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Abstract. In this paper, we show for the first time it is practical to
privately delegate proof generation of zkSNARKs proving up to 220

R1CS constraints to a single server. We achieve this by homomorphi-
cally computing zkSNARK proof generation, an approach we call blind
zkSNARKs. We formalize the concept of blind proofs, analyze their cryp-
tographic properties and show that the resulting blind zkSNARKs re-
main sound when compiled using BCS compilation. Garg et al. gave a
similar framework at CRYPTO 2024, but no practical instantiation for
proving non-trivial computations was known. By delegating proof gener-
ation, we are able to reduce client computation time from 10 minutes to
mere seconds, while server computation time remains limited to 20 min-
utes. We also propose a practical construction for vCOED supporting
constraint sizes four orders of magnitude larger than the current state-
of-the-art verifiable FHE-based approaches. These results are achieved
by optimizing Fractal for the GBFV homomorphic encryption scheme,
e.g. by designing specialized homomorphic circuits with two dimensional
NTTs. Furthermore, we make the proofs publicly-verifiable by append-
ing a zero-knowledge Proof of Decryption (PoD). We propose a new
construction for PoDs, optimized for low proof generation time, exploit-
ing modulus and ring switching in GBFV; these techniques might be of
independent interest. Finally, we implement the latter protocol in C and
report on execution time and proof sizes.

Keywords: vCOED · zkDel · Blind zkSNARKs · Proofs of Decryption.

1 Introduction

In terms of real-world applicability, it is undeniable that Zero-knowledge Succinct
Non-interactive ARguments of Knowledge (zkSNARKs) are one of the most
promising advanced cryptographic protocols developed in the last decade. Simply
put, a zkSNARK allows one to generate a proof π ← ProveF (u, y) that some
output y is the result of F (u) which can be verified in sublinear cost compared
to the computation F itself. This property, known as succinctness, implies that
the proof π does not contain enough information for the verifier to reconstruct all
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intermediate values generated or required by the computation F . This fact can
be exploited to give provers the assurance that they will not leak any private data
required for (or generated by) computing F , giving rise to the zero-knowledge
property of zkSNARKs. The union of these two properties is what qualifies
zkSNARKs for enhancing mainly two categories of applications, which we will
refer to as zkDel (zero knowledge delegation) and vCOED (verifiable Computation
On Encrypted Data).

The first zkDel corresponds to Privacy-Enhancing Technologies (PETs) where
zkSNARKs and their subcomponents allow one to produce an efficiently verifi-
able statement of any complexity while retaining privacy. Examples are anony-
mous credential systems [59] and private transaction systems [9] where one re-
spectively proves that one possesses some private credentials or that one has
updated a private ledger properly. Note that in these settings, it is the user who
performs the costly proving operation, limiting the complexity of the statement
to be proven.

The second vCOED plays a central role in Cloud Computing [34,24], where
it is the server who computes the proof. The user outsources a computation to
the server, and then verifies a zkSNARK proof to check whether the returned
output is the result of the outsourced computation. Since the verifier can not
harness the zero-knowledge property, the user will have to reveal their inputs
and outputs to the server.

A solution for setting zkDel has been proposed by Chiesa et al. [29] by us-
ing multi-party computation to delegate proof generation to a group of servers.
Even though this solution is practically viable in terms of efficiency, it requires
trust in a subset of this group which might be hard to bootstrap in practice.
Solutions to the vCOED problem were first described by Fiore et al. [37] and
have received more academic interest in the last years following the emergence
zkSNARKs. These schemes focus on proving the correct execution of homomor-
phic computations using proof systems and are better known as verifiable Fully
Homomorphic Encryption (vFHE). Even though there have been leaps in per-
formance by recent works [5], they struggle with arithmetizing the maintenance
operations in homomorphic encryption (HE) schemes.

We propose a solution using HE and prove that it is actually practical. An
HE scheme E allows one to generate a ciphertext ct[u] ← Enc(u) that can be
used to compute ct[y] ← HomF (ct[u]) which will be an encryption of y =
F (u). In other words, it allows to homomorphically compute on ciphertexts.
The solution can now be easily described as replacing the prover computation
by ct[π]← HomProveF (ct[u], ct[y]), i.e. homomorphically computing the proving
computation. In the zkDel setting, this allows the prover to delegate the costly
proof generation to only one untrusted server. In the vCOED setting, it promises
better performance than vFHE since it proves in the plaintext space, avoiding
arithmetizing HE schemes. Both Garg et al. [38] and Aranha et al. [4] considered
a similar approach, but the following fundamental questions remain unanswered:
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1. What security and privacy guarantees does this construction provide?
2. Can this construction achieve practical performance?
3. Can this construction be efficiently publicly-verifiable?

We answer the first question by constructing a theoretical framework for
a new primitive we call blind proofs, and prove that these are zero-knowledge
and sound. We define a blind variant of holographic Interactive Oracle Proofs
(hIOPs) and show that these can be compiled into a zkSNARK using BCS com-
pilation [11].

To answer the second question, we are the first to describe an actual practical
method for computing blind zkSNARKs, even when the computation F is very
large. We optimize the Fractal zkSNARK [31] such that it can be efficiently
evaluated using the recent GBFV homomorphic encryption scheme [39], and
design specialized homomorphic circuits using two dimensional NTTs.

