
Machine Learning based Blind Side-Channel
Attacks on PQC-based KEMs - A Case Study of

Kyber KEM
Prasanna Ravi, Dirmanto Jap, Shivam Bhasin

Temasek Labs
Nanyang Technological University

Singapore
prasanna.ravi,djap,sbhasin@ntu.edu.sg

Anupam Chattopadhyay
Temasek Labs and School of Computer Science and Engineering

Nanyang Technological University
Singapore

anupam@ntu.edu.sg

Abstract—Kyber KEM, the NIST selected PQC standard for
Public Key Encryption and Key Encapsulation Mechanisms
(KEMs) has been subjected to a variety of side-channel attacks,
through the course of the NIST PQC standardization process.
However, all these attacks targeting the decapsulation procedure
of Kyber KEM either require knowledge of the ciphertexts or
require to control the value of ciphertexts for key recovery.
However, there are no known attacks in a blind setting, where
the attacker does not have access to the ciphertexts. While blind
side-channel attacks are known for symmetric key cryptographic
schemes, we are not aware of such attacks for Kyber KEM.
In this paper, we fill this gap by proposing the first blind
side-channel attack on Kyber KEM. We target leakage of the
pointwise multiplication operation in the decryption procedure
to carry out practical blind side-channel attacks resulting in full
key recovery. We perform practical validation of our attack using
power side-channel from the reference implementation of Kyber
KEM taken from the pqm4 library, implemented on the ARM
Cortex-M4 microcontroller. Our experiments clearly indicate the
feasibility of our proposed attack in recovering the full key in
only a few hundred to few thousand traces, in the presence of a
suitably accurate Hamming Weight (HW) classifier.

Index Terms—Post-Quantum Cryptography; Blind Side-
Channel Attacks; Kyber; Lattice-based cryptography; Power-
based Side-Channel Attacks

I. INTRODUCTION

The impending threat of quantum computers towards public-
key cryptography prompted the National Institute of Standards
and Technology to initiate a global level standardization effort
for Post-Quantum Cryptography (PQC), which is resistant
to attacks against large-scale quantum computers [1]. The
process which started in 2017, completed its third round in
July 2022, when it announced the first set of algorithms
to be standardized for PQC Key Encapsulation Mechanisms
(KEMs) and Digital Signatures Schemes (DSS) [2]. Kyber
KEM [3], based on the well-known Module Learning With
Error (MLWE) problem was the only algorithm that was
standardized for KEMs, owing to its fine balance of both
security and efficiency guarantees [2]. The standardization
of Kyber KEM will ensure its implementation on a wide-
variety of computing devices, including resource constrained
platforms such as embedded microcontrollers [4], [5]. This

naturally makes them susceptible to side-channel attacks,
which was also an important consideration during the NIST
PQC standardization process [6].

Given the importance of protecting Kyber against SCA,
there were several works published on both SCA as well
as protected development of protected implementations of
Kyber on embedded devices [7]–[9]. Refer to [6] for a
detailed survey of the various side-channel attacks on Kyber
KEM. The decapsulation procedure of Kyber KEM serves
as the main target for an attacker, as it manipulates the
secret key for multiple executions, allowing the attacker to
observe multiple side-channel traces for key recovery. Existing
attacks on the decapsulation procedure can be categorized into
two broad categories, based on the attacker’s based on the
attacker’s knowledge of the input to Kyber’s decapsulation
procedure. They are (1) Known Ciphertext Attacks (KCA)
and (2) Chosen Ciphertext Attacks (CCA). In KCA-style
attacks, the attacker only requires the knowledge of inputs to
the decapsulation procedure, and in CCA-style attacks, the
attacker requires to control the input to the decapsulation
procedure [6].

However, it is possible in certain scenarios that the attacker
does not obtain access to the input of the DUT (Refer to Page
128 of [10]) or when using Kyber in any setting that limits
the adversary’s access to the I/O of the target device. In such
a setting, the attacker only has access to the side-channel
traces from the decapsulation procedure, and this prompts
the question if an attacker can still perform key recovery
without the knowledge of the DUT’s ciphertext inputs. In this
work, answer this question positively by demonstrating the
first blind side-channel attack on Kyber KEM, and the concrete
contributions of this work as manifold.

Contribution

1) To the best of our knowledge, we propose the first blind
side-channel attack on Kyber KEM, by targeting leakage
from the pointwise-multiplication operation of the secret
key with the ciphertext in the decryption procedure.

2) We observe that the pointwise-multiplication operation
manipulates the secret key one coefficient at a time.
This enables us to exploit the joint distribution of the
input and output coefficients of this operation, and
recover single coefficients of the secret key polynomials,
without any knowledge of the ciphertext input to the
decapsulation procedure.

3) We performed extensive simulations of our attack for
two cases: (1) assuming perfect Hamming Weight (HW)
classifier, we were able to to recover the secret co-
efficients with 100% success rate in just 820 traces
(2) assuming an imperfect HW classifier with 95%
accuracy, we are able to recover the secret coefficients
with 100% success rate in about 7805 traces. Our attack
can also work with HW classifiers of lower accuracy,
but requiring more number of traces.

