
Does quantum lattice sieving require quantum
RAM?

Beomgeun Cho1, Minki Hhan⋆2, Taehyun Kim1, Jeonghoon Lee1, and Yixin
Shen3

1 Seoul National University, Seoul, Republic of Korea,
{c11sh0117,taehyun,dalsan2113}@snu.ac.kr

2 The University of Texas at Austin, Texas, USA, minki.hhan@austin.utexas.edu
3 Univ Rennes, Inria, CNRS, IRISA, Rennes, France yixin.shen@inria.fr

Abstract. In this paper, we study the requirement for quantum ran-
dom access memory (QRAM) in quantum lattice sieving, a fundamental
algorithm for lattice-based cryptanalysis.
First, we obtain a lower bound on the cost of quantum lattice sieving with
a bounded size QRAM. We do so in a new query model encompassing a
wide range of lattice sieving algorithms similar to those in the classical
sieving lower bound by Kirshanova and Laarhoven [CRYPTO 21]. This
implies that, under reasonable assumptions, quantum speedups in lattice
sieving require the use of QRAM. In particular, no quantum speedup is
possible without QRAM.
Second, we investigate the trade-off between the size of QRAM and the
quantum speedup. We obtain a new interpolation between classical and
quantum lattice sieving. Moreover, we show that further improvements
require a novel way to use the QRAM by proving the optimality of some
subroutines. An important caveat is that this trade-off requires a strong
assumption on the efficient replacement of QRAM data, indicating that
even speedups with a small QRAM are already challenging.
Finally, we provide a circuit for quantum lattice sieving without using
QRAM. Our circuit has a better depth complexity than the best classical
algorithms but requires an exponential amount of qubits. To the best
of our knowledge, this is the first quantum speedup for lattice sieving
without QRAM in the standard quantum circuit model. We explain why
this circuit does not contradict our lower bound, which considers the
query complexity.

Keywords: lattice sieving, the shortest vector problem, collision finding, quan-
tum RAM

1 Introduction

One of the major impacts of quantum computing is to efficiently solve the in-
teger factoring problem with Shor’s algorithm [57], threatening the currently
⋆ Most of this work was done while Minki Hhan was in KIAS, Korea.

used cryptographic schemes like the RSA cryptosystem [55]. As a countermea-
sure, NIST has started to standardize post-quantum cryptography (PQC) to
replace the currently deployed ones. Lattice-based cryptography is one of the
most promising post-quantum cryptography candidates due to its provable se-
curity [54] and efficiency. Several schemes [9,20,27] have thus been selected to be
standardized by NIST [51].

The post-quantum security of lattice-based cryptography has been studied
extensively, e.g. in [7,6,58,48]. Many lattice cryptanalysis algorithms heavily rely
on lattice reduction algorithms [36,3,6,21,26,31,34,44,53], which in turn reduce
to solving the shortest vector problem (SVP); therefore the SVP algorithm often
dominates the cost of the overall attack. Classically, lattice sieving and enumer-
ation are the most promising approaches to solving the SVP. For the SVP over
a d-dimensional lattice, lattice sieving has time complexity 2O(d) but requires an
exponential memory 2O(d) as well [2,49]. On the other hand, enumeration algo-
rithms only require a polynomial-size memory while having super-exponential
complexity 2O(d log d) [52].

A series of works have shown how to obtain asymptotic quantum speedups
for both lattice algorithms. For enumeration, asymptotic quadratic quantum
speedup [8] have been obtained using the quantum backtracking technique [47],
positively answering the conjectured quadratic speedup in [37]. The complex-
ity of quantum lattice sieving [42,33,18,14] is more involved. Compared to the
best classical time complexity 20.2925d+o(d) [12], the current best quantum time
complexity is 20.2563d+o(d) which is achieved using (reusable) quantum walk tech-
niques [14]. The concrete complexity of the quantum enumeration and sieving
has been explored in [10] and [5] respectively, which demonstrate that quan-
tum speedups for lattice cryptanalysis are achievable with full-fledged quantum
computers.

Our current understanding of quantum computer architectures, however, has
raised many concerns about full-fledged, unbounded-depth, error-free quantum
computers. Two notable constraints on quantum devices must be considered—
the quantum circuit depth and the quantum random access memory (QRAM).
Since qubits suffer from physical errors and decoherence, achieving large quan-
tum circuit depth could be challenging. The limited quantum circuit depth model
has thus been suggested by NIST [1, Section 4.A.5] in their standardization pro-
cedure.

QRAM is a quantum variant of classical RAM, allowing coherent access op-
eration

|i⟩ |0⟩ 7→ |i⟩ |xi⟩

given a stored list L = (xi)i∈I of classical data. This operation requires coherent
access to all data in L and thus relies on a new quantum architecture. Many
architectures [29,28,46] have been suggested. However, all known proposals suf-
fer from some drawbacks. [38] discusses some fundamental limitations on these
infrastructures. Based on the conclusion of [38], QRAM should be considered
expensive or potentially unrealistic. Ideally, we would like to remove the use of
QRAM in quantum algorithms to avoid the above issues. This is, for example,

2

the case of the quantum collision finding problem where a quantum speedup
without QRAM was achieved in [19].

The quantum circuit depths and/or QRAM may be a hurdle for the quantum
lattice algorithms. The quantum sieving estimation [5] shows that all known
quantum sieving algorithms require huge quantum depth and QRAM, leaving
the question of whether large QRAM and/or large quantum circuit depth are
fundamental barriers to achieving a quantum advantage.

This question is also relevant for enumeration where a recent work [13] ex-
plored quantum speedups in the bounded quantum circuit depth model and con-
cluded that the current quantum enumeration techniques are unlikely to provide
practical speedup in this setting.

In this paper, we mainly focus on the QRAM aspect of the question:

Does quantum lattice sieving necessarily require a large QRAM?

Our main question is particularly interesting in the near future where small-sized
quantum computers are available, but QRAM does not exist. Furthermore, if the
answer is yes, and it turns out that efficient QRAM is unlikely to exist and large
quantum circuit depth is hard to realize, then the implication combining [13]
could be even more striking—there could be no quantum speedup in lattice crypt-
analysis!

We would like to stress that quantum lattice sieving algorithms have been
continuously improving since [5], and the QRAM-less variant has not been ex-
plored yet. This is in contrast with the classical setting where much more is
known. Kirshanova and Laarhoven [40] proved the tightness of the best classical
lattice sieving [12] in the nearest-neighbor model that encompasses most sieving
algorithms. To the best of our knowledge, no similar results exist in the quantum
setting.1

1.1 This work

In this paper, we study the role of QRAM2 in quantum lattice sieving. We
provide some evidence that QRAM access is essential for quantum speedups
and explore the fine-grained trade-off between the size of QRAM and the time
complexity of quantum lattice sieving.

Need for (large) QRAM in quantum lattice sieving. We introduce a new quan-
tum and classical lattice sieving (or near-neighbor) model that encompasses all
known sieving algorithms [18,14,33,42]. This model is similar to the one used
in the classical sieving lower bound [40]. We then show that, in this model, any
quantum algorithm beyond the classical lower bound must use a QRAM. Putting
1 [40] claims that the quantum algorithm of [42], which uses Grover’s algorithm, is

optimal. However, [18], which uses quantum walks, is already better than [42].
2 This paper focuses on the QRAM structure accessing classical data, usually referred

to as QRACM. We refer to Section 2.3 or [38] for more discussion on QRAM for
quantum data.

3

it differently, our lower bound suggests that the QRAM-less quantum speedup
for lattice sieving requires a fundamentally new idea.

In fact, we prove a more general lower bound, which implies that a stronger
quantum speedup in lattice sieving requires a larger QRAM. While our trade-off
bound is not tight, it asserts the need for a somewhat large QRAM to achieve
the complexity as in the current best quantum lattice sieving algorithm.

We note that our model includes two types of strategies to include the two
algorithms using quantum walks [18,14], which slightly deviate from the frame-
work of [40]3. For the lower bound regarding the strategy including [18,14], we
make some reasonable assumptions about the use of QRAM: Roughly, it says
that the efficient generation of coherent states of the vectors can only be achieved
through the QRAM access.

Quantum lattice sieving with small QRAM. Given the requirement of QRAM in
the quantum speedup, we explore the fine-grained trade-off between the size of
QRAM and the quantum complexity of lattice sieving. We revisit the trade-off
algorithms that smoothly interpolate between the known classical and quantum
complexity of lattice sieving, which is also briefly discussed in [18].

The graph showing the overall trade-off can be found in Figure 2. While the
trade-off is mostly unchanged from [18] in the (very) small QRAM regime, we
found that the bounded QRAM version of [33] gives a better time complexity
than the one suggested in [18] for a moderate size QRAM. These trade-offs are
obtained using variants of Grover’s algorithm with a bounded QRAM. We show
that further improvements require a new way to use the QRAM by proving the
optimality of some subroutines.4

Another important caveat we found is that these trade-off algorithms require
a strong assumption on the QRAM: The stored classical data must be replaceable
very efficiently, i.e. in 2o(s) time for a QRAM of size 2s. This efficient operation
potentially forces a very specific implementation of QRAM or asks for multiple
QRAMs to virtually implement such an operation. We refer to Section 4.4 for a
more detailed discussion. We are not aware of any way to use small QRAM in
lattice sieving without this assumption. This indicates that the quantum speedup
for lattice sieving is challenging even with a moderate size QRAM.

These findings prompt us to revisit the comparison between enumeration
and sieving for the famous lattice reduction algorithm BKZ [56]. If we assume
that arbitrary depth quantum circuits are available but we cannot build large
QRAM, then quantum enumeration will outperform quantum sieving even for
relatively large dimension. Figure 1 plots the complexity of BKZ using quantum
enumeration [4, Fig. 10] (assuming a full quadratic speedup of [8]) compared to
our lower bound on sieving with no QRAM of Section 6. We also include the
best quantum algorithm for BKZ with sieving, assuming no constraint on the
QRAM size [14]. Note that all algorithms above achieve the same root Hermite
factor k1/k, and that we have neglected some polynomial factors. The goal of
3 Though their classical lower bound still applies (as we showed).
4 See Theorem 3. We are not aware of a similar lower bound in the literature.

4

this comparison is therefore not to give exact values for the cross-over points
between enumeration and sieving but rather to give orders of magnitude and to
observe the impact of the (lack of) QRAM.

100 200 300 400 500 600 700

0.2

0.25

0.3

block-size k

1 k
lo

g 2
(c

om
pl

ex
ity

)

BKZ+quantum enumeration
BKZ+sieving [no QRAM]
BKZ+sieving [full QRAM]

Fig. 1: Comparison between BKZ using quantum enumeration with full
quadratic speedup, and BKZ using our lower bound on quantum sieving with
no QRAM. We also include the best quantum algorithm with no constraints on
the QRAM.

Symmetric key cryptography. The idea of designing quantum algorithms with a
small QRAM can be applied to the collision finding and multi-target preimage
search problems, discussed in [19] without QRAM. We demonstrate a smooth
trade-off for the quantum collision finding problem between the results of [17]
and [19], which correspond to the maximal and minimal QRAM, respectively.
We also show a similar trade-off for the multi-target preimage search problem
bridging the QRAM-based multi-target Grover algorithm and the result in [19].

These results readily apply to the applications discussed in [19]: hash colli-
sion finding, multi-user security, CBC mode of operations, as well as building
blocks for advanced cryptanalysis such as [39]. As in the lattice cryptanalysis
discussion, small practical QRAM helps for symmetric-key cryptanalysis but the
same caveat applies regarding the need for efficient data replacement.

Quantum lattice sieving without QRAM. Finally, we present, inspired by [33], a
quantum sieving algorithm without QRAM that has a depth complexity smaller
than the classical sieving algorithms. This does not contradict our lower bound
because it uses exponentially many qubits to operate many gates in parallel,
which may be considered unrealistic; when 20.207d qubits are available, our al-
gorithm runs in time about 20.279d. To the best of our knowledge, this is the
first QRAM-less quantum algorithm in the standard circuit model, faster than
classical, with the minimal space of 20.207d for lattice sieving.5 This result rules
out a depth-alone lower bound for sieving, suggesting that the depth-width cost
could be more desirable than the depth cost.
5 [41] suggested a fast quantum algorithm without QRAM, but their algorithm works

in a stronger model of distributed quantum computing [11].

5

Organization. This paper is organized as follows. Section 2 presents some pre-
liminaries required for this paper. We present the quantum algorithms using
small QRAM in Section 3. As applications of these algorithms, the trade-off al-
gorithms between the QRAM size and time complexity are given in Section 4
for lattice sieving and in Section 5 for symmetric key cryptography. Our lattice
sieving model and lower bounds are presented in Section 6, with a more for-
mal treatment in Appendix B. Finally, Section 7 shows how to solve the sieving
problem without a QRAM but at the expense of using many qubits.

2 Preliminaries

Notations. We use bold lower-case letters to denote vectors and bold upper-case
letters to denote matrices. The Euclidean norm of a vector v is denoted by ∥v∥.
The inner product of two vectors is denoted by ⟨·, ·⟩. We usually denote the
dimension of the lattice by d, and also assume that the size of the vectors are
polynomial in d.