Finally, we address the last question by showing this can be achieved using
Proofs of Decryption (PoDs) and we propose a state-of-the-art construction, in-
corporating two techniques from homomorphic encryption, i.e. modulus switch-
ing and ring switching. We implement our PoD in C to demonstrate its efficiency;
proving decryption of several thousands of ciphertexts can be done in a matter
of seconds and a proof size of only 13KB.

1.1 Blind proofs

As discussed above, instead of computing ProveF , the prover computes HomProveF

to obtain (an encryption of) a proof for valid computation of F without seeing
the values that F was computed on. We coin these schemes blind proofs, due
to the similarity to blind signatures [23], which allow one to sign a message
without seeing it. In a normal proof system, one proves that some statement x
(representing some inputs and outputs of a function F ) has a corresponding w
(representing the remaining values required/generated by F ) such that (x,w)
is an element of some relation R that represents F . In a blind proof system
for the same relation one proves that, for some encrypted statement x and a
commitment Csk to the secret key sk that could decrypt it, there exists an
encrypted witness w such that Decsk((x,w)) ∈ R. In other words, the blind
prover shows that (x,w) is an element of the blind relation E [R].

hIOP Π

HE E

PoD PoD[E ]LNP22

BhIOP E [Π] DV-BzkSNARK E [dvIΠ]

PV-BzkSNARK E [pvIΠ]
Def. 9

Thm. 8

Sec. 5

Thm. 9

Fig. 1: A framework for constructing a blind publicly-verifiable zkSNARK.
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In order to formalize blind proofs, we start from holographic Interactive Ora-
cle Proofs (hIOPs) since they are the most general and commonly used building
block for building zkSNARKs. As pictured in Figure 1, we define a blind variant
called Blind hIOPs (BhIOPs). We define and prove completeness, zero-knowledge
and soundness properties with different variants depending on the setting. For
example, we define plaintext knowledge soundness where the extractor has access
to an HE decryption oracle (or simply the secret key in the vCOED setting) since
with a BhIOP one proves knowledge of a valid statement for the holder of the
secret key committed to in Csk. Although Aranha et al. [4] also formalize BhIOPs,
they only consider the vCOED setting, report a higher soundness error bound
and most importantly do not cover the crucial transformation from BhIOPs to
the non-interactive blind zkSNARKs. An hIOP that has round-by-round sound-
ness [47] can be compiled into a zkSNARK using BCS compilation [11]. We de-
fine a property called non-adaptivity, such that this also applies to non-adaptive
BhIOPs by proving they achieve round-by-round plaintext knowledge soundness.

1.2 Computing the Fractal BhIOP using GBFV

We start from the Fractal zkSNARK because its proof generation is quite linear
and therefore its homomorphic computation can take advantage of the fact that
in some HE schemes plaintext-ciphertext operations and batched element-wise
operations (aka SIMD) are relatively cheap. This was also suggested in [38], how-
ever, they do not present concrete algorithms and only discuss asymptotic costs.
Aranha et al. [4] take it a step further by describing optimized algorithms and
providing an implementation. However, they only discuss homomorphic compu-
tation of FRI [8], one highly linear subcomponent of the Fractal hIOP, and do not
consider inefficiencies that would arise from compilation to the non-interactive
setting. We will present algorithms for computing the entire Fractal BhIOP along
with the number of required homomorphic computations and an estimation of
execution time. Using our methods, it is possible to compute blind Fractal on
a computation of 220 constraints in approximately 20 minutes on a powerful
machine.

The main challenge in homomorphically computing proof systems is that they
rely on large field sizes (log |F| ≈ 128 to 256) for soundness while HE schemes
have difficulty with homomorphically computing on large plaintext spaces. De-
signing efficient homomorphic circuits is a trade-off between the required number
of homomorphic operations and noise growth (which increases the former’s cost).
This clashes with the following incongruity in HE: schemes like CLPX [25] which
support large plaintext spaces do not support SIMD, while using large plaintext
spaces in schemes like BFV [36] will cause large noise growth for plaintext-
ciphertext operations. In their paper, Aranha et al. suggest a compromise by
simulating operations in an extension field Fpd using d elements in Fp. How-
ever, the necessity for roots of unity of high order restricts their approach to
constraint systems of size 214 (not considering the inefficiencies that would arise
when computing the entire proof system using their approach).
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Instead of compromising, we select as plaintext space Fp2 where p is the
Goldilocks prime p = 264− 232+1. Because of their efficient arithmetic they are
the most common choice in zkSNARK implementations. Computations in such
fields are efficiently supported by the recent GBFV [39] homomorphic encryption
scheme, which natively allows to encrypt vectors of elements in Fp2 . To limit
the noise growth in GBFV, we design our homomorphic circuit for computing
Fractal such that it optimally minimizes homomorphic depth. We are the first
to propose computing Number Theoretic Transforms (NTTs) in two dimensions.
This allows us to use the depth-reducing butterfly algorithm, while avoiding
expensive homomorphic computations to revert the bit-reversal they cause. We
also notice that being able to manipulate small vectors of plaintext elements
(instead of the larger number of slots BFV supports), gives us more flexibility in
selecting depth-reducing circuits for NTTs and FRI. In Section 4, we discuss in
detail an efficient homomorphic circuit for the computation of the Fractal BhIOP
using the GBFV scheme. Importantly, this circuit has such low homomorphic
depth that it causes no overhead compared to homomorphically computing any
function F (which would require the minimum parameters for bootstrapping),
even though GBFV supports the smallest ever parameter sets for bootstrapping.
This is of course crucial for BhIOPs being a practical solution in the zkDel setting.
In Section 6, we present the exact number of homomorphic operations and noise
capacity our circuit requires.