4) We perform practical validation of our attack using
power side-channel leakage obtained using the Chip-
Whisperer platform [11] on the reference implementa-
tion of Kyber KEM taken from the pqm4 library [4],
implemented on the ARM Cortex-M4 microcontroller.
We tested our attack to recover 20 random secret
coefficients and were able to successfully recover all
these coefficients only using ≈ 35 to 5000 traces. Our
experiments indicate the feasibility to efficiently recover
the secret key, thereby highlighting the capability of
blind side-channel attacks on Kyber KEM.

II. LATTICE PRELIMINARIES

A. Notations

We denote the ring of integers modulo a prime q as Zq .
The polynomial ring Zq(x)/ϕ(x) is denoted as Rq . We denote
r ∈ Rk×ℓ

q as a module of dimension k× ℓ. Polynomials in Rq

and modules in Rk×ℓ
q are denoted in bold lower case letters.

The ith coefficient of a polynomial A ∈ Rq is denoted as A[i].
Product of polynomials a and b in the ring Rq is denoted as
c = a × b, while coefficient-wise multiplication is denoted
using the symbol ◦. Kyber utilizes the well-known Number
Theoretic Transform (NTT) for polynomial multiplication.
The output of NTT over a polynomial a ∈ Rq is denoted
as â. The product c = a × b using NTT is computed as
c = INTT(NTT(a) ◦ NTT(b)). Byte arrays of length n are
denoted as Bn. The ith bit in an element x ∈ Zq is denoted
as xi.

B. Kyber KEM

Kyber is a chosen-ciphertext secure (CCA-secure) KEM
based on the hardness of Module-Learning With Errors
(MLWE) problem [3]. The search MLWE problem requires
the attacker to solve for (s, e) ∈ Rk

q given polynomially many
LWE instances of the form (a, t = a · s+ e) ∈ (Rk×k

q ×Rk
q),

where coefficients of a are uniformly in random in the range
[0, q], while coefficients of s and e are sampled from a smaller
range [−η, η] based on a Centered Binomial Distribution
(CBD) with η << q.

1) Algorithmic Description: Kyber offers three security
levels: Kyber512 (NIST Security Level 1), Kyber768 (Level
3) and Kyber1024 (Level 5) with k = 2, 3 and 4 respectively.
It operates over the anti-cyclic polynomial ring Rq with a
prime modulus q = 3329 and degree n = 256. The CCA-
secure Kyber contains in its core, a Chosen-Plaintext secure
encryption scheme of Kyber (i.e.) IND-CPA secure Kyber PKE
scheme. Refer to Algorithm 1 for a simplified description
of the IND-CPA secure Kyber PKE scheme. The function
SampleU denotes sampling from a uniform distribution; the
function Expand inflates a small seed into a uniformly random
matrix in Rk×k

q ; and the function SampleB uses a short seed to
sample coefficients from the Centered Binomial Distribution
(CBD) in [−η, η] respectively.

Algorithm 1 IND-CPA secure Kyber PKE Scheme
1: procedure KeyGen
2: seedA ∈ B32 ← SampleU ()
3: seedB ∈ B32 ← SampleU ()
4: â ∈ Rk×k

q ← Expand(seedA) ▷ Sample â
5: s ∈ Rk

q ← SampleB(seedB , coins) ▷ Sample s
6: e ∈ Rk

q ← SampleB(seedB , coine) ▷ Sample e

7: t̂ = â ◦ NTT(s) + NTT(e) ▷ Compute NTT(t)
8: Return (pk = (seedA, t̂), sk = (NTT(s))
9: end procedure

10: procedure CPA.Encrypt(pk,m, seedR)
11: â ∈ Rk×k

q ← Expand(seedA)
12: r, e1, e2 ∈ (Rk

q ×Rk
q ×Rq)← SampleB(seedR)

13: u ∈ Rk
q ← INTT(AT ◦ NTT(r)) + e1

14: vp ∈ Rq ← INTT(t̂T ◦ NTT(r)) + e2
15: v = vp + Encode(m)
16: Return ct = Compress(u, d1),Compress(v, d2)
17: end procedure

18: procedure CPA.Decrypt(sk, ct)
19: (u′,v′) ∈ Rk

q = Decompress(u,v)
20: w∗ = NTT(u′) ◦ NTT(s)
21: m′ = v′ − INTT(w∗)
22: m′ ∈ B∗ = Decode(m′)
23: Return m′

24: end procedure

Referring to Alg.1, the key-generation procedure (KeyGen)
of Kyber PKE simply involves computation of an MLWE
instance t ∈ Rk

q = (a · s + e) (Line 7), where â ∈ Rk×k
q

is sampled from a public seed seedA ∈ B32 and s ∈ Rk
q is the

secret and e ∈ Rk
q is the error component of the LWE instance.

The tuple (seedA, t) forms the public key, while NTT(s) (i.e.)
ŝ forms the secret key (Line 8).

The encryption procedure (Encrypt) involves generation of
two LWE instances u ∈ Rk

q and vp ∈ Rq where u = a ·r+e1
(Line 13) and vp = t · r + e2 (Line 14). Subsequently, the
message m ∈ B32 is encoded into a polynomial m ∈ Rq using
the Encode function, and added to vp resulting in v ∈ Rq

(Line 15). The ciphertext is nothing but compressed versions
of the tuple (u,v) (Line 16).