When discussing the running time of the algorithms solving lattice problems,
we assume that the vectors (used in the basis or in computations) have bit-
size polynomial in the ambient dimension d). In particular, we will ignore the
resulting polynomial factors due to manipulating vectors.

2.1 Lattice

A (full-rank) d-dimensional lattice L is a discrete additive subgroup of Rd, whose
elements can be uniquely expressed as the linear combinations of linearly inde-
pendent basis vector B = {b1, b2, · · · , bd}.

L(B) =
{

d∑
i=1

xi · bi | xi ∈ Z, bi ∈ B
}

(1)

Given a basis B of the lattice, the shortest vector problem (SVP) asks to find
the vector s ∈ L(B) such that ∥s∥ = λ1(L) := minv∈L(B)−{0} ∥v∥.

2.2 Quantum computing

We consider the quantum circuit model consisting of single- and two-qubit gates
without any locality constraint. We further assume that the number of qubits
available to algorithms is bounded by some polynomial, except for Sections 6
and 7 which focus on theoretic perspectives.

We count the depth of the quantum circuit as the time complexity. We occa-
sionally ignore the polynomial factors and only focus on the exponential terms
when discussing the complexity. Since this paper mostly assumes a small num-
ber of qubits, choosing different complexity measures does not change the results
of this paper much. We explicitly describe the number of qubits when we dis-
cuss algorithms with large qubits. For a more detailed introduction to quantum
computing, we refer to [50].

6

Quantum oracles. Let X be a set. For a function f : X → {0, 1}m, the oracle
Of is a unitary that computes:

Of : |x, y⟩ 7→ |x, y ⊕ f(x)⟩ . (2)

The circuits for computing most oracles in this paper will be explicitly given.
The time complexity of the oracle is the same as the corresponding circuit.

For a projector P acting on the span of X, we similarly define the projection
oracle OP by:

OP : |ψ⟩ |b⟩ 7→
{
|ψ⟩ |b⊕ 1⟩ if |ψ⟩ ∈ Im(P),
|ψ⟩ |b⟩ if |ψ⟩ ∈ Ker(P).

(3)

We occasionally use quantum amplitude amplification as a subroutine in our
algorithms, which can be seen as a generalization of Grover’s algorithm.

Theorem 1 (Quantum amplitude amplification [16]). Let P be a pro-
jector acting on the span of X. Let Init be a quantum algorithm that generates
|ϕ⟩ = α |ϕP ⟩+β

∣∣ϕ⊥
P

〉
, where |ϕP ⟩ ∈ Im(P) and

∣∣ϕ⊥
P

〉
∈ Ker(P). Let θ ∈ [0, π/2]

be such that sin θ = |α|. Let N = ⌊ π
4θ −

1
2⌋. If the time complexities of OP and

Init are TP , TInit, respectively, then there exists a quantum algorithm that pro-
duces a quantum state sufficiently close6 to |ϕP ⟩ in time O(N(TP + TInit)). If
α = o(1), it can be written as O((TP + TInit)/α).

If X = {0, 1}n and the projector P is defined by a function f : {0, 1}n →
{0, 1}, we recover Grover algorithm. In particular, it finds x ∈ {0, 1}n such that
f(x) = 1 in time O(

√
2n/|f−1(1)|).

Theorem 2 (Quantum Minimum Finding Algorithm [25, Theorem 1]).
Given a list of N = 2n values from an ordered set, there is an algorithm to find
the index of the minimum value with probability at least 1/2 in time O(

√
N).

2.3 Quantum random access memory

We consider quantum random access memory (QRAM) in addition to the quan-
tum circuit model. The main feature of the QRAM is that it allows queries that
are superposed in addresses, thereby allowing the superposition of desired data
stored in memory.

More precisely, using the QRAM storing m elements L = (x1, ..., xm), a
quantum algorithm can apply a special QRAM gate that works as follows in the
computational basis:

UL
QRAM : |i, y⟩ 7→ |i, y ⊕ xi⟩ . (4)

The quantum algorithms in this paper are specified by a quantum circuit with
single-, two-qubits and QRAM gates along with the memory storing the data in
the QRAM. We count the QRAM gate as a single gate in the time complexity.
6 This can be done in a standard way, e.g., as in [15].

7

We assume that the memory used in the QRAM gate always stores clas-
sical data. Precisely, we only consider quantum random access classical mem-
ory (QRACM). One may consider quantum random access quantum memory
(QRAQM), which is more general [38]. Given that maintaining a coherent state
for a long time is hard, restricting the algorithms to QRACM only and having
small quantum memory is a reasonable model: The small quantum memory is
the only part that maintains quantum information perpetually, while the other
parts only become coherent ephemerally.

Although there is no agreed model of the QRA(C)M, writing data on it will
require non-trivial cost which is at least logarithmic in the memory size (and
more likely to require polynomial or exponential time). However, we assume
that writing the data to, or overwriting (i.e. reset and load another data) the
QRACM can be done in time O(1). While this assumption is very strong, the
complexity assuming this assumption gives a lower bound of the complexity of
the algorithm, in the sense that the cost related to memory I/O is excluded, and
only the number of memory accesses is taken into account. Also, the result yields
a natural trade-off for some quantum algorithms using QRAM, as can be seen
in Section 4. More discussion on this assumption can be found in Section 4.4
where we argue that our model is not as unrealistic as it appears, if we think
about QRAMs as physical objects.

3 Quantum Algorithms with Bounded QRAM

This section presents the basic quantum algorithms using bounded-size QRAM.
We suppose that a set X = {x1, ..., xM} of size M is given to the algorithm in the
memory, but the algorithm is allowed to use QRAM of size S ≤M , which means
the algorithm can coherently access at most S elements in X. For simplicity, we
assume that M is divided by S. Looking ahead, we are mainly interested in the
case where X is a random subset of Sd−1 for later use in lattice sieving, but the
results in this section hold regardless of the choice of X.

Consider the function f : X → {0, 1} and the problem of finding x ∈ X
such that f(x) = 17. When X = [M] is explicitly given and the function f can
be computed by a circuit (or given as an oracle), it is well known that Grover
algorithm requires only O(

√
M) computations of f to solve this problem [30].

The situation becomes more complicated if X is not explicitly specified a
priori. To execute the quantum search or the amplitude amplification, we need
to implement the reflection map

Ref = I − 2 |ψ⟩⟨ψ| for |ψ⟩ =
∑

i∈[M]

|i, xi⟩√
M

. (5)

7 With the promise that such an x exists with a high probability.

8

If there is no size bound on the QRAM, an algorithm that outputs |ψ⟩ can be
efficiently implemented as follows

|0⟩ 7→
∑

i∈[M]

|i, 0⟩√
M
7→

∑
i∈[M]

|i, xi⟩√
M

(6)

where we use the QRAM gate (eq. (4)) in the second map, and the amplitude
amplification gives the same complexity as in Grover’s algorithm. When the
algorithm is limited to a QRAM of size at most S, the following lemma shows
that we can obtain a slightly worse quantum speedup. Setting S = 1 and S = M
give the classical exhaustive search algorithm and Grover algorithm, respectively.

Lemma 1. Let X be a set of size M stored in a classical memory of the al-
gorithm. Assume that the function f : X → {0, 1} is randomly chosen so that
Pr[f(x) = 1] = c/M holds for each x ∈ X independently for some c ≥ 6.8 If
QRAM of size S is available for some 0 ≤ S ≤ M , then there exists an algo-
rithm A that can find x∗ such that f(x∗) = 1 in O

(
M√

S

)
evaluations of f with

a sufficiently high probability (say 0.99).

Proof (sketch). The proof idea is that by storing S elements of X in the QRAM
and searching the solution in those elements only using O(

√
S) evaluations.

Repeating the procedure M/S times for each block, O
(

M√
S

)
evaluations are

required. The formal proof is given in Appendix A.

We remark that the assumption for the efficient replacement of QRAM is
crucial in the above lemma. Otherwise, the first step to store elements in QRAM
can dominate the algorithm’s complexity.

We also consider the following generalization of the search problem: Given
two sets X and Y and a function f : X × Y → {0, 1}, find most solution pairs
(x, y) ∈ X × Y such that f(x, y) = 1. Lemma 2 shows the complexity of this
problem in the bounded QRAM case.

Lemma 2. Let X,Y be a set of sizes M1,M2 respectively, stored in a classical
memory of the algorithm. Assume that the function f : X × Y → {0, 1} has K
(uniformly distributed) solutions (x, y) ∈ X × Y such that f(x, y) = 1. If two
QRAMs of size S each are available for some 0 ≤ S ≤ max(M1,M2), then there
exists an algorithm A′ that can find Ω(K) solutions using

1. O
(√
M1 ·M2 ·K

)
evaluations of f if

√
M1·M2

K ≤ S ≤ max(M1,M2) and

2. O
(

M1·M2
S

)
evaluations of f if 1 ≤ S ≤

√
M1·M2

K .

Proof (sketch). By storing S elements of X and Y in separate QRAMs, superpo-
sition of S2 possible pairs can be generated, and the amplitude amplification can
be applied, similar to the proof in Lemma 1. The result slightly differs because
we need to find Ω(K) solutions. Detailed proof is given in Appendix A.
8 It ensures the existence of x∗ such that f(x∗) = 1 with probability at least 0.995.

9

We also prove the lower bound corresponding to Lemma 1, albeit in a slightly
restricted model. The condition “each query contains at most S elements” cap-
tures the situation that whenever A makes a QRAM query, A evaluates the f
information of the QRAM entries. The proof is more involved and uses a variant
of the compressed oracle argument [59] for the Bernoulli random functions [23].
We defer the proof to Appendix A.1.
Theorem 3. Let X be a set of size M . Suppose that f : X → {0, 1} be a random
function where f(x) = 1 holds with probability p = Ω(1/M) for each x ∈ X
independently. Let A be a quantum algorithm that makes at most q queries to
the quantum oracle access to f . If each query of A to f contains at most S
elements in X in the computational basis, then it holds that

Pr
[
Af → x : f(x) = 1

]
= O

(√
S · pq

)
.

In particular, any algorithm finding the solution x requires making at least M√
S

queries to f for p = Θ(1/M).

4 Time-QRAM Trade-off for Quantum Lattice Sieving
This section presents the fine-grained trade-off between time and the QRAM size
in quantum lattice sieving based on the algorithms in Section 3. We focus on the
locality-sensitive filtering(LSF) method in [12], which is proven to be optimal
among a wide class of sieving algorithms in the classical setting [40].

Locality-sensitive filtering defines a family of functions called filters {Fi}i∈[t].
A vector v passes a filter Fi if (say) Fi(v) = 1, otherwise Fi(v) = 0. With careful
construction of filter family, the key part of LSF is that one can find all filters
that a vector passes, without calculating every Fi(v) for i ∈ [t].

4.1 Sieving with locality-sensitive filtering
Before going into the quantum algorithm, we review the classical lattice sieving
algorithm with locality-sensitive filtering in Algorithm 1.

Heuristic lattice sieving. [49] proves that |L| = (4
3)d/2+o(d) suffices to heuristi-

cally solve the shortest vector problem in the lattice of dimension d. Throughout
this paper, we fix the size of the input list as

n := |L| ≈ 20.2075d+o(d). (7)
We call that the vector v −w added in Line 4 the reduced vector. The pair

(v,w) is called by the reducing pair. We always consider R′/R→ 1 (as d→∞).
In this case, the condition ∥v − w∥ ≤ R′ is roughly equivalent to the angle
between them is less than π/3, which we focus on. The time complexity is domi-
nated by the time to find the close pairs in Line 3. In the original heuristic sieve
algorithm [49], it is done by the exhaustive search on (v,w) ∈ L × L, thereby
the time complexity becomes n2 ≈ 20.4150d+o(d). Hash-based approaches signif-
icantly reduce the time complexity, and we review the most efficient algorithm
based on the locality-sensitive filtering below.

10

Algorithm 1 Lattice Sieving Algorithms
Input R, R′ = γ ·R > 0, L: list of input vectors with ∥v∥ ≤ R ∀v ∈ L
Output L′: list of output vectors with ∥v′∥ ≤ R′ ∀v′ ∈ L′

1: L′ ← ∅
2: for all v ∈ L do
3: if ∃w ∈ L such that v ̸= w and ∥v −w∥ ≤ R′ then
4: L′ ← L′ ∪ {v −w}
5: return L′

Geometry of sphere. Consider the unit sphere Sd−1 := {x ∈ Rd : ∥x∥ = 1}
and half-(hyper)spaces Hv,α := {x ∈ Rd : ⟨x,v⟩ ≥ α}. For v,w ∈ Sd−1 and
α, β ∈ [0, 1], spherical caps and wedges are defined by

Cv,α := Sd−1 ∩H,α, Wv,α,w,β := Sd−1 ∩Hv,α ∩Hw,β .

