by the honest parties whenever the protocol aborts. We leave open
the problem of achieving identifiable abort in our model.

– Guaranteed Output Delivery. We also leave open the possibility of achiev-
ing guaranteed output delivery in our model. The existing results [FGMO01]
imply this is impossible when there is a dishonest majority. However, the prob-
lem remains open when there is an honest majority.

4 Definitions

Notations. The set {1, 2, . . . ,m} is denoted by [m]. A sequence (xi1 , . . . , xim),
where (i1, . . . , im) = S will be denoted by {xi}i∈S ; when S is clear from the
context, simply write {xi}. When S ⊆ [m], we will sometimes abuse the notation
to denote f(x1, . . . , xm) as f({xi}i∈S , {xi}i∈[m]\S).

We consider a secure computation model in which n parties securely compute
a function by making parallel calls to 2-ary functions with no further interaction.
Universally composable security (UC-security) against malicious adversaries, as
conceived in [Can01], will be the focus of this work.

Let λ ∈ N be the security parameter. Let n ∈ N and let P1, . . . , Pn be a set
of distinct parties. Let f be an n-party functionality f : X1 × . . .×Xn → Y.
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Definition 4.1. An n-party protocol Π = ({O{i,j}},Enc,Dec) for securely re-
alizing a functionality f using parallel calls to 2-ary functions {O{i,j}}, where
O{i,j} : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ for each {i, j} ∈

(
[n]
2

)
, is described by an

encoding function Enc and a decoding function Dec. Π proceeds as follows.

– Each party Pi has private input xi ∈ Xi. It samples private randomness ri
uniformly from {0, 1}∗, and computes y(i,j) = Enc(1λ, (i, j), xi, ri) for each
j ̸= i.

– For each {i, j} ∈
(
[n]
2

)
, Pi and Pj invoke the 2-ary function O{i,j} with inputs

y(i,j) and y(j,i), respectively, which delivers z{i,j} = O{i,j}(y(i,j), y(j,i)) to all
parties.

– Finally, each Pk outputs Dec(1λ, {z{i,j}}) and terminates. If output of Pk is
⊥, we say that Pk has aborted the protocol.

We say that Π securely computes f if, for any non-uniform polynomial time
adversary A that corrupts an arbitrary subset M ⊂ [n] of the parties, there exists
an ideal world PPT simulator Sim such that, for every choice of inputs {xi}i∈[n]:

(ViewA, out) ≈c Ideal(1
λ,SimF({xi}i∈[n]\M ,·), {xi}i∈M ) (1)

In the above, ViewA refers to the view of the adversary A (which includes the
input, randomness, and the outputs of the function calls) and out refers to the
output of all (honest) parties in the real execution of the protocol, which coincide
as they use the same decoder. Ideal refers to the ideal execution of the proto-
col. This starts with the Sim run on 1λ, {xi}i∈M . F({xi}i∈[n]\M , ·) takes inputs
{x̃i}i∈M from Sim and computes the output of f with the inputs of the honest
parties being fixed to {xi}i∈[n]\M and the inputs of the corrupt parties being fixed
to {x̃i}i∈M . It delivers this output to Sim. If Sim sends an instruction to deliver
the outputs to the honest parties, the functionality delivers the above computed
output. Else, it asks the honest parties to abort. The output of Ideal corresponds
to the output of Sim and the output of all the honest parties.

We can extend the above definition to consider computationally unbounded
adversaries A. In this case, we allow the simulator Sim and the distinguisher in
Equation (1) to be unbounded. In this case, we say that the protocol satisfies
statistical security.

Definition 4.1 can be generalized to n-party non-interactive protocols using
k-ary functions (k < n) which take inputs from sets of k parties.

Definition 4.1 considers a strong security guarantee where all the honest
parties either compute the output or all of them abort. This is known as security
with unanimous abort. Some of the protocols we construct enjoy a weaker notion
of security, which we define below:

Privacy with Knowledge of Output. A protocol is said to guarantee privacy with
knowledge of outputs (PwKO) if the malicious adversary learns only the output
of the function computation, and each honest party outputs a value that is
chosen by the adversary for that party based (only) on the output of the function
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computation. This corresponds to realizing the functionality FPwKO which works
exactly like F until it sends the output to Sim. However, after delivering the
output to Sim, the functionality accepts an input o ∈ codomain(f) ∪ {⊥} from
Sim, and delivers o as output to all honest parties.

4.1 Multiparty Randomized Encoding

Ishai and Kushilevitz introduced the notion of randomizing polynomials in [IK00]
which was later generalized to Randomized Encoding (RE) by Applebaum, Ishai

and Kushilevitz in [AIK04]. A function f is encoded by a randomized function f̂

if the output of f̂ allows reconstruction of the output of f and nothing more. The
function f is trivially a randomized encoding of itself. The utility of this notion
is rooted in the observation that it is possible to obtain randomized encodings
which are simpler than the function itself. A well studied notion of simplicity
is the degree of the randomized encoding when the output of f̂ is viewed as a
multi-variate polynomial of x1, . . . , xn, r, where x1, . . . , xn are the inputs to f
and r is the randomness used in the encoding.

Multiparty randomized encoding (MPRE) was introduced by Applebaum,
Brakerski and Tsabary in [ABT18] as a generalization of randomized encoding.
We are intereseted in MPRE that remains secure against an arbitrary number
of corruption, which we define below:

Definition 4.2 (Degree-d MPRE [ABT18]). Consider an n-party function

f : X1 × . . . × Xn → Y. f̂ is a degree d multiparty randomized encoding of f
if f̂ can be described as a polynomial of degree-d over GF[2], and the following
conditions hold for a set of preprocessing functions h1, . . . , hn.

– Correctness. There is a decoder Dec such that, for every input x1, . . . , xn,
and every choice of private randomness r1, . . . , rn, we have:

Dec
(
f̂
(
h1(1

λ, x1; r1), . . . , hn(1
λ, xn; rn)

))
= f(x1, . . . , xn)

– Privacy. For every subset M ⊂ [n] and for any non-uniform polynomial time
adversary A corrupting parties in M , we have a simulator Sim such that, when
{ri}i∈[n]\M are uniformly sampled, for all x1, . . . , xn and {ri}i∈M ,

f̂
(
h1(1

λ, x1; r1), . . . , hn(1
λ, xn; rn)

)
≈ Sim(f(x1, . . . , xn), {xi, ri}i∈M ). (2)

Here ≈ denotes computational indistinguishability.
In the general definition of MPRE, each party uses a private decoder which,

in addition to the encoding, uses the party’s input and private randomness to
compute the output of the function. However, in the above definition, the de-
coder is public. Such an MPRE was constructed in [GS17, GS18, ABT18] by
transforming a secure computation protocol that computes the function with
semi-malicious security–security is guaranteed even when the adversary chooses
arbitrary private randomness for corrupt parties. To arrange for public decoding



18 Varun Narayanan , Shubham Vivek Pawar, and Akshayaram Srinivasan

of this MPRE, it suffices to append an additional round of communication to
the corresponding protocol, in which the output of the function computation
is broadcasted. We note that such a multi-round semi-malicious secure proto-
col can be constructed from any multi-round semi-honest secure OT protocol
via the GMW transformation [GMW87] or making black-box use of semi-honest
OT [HIK+11].

4.2 One-Time Digital Signature

Definition 4.3 (One-time digital signature scheme). Let λ be a security
parameter. A triple of algorithms (Gen,Sig,Ver) is a one-time digital signature
scheme if the following properties are met:

Authentication. When r is chosen uniformly, for all x ∈ {0, 1}m,

Pr
[
Ver(x,Sig(x, sk), vk) = 1|(sk, vk)← Gen(1λ, r)

]
= 1

Unforgeability. For any non-uniform polynomial time adversary A, for any x,

Pr

(x ̸= x′) ∧ (Ver(x′, t′, vk) = 1)

∣∣∣∣∣∣∣
(sk, vk)← Gen(1λ, r)

t = Sig(x, sk)

(x′, t′)← A(1λ, x, vk, t)

 = negl(λ).

One-time digital signatures exist if one-way functions exist [Lam16].

5 Impossibility of Statistical Security with Abort

We begin by exploring the limitations of this model owing to non-interactivity.
Indeed, secure computation with abort is impossible for certain simple 3-party
functions in this model against a computationally unbounded adversary. We will
also show that this impossibility can be further extended to n-party setting when
the adversary may corrupt more than half of the participants.

Theorem 5.1. There exists a 3-party function f that can be computed using a
degree 2-polynomial such that no protocol making parallel uses to 2-ary functions
achieves statistically secure computation of f with abort against a malicious
adversary corrupting arbitrarily many parties.

Proof. We will show that the theorem holds for the 3-party function f that takes
xi ∈ F4 from each Pi and outputs 0 if x1+x2+x3 = 0 and outputs 1 otherwise.
When an element xi in F4 is represented as a 2-dimensional vector (xi,0, xi,1), f
is computed by the following degree-2 polynomial over F2:

f((x1,0, x1,1), (x2,0, x2,1), (x3,0, x3,1)) = (x1,0 ⊕ x2,0 ⊕ x3,0)∨ (x1,2 ⊕ x2,2 ⊕ x3,1).
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Suppose Π = ({O{i,j}},Enc,Dec) is a secure protocol computing f with
abort. Let ϵ ≥ 0 be some constant such that the advantage of any computation-
ally unbounded adversary in breaking the protocol is at most ϵ. That is, when ≈ϵ

denotes statistical distance of at most ϵ, for any adversary A corrupting M ⊂ [3],

(ViewA, out) ≈ϵ Ideal(1
λ,SimFSA({xi}i∈[n]\M ,·), {xi}i∈M ).

Consider an honest execution of Π with each xi is distributed uniformly and
independently over F4. Let z{1,2}, z{2,3} and z{1,3} be the output of 2-ary func-
tions O{1,2},O{2,3} and O{3,1}, respectively. That is, when r1, r2, r3 are sampled
uniformly, and y(i,j) = Enc((i, j), xi, ri) for distinct i, j ∈ [3],

z{1,2} = O{1,2}(y(1,2), y(2,1)) z{2,3} = O{2,3}(y(2,3), y(3,2))

z{1,3} = O{3,1}(y(1,3), y(3,1)), (3)

Claim 5.1.1 Over the randomness of x1, x2, x3, r1, r2, r3,

Pr
[
∃(x′

1, r
′
1, x

′
2, r

′
2) s.t. y

′
(1,2) = Enc((1, 2), x′

1, r
′
1), y

′
(2,1) = Enc((2, 1), x′

2, r
′
2),

and Dec(O{1,2}(y
′
(1,2), y

′
(2,1)), z{1,3}, z{2,3}) /∈ {⊥, f(x1, x2, x3)}

]
≤ 9ϵ, (4)

and

Pr
[
∃(x′

1, r
′
1, x

′
3, r

′
3) s.t. y

′
(1,3) = Enc((1, 3), x′

1, r
′
1), y

′
(3,1) = Enc((3, 1), x′

3, r
′
3),

and Dec(z{1,2},O{1,3}(y
′
(1,3), y

′
(3,1)), z{2,3}) /∈ {⊥, f(x1, x2, x3)}

]
≤ 9ϵ. (5)

Before proving the claim, we will use this claim to prove the theorem. Con-
sider an adversary A1 that corrupts P1 and behaves as described in Figure 5.1

A1

1. Corrupt P1. Sample x1, r1 uniformly and independently. Invoke O{1,2} and
O{1,3} with y(1,2) = Enc((1, 2), x1, r1) and ŷ(1,3) = Enc((1, 3), x1+1, r1), respec-
tively, as the inputs of P1, and receive outputs z{1,2} and ẑ{1,3}, respectively.
Let z{2,3} = ẑ{2,3} be the output of invocation of O{2,3} by the honest parties
P2 and P3.

2. If there exist ẑ{1,2} ∈ O{1,2}(·, ·) and z{1,3} ∈ O{1,3}(·, ·) such that
Dec({z{i,j}}) = a0,Dec({ẑ{i,j}}) = a1 and a0, a1 ∈ {0, 1}, output (a0, a1);
otherwise, output ⊥.

Fig. 5.1.

We now argue that Π is not secure against A1. Let r2 and r3 be the private
randomness used by P2 and P3, respectively. Let y(i,j) = Enc((i, j), xi, ri) for
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each i ∈ [3], j ̸= i. Then, z{i,j} = O{i,j}(y(i,j), y(j,i)) for each {i, j} ≠ {1, 3}.
Defining z̃{1,3} = O{1,2}(y(1,3), y(3,1)), z{1,2}, z{2,3} and z̃{1,3} are the outputs
of the function calls in an honest execution of Π with xi as input and ri as
randomness of each Pi. Hence,

Pr
[
Dec(z{1,2}, z{2,3}, z{1,3}) = f(x1, x2, x3)

]
≥ 1− ϵ.

This along with eq. (5) implies Pr [a1 = f(x1, x2, x3)] ≥ 1− 10ϵ. Using the same
line of argument, Pr [a0 = f(1 + x1, x2, x3)] ≥ 1 − 10ϵ. Thus, in the real execu-
tion, A1 successfully computes f(x1, x2, x3) and f(1+x1, x2, x3) with probability
at least 1− 20ϵ.

Pr[f(x1 + 1, x2, x3) = 1|f(x1, x2, x3) = 1] = 2/3, and f(x1, x2, x3) = 1 with
probability 3/4 for any x1, when of x2 and x3 are chosen uniformly. Hence,
the simulator will fail to simultaneously guess the values of f(x1, x2, x3) and
f(x1 +1, x2, x3) with probability at least 1/4. Thus, for sufficiently small ϵ, this
contradicts security with at most ϵ distinguishing advantage against an adversary
that corrupts at most 2 parties. We conclude the proof by proving the claim.

Proof (of Claim 5.1.1). We will prove Equation (4); Equation (5) can be proved
similarly. Consider an adversary A1,2 that corrupts P1 and P2, and behaves as
described in Figure 5.2.

A1,2

1. Corrupt P1, P2. Sample r1 ← {0, 1}∗, and invoke O{1,3} with y(1,3) =
Enc((1, 3), x1, r1) as P1’s input. Sample r2 ← {0, 1}∗ and invoke O{2,3} with
y(2,3) = Enc((2, 3), x2, r2) as P2’s input. Let z{1,3} and z{2,3} be the outputs of
O{1,3} and O{2,3}, respectively.

2. Define y(1,2) = Enc((1, 2), x1, r1) and y(2,1) = Enc((2, 1), x2, r2). Without in-
voking O{1,2}, compute z{1,2} = O{1,2}(y(1,2), y(2,1)). If there exist y′

(1,2) =
Enc((1, 2), x′

1, r
′
1) and y′

(2,1) = Enc((2, 1), x′
2, r

′
2), for some x′

1, r
′
1, x

′
2, r

′
2, such

that

Dec(O{1,2}(y
′
(1,2), y

′
(2,1)), z{1,3}, z{2,3}) /∈ {⊥,Dec(z{1,2}, z{1,3}, z{2,3})},

then call O{1,2} with y′
(1,2) and y′

(2,1) as inputs of P1 and P2; else use y(1,2) and
y(2,1) as inputs of P1 and P2.

3. Output Dec(z{1,2}, z{1,3}, z{2,3}) and terminate.

Fig. 5.2.

We define a couple of distinguishers D1 and D2 that take the view of A1,2

and inputs/outputs of P3 and does the following:

1. D1 extracts z{1,3} and z{2,3} from the view ofA1,2. It then extracts (x1, r1, x2, r2)
fromA1,2’s view and computes z{1,2}. If Dec(z{1,2}, z{1,3}, z{2,3}) = f(x1, x2, x3),
D1 outputs 1, and outputs 0 otherwise.
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2. If the output of P3 is not equal to f(x1, x2, x3) or ⊥, D2 outputs 1, and
outputs 0 otherwise.

We prove that, when ϵ is sufficiently small, there exists no simulator that guar-
antees at most ϵ distinguishability advantage against both D1 and D2 if

Pr
[
∃(x′

1, r
′
1, x

′
2, r

′
2) s.t. y

′
(1,2) = Enc((1, 2), x′

1, r
′
1), y

′
(2,1) = Enc((2, 1), x′

2, r
′
2),

and Dec(O{1,2}(y
′
(1,2), y

′
(2,1)), z{1,3}, z{2,3}) /∈ {⊥, f(x1, x2, x3)}

]
> 9ϵ.