The decryption procedure (Decrypt) extracts the decom-
pressed ciphertext components (u′ ∈ Rk

q ,v
′ ∈ Rq) and simply

computes the noisy message polynomial m′ = v′ − u′ · s
(Line 21). It is important to note that the aforementioned
computation is performed using NTT operations. The resultant
message polynomial m′ will be correctly decoded to m (Line
22). The parameters of Kyber are chosen so as to have a
negligible decryption failure rate (≈ 2−165.2 for recommended
parameters of Kyber).

III. PRIOR WORKS AND MOTIVATION

Kyber KEM, along with other KEMs based on the
LWE/LWR problem have been shown to be vulnerable against
a wide-variety of side-channel attacks [6]. Most of the reported
SCA have targeted its decapsulation procedure, since it ma-
nipulates the long-term secret key over multiple executions.
In this respect, we can broadly classify such attacks on the
decapsulation procedure into two broad categories, based on
the attacker’s knowledge of the input (i.e.) ciphertext ct, to
Kyber’s decapsulation procedure. They are (1) Known Ci-
phertext Attacks (KCA) and (2) Chosen Ciphertext Attacks
(CCA).

A. Known Ciphertext Attacks (KCA)

These attacks are those that require the attacker to have
knowledge of ciphertext to recover the long-term secret key
sk. In this respect, Primas et al. [12] and Pessl et al. [13]
showed that a single trace from the INTT operation (Line 21)
for a known ciphertext can be used to recover the input to the
INTT operation (i.e.) w′ ∈ Rq . This enables full key recovery
using a single trace from the decapsulation operation on the
ARM Cortex-M4 microcontroller for a known ciphertext.

Subsequently, Mujdei et al. [14] reported Correlation Power
Analysis (CPA) style attacks targeting leakage from the com-
putation of w∗ ∈ Rq (i.e.) the pointwise multiplication
operation (Line 20 of the CPA.Decrypt procedure). They
demonstrated that traditional CPA can be used to recover the
complete key in about 200 side-channel traces. More recently,
a couple of works also demonstrated the power of template
attacks targeting leakage from the pointwise multiplication
operation for single trace key recovery [15], [16].

B. Chosen Ciphertext Attacks (CCA)

These attacks are those that require the attacker to query
the decapsulation procedure with chosen ciphertexts. This is a
strong assumption compared to KCA attacks, as the attacker
requires to communicate with the DUT, while KCA attacks
only require the knowledge of the ciphertexts.

Remarkably, Ravi et al. [9] were the first to demonstrate that
an attacker can craft malicious ciphertexts so as to amplify
the leakage of the secret key from the decapsulation proce-
dure. Several operations in the decapsulation procedure after
decryption, could be used to instantiate a decryption oracle for
full key recovery in a few thousand chosen-ciphertext queries.

Subsequent attacks reported in [17]–[19] demonstrated the
ability to perform more efficient side-channel assisted chosen-
ciphertext attacks, through exploitation of finer leakages from
the decapsulation procedure. All these attacks require the
attacker to construct specially crafted inputs, so as to evoke
increased leakage from the decapsulation procedure for key
recovery.

C. Motivation

All reported attacks targeting the decapsulation procedure
for key recovery belong to either of these two categories,
where the attacker either requires to know the ciphertexts
or control the ciphertexts fed to the decapsulation procedure.
However, it is possible in certain scenarios that the attacker
does not obtain access to the input of the DUT [10]. In such a
setting, the attacker only has access to the side-channel traces,
and it begets the question if an attacker can still perform
key recovery without the knowledge of the DUT’s ciphertext
inputs.

Prior works have shown that it is possible to mount side-
channel attacks on symmetric cryptographic schemes such as
AES, without any knowledge of the plaintext or the cipher-
text [20], [21]. Such attacks are commonly referred to as blind
side-channel attacks. However, to the best of our knowledge,
we are not aware of any blind side-channel attacks on PQC
schemes. Since the fundamental mathematical structure of
PQC schemes are completely different from that of schemes
such as AES, it is not clear whether blind side-channel attacks
are possible on PQC schemes.

In this work, we answer this question positively by demon-
strating the first blind side-channel attack on Kyber KEM,
targeting the pointwise polynomial multiplication operation
within the decryption procedure.

IV. BLIND SIDE-CHANNEL ATTACK METHODOLOGY

A. Attack Intuition

Our attack idea is inspired from prior blind side-channel at-
tacks on software implementations of the AES algorithm [20],
[21]. We now briefly describe the intuition behind prior
attacks, to motivate our attack on Kyber KEM. These attacks
work by targeting leakage from the plaintext (m) as well as
the output of the SBox operation (y), where y = SBox(m⊕k)
and k is the secret key, and this operation is performed
in a bytewise manner. We consider a single byte of every
component (i.e.) m, y and k, but use the same notation for
simplicity. The key observation is that the joint distribution of
HW of m and y (i.e.) tuple (HW(m), HW(y)) is unique for
every possible value of the secret key byte k (i.e.) k = [0, 255].
The attack works in three phases.

1) • Phase-I: This phase involves building a joint distri-
bution HWsethist of the tuple (HW(m),HW(y))k for
every possible value of the secret key byte k (i.e.)
k ∈ [0, 255]. This can be generated by computing y for
random values of m ∈ [0, 255], and repeat this for all
values from k ∈ [0, 255]. One needs to collect sufficient
number of data points of m such that the pdf converges.