Let µ be the canonical Lebesgue measure over Rd. The relative volumes of spher-
ical caps and wedges have an important role in the lattice analysis. If the vectors
v,w ∈ Sd−1 satisfies ⟨v,w⟩ = cos θ, we define

Cd(α) := µ(Cv,α)
µ(Sd−1) , Wd(α, β, θ) := µ(Wv,α,w,β)

µ(Sd−1) .

We recall the estimates of these two values for large d [45,12].

Lemma 3. For arbitrary constants α, β ∈ (0, 1) and θ ∈ [0, π], the following
asymptotic formulas hold:

1. Cd(α) = poly(d) ·
(√

1− α2
)d, and

2. Wd(α, β, θ) = poly(d) ·
(√

1− γ2
)d

for γ =
√

α2+β2−2αβ cos θ
sin2 θ .

In particular, if α = β, Wd(α, β, θ) = poly(d) ·
(√

1− 2α2

1+cos θ

)d

.

Locality-sensitive filtering. The (spherical) locality-sensitive filtering is a family
of functions called filters {Fi,α}i∈[t],α∈(0,1) that are specified by a vector in a
set {c1, ..., ct} (sometimes called centers) in Sd−1 along with the parameter
α ∈ (0, 1). This family has a nice property that, given a vector v ∈ Sd−1 and
β ∈ (0, 1) as input, it is possible to find all indices i ∈ [t] such that ⟨v, ci⟩ ≥ β
efficiently. We call Fi,β by the relevant β-filters for these i’s. Formally, if the
number of relevant β-filters is fv,β , then it finds all indices in time O(fv,β). The
construction of locality-sensitive filtering is based on the random product code,
and the expected number of relevant filters is t · Cd(β).

The result of classical lattice sieving can be summarized as follows. We in-
clude a sketch of the proof for the completeness of the paper.

11

Theorem 4 ([12, Theorem 7.1]). Let L be a list of n random input vectors
sampled from Sd−1 where n is defined in (7). There is a classical lattice sieving
algorithm, given L and parameters α, β ∈ (0, 1) as input, that outputs Ω(n)
reduced vectors based on the LSF with t =Wd(α, β, π/3)−1 filters. The expected
running time of the algorithm is given as follows:

T = nt · Cd(β)︸ ︷︷ ︸
fill β-filters

+ n ·

(
t · Cd(α)︸ ︷︷ ︸

find α-close filters

+ nt · Cd(α) · Cd(β)︸ ︷︷ ︸
examine vectors in α-close filters

)
. (8)

In particular, for the optimal choice, the time complexity becomes 20.2925d+o(d).

Proof (sketch). Divide L = C ∪ (L \ C) into two lists of similar sizes. We first
describe the algorithm A as follows.

1. Prepare the spherical locality-sensitive filtering of size t defined by a set
{c1, ..., ct}. Define t empty lists B1, ..., Bt. Define an empty list L′.

2. For each vector w ∈ C, find all i ∈ [t] such that Fi,β is the relevant β-filters
of w, and append w to Bi.

3. For each v ∈ L \C, find all i ∈ [t] and w ∈ Bi such that Fi,α is the relevant
α-filters of v, and check if ∥v −w∥ ≤ R′. If true, append v −w to L′.

4. Output L′.

We first analyze the time complexity of the algorithm A. Note that |C|, |L \
C| = O(n). The first step can be done efficiently. For the second step, finding the
relevant vectors can be done efficiently due to the definition of locality-sensitive
filtering. Since the expected number of the relevant filters is t·Cd(β), this step can
be done in time O(nt · Cd(β)) at total. The third step is similar; finding relevant
α-filters is done in time t · Cd(α) and each of Bi contains n · Cd(β) vectors on
expectation, giving the desired time complexity as in eq. (8).

For the correctness of the algorithm, consider a close vector pair (v,w), i.e.,
⟨v,w⟩ ≥ cos (π

3). The probability that a random vector c defines a relevant β-
and α-filter of v and w, respectively, is precisely computed by Wd(α, β, π/3).
Hence, by Lemma 3, choosing

t =Wd(α, β, θ)−1 =Wd

(
α, β,

π

3

)−1
≈
(

1− 4
3
(
α2 − αβ + β2))−d/2

(9)

ensures that there exists a filter that can be used to find v −w on expectation.
Since n = 20.2075d+o(d) ensures that the number of such elements is at least Ω(n),
we conclude that the output L′ of A contains Ω(n) vectors.

By setting the three terms to be equal to each other, the optimization results
yield α = β = 1

2 and T = t =
(3

2
)d/2+o(d) = 20.2925d+o(d).

4.2 Quantum search inside the α-close filters

Applying a quantum search algorithm for searching close vectors in Bi, [42]
obtains quantum sieving in time 20.2653d+o(d).

12

Theorem 5 ([42, Section 14.2.10]). There is a quantum lattice sieving al-
gorithm, given a list of n random input vectors and α, β ∈ (0, 1), that outputs
Ω(n) reduced vectors using the quantum LSF with t = Wd(α, β, π/3)−1 filters.
The running time of the algorithm is

T1 = nt · Cd(β) + nt · Cd(α) + n · [nt · Cd(α) · Cd(β)]1/2
. (10)

In particular, the optimal choice gives the time complexity of 20.2653d+o(d).

Proof. The first two terms are derived in exactly the same way as in Theorem 4.
When finding the reducing pair for the query vector v in the union Dv of the
Bi such that Bi is α-close to v, quantum amplitude amplification is used with
the oracle function

Fv(w) = 1 iff ∥v −w∥ ≤ R′ (11)
along with the reflection on the uniform superposition of the vectors in Dv.
Since the expected size of the search space is (n · Cd(α)) · (t · Cd(β)), we obtain
the desired time complexity.

Letting the three terms be equal to each other, we get α = β =
√

3
4 = 0.4330

and T1 =
(13

9
)d/2+o(d) = 20.2653d+o(d).

To implement the reflection operator, all of S = nt · Cd(α) · Cd(β) vectors
in relevant Bi’s should be stored in QRAM. With the parameters used in the
optimized setting, the S = 20.1155d+o(d) size QRAM is required. The trade-off
relation between the size of QRAM and time can be induced using Lemma 1. If
the allowed QRAM is bounded, we can get the time complexity as follows. For
convenience, we denote the size of QRAM as γd, instead of 2s in Lemma 1.

Theorem 6. The time complexity of algorithm in Theorem 5 with a QRAM of
size γd for 1 ≤ γ ≤ 13/12 is

T2 = nt · Cd(β) + nt · Cd(α) + n2t · Cd(α) · Cd(β)/γd/2 (12)

For the optimal choice of α and β, we have T2 =
(

3γ
3γ−1

)d/2+o(d)
.

Proof. After finding filters α-close to the query vector, one uses Grover search
over the list of vectors in the filter buckets with the expected number of entries
being (nCd(α)) ·(tCd(β)). The oracle function for the query vector v is Fv defined
as eq. (11). With Lemma 1, a QRAM of size γd gives a γd/2 improvement in
time, resulting in eq. (12). The size γd is bounded by the size of search space
nt · Cd(α) · Cd(β), giving the bound of γ.

We can optimize the running time by equalizing the three terms. This gives
α = β =

√
1− 3γ

4 and T2 =
(

3γ
3γ−1

)d/2
as stated.

This algorithm can be improved by searching the reducing pairs within each
filter bucket rather than with respect to buckets corresponding to each query
vector, as shown in [18]. Although its optimal time complexity remains the same,
the required QRAM is reduced by halving the exponent of γd.

13

Theorem 7. There is a quantum lattice sieving algorithm that solves the prob-
lem in Theorem 6 with a QRAM of size γd with time complexity:

T3 =

nt · Cd(β) + nt · Cd(α) + n2t · Cd(α) · Cd(β)/γd

if 1 ≤ γd ≤
[
nt · Cd(α) · Cd(β)

]1/2

nt · Cd(β) + nt · Cd(α) + n · [nt · Cd(α) · Cd(β)]1/2

if γd >
[
nt · Cd(α) · Cd(β)

]1/2

(13)

For an optimal choice of α and β, the time complexity is T3 =
(

3γ2

3γ2−1

)d/2
for

1 ≤ γ ≤
√

13
12 , and T3 =

(13
9
)d/2+o(d) = 20.2653d+o(d) for γ >

√
13
12 .

Proof. In contrast to previous theorems, filter buckets are filled with β-close
center vectors and α-close query vectors in nt · Cd(β) + nt · Cd(α) time. We
separate each with BF,β and BF,α respectively, and each bucket stores nCd(β)
center vectors and nCd(α) query vectors respectively. The oracle function FF for
Grover search is defined as follows.

FF (v,w) = 1 iff ∥v −w∥ ≤ R′ (14)

As explained in the proof of Theorem 4, the algorithm will output an expected
Ω(n) reduced vectors, and therefore we expect Ω(n/t) reducing pairs in each fil-
ter on average, by the uniform randomness of vectors and filters. Using Lemma 2,
the number of queries to find all Ω(n/t) solutions in each filter is

Tper filter =

nCd(α) · nCd(β)/γd

if 1 ≤ γd <
[
nCd(α) · nCd(β)/(n/t)

]1/2
,[

nCd(α) · nCd(β) · (n/t)
]1/2

if
[

(nCd(α)) · (nCd(β)) /(n/t)
]1/2

< γd.

(15)

Multiplying eq. (15) by t gives the third term of T3 for both cases. Optimizing
the three terms, we obtain the result. The range of γ comes from the condition
of γd separating the two cases.

In conclusion, using Grover search to buckets with respect to each filter
reduces the QRAM size, achieving T3 = 20.2653d+o(d) with only 20.05778d+o(d)

QRAM. It can be easily checked that the result given in [18, Fig. 5] coincides
with the relation in Theorem 7.

4.3 Quantum search over the α-close filters

[33] further improves the time complexity of quantum LSF by using Grover
search to find a candidate bucket that contains a vector forming a reducing pair
with the vector currently being processed. This gives a quadratic speedup on the
second term of Theorem 4.

14

Lemma 4 ([33, Section 4]). Let F1, . . . ,Ft be a list of LSF filters constructed
via random product codes, and α ∈ (0, 1). There is a randomized (classical)
algorithm that given a vector w, returns a uniformly random (pseudo9) α-close
filter to w in time poly(d). This sampler requires 2o(d) preprocessing time. The
algorithm only requires O(log(d) · log(S(w)) random coins to output a filter on
any given input w, where S(w) is the number of α-close filters to w.

Proof. Almost everything is a direct consequence of [33, Section 4.5]. The only
nontrivial part is estimating the number of random coins which is not done in the
analysis of [33]. The sampler works by constructing a tree in the pre-processing
phase and pre-computing some values using dynamic programming. To sample
a (pseudo) good α-filter, the algorithm simply goes down one branch of the tree
randomly. At each node, it sample random an integer ℓ between 1 and “LR(x)”
which is the number of “good leaves” in the tree (after the R-discretization).
Furthermore, [33, Section 4.5.3] shows that if a filter is pseudo α-close then it
is (α − ε)-close where ε = O(1

d). Therefore, for large enough d, the number of
pseudo α-close filters is essentially the same as the number of α-close filters. It
follows that the algorithm only needs log2(S) random coins at each level of the
tree where S is the number of α-close filters. Finally, there are only O(log d)
levels in the tree.

Theorem 8 ([33]). There is a quantum lattice sieving algorithm that given a
list L of O(n) random input vectors, uses quantum LSF with t =Wd(α, β, π/3)−1

filters and parameters α, β to output Ω(n) reduced vectors in time

T4 = nt · Cd(β) + n [t · Cd(α) + nt · Cd(α) · Cd(β)]1/2
. (16)

In particular, for an optimal choice of α and β, the complexity is 20.2571d+o(d).

Proof. In Theorems 5 to 7, filters which are α-close to a query vector are found
classically in time O (nt · Cd(α)) with the help of the random product code
(RPC). [33] explains how to obtain a sampler that can return a random (pseudo)
α-close filter in poly(d) time. This sampler only requires 2o(d) preprocessing time.
By turning this sampler into a quantum circuit, we can get a superposition of
α-close filters with respect to the query vector. Then the QRAM returns the
β-close center vectors w for each filter f . Hence, for the query vector v, we get
the state ∑

i
Fi,αis α-close to v

∑
w∈Bi

|Fi,α⟩|w⟩. (17)

We can then apply Grover’s algorithm with the oracle function Fv defined
by

Fv(Fi,α,w) = 1 iff ∥v −w∥ ≤ R′ (18)

to obtain a quadratic speedup for the second term as well.
Optimization by letting the constituting terms equal to each other gives

α = 0.4434, β = 0.5, thereby the complexity is 20.2571d+o(d).
9 See proof, a pseudo α-close vector is always (α− ε)-epsilon for some ε = O(1

d
).

15

As far as we know, 20.2571d+o(d) is the best complexity achievable by using
only a QRAM. We can now apply Lemma 1 to Theorem 8 in order to get a
time-QRAM trade-off relation.

Theorem 9. The time complexity of algorithm in Theorem 8 with a QRAM of
size γd is

T5 = nt · Cd(β) +
[
nt · Cd(α) + n2t · Cd(α) · Cd(β)

]
/γd/2. (19)

In particular, for an optimal choice of α and β, the time complexity is T5 =(
γ − 2

3 + 2
3

√
1− 3

4γ
)−d/2

for 1 ≤ γ ≤ 1.07122.