1.3 Proofs of Decryption

Following Figure 1, using our theoretical framework and BhIOP homomorphic
circuit, we can instantiate efficient blind designated-verifier zkSNARKs. How-
ever, the zkDel setting requires a final compilation step where the output of
proof delegation can be transformed into a public-verifiable proof. We prove
that this can be achieved by appending zero-knowledge Proofs of Decryption
(PoDs) to the designated-verifier proof. They are required because the soundness
of hIOP-based zkSNARKs depends on the prover committing to some values,
which would become ciphertexts in BhIOP-based blind zkSNARKs. Therefore,
to achieve public-verifiability, it is necessary that anyone can verify the corre-
spondence between ciphertexts and underlying values without learning the secret
key under which private values were encrypted.

PoDs or verifiable decryption were first introduced in [21] together with verifi-
able encryption, and lattice-based constructions have been proposed for the BGV
homomorphic encryption scheme [19] in [51,44,3] and for the Kyber key encap-
sulation scheme [17] in [54,53]. The work [51] addresses the special case where
the plaintext modulus is 2, and the works [44,3] discuss distributed verifiable
decryptions, where the secret key is shared among multiple parties. In [54,53],
the encryption modulus q = 3329 used in Kyber [17] is lifted to a larger modulus
q′, which introduces overflow terms that increases the commitment size. We pro-
pose a different approach based on modulus switching from a modulus suitable
for HE to the a lower modulus suitable for zero-knowledge proofs. Furthermore,
to limit the dimension of the ciphertexts we employ a ring switching technique
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that maps a valid ciphertext to one of smaller dimension. These techniques have
not been considered before in the PoD setting.

Using LNP22 [53] lattice-based zero-knowledge approximate range proofs,
we construct our own state-of-the-art PoD for GBFV and other RLWE based
HE schemes in Section 5. Our scheme is specifically designed to minimize the
execution time of proof generation since it would be computed by the user in
the zkDel setting. In Section 6, using an implementation we developed, we show
that such PoD can be computed in a matter of seconds, even when proving the
decryption of thousands of ciphertexts simultaneously.

2 Preliminaries

2.1 Commitment scheme

We define a commitment scheme following [35,3].

Definition 1 (Commitment scheme). A commitment scheme CT = (KeyGen,
Com,Open) includes the following probabilistic polynomial-time algorithms:

– CT .KeyGen(1λ): for a given security parameter λ, it returns public param-
eters pp, which define a message space SM , a randomness space SR and a
commitment space SC .

– CT .Compp(m, r): for a given message m ∈ SM and some randomness r←SR,
it returns a commitment Cm.

– CT .Openpp(m, r, C): for a given tuple (m, r, C) ∈ SM × SR × SC , it returns
either acc or rej.

Binding. A commitment scheme CT is computationally binding if for any
pp←CT .KeyGen(1λ) and probabilistic polynomial-time adversary A, it holds that

Pr

m0 ̸= m1

∣∣∣∣∣∣
(C,m0, r0,m1, r1)←A(pp)
CT .Openpp(m0, r0, C) = acc
CT .Openpp(m1, r1, C) = acc

 = negl(λ).

Hiding. A commitment scheme CT is computationally hiding if for any
pp←CT .KeyGen(1λ) and probabilistic polynomial-time adversary A it holds that∣∣Pr [A(C) = 1

∣∣ C←CT .Compp(m0)
]

−Pr
[
A(C) = 1

∣∣ C←CT .Compp(m1)
]∣∣ ≤ negl(λ).

We also define a verification oracle OCT (Cm,m) which returns acc when there
exists an r ∈ SR such that CT .Open(m, r, Cm) = acc and rej otherwise.
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2.2 Homomorphic Encryption (HE)

We define a secret-key HE scheme with plaintext space P and ciphertext space C
following [40,20,45,26].

Definition 2 (Homomorphic Encryption). An HE scheme E = (KeyGen,Enc,
Dec,Eval) includes the following polynomial-time algorithms:

– E .KeyGen(1λ): given the security parameter λ, it returns a secret key sk and
a public evaluation key evk.

– E .Encsk({mi}i∈[r]): given the secret key sk and plaintexts {mi}i∈[r] ∈ Pr, it
returns ciphertexts {cti}i∈[r] ∈ Cr, which can also be denoted as {ct[mi]}i∈[r].

– E .Decsk({cti}i∈[r]): given the secret key sk and ciphertexts {cti}i∈[r] ∈ Cr,
it returns plaintexts {mi}i∈[r] ∈ Pr.

– E .Evalevk(f, {cti}i∈[ℓ]): given the public evaluation key evk, a function
f : Pℓ → Pr and a set of ciphertexts {cti}i∈[ℓ] ∈ Cℓ, it returns ciphertexts
{ct′i}i∈[r] ∈ Cr.

CPA security. An HE scheme E is IND-CPA secure if for any (sk, evk) ←
E .KeyGen(1λ), two plaintexts m0,m1 ∈ P and probabilistic polynomial-time ad-
versary A, it holds that∣∣Pr [A(evk, ct) = 1

∣∣ ct← E .Encsk(m1)
]

−Pr
[
A(evk, ct) = 1

∣∣ ct← E .Encsk(m0)
]∣∣ ≤ negl(λ).