2) • Phase-II: This phase involves collection of multiple
attack traces (N) ti for i ∈ [0, N−1], from the target de-
vice and the leakage of mi and yi in each trace ti is used
to obtain the corresponding tuple (HW(mi), HW(yi))
using a suitable HW Classifier. Let the corresponding
HW tuple set obtained be denoted as HWsetattack. In
order to build the HW classifier, we assume that the
attacker has access to a clone device, on which he/she
can profile the leakage of mi and yi, by controlling the
input m and the secret key k.

3) • Phase-III: This phase involves application of the
Maximum Likelihood (ML) approach to the tuple set
HWsetattack obtained from the N attack traces, on top
of the HWsethist to recover the correct value of the
subkey byte k. This process is repeated for all the secret
key bytes ki for i ∈ [0, 15] to recover the entire secret
key of AES.

The attack was mainly possible due to bytewise manipula-
tion of the key (i.e.) (ki) for i ∈ [0, 15], which ensures that the
attacker can profile leakage of intermediate variables related to
only a single byte of the key. This ensures that the attacker only
has to distinguish between 256 different joint-distributions for
recovering the key byte (subkey), and higher the number of
hypotheses for the subkey, higher is the difficulty to obtain
unique distinguishability. This motivated us to look for similar
operations in the decapsulation procedure of Kyber KEM that
manipulates single coefficients of the secret key module s.

B. Targeting Pointwise Multiplication in Decryption

Referring to the decryption procedure (i.e.) CPA.Decrypt,
we observe that computation of w∗ ∈ Rq through the
pointwise multiplication of u∗ = NTT(u) ∈ Rk

q and s∗ =
NTT(s) ∈ Rk

q , involves manipulation of single coefficients of
s∗. This operation therefore serves as a natural target for blind
side-channel analysis. The component w ∈ Rq is computed
as follows:

w =

i=k−1∑
i=0

u∗[i] ◦ s∗[i] (1)

where individual polynomials of u∗ are pointwise-multiplied
with the corresponding polynomials of s∗ and subsequently
accumulated to compute w ∈ Rq . The pointwise multiplica-
tion of two polynomials say u∗[i] and s∗[i] for i ∈ [0, k − 1]
is carried out using the basemul function (Refer Alg.2).

For brevity, we denote the input polynomials as a (resp.
s∗[i]) and b in Rq (resp. u∗[i]), and the basemul function
operates on pairs of coefficients of a and b denoted as
a[2] ∈ Z2

q and b[2] ∈ Z2
q , and a constant ζ as shown in

Alg.2, and the output coefficients are denoted as r[2] ∈ Z2
q . In

Alg.2, the function fqmul multiplies two coefficients directly
and reduces the result using montgomery reduction. So, the
result r[2] is computed using a total of five fqmul operations
on single coefficients of a and b.

We refer to Line 2, which corresponds to fqmul operation
on a[1] and b[1], whose output is stored in r[0]. This op-
eration involves loading of a[1] and b[1] from memory into

Algorithm 2 Pseudo Code of Basemul and Fqmul Function
1: procedure BASEMUL(r[2] ∈ Z2

q, a[2] ∈ Z2
q, b[2] ∈ Z2

q, ζ)
2: r0 ∈ Zq = fqmul(a[1], b[1])
3: r0 = fqmul(r[0], ζ)
4: r0+ = fqmul(a[0], b[0])
5: r1 ∈ Zq = fqmul(a[0], b[1])
6: r1+ = fqmul(a[1], b[0])
7: Return r[0], r[1]
8: end procedure

registers, and subsequently storing the result r[0] back into
memory. This results in side-channel leakage of HW(b[1])
and output HW(r[0]) respectively. If the joint distribution of
(HW(b[1]),HW(r[0])) is unique for every possible value of
a[1] ∈ [0, q] where q = 3329, this enables key recovery of
the exact value of b[0]. The same can also be applied to the
fqmul operation in Line 5, to recover a[0] through the joint
distribution of the tuple (HW(b[0]),HW(r[1])). This process
can be repeated to recover the complete polynomial a, two
coefficients at a time.

C. Analyzing the Feasibility of Key Recovery: Simulated At-
tack

We used simulated traces (based on HW leakage), to test
the possibility of obtaining unique distinguishability for every
possible value of the secret coefficient in the range [0, q]
given sufficient number of traces”. We performed an attack
on simulated traces targeting recovery of a[1] in Line 2. We
first built a joint distribution HWsethist consisting of q = 3329
tuples (HW(b[1]),HW(r[0])) for every possible value of the
secret coefficient a[1]in[0, q]. This joint distribution can be
pre-computed from the specification of the scheme, and does
not require any access to the DUT. In Phase-II, we generate
a set of simulated attack traces (with and without Gaussian
noise), to imitate the real world traces. We then extract
the set of noisy HW tuples HWsetattack corresponding to
the leakage of b[1] and r[0], assuming the presence of a
suitable HW classifier. In Phase-III, we compute the Maximum
Likelihood of HWsetattack using the distribution HWsethist
for all possible values of the secret coefficient a[1], to recover
the correct value of a[1].

Thus, to construct an actual attack, we require a HW
classifier in Phase-II, and an appropriate Maximum Likelihood
(ML) technique that can result in key recovery. We first explain
the Maximum Likelihood principle used for key recovery in
the following discussion.