Proof. For each query v, oracle function is defined as eq. (18). Therefore, Lemma 1
can be used for bounded QRAM, with the search space of nt ·Cd(α)+n2t ·Cd(α) ·
Cd(β). Also, γ should satisfy γd ≤ t ·Cd(α)+nt ·Cd(α) ·Cd(β). Letting three terms
equal to each other, the values of parameters are α =

√
1− 3

4γ and β = 0.5, giv-

ing T5 =
(
γ − 2

3 + 2
3

√
1− 3

4γ
)−d/2

. These parameters also determine the range
of γ by the constraint given above in this proof.

In summary, by using a version of Grover search with bounded QRAM to
the quantum sieving algorithm, we get an interpolation between classical LSF in
[12] and the quantum LSF in [42,33]. Those results are summarized in Figure 2,
showing the time complexity as a function of allowed QRAM size.

0 5 · 10−2 0.1

0.26

0.27

0.28

0.29

1
d

log2(QRAM size)

1 d
lo

g 2
(c

om
pl

ex
ity

) T2 (Theorem 6)
T3 (Theorem 7)
T5 (Theorem 9)

Fig. 2: Trade-off relations given in Theorems 6, 7 and 9. The top-left point
represents the result of classical LSF [12]. The bottom-right point of each line
represents the result of quantum LSF with no constraint on the QRAM size. In
particular, we recover the results of Theorem 5 [42,18] (blue and red), and
obtain a new trade-off from Theorem 8 [33] (green).

4.4 Discussion on the QRAM model

Recall that the trade-off obtained in Theorem 9 is under the QRAM model
of Section 2.3. In particular, we assumed that writing the data to, or overwriting

16

(i.e. reset and load another data) the QRAM can be done in time O(1). This
assumption is clearly unrealistic but simplifies the proof to focus on the time-
QRAM trade-off. Here, we present an alternative point of view to justify this
assumption. In this alternative model, we replace the reload/overwrite operation
above by two operations:

– Create: this operation loads N classical data into a QRAM of size N and
takes time O(N). Once created, the QRAM can be used as many times as
wanted but the content cannot be changed anymore.

– Connect: this operation takes an already created QRAM and connects it to
a quantum circuit so it can be used. This operation takes time O(1).

The motivation behind this model is to view a QRAM as a physical object (say a
quantum chip) where we somehow hardcode the data. Creating such an object is
surely expensive and we assume takes time linear in the number of data stored.
Once the object is created, it can be physically stored somewhere and, only when
needed, connected to a quantum circuit to make I/O accesses. Connecting it to
a circuit intuitively should not depend on the size of the QRAM. Importantly,
in this model, it is entirely possible to create many distinct QRAMs.

Let us now see how this model applies to Theorem 9. In this algorithm, we
need to store one list per filter (there are t filters). Each list contains n · Cd(β)
vectors on average. If we only limit ourselves to QRAMs of size γd then we need
to create nt · Cd(β)/γd QRAM in total. The cost of creating those QRAM is
n · Cd(β) which is equal to the first term of the complexity in Theorem 9 so
in a certain sense, our complexity almost includes the cost of creating those
QRAM. Note, however, that this will require to create and store an exponential
number of QRAM. If we think about QRAM as physical objects, this might be
difficult but not impossible. Later in the algorithm, we only ever use the QRAM
initially created without any modifications. This means that we can replace the
“reload” operations by a “connect” that runs in O(1) and therefore obtain the
same complexity.

In summary, this alternative model shows that our model is not as unrealistic
as it appears if we think about QRAMs as physical objects. It of course still relies
on the assumption that a QRAM can be implemented efficiently but this out of
the scope of this paper.

5 Application of QRAM Trade-off to Symmetric Key

In Section 4, we introduced lattice sieving with a bounded QRAM based on Lem-
mas 1 and 2, which is the basis of public key cryptography. In this section, we
show how to apply these methods to symmetric-key-related problems.

Quantum collision finding. The collision finding problem (CF) asks to find two
elements x1, x2 ∈ X such that f(x1) = f(x2), x1 ̸= x2 given a (random) function
f : X → Y . It is known that Ω(N1/2), for |X| = N , is a lower bound on the

17

number of queries to f . With Grover search, [17] shows that O(N1/3) queries
are sufficient given access to a QRAM of size O(N1/3). [19] gives an algorithm
to solve the same problem with O(N2/5) queries, but without using any QRAM.
The main idea of quantum algorithms for CF is to precompute the values of
f on some x’s first, and then apply Grover or amplitude amplification for the
rest of the data. While the algorithm in [17] stores data in a large QRAM, [19]
stores them in a classical memory, and implements a search oracle with quantum
gates. In other words, [19] converts the amount of QRAM into the time required
to compare data one by one with gate operations. The time complexity of the
algorithm in [19] is in eq. (20) below.

T = 2l+r/2 + 2(n−r−l)/2
(

2r/2 + 2l
)

(20)(
|X| = 2n, 2l : number of pre-calculated data, r ∈ [0, n] : parameter

)
Optimizing the parameters gives r = 2n

5 and l = n
5 , resulting in T = 22n/5.

The required classical memory is 2l = 2n/5, which is also the cost of precalcu-
lating the data.

If a QRAM of size 2γ is allowed, we can use the idea in Lemma 1 to obtain a
speed up. We divide the pre-calculated data into blocks of size 2s, load them into
the QRAM, and access it as a membership query. This results in an algorithm
of time complexity:

T ′ = 2l+r/2 + 2(n−r−l)/2
(

2r/2 + 2l−γ
)
, (0 ≤ γ ≤ l). (21)

Optimizing the parameters gives T ′ = 22n/5−γ/5 with 2n/5+2γ/5 classical
memory and a QRAM of size 2γ . While this method has fewer effects on T than
the outer parallelization introduced in [19, Section 5.3], it is still meaningful
in that the approach is orthogonal to the outer parallelization; thereby, further
improvement is possible by combining them. Also, outer parallelization needs
2γ× more qubits to achieve 22n/5−3γ/5 complexity, while the above 22n/5−γ/5

complexity with 2γ QRAM causes only O(n+ γ) additional qubits.

Multi-target preimage search. Given a (random) permutation H : X → X and a
set T = {y1, · · · , y2t} ⊂ X, the multi-target preimage search problem (MTPS)
asks to find i ∈ {1, · · · , 2t} and x ∈ X such that H(x) = yi. [19] also gives a
quantum algorithm to solve the MTPS problem without using any QRAM. The
time complexity is

T = 2t + 2(n−t)/2
(

2r/2 + 2t−r
)
, |X| = 2n, r ∈ [0, n] : parameter (22)

If we can freely choose all parameters, the optimization gives t = 3n
7 and r = 2t

3 .
However, t is usually a given parameter (i.e., the number of target images) in the
MTPS problem, and the time complexity is expressed as a function t. If t ≥ 3n

7 ,
then we can ignore some data to achieve the complexity of 23n/7, while 2n/2−t/6

is the optimal complexity of [19] when t < 3n
7 .

18

With a QRAM of size 2γ , the modified time complexity becomes

T ′ = 2t + 2(n−t)/2
(

2r/2 + 2t−r−γ
)
, (0 ≤ γ ≤ t− r). (23)

Optimizing the parameters gives T ′ = 23n/7−2γ/7 for t ≥ 3
7n −

2
7γ, and T ′ =

2n/2−t/6−γ/3 for 1 ≤ t < 3
7n −

2
7γ. In both cases, the size of the QRAM is

bounded by 2γ ≤ 2n/3.
In summary, our strategy can be applied to the problems related to symmetric-

key cryptography and can be applied to collision attacks on operation modes as
discussed in [19].

6 Lower Bounds with Bounded QRAM

This section establishes the (conditional) lower bounds for the hash-based nearest-
neighbor algorithms and lattice sieving in the bounded QRAM setting. Some
parts of this section are adapted from [40].

We note that our lower bound is actually about the cryptographically rele-
vant near-neighbor problems. To our knowledge, almost all sieving variants, such
as the closest vector problem with preprocessing [24,43], use the near-neighbor
subroutines; thereby, our lower bound applies. We refer to the discussion in [40]
for the implication of the near-neighbor lower bounds.

6.1 The problems, models, and classical lower bounds

The near-neighbor problem. The lattice sieving algorithms usually maintain
a list of lattice vectors, and find the close pairs in the list to construct a list of
shorter vectors. Formally, the following problem is solved as a subroutine.

Definition 1 (Near-neighbor problem in Sd−1). Let θ ∈ [0, π]. Let L ⊂
Sd−1 be a finite subset of Sd−1 whose elements are sampled uniformly at random
from Sd−1. In the near-neighbor problem, we 1) preprocess L in a certain data
structure, and 2) later, when a uniformly random x ∈ Sd−1 is queried, we find
almost all10 vectors y ∈ L such that ⟨x,y⟩ ≥ cos θ.

The model for classical hash-based algorithms. In the high-dimensional
case, the hash-based approaches have been known to be the most effective.
Roughly, this approach divides the space into smaller regions using multiple
random hash functions. In each of these hash regions, the algorithm searches for
the close pairs, which is much more efficient than searching in the entire list.
Formally, the hash-based near-neighbor search algorithms can be described as
follows.

Definition 2 (Hash-based near-neighbor algorithms). Given the near-
neighbor problem parameterized by L ⊂ Sd−1 and θ ∈ [0, π], the hash-based
near-neighbor algorithm preprocesses the list L and processes queries x as given
in Algorithm 2.

19

Algorithm 2 The model of hash-based near-neighbor algorithms
Scheme Parameters:r t ∈ N ▷ The number of hash regionsr U1, ..., Ut ⊂ Sd−1 ▷ Hash regions for insertionsr Q1, ..., Qt ⊂ Sd−1 ▷ Hash regions for queriesr method ∈ {Query, FAS} ▷ Choices for the finalization

1: Function Insert(y)
2: for all i ∈ [t] such that y ∈ Ui do
3: Bi ← Bi ∪ {y}

4: Function Preprocess(L)
5: B1, ..., Bt ← ∅
6: for all y ∈ L do
7: Insert(y)

8: Function Query(L, θ)
9: P ← ∅

10: for all x ∈ L do ▷ For each x ∈ L, find near neighbors y.
11: C ← ∅
12: for all i ∈ [t] such that x ∈ Qi do
13: for all y ∈ Bi such that ⟨x, y⟩ ≥ cos θ do
14: C ← C ∪ {y}
15: P ← P ∪ ({x} × C)
16: return P

17: Function FindAllSolutions(L, θ)
18: P ← ∅
19: for all i ∈ [t] do ▷ For each i ∈ [t], find close pairs (x, y) ∈ Ai ×Bi.
20: C ← ∅
21: for all (x, y) ∈ Ai ×Bi such that ⟨x, y⟩ ≥ cos θ do
22: C ← C ∪ {(x, y)}
23: P ← P ∪ C
24: return P

25: Function Main(L, θ)
26: Preprocess(L)
27: if method = Query then ▷ used in [40,33]
28: P ← Query(L, θ)
29: else if method = FAS then ▷ used in [18,14]
30: A1, ..., At ← ∅
31: for all x ∈ L do ▷ Preprocessing L regarding Qi

32: for all i ∈ [t] such that x ∈ Qi do
33: Ai ← Ai ∪ {x}
34: P ← FindAllSolutions(L, θ)
35: return P

20

Our model has two methods Query and FAS for Main function. The first
method Query, which was originally used in [40], searches for nearby vectors for
each input vector using the function Query. On the other hand, the method FAS
searches for pairs of close vectors in each hash region, reflecting the framework
suggested in [18, Algorithm 1]. The difference between the two methods does
not affect the lower bounds and proofs as described below.

Kirshanova and Laarhoven [40, Theorem 2 and 3]11 proved that choosing
spherical caps of the same size for the hash regions gives the optimal algorithm.
Following this, we assume that the hash regions are of the following form:

– Choose α, β ∈ [−1, 1] and draw vi ← Sd−1 randomly for i ∈ [t], and define

Qi := {z ∈ Sd−1 : ⟨z,vi⟩ ≥ α} and Ui := {z ∈ Sd−1 : ⟨z,vi⟩ ≥ β}. (24)

Query complexity. Most parts of computational cost in Algorithm 2 stem
from the operations related to the input vectors in L and the filters. Here, we
prove that the time complexity lower bound in [40] can be extended to a query
lower bound regarding the operations for input vectors and filters, where the
explicit definition of the query is as follows. A more formal definition requires the
black-box model for the vectors and filters, which can be found in Appendix B.
Cost Model 1 (Classical query complexity). All operations related to the input
vectors in L and filters are done through oracle access. Among these operations,
the costs of the following queries are counted as the query complexity.
1. Given a vector x, sampling a random index i ∈ [t] such that x ∈ Qi can

be done at a unit cost; the filter corresponding to i is called by the relevant
filter. If the number of relevant filters is |Z|, finding all of them can be done
at 1 + |Z| unit costs. 12 This query is used in Lines 2 and 12. The algorithm
can insert x in Ai or Bi corresponding to the relevant filter for free.