(6)

Suppose such a simulator Sim exists. Let x̂1 and x̂2 be the inputs of P1 and
P2 used by Sim while invoking the functionality. We use security against D2 to
argue that x̂2 + x̂1 ̸= x2 + x1 with substantial probability. If x̂2 + x̂1 = x2 + x1,
then f(x1, x2, x3) = f(x̂1, x̂2, x3) for any x3. Hence,

Pr [D2 outputs 1 in the ideal execution] = Pr[f(x1, x2, x3) ̸= f(x̂1, x̂2, x3)]

≤ Pr[x̂2 + x̂1 ̸= x2 + x1].

Whereas, by our assumption in eq. (6), and the property of A1,2, D2 outputs 1
in the real execution with probability more than 9ϵ. Since the probability with
which D2 outputs 1 in real and ideal executions are at most ϵ apart, the above
observations imply that

8ϵ < Pr [D2 outputs 1 in the real execution]− ϵ

≤ Pr [D2 outputs 1 in the ideal execution] ≤ Pr[x̂2 + x̂1 ̸= x2 + x1]. (7)

Next, we use security against D1 to argue that x̂2 + x̂1 ̸= x2 + x1 can only
occur with very low probability, reaching a contradiction. If x̂2 + x̂1 ̸= x2 + x1,
over the randomness of x3,

Pr [f(x1, x2, x3) = 0 | x̂2 + x̂1 ̸= x2 + x1, f(x̂1, x̂2, x3) = 1] = 1/3.

Note that Dec(O{1,2}(y(1,2), y(2,1)), ẑ{1,3}, ẑ{2,3}) is a value that the simulator
computes using x1, x2, x̂1, x̂2 and f(x̂1, x̂2, x3) and its own private randomness.
Since an 2/3-biased coin cannot be guessed with non-zero advantage, the above
condition implies that, when E is the event x̂2 + x̂1 ̸= x2 + x1, f(x̂1, x̂2, x3) = 1,

Pr
[
Dec(O{1,2}(y(1,2), y(2,1)), ẑ{1,3}, ẑ{2,3}) ̸= f(x1, x2, x3) | E

]
≥ 1/3.

The above equality implies

Pr [D1 outputs 1 in the ideal execution]

= Pr
[
Dec(O{1,2}(y(1,2), y(2,1)), ẑ{1,3}, ẑ{2,3}) = f(x1, x2, x3)

]
≤ 1− 1

3
Pr[x̂2 + x̂1 ̸= x2 + x1, f(x̂1, x̂2, x3) = 1]

≤ 1− 1

4
Pr[x̂2 + x̂1 ̸= x2 + x1]. (8)
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The last inequality used f(x̂1, x̂2, x3) = 1 with probability 3/4 over the random-
ness of x3.

Next, we bound the probability with which D1 outputs 1 in the real exe-
cution. Since r1 and r2 are sampled uniformly from {0, 1}∗ and P3 is honest,
random variables (z{1,2}, z{2,3}, z{1,3}) are identically distributed as in an honest
execution of Π (as described in Equation (3)). By correctness of the protocol
when all parties are honest, the output of the decoder is f(x1, x2, x3) with prob-
ability at least 1− ϵ. In other words,

Pr [D1 outputs 1 in the real execution]

=Pr
[
Dec(z{1,2}, z{1,3}, z{2,3}) = f(x1, x2, x3)

]
≥ 1− ϵ. (9)

The probability with which D1 outputs 1 in real and ideal executions are at
most ϵ apart. Hence, by eq. (8) and eq. (9),

1− 2ϵ ≤ Pr [D1 outputs 1 in the real execution]− ϵ

≤ Pr [D1 outputs 1 in the ideal execution] ≤ 1− 1

4
Pr[x̂2 + x̂1 ̸= x2 + x1].

Hence, Pr[x̂2 + x̂1 ̸= x2 + x1] ≤ 8ϵ. This contradicts eq. (7). We conclude that
Sim does not exist; proof is complete. ⊓⊔

This completes the proof of the theorem. ⊓⊔

Using a similar analysis we can extend the above result to n-party func-
tions against an adversary that corrupts a majority of the parties. The following
theorem is proved in Theorem A.1.

Theorem 5.2. There exists an n-party function f such that no protocol making
parallel uses of 2-ary functions that securely computes f with statistical security
with abort against a malicious adversary corrupting at most ⌈n/2⌉ parties.

6 Positive Results

In this section, we give our two positive results, namely, a statistical PwKO pro-
tocol for computing degree-2 functions and computationally secure protocol for
computing arbitrary functions. A key building block used in these constructions
is conditional disclosure of secrets protocol that is described next.

6.1 Conditional Disclosure Protocol

A crucial building block in our later constructions is the so-called conditional
disclosure protocol which ensures that the inputs used by any (corrupt) party
Pi during their oracle calls to the 2-ary functions in the larger non-interactive
protocol are consistent.

A conditional disclosure protocol in which parties Pi and Pj verify the con-
sistency of Pk’s inputs to O{i,k} and O{j,k} is a n-party non-interactive protocol
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with parallel use of 2-ary functions that effectively delivers a secret that is addi-
tively secret shared between Pi and Pj to all parties if Pk’s input to O{i,k} and
O{j,k} are consistent. If Pk uses inconsistent inputs, then all parties detect mal-
practice and abort; furthermore, the secret inputs of Pi and Pk are kept hidden
from the adversary. On the other hand, when Pi and Pj are corrupt, the pro-
tocol ensures perfect privacy of Pk’s input. The n-party conditional disclosure
protocol in which Pi and Pj verify Pk is denoted by CD{i,j},k.

Definition 6.1. Let Pi, Pj , Pk be distinct parties. Let CD{i,j},k be an n-party
protocol using parallel use of 2-ary functions with xi, xj ∈ {0, 1}m, respectively,
as inputs of Pi, Pj and xk ∈ {0, 1}ℓ as the input of Pk, and no inputs from the re-
maining parties, described by encoder Enc, 2-ary functions {O{i,j},O{j,k},O{i,k}}
and a decoder Dec. CD{i,j},k is said to be a conditional disclosure protocol with
Pi and Pj verifying Pk with ϵ(λ) soundness if the following properties are met.

1. If Pi, Pj , Pk are honest, all honest parties output xi ⊕ xj at the end of the
protocol.

2. If Pk is honest, a malicious adversary corrupting Pi and Pj does not learn xk.
That is, the view of the adversary corrupting Pi, Pj is identically distributed
irrespective of the value of xk.

3. Π offers ϵ(λ) soundness if for any computationally unbounded adversary A
that corrupts a set of parties {Pa}a∈C such that {i, j}∩C = ∅, there exists an
ideal world PPT simulator Sim such that the following conditions are met:

(a) For every choice of inputs {xa}a∈{i,j,k}

(ViewA, out) ≡ Ideal(1λ,Sim
FCD{i,j},k (xi,xj ,·), xk). (10)

Here, ViewA refers to the view of the adversary A (which includes the input,
randomness, and the outputs of the function calls) and out refers to the
output of all honest parties which coincide. Ideal refers to the ideal execution
of the protocol. This starts with the Sim run on 1λ, xk. If F(xi, xj , ·) receives
a b = 1 from Sim, it delivers xi ⊕ xj to Sim, and all the honest parties;
if b = 0, it delivers ⊥ to Sim and all honest parties. The output of Ideal
corresponds to the output of Sim and the output of all the honest parties
(which coincide).

(b) Conditioned on the event that the input of Sim to O{i,k} and O{j,k} are, re-
spectively, y{i,k} and y{j,k} such that y{i,k} belongs to the domain of Enc((i, k), x′

k, ·)
and y{j,k} belongs to the domain of Enc((j, k), x′′

k , ·), and x′
k ̸= x′′

k, the input
of Sim to F(xi, xj , ·) is 0 with probability 1− ϵ(λ).

Remark 6.2. Consider an execution of CD{i,j},k in which an adversary corrupts
Pk, while both Pi and Pj are honest. In our definition, conditioned on Sim sending
b = 0 to FCD, Sim perfectly simulated the view of the adversary without knowing
the secret, and the output of all honest parties is ⊥. This models the soundness
requirement that the secret that is shared between Pi and Pj remains hidden
from the adversary, and that all honest parties output ⊥. This justifyies defining
soundness as the probability with which Sim sends b = 1 conditioned on the
event that the adversary sends inconsistent values of xk to O{j,k} and O{i,k} on
behalf of Pk.
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Figure 6.1 provides a formal description of the protocol which clarifies how
the aforementioned masking is carried out. The protocol also hides the secret in
the degree 2 term instead of the constant term allowing the construction to be
based on F3 rather than F4. Lemma 6.3 formally proves that the construction is
a 1/9 sound conditional disclosure protocol where P1 and P2 verify P3’s inputs.

CD{12},3

Let the inputs of P1, P2 and P3 be x1, x2, x3 ∈ {0, 1}, respectively. Let F2
3[u] be

the set of all univariate polynomials over the variable u with coefficients in F3

and of degree at most 2 (there are 27 of them).

Execution of Enc

1. For i ∈ {2, 3},Enc((1, i), x1, r1) = (x1, r1).
2. For i ∈ {1, 3},Enc((2, i), x2, r2) = (x2, r2).
3. For i ∈ {1, 2},Enc((3, i), x3, r3) = (x3, r3).

Execution of O{i,j}

Interpret r1 as (α1, {(θp,0, θp,1, ap, a
′
p)}p), where α1 ← F3, and for each p ∈

F2
3[u], θp,0, θp,1, ap and a′

p are uniform independent bits. Interpret r2 as
(α2, {(ϕp,0, ϕp,1, bp, b

′
p)}p), where α2 ← F3, and for each p ∈ F2

3[u], ϕp,0, ϕp,1, bp
and b′p are uniform independent bits. Interpret r3 as (c0, c1), where c0, c1 ← F3,
and let q(u) = x3u

2 + c1u+ c0; here we typecast x3 in F3.

1. O{1,2}((x1, r1), (x2, r2)): Output {x1 ⊕ x2 ⊕ θp,1 ⊕ ϕp,1, ap ⊕ b′p, bp ⊕ a′
p}p.

2. O{1,3}((x1, r1), (x3, r3)): For each p ∈ F2
3[u], if p(α1) = q(α1), set γp = 1; else

set γp = 0. Output {(γp ⊕ ap, θp,γp , a
′
p)}p.

3. O{2,3}((x2, r2), (x3, r3)): For each p ∈ F2
3[u], if p(α2) = q(α2), set γ′

p = 1; else
set γ′

p = 0. Output {(γ′
p ⊕ bp, ϕp,γ′

p
, b′p)}p.

Execution of Dec

1. For each p ∈ F2
3[u], recover γp from γp ⊕ ap, b

′
p and ap ⊕ b′p, which are available

in the output of O{1,3},O{2,3} and O{1,2}, respectively.
2. Similarly, for each p ∈ F2

3[u], recover γ
′
p from γ′

p ⊕ bp, a
′
p and bp ⊕ a′

p.
3. If there exists p such that γp = γ′

p = 1, the recover x1 ⊕ x2 from x1 ⊕ x2 ⊕
θp,1⊕ϕp,1, θp,1 and ϕp,1 which are available in the outputs of O{1,2}, O{1,3} and
O{2,3}, respectively. If no such p exists, output ⊥.

Fig. 6.1. Conditional disclosure protocol with 8/9 soundness in which P1 and P2 shar-
ing a 1-bit secret verify P3’s 1-bit input to O{1,3} and O{2,3}.
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Lemma 6.3. The protocol CD{12},3 in Figure 6.1 is a conditional disclosure
protocol where P1 and P2 with single bit secret verify the single-bit input of P3

with 8/9 soundness.

Proof. When P3 is honest, for any α1 and α2 chosen by P1 and P2, there exists
p ∈ F2

3 (specifically p(u) = x3u
2+c1u+c0) such that p(αi) = x3(αi)

2+c1αi+c0
for i = 1, 2. Hence, γp computed by O{1,3} and γ′

p computed by O{2,3} are both
1. Hence, the protocol satisfies the first condition in the definition of conditional
disclosure protocol in Definition 6.1.

Next, we prove that it satisfies the second condition in Definition 6.1. The
view of the adversary consists of x1, x2, the set of masks, α1 and α2 chosen by
P1 and P2, and the class of polynomials P1 and P1, where, for each i ∈ {1, 2},
Pi contains the set of all degree-2 polynomials p such that p(αi) = x3(αi)

2 +
c1αi+c0. It is easy to see that this view only reveals x3α

2
i +c1αi+c0 for i = 1, 2.

Since c0 and c1 are uniformly and independently sampled by P3, irrespective of
the values of α1 and α2, these values are identically distributed for x3 = 0, 1. In
other words, the view of the adversary can be perfectly simulated irrespective of
the value of x3, satisfying the second condition.

Next, we show that the protocol is 8/9-sound by showing that the simulator
Sim in Figure 6.2 satisfies the conditions in Definition 6.1.

Sim

1. On behalf of P1, choose uniformly random r1 and interpret it as
(α1, {(θp,0, θp,1, ap, a

′
p)}p). On behalf of P2, choose uniformly random r2 and

interpret it as (α2, {(ϕp,0, ϕp,1, bp, b
′
p)}p).

2. Send O{1,2}((0, r1), (0, r2)) = {(θp,1⊕ϕp,1, ap⊕ b′p, bp⊕a′
p)}p, when A demands

the output of O{1,2},
3. When A queries O{1,3} with input (x3,{1,3}, r3,{1,3}), check if O{2,3} is

already queried. If false, send O{13}((0, r1), (x3,{1,3}, r3,{1,3})). If true, let
(x3,{2,3}, r3,{2,3}) be P3’s input to O{2,3} and O{1,3}, respectively. Interpret
r3,{1,3} as (c0,{1,3}, c1,{1,3}) and r3,{2,3} as (c0,{2,3}, c1,{2,3}). Check if x2,{1,3} ̸=
x3,{1,3}, α1 = α2 and

x3,{1,3}α
3
1 + c1,{1,3}α1 + c0,{1,3} ̸= x3,{2,3}α

3
2 + c1,{2,3}α2 + c0,{2,3}. (11)

(a) If true, send O{13}((0, r1), (x3,{1,3}, r3,{1,3})), and send b = 0 as input to
FCD{1,2},3(x1, x2, ·).

(b) If false, invoke FCD{1,2},3(x1, x2, ·) with b = 1 to receive x1 ⊕ x2. Send

O{13}((0, r
′
1), (x3,{1,3}, r3,{1,3})) where r′1 is obtained from r1 by replacing

θp,1 with θp,1 ⊕ x1 ⊕ x2 for each p.
4. Behave analogously when A queries O{2,3}.

Fig. 6.2. Conditional disclosure protocol with 8/9 soundness in which P1 and P2 shar-
ing a 1-bit secret verify P3’s 1-bit input to O{1,3} and O{2,3}.
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We show that w.r.t. any adversary A, the real world and the ideal world
executions are computationally indistinguishable via a hybrid argument.

• Hyb0 : This corresponds to the real world execution of the protocol.
• Hyb1 : Let (x3,{1,3}, r3,{1,3}) and (x3,{2,3}, r3,{2,3}) be P3’s input to O{2,3}
and O{1,3}, respectively. Interpret r3,{1,3} as (c0,{1,3}, c1,{1,3}) and r3,{2,3} as
(c0,{2,3}, c1,{2,3}). In this hybrid, check if x2,{1,3} ̸= x3,{1,3}, α1 = α2 and
eq. (11) are together satisfied. If not, change the output of O{1,2} to {(θp,1 +
ϕp,1, ap ⊕ b′p, bp ⊕ a′p)}. If O{1,3} is invoked after O{2,3}, replace θp,1 with
x1 ⊕ x2 ⊕ θp,1 before computing the output of O{1,3}. Likewise, if O{2,3} is
invoked after O{1,3}, replace ϕp,1 with x1 ⊕ x2 ⊕ θp,1 before computing the
output of O{2,3}. If the check succeeds, make no changes.

• Hyb2 : In this hybrid, make the following change if the same check succeeds:
change the output of O{1,2} to (θp,1 ⊕ ϕp,1, ap ⊕ b′p, bp ⊕ a′p).

Hyb0 is perfectly indistinguishable from Hyb1 because

{x1 ⊕ x2 ⊕ (θp,1 + ϕp,1, ap ⊕ b′p, bp ⊕ a′p), θp,1, ϕp,1, ap, bp, a
′
p, b

′
p}p

≡ {(θp,1 + ϕp,1, ap ⊕ b′p, bp ⊕ a′p), x1 ⊕ x2 ⊕ θp,1, ϕp,1, ap, bp, a
′
p, b

′
p}p

≡ {(θp,1 + ϕp,1, ap ⊕ b′p, bp ⊕ a′p), θp,1, x1 ⊕ x2 ⊕ ϕp,1, ap, bp, a
′
p, b

′
p}p.