1) Maximum Likelihood Approach for Key Recovery: For
simplicity, we will henceforth denote the input coefficient
b[1] as m and output coefficient r[0] as y, and the secret
coefficient a[1] to be recovered as k. Let the true HW tuple
of (m, y) be denoted as (h∗

m, h∗
y). However, the recovered

HW tuple using the HW classifier on the side-channel trace is
denoted as (hm, hy) = (h∗

m + nm, h∗
y + ny), where nm and

ny are Gaussian noise with appropriate standard deviation.

The probability of the the coefficient to be k given a single
observation (hm, hy) is given by the Bayes formula as follows:

Pr(k|(hm, hy)) =
Pr((hm, hy)|k)) · Pr(k)

Pr(hm, hy)
(2)

(3)

It is important to note that the denominator term is independent
of the key k, and since we are only interested in compari-
son between the different values of the coefficient, we can
ignore the denominator. Moreover, the value of k is uniformly
distributed in the range [0, q], and thus Pr(k) = 1/q for all
k ∈ [0, q]. Thus, the probability of the coefficient to be k given
a set of observations ((hm, hy)i)i=0,1,...,N is denoted as:

Pr(k|(hm, hy)i)i=0,...,N (4)
∝ Pr((hm, hy)N |k) · Pr(k|(hm, hy)i)i=0,...,N−1 (5)

and thus this expression can be calculated in an iterative way
for all possible values of k for N observations (traces). The
value that yields the highest probability over n traces is defined
as the most likely key candidate. This process can be repeated
for all the coefficients separately to recover the entire secret
polynomial.

2) Evaluation of Our Simulated Attack: We first performed
our attack on ideal simulated traces with zero noise (i.e.)
perfect HW classifier, and attempted to recover hundred (100)
random coefficients, while also repeating each of our attack
over 10 runs. We were able to obtain an average Guessing
Entropy (GE) of 0 for all the coefficients in about N ≈ 671
traces. We also investigated the effect of noisy HW predictions
on our attack efficacy. We then assumed a HW classifier with
95% accuracy. The classifier returns an erroneous prediction
based on a Gaussian Distribution with standard deviation
σ = 1, and the value is rounded to nearest non-zero integer
which is then added to actual HW value. We also clip the value
to ensure that it falls within valid prediction range (between
0 and max HW). We were able to obtain an average GE of 0
for N ≈ 8524 traces (≈ 12.7× increase compared to 100%
accuracy). Refer to Fig.1(a)-(b) for the GE plot versus number
of traces in the presence of a perfect HW classifier and HW
classifier with 95% accuracy respectively. These experiments
clearly demonstrate the capability of our attack to work, even
in the presence of errors in the HW predictions. While our
attack can also potentially work with a lesser accurate HW
classifier, it corresponds to a higher number of traces for key
recovery. In the following, we present experimental validation
of our attack using power side-channel traces obtained from
the software implementation of Kyber KEM on the ARM
Cortex-M4 microcontroller.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We validated the capability of our attack on the refer-
ence implementation of Kyber KEM, taken from the public
pqm4 library [4], a benchmarking and testing framework for
PQC schemes on the 32-bit ARM Cortex-M4 microcontroller,

0 200 400 600 800 1000
No of traces

0

250

500

750

1000

1250

1500

GE

prediction accuracy: 100

0 2000 4000 6000 8000 10000
No of traces

0

200

400

600

800

1000

1200

1400

GE

prediction accuracy: 95

(a) HW Classifier (100%) (b) HW Classifier (95%)
Fig. 1. Plot of Guessing Entropy of the secret key coefficients versus the
number of side-channel traces for our simulated attack

which is also a NIST recommended optimization target for
embedded software implementations. We utilized power side-
channel leakage, captured from an STM32F3 microcontroller
(running at 7.372 MHz) using the ChipWhisperer CW308
setup [11]. The measurements are then collected using a
Lecroy 610Zi oscilloscope, at a sampling rate of 500 × 106

samples per second. We also used a 48 MHz analog low-
pass filter to remove high frequency noise in our traces. We
performed experiments on two types of implementations: (1)
O0-optimized: no optimization and (2) O3-optimized: highest
compiler optimization.

B. Constructing a HW Classifier

For classification of the HW classes, we used Random
Forest, which has been used in previous works [22]. Random
Forest [23] is an ensemble learning algorithm that is based
on the construction of multiple decision trees. The predictions
from trees are combined in order to achieve a more accurate
prediction. The individual decision tree is sensitive to small
changes in the training data, and when grown large enough,
will usually tend to overfit the training data. RF is designed to
address these problems of instability in the decision tree, and
multiple trees are allowed to grow large, without the need of
post-processing. These decision trees are trained on different
subsets of the training data using bootstrapping methods (the
training data is sampled uniformly with replacement), and the
decision is then made by taking the average or majority voting
of the decisions given by the trees.