Correctness. An HE scheme E is correct for functions in F if for any (sk, evk)←
E .KeyGen(1λ), function f ∈ F , plaintexts {mi}i∈[ℓ] and their encryptions {cti} ←
E .Encsk({mi}), the relation

E .Decsk (E .Evalevk(f, ct1, . . . , ctℓ)) = f(m1, . . . ,mℓ),

holds with probability no lower than 1− negl(λ).

Circuit Privacy. An HE scheme E satisfies computational circuit privacy for
functions in F if there exists a probabilistic polynomial-time simulator Sim such
that for any security parameter λ, HE keys (sk, evk) ← E .KeyGen(1λ), set of
plaintexts {mi}, function f ∈ F and probabilistic polynomial-time distinguisher
D, it holds that∣∣Pr [D(ct, sk) = 1

∣∣ ct← Sim(1λ, sk, f({mi}))
]

−Pr

[
D(ct, sk) = 1

∣∣∣∣ {cti} ← E .Encsk({mi})
ct← E .Evalevk(f, {cti})

]∣∣∣∣ ≤ negl(λ).

This property can be achieved using a technique called noise-flooding [40,15,49].

Remark. For use in Subsection 3.2, we define E .len to be the minimal length in
bits of a decryptable ciphertext. In the context of Subsection 3.3, the ciphertext
should additionally still allow for an efficient proof of decryption.



8 M. Gama, E. Heydari Beni, J. Kang, J. Spiessens, F. Vercauteren

2.3 Relations and languages

A relation R on some plaintext space P is a subset of (x,w) ∈ P∗ × P∗. For
some relation R we define a language LR = {x | ∃w : (x,w) ∈ R}. Similarly we
define an indexed relation that is a subset of (i,x,w) ∈ P∗ ×P∗ ×P∗ which in
turn defines a relation

Ri =
{
(x; w) : (i; x; w) ∈ R

}
=
{
(x; w) : Az ◦Bz = Cz for z = (x,w)

}
,

and the second equality shows an example where the index i consists of a Rank-1
Constraint Satisfiability (R1CS) circuit defined by the matrices A, B and C.

2.4 Zero-knowledge Succinct Non-interactive ARgument of
Knowledge (zkSNARK)

We will define pre-processing zkSNARKs in the Random Oracle Model (ROM)
following Chiesa et al. [31]. Let us denote with U(λ) the uniform distribution
over all functions P∗ → {0, 1}λ. A function ρ← U(λ) is referred to as a Random
Oracle (RO). We denote an algorithm A having oracle access to some object x
as A[[x]].

Definition 3 (preprocessing zkSNARK in the ROM). A preprocessing
zkSNARK IΠ = (Ind,P,V) is a non-interactive proof system for some indexed
relation R that includes the following polynomial-time algorithm:

– IΠ.Ind[[ρ]](i): for a given index i, using access to the RO ρ, it returns the index
keys (ipk, ivk).

and the following probabilistic polynomial-time algorithms:

– IΠ.P[[ρ]](ipk,x,w): for a given index prover key ipk, statement x and witness
w, using access to the RO ρ, it returns a proof π.

– IΠ.V[[ρ]](ivk,x, π): for a given index verifier key ivk, statement x and proof
π, using oracle access to the RO ρ, it returns either acc or rej.

A zkSNARK should satisfy the following properties.

Completeness. For any (i,x,w) ∈ R and ρ← U(λ) it holds that

Pr
[
IΠ.V[[ρ]](ivk,x, π) ̸= acc

∣∣ π ← IΠ.P[[ρ]](ipk,x,w)
]
≤ δ

where δ is the completeness error and (ipk, ivk) = IΠ.Ind[[ρ]](i)

Zero-knowledge. For any (i,x,w) ∈ R and ρ← U(λ), if there exists a proba-
bilistic polynomial-time simulator Sim such that for any unbounded distinguisher
D it holds that∣∣∣Pr [D[[ρ[µ]]](π) = 1

∣∣∣ (µ, π)← Sim[[ρ]](i,x)
]

−Pr
[
D[[ρ[µ]]](π) = 1

∣∣ π ← IΠ.P[[ρ]](ipk,x,w)
]∣∣ ≤ z
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where (ipk, ivk) = IΠ.Ind[[ρ]](i) and ρ[µ] equals µ(x) if µ is defined on x and oth-
erwise equals ρ(x), then IΠ has z-statistical zero-knowledge. If D is probabilistic
polynomial-time then IΠ has z-computational zero-knowledge.

Soundness. For any index i, statement x /∈ LRi
, RO ρ ← U(λ), index keys

(ipk, ivk) = IΠ.Ind[[ρ]](i) and prover P∗ it holds that

Pr
[
IΠ.V[[ρ]](ivk,x, π) = acc

∣∣ π ← P∗[[ρ]]
]
≤ ε

where ε is the soundness error.

Knowledge soundness. For any index i, statement x, index keys (ipk, ivk)←
IΠ.Ind[[ρ]](i) and prover P∗ there exists a polynomial-time extractor Ext such that

Pr
[
(x,w) ∈ Ri

∣∣∣ w← ExtP
∗
(i,x)

]
≥ Pr

[
IΠ.V[[ρ]](ivk,x, π) = acc

∣∣ π ← P∗[[ρ]]
]
− εk

where εk is the knowledge error and ExtP
∗

may interact with P∗ by rewinding it
in a black-box manner.