When the check succeeds, for each p, γp = 1− γ′
p. Since θp,1, ϕp,1 are uniformly

and independently chosen,

{x1 ⊕ x2 ⊕ (θp,1 + ϕp,1, ap ⊕ b′p, bp ⊕ a′p), ap, bp, a
′
p, b

′
p, θp,γp

, ϕp,γ′
p
}p

≡ {(θp,1 + ϕp,1, ap ⊕ b′p, bp ⊕ a′p), ap, bp, a
′
p, b

′
p, θp,γp

, ϕp,γ′
p
}p.

Hence Hyb1 ≡ Hyb2. It can be verified that Hyb2 corresponds to the ideal execu-
tion using Sim. To show that the soundness error of the scheme is at most 8/9,
we need to show that Sim sends b = 0 to the functionality with probability at
least 1/9 when x2,{1,3} ̸= x3,{1,3}. This event occurs if and only if α1 = α2 and
eq. (11) are simultaneously satisfied, when x2,{1,3} ̸= x3,{1,3}.

Owing to the symmetry, we assume, without loss of generality, that adver-
sary rushes to obtain the output of O{1,2}; then adaptively chooses the input
(x3,{1,3}, c0,{1,3}, c1,{1,3}) to O{1,3}, obtains the output; then adaptively chooses
the input (1 ⊕ x3,{1,3}, c0,{2,3}, c1,{2,3}) to O{2,3}, obtains its output. For any
choice of c0,{1,3}, c1,{1,3}, the adversary only learns (x1 ⊕ x2 ⊕ θp,1 ⊕ ϕp,1, ap ⊕
b′p, bp ⊕ a′p) for each p as the output of O{1,2}, and (γp ⊕ ap, θp,γp , a

′
p) for each p

from the output of O{1,3}. For any p ∈ F3[u], ap and b′p are uniform independent
bits. Hence, the value of γp is completely hidden from the adversary who knows
γp ⊕ ap and ap ⊕ b′p. Thus, the above set of values are identically distributed ir-
respective of the values of α1 (and, trivially, irrespective of α2 since no function
of α2 has been revealed by O{1,2} and O{1,3}). We conclude that, α1 and α2

are uniformly and independently distributed in F3, conditioned on adversary’s
view after the evaluation of O{1,2} and O{2,3}. In other words, the distribution of
c0,{1,3}, c1,{1,3}, c0,{2,3} and c1,{2,3} chosen by the adversary is independent of the
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distribution of α1, α2. Thus, when x2,{1,3} ̸= x3,{1,3}, the event where α1 = α2

and eq. (11) are simultaneously satisfied occurs with probability at least 1/9.
This concludes the proof of the lemma. ⊓⊔

Boosting soundness of Conditional Disclosure The protocol presented in
the previous section only guarantees that a corrupt P3 which provides inconsis-
tent inputs to O{1,3} and O{2,3} would be detected with a constant probability,
in which event the decoder reports an abort and the secret is hidden from the
adversary. The following simple construction boosts the probability of this event
such that it occurs with overwhelming probability.

To achieve soundness of negl(λ), the construction repeats the simple protocol
λ times. If every execution succeeds, we require the parties to correctly recover
the secrets. However, if the decoder reports an abort in any of the execution,
which occurs independently with probability at least 1/9 in each execution if
the bit being verified is inconsistent, we require the secret to be completely
hidden from the adversary, and the parties to report an abort. This is easy to
arrange by having each repetition reveal an additive secret share of x1 ⊕ x2; for
this, P1 and P2 provide an additive secret share of their respective inputs as
inputs to each execution. Crucially, all λ repetitions of the protocol takes the
same input x3 from P3; Formally, the input of P3 to both O{1,3} and O{2,3} is
x3, {c0,i, c1,i}i∈[λ], where cb,j is uniformly and independently chosen from F3 for
each i ∈ [λ] and b ∈ {0, 1}. The polynomial used in repetition i is the polynomial
q(u) = x3 · u2 + c1,ℓ · u+ c0,ℓ. This ensures that each execution (independently)
has at least 1/9 probability of failing if (corrupt) P3 uses inconsistent values of
x3 in O{1,3} and O{2,3}.

The above protocol can be further modified to handle string inputs from all
parties. Let x1, x2 ∈ {0, 1}m be the inputs of P1, P2, and x3 ∈ {0, 1}ℓ be the
input of P3. Modify the previous construction to verify each of the ℓ-bits in x3

with negl(λ) soundness error, and reveal x1 ⊕ x2 only if P3 provides consistent
values for every bit in x3. As in the previous construction, this is arranged by
having the verification of each bit reveal an additive secret share of x1 ⊕ x2.

By modifying the CD{12},3 described in Figure 6.1 as discussed above, we
obtain the following result as a consequence of Lemma 6.3.

Theorem 6.4. For any m, ℓ, λ, there exists a conditional disclosure protocol
CD{12},3 with P1 and P2 verifying P3 with ℓ(8/9)λ soundness when P1 and P2

have m bit inputs and P3 has ℓ bit input.

A formal description of CD{12},3 is provided in Figure A.3 in Appendix A.1.
We prove Theorem 6.4 in Appendix A.1. We stress that, this protocol can be
modified to obtain a conditional disclosure protocol in which inputs of parties
belong to arbitrary sets: it suffices to flatten the input being verified and the
secret into strings.
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6.2 Computing Degree-2 Functions with PwKO

A deterministic n-party function f that takes input xi ∈ {0, 1}m from party
Pi, i ∈ [n] has effective degree 2 if it can be decomposed into functions {h{i,j}},
where, for each {i, j} ∈

(
[n]
2

)
, h{i,j} : {0, 1}m×{0, 1}m → G for an additive finite

group G, such that, for all x1, . . . , xn,

f(x1, . . . , xn) =
∑
{i,j}

h{i,j}(xi, xj). (12)

In this section, we construct a protocol that securely computes any function with
effective degree 2. The construction follows the intuition sketched in Section 2.2.

Description of the Protocol. Let f be a deterministic n-party function of
effective degree 2, and let {h{i,j}} be as described in eq. (12). Let λ ∈ N be a
security parameter. The Figure 6.3 provides a formal description of a protocol
that securely computes f with PwKO when the input of each party Pi is xi.

The construction uses the following resources and notations: Let CD{i,j},k =
({CD{i,j},k.O{i,j}},CD{i,j},k.Enc,CD{i,j},k.Dec) be a conditional disclosure pro-
tocol with negl(λ) soundness, conditionally reveals the secret that is shared
between Pi and Pj after verifying the consistency of Pk’s input. For concise-
ness, we will drop 1λ in the argument, and denote CD{i,j},k.Enc(1

λ, (i, ℓ), ·, ·) by
CD{i,j},k.Enc(i,ℓ)(·, ·), for all ℓ ∈ {j, k}, and so on.
For legibility, we suppress the private randomness used in the encoder of Πf as
well as the conditional disclosure protocols invoked as sub-protocols. But, we
stress that, an honest party uses the same private randomness while invoking
the encoder to obtain their input to different 2-ary functions.

Correctness of the protocol. When all parties behave honestly, the output of
CD{i,j},k is s{i,j},k = si[j, k] + sj [i, k] for each {i, j, k} ∈

(
[n]
3

)
. This follows from

the correctness of conditional disclosure protocol. Furthermore, {γi[j]}j ̸=i forms
an additive secret sharing of 0. Hence, the decoder outputs the following ensuring
correctness:

ẑ{i,j}−
∑

k/∈{i,j}

si[j, k]+sj [i, k] =
∑
{i,j}

h{i,j}(xi, xj)+
∑
i

∑
j ̸=i

γi[j] = f(x1, . . . , xn).

The security with PwKO of the protocol follows the outline presented in the
technical overview. A formal proof is provided in Appendix A.2.

Theorem 6.5. The protocol Πf in Figure 6.3 computes any n-party function
f of effective degree 2 with statistical security while guaranteeing privacy with
knowledge output against a malicious adversary that corrupts any set of parties.

6.3 Achieving General Secure Computation with Abort

We use the protocol developed in the previous section to realize general secure
computation with abort against computationally bounded adversaries. For this,
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Πf

(i). Execution of Enc

For any j ̸= i, (1λ, xi, γi[j], {si[j, k], si[k, j]}k/∈{i,j}, Ri)← Enc(1λ, (i, j), xi, ·).
Here, γi[j] ∈ {0, 1}l is such that {γi[k]}k ̸=i is an additive secret sharing of 0 ∈ G;
for each k, si[j, k] and si[k, j] are uniform in G; Ri is a uniformly random string
used to derive private randomness for the encoders of various parallel invocations
of conditional disclosure protocols; see (ii).2.(a-c).
Recall, an honest Pi uses the same randomness (and input xi) while invoking
Enc(1λ, (i, j), ·, ·) for all j ̸= i. This is crucial in ensuring the required correlation
among Pi’s inputs to {O{i,j}}j ̸=i.

(ii). Execution of O{i,j}

When Pi’s input is (λi, xi, γi[j], {si[j, k], si[k, j]}k/∈{i,j}, Ri), and Pj ’s input is
(λj , xj , γj [i], {sj [i, k], sj [k, i]}k/∈{i,j}, Rj), O{i,j} behaves as follows:

1. Compute z{i,j} = h{i,j}(xi, xj). Output ẑ{i,j} where
ẑ{i,j} = z{i,j} + γi[j] + γj [i] +

∑
k/∈{i,j}(si[j, k] + sj [i, k]).

2. If λj ̸= λi, output ⊥ and terminate; otherwise, let λ = λi; for each k /∈ {i, j}:
(a) Output CD{i,j},k.O{i,j}(y(i,j), y(j,i)), where

y(i,j) ← CD{i,j},k.Enc(i,j)(si[j, k], ·) and y(j,i) ← CD{i,j},k.Enc(j,i)(sj [i, k], ·).
Note, fresh randomness from Ri, say ri,({i,j},k), is used to compute Pi’s
encodings CD{i,j},k.Enc(i,j) and CD{i,j},k.Enc(i,k) (in O{i,k}); same for Pj .

(b) Output CD{i,k},j .O{i,j}(y(i,j), y(j,i)), where
y(i,j) ← CD{i,k},j .Enc(i,j)(si[k, j], ·) and y(j,i) ← CD{i,k},j .Enc(j,i)(xj , ·).

(c) Output CD{j,k},i.O{i,j}(y(i,j), y(j,i)), where
y(i,j) ← CD{j,k},i.Enc(i,j)(xi, ·), and y(j,i) ← CD{j,k},i.Enc(j,i)(sj [k, i], ·).

(iii). Execution of Dec.

For each {i, j, k} ∈
(
[n]
3

)
, let s{i,j},k be the output of CD{i,j},k. If ẑ{i,j} = ⊥ for

some {i, j} or s{i,j},k = ⊥ for some {i, j, k}, output ⊥ and terminate; otherwise
set ŵ{i,j} = ẑ{i,j} −

∑
k/∈{i,j} s{i,j},k. Output

∑
{i,j} ŵ{i,j}.

Fig. 6.3. Πf computes f of effective degree 2 with privacy with knowledge of output.

we will rely on a computational semi-malicious MPRE, as defined in Defini-
tion 4.2. In [ABT18, Theorem 7.3], Applebaum, Brakerski and Tsabary showed
that every n-party functionality f can be encoded by a computational degree-2
MPRE f̂ with complexity polynomial in n and size of the circuit, by making
non-black box use of a (possibly multi-round) oblivious transfer.

Since degree-2 MPRE has effective degree-2, we can compute f by first com-
puting MPRE using the protocol in Figure 6.3, and then decode the MPRE
to compute the function. Owing to computational security of the MPRE, the
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resulting protocol securely computes f with PwKO against a computationally
bounded adversary corrupting any subset of parties.

We use a standard approach to bootstrap this protocol and achieve security
with abort. Instead of computing f in the aforementioned manner, compute a
signed version of f in which the output of f is appended with one-time signatures
(See Definition 4.3) of this value with respect to a signing key provided by each
party. All parties can verify the validity of the signatures using the respective
verifying keys. For this, every party broadcasts their verifying key in parallel
with the function computation. If at least one of the signatures is found to
be inconsistent, the parties unanimously declare abort instead of outputting the
candidate output. The resulting protocol securely computes f with abort against
a computationally unbounded adversary.

When all parties behave honestly, authenticity of the signature scheme (Def-
inition 4.3) guarantees that the verification succeeds and the parties output
the function output, ensuring correctness. Whereas, an adversary that attempts
to modify the function output will fail to provide consistent signatures with
overwhelming probability by the unforgeability property (Definition 4.3) of the
one-time signature scheme, resulting in all honest parties issuing abort. Here,
we have crucially relied on the PwKO guarantee of the underlying protocol to
ensure that the adversary does not learn the signing key of any of the honest
parties.

We obtain the following result. The formal description of the protocol achiev-
ing security with abort, and the proof of its security and correctness is provided
in Appendix A.3.

Theorem 6.6. Assuming the existence of (possibly multi-round) oblivious trans-
fer that is secure against semi-honest adversaries, for every n-party functionality
f , there exists a non-interactive protocol using parallel calls to 2-ary functions
that achieves security with unanimous abort against a computationally bounded
malicious adversary that corrupts an arbitrary number of parties.

6.4 Extensions

Honest Majority Setting. The following result is obtained by instantiating the
same construction with semi-maliciously secure 2-MPRE against a dishonest
minority, which exists if one-way functions exist [ABT18]:

Theorem 6.7. Assuming the existence of one-way functions, for every n-party
functionality f , there exists a non-interactive protocol using parallel calls to 2-ary
functions that achieves security with unanimous abort against a computationally
bounded malicious adversary that corrupts a strict minority of parties.

3-ary functions. We consider the same problem in the setting where the parties
have access to 3-ary functions instead of 2-ary. We obtain the following result.

Theorem 6.8. Assuming the existence of one-way functions, for every n-party
functionality f , there exists a non-interactive protocol using parallel calls to 3-ary
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functions that achieves security with unanimous abort against a computationally
bounded malicious adversary that corrupts an arbitrary number of parties.

This theorem is obtained by first constructing a protocol that securely com-
putes degree-3 polynomials with PwKO. Then, it uses the MPRE construc-
tion from Beaver, Micali, and Rogaway [BMR90] in the bootstrapping step. We
present a construction and its analysis in Appendix B.
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Appendix

A Proof of Theorem 5.2

Theorem A.1 (Theorem 5.2 Restated.). There exists a n-party function f
that can be computed using a degree 2 polynomial such that no protocol making
parallel calls to 2-ary functions can securely compute f with statistical security
with abort against a malicious adversary corrupting at most ⌈n/2⌉ parties.

Proof. Let fn be an n-party functionality that takes input xi ∈ F4 from each Pi,
and outputs 0 if x1 + . . .+xn = 0, and outputs 1 otherwise. Given a protocol Π
that securely computes fn with abort against ⌈n/2⌉ corruptions we will construct
a protocolΠ ′ for f4 with abort as follows. Let n = 4t+u where u < 4. There exist
t1, t2, t3, t4 such that t1+. . .+t4 = n, t1+t2 ≤ ⌈n/2⌉, t1+t3 ≤ ⌈n/2⌉ and t1+t4 ≤
⌈n/2⌉. In Pi′, the parties Q1, . . . , Q4 with inputs x1, . . . , x4 emulate Π. For this,
Q1 emulates {Pi}1≤i≤t1 with inputs x1,1, . . . , x1,t1 randomly chosen subjected
to their sum being x1; Q2 emulates {Pi}t1+1≤i≤t2 with inputs x2,1, . . . , x2,t2

randomly chosen subjected to their sum being x2; and so on. If Pi and Pi′ are
being emulated by the same Qj , that party computes O{i,i′} according to Π and
broadcasts it (in one of its oracle calls); if Pi and Pi′ belong to distinct Qj and
Qj′ , then the output of O{i,i′} in Π is computed inside O{j,j′}. Finally, each
party outputs whatever the emulated parties output (all honest parties output
the same value in Π). It is easy to see that the correctness and security of Π ′

against at most 2 corruptions reduces to correctness and security of Π against
at most ⌈n/2⌉ corruptions. We will now show that Π ′ is impossible, proving the
theorem.

Lemma A.2. There exists no protocol using parallel calls to 2-ary functions that
computes f4 with statistical security with abort against a malicious adversary
corrupting at most 2 parties.