2. Given two vectors (x,y) as input, check if the inner product satisfies ⟨x,y⟩ ≥
1/2 or not at a unit cost. This query is used in Lines 13 and 21.
The summation of the unit cost incurred by the above oracle queries during

the algorithm is called the query complexity of the algorithm.
We can derive the following classical query lower bound by adapting [40] in

this query model. The formal statement (Theorem 13) and proof of this theorem
can be found in Appendix B along with a finer formalization.

Theorem 10 ([40, Theorem 4, adapted]). The classical near-neighbor al-
gorithm described by Algorithm 2 has query complexity at least 20.2925d+o(d),
regardless of the choice of the method.
10 For example, we may ask to find 90% of the vectors as in [40, Definition 4].
11 Strictly speaking, they showed the result below for Query method. Still, the collision

probability parts (Theorem 2) are irrelevant to the method, and the equal choices
for the caps (Theorem 3) are argued by looking at the overall complexity, which does
not depend on the choice of method, as shown below.

12 It corresponds to the assumption in the bottom of [40, p.6], which reflects the ad-
vanced hash-based algorithms. The constant +1 is to address the case of |Z| = 0.

21

6.2 The quantum time-memory trade-off lower bounds

Before proceeding to the quantum lower bound, we first introduce the model
of quantum hash-based near-neighbor algorithms. We assume that the quantum
algorithm also follows the framework given in Algorithm 2 and implements post-
processing (Query or FindAllSolutions) quantumly with the same purpose,
while the Preprocess part remains classical.

The known quantum algorithms indeed follow the same template with the
quantum modifications for the procedure Query (e.g., in [33]) or FindAllSo-
lutions (e.g., in [18,14]) in Algorithm 2.

The quantum speedup is from the procedures Query and FindAllSolu-
tions. In particular, the vectors in the relevant filters Bi, i.e., the vectors y ∈ L
such that y ∈ Ui are stored in the QRAM and coherently accessed during these
procedures. Compared to the classical model, reading the input vectors in the
filters or the relevant filter indices can be done coherently through the QRAM
access. The quantum cost model can be summarized as follows; again, see Ap-
pendix B for a more detailed description.

Cost Model 2 (Quantum query/QRAM complexity). As in Cost Model 1, the
operations related to the input vectors and filters can be done via oracle access.
Among these, the following queries are counted in the complexity.

1. Given a vector x, sampling a relevant filter can be done at a unit cost.
Coherent access to some subset of the relevant filters can be done using the
QRAM at a unit cost.

2. Given registers
∑

i,j αi,j

∣∣xi,yj , r
〉

as input, compute the inner product∑
i,j αi,j

∣∣∣xi,yj , r + 1⟨xi,yj⟩≥1/2

〉
in a unit cost where 1a≥1/2 = 1 if a ≥ 1/2,

otherwise 0.

Note that these queries require QRAM access. To formalize the usage of the
QRAM, we introduce the following assumption on the coherent access to the
input vectors, which roughly states that the coherent states of the input vectors
are constructed only through the QRA(C)M access.

Assumption 1. Let V = {v1, ...,vk} be an arbitrary subset of the input list L.
The coherent quantum state ∑

i∈[k]

αi |i⟩ |vi⟩ (25)

must be generated by the QRAM access to the list of k vectors.

One way to interpret Assumption 1 is to say that there is no efficient way
to generate this superposition, except by using a QRAM. Indeed, it is clear
that such a state can be generated by a plain quantum circuit, but all currently
known ways of doing so are inefficient in some way, e.g., requires large depth

22

or qubits.13 Indeed, if we implement the above state in the circuit model, the
number of gates must be Ω(k) [38, Theorem V.2].

We also need a similar assumption on filter index access14. This operation is
used, e.g., in Line 12 of the quantum version of Algorithm 2 [33].

Assumption 2. Let F = {f1, ..., fk} be an arbitrary subset of the set of the
filter indices. The coherent quantum state∑

i∈[k]

αi |i⟩ |fi⟩ (26)

must be generated by QRAM access to the list of k vectors.

These assumptions imply that when the algorithm uses a QRAM of size
2s, each register of the algorithm contains at most 2s different vectors or filter
indices. This is an important observation in the proof.

Quantum lower bound. Our quantum lower bounds for the bounded QRAM
algorithms are summarized as follows.

Theorem 11. The quantum near-neighbor algorithm described by Algorithm 2
with a QRAM of size 2s has query complexity at least 20.2925d−2s+o(d) assum-
ing Assumption 1 and Assumption 2.

We describe the proof sketch here. The formal proof of the above theorem
is given in Appendix B along with a further finer formalization of the model,
which turns out to be quite technical.

Proof sketch. Our proof strategy is to simulate each query of the quantum lattice
sieving (or near-neighbor) algorithm classically, inspired by [35]. Suppose that
the quantum lattice sieving algorithm A, making Q quantum queries, uses a
QRAM of size at most 2s. For the quantum access to the input vectors in the
relevant filter and indices, all the information possessed in these operations can
be computed by 2s corresponding classical queries in Cost Model 1. For the inner
product query, note that each register has at most 2s different vectors, so every
inner product

〈
xi,yj

〉
can be computed by 22s classical inner product queries.

Then, we construct the classical query algorithm B whose output is identi-
cal to one of A. This is done by collecting all the information mentioned above
13 One extreme is to sequentially read each vector, which requires a circuit of depth

linear in the number of elements but only a few qubits. The other extreme is to
build a tree (like in classical RAM) of depth logarithmic in the number of elements
but whose width (i.e., the number of qubits) is linear in the number of elements.
Some trade-offs between those two extremes are possible and suggest that one always
needs either a very deep circuit or a large number of qubits

14 In fact, the filter index itself can be coherently accessed without QRAM. However,
whenever we want to check any information about the input vectors in the filter
(e.g., checking if the filter is empty), it requires QRAM access.

23

classically. This simulation may take time15 much longer than 2d, but B al-
ways makes classical queries to the oracle, thereby obeying the classical query
complexity lower bound in Theorem 10. Note that each QRAM query can be
simulated by 2s classical queries, and a quantum inner product query can be
simulated by 22s classical inner product queries. This means that the classical
query complexity of B is at most 22s ·Q, which is lower bounded by 20.2925d+o(d).
This establishes the lower bound in the statement.

Plugging s = 0 gives the following noteworthy corollary.

Corollary 1. There is no quantum speed-up for the lattice sieving problem with-
out QRAM in our model under Assumption 1 and Assumption 2.

7 Sieving Without QRAM

In this section, based on the algorithm in [33], we propose a quantum algorithm
for lattice sieving without QRAM at the expense of using an exponential depth
and number of qubits.

Lemma 5. There is an algorithm that given t classical lists B1, . . . , Bt of vec-
tors, and in time O(

∑
i |Bi|), creates a quantum circuit O that satisfies, for any

vector w and any index 1 ⩽ i ⩽ t:

O |i⟩ |w⟩ |0⟩ 7→ |i⟩ |w⟩ |u⟩

where u = arg minx∈Bi
∥x − w∥ is the closest vector to w in the list Bi. The

circuit O has depth O(maxi |Bi|+ log t), size O(
∑

i |Bi|) and width O(t).

Proof. We will first build a classical circuit that performs this operation, and
then convert it to a quantum circuit in the standard way.

Assume to simplify notations that each list Bi has exactly M vectors. Denote
by u

(i)
1 , . . . ,u

(i)
M the vectors in Bi. The circuit is described in Figure 3. It uses

two subcircuits:

– A standard multiplexer that takes t inputs a1, . . . , at and an index i, and
outputs ai. This can be trivially implemented in depth O(log t), size O(t)
and width O(t).

– A “Compare u” circuit that takes two input vectors v and w, and outputs
arg minx∈{u,v} ∥x−w∥. In other words, it returns the vector that is closest to
w between the input v and the hardcoded vector u. This can be implemented
in constant depth, size, and width.

The idea of the circuit is very simple: for each i in parallel, the circuit computes
the closest vector to w in Bi, and selects at the end the right one based on
requested index. For a given i, the circuit sequentially computes the closest
vector to w. Specifically, one can show by induction on 1 ⩽ m ⩽M that for any
i and any w, the output of the following circuit is arg minj=1,...,m ∥u

(i)
j −w∥:

15 Actual running time depends on the accuracy of the simulation.

24

w

u
(i)
1 Compare u

(i)
2 · · · Compare u

(i)
m

v

w

v

w

Overall, the circuit has depth O(M) + log t since the longest path goes through
M comparisons and the multiplexer. The width of the circuit is O(t) since the t
comparisons chains all happen in parallel. The size of the circuit is O(Mt). It is
clear that there is an algorithm that can construct this circuit is time at most
O(Mt) (the overall size). If the lists Bi have different sizes, the depth depends
on the biggest Bi and the total size is the sum of the sizes of Bi.

We can convert this circuit to a quantum circuit using standard techniques.
The resulting circuit has depth O(M + log t), size O(Mt) and width O(t). Fur-
thermore, the algorithm that does the conversion runs in time linear in the size
of the circuit.

Denote by O the quantum circuit obtained above where we add a register
for the output. By the description of the circuit, it is clear that for any vector
w and any index i,

O |i⟩ |w⟩ |0⟩ 7→ |i⟩ |w⟩ |u⟩
where u = arg minx∈Bi

∥x−w∥ is the closest vector to w in the Bi.

wi

u
(1)
1

Compare u
(1)
2

...

Compare u
(1)
M

v

w

v

w

u
(t)
1

Compare u
(t)
2

...

Compare u
(t)
M

v

w

v

w

. . .

. . .

multiplexer
1 t

i

Fig. 3: Circuit diagram that outputs the vector in Bi closest to the input vector
w. Every vector in Bi is hardcoded in the circuit, and serially compared to w.
See Lemma 5.

Theorem 12. There is a quantum lattice sieving algorithm that, given a list of
n random input vectors and α, β ∈ (0, 1), outputs Ω(n) reduced vectors based on
the LSF with t =Wd(α, β, π/3)−1 filters. The running time of the algorithm is

nt · Cd(β) + n ·
√
t · Cd(α) ·max(1, n · Cd(β)). (27)

25

The algorithm uses no QRAM but evaluates a quantum circuit of depth O(M +
log t), size O(Mt) and width O(t).

Proof. As in Section 4, the algorithm first prepare t LSF filters F1, . . . ,Ft. For
each i, we compute the classical list Bi of vectors inside Fi.

We now apply Lemma 5 to build a quantum circuit O such that for any
vector w and any index 1 ⩽ i ⩽ t:

O |i⟩ |w⟩ |0⟩ 7→ |i⟩ |w⟩ |u⟩ .

where u = arg minx∈Bi
∥x − w∥ is the closest vector to w in the list Bi. The

circuit O has depth O(maxi |Bi|+ log t), size O(
∑

i |Bi|) and width O(t).
By Lemma 4, there is a (classical) sampler that can return, for any given w,

a random (pseudo) α-close filter to w in poly(d) time. This sampler only requires
2o(d) preprocessing time. We can turn this sampler into a deterministic algorithm
that takes as input R “random coins”. Denote by A(ω,w) such a run where ω
denotes the random coins. By Lemma 4, we have R = O(log(d) · log(t · Cd(α))).

Consider the quantum oracle O′ that on input ω ∈ {0, 1}R and w:

– compute i← A(ω,w),
– returns O(i,w).

It is clear by the properties of A that O′(ω,w) returns a vector u ∈ Bj for some
j such that w ∈ Bj . Overall, the sieving algorithm looks like this:

– Go through all n vectors and put each of them in the filters Fi to which they
belong.

– Apply Lemma 5 to build O.
– Use [33] to build O′.
– For each vector w in the input list: run a quantum minimum finding al-

gorithm using O′ to find ω ∈ {0, 1}R that minimizes ∥O′(ω,w)−w∥ and
get the closest vector to w in the list. We then check if this vector forms
a reduced pair and add it to the output list if that’s the case. Based on
the analysis done in the previous sections, we expect a constant number of
vectors in the list to form a reduced pair with w. Therefore by finding the
closest vector to w, we are sure to find a reduced pair using w if one exists.

In the first step, each vector belongs to t ·Cd(β) filters on average so the complex-
ity is nt · Cd(β). Furthermore, the lists Bi have an average size of M = n · Cd(β).

In the second step, the complexity of building O is O(
∑

i |Bi|) = O(Mt) =
O(nt · Cd(β)). The circuit O has depth O(maxi |Bi|+ log t) = O(M + log t), size
O(Mt) and width O(t).

In the third step, the complexity of building O′ is dominated by the prepro-
cessing cost of [33]’s sampler which is 2o(d).