Remark. Some authors [12,31] define stronger adaptive versions of these prop-
erties. For example in knowledge soundness they have the prover P ∗ choose the
index i and statement x. Although it is possible to define all these and the
following properties adaptively, for ease of notation, we will refrain.

Remark. Note that this definition of zkSNARKs has no restriction of proof
length or verifier cost and is therefore not necessarily succinct. However, in-
stead of using a different name such as Non-interactive Random Oracle Proof
(NIROP) [11], we follow Chiesa et al. [30] and use the popularized term zk-
SNARK.

2.5 Interactive Oracle Proofs (IOPs)

First introduced by Ben-Sasson et al. [11], an Interactive Oracle Proof (IOP) is
a form of interactive proof where the prover sends µ + 1 messages in the form
of oracles [[mi]] to proof strings mi ∈ P∗ and the verifier responds with some
challenges ci ∈ Chi ⊆ P∗. They can be seen as a µ-round generalization of Prob-
abilistically Checkable Proofs (PCPs). For i ∈ [µ], we define the concatenation
m1∥c1∥ . . . ∥mi∥ci as an i-round partial transcript and m1∥c1∥ . . . ∥mµ∥cµ∥mµ+1

as a full transcript. An holographic IOP is an extension where an encoding of
some index i is generated in a preprocessing step for oracle access to the veri-
fier [31].

Definition 4 (holographic IOP (hIOP)). An hIOP Π = (Ind,P,V) is a µ-
round interactive proof system for some indexed relation R that includes the
following polynomial-time algorithm:
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– Π.Ind(i): for a given index i, it returns the encoding of the index e[i].

and the following probabilistic polynomial-time algorithms:

– Π.P(e[i],x,w): for a given index encoding e[i], statement x and witness w
for the relation Ri, it returns a round message

mi ← Π.Pi(e[i],x,w, tr)

in round i ∈ [µ+ 1] where tr is the current (i− 1)-round partial transcript.
– Π.V[[e[i]]],[[tr]](x): for a given statement x, using oracle access to the encoded

index e[i] and the current partial transcript tr = m1∥ . . . ∥ci−1∥mi to obtain
queries {e[i]i}, {tri}, it returns a round challenge

ci ← Π.Vi({e[i]i},x, {tri})

when i ∈ [µ] and returns either acc or rej when i = µ+ 1.

We also define a function qr that maps a query index to its corresponding message
index. The hIOP is public-coin if all messages sent by the verifier are random
elements of some subset of the plaintext space independent of the current partial
transcript. Without loss of generality, we can assume that a public-coin verifier
performs all queries after receiving the final prover’s message. An hIOP should
satisfy the following properties.

Completeness. For any (i,x,w) ∈ R it holds that

Pr
[
Π.
〈
P(e[i],x,w),V[[e[i]]](x)

〉
̸= acc

]
≤ δ

where δ is the completeness error, e[i] = Π.Ind(i) and the bracket notation ⟨A,B⟩
represents the output of B[[tr]] where tr is a full transcript resulting from inter-
action with A.

Honest-verifier zero-knowledge. For any (i,x,w) ∈ R, if there exists a
probabilistic polynomial-time simulator Sim such that for any unbounded distin-
guisher D it holds that∣∣Pr [D(i, π) = 1

∣∣ π ← Sim(i,x)
]

−Pr
[
D(i, π) = 1

∣∣ π ← View
〈
Π.P(e[i],x,w),Π.V[[e[i]]](x)

〉 ]∣∣ ≤ z
where e[i] = Π.Ind(i) and View⟨·⟩ is a random variable that contains all the query
responses the verifier receives during the protocol along with the verifier’s ran-
domness, then Π has z-statistical zero-knowledge. If D is probabilistic polynomial-
time then Π has z-computational zero-knowledge.

Soundness. For any index i, statement x /∈ LRi
and unbounded prover P∗ it

holds that
Pr
[〈

P∗(e[i],x),Π.V[[e[i]]](x)
〉
= acc

]
≤ ε
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where ε is the soundness error and e[i] = Π.Ind(i).

Knowledge soundness. For any index i, statement x and unbounded prover
P∗ there exists a polynomial-time extractor Ext such that

Pr
[
(x,w) ∈ Ri |w← ExtP

∗
(i,x)

]
≥ Pr

[〈
P∗,Π.V[[e[i]]](x)

〉
= acc

]
− εk

where εk is the knowledge error and e[i] = Π.Ind(i). Note that ExtP
∗

may interact
with P∗ by rewinding it in a black-box manner.

The soundness and knowledge soundness properties ensure the security of
the hIOP scheme. Respectively, they guarantee (except with some small error)
that a prover interacting with a verifier cannot result in acc for a statement
that has no valid witness or for which the valid witness is not known. Note that
knowledge soundness thus implies normal soundness. However, since hIOPs are
compiled into non-interactive proofs [11], their security is best described round-
by-round [22,30]. Following Holmgren [47] and Block et al. [13], we will define
round-by-round soundness using a doomed set and round-by-round knowledge
soundness using a knowledge doomed set.

Definition 5 (Doomed set). Given a public-coin holographic hIOP Π that
proves an indexed relation R, a doomed set DΠ for index i and error ε is a set
that satisfies the following properties:

1. For any statement x, if x /∈ LRi
then (x, ∅) ∈ DΠ.

2. For any (x, tr) ∈ DΠ where tr is a (i − 1)-round partial transcript for
i ∈ [µ+ 1] and any next prover message mi, it holds that

Pr
ci←Chi

[(x, tr∥mi∥ci) /∈ DΠ] ≤ ε.