Proof. Suppose Π ′ = ({O{i,j}},Enc,Dec) is a secure protocol computing f4 with
abort. Let ϵ ≥ 0 be some constant such that the advantage with which any com-
putationally unbounded adversary can break the protocol is at most ϵ. Consider
an honest execution of Π ′ with each xi is distributed uniformly and indepen-
dently over F4. We will denote the output of O{i,j} by z{i,j}.

Claim A.2.1 Over the randomness of x1, x2, x3, x4 and the private randomness
of Q1, . . . , Q4,

Pr
[
∃(x′

1, r
′
1, x

′
2, r

′
2) s.t. y

′
(1,2) = Enc((1, 2), x′

1, r
′
1), y

′
(2,1) = Enc((2, 1), x′

2, r
′
2),

and Dec(O{1,2}(y
′
(1,2), y

′
(2,1)), {z{i,j}}{i,j}̸={1,2}) /∈ {⊥, f(x1, x2, x3, x4)}

]
≤ 9ϵ,

(13)
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and

Pr
[
∃(x′

1, r
′
1, x

′
3, r

′
3) s.t. y

′
(1,3) = Enc((1, 3), x′

1, r
′
1), y

′
(3,1) = Enc((3, 1), x′

3, r
′
3),

and Dec(O{1,3}(y
′
(1,3), y

′
(3,1)), {z{i,j}}{i,j}̸={1,3}) /∈ {⊥, f(x1, x2, x3, x4)}

]
≤ 9ϵ,

(14)

We first use this claim to prove the theorem. Consider another adversary
A1,4 that corrupts P1 and behaves as described in Figure A.1

A1,4

1. Corrupt P1, P4. Sample x1, x4, r1, r4 uniformly and independently. Invoke all
2-ary functions except O{1,3} using these values to compute the respective
outputs. For each {i, j} ≠ {1, 3}, let the output of O{i,j} be denoted by
z{i,j}.

2. Invoke O{1,3} after computing P1’s encoding using input x1 +1 and random-
ness r1; let the output be ẑ{1,3}. Invoke O{1,4} after computing P1’s (resp.
P4’s) encoding using input x1+1 and randomness r1 (resp. x4 and r4); let the
output be ẑ{1,4}. A1,4 can compute the output of O{1,4} a second time (in the
head) since P1 and P4 are corrupted. For each {i, j} /∈ {{1, 2}, {1, 3}, {1, 4}},
set ẑ{i,j} = z{i,j}.

3. If there exist ẑ{1,2} ∈ O{1,2}(·, ·) and z{1,3} ∈ O{1,3}(·, ·) such that
Dec({z{i,j}}) = a0, Dec({ẑ{i,j}}) = a1, and a0, a1 ∈ {0, 1}, output (a0, a1);
otherwise, output ⊥.

Fig.A.1.

We argue that Π ′ is not secure against A1,4 along the same lines as in our
proof of Theorem 5.1. Let z̃{1,3} be the output of O{1,3} when invoked with P1’s
(resp. P3’s) input being the encoding using input x1 (resp. x3) and randomness
r1 (resp. r3). Then, {z{i,j}}{i,j}̸={1,3} along with z̃{1,3} form the output of all
oracle calls in an honest execution of Π ′ with xi as input of Pi for each i ∈ [4].
Hence,

Pr
[
Dec({z{i,j}}{i,j}̸={1,3}, z̃{1,3}) = f(x1, x2, x3)

]
≥ 1− ϵ.

This along with eq. (14) implies Pr [a1 = f(x1, x2, x3)] ≥ 1 − 10ϵ. Using the
same line of argument, Pr [a0 = f(1 + x1, x2, x3)] ≥ 1 − 10ϵ. Thus, in the real
execution, A1,4 successfully computes f(x1, x2, x3) and f(1 + x1, x2, x3) with
probability at least 1−20ϵ. Over the randomness of x2, x3, for any x1, Pr[f(x1+
1, x2, x3) = 1|f(x1, x2, x3) = 1] = 1/3, and f(x1, x2, x3) = 0 with probability
3/4. Hence, the simulator fails to simultaneously guess the values of f(x1, x2, x3)
and f(x1 + 1, x2, x3) with probability at least 1/4. Thus, for sufficiently small
ϵ, this contradicts security with at most ϵ distinguishing advantage against an
adversary that corrupts at most 2 parties. This proves the theorem. ⊓⊔
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Proof. We will prove Equation (4); Equation (5) can be proved similarly. Con-
sider an adversary A1,2 that corrupts P1 and P2, and behaves as described in
Figure A.2. With respect to A1,2, the proof of the claim is almost identical to

A1,2

1. Corrupt P1, P2. Invoke all 2-ary functions except O{1,2} by emulating P1 and
P2 honestly after setting their inputs to be x1 and x2, respectively. Let z{i,j}
be the output of O{i,j} for eacj {i, j} ≠ {1, 2}.

2. Compute the output of O{1,2} in the head by emulating P1 and P2 honestly
after setting their inputs to be x1 and x2, respectively. Let the output be
z{i,j}. If there exist x′

1, r
′
1, x

′
2, r

′
2 such that, when y′

(1,2) = Enc((1, 2), x′
1, r

′
1)

and y′
(2,1) = Enc((2, 1), x′

2, r
′
2),

Dec(O{1,2}(y
′
(1,2), y

′
(2,1)), z{1,3}, z{2,3}) /∈ {⊥,Dec(z{1,2}, z{1,3}, z{2,3})},

then call O{1,2} with y′
(1,2) and y′

(2,1) as inputs of P1 and P2 to compute
z̃{1,2} = O{1,2}(y

′
(1,2), y

′
(2,1)); else invoke with y(1,2) and y(2,1) as inputs of P1

and P2.
3. Output Dec(z{1,2}, z{1,3}, z{2,3}) and terminate.

Fig.A.2.

that of Claim 5.1.1. We leave the details to the reader.

A.1 Conditional disclosure protocol with negligible soundness

In this section, we use the conditional disclosure protocol for verifying one bit in-
put to conditionally reveal one bit secret to build a general conditional disclosure
protocol with negiligible soundness.

Description of the Protocol. The protocol is formally described in Figure
A.3.

Proof of Security. We prove security against a computationally unbounded
non-adaptive adversary in the standalone setting.

Theorem A.3 (Theorem 6.4 Restated.). For any m, ℓ, λ, CDλ
{1,2},3 in Fig-

ure A.3 is a conditional disclosure protocol with P1 and P2 verifying P3 with
ℓ(8/9)λ soundness when P1 and P2 have m-bit inputs and P3 has ℓ-bit input.

Proof. When all parties are honest, for each d ∈ [ℓ] and e ∈ [λ], the output of
CD{1,2},3 with input x1[d, e] and x2[d, e], respectively, from P1 and P2, verifying
the input x3[d] outputs x1[d, e] + x2[d, e]. Hence, the output of the protocol is∑

d,e x1[d, e] + x2[d, e] = x1 + x2, as required in condition 1 of Definition 6.1.
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CDλ
{1,2},3

Let λ ∈ N be a security parameter, let the inputs of P1, P2 and P3 be
x1, x2 ∈ {0, 1}m and x3 ∈ {0, 1}ℓ, respectively.
Let CD{1,2},3 = (CD{1,2},3.Enc, {CD{1,2},3.O{i,j}},CD{1,2},3.Dec) be the
conditional disclosure protocol with 1/9 soundness described in Figure 6.1.

Execution of Enc

1. Enc((1, i), x1) for i ∈ {2, 3}: Sample {x1[d, e]}d,e as additive secret shares of
x1. Output {y1,i[d, e]}d,e where y1,i[d, e] ← CD{1,2},3.Enc((1, i), x1[d, e]) for
all d ∈ [ℓ] and e ∈ [λ].

2. Enc((2, i), x2) for i ∈ {1, 3}: Sample {x2[d, e]}d,e as additive secret shares of
x2. Output {y2,i[d, e]}d,e where y2,i[d, e] ← CD{1,2},3.Enc((2, i), x2[d, e]) for
all d ∈ [ℓ] and e ∈ [λ].

3. Enc((3, i), x3) for i ∈ {1, 2}: Output {(x3[d], {(c0[d, e], c1[d, e])}e)}d, where
x3[d] is the dth bit of x3, and each c0[d, e] and c1[d, e] is uniformly and inde-
pendently chosen from F3.

Execution of O{i,j}

1. O{1,2}({y(1,2)[d, e]}d,e, {y(2,1)[d, e]}d,e): For each d ∈ [ℓ] and e ∈ [λ], compute
z{1,2}[d, e] = CD{1,2},3.O{1,2}(y(1,2)[d, e], y(2,1)[d, e]). Output {z{1,2}[d, e]}.

2. O{1,3}({y(1,3)[d, e]}d,e, {(x3[d], {(c0[d, e], c1[d, e])}e)}d): For each d, e, com-
pute z{1,3}[d, e] = CD{1,2},3.O{1,3}(y(1,3)[d, e], (x3[d], c0[d, e], c1[d, e])). Out-
put {z{1,3}[d, e]}.

3. O{2,3}({y(2,3)[d, e]}d,e, {(x3[d], {(c0[d, e], c1[d, e])}e)}d): For each d, e, com-
pute z{2,3}[d, e] = CD{1,2},3.O{2,3}(y(2,3)[d, e], (x3[d], c0[d, e], c1[d, e])). Out-
put {z{2,3}[d, e]}.

(v). Execution of Dec

1. For each d, e, compute x̂[d, e] = CD{1,2},3.Dec(z{1,2}[d, e], z{1,3}[d, e], z{2,3}[d, e]).
If x̂[d, e] = ⊥ for any e, d, output ⊥ and terminate; else output

∑
e,d x̂[d, e].

Fig.A.3. A Conditional disclosure protocol with negligible soundness.

Next, we prove that it satisfies the second condition in Definition 6.1. Fix
d ∈ [ℓ] and e ∈ [λ]. It is easy to see that the view on an adversary corrupting P1

and P2 only reveals the evaluation of the polynomial x3[d]u
2+c1[d, e]u+c0[d, e] on

at most 2 distinct points. Since c1[d, e], c0[d, e] are chosen uniformly at random,
this reveal no information about x3[d]. In other words, the view of the adversary
can be perfectly simulated irrespective of the value of x3, satisfying the second
condition.

Next, we show that the protocol is ℓ(8/9)λ-sound by via a simulator Sim
described below that satisfies the conditions in Definition 6.1 when P3 is corrupt
and P1 and P2 are honest.
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Let CD{1,2},3.Sim be the simulator for the 1/9-sound protocol that is de-
scribed in Figure 6.2. For each d ∈ [ℓ] and e ∈ [λ], Sim instantiates a copy of
CD{1,2},3.Sim. For each d ∈ [ℓ] and e ∈ [λ], when A queries for the output of
O{1,2}, Sim queries (d, e)’th copy of CD{1,2},3.Sim for the the output of O{1,2}
and forwards it to the adversary. When A queries for the output of O{1,3} with
input {(x3[d], {c0[d, e], c1[d, e]}e)}d, for each (d, e), Sim queries (d, e)’th copy of
CD{1,2},3.Sim with (x3[d], c0[d, e], c1[d, e]) as the input of the adversary and for-
wards the response. Sim processes the query for the output of O{1,3} analogously.
For any (d, e), when (d, e)’th copy of CD{1,2},3 sends b = 1 to ‘the functional-
ity FCS’, check if, for all e′in[λ] \ {e}, (d, e′)’th copy of CD{1,2},3 has already
queried with b = 1: if not, respond with a uniformly random bit x̂3[d, e]. Oth-
erwise, query FCDS(x1, x2, ·) with b = 1 and obtain x1 + x2 (if not obtained
already), then respond to this query with x̂[d, e] such that {x̂3[d, e]}e∈[λ] form
an additive secret sharing of x1[d] + x2[d]. If (d, e)’th copy sends b = 0, respond
with ⊥.

To show that this simulation is perfect, we consider a hybrid Hyb in which
every real execution of CD{1,2},3 is replaced with an ideal execution in which
A interacts with CD{1,2},3.Sim given access to FCS(x̂1[d, e], x̂2[d, e], ·), where
{x̂1[d, e]}d,e and {x̂2[d, e]}d,e are sampled, respectively, as additive secret shares
of x1 and x2. This hybrid can be shown to be indistinguishable from the real
execution by progressively replacing a fresh (d, e)’th copy of CD{1,2},3 with a
simulator in the real execution, and appealing to perfect indistinguishibility be-
tween the real and ideal execution of CD{1,2},3.

In detail, let S0,S1, . . . ,Sℓ·λ be a sequence of subsets of [ℓ] × [λ] such that,
for each i, Si \ Si−1 is a singleton set. For each 0 ≤ i ≤ ℓ · λ, consider the Hybi
in which we replace (d, e)’th copy of CD{1,2},3 with an ideal execution using
CD{1,2},3.Sim with access to FCS(x̂1[d, e], x̂2[d, e], ·) for each (d, e) ∈ Si. Since
S0 = ∅, Hyb0 is the real execution, and since Sℓ·λ = [ℓ]× [λ], Hybℓ·λ is identical
to Hyb.

We will show that, for any 0 < i ≤ ℓ · λ, Hybi ≡ Hybi−1, which implies that
the real execution is indistinguishable from Hyb. Let (d, e) ∈ Si \ Si−1. The only
difference between Hybi−1 and Hybi is that, for the unique (d, e) that belongs
to Si \ Si−1, the real world interaction between A corrupting P3 and interacting
with honest P1 and P2 in (d, e)’th copy of CD{1,2},3 in the former is replaced
with ideal world interaction between A and CD{1,2},3.Sim with access to FCD.
Suppose Hybi ̸≡ Hybi−1.

Consider an adversary A′ that simulates the interaction in Hybi−1 with one
notable exception: in the (d, e)’th execution of CD{1,2},3, the adversary A′ cor-
rupts P3, behaves according to A, and interacts with a pair of honest parties P1

and P2 with inputs x1[d, e] and x2[d, e], respectively. This scenario is identical
to Hybi−1. However, when the interaction between A′ and honest P1 and P2 is
replaced with interaction between A′ and a simulator as in an ideal execution,
the scenario is identical to Hybi. Thus, if Hybi ̸≡ Hybi−1, we contradict perfect
indistinguishability of real and ideal execution of CD{1,2},3 in the standalone
setting.
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We conclude this part of the proof by arguing that Hyb is perfectly indis-
tinguishable from the simulation we presented above. This follows from the fact
that {x1[d, e] + x2[d, e]} is identically distributed in both hybrids.

It remains to show that the protocol is ℓ(8/9)λ-sound. Fix d ∈ [ℓ]. Condi-
tioned on the event that the value of x[d] is inconsistent between the query to
O{1,2} and O{1,3}, probability with which CD{1,2},3.Sim sends b = 0 to FCD

in the (d, e)’th copy of the simulation is 1/9, independent of every other copy.
Hence, conditioned on this event, CD{1,2},3.Sim sends b = 0 to the functionality
in (d, e)’th copy of the simulation for some e ∈ [λ] with probability at least
1 − (8/9)λ. Which in turn implies that Sim sends b = 0 to the corresponding
functionality with the same probability conditioned on this event. We obtain the
required soundness error by a union bound. This concludes the proof. ⊓⊔

A.2 Proof of Privacy with Knowledge of Output of the Protocol in
Figure 6.3

We prove security against a computationally unbounded non-adaptive adver-
sary in the standalone setting via a simulator Sim. The proof extends to the
UC setting, and against an adaptive computationally unbounded adversary in a
straightforward manner since our simulator is straightline.

Let {Pi}i∈C for some C ⊂ [n] be the set of parties corrupted by A; C is known
to Sim. Let H = [n] \ C. At any point during the interaction, the simulator
Sim needs to respond to A’s signal (oracle, {i, j}, Inputs) with the output of
O{i,j} (if O{i,j} has not be queried so far). Here, Inputs contains the inputs
of all corrupt parties, (if any) among {Pi, Pj}, to O{i,j}. Simulator can send a
signal (evaluate, Inputs) to the functionality FPwKO({xi}i∈H , ·) (once during
the execution). Here, Inputs contains the input x̂i chosen by Sim for each party
Pi it has corrupted. In response, the functionality outputs f({xi}i∈H , {x̂i}i∈H).
Simulator can send a signal (output,Output) to FPwKO (once during the execu-
tion), where Output is ⊥ or belongs to the co-domain of f . In response, FPwKO

sets the output of all uncorrupted parties to Output.

We will use the following notations in the description of Sim: Let the set of
2-ary functions whose outputs have not yet been queried by A at any stage of
the execution be denoted by {O{i,j}}{i,j}∈T . Initially, T =

(
[n]
2

)
. The description

of the simulator Sim is given in Figure A.4.