In the final step, the complexity is n times 2R/2 multiplied by the cost of
the oracle O′. The cost of A is poly(d) so this is essentially the cost of O. Each
evalutation of O costs the depth of its circuit which is O(maxi |Bi| + log t) =
O(M + log t). The sampler A returns a uniform sample in the set of “good

26

filters” which is of average size S = t · Cd(α). Furthermore, A only requires
R = O(log(d) log(S)) random coins. Since A is a uniform sampler in a set of
size S, for a given w, A(·,w) takes each of the S possible outputs 2R/S times.
It therefore follows that O′(·,w) takes each of the S possible output k = 2R/S
times. As a result, running the minimum finding algorithm on O′(·,w) takes
time O(

√
2R/k) = O(

√
S). Hence, the time complexity is

nt · Cd(β) + n ·
√
t · Cd(α) ·max(1, n · Cd(β)). (28)

Here, the max is necessary to handle the case where there might be less than
one vector in each bucket on average, because we still have to pay O(1) just to
examine the bucket. The number of qubits used is O(t+R).

We optimize the time complexity of Theorem 12 using the following formula:

t =
(

1− 4
3(α2 − αβ + β2)

)−d/2
, Cd(α) = (1− α2)d/2, n = (4/3)d/2.

For each value of t, we compute the optimal time complexity by finding the
optimal α and β such that t satisfies the equation above. Experimentally, we
observe that the optimal complexity is close to

20.414d−0.655 log2(t) = 20.414d

t0.655

We observe a regime (see Figure 4) where we can achieve a better time complexity
than the best classical sieving algorithm while using an exponential number
of qubits. Note than we only draw the graph up to t = 20.207d qubits, since
there is a quantum algorithm in [41] that solves SVP in time 20.1037d+o(d) with
20.207d+o(d) qubits. [41] does not seem to work with less than 20.207d+o(d) qubits
because it requires as many qubits as there are elements in the list, therefore it is
incomparable with the above algorithm. Furthermore, the computational model
of [41] is slightly different since it is more akin to a massively parallel/distributed
system.

0 5 · 10−2 0.1 0.15 0.2
0.28
0.3

0.32
0.34
0.36
0.38
0.4

0.42

1
d

log2(t) = 1
d

log2(qubits)

1 d
lo

g 2
(c

om
pl

ex
ity

)

Fig. 4: Complexity of the sieve algorithm with no QRACM as a function of the
number of qubits. The red line corresponds to the best classical complexity.

27

Acknowledgement

The work of Beomgeun Cho, Taehyun Kim, and Jeonghoon Lee was supported
by Samsung Electronics Co., Ltd(IO221213-04119-01). The work of Yixin Shen
was funded by the EPSRC grant EP/W02778X/2 and the France 2030 program
managed by the French National Research Agency under grant agreement ANR-
22-PETQ-0008 PQ-TLS.

References

1. Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016), https://csrc.nist.
gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf

2. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the thirty-third annual ACM symposium on
Theory of computing. pp. 601–610 (2001)

3. Albrecht, M.R.: On dual lattice attacks against small-secret lwe and parameter
choices in helib and seal. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 103–129. Springer (2017)

4. Albrecht, M.R., Bai, S., Fouque, P.A., Kirchner, P., Stehlé, D., Wen, W.: Faster
enumeration-based lattice reduction: Root hermite factor k1/(2k) time kk/8+o(k). In:
Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology – CRYPTO 2020. pp.
186–212. Springer International Publishing, Cham (2020)

5. Albrecht, M.R., Gheorghiu, V., Postlethwaite, E.W., Schanck, J.M.: Estimating
quantum speedups for lattice sieves. In: Advances in Cryptology–ASIACRYPT
2020: 26th International Conference on the Theory and Application of Cryptology
and Information Security, Daejeon, South Korea, December 7–11, 2020, Proceed-
ings, Part II 26. pp. 583–613. Springer (2020)

6. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving usvp and applications to lwe. In: Advances in Cryptology–ASIACRYPT
2017: 23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I 23. pp. 297–322. Springer (2017)

7. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

8. Aono, Y., Nguyen, P.Q., Shen, Y.: Quantum lattice enumeration and tweaking
discrete pruning. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 405–434. Springer (2018)

9. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber algorithm specifications
and supporting documentation. NIST PQC Round 2(4), 1–43 (2019)

10. Bai, S., van Hoof, M.I., Johnson, F.B., Lange, T., Ngo, T.: Concrete analysis
of quantum lattice enumeration. In: International Conference on the Theory and
Application of Cryptology and Information Security. pp. 131–166. Springer (2023)

11. Beals, R., Brierley, S., Gray, O., Harrow, A.W., Kutin, S., Linden, N., Shepherd,
D., Stather, M.: Efficient distributed quantum computing. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 469(2153), 20120686
(2013)

28

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

12. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In: Proceedings of the twenty-seventh
annual ACM-SIAM symposium on Discrete algorithms. pp. 10–24. SIAM (2016)

13. Bindel, N., Bonnetain, X., Tiepelt, M., Virdia, F.: Quantum lattice enumeration
in limited depth. In: Annual International Cryptology Conference. pp. 72–106.
Springer (2024)

14. Bonnetain, X., Chailloux, A., Schrottenloher, A., Shen, Y.: Finding many collisions
via reusable quantum walks: Application to lattice sieving. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 221–
251. Springer (2023)

15. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik: Progress of Physics 46(4-5), 493–505 (1998)

16. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53–74 (2002)

17. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free
functions. In: LATIN’98: Theoretical Informatics: Third Latin American Sympo-
sium Campinas, Brazil, April 20–24, 1998 Proceedings 3. pp. 163–169. Springer
(1998)

18. Chailloux, A., Loyer, J.: Lattice sieving via quantum random walks. In: Advances
in Cryptology–ASIACRYPT 2021: 27th International Conference on the Theory
and Application of Cryptology and Information Security, Singapore, December
6–10, 2021, Proceedings, Part IV 27. pp. 63–91. Springer (2021)

19. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum colli-
sion search algorithm and implications on symmetric cryptography. In: Advances
in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong Kong, China, De-
cember 3-7, 2017, Proceedings, Part II 23. pp. 211–240. Springer (2017)

20. Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., Schanck, J.M.,
Schwabe, P., Whyte, W., Zhang, Z.: Algorithm specifications and supporting doc-
umentation. Brown University and Onboard security company, Wilmington USA
(2019)

21. Cheon, J.H., Hhan, M., Hong, S., Son, Y.: A hybrid of dual and meet-in-the-middle
attack on sparse and ternary secret lwe. IEEE Access 7, 89497–89506 (2019)

22. Chung, K.M., Fehr, S., Huang, Y.H., Liao, T.N.: On the compressed-oracle tech-
nique, and post-quantum security of proofs of sequential work. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
pp. 598–629. Springer (2021)

23. Cojocaru, A., Garay, J., Kiayias, A., Song, F., Wallden, P.: Quantum multi-solution
bernoulli search with applications to bitcoin’s post-quantum security. Quantum 7,
944 (2023)

24. Ducas, L., Laarhoven, T., van Woerden, W.P.: The randomized slicer for cvpp:
sharper, faster, smaller, batchier. In: IACR International Conference on Public-
Key Cryptography. pp. 3–36. Springer (2020)

25. Durr, C., Hoyer, P.: A quantum algorithm for finding the minimum. arXiv preprint
quant-ph/9607014 (1996)

26. Espitau, T., Joux, A., Kharchenko, N.: On a dual/hybrid approach to small secret
lwe: A dual/enumeration technique for learning with errors and application to
security estimates of fhe schemes. In: Progress in Cryptology–INDOCRYPT 2020:
21st International Conference on Cryptology in India, Bangalore, India, December
13–16, 2020, Proceedings 21. pp. 440–462. Springer (2020)

29

27. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z., et al.: Falcon: Fast-fourier lattice-
based compact signatures over ntru. Submission to the NIST’s post-quantum cryp-
tography standardization process 36(5), 1–75 (2018)

28. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random ac-
cess memory. Physical Review A—Atomic, Molecular, and Optical Physics 78(5),
052310 (2008)

29. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys.
Rev. Lett. 100, 160501 (Apr 2008). https://doi.org/10.1103/PhysRevLett.100.
160501, https://link.aps.org/doi/10.1103/PhysRevLett.100.160501

30. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Comput-
ing. p. 212–219. STOC ’96, Association for Computing Machinery, New York,
NY, USA (1996). https://doi.org/10.1145/237814.237866, https://doi.org/
10.1145/237814.237866

31. Guo, Q., Johansson, T.: Faster dual lattice attacks for solving lwe with applications
to crystals. In: Advances in Cryptology–ASIACRYPT 2021: 27th International
Conference on the Theory and Application of Cryptology and Information Security,
Singapore, December 6–10, 2021, Proceedings, Part IV 27. pp. 33–62. Springer
(2021)

32. Hamoudi, Y., Liu, Q., Sinha, M.: The nisq complexity of collision finding. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 3–32. Springer (2024)

33. Heiser, M.: Improved quantum hypercone locality sensitive filtering in lattice siev-
ing. Cryptology ePrint Archive, Paper 2021/1295 (2021), https://eprint.iacr.
org/2021/1295, https://eprint.iacr.org/2021/1295

34. Hhan, M., Kim, J., Lee, C., Son, Y.: Let’s meet ternary keys on babai’s plane: A
hybrid of lattice-reduction and meet-lwe. Cryptology ePrint Archive (2022)

35. Hhan, M., Yamakawa, T., Yun, A.: Quantum complexity for discrete logarithms
and related problems. In: Annual International Cryptology Conference. pp. 3–36.
Springer (2024)

36. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against ntru. In: Advances in Cryptology-CRYPTO 2007: 27th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007. Pro-
ceedings 27. pp. 150–169. Springer (2007)

37. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: Ntru-hrss-kem. NIST sub-
missions (2017)

38. Jaques, S., Rattew, A.G.: Qram: A survey and critique (2023)
39. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential

and linear cryptanalysis. IACR Transactions on Symmetric Cryptology 2016(1),
71–94 (2016)

40. Kirshanova, E., Laarhoven, T.: Lower bounds on lattice sieving and information
set decoding. In: Advances in Cryptology–CRYPTO 2021: 41st Annual Interna-
tional Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021,
Proceedings, Part II 41. pp. 791–820. Springer (2021)

41. Kirshanova, E., Mårtensson, E., Postlethwaite, E.W., Moulik, S.R.: Quantum algo-
rithms for the approximate k-list problem and their application to lattice sieving.
In: Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology – ASIACRYPT 2019.
pp. 521–551. Springer International Publishing, Cham (2019)

30

https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://eprint.iacr.org/2021/1295
https://eprint.iacr.org/2021/1295
https://eprint.iacr.org/2021/1295

42. Laarhoven, T.: Search problems in cryptography: from fingerprinting to lattice
sieving. Phd thesis 1 (research tu/e / graduation tu/e), Mathematics and Computer
Science (Feb 2016), proefschrift

43. Laarhoven, T.: Approximate voronoi cells for lattices, revisited. Journal of Math-
ematical Cryptology 15(1), 60–71 (2020)

44. MATZOV: Report on the Security of LWE: Improved Dual Lattice Attack (Apr
2022). https://doi.org/10.5281/zenodo.6412487, https://doi.org/10.5281/
zenodo.6412487

45. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: Proceedings of the twenty-first annual ACM-SIAM symposium
on Discrete Algorithms. pp. 1468–1480. SIAM (2010)

46. Moiseev, E., Moiseev, S.: Time-bin quantum ram. Journal of Modern Optics
63(20), 2081–2092 (2016)

47. Montanaro, A.: Quantum-walk speedup of backtracking algorithms. Theory OF
Computing 14(15), 1–24 (2018)

48. Nguyen, P.Q.: Boosting the hybrid attack on ntru: Torus lsh, permuted hnf and
boxed sphere. In: NIST Third PQC Standardization Conference (2021)

49. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. Journal of Mathematical Cryptology 2(2), 181–207 (2008). https://
doi.org/doi:10.1515/JMC.2008.009, https://doi.org/10.1515/JMC.2008.009

50. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Cambridge university press (2010)

51. NIST: Post-Quantum Cryptography Standardization. https://bit.ly/3lfzIub,
accessed: 2024-05-14

52. Pohst, M.: On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. ACM Sigsam Bulletin 15(1), 37–44
(1981)

53. Pouly, A., Shen, Y.: Provable dual attacks on learning with errors. In: Joye, M.,
Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024. pp. 256–285.
Springer Nature Switzerland, Cham (2024)

54. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

55. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

56. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical Computer Science 53(2), 201–224 (1987). https://doi.org/https:
//doi.org/10.1016/0304-3975(87)90064-8, https://www.sciencedirect.com/
science/article/pii/0304397587900648

57. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review 41(2), 303–332 (1999)

58. Wunderer, T.: A detailed analysis of the hybrid lattice-reduction and meet-in-the-
middle attack. Journal of Mathematical Cryptology 13(1), 1–26 (2019)

59. Zhandry, M.: How to record quantum queries, and applications to quantum in-
differentiability. In: Advances in Cryptology–CRYPTO 2019: 39th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019,
Proceedings, Part II 39. pp. 239–268. Springer (2019)

31

https://doi.org/10.5281/zenodo.6412487
https://doi.org/10.5281/zenodo.6412487
https://doi.org/10.5281/zenodo.6412487
https://doi.org/10.5281/zenodo.6412487
https://doi.org/doi:10.1515/JMC.2008.009
https://doi.org/doi:10.1515/JMC.2008.009
https://doi.org/doi:10.1515/JMC.2008.009
https://doi.org/doi:10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://bit.ly/3lfzIub
https://doi.org/https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/https://doi.org/10.1016/0304-3975(87)90064-8
https://www.sciencedirect.com/science/article/pii/0304397587900648
https://www.sciencedirect.com/science/article/pii/0304397587900648

A Omitted Proofs

Proof of Lemma 1. Write Si := [i · S + 1, (i + 1) · S] for brevity. Write X =
{x1, ..., xM} (order can be arbitrary) and its subsetsXi := {xi·S+1, ..., x(i+1)·S} =
{xj : j ∈ Si} ⊂ X of size S for i = 0, ..., M

S − 1.
We define the algorithm A as follows: For each 0 ≤ i ≤ M

S − 1, A stores Xi

in QRAM. Define

Initi : |0⟩ 7→

(∑
j∈Si
|j, xj⟩

)
√
S

using QRAM similarly to eq. (6). It applies quantum amplitude amplification to
OP = I ⊗ Of

16 and Initi for O(
√
S) times, and measures the result to obtain

(j∗, xj∗), and check if f(xj∗) = 1. If true, it outputs xj∗ and halts. If there is no
such x for all i, it returns ⊥.