3. For any full transcript tr, if (x, tr) ∈ DΠ then Π.V[[e[i]]],[[tr]](x) = rej.

Definition 6 (Knowledge doomed set). Given a public-coin holographic hIOP
Π that proves an indexed relation R, a knowledge doomed set DΠ

k for index i and
error εk is a set for which there exists a polynomial-time extractor Ext such that
the following properties are satisfied.

1. For any statement x, it holds that (x, ∅) ∈ DΠ
k .

2. For any (x, tr) ∈ DΠ
k where tr is a (i− 1)-round (partial) transcript tr for

i ∈ [µ+ 1] and next prover message mi, it holds that if

Pr
ci←Chi

[(x, tr∥mi∥ci) /∈ DΠ
k ] > εk.

then w← Ext(e[i],x, tr∥mi) such that (x,w) ∈ Ri.
3. For any full transcript tr, if (x, tr) ∈ DΠ

k then Π.V[[e[i]]],[[tr]](x) = rej.

Remark. In property 2 in Definition 5 and 6 we slightly abuse notation by having
cµ+1 ← Chµ+1 denote the public-coin verifier’s additional randomness used in
the final verification check.
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Definition 7 (Round-by-round (knowledge) soundness). An hIOP Π for
the indexed relation R is round-by-round sound with error ε or round-by-round
knowledge sound with error εk if for every index i there exists a doomed set DΠ

for error ε or knowledge doomed set DΠ
k for error εk respectively.

Along with the definition of IOPs, Ben-Sasson et al. [11] additionally introduced
BCS compilation which compiles an IOP into a zkSNARK in the ROM. Later it
was extended to hIOPs [31], round-by-round soundness notions [22], the quan-
tum ROM [30] and recently proven unconditionally UC-secure in the ROM [28].
Many of the zkSNARKs that are deployed in practice are constructed using this
compilation. We defer a high-level description of this compilaiton to Section 3.2
and describe its properties in Theorem 1. We define two complexity measures for
hIOPs. The proof length p =

∑µ+1
i=1 |mi| is the sum of the lengths of all prover

messages and the query complexity q is the number of queries performed by the
verifier.

Theorem 1 (BCS compiler [11,30]). Any hIOP Π for indexed relation R with
completeness error δ, proof length p, query complexity q, round-by-round sound-
ness error ε, round-by-round knowledge soundness error εk and z-statistical
honest-verifier zero-knowledge can be compiled into a zkSNARK IΠ in the ROM
with RO query bound Q, security parameter λ and:

– Completeness error δ,
– Proof length p′ upper bound by λ(µ+ 1 +

∑q
j=1(3 + ⌈log2 |mqr(j)|⌉)),

– Soundness error ε′ where ε′ = Qε+ 3(Q2 + 1)2−λ,
– Knowledge soundness error ε′k where ε′k = Qεk + 3(Q2 + 1)2−λ,
– z′-Statistical honest-verifier zero-knowledge where z′ = z + p2−λ/4+2,

where mi is Π.P’s ith message and | · | denotes length in λ bits rounded up. Both
soundness and knowledge soundness error are Θ(Qε) and Θ(Qεk) respectively
when considering quantum adversaries that perform no more than Q−O(q log p)
RO queries.

Remark. Technically, all these error values, proof lengths, etc. can be functions
of both the statement and the index but let us disregard that here since it has
no influence on what follows.

3 Blind Proofs

In this section, we introduce a new type of proof system called blind proofs
where one proves that some encrypted statement is in the language of a blind
relation E [R] with respect to some commitment Csk to a secret key sk. This
blind relation represents ciphertexts of statement-witness pairs such that the
underlying plaintexts are in the relation R. In other words, blind proofs allow
the prover to generate a proof using (ct[x], ct[w]) – without knowledge of the
plaintext (x,w) – that proves plaintext knowledge of (x,w) such that x ∈ LR

for the holder of the secret key sk commited to in Csk. We start by defining a
blind relation.
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Definition 8 (Blind relation). For a given HE scheme E = (KeyGen,Enc,
Dec,Eval) and commitment scheme CT with security parameter λ, and indexed
relation R we define the indexed blind relation

E [R] =

 (i;x;w) = (i; Csk, ct[x]; ct[w]) :
E .Decsk((ct[x], ct[w])) = (x,w) ∈ Ri ∧

sk← E .KeyGen(1λ) ∧ OCT (Csk, sk) = acc


which defines the blind relation E [Ri] = {(x; w) : (i; x; w) ∈ E [R]}.

Theorem 2. Any probabilistic polynomial-time adversary has only negligible ad-
vantage in distinguishing the underlying (x,w) ∈ Ri given the corresponding
(x,w) ∈ E [Ri] if E is an IND-CPA secure HE scheme and Com is computation-
ally hiding.

Proof. This follows from a standard hybrid argument. Let us define an adversary
A in the game of distinguishing elements of a blind relation, which we denote
as game G0. Now let us define game G1 where the LR oracle responds with
a randomly sampled Csk instead of a commitment to the used secret key. The
advantage of A in G1 should be negligible because E is IND-CPA secure and
the difference between G0 and G1 should be negligible because Com is hiding.
Therefore we can conclude that A has negligible advantage in game G0. ⊓⊔

3.1 Blind hIOP (BhIOP)

We define a blind version of the hIOP proof system introduced in Section 2.5.