Proof of Indistinguishability. We show that w.r.t. any adversary A, the real
world and the ideal world executions are computationally indistinguishable via
a hybrid argument.

• Hyb0 : This corresponds to the real world execution of the protocol.

• Hyb1 : This hybrid is obtained by making the following changes in the de-
scription of Sim in Figure A.4. All the variables used below are already set in
the description.
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Sim

(i). Initialization of Sim

For each i ∈ H, sample Ri uniformly at random. Sample {γi[k]}k ̸=i as an
additive secret sharing of 0 ∈ G. Further, for all distinct j, k ̸= i, sample si[j, k]
uniformly from G.

(ii). Responding to (oracle, {i, j}, Inputs)

1. If i ∈ C, receive the input of Pi to O{i,j} from A. Let this be
(λi, x(i,j), γi[j], {si[j, k], si[k, j]}k/∈{i,j}, R(i,j)). If j ∈ C, receive the input of
Pj toO{i,j} fromA. Let this be (λj , x(j,i), γj [i], {sj [i, k], sj [k, i]}k/∈{i,j}, R(j,i)).

2. If {i, j} ⊆ C, compute and output O{i,j} as described in Πf using these
inputs.

3. For each k /∈ {i, j}: Compute and output CD{i,j},k.O{i,j} as follows:

(a) If ({i, j} ⊆ H) ∧ (k ∈ C): initialize CD{i,j},k.Sim
FCDS(si[j,k],sj [i,k],·) if

uninitialized. Forward the response of this simulator when queried for
the output of CD{i,j},k.O{i,j}.

(b) Otherwise, compute y(i,j) = CD{i,j},k.Enc(i,j)(si[j, k], ·); fresh random-
ness from R(i,j) (Ri if i ∈ H) is used as private randomness here. Analo-
gously compute y(j,i). Output CD{i,j},k.O{i,j}(y(i,j), y(j,i)).

4. For each k /∈ {i, j}: Compute and output CD{j,k},i.O{i,j} as follows:

(a) If ({j, k} ⊆ H) ∧ (i ∈ C): initialize CD{j,k},i.Sim
FCDS(sj [k,i],sk[j,i],·) if

uninitialized. Query this simulator for the output of CD{i,j},k.O{i,j} with
Pi’s input (as provided by A), and forward the response.

(b) Otherwise, compute y(i,j) = CD{j,k},i.Enc(i,j)(xi[j], ·). Here xi[j] =
0m if i ∈ H. Compute y(j,i) = CD{j,k},i.Enc(i,j)(sj [k, i], ·). Output
CD{i,j},k.O{i,j}(y(i,j), y(j,i)).

Analogously, compute and output CD{i,k},j .O{i,j}.
5. Finally, output ẑ{i,j} = z{i,j} + γi[j] + γj [i] +

∑
k/∈{i,j} si[j, k] + sj [i, k], where

z{i,j} is sampled as follows: If there exists {i′, j′} ∈ T such that {i′, j′} ̸⊆ C,
then sample z{i,j} uniformly at random. Otherwise, check if, for all k ∈ C,
there exists x̂k such that, for all ℓ ∈ H, xk[ℓ] = x̂k.
(a) If false, sample z{i,j} uniformly at random.
(b) If true, send the signal (evaluate, Inputs) to FPwKO({xk}k∈[n]\C , ·),

where the input of each Pk, k ∈ C is x̂k. Store the output as out. Choose
z{i,j} such that

∑
{k,ℓ}̸⊆C zk,ℓ = out−

∑
{k,ℓ}⊆C h{k,ℓ}(x̂k, x̂ℓ).

(iii). Choosing the output of the honest parties.

When T = ∅, use the outputs of all 2-ary functions to compute the output σ′

according to Πf . Send (output, σ′) to FPwKO.

Fig.A.4. Simulator for Πf .
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• Replace instructions in step 3.(a) and 4.(a) as follows:
In 3.(a), compute y(i,j) = CD{i,j},k.Enc(i,j)(si[j, k], ·); fresh randomness
from R(i,j) (Ri if i ∈ H) is used as private randomness here. Analo-
gously compute y(j,i). Output CD{i,j},k.O{i,j}(y(i,j), y(j,i)). Make analogous
changes in 4.(a).

• Replace instructions in step 4.(b) as follows:
compute y(i,j) = CD{j,k},i.Enc(i,j)(xi[j], ·) using fresh randomness from
R(i,j); here xi[j] = xi and R(i,j) = Ri if i ∈ H.
Compute y(j,i) = CD{j,k},i.Enc(j,i)(sj [k, i], ·) using randomness from R(j,i);
R(j,i) = Rj if j ∈ H. Output CD{i,j},k.O{i,j}(y(i,j), y(j,i)).

• Make analogous changes in the computation of CD{i,k},j .
• In step 5, use z{i,j} = h{i,j}(xi[j], xj [i]) while computing ẑ{i,j}. Here xi[j]

(resp. xj [i]) is xi (resp. xj) if i ∈ H (resp. j ∈ H).

• Hyb2 : In this hybrid, revert changes made in step 4.(b) back to the instructions
in the simulator. That is, compute y(i,j) = CD{j,k},i.Enc(i,j)(xi[j], ·), where
xi[j] = 0m if i ∈ H. Compute y(j,i) = CD{j,k},i.Enc(i,j)(sj [k, i], ·). Output
CD{i,j},k.O{i,j}(y(i,j), y(j,i)). Make analogous changes in the computation of
CD{i,k},j .

• Hyb3 : In this hybrid, revert changes made in steps 3.(a) and 4.(a) back to
the instructions in the simulator. That is, in step 3.(a), if uninitialized, ini-

tialize CD{i,j},k.Sim
F(si[j,k],sj [i,k],·). Forward the response of this simulator

when queried for the output of CD{i,j},k.O{i,j}. In step 4.(a), if uninitial-

ized, initialize CD{j,k},i.Sim
F(sj [k,i],sk[j,i],·). With Pi’s input (as provided by

A), query this simulator for the output of CD{i,j},k.O{i,j} and forward the
response. Make analogous changes in the computation of CD{i,k},j .

• Hyb4 : In this hybrid, revert changes made in steps 5 back to the instructions
in the simulator. That is, sample z{i,j} as follows: If there exists {i′, j′} ∈ T
such that {i′, j′} ̸⊆ C, then sample ẑ{i,j} uniformly at random. Otherwise,
check if, for all k ∈ C, there exists x̂k such that, for all ℓ ∈ H, xk[ℓ] = x̂k.
1. If false, sample z{i,j} uniformly at random.

2. If true, send the signal (evaluate, Inputs) to FPwKO({xk}k∈[n]\C , ·), where
the input of each Pk, k ∈ C is x̂k. Store the output as out. Choose z{i,j}
such that

∑
{k,ℓ}̸⊆C = out−

∑
{k,ℓ}⊆C h{k,ℓ}(x̂k, x̂ℓ).

In Lemma A.4 we show that Hyb0 and Hyb1 are perfectly indistinguishable.
In Lemma A.5 we show that Hyb1 and Hyb2 are perfectly indistinguishable.
In Lemma A.6 we show that Hyb2 and Hyb3 are perfectly indistinguishable.
In Lemma A.7 we show that Hyb3 and Hyb4 are statistically indistinguishable.
We note that Hyb4 corresponds to the ideal world execution using the simulator.

Lemma A.4. Hyb0 ≡ Hyb1.

Proof. This can be verified by inspection. Note that the view of the adversary
is composed of the outputs of all oracle calls, the inputs of corrupt parties and
adversary’s own private randomness. The description of the simulator has been
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changed to involve the real inputs of honest parties in steps 3.(a), 4.(a) and
5. The use of simulator has been reverted back to the actual computation of
conditional disclosure protocols. All the variables sampled by honest parties
have been sampled according to the same distribution. Finally, the output is
computed according to the instructions in the protocol.

Lemma A.5. Hyb1 ≡ Hyb2.

Proof. Hyb1 differs from Hyb2 only in the input of Pi, where i ∈ H, in CD{j,k},i
for each j, k ̸= i. In the former, the actual input xi is used, whereas, in the latter,
a dummy input 0m is used. Fix i ∈ H, and j, k ̸= i. Consider an intermediate
hybrid Hyb1,1 obtained from Hyb1 by changing the input of Pi that is verified in
CD{j,k},i from xi to 0m. We will first prove that Hyb1 ≡ Hyb1,1.

We will build an adversary A′ for CD{j,k},i that corrupts Pj , Pk in a stan-
dalone execution. Note, hybrids Hyb1 and Hyb1,1 differ only in the input of Pi

in CD{j,k},i. A′ emulates all the parties (including Pi) according to Hyb1, with
one important difference: the sub-protocol CD{j,k},i in the hybrid is executed by
interacting with an (external) honest Pi. When the input of Pi to CD{j,k},i is xi,
this scenario is identical to Hyb1; whereas, when the input is 0m, the scenario is
identical to Hyb1,1. If there is a distinguisher D that distinguishes between these
two hybrids, then the interaction between A′ and CD{j,k},i will distinguish be-
tween an instance where the input of honest Pi is xi and another where the input
of Pi is 0

m. This contradicts perfect security of Pi’s input in CD{j,k},i as given
in Definition 6.1.

To go from Hyb1 to Hyb1,1, we changed the input of an honest Pi to CD{j,k},i.
We can next consider Hyb1,2 obtained from Hyb1,1 by changing the input of Pi′

in CD{j′,k′},i′ for {i′, j′, k′} ≠ {i, j, k} such that i′ ∈ H, and similarly argue that
Hyb1,1 ≡ Hyb1,2. By proceeding in this manner, we can show that Hyb1 ≡ Hyb2.

⊓⊔

Lemma A.6. Hyb2 ≡ Hyb3.

Proof. For each i ∈ C and j, k ∈ H, the real world execution of CD{j,k},i in
Hyb2 has been replaced with an ideal world execution in Hyb3. This is the only
difference between Hyb2 and Hyb3. Define S to be C ×

(
H
2

)
. Enumerate the

collection S according to some arbitrary total ordering. For i = 0, . . . , |S|, let
Si be the collection of the first i members of S. Define Hyb2,t to be the hybrid
obtained by replacing the real world execution of CD{j,k},i with a simulation for
each (i, {j, k}) ∈ St. Note, Hyb2,0 = Hyb2 and Hyb2,|S| = Hyb3. We will prove
that, for each t ∈ [|S|], Hyb2,t ≡ Hyb2,t−1, proving the lemma.

To transform Hyb2,t−1 to Hyb2,t, a real world execution of CD{j,k},i (where
(i, {j, k}) is the t’th memeber of S) in which A corrupts Pi and interacts with
honest Pj and Pk with inputs sj [k, i] and sk[j, i] has been replaced with interac-
tion of A with CD{j,k},i.Sim with access to FCD(sj [k, i], sk[j, k], ·). Consider an
adversary A{j,k},i that corrupts Pi in a standalone execution of CD{j,k},i and
behaves as follows: A{j,k},i emulates all the parties (including Pj and Pk) ac-
cording to Hyb2,t−1, with one important difference: the sub-protocol CD{j,k},i in
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the hybrid is executed by interacting with the (external) honest Pj and Pk with
inputs sj [k, i] and sk[j, i], respectively, in Scenario 1, whereas in Scenario 2, it

interacts with CD{j,k},i.Sim
FCD(sj [k,i],sk[j,i],·). Observe that Scenario 1 is equiv-

alent to Hyb2,t−1 and Scenario 2 is equivalent to Hyb2,t. But, by Theorem 6.4,
Scenario 1 ≡ Scenario 2. This proves the lemma.

Lemma A.7. Hyb3 ≈ϵ(λ) Hyb4, where ϵ(λ) is a negligible function.

Proof. Consider a hybrid Hyb3,1 obtained by modifying the instructions for sam-
pling z{i,j} in step 5 of Hyb4 as follows: If there exists {i′, j′} ∈ T such that
{i′, j′} ̸⊆ C, then sample z{i,j} uniformly at random. Otherwise, choose z{i,j}
such that

∑
{k,ℓ}̸⊆C z{k,ℓ} =

∑
{k,ℓ}̸⊆C h{k,ℓ}(xk[ℓ], xℓ[k]), where xk[ℓ] is set to

xk for all ℓ if k ∈ H; similarly for xℓ[k].
The Hyb3 and Hyb3,1 differ only in the manner in which z{i,j} is chosen

while computing ẑ{i,j} for each {i, j} ̸⊆ C in step 5. In the former, for each
{i, j} ̸⊆ C, z{i,j} = h{i,j}(xi[j], xj [i]). Whereas, in the latter {z{i,j}}{i,j}̸⊆C have
been chosen as an additive secret sharing of

∑
{i,j}̸⊆C z{i,j} = h{i,j}(xi[j], xj [i]).

Claim A.7.1 When I denotes the indicator function, for each {i, j}, define

u{i,j} = I(i ∈ H) · γi[j] + I(j ∈ H) · γj [i].

Then, {u{i,j}}{i,j}̸⊆C form an additive secret sharing of 0.

We will first prove the lemma assuming this claim; the proof of the claim is
deferred to the end of this section. It can be verified that, for each {i, j}, γi[j]
and γj [i], and hence u{i,j} is used exclusively in step 5. The above claim implies
that {z{i,j} + u{i,j}}{i,j}̸⊆C is an additive secret sharing of

∑
{i,j}̸⊆C z{i,j}. This

directly implies that Hyb3 ≡ Hyb3,1.
Next, we obtain Hyb3,2 by modifying Hyb3,1. Let O{i,j} be the last 2-ary

function that A queries such that {i, j} ̸⊆ C; i.e., there exists no {i′, j′} ∈ T
such that {i′, j′} ̸⊆ C. We modify the choice of z{i,j} in step 5 as follows: If for
all k ∈ C, there exists x̂k such that, for all ℓ ∈ H, xk[ℓ] = x̂k, then choose z{i,j}
such that ∑

{k,ℓ}̸⊆C

z{k,ℓ} = f(x̂1, . . . , x̂n)−
∑

{k,ℓ}⊆C

h{k,ℓ}(x̂k, x̂ℓ).

If not, make no changes to Hyb3,1. Hyb3,1 ≡ Hyb3,2 by the above claim, since∑
{i,j}̸⊆C z{i,j} = h{i,j}̸⊆(x̂i, x̂j).

Finally, we show that Hyb3,2 ≈ϵ(λ) Hyb4, where ϵ(λ) is a negligible func-
tion. Hyb3,2 and Hyb4 differ only in the value of z{i,j} chosen in step 5 for
the aforementioned {i, j} when there exists k ∈ C and ℓ, ℓ′ ∈ H such that
xk[ℓ] ̸= xk[ℓ

′]. In Hyb4, z{i,j} is chosen at random, and, in Hyb3,2 it is chosen
such that

∑
{k,ℓ}̸⊆C z{k,ℓ} = h{k,ℓ}̸⊆C(xk[ℓ], xℓ[k]).

Recall that CD{ℓ,ℓ′},k is emulated by an ideal world interaction of A with

CD{ℓ,ℓ′},k.Sim
FCD(sℓ[ℓ

′,k],sℓ′ [ℓ,k],·). Further, the masks sℓ[ℓ
′, k] and sℓ′ [ℓ, k] added

to z{ℓ,ℓ′}, which are chosen by Sim uniformly from G appears only in the emu-
lation of CD{ℓ,ℓ′},k in both hybrids. The following hold for both hybrids:
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1. For each {i′, j′} ̸⊆ C such that {i′, j′} ≠ {i, j}, z{i′,j′} is sampled uniformly
from G. In ẑ{ℓ,ℓ′}, the value of z{ℓ,ℓ′} is masked by sℓ[ℓ

′, k] + sℓ′ [ℓ, k] in
addition to other masks.

2. Define event E in which xk[ℓ] ̸= xk[ℓ
′] for k ∈ C and ℓ, ℓ′ ∈ H. The prob-

ability of event E is the same independent of the values of sℓ[ℓ
′, k], sℓ′ [ℓ, k]

and z{i,j}.
This can be shown as follows: Suppose w.l.o.g. A queries O{k,ℓ} after O{k,ℓ′}.
When A prepares the input to O{k,ℓ} on behalf of Pk (which fixes event
E), the view of A is identically distributed irrespective of the value of
(sℓ[ℓ

′, k], sℓ′ [ℓ, k]) since CD{ℓ,ℓ′},k.Sim queries FCD only to respond to the
final oracle call in CD{ℓ,ℓ′},k. Furthermore, by definition of {i, j}, the output
of O{i,j} has not been computed at this point. The observation now follows
from observation 1.