We construct a HW classifier for the input and output
coefficients (i.e.) m and y of the target basemul function,

0 5000 10000 15000 20000 25000
Time Samples

0.0

0.2

0.4

0.6

0.8

1.0

(A
bs

) C
or

re
la

tio
n

CW308_O0
Input
Output

0 2500 5000 7500 10000 12500 15000
Time Samples

0.0

0.2

0.4

0.6

0.8

(A
bs

) C
or

re
la

tio
n

CW308_O3
Input
Output

(a) O0 Implementation (b) O3 Implementation
Fig. 2. Correlation Power Analysis to identify Points of Interest (PoI) for the
input variables m and output variables y, used in the target basemul function

used in the pointwise-multiplication operation. The first step
is to locate the Points of Interest (PoI) corresponding to
manipulation of the variables m and y. We use leakage from a
clone device, where the attacker can control both the input and
secret key. We utilize the classic Correlation Power Analysis
(CPA) technique [24] to locate the PoIs corresponding to x
and y, using knowledge of the secret coefficient k. Refer
to Fig.2(a)-(b) for the CPA plots corresponding to the O0
and O3 optimized implementations respectively, which clearly
contains peaks corresponding to manipulation of the first input
and output coefficients of the involved polynomials within the
basemul function.

We observe that there are more leakage points for the
O0-optimized implementation compared to the O3-optimized
implementation, since the O0-optimized implementation ma-
nipulates the variables using much higher number of assembly
instructions compared to the O3-implementation. We choose
a suitable threshold ThSel to choose a PoI set, separately for
m and y, which is a parameter of the experimental setup. We
then use this PoI set to build HW classifiers separately for
both x and y, using the Random Forest approach.

We represent the result of our HW classifier, in the form of
a confusion matrix, where a given element (i, j) corresponds
to the probability of actual HW = i and predicted HW =
j. Thus, the confusion matrix for an ideal HW classifier is
an ideal matrix I . Refer to Fig.3(a)-(d) for the confusion
matrix plots obtained for the input and output coefficients
corresponding to the first basemul operation in the pointwise-

0 2 4 6 8 10 12 14 16
Predicted HW

0

2

4

6

8

10

12

14

16

Ac
tu

al
 H

W

1.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.970.030.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.890.110.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.820.180.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.020.880.100.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.040.920.050.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.100.880.020.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.180.770.050.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.200.610.180.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.060.720.210.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.020.860.120.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.060.910.040.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.130.840.020.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.270.720.010.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.470.530.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.430.570.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.070.000.93

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16
Predicted HW

0

2

4

6

8

10

12

14

16

Ac
tu

al
 H

W

1.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.880.120.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.840.160.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.930.070.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.980.020.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.990.010.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.010.980.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.030.940.030.000.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.050.870.080.000.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.040.910.060.000.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.010.970.020.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.010.980.020.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.020.970.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.050.950.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.170.830.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.380.620.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.001.00

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(a) Input m (O0-optimized) (b) Output y (O0-optimized)

0 2 4 6 8 10 12 14 16
Predicted HW

0

2

4

6

8

10

12

14

16

Ac
tu

al
 H

W

1.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.950.050.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.630.340.020.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.580.390.030.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.020.670.300.010.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.080.810.100.000.000.000.000.000.000.000.000.000.00

0.000.000.000.000.010.260.700.030.000.000.000.000.000.000.000.000.00

0.000.000.000.000.000.040.440.450.040.030.000.000.000.000.000.000.00

0.000.000.000.000.000.000.070.310.250.310.060.000.000.000.000.000.00

0.000.000.000.000.000.000.000.050.030.410.490.020.000.000.000.000.00

0.000.000.000.000.000.000.000.000.000.030.730.230.010.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.170.750.080.000.000.000.00

0.000.000.000.000.000.000.000.000.000.000.010.390.580.030.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.040.580.380.000.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.130.700.170.000.00

0.000.000.000.000.000.010.000.000.000.000.000.000.000.450.180.360.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.050.370.000.58

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16
Predicted HW

0

2

4

6

8

10

12

14

16

Ac
tu

al
 H

W

1.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.820.170.020.000.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.590.340.070.000.000.000.000.000.000.000.000.000.000.000.00

0.000.000.010.640.300.040.000.000.000.000.000.000.000.000.000.000.00

0.000.000.000.040.680.240.040.000.000.000.000.000.000.000.000.000.00

0.000.000.000.010.140.660.160.020.000.000.000.000.000.000.000.000.00

0.000.000.000.000.060.250.640.050.000.000.000.000.000.000.000.000.00

0.000.000.000.000.010.140.350.460.020.020.010.000.000.000.000.000.00

0.000.000.000.000.000.040.210.170.330.120.120.020.000.000.000.000.00

0.000.000.000.000.000.000.010.040.020.450.330.140.010.000.000.000.00

0.000.000.000.000.000.000.000.000.000.030.710.210.040.000.000.000.00

0.000.000.000.000.000.000.000.000.000.020.150.740.090.000.000.000.00

0.000.000.000.000.000.000.000.000.000.010.120.250.610.010.000.000.00

0.000.000.000.000.000.000.000.000.000.000.070.230.350.350.000.000.00

0.000.000.000.000.000.000.000.000.000.000.020.200.390.120.270.000.00

0.000.000.000.000.000.000.000.000.000.000.000.090.200.130.060.530.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.360.000.64

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(a) Input m (O3-optimized) (b) Output y (O3-optimized)
Fig. 3. Confusion Matrix of Predicted versus True HW, obtained using
our constructed HW classifier on leakages from the O0 and O3 optimized
reference implementations of Kyber KEM.

polynomial multiplication operation, from both the O0 and
O3-optimized implementations respectively. We can observe
that the deviation from the diagonal is minimal, thereby
demonstrating the accuracy of our HW classifier for both the
O0 and O3-optimized implementations.