Definition 9 (Blind hIOP (BhIOP)). For a given HE scheme E, commit-
ment scheme CT and hIOP Π for indexed relation R, a blind hIOP E [Π] =
(Ind,P,V) for the indexed blind relation E [R] includes the following probabilistic
polynomial-time algorithms:

– E [Π].Setup(1λ, i): for a given index i and security parameter λ, it returns
the encoding e[i] = Π.Ind(i), the keys (sk, evk) ← E .KeyGen(1λ) and the
commitment Csk ← CT .Com(sk).

– E [Π].Pevk(e[i],x,w): for a given statement x = (Csk, ct[x]) and witness w =
ct[w] of the blind relation E [Ri], and evaluation key evk, it returns a round
message

E .Evalevk(Π.Pi, (e[i], ct[x], ct[w], tr′))

in round i ∈ [µ+1] where tr′ is the current (i− 1)-round partial transcript.
– E [Π].V

[[e[i]]][[tr′]]OCT

sk (x): for a given statement x = (Csk, ct[x]) and secret key
sk, using oracle access to e[i] and the current (partial) transcript tr′ to
obtain queries {e[i]i}, {tr′i}, it returns

Π.Vi({e[i]i}, E .Decsk(ct[x], {tr′i}))

in round i ∈ [µ+ 1] if OCT (Csk, sk) returns acc, otherwise it returns rej.
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Remark. The OCT oracle of a blind hIOP verifier is instantiated in Theo-
rem 9, similar to how the oracles of an hIOP verifier are instantiated in the
compilation of Theorem 1.

A blind hIOP can be public-coin similar to an hIOP. It should satisfy the com-
pleteness and soundness properties as defined in Definition 4. Additionally, it
should satisfy the following properties.

Plaintext knowledge soundness. For any index i, statement x, setup (e[i], sk,
evk, Csk)← E [Π].Setup(1λ, i) and unbounded prover P∗evk there exists a polynomial-
time extractor ExtODec with access to a decryption oracle ODec such that

Pr
[
(x,w) ∈ Ri

∣∣∣ (x,w)← ExtP
∗,ODec(i,x)

]
≥ Pr

[
⟨P∗evk, E [Π].V

[[e[i]]]OCT

sk (x)⟩ = acc
]
− εk

where εk is the knowledge error. Note that ExtODec may interact with P∗ by
rewinding it in a black-box manner. Similar to the plaintext scenario it is possible
to define a round-by-round variant (see Definition 10).

Honest-verifier zero-knowledge. For any security parameter λ, (i,x,w) ∈
E [R] and (e[i], sk, evk, Csk) ← E [Π].Setup(1λ, i) such that x = (Csk, ct[x]), if
there exists a probabilistic polynomial-time simulator Sim such that for any un-
bounded distinguisher D it holds that∣∣Pr [D(i, π, sk) = 1

∣∣ π ← Sim(1λ, i,x, sk)
]
−

Pr
[
D(i, π, sk) = 1

∣∣∣ π ← View
〈
E [Π].Pevk(e[i],x,w), E [Π].V

[[e[i]]]OCT

sk (x)
〉]∣∣∣ ≤ z

then E [Π] has z-statistical zero-knowledge. If D is probabilistic polynomial-time
then E [Π] has z-computational zero-knowledge.

Definition 9 describes how blind hIOPs can be constructed from hIOP and
HE schemes. From this contruction, one can show that the resulting blind hIOP
satisfies the necessary properties.

Theorem 3. For security parameter λ, an HE scheme E and a δ-complete hIOP
scheme Π for indexed relation R, the blind hIOP E [Π] is complete with com-
pleteness error δ + negl(λ) for indexed blind relation E [R] if E is correct for the
homomorphic circuit E [Π].P.

Proof. For any (i,x,w) ∈ E [R] and (e[i], sk, evk, Csk) ← E [Π].Setup(1λ, i) such
that x = (ct[x], Csk), it holds that (x,w) ∈ Ri for (x,w) = Decsk(ct[x],w). Let
E be the event that

E [Π].⟨Pevk(e[i],w),V[[e[i]]]OCT
⟩(x) ̸= acc
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and E′ the event that

E .Decsk(E .Evalevk(Π.P, (e[i],x,w))) = Π.P(e[i], x, w)

over the randomness in both prover and verifier. Then we can show that

Pr[E] = Pr[E |E′] Pr[E′] + Pr[E | ¬E′] Pr[¬E′]
≤ Pr[E |E′] + Pr[¬E′] ≤ δ + negl(λ)

since Pr[E |E′] represents the completeness error in the corresponding Π and
Pr[¬E′] is determined by the correctness of the HE scheme. ⊓⊔

Notice that zero-knowledge has been defined differently from the hIOP case.
Informally, an hIOP is zero-knowledge if some simulator Sim can simulate ev-
erything the verifier sees without knowledge of the witness. This is formalized
by stating no distinguisher algorithm D has an advantage in distinguishing the
simulation from a valid prover output. Therefore, since for blind hIOPs the ver-
ifier has knowledge of the secret key sk, this will also be given as an input to
D. We show that blind hIOPs can retain zero-knowledge by using circuit private
HE schemes.

Theorem 4. For an HE scheme E with security parameter λ and a z-computational
honest-verifier zero-knowledge hIOP scheme Π for indexed relation R, the blind
hIOP E [Π] is z + negl(λ)-computational honest-verifier zero-knowledge if E is
circuit-private for the homomorphic circuit E [Π].P.