The running time of A requires at most O
(

M
S ·
√
S
)

= O
(

T√
S

)
evaluations

of f as we want, because we limit the number of iterations to
√
S for each

quantum amplitude amplification.
Next, we argue the correctness of the algorithm. Suppose that there exists

x∗ ∈ Xi such that f(x∗) = 1. Then, Theorem 1 implies that the i-th quantum
amplitude amplification can find x ∈ Xi such that f(x) = 1 with a sufficiently
high probability.

Proof of Lemma 2. Write Si := [i · S + 1, (i + 1) · S] for brevity. Let X =
{x1, · · · , xM1}, Y = {y1, · · · , yM2}, and define subsets Xi := {xk : k ∈ Si} ⊆
X, Yj := {yℓ : ℓ ∈ Sj} ⊂ Y of size S for i = 0, · · · , M1

S − 1, j = 0, · · · , M2
S − 1.

With two QRAMs of size S, the algorithm A′ runs amplitude amplification,
similar to the proof in Lemma 1: After storing Xi and Yj in each QRAM, define
two operations;

Initi,j := |0⟩ 7→
∑

k∈Si,ℓ∈Sj
|k, ℓ, xk, yℓ⟩
S

(29)

with access to the QRAMs, and OP := I ⊗ Of . As each Xi, Yj are randomly
selected, the expected number of solutions in Xi × Yj is E := K·S2

M1·M2
. The

algorithm behaves differently, conditioned on the expected number of solutions.

1. If the expected number of solutions in the current QRAM is at least 1 (i.e.,
KS2 ≥ M1M2), then we run the amplitude amplification multiple times to
find most solutions. The number of calling Initi,j in Equation (29) and f is
E ·
√

S2

E = S ·
√
E =

√
K·S2

√
M1·M2

.
2. Otherwise, it needs

√
S2 iterations to check if a solution exists in the current

QRAM.
16 Here, I acts on the index register.

32

There are M1·M2
S2 pairs of (Xi, Yj), therefore the total number of required

iterations is
√
M1M2K for the first case, and M1M2

S for the second case. For
the correctness of A′, Theorem 1 implies that the measurement output gives the
solution pair (x∗, y∗) ∈ X × Y such that f(x∗, y∗) = 1 with a sufficiently high
probability.

A.1 The bounded QRAM search lower bound

In this section, we give the proof of Theorem 3. The proof uses the recording
random functions [59,23]. The proof of the main lemma (Lemma 7) is inspired
by the proofs in [32].

Preparation: Bernoulli random functions. The proof requires the recording
technique for the Bernoulli random function introduced in [23]. We give a brief
introduction below.

Let |X| = 2m. We call f : {0, 1}m → {0, 1} be a Bernoulli random function
with parameter 0 < p < 1 if f(x) = 1 holds with probability p independently.
We denote the distribution of the Bernoulli random function by Bm,p, and αf

denotes the probability that the function f is sampled from Bm,p. It is well
known that an algorithm having oracle access to a Bernoulli random function is
identical to having oracle access to the purified Bernoulli random function that
is defined by ∑

f∈Bm,p

√
αf F
|f⟩F

where F is a |X|-qubit register. The standard query is computed by

StdBO : |x, y⟩ ⊗ √αf F
|f⟩F 7→ (−1)y·f(x) |x, y⟩ ⊗ √αf F

|f⟩F (30)

We define the generalized Hadamard operation on a single qubit register

Up : |b⟩ 7→
√

1− p |b⟩+ (−1)b√p |b⊕ 1⟩ or Up =
[√

1− p −√p√
p
√

1− p

]
.

Note that Up := ⊗x∈{0,1}mUx
p where Ux

p denotes Up applied on the x-th qubit
gives

Up

∣∣∣0|X|
〉

F
7→

∑
f∈Bm,p

√
αf F
|f⟩F .

We define the dual query by

RBO := (I ⊗ U†
p) · StdBO · (I ⊗ Up) (31)

with the initial state |0⟩⊗|X|
. It is not hard to see that the output of any algo-

rithm having access to StdBO (with the initial state
∑

f∈Bm,p

√
αf F
|f⟩F) and

having access to RBO (with the initial state (|0⟩⊗|X|) is identical.
We can compute the progress of the overall states under RBO using the

following lemma, which is a Bernoulli analog of [22, Lemma 4.3]. The proof
follows from the straightforward calculation.

33

Lemma 6. The map RBO operates as follows, where |·⟩x denotes the x-th qutrit
of F .

|x,+⟩ ⊗ |b⟩x 7→ |x,+⟩ ⊗ |b⟩x for arbitrary b

|x,−⟩ ⊗ |0⟩x 7→ |x,−⟩ ⊗ ((1− 2p) |0⟩x − 2
√
p(1− p) |1⟩x)

|x,−⟩ ⊗ |1⟩x 7→ |x,−⟩ ⊗ (−2
√
p(1− p) |0⟩x + (2p− 1) |1⟩x)

Proof of the lower bound. Let A be an algorithm described in Theorem 3.
Recall the oracle can be written as a Bernoulli random function f : {0, 1}|X| →
{0, 1} with parameter p, and S be the bound of the elements in the computational
basis, and q be the number of queries. We consider the overall states of the
algorithm and the oracle RBO initialized by∣∣∣ϕ(0)

〉
AF
|0⟩A ⊗

∣∣∣0|X|
〉

F
.

Similarly, we write
∣∣ϕ(t)〉

AF
to denote the overall state after the t-th query. In the

final step, we apply a projection Π :=
∑

x |x⟩⟨x|o ⊗ |1⟩⟨1|x where o denotes the
output register of A, and |1⟩⟨1|x checks if the output is correct; the unspecified
registers are not changed. For the final state |ϕ⟩AF , the success probability is
written by

psuccess :=
∥∥∥Π(I ⊗ U)

∣∣∣ϕ(q)
〉

AF

∥∥∥2
. (32)

By [23, Lemma 3.11], we have∥∥∥Π(I ⊗ U)
∣∣∣ϕ(q)

〉
AF

∥∥∥ ≤ √p+
∥∥∥Π ∣∣∣ϕ(q)

〉
AF

∥∥∥ . (33)

We will give the upper bound of the progress measure pt :=
∥∥Π ∣∣ϕ(t)〉

AF

∥∥2 and
relate it to the success probability. Using the following lemma and Equation (33),
we have √psuccess ≤

√
pq +√p which implies

psuccess = O(
√
S · pq)

as desired.

Lemma 7. The following hold:

1. p0 = 0.
2. pt+1 ≤ pt + c ·

√
S · p for some constant c > 0.

Proof. The first item is obvious: Since there is no 1 in the F register in the initial
state, p0 = 0.

To prove the second item, we define the projectors Πc
Z := ⊗x∈Z |0⟩⟨0|x, and

ΠZ :=
∑
x∈Z

|x⟩⟨x|o ⊗ |1⟩⟨1|x ⊗Π
c
Zc , Π¬Z := Π −ΠZ , and Πc := I −Π

34

for a subset Z ⊂ {0, 1}|X|. Intuitively, ΠZ projects to the state where the entry
1 is found only in some x ∈ Z, and all other registers contain 0.

Applying a unitary on the register A does not change the progress measure.
Thus, it suffices to prove the inequality for

∣∣ϕ(t+1)〉
AF

= RBO
∣∣ϕ(t)〉

AF
for any∣∣∣ϕ(t)

〉
AF

=
∑

x,y∈Xt×{+,1},D

αxyD |x, y⟩ ⊗ |D⟩F ⊗ |ϕxyD⟩

where Xt ⊂ {0, 1}|X|, which exists due to the assumption. Then, we have

pt+1 =
∥∥∥Π ∣∣∣ϕ(t+1)

〉∥∥∥2
=
∥∥∥Π · RBO · (Π¬Xt

+ΠXt
+Πc)

∣∣∣ϕ(t)
〉∥∥∥2

(34)

where we use Π¬Xt
+ΠXt

+Πc = Π +Πc = I. This equals to∥∥∥Π · RBO ·Π¬Xt

∣∣∣ϕ(t)
〉∥∥∥2

+
∥∥∥Π · RBO · (ΠXt

+Πc)
∣∣∣ϕ(t)

〉∥∥∥2
(35)

because the database of Π · RBO · Π¬Xt

∣∣ϕ(t)〉 always contains |1⟩x for some
x /∈ Xt, but the database of Π · RBO · (ΠXt

+ Πc)
∣∣ϕ(t)〉 contains |1⟩x only for

x ∈ Xt. This is bounded above by

≤
∥∥∥Π¬Xt

∣∣∣ϕ(t)
〉∥∥∥2

+
(∥∥∥ΠXt

∣∣∣ϕ(t)
〉∥∥∥+

∥∥∥Π · RBO ·Πc
∣∣∣ϕ(t)

〉∥∥∥)2
(36)

=
∥∥∥Π ∣∣∣ϕ(t)

〉∥∥∥2
+
∥∥∥Π · RBO ·Πc

∣∣∣ϕ(t)
〉∥∥∥2

(37)

+ 2
∥∥∥ΠXt

∣∣∣ϕ(t)
〉∥∥∥ · ∥∥∥Π · RBO ·Πc

∣∣∣ϕ(t)
〉∥∥∥ . (38)

Using Lemma 6, it is easy to derive that ∥Π · RBO ·Πc |ϕ⟩ ∥2 ≤ p for any |ϕ⟩.
By modifying the proof of [23, Lemma 3.11] (by just changing the role of the

primal and dual domain and applying ΠXt
), we have∥∥∥ΠXt

∣∣∣ϕ(t)
〉∥∥∥ ≤ ∥∥∥ΠXt

(I ⊗ U)
∣∣∣ϕ(t)

〉∥∥∥+√p.

We have
∥∥ΠXt(I ⊗ U)

∣∣ϕ(t)〉∥∥2 is bounded by the probability that the algorithm
finds a solution in Xt. This is again bounded by ≤ S · p due to |Xt| ≤ S, which
is the probability that there exists a solution in Xt for the random Bernoulli
function. This implies that

∥∥ΠXt

∣∣ϕ(t)〉∥∥ = O(
√
S · p).

Plugging this, we have the final upper bound

pt + p+ 2c
√
S · p

for some constant c > 0. (c = 10 suffices.) This concludes the proof.

B Proof of Bounded QRAM Lower Bounds

This section proves Theorem 11. To this end, we formally present the model of
algorithms and costs, and the lower bounds of quantum sieving with a bounded
QRAM.