3. There exists an event F ⊆ E, that occurs with the same probability ir-
respective of the values of (sℓ[ℓ

′, k], sℓ′ [ℓ, k]) conditioned on E, in which
CD{ℓ,ℓ′},k.Sim invokes FCD(sℓ[ℓ

′, k], sℓ′ [ℓ, k], ·) with input b = 0. By defi-
nition of FCD, in this event, the functionality sends ⊥ instead of sℓ[ℓ

′, k] +
sℓ′ [ℓ, k] to the simulator. By negl(λ) soundness of CD{ℓ,ℓ′},k, probability of
F conditioned on E is at least 1− negl(λ).

From these observations, we conclude that, conditioned on F , over the random-
ness of (sℓ[ℓ

′, k], sℓ′ [ℓ, k]), the view of the adversary is identically distributed
when z{i,j} is chosen such that {z{i,j} + u{i,j}}{i,j}̸⊆C form an additive se-
cret sharing of

∑
{i,j}̸⊆C z{i,j} and when z{i,j} is chosen uniformly at random.

Since F occurs with probability 1− negl(λ) conditioned on E, we conclude that
Hyb3,2 ≈ϵ(λ) Hyb4, where ϵ(λ) is a negligible function.

We conclude the proof by proving Claim A.7.1

Proof (of Claim A.7.1). Since {γi[j]}j ̸=i is an additive sharing of 0 for each
i ∈ [n], We have ∑

{i,j}̸⊆C

u{i,j} =
∑
i∈H

∑
j ̸=i

γi[j] = 0.

We will show, for each ∅ ≠ S ⊊ {{i, j} s.t. {i, j} ̸⊆ C}, {u{i,j}}{i,j}∈S is
a tuple of uniform, independent bits. This will prove the claim. By the XOR
lemma [CGH+85], this is true if, for each such S,

∑
{i,j}∈S u{i,j} is a uniform

bit.
Fix S. Define H = [n] \ C. There exist distinct i∗, j∗, k∗ such that i∗ ∈ H,

{i∗, j∗} ∈ S, and {i∗, k∗} /∈ S. We have

∑
{i,j}∈S

u{i,j} =

 ∑
j:{i∗,j}∈S

si∗ [j]

+

 ∑
i∈H\{i∗}

∑
j:{i,j}∈S

γi[j]

 .

The first term in RHS of the second equation is a uniform bit that is independent
of the second term. This follows from the following observations: {i∗, j∗} ∈ S,
{i∗, k∗} /∈ S, and {si∗ [j]}j ̸=i∗ is an additive secret sharing of 0. We conclude
that the above sum is a uniformly random bit, proving the claim. ⊓⊔
This proves the lemma. ⊓⊔



46 Varun Narayanan , Shubham Vivek Pawar, and Akshayaram Srinivasan

A.3 Description of the Protocol Achieving General Secure
Computation with Abort

Our starting point is the computational semi-malicious MPRE constructed by
Applebaum, Brakerski and Tsabary in [ABT18]. We will use this result to effec-
tively convert any given function to a function of effective degree 2.

Theorem A.8 (Theorem 7.3 in [ABT18]). Assuming the existence of (pos-
sibly multi-round) oblivious transfer, every n-party functionality f can be encoded

by a computational degree-2 MPRE f̂ that is secure against semi-malicious cor-
ruption of any set of parties, with complexity polynomial in n and S where S is
the size of the circuit that computes f . The MPRE makes a non-black-box use
of the oblivious transfer protocol.

Let f be the n-party function that needs to be computed. Let (Gen,Sig,Ver)
be a one-time digital signature scheme as defined in Definition 4.3. We derive a
signed version of f with respect to this signature scheme, denoted by fSig, takes
input (xi, ski) from each Pi, i ∈ [n] and computes

fSig((x1, sk1), . . . , (xn, skn)) = (out,Sig(out, sk1), . . . ,Sig(out, sk1)) ,

where out = f(x1, . . . , xn) (15)

By Theorem A.8, there exist a set of functions {h{i,j}} such that

g(1λ, (x1, sk1; r1), . . . , (xn, skn; rn)) =
∑

{i,j}∈([n]
2 )

h{i,j}(1
λ, (xi, ski, ri), (xj , skj , rj)).

is a semi-malicious computationally secure MPRE.
Let Πg = (Πg.Enc, {Πg.O{i,j}}, Πg.Dec) be the statistically secure non-

interactive protocol using 2-ary functions that computes g with PwKO, that is
obtained by replacing f with g in Figure 6.3. The protocol is formally described
in Figure A.5.

A.4 Correctness of the Protocol in Figure A.5

When all parties behave honestly, by the correctness of Πg, σ is an MPRE of
fSig, hence out = f(x1, . . . , xn) and each ti = Sig(out, ski). Hence, output of the
decoder in f(x1, . . . , xn) by authenticity of the digital signature scheme.

A.5 Proof of Security the Protocol in Figure A.5

We prove security against a computationally bounded non-adaptive adversary
in the standalone setting. The proof extends to the UC setting, and against an
adaptive computationally bounded adversary in a straightforward manner since
our simulator is straightline.
Let {Pi}i∈C for some C ⊂ [n] be the set of parties corrupted by A; C is known
to Sim. At any point during the interaction, the simulator Sim needs to respond
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ΠUA
f

Let λ be the security parameter. Let g be as defined above. For each i ∈ [n],
let xi be the input of Pi to f . Pi prepares its input to g as (xi, ski, ri), where
(sk, vk)← Gen(1λ, ·) and ri is sampled uniformly.

(i). Execution of Enc

For each i ∈ [n], and j ̸= i, Enc(1λ, (i, j), (xi, ski, ri, vki), ·) = (y(i,j), vki), where
y(i,j) = Πg.Enc(1

λ, (xi, ski, ri), ·).

(i). Execution of O{i,j}

On input (y(i,j), vki) and (y(j,i), vkj) from Pi and Pj , respectively, O{i,j} outputs
z{i,j} = Πg.O{i,j}(y(i,j), y(j,i)). Additionally, if j = i+ 1, output vki; if i = j + 1,
output vkj . Here, addition is mod n.

(i). Execution of Dec

ApplyΠg.Dec({z{i,j}}) to obtain σ. If σ = ⊥, output ⊥ and terminate. Otherwise,
compute (out, t1, . . . , tn) = MPRE.Dec(σ) where MPRE.Dec is the decoder for g
(see Definition 4.2). If Ver(out, ti, vki) = 1 for all i ∈ [n], output out; else abort.

Fig.A.5. ΠUA
f computes f with computational security with abort.

to A’s signal (oracle, {i, j}, Inputs) with the output of O{i,j} (if O{i,j} has not
be queried so far). Here, Inputs contains the inputs of all corrupt parties (if any)
among {Pi, Pj} to O{i,j}. Simulator can send a signal (evaluate, Inputs) to the
functionality F({xi}i∈H , ·) (once during the execution). Here, Inputs contains
the input x̂i chosen by Sim for each party Pi it has corrupted. In response, the
functionality outputs f({xi}i∈H , {x̂i}i∈H). Simulator can send either abort or
no abort to F (once during the execution). In the former case, F sets the output
of all uncorrupted parties to ⊥; in the latter, it sets it to the previously computed
output.

The description of the simulator Sim is given in Figure A.6.

Proof of Indistinguishability. We show that w.r.t. any adversary A, the real
world and the ideal world executions are computationally indistinguishable via
a hybrid argument.

• Hyb0 : This corresponds to the real world execution of the protocol.

• Hyb1 : This hybrid is derived from the ideal world execution using Sim by

replacing the emulation of GPwKO in step (i).3 of Figure A.6 by a direct use
of GPwKO({xi, ski, ri}i ∈ H, ·). For this, sample (ski, vki)← Gen(1λ, ·), and ri
uniformly for each i ∈ H. Initialize GPwKO({xi, ski, ri}i ∈ H, ·) and make the
following changes in the description of Sim:
1. In step (i).3, when Πg.Sim sends (evaluate, {x̂i, ski, ri}i∈C), forward this

to GPwKO({xi, ski, ri}i∈H , ·) and reply with the response.
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Sim
Let {Pi}i∈C for some C ⊂ [n] be the set of parties corrupted by A; C is known
to Sim. Let H = [n] \ C.

(i). Responding to (oracle, {i, j}, Inputs)

Let Πg.Sim be the simulator for Πg as described in Figure A.4. The simulator
responds to A’s demand for the output of O{i,j} as follows:

1. Send (oracle, {i, j}, Inputs) to Πg.Sim, where Inputs contains y(i,j) if i ∈ C,
and y(j,i) if j ∈ C. Forward the response to A.

2. If j = i + 1 mod n, send vki, where vki is provided by A if i ∈ C, and
sampled according to (ski, vki)← Gen(1λ, ·) otherwise. Similarly, output vkj
if i = j + 1 mod n.

3. When Πg.Sim sends (evaluate, {x̂i, ski, ri}i∈C) to GPwKO, emulate the re-
sponse of GPwKO as follows: Send (evaluate, {x̂i}i∈C) to F({xi}i∈H , ·), and
receive z = f({xi}i∈H , {x̂i}i∈C) as output. Recall, we sampled (ski, vki)
for each i ∈ H, and vki is provided by A for each i ∈ C. Compute
fSig({x̂i, ski}) = (z, t1, . . . , tn), where ti = Sig(z, ski) for each i ∈ [n]. Finally,
compute MPRE.Sim(1λ, (z, t1, . . . , tn), {x̂i, ski, ri}i∈C), where MPRE.Sim is
the simulator for g (see Definition 4.2), and send it to Πg.Sim as response
from functionality GPwKO.

(ii). Deciding to abort or not.

Receive (output, σ) as signal from Πg.Sim to GPwKO({xi}i∈H , ·). If σ = ⊥, send
abort to F({xi}i∈H , ·). Otherwise, let σ = (z′, t′1, . . . , t

′
n). Check if there exists

i ∈ [n] such that Ver(z′, t′i, vki) = 0; if so, send abort to F({xi}i∈H , ·), otherwise
send no abort.

Fig.A.6. Simulator for ΠUA
f .

2. In step (ii), if σ = ⊥ or σ = (z′, t′1, . . . , t
′
n) such that there exists i ∈ [n]

such that Ver(z′, t′i, vki) = 0, set the outputs to all honest parties to ⊥,
otherwise set them to z′.

• Hyb2 : This hybrid is obtained from Hyb1 by reverting the instructions in step
(i).3 to that in the description of Sim

• Hyb3 : This hybrid is obtained from Hyb2 by reverting the instructions in step
(ii) to that in the description of Sim

In Lemma A.9 shows that Hyb0 and Hyb1 are statistically indistinguishable.
In Lemma A.10 shows that Hyb1 and Hyb2 are computationally indistinguishable.
In Lemma A.11 shows that Hyb2 and Hyb3 are computationally indistinguishable.
Note, Hyb3 corresponds to the ideal world execution using the simulator.

Lemma A.9. Hyb0 ≈ϵ(λ) Hyb1, where ϵ(λ) is a neglibible in λ.

Proof. Let Viewg
A be the view of the adversary in Πg that is executed in ΠUA

f .

When σ is as defined inΠUA
f , Hyb1 is obtained from Hyb0 by replacing the ensem-
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ble (Viewg
A, σ) with Ideal(1λ,SimF({xi,ski,ri}i∈H ,·), {xi}i∈C), where ri is sampled

uniformly, and (ski, vki)← Gen(1λ, ·) for each i ∈ H. Hence, the indistinguisha-
bility of Hyb0 and Hyb1 can be reduced to the statitical security of Πg with
PwKO. Thus, the lemma follows from Theorem 6.5 which states that there ex-
ists a neglibible function ϵ(λ) such that

(Viewg
A, σ) ≈ϵ(λ) Ideal(1

λ,SimF({xi}i∈H ,·), {xi}i∈H).

This concludes the proof. ⊓⊔

Lemma A.10. Hyb1 ≈c Hyb2.

Proof. The following is the only difference between Hyb1 and Hyb2: WhenΠg.Sim
sends (evaluate, {x̂i, ski, ri}i∈C), the response from Sim in Hyb1 is

g(1λ, {xi, ski; ri}i∈H , {x̂i, ski; ri}i∈C), (16)

where (ski, vki) ← Gen(1λ, ·) and ri is sampled uniformly for each i ∈ H.
Whereas, in Hyb1, the response is

MPRE.Sim
(
1λ, (z, t1, . . . , tn), {x̂i, ski, ri}i∈C

)
, (17)

where z = f({xi}i∈H , {x̂i}i∈C) and, for each i ∈ [n], ti = Sig(z, ski) when
(ski, vki) ← Gen(1λ, ·),∀i ∈ H. Thus, (z, t1, . . . , tn) = fSig({xi}i∈H , {x̂i}i∈C).
But, g is a computationally secure MPRE of fSig that is secure against semi-
malicious corruption of C. Hence, the distributions in eq. (16) and eq. (16) are
computationally indistinguishable for any {x̂i, ski, ri}i∈C . We conclude that Hyb0
and Hyb1 are computationally indistinguishable. ⊓⊔

Lemma A.11. Hyb2 ≈c Hyb3.

Proof. Consider the event E in which, σ = (z′, t′1, . . . , t
′
n) such that Ver(z′, t′i, vki) =

1 for all i ∈ [n]. The only difference between Hyb2 and hyb3 is that, condi-
tioned on E, in Hyb2 all honest parties output z′, whereas, in Hyb3, they output
f({xi}i∈H , {x̂i}i∈C), where {x̂i}i∈C is the inputs that Sim chooses for the cor-
rupt parties when it queries F({xi}i∈H , ·). Suppose there exists {xi}i∈[n] for
which Hyb2 and Hyb3 are computationally distinguishable. We stress the view of
the adversary is computationally indistinguishable in both hybrids. Hence, this
is possible only if, for some polynomial p, in Hyb2,

Pr [z′ ̸= f({xi}i∈H , {x̂i}i∈C)] ≥ 1/p(λ).

We will show that this contradicts the unforgeability guarantee of the one-time
signature scheme (Gen,Sig,Ver).

Let (sk, vk) ← Gen(1λ, ·). Consider an adversary A′ instantiated with vk
that behaves as follows: Adversary chooses i∗ ← H, and sets vki∗ = vk. For each
i ∈ H \ {i∗}, it samples (ski, vki)← Gen(1λ, ·). It then executes Hyb2 with these
random variables and {xi}i∈[n], with one significant difference: In step (i).3, when
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Πg.Sim sends (evaluate, {x̂i, ski, ri}), it responds with (z, {ti}i∈[n]\{i∗}, ti∗), where
z is computed as f({xi}i∈H , {x̂i}i∈C); ti is computed as Sig(z, ski) using ski it
has sampled for each i ∈ [n] \ {i∗}; and ti∗ is obtained by querying Sig(·, sk) to
which it has one-time access. Finally, on receiving (z′, t′1, . . . , t

′
n) from Πg.Sim in

step (ii), A′ outputs (z′, t′i∗) in the event E, and outputs (z, ti∗) otherwise.
Since (sk, vk) is correctly sampled, the above interaction is identical to Hyb2.

But then,

Pr

z′ ̸= z,Ver(z′, ti∗ , sk) = 1

∣∣∣∣∣∣∣∣∣∣
(vk, sk)← Gen(1λ, ·)
(z, state)← A′(1λ, vk)

t = Sig(z, sk)

(z′, t′)← A′(1λ, vk, z, t, state)

 ≥ 1/p(λ).

This contradicts the unforgeability condition in definition 4.3. This proves the
lemma. ⊓⊔

B Secure Computation using 3-Oracles

We observed that secure computation using 2-oracles is closely related to the
notion of degree-2 MPRE. However, assuming only the existence of one-way
functions, degree-2 MPRE’s are known only to be secure when there is an hon-
est majority. In this section, we will show that any function can be computed
with computational security and unanimous abort using 3-oracles even against
a dishonest majority.

Our approach is very similar to that in Section 6 and we provide an informal
overview below.

B.1 Overview

Securely Computing Degree-3 Polynomials with PwKO. We now explain our
approach to construct a protocol for computing arbitrary degree-3 polynomi-
als by making parallel calls to a 3-ary function and achieves PwKO against a
malicious adversary that corrupts an arbitrary subset of the parties. For sim-
plicity, let’s assume that each party Pi gets a finite field element xi as its pri-
vate input. Let p(·) be a degree-3 polynomial and the parties want to compute
p(x1, . . . , xn) =

∑
i,j∈[n] ci,j,k · xi · xj · xk. In the rest of the overview, we will use

O{i,j,k} to denote the function that is computed using Pi, Pj and Pk’s inputs.
Our construction closely follows the one sketched above for realizing degree-2
polynomials with security with PwKO.