For the O0-optimized implementation, we achieved a high
accuracy of 69-80% and 81-85% for the HW classifier for both
the input and output coefficients respectively (Refer to Fig.
3(a)-(b)). Though we do not achieve a perfect HW classifier,
we observe that the deviation is only minimal from the actual
HW. As we show later in Section V-C, we are still able to
recover all the secret coefficients, that we attempted to recover.
For the O3-optimized implementation, we achieved a slightly
lower accuracy between ≈ 70% and ≈ 72% for the HW
classifier on the inputs and outputs respectively (Refer to Fig.
3(c)-(d)). This observation is expected given that the number of
PoIs for the O3-optimized implementation is lower than that
of the O0-optimized implementation. However, prior works
have shown that it is possible to construct HW classifiers with
much higher accuracy of over 90% [22], which also increases
the capability of our attack.

C. Practical Evaluation of our Attack

We obtained a set of attack traces corresponding to an
unknown key, and analyzed recovery of the first 20 coeffi-
cients, from the O0-optimized implementation. We used our
HW classifier to recover the intermediates in the pointwise
multiplication operation, and subsequently fed these HW val-
ues to construct the joint distribution leakage HWsetattack
for all the 20 coefficients. Application of the Maximum
Likelihood principle on HWsetattack enabled recovery of all
the 20 coefficients using 35 − 5000 traces. All coefficients
cannot be recovered with the same number of traces due to
the randomness in the constructed joint distribution leakage.
Though we did not perform experiments to recover all the
secret coefficients, our experiments provide sufficient evidence
of the capability of our attack, in the presence of a sufficiently
accurate HW classifier. We expect to perform key recovery
with much fewer traces in the presence of HW classifiers
with higher accuracy. We leave the improvement of our HW
classifier accuracy out of the scope of our current work.

VI. CONCLUSION

In this work, we propose the first blind side-channel attack
on Kyber KEM, targeting leakage from the pointwise mul-
tiplication in the decryption procedure, resulting in full key
recovery. We performed practical validation of our attack using
power side-channel from the reference implementation of
Kyber KEM taken from the pqm4 library [4], implemented on
the ARM Cortex-M4 microcontroller. Our experiments clearly
indicate the feasibility of our proposed attack in recovering
the full key in only a few hundred to few thousand traces.
We intend to explore assembly optimized implementations as
well as side-channel protected implementations of Kyber, as
part of future work.

REFERENCES

[1] Moody, D, “Post-Quantum Cryptography Standardization: Announce-
ment and outline of NIST’s Call for Submissions,” in International
Conference on Post-Quantum Cryptography-PQCrypto, 2016.

[2] Alagic, Gorjan and Apon, Daniel and Cooper, David and Dang, Quynh
and Dang, Thinh and Kelsey, John and Lichtinger, Jacob and Miller, Carl
and Moody, Dustin and Peralta, Rene and others, “Status Report on the
Third Round of the NIST Post-Quantum Cryptography Standardization
Process,” National Institute of Standards and Technology, Tech. Rep.,
2022.

[3] Avanzi, Roberto and Bos, Joppe W. and Ducas, Leo and Kiltz, Eike and
Lepoint, Tancrede and Lyubashevsky, Vadim and Schanck, John and
Schwabe, Peter and Seiler, Gregor and Stehlé, Damien, “CRYSTALS-
Kyber (version 3.0): Algorithm specifications and supporting documen-
tation (October 1, 2020),” Submission to the NIST post-quantum project,
2020.

[4] Kannwischer, Matthias J and Rijneveld, Joost and Schwabe, Peter and
Stoffelen, Ko, “pqm4: Testing and Benchmarking NIST PQC on ARM
Cortex-M4,” in Second PQC Standardization Conference: University of
California, Santa Barbara and co-located with Crypto 2019, 2019, pp.
1–22.

[5] Abdulrahman, Amin and Hwang, Vincent and Kannwischer, Matthias J
and Sprenkels, Daan, “Faster Kyber and Dilithium on the Cortex-M4,”
Cryptology ePrint Archive, 2022.

[6] Prasanna Ravi and Anupam Chattopadhyay and Anubhab Baksi,
“Side-channel and Fault-injection attacks over Lattice-based Post-
quantum Schemes (Kyber, Dilithium): Survey and New Results,”
IACR Cryptol. ePrint Arch., p. 737, 2022. [Online]. Available:
https://eprint.iacr.org/2022/737

[7] Bos, Joppe W and Gourjon, Marc and Renes, Joost and Schneider, To-
bias and van Vredendaal, Christine, “Masking Kyber: First-and Higher-
Order Implementations.” IACR Cryptol. ePrint Arch., vol. 2021, p. 483,
2021.

[8] Gokulnath Rajendran and Prasanna Ravi and Jan-Pieter D’Anvers and
Shivam Bhasin and Anupam Chattopadhyay, “Pushing the Limits of
Generic Side-Channel Attacks on LWE-based KEMs - Parallel PC
Oracle Attacks on Kyber KEM and Beyond,” IACR Cryptol. ePrint
Arch., p. 931, 2022. [Online]. Available: https://eprint.iacr.org/2022/931

[9] Ravi, Prasanna and Roy, Sujoy Sinha and Chattopadhyay, Anupam and
Bhasin, Shivam, “Generic Side-channel attacks on CCA-secure lattice-
based PKE and KEMs,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 307–335, 2020.