35

B.1 Black-box near-neighbor algorithm and classical lower bound

In our model, a black-box near-neighbor algorithm A interacts with an oracle that
keeps a list L = (x1, ...,xn) of size n = 20.2075d+o(d) and the sets Ai, Bi for I ∈ [t]
initialized by empty sets. The oracle decides random vectors z1, ...zt from Sd−1

uniformly at random and define Qi and Ui by spherical caps as in Equation (24).
The algorithm A works over a working register W, a query register Q, and an

arbitrarily long table register T and X. The registers W and Q are initialized
to |0...0⟩ and A is allowed to apply an arbitrary unitary on WQ during its
execution. The registers X and T are initialized by |x1, ...,xn⟩ and |0, 0, ...⟩.
The algorithm A is allowed to make the following types of queries:

• Insertion. Measure the query register and interpret it as an element (C, i, j) ∈
{A,B} × [t]× [n]. The oracle updates Ci ← Ci ∪ {xj}.
• Sampling vectors from filters. Apply the following operation on Q and T

that works as follows in a computational basis:

|C, i, j, k⟩Q |..., 0, ...⟩T 7→ |C, i, j, k⟩Q |..., cj , ...⟩T (39)

where C ∈ {A,B}, 0 is the k-th entry of T and cj is the j-th element of Ci;
if no such cj , define cj = 0.
• Copying from X to T Apply the following operation on Q,X and T:

|i, j⟩Q |...,xi, ...⟩X |..., 0, ...⟩T 7→ |i, j⟩Q |...,xi, ...⟩X |...,xi, ...⟩T (40)

where 0 is the j-th entry of T.
• Sampling filters from vectors. Apply the following operation on Q and X

that works as follows in a computational basis:

|Z, i, 0, k⟩Q |...,xk, ...⟩X 7→ |Z, i, ℓi, k⟩Q |...,xk, ...⟩X (41)

where Z ∈ {C,Q}, xk is the k-th entry of X, {Zℓ1 , ..., Zℓu} be the set of
relevant (α- or β- depending on Z) filters such that ℓ1 < ... < ℓu, and set
ℓi = 0 if i > u. If the third register of Q is non-zero, it does nothing.
• Inner product. Measure the second and third registers of Q.17 Apply the

following operation on Q and T that works as follows in a computational
basis:

|r, k, ℓ⟩Q |..., tk, ..., tℓ, ...⟩T 7→ |r ⊕ b, k, ℓ⟩Q |..., tk, ..., tℓ, ...⟩T (42)

where tk, tℓ denote the k, ℓ-th entries of T, and b = 1 if ⟨tk, tℓ⟩ ≥ 1/2,
otherwise b = 0.

Except for the insertion, the inverse operations also can be queried. Note that
each entry of the registers T,X always contains 0 or a vector in L. Also note
that the register X is always unchanged from the initial classical state.
17 This measurement is to fix the indices of the inner product, which corresponds to

the operation given in Cost Model 2. If we do not apply the measurement, it requires
quantum RAM for quantum data.

36

If we consider the classical near-neighbor algorithms, Q is measured before
applying the unitary. (We allow the other parts to be coherent.) The black-box
algorithm cannot apply any other operation on T,X besides the oracle queries,
and comparison between two registers. This implies that the algorithm does not
know anything about the input vectors except the queries: the indices of α- or
β-relevant filters, the closeness of pairs,

We count the number of the last two types of queries (sampling filters and
inner products) as the complexity measure. We also note that the black-box
near-neighbor algorithm follows the algorithm outlined in Algorithm 2, especially
Preprocess. We formally assume the following goal of the algorithm.

Definition 3. After Preprocess, the hash-based near-neighbor algorithm is asked
to find each tuple (x,y) ∈ L×L such that (x,y) ∈ Qi×Ui holds for some i and
1 > ⟨x,y⟩ ≥ cos θ with probability at least 0.9. Alternatively, it needs to find at
least Ω(n) such pairs with overwhelming probability.

We assume θ = π/3 and t ≥ max(1/Cd(α), 1/Cd(β), 1/Wd(α, β, π/3)) to as-
sure that for all near-neighbors have such an index with high probability.

Both Query and FAS methods indeed try to address the above task. The
classical complexity lower bound can be derived from the following lemma. Recall
that the classical algorithm always stores the queries and vectors classically.

Theorem 13. The expected query complexities of the classical black-box near-
neighbor algorithm with the purpose as in Definition 3 is at least

nt · Cd(β)︸ ︷︷ ︸
Preprocess

+n · Cd(α)/Wd(α, β, π/3)︸ ︷︷ ︸
sampling filters wrt Qi

+n2 · Cd(α)Cd(β)/Wd(α, β, π/3)︸ ︷︷ ︸
inner products

(43)

up to a constant multiplicative factor, or at least 20.2925d+o(d). In particular, it
must make 20.2925d+o(d) queries.

Proof. The formal proof should be involved with several probabilistic arguments,
and intuitively, the proof shows that the queries in the main body are essential
except for the case where the algorithm does not use the hash functions much.
We give the proof sketch based on the average-case behavior.

The procedures for the first step are fixed, so the first term is obvious. Sup-
pose that the number of inner products made by the algorithm is less than
n1.5 ≥ 20.2925d+o(d); otherwise, it collapses to the “or” part at the end of the
statement.

Note that if the algorithm knows (x,y) ∈ Qi × Ui, the probability that
⟨x,y⟩ ≥ 1/2 is about 1/Wd(α, β, π/3) by Lemma 3. On the other hand, without
such a constraint, x and y behave essentially randomly (because we assume
that the vectors defining filters are uniformly distributed), the probability that
⟨x,y⟩ ≥ 1/2 is about 1/(4/3)d/2+o(d) = O(1/n) by Lemma 3. Therefore, the
number of near-neighbors found by inner product queries without the knowledge
of (x,y) ∈ Qi × Ui is at most n1.5 · 1/n = n0.5 on average. This means that we
need to find n−n0.5 = Ω(n) using the inner product queries with the knowledge
of the existence i.

37

Fix x ∈ L. For a near-neighbor y ∈ L of x (which exists with a high prob-
ability), the expected number of i ∈ [t] satisfying the condition of Definition 3
is t · Wd(α, β, π/3). The algorithm must find one of such i using the sampling
filter queries with a probability of at least 0.9. Since the vectors defining filters
are random, the algorithm must make t · Cd(α)/(t ·Wd(α, β, π/3)) sampling filter
queries. The algorithm also requires making (almost) all inner product queries
to find the near-neighbors, which is

n · (Cd(α)/(Wd(α, β, π/3))) · (n · Cd(β)) (44)

which gives the lower bound we desired. Optimizing the complexity is essentially
the same as in Theorem 4, which concludes the proof.

B.2 Quantum lower bound

Now, we turn to the lower bound with a bounded QRAM setting. As outlined
before, our strategy is, given a quantum black-box algorithm A, to construct
a classical black-box simulation algorithm B that behaves almost like A. The
result of the simulation can be described as follows.

Theorem 14. Let A be a quantum black-box near-neighbor algorithm follow-
ing Assumption 1 and Assumption 2. Suppose that a list of n = 20.2075d+o(d)

random vectors L in Sd−1 is given as input, and that A makes at most q queries
to the oracle. Then there exists another black-box near-neighbor algorithm B,
given the same inputs, which makes at most 22s · q classical queries to the oracle
such that the output distribution of B and A are identical for any input.

Since B always makes classical queries, the lower bound in Theorem 13 is
applied to B. This implies that the query complexity q of A must satisfy 22s ·q ≥
20.2925d+o(d). Furthermore, if A solves the task given in Definition 3, B must solve
the same task since the output distributions are identical. This concludes the
proof of Theorem 11. We again note that the proof of this theorem is very similar
to [35, Theorem 4.1].

Proof of Theorem 14. Let A be a quantum black-box near-neighbor algorithm
following Assumption 1 and Assumption 2. Let L = (x1, ...,xn). We construct
a black-box algorithm B that simulates A as follows.

Initialization. For the simulation, the algorithm B maintains a “labeling func-
tion”

L : [n]→ [n] ∪ {⊥}

by abusing the notation; we use L(i) only for the labeling function to avoid
confusion. Intuitively, L(i) = ℓ means, whenever A uses xi (in the i-th entry of
X), the algorithm B uses ℓ instead of the vector xi to construct their quantum

38

states.18 In this way, B will always know its exact state at any time of the
execution.

All labels are initially set by ⊥, which means they are not specified yet.
The algorithm B initializes the function L as follows: For i = 1, ..., n, set L(xi)
uniformly a random element from [M] conditioned that it is not used before. B
creates the following state

|0, ..., 0⟩WQ ⊗ |x1, ...,xn⟩X ⊗ |⊥, ...,⊥⟩T′

which is identical to the initial state of A except for the zero vectors in T is
replaced by ⊥. Whenever A has the state∑

wq,T =(t1,t2,...)

αwq,T |wq⟩WQ ⊗ |x1, ...,xn⟩X ⊗ |t1, t2, ...⟩T

such that ti = xji
for i = 1, 2, .., B will construct the state∑

wq,JT =(j1,j2,...)

αwq,JT
|wq⟩WQ ⊗ |x1, ...,xn⟩X ⊗ |L(j1), L(j2), ...⟩T′ .

Local operation. When A applies some operation U on its local registers WQ,
B also applies the same operation U on its WQ.

Insertion. When A applies the insertion query, B does the same query. The
definition of the insertion query forces to measure the query register, B can
apply the same insertion operation made by A.

Sampling vectors from filters. Suppose A makes the sampling vectors from filters
query with the input state∑

(C,i,j)∈J,k

αC,i,j,k |C, i, j, k⟩Q ⊗ |..., 0, ...⟩T

for some set J . For convenience, we assume that k is fixed; the general case can
be dealt with analogously. By Assumption 1, |J | ≤ 2s holds.

B makes the classical sampling vectors from filter queries for all (C, i, j, k)
for (C, i, j) ∈ J19 and let tC,i,j be the sampled vector stored in the k-th entry of
T, finds iC,i,j ∈ [n] such that tC,i,j = xiC,i,j

, and applies the inverse operation of
the previous query to remove the k-th entry vector from T. Then, B computes∑

(C,i,j)∈J,k

αC,i,j,k |C, i, j, k⟩Q ⊗ |..., L(iC,i,j), ...⟩T′

from the current state
∑

(C,i,j)∈J,k αC,i,j,k |C, i, j, k⟩Q ⊗ |..., 0, ...⟩T′ .
18 The use of the labeling function is because the algorithm B does not have access to

the register X and T without queries, so it cannot construct the coherent states over
the input vectors only using the classical queries; instead, B constructs the coherent
states over the labels.

19 B knows the whole state perfectly, so it can be recovered.

39

Copying from X to T. B applies the same operation as A.

Sampling filters from vectors. This is almost the same as the sampling vectors.
This time, the algorithm’s state is∑

αZ,i,k |Z, i, j, k⟩Q 7→
∑

αZ,i,k |Z, i, ℓi, k⟩Q

for A, where Z ∈ {C,Q}, {Zℓ1 , ..., Zℓu
} be the set of relevant filters such that

ℓ1 < ... < ℓu. We omit the register X because it is fixed. Here, the number
of (Z, i, k) such that αZ,i,k ̸= 0 must be at most 2s because of Assumption 2.
B collects such (Z, i, k) and makes the classical sampling filter queries for all
(Z, i, k) and obtain ℓi (wrt Z, k) and construct the corresponding state. It makes
at most 2s classical sampling filters from vectors queries for each quantum query
by A.

Inner product. When A applies the inner product query on∑
r,T

αr,T |r, k, ℓ⟩Q |..., tk, ..., tℓ, ...⟩T 7→
∑
r,T

αr,T |r ⊕ b, k, ℓ⟩Q |..., tk, ..., tℓ, ...⟩T ,

B retrieves the information in the k-th and ℓ-th registers of T′. Note that the
sampling vector queries are the only way to make the coherent state over T,
and by Assumption 1, each entry of T has at most 2s vectors with nonzero
amplitudes. Thus, we can write tk,1, ...tk,2s , tℓ,1, ..., tℓ,2s be such vectors with
nonzero amplitudes. B computes the indices ik,1, ..., ik,2s , iℓ,1, ..., iℓ,2s such that
xik,⋆

= tk,⋆ and the same for ℓ. Using the classical inner product queries, B
compute 1⟨xik,a

,xiℓ,b⟩≥1/2 = 1⟨tk,a,tk,b⟩≥1/2 for all a, b ∈ [2s]. From this, B can
compute the same query using 22s classical inner product queries.

Finalization. When A outputs a near-neighbor pair (xi,xj), it must contain
(i, j) in its local register W. B does the same and outputs (i, j).

As observed above, the truncated states in register WQ of A and B are
identical, thus the output distributions of A and B are identical for any input.
The complexity of B is at most 22s times the query complexity of A, because each
quantum query can be simulated by at most 22s classical query. This concludes
the proof.

40

Table of Contents

Does quantum lattice sieving require quantum RAM? 1
Beomgeun Cho1, Minki Hhan⋆2, Taehyun Kim1, Jeonghoon Lee1,
and Yixin Shen3

1 Introduction . 1
1.1 This work . 3

2 Preliminaries . 6
2.1 Lattice . 6
2.2 Quantum computing . 6
2.3 Quantum random access memory . 7

3 Quantum Algorithms with Bounded QRAM . 8
4 Time-QRAM Trade-off for Quantum Lattice Sieving 10

4.1 Sieving with locality-sensitive filtering . 10
4.2 Quantum search inside the α-close filters . 12
4.3 Quantum search over the α-close filters . 14
4.4 Discussion on the QRAM model . 16

5 Application of QRAM Trade-off to Symmetric Key 17
6 Lower Bounds with Bounded QRAM . 19

6.1 The problems, models, and classical lower bounds 19
6.2 The quantum time-memory trade-off lower bounds 22

7 Sieving Without QRAM . 24
A Omitted Proofs . 32

A.1 The bounded QRAM search lower bound . 33
B Proof of Bounded QRAM Lower Bounds . 35

B.1 Black-box near-neighbor algorithm and classical lower bound . . . 36
B.2 Quantum lower bound . 38

	Does quantum lattice sieving require quantum RAM?