Consider a semi-honest secure protocol for computing p with parallel calls
to 3-ary functions that works as follows: O{i,j,k} takes (xℓ, sℓ[{i, j, k}]) from
Pℓ for each ℓ ∈ {i, j, k}, and outputs ci,j,k · xi · xj · xk +

∑
ℓ∈{i,j,k} sℓ[{i, j, k}]

to every party. For every i ∈ [n], if Pi chooses {si[{i, j, k}]}{j,k}∈([n]\{i}
2 ) as a

random additive secret sharing of 0, then the parties can add the outputs of
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all the 3-ary functions to obtain p(x1, . . . , xn). The security once again follows
since {si[{i, j, k}]} are all random subject to their sum being 0 and thus, only
p(x1, . . . , xn) is revealed.

As we observed in the previous section, it suffices to look at two kinds of
attacks: a corrupt party Pi could generate {si[{i, j, k}]} as secret shares of a
value other than 0; they could send (xi, ·) to O{i,j,k} and (x′

i, ·) (where xi ̸=
x′
i) to O{i,j′,k′}. As we previously observed, if corrupt parties disallowed from

mounting the latter attack strategy, the above protocol already satisfies PwKO.
However, we cannot guarantee security with PwKO when corrupt parties can
mount attacks of the former kind. We get around this issue by constructing a
protocol that satisfies the following two properties.

1. If every corrupted party Pi sends the same input xi to every O{i,j,k} where
at least one of Pj and Pk is honest, then we want all the honest parties to
compute the output of the polynomial subject to the adversary adding some
offset.

2. If a corrupted party sends different xi and xi′ to O{i,j,k} and O{i,j′,k′} where
at least one of Pj and Pk is honest, and a least one of Pj′ and Pk′ is honest,
then we want the adversary not to learn any information about the private
inputs of the honest parties. Specifically, we want the outputs of all the 3-ary
functions involving an honest party to be random or abort.

As we established in the previous section, the above two properties are suf-
ficient to show PwKO. At this point, we crucially observe that, if a corrupt Pi

reports different inputs to two 3-ary functions–both involving at least one honest
party–then, there is an honest party Pj such that Pi has necessarily reported
different inputs to two 3-ary functions involving Pj . This can be seen as follows:
Suppose corrupt Pi sends distinct xi and x′

i to O{i,j,k} and O{i,j′,k′}, where Pj

and Pj′ are honest. If j = j′ then we are done. If not, when the input x′′
i that

Pi sends to O{i,j,j′} is different from xi, the above statement holds with respect
to Pj , whereas, it holds with respect to Pj′ otherwise.

Using the above observation, we proceed to build the protocol along the lines
of our previous construction. We modify our protocol using CDS to switch the
output of each O{i,j,k} to random if a corrupt party Pi sends inconsistent inputs
to O{i,j,k} and O{i,j,k′}, whenever Pj is honest. By arranging this, sj [{i, j, k}]
and sj′ [{i, j, k′}] are erased from the adversary’s view. This results in the same
domino effect we observed in the previous construction that renders the output
of every 3-ary function involving at least one honest party completely random in
the eyes of the adversary. The modified protocol involve CDS protocols in which
a party Pj checks the consistency of the input provide by another party Pi to 3-
ary functions O{i,j,k} and O{i,j,k′} for distinct k, k′. In fact such a CDS protocol
is run for every (i, j, k, k′) where i, j, k, k′ are distinct. Interestingly, the ‘verifiers’
in such protocols are two copies of the same party participating in two different
3-ary function calls. Realizing this CDS protocol is straightforward: The CDS
protocol can be thought of as effectively carried out with a pair of virtual parties
Pik and Pik′–both simulated by Pj–as verifiers and Pi as the party whose inputs
to O{i,j,k} and O{i,j,k′} are being verified. To realize this in the protocol using
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3-ary functions, we compute the 2-ary function between Pk and Pi using O{i,j,k}
by having Pj play the role of the virtual Pk. Similarly, 2-ary function between
Pk′ and Pi is computed using O{i,j,k′}. The 2-ary function between Pk and Pk′

can indeed be realized using any 3-ary function involving Pj who is simulating
both these virtual parties.

Relaxing to Computational Security. We bootstrap the protocol for computing
degree-3 polynomials with PwKO to computing arbitrary functions with stronger
security guarantees against computationally bounded adversaries under the as-
sumption of one-way functions.

Our approach is the same as in section 2.3: given a multiparty function f ,
we build an augmented function g that takes (xi, ski) as input from each Pi,
where xi is Pi’s input to f and ski is a secret key for a digital signature scheme.
g outputs (y, σ1, σ2, . . . , σn), where y = f(x1, . . . , xn), and σi is the signature of
y using Pi’s secret key ski.

The parties use a degree-3 MPRE with semi-malicious security against ar-
bitrary corruptions for computing the function g. Existence of such an MPRE
assuming one-way functions is implied by BMR garbling of a gate [BMR90]; we
elaborate on this in appendix B.3. As in our contruction in section 2.3, the par-
ties use the previous protocol with PwKO to compute the pre-processing phase,
the encoding function for the MPRE, and broadcast the verification key vki cor-
responding to ski. After the protocol, each party locally uses the MPRE decoder
to learn the output of g, and checks if each σi is a valid signature on y under
the verification key vki. If any of the checks do not pass, the party aborts. The
security of the PwKO protocol and the digital signature scheme together imply
security of this protocol computing f with abort.

B.2 Computing Degree-3 Functions with PwKO

A deterministic n-party function f that takes input xi ∈ {0, 1}m from party
Pi, i ∈ [n] has effective degree 3 if it can be decomposed into functions {h{i,j,k}},
where, for each {i, j, k} ∈

(
[n]
3

)
, h{i,j,k} : {0, 1}m ×{0, 1}m ×{0, 1}m → G for an

additive finite group G, such that, for all x1, . . . , xn,

f(x1, . . . , xn) =
∑

{i,j,k}

h{i,j,k}(xi, xj , xk). (18)

In this section, we construct a protocol that securely computes any function with
effective degree 3. The construction follows the same blueprint as our construc-
tion using 2-ary functions for security with PwKO. Notably, this construction
uses a variant of conditional disclosure protocol that allows Pi to verify that
the inputs of Pj to O{i,j,k} and O{i,j,k′} are consistent in the outer protocol for
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distinct k, k′. We denote this variant of conditional disclosure by

CD{ik,ik′},j

=
(
{CD{ik,ik′},j .O{ℓ,ℓ′}}{ℓ,ℓ′}∈({ik,i

k′ ,j}
3 ),CD{ik,ik′},j .Enc,CD{ik,ik′},j .Dec

)
(19)

since the ‘parties’ carrying out the verification is simply two copies of Pi. Just
like the previous variant, this is an n-party non-interactive protocol with that
effectively delivers a secret provided by Pi to all parties if Pk’s input to O{i,j,k}
and O{i,j,k′} are consistent. If Pk uses inconsistent inputs, then all parties detect
malpractice and abort; furthermore, the secret of Pi is kept hidden from the
adversary. On the other hand, when Pi is corrupt, the protocol ensures perfect
privacy of Pj ’s input. This protocol works exactly like its previous variant after
creating two copies of Pi–namely, Pik and Pik′ both simulated by Pi and execut-
ing CD{ik,ik′},j . In the 3-oracle setting, the 2-oracle between Pik and Pj (O{ik,j})
is realized using O{i,j,k}, that between Pik′ and Pj is realized using O{i,j,k′}, and,
finally, that between Pik and Pik′ is simulated by Pi and broadcasted using one
of the oracles, say O{i,j,k}.

Description of the Protocol. Let f be a deterministic n-party function of
effective degree 3, and let {h{i,j,k}} be as described in eq. (18). Let λ ∈ N be a
security parameter. The Figure B.1 provides a formal description of a protocol
that securely computes f with PwKO when the input of each party Pi is xi.

The construction uses the following resources and notations: We denote the
set of all ordered d-tuples of distinct elements of a set S by

(
S
d

)
ord

. Let CD{ik,ik′},j
be a conditional disclosure protocol with negl(λ) soundness as defined in (19).
For conciseness, we will drop 1λ in the argument of CD{ik,ik′},j .Enc.

For legibility, we suppress the private randomness used in the encoder of Πf as
well as the conditional disclosure protocols invoked as sub-protocols. But, we
stress that, an honest party uses the same private randomness while invoking
the encoder to obtain their input to different 3-ary oracles.

Correctness of the protocol. When all parties behave honestly, for distinct i, j
and {k, k′} ∈

(
[n]\{i,j}

2

)
, the the output of CD{ik,ik′},j is s{ik,ik′},j = sik [ik′ , j] +

sik′ [ik, j]. This follows from the correctness of conditional disclosure protocol.
Furthermore, {γi[{i, ℓ, ℓ′}]}{ℓ,ℓ′}∈([n]\{i}

2 ) forms an additive secret sharing of 0.
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Πf

(i). Execution of Enc

For any {i, j, k} ∈
(
[n]
3

)
,(

1λ, xi, γi[{i, j, k}], {siℓ [iℓ′ , ℓ
′]}

(ℓ,ℓ′,ℓ′′)∈([n]\{i}
3 )

ord

, Ri

)
← Enc(1λ, (i, {i, j, k}), xi, ·).

(20)

Here, γi[{i, j, k}] is such that {γi[{i, ℓ, ℓ′}]}{ℓ,ℓ′}∈([n]\{i}
2 ) form an additive secret

sharing of 0 ∈ G; for (ℓ, ℓ′, ℓ′′) ∈
(
[n]\{i}

3

)
ord

, siℓ [iℓ′ , ℓ
′′] is uniform in G; Ri is a

uniformly random string used to derive private randomness for the encoders of
various parallel invocations of conditional disclosure protocols; see (ii).2.(a-c).
Recall, an honest Pi uses the same randomness (and input xi) while invoking
Enc(1λ, (i, {i, j, k}), ·, ·) for all admissible j, k. This is crucial in ensuring the re-
quired correlation among Pi’s inputs to all oracles involving Pi.

Fig. B.1. Description of the encoder of Πf that computes f of effective degree 3 with
privacy with knowledge of output.

Hence, by (21), the decoder outputs∑
{i,j,k}∈([n]

3 )

ẑ{i,j,k} −
∑

{i,j,k,k′}∈([n]
4 )

(s{ik,ik′},j + s{jk,jk′},i)

=
∑

{i,j,k}∈([n]
3 )

ẑ{i,j,k} −
∑

(a,b,c)∈({i,j,k}
3 )

ord

∑
ℓ/∈{i,j,k}

sab
[aℓ, c]


=

∑
{i,j,k}∈([n]

3 )

h{i,j,k}(1
λ, xi, xj , xk).

This proves the correctness of the protocol.
The proof of security with PwKO proceeds as outlined in the technical

overview. A formal proof is provided in Appendix B.4. Along with correctness,
this implies the following theorem.

Theorem B.1. The protocol Πf in Figure B.1 computes any n-party function
f of effective degree 3 with statistical security while guaranteeing privacy with
knowledge output against a malicious adversary that corrupts any set of parties.

B.3 Achieving General Secure Computation with Abort

We use the protocol developed in the previous section to realize general secure
computation with abort against computationally bounded adversaries assuming
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Πf Contd.

(ii). Execution of O{i,j,k}

Let Pi’s input be (1λi , xi, γi[{i, j, k}], {siℓ [iℓ′ , ℓ
′′]}, Ri);

let Pj ’s input be (1λj , xj , γj [{i, j, k}], {sjℓ [jℓ′ , ℓ
′′]}, Rj);

let Pk’s input be (1λk , xk, γk[{i, j, k}], {skℓ [kℓ′ , ℓ
′′]}, Rk).

O{i,j,k} behaves as follows:

1. If λj ̸= λi, output ⊥ and terminate; otherwise, let λ = λi.
Output ẑ{i,j,k} where

ẑ{i,j,k} = h{i,j,k}(1
λ;xi, xj , xk) +

∑
(a,b,c)∈({i,j,k}

3 )
ord

∑
ℓ/∈{i,j,k}

sab [aℓ, c]

+
∑

ℓ∈{i,j,k}

γℓ[{i, j, k}]. (21)

2. For each ℓ /∈ {i, j, k}:
(a) Output CD{ik,iℓ},j .O{ik,j}(y(ik,j), y(j,ik)), where

y(ik,j) ← CD{ik,iℓ},j .Enc(ik,j)(sik [iℓ, j], ·),
y(j,ik) ← CD{ik,iℓ},j .Enc(j,ik)(xj , ·).

Note, fresh randomness rik,({ik,iℓ},k) from Ri is used to compute Pi’s encod-
ings CD{ik,iℓ},j .Enc(ik,j) and CD{ik,iℓ},j .Enc(ik,iℓ); similarly for Pj .

(b) Output CD{ij ,iℓ},k.O{ij ,k}(y(ij ,k), y(k,ij)) with analogous y(ij ,k), y(k,ij).
(c) Output CD{jk,jℓ},i.O{jk,i}(y(jk,i), y(i,jk)) with analogous y(jk,i), y(i,jk).
(d) Output CD{ji,jℓ},k.O{ji,k}(y(ji,k), y(k,ji)) with analogous y(ji,k), y(k,ji).
(e) Output CD{kj ,kℓ},i.O{kj ,i}(y(kj ,i), y(i,kj)) with analogous y(kj ,i), y(i,kj).
(f) Output CD{ki,kℓ},j .O{ki,j}(y(ki,j), y(j,ki)) with analogous y(ki,j), y(j,ki).

3. For (ℓ, ℓ′, ℓ′′) ∈
(
[n]\{i}

3

)
ord

: output CD{iℓ,iℓ′},ℓ′′ .O{iℓ,iℓ′}(y(iℓ,iℓ′ ), y(iℓ′ ,iℓ)),
where

y(iℓ,iℓ′ ) ← CD{iℓ,iℓ′},ℓ′′ .Enc(iℓ,iℓ′ )(siℓ [iℓ′ , ℓ
′′], ·),

y(iℓ′ ,iℓ) ← CD{iℓ,iℓ′},ℓ′′ .Enc(iℓ′ ,iℓ)(siℓ′ [iℓ, ℓ
′′], ·).

4. For (ℓ, ℓ′, ℓ′′) ∈
(
[n]\{i}

3

)
ord

: output CD{jℓ,jℓ′},ℓ′′ .O{jℓ,jℓ′}(y(jℓ,jℓ′ ), y(jℓ′ ,jℓ)).

5. For (ℓ, ℓ′, ℓ′′) ∈
(
[n]\{i}

3

)
ord

: output CD{kℓ,kℓ′},ℓ′′ .O{kℓ,kℓ′}(y(kℓ,kℓ′ )
, y(kℓ′ ,kℓ)).

Fig. B.2. Description of the 3-ary oracles in Πf that computes f of effective degree 3
with privacy with knowledge of output.

only one-way functions. For this, we once again rely on a computational semi-
malicious degree-3 MPRE. As outlined in appendix B.1, this construction is the
same as that in section 6.3 with the secure computation of degree-2 MPRE with
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Πf Contd.

(iii). Execution of Dec.

For distinct i, j and {k, k′} ∈
(
[n]\{i,j}

2

)
, let s{ik,ik′},j be the output of CD{ik,ik′},j .

If ẑ{i,j,k} is ⊥ for some i, j, k or s{ik,ik′},j is ⊥ for some i, j, k, k′, output ⊥ and
terminate. Otherwise, output∑

{i,j,k}∈([n]
3 )

ẑ{i,j,k} −
∑

{i,j,k,k′}∈([n]
4 )

(s{ik,ik′},j + s{jk,jk′},i).

Fig. B.3. Πf computes f of effective degree 3 with privacy with knowledge of output.

PwKO in the latter replaced with secure computation of degree-3 MPRE with
PwKO.