[10] E. B.-I. C. C. Specifications, “for payment systems, book 1: Application
independent icc to terminal interface requirements, book 2: Security and
key management, book 3: Application specification, book 4: Cardholder
attendant and acquirer interface requirements, v. 4.3, emvco,” 2011.

[11] Colin O’Flynn and Zhizhang (David) Chen, “ChipWhisperer: An
Open-Source Platform for Hardware Embedded Security Research,”
in Constructive Side-Channel Analysis and Secure Design - 5th
International Workshop, COSADE 2014, Paris, France, April 13-15,
2014. Revised Selected Papers, ser. Lecture Notes in Computer Science,
E. Prouff, Ed., vol. 8622. Springer, 2014, pp. 243–260. [Online].
Available: https://doi.org/10.1007/978-3-319-10175-0 17

[12] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel attacks
on masked lattice-based encryption,” in Cryptographic Hardware and
Embedded Systems – CHES 2017, W. Fischer and N. Homma, Eds.
Cham: Springer International Publishing, 2017, pp. 513–533.

[13] Pessl, Peter and Primas, Robert, “More Practical Single-Trace Attacks
on the Number Theoretic Transform,” in International Conference on
Cryptology and Information Security in Latin America. Springer, 2019,
pp. 130–149.

[14] C. Mujdei, L. Wouters, A. Karmakar, A. Beckers, J. M. B. Mera, and
I. Verbauwhede, “Side-channel analysis of lattice-based post-quantum
cryptography: Exploiting polynomial multiplication,” ACM Transactions
on Embedded Computing Systems, 2022.

[15] B. Yang, P. Ravi, F. Zhang, A. Shen, and S. Bhasin, “Stamp-single trace
attack on m-lwe pointwise multiplication in kyber,” Cryptology ePrint
Archive, 2023.

[16] E. A. Bock, G. Banegas, C. Brzuska, Ł. Chmielewski, K. Puniamurthy,
and M. Šorf, “Breaking dpa-protected kyber via the pair-pointwise
multiplication,” Cryptology ePrint Archive, 2023.

[17] Ravi, Prasanna and Bhasin, Shivam and Roy, Sujoy Sinha and Chat-
topadhyay, Anupam, “On Exploiting Message Leakage in (few) NIST

PQC Candidates for Practical Message Recovery Attacks,” IEEE Trans-
actions on Information Forensics and Security, 2021.

[18] Xu, Zhuang and Pemberton, Owen and Roy, Sujoy Sinha and Oswald,
David, “Magnifying Side-Channel Leakage of Lattice-Based Cryptosys-
tems with Chosen Ciphertexts: The Case Study of Kyber,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 912, 2020.

[19] Hamburg, Mike and Hermelink, Julius and Primas, Robert and Samard-
jiska, Simona and Schamberger, Thomas and Streit, Silvan and Strieder,
Emanuele and van Vredendaal, Christine, “Chosen ciphertext k-trace
attacks on masked CCA2 secure Kyber,” IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pp. 88–113, 2021.

[20] C. Clavier and L. Reynaud, “Improved blind side-channel analysis by ex-
ploitation of joint distributions of leakages,” in Cryptographic Hardware
and Embedded Systems–CHES 2017: 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings. Springer, 2017,
pp. 24–44.

[21] C. Clavier, L. Reynaud, and A. Wurcker, “Quadrivariate improved
blind side-channel analysis on boolean masked aes,” in Constructive
Side-Channel Analysis and Secure Design: 9th International Workshop,
COSADE 2018, Singapore, April 23–24, 2018, Proceedings 9. Springer,
2018, pp. 153–167.

[22] B. Colombier, V.-F. Drăgoi, P.-L. Cayrel, and V. Grosso, “Profiled side-
channel attack on cryptosystems based on the binary syndrome decoding
problem,” IEEE Transactions on Information Forensics and Security,
vol. 17, pp. 3407–3420, 2022.

[23] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[24] Brier, Eric and Clavier, Christophe and Olivier, Francis, “Correlation
power analysis with a leakage model,” in International workshop on
cryptographic hardware and embedded systems. Springer, 2004, pp.
16–29.

https://eprint.iacr.org/2022/737
https://eprint.iacr.org/2022/931
https://doi.org/10.1007/978-3-319-10175-0_17

	Introduction
	Lattice Preliminaries
	Notations
	Kyber KEM
	Algorithmic Description

	Prior Works and Motivation
	Known Ciphertext Attacks (KCA)
	Chosen Ciphertext Attacks (CCA)
	Motivation

	Blind Side-Channel Attack Methodology
	Attack Intuition
	Targeting Pointwise Multiplication in Decryption
	Analyzing the Feasibility of Key Recovery: Simulated Attack
	Maximum Likelihood Approach for Key Recovery
	Evaluation of Our Simulated Attack

	Experimental Evaluation
	Experimental Setup
	Constructing a HW Classifier
	Practical Evaluation of our Attack

	Conclusion
	References