In the following discussion, we will establish the existence of computational
semi-malicious degree-3 MPRE. The existence of such an MPRE is implied by
the multiparty garbling function used for garbling NAND gates in the BMR
protocol [BMR90]. In [GIS18], the authors observed that the n-party multiparty
garbling of a NAND gate g with input wires a and b and output wire c in
[BMR90] is a set of values {Gi

r1,r2}i∈[n],r0,r1∈{0,1}, where Gi
r1,r2 is computed as(

n⊕
i=1

Fki
a,r1

(g, j, r1, r2)⊕ Fki
b,r2

(g, j, r1, r2)

)
⊕ kjc,0 ⊕ (χr1,r2 ∧ (kjc,0 ⊕ kjc,1)),

(22)

where χr1,r2 = ((⊕n
i=1λi,a ⊕ r1) · (⊕n

i=1λi,b ⊕ r2) ⊕ 1) ⊕ (⊕n
i=1λi,c). Here, F is

a PRF, kix,r for x ∈ {a, b, c} and r ∈ {0, 1} is a PRF key, and λi,x is a bit for
x ∈ {a, b, c}.

By inspecting Gi
r1,r2 , and noting that keys kix,r and λi,x are chosen by each

party Pi, it is easy to see that Gi
r1,r2 has effective degree 3, when the computa-

tion of Fki
a,r1

(g, j, r1, r2) and Fki
b,r2

(g, j, r1, r2) are carried out in a preprocessing

phase, as the inputs to PRF is provided by a single party.
As in our construction using 2-MPRE in section 6.3, the protocol computing

functions of effective degree-3 using 3-ary oracles is used to first apply a local
function on the parties private inputs–this is used to compute the value of PRF
on the party’s key–and then compute a degree-3 polynomial on the outputs of
these local functions. This allows us to compute the pre-processing phase inside
the 3-ary oracles and thus, allowing us to rely on an MPRE that is secure against
semi-malicious adversaries. Note, this necessarily requires a PRF to be computed
inside the 3-ary oracles; thus, the protocol makes non-black box use of PRF.

The construction and security analysis of the protocol sketched above follow
as a straightforward generalization of our construction for theorem 6.6; hence, we
leave out these details. Using such a construction, we get the result in theorem 6.6
as PRF is implied by one-way functions.
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B.4 Proof of Privacy with Knowledge of Output of the Protocol in
Figures B.1, B.2 and B.3

We prove security against a computationally unbounded non-adaptive adver-
sary in the standalone setting via a simulator Sim. The proof extends to the
UC setting, and against an adaptive computationally unbounded adversary in a
straightforward manner since our simulator is straightline.
Let {Pi}i∈C for some C ⊂ [n] be the set of parties corrupted by A; C is known
to Sim. Let H = [n] \ C. At any point during the interaction, the simulator
Sim needs to respond to A’s signal (oracle, {i, j, k}, Inputs) with the output of
O{i,j,k} (if O{i,j,k} has not be queried so far). Here, Inputs contains the inputs of
all corrupt parties, (if any) among {Pi, Pj , Pk}, to O{i,j,k}. Simulator can send
a signal (evaluate, Inputs) to the functionality FPwKO({xi}i∈H , ·) (once during
the execution). Here, Inputs contains the input x̂i chosen by Sim for each party
Pi it has corrupted. In response, the functionality outputs f({xi}i∈H , {x̂i}i∈H).
Simulator can send a signal (output,Output) to FPwKO (once during the execu-
tion), where Output is ⊥ or belongs to the co-domain of f . In response, FPwKO

sets the output of all uncorrupted parties to Output.
We will use the following notations in the description of Sim: Let the set of

3-ary functions whose outputs have not yet been queried by A at any stage of the
execution be denoted by {O{i,j,k}}{i,j,k}∈T . Initially, T =

(
[n]
3

)
. The description

of the simulator Sim is given in Figure B.4.

Proof of Indistinguishability. We show that w.r.t. any adversary A, the real
world and the ideal world executions are computationally indistinguishable via
a hybrid argument.

• Hyb0 : This corresponds to the real world execution of the protocol.

• Hyb1 : This hybrid is obtained by making the following changes in the de-
scription of Sim in Figure A.4. All the variables used below are already set in
the description.

• Replace instructions in step 3.(b) as follows:
When a ∈ H and c ∈ C, compute the output of CD{ab,aℓ},c.O{ab,c} is
computed as described in Πf using the input of Pa as sampled by Sim and
the input of Pc as provided by the adversary.

• Replace instructions in step 3.(c) as follows when c ∈ H:
The output of CD{ab,aℓ},c.O{ab,c} is computed as described in Sim after
changing the input of Pc from 0 as sampled by Sim to the true value provided
by the environment.

• In step 4, use z{i,j,k} = h{i,j,k}(xi, xj , xk) while computing ẑ{i,j,k}. Here xi

(resp. xj and xk) are as provided by A if i ∈ C (resp. j ∈ C and k ∈ C),
and as provided by the environment if i ∈ H (resp. j ∈ H and k ∈ H).

• Hyb2 : In this hybrid, revert changes made in step 3(c), when c ∈ H, back to
the instructions in the simulator. That is, the output of CD{ab,aℓ},c.O{ab,c} is
computed as described in Sim using 0 as the input of Pc as used in Sim.
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Sim

(i). Initialization of Sim

For each i ∈ H, set xi = 0, and sample Ri uniformly at random. Sample
{γi[{i, ℓ, ℓ′}]}{ℓ,ℓ′}∈([n]\{i}

2 ) as an additive secret sharing of 0 ∈ G. Further, for all

distinct j, k, k′ ̸= i, sample sik [ik′ , j] uniformly from G.

(ii). Responding to (oracle, {i, j, k}, Inputs)

1. If i ∈ C, receive the input of Pi to O{i,j} from A. Let this be(
1λ, xi, γi[{i, j, k}], {siℓ [iℓ′ , ℓ

′]}
(ℓ,ℓ′,ℓ′′)∈([n]\{i}

3 )
ord

, Ri

)
Similarly, if j ∈ C (resp. k ∈ C), receive the input of Pj (resp. Pk) to O{i,j}
from A.

2. If {i, j, k} ⊆ C, compute and output O{i,j,k} as described in Πf using these
inputs.

3. For any (a, b, c) ∈
({i,j,k}

3

)
ord

and ℓ /∈ {i, j, k}:
(a) The output of CD{ab,aℓ},c.O{ab,aℓ} is computed as described in Πf using

the input of Pa as provided by the A when a ∈ C and as sampled by Sim
when a ∈ H.

(b) When a ∈ H and c ∈ C, compute the output of CD{ab,aℓ},c.O{ab,c}

as follows: initialize CD{ab,aℓ},c.Sim
FCDS(ab[aℓ,c],aℓ[ab,c],·) if uninitialized.

Query this simulator for the output of CD{ab,aℓ},c.O{ab,c} with Pi’s input
(as provided by A), and forward the response.

(c) Otherwise, the output of CD{ab,aℓ},c.O{ab,c} is computed as described in
Πf using the input of Pa (resp. Pb) as provided by the A if a ∈ C (resp.
c ∈ C) and as sampled by Sim when a ∈ H (resp. c ∈ H).

Fig. B.4. Simulator for Πf .

• Hyb3 : In this hybrid, revert changes made in steps 3(b) back to the instruc-
tions in the simulator. That is, when a ∈ H and c ∈ C, compute the output of
CD{ab,aℓ},c.O{ab,c} as follows: initialize CD{ab,aℓ},c.Sim

FCDS(ab[aℓ,c],aℓ[ab,c],·) if
uninitialized. Query this simulator for the output of CD{ab,aℓ},c.O{ab,c} with
Pi’s input (as provided by A), and forward the response.

• Hyb4 : In this hybrid, revert changes made in steps 4 back to the instructions in
the simulator. That is, z{i,j,k} is chosen as follows: if there exists {i′, j′, k′} ∈ T
such that {i′, j′, k′} ̸⊆ C, then sample z{i,j,k} uniformly at random. Otherwise,
check if, for every ℓ ∈ C, there exists x̂ℓ such that, for all {ℓ, ℓ′, ℓ′′} ̸⊆ C, the
adversary used x̂ℓ while invoking O{ℓ,ℓ′,ℓ′′}.

1. If false, sample z{i,j,k} uniformly at random.

2. If true, send the signal (evaluate, Inputs) to FPwKO({xk}k∈[n]\C , ·), where
the input of each Pℓ, ℓ ∈ C is x̂ℓ. Store the output as out. Choose z{i,j,k}
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Sim Contd.

4. Finally, output

ẑ{i,j,k} = z{i,j,k} +
∑

(a,b,c)∈({i,j,k}
3 )

ord

∑
ℓ/∈{i,j,k}

sab [aℓ, c]

+
∑

ℓ∈{i,j,k}

γℓ[{i, j, k}].

where z{i,j,k} is sampled as follows: If there exists {i′, j′, k′} ∈ T such that
{i′, j′, k′} ̸⊆ C, then sample z{i,j} uniformly at random. Otherwise, check if,
for every ℓ ∈ C, there exists x̂ℓ such that, for all {ℓ, ℓ′, ℓ′′} ̸⊆ C, the adversary
used x̂ℓ while invoking O{ℓ,ℓ′,ℓ′′}.
(a) If false, sample z{i,j,k} uniformly at random.
(b) If true, send the signal (evaluate, Inputs) to FPwKO({xk}k∈[n]\C , ·),

where the input of each Pℓ, ℓ ∈ C is x̂ℓ. Store the output as out. Choose
z{i,j,k} such that∑

{ℓ,ℓ′,ℓ′′}̸⊆C

zℓ,ℓ′,ℓ′′ = out−
∑

{ℓ,ℓ′,ℓ′′}⊆C

h{ℓ,ℓ′,ℓ′′}(x̂ℓ, x̂ℓ′ , x̂ℓ′′).

(iii). Choosing the output of the honest parties.

When T = ∅, use the outputs of all 3-ary functions to compute the output σ′

according to Πf . Send (output, σ′) to FPwKO.

Fig. B.5. Simulator for Πf .

such that ∑
{ℓ,ℓ′,ℓ′′}̸⊆C

zℓ,ℓ′,ℓ′′ = out−
∑

{ℓ,ℓ′,ℓ′′}⊆C

h{ℓ,ℓ′,ℓ′′}(x̂ℓ, x̂ℓ′ , x̂ℓ′′).

In Lemma B.2 we show that Hyb0 and Hyb1 are perfectly indistinguishable.
In Lemma B.3 we show that Hyb1 and Hyb2 are perfectly indistinguishable.
In Lemma B.4 we show that Hyb2 and Hyb3 are perfectly indistinguishable.
In Lemma B.5 we show that Hyb3 and Hyb4 are statistically indistinguishable.
We note that Hyb4 corresponds to the ideal world execution using the simulator.

Lemma B.2. Hyb0 ≡ Hyb1.

Proof. This can be verified by inspection. Note that the view of the adversary
is composed of the outputs of all oracle calls, the inputs of corrupt parties and
adversary’s own private randomness. The description of the simulator has been
changed to involve the real inputs of honest parties in steps 3(c), and 4. The use
of simulator has been reverted back to the actual computation of conditional dis-
closure protocols. All the variables sampled by honest parties have been sampled
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according to the same distribution. Finally, the output is computed according
to the instructions in the protocol.

Lemma B.3. Hyb1 ≡ Hyb2.

Proof. Hyb1 differs from Hyb2 only in the input of Pc, where c ∈ H, in CD{ab,aℓ},c
for each ℓ. In the former, the actual input xi provided by the environment is
used, whereas, in the latter, a dummy input 0m chosen by Sim is used. The
perfect indistinguishibility between these two hybrids can be shown exactly as
in lemma A.5.

Lemma B.4. Hyb2 ≡ Hyb3.

Proof. For a ∈ H and c ∈ C, the real world execution of CD{ab,aℓ},c in Hyb2
has been replaced with an ideal world execution in Hyb3. This is the only differ-
ence between Hyb2 and Hyb3. The perfect indistinguishibility between these two
hybrids can be shown exactly as in lemma A.6.

Lemma B.5. Hyb3 ≈ϵ(λ) Hyb4, where ϵ(λ) is a negligible function.

Proof. Consider a hybrid Hyb3,1 obtained by modifying the instructions for sam-
pling z{i,j,k} in step 4 of Hyb4 as follows: If there exists {i′, j′, k′} ∈ T such that
{i′, j′, k′} ̸⊆ C, then sample z{i,j,k} uniformly at random. Otherwise, Choose
z{i,j,k} such that∑

{ℓ,ℓ′,ℓ′′}̸⊆C

z{ℓ,ℓ′,ℓ′′} = h{ℓ,ℓ′,ℓ′′}(x
ℓ,ℓ′,ℓ′′

ℓ , xℓ,ℓ′,ℓ′′

ℓ′ , xℓ,ℓ′,ℓ′′

ℓ′′ ), (23)

where xℓ,ℓ′,ℓ′′

ℓ is the provided by the adversary while invoking O{ℓ,ℓ,ℓ′′} if ℓ ∈ C,
and it is the input provided by the environment when ℓ ∈ H; similarly for the
other two cases.

The Hyb3 and Hyb3,1 differ only in the manner in which z{i,j,k} is chosen
while computing ẑ{i,j,k} for each {i, j, k} ̸⊆ C in step 4. In the former, for each

{i, j, k} ̸⊆ C, z{i,j,k} = h{i,j,k}(x
i,j,k
i , xi,j,k

j , xi,j,k
k ). In the latter, {z{ℓ,ℓ′,ℓ′′}} have

been chosen as an additive secret sharing satisfying (23).

Claim B.5.1 When I denotes the indicator function, for each {i, j, k}, define

u{i,j,k} =
∑

ℓ∈{i,j,k}

I(ℓ ∈ H) · γℓ[{i, j, k}].

Then, {u{i,j,k}}{i,j,k}̸⊆C form an additive secret sharing of 0.

The proof of the claim follows the same outline as claim A.7.1, hence we leave
it to the reader.

It can be verified that, for each {i, j, k}, γℓ[{i, j, k}] for ℓ ∈ {i, j, k}, and hence
u{i,j,k} is used exclusively in step 4. The above claim implies that {z{i,j,k} +
u{i,j,k}}{i,j,k}̸⊆C is an additive secret sharing of

∑
{i,j,k}̸⊆C z{i,j,k}. This directly

implies that Hyb3 ≡ Hyb3,1.
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Next, we obtain Hyb3,2 by modifying Hyb3,1. Let O{i,j,k} be the last 3-ary
function that A queries such that {i, j, k} ̸⊆ C; i.e., there exists no {i′, j′, k′} ∈ T
such that {i′, j′, k} ̸⊆ C. We modify the choice of z{i,j,k} in step 4 as follows: If
for all ℓ ∈ C, there exists x̂ℓ such that, for all {ℓ, ℓ′, ℓ′′} ̸⊆ C, the adversary used
x̂ℓ as input of Pℓ while invoking O{ℓ,ℓ′,ℓ′′}, the choose zi,j,k such that∑

{ℓ,ℓ′,ℓ′′}̸⊆C

z{ℓ,ℓ′,ℓ′′} = f(x̂1, . . . , x̂n)−
∑

{ℓ,ℓ′,ℓ′′}⊆C

h{ℓ,ℓ′,ℓ′′}(x̂ℓ, x̂ℓ′ , x̂ℓ′′).

If not, make no changes to Hyb3,1. Hyb3,1 ≡ Hyb3,2 by the above claim, since∑
{i,j,k}̸⊆C z{i,j,k} = h{i,j,k}̸⊆(x̂i, x̂j , x̂k).

Finally, we show that Hyb3,2 ≈ϵ(λ) Hyb4, where ϵ(λ) is a negligible function.
Let O{i,j,k} be the last 3-ary function that A queries such that {i, j, k} ̸⊆ C. For
all {ℓ, ℓ′, ℓ′′} ≠ {i, j, k}, Hyb3,2 and Hyb4 behave identically. The only difference
between the two hybrids is in the choice of z{i,j,k}, when there exists ℓ ∈ C,
{ℓ, ℓ1, ℓ2} ̸⊆ C and {ℓ, ℓ′1, ℓ′2} ̸⊆ C such that, the input provided by A on behalf
of Pℓ in O{ℓ,ℓ1,ℓ2} is distinct from that provided in O{ℓ,ℓ′1,ℓ′2}. We crucially ob-
serve that, whenever there exists ℓ, ℓ1, ℓ2, ℓ

′
1, ℓ

′
2 satisfying these conditions, there

exists a ∈ H such that the input provided by A to CD{ab,ac},ℓ.O{ab,ℓ} and
CD{ab,ac},ℓ.O{ac,ℓ} on behalf of Pℓ are inconsistent. In conclusion, the two hy-
brids differ only in the sampling of z{i,j,k} (where {i, j, k} is as descibed above)
when there exist a ∈ H and ℓ ∈ C satisfying the above condition. At this point,
we may use the same line of argument used in the proof of lemma A.7 to prove
this lemma.

This concludes the proof of the lemma. ⊓⊔
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