Proof. The simulator for the E [Π] scheme can be constructed by combining the
simulator for the Π scheme and the simulator for circuit privacy in the E scheme.
More concretely, E [Π].Sim uses E .Decsk to compute the statement for Ri. Then,
it uses Π.Sim to sample some queries {qi} and lastly uses E .Sim to generate the
ciphertexts {ct[qi]}. The theorem follows from a standard hybrid argument re-
lying on the circuit privacy of E and the honest-verifier zero-knowledge property
of the Π scheme. ⊓⊔

We additionally define honest-verifier zero-knowledge in the decryption oracle
setting. A blind hIOP with this property satisfies honest-verifier zero-knowledge
with a distinguisher D that has access to ODec instead of sk. Clearly, this prop-
erty is a more relaxed form of zero-knowledge since D can not see the noise in
ciphertexts. This setting will however be sufficient when the blind hIOP veri-
fier’s access to sk is also replaced by access to ODec. Such verifier corresponds to
the zkDel setting as described in Section 1 and will be used later in Theorem 9.
We show that zero-knowledge in this setting is achieved trivially since the HE
ciphertexts are hiding.

Theorem 5. For an IND-CPA secure HE scheme E for security parameter λ
and a z-computational honest-verifier zero-knowledge hIOP scheme Π for in-
dexed relation R, the blind hIOP E [Π] is z+negl(λ)-computational honest-verifier
zero-knowledge in the decryption oracle setting.
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Proof sketch. The simulator E [Π].Sim is constructed similar to the simulator in
Theorem 4 except that it uses E .Encsk to encrypt the queries {qi}. ⊓⊔

One can derive the (plaintext knowledge) soundness of a blind hIOP from
the (knowledge) soundness of the underlying hIOP and the correctness of the
HE scheme. We discuss only the round-by-round variants since these are relevant
for the BCS compilation.

Theorem 6. The blind hIOP E [Π] is round-by-round sound for the indexed blind
relation E [R] with error ε if the hIOP Π is round-by-round sound for the indexed
relation R with error ε.

Proof. By the definition of round-by-round soundness, it is sufficient to show
the existence of a doomed set D′ = DE[Π] given the existence of the doomed
set D = DΠ. We construct a doomed set D′ as follows: it contains all possible
HE ciphertexts that decrypt to some element in D under the secret key sk
corresponding to Csk.

D′ =


(x′, tr′) = (Csk, ct[x]∥ct[m1]∥c1∥ . . . ∥ct[mn]) :

0 ≤ n ≤ µ+ 1 ∧ OCT (Csk, sk) = acc
∧∃x,m1, . . . ,mn, sk : (x,m1, c1, . . . ,mn) ∈ D

E .Decsk((ct[x], ct[m1], . . . , ct[mn])) = (x,m1, . . . ,mn)


We prove that this set satisfies all properties of a doomed set for any index i.

1. If x′ = (Csk, ct[x]) /∈ LE[Ri], then x = E .Decsk(ct[x]) /∈ LRi
where sk is the

opening of Csk. This means that (x, ∅) ∈ D and therefore (x′, ∅) ∈ D′.
2. For any (x′, tr′) = (Csk, ct[x], tr′) ∈ D′ where tr′ is a (i− 1)-round partial

transcript for i ∈ [µ + 1], the corresponding plaintext transcript (x, tr) =
E .Decsk((ct[x], tr′)) ∈ D where sk corresponds to the commitment Csk.
Thus, for any next blind hIOP prover message cti and its decryption mi =
E .Decsk(cti), it holds that

Pr
ci←Chi

[(x, tr∥mi∥ci) /∈ D] = Pr
ci←Chi

[(x′, tr′∥cti∥ci) /∈ D′] ≤ ε.

3. For any full transcript tr′, if (x′, tr′) = (Csk, ct[x]∥tr′) ∈ D′ then, by defi-
nition of D′, the decryption (x, tr)← E .Decsk((ct[x], tr′)) ∈ D. Therefore,
by definition of E [Π].V and the assumption that D is a doomed set, it is clear
that E [Π].V[[e[i]]],[[tr′]](x) = rej where e[i] = E [Π].Ind(i).

⊓⊔

By definition 7, a public-coin hIOP Π = (Ind,P,V) for an indexed relation
R is round-by-round knowledge sound with error εk if for every index i there
exists a knowledge doomed set DΠ

k for error εk that uses some polynomial-time
extractor Ext. In the case of a blind hIOP for a blind relation E [Ri] we define
round-by-round knowledge soundness slightly different since it should be able to
extract the witness of the corresponding relation Ri.
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Definition 10 (Round-by-round plaintext knowledge soundness). A
blind hIOP E [Π] for an indexed blind relation E [R] is round-by-round plain-
text knowledge sound with error εpk if for every index i there exists a knowledge
doomed set DE[Π]

k for error εpk that uses an extractor ExtODec with access to a
decryption oracle ODec.

Theorem 7. The blind hIOP E [Π] is round-by-round plaintext knowledge sound
for the indexed blind relation E [R] with error εk if the hIOP Π is round-by-round
knowledge sound for the indexed relation R with error εk.

Proof. Similar to Theorem 6, we show that there exists a knowledge doomed set
D′ = DE[Π]

k given the existence of the knowledge doomed set D = DΠ
k . Again we

define a set D′ to contain all HE ciphertext that decrypt to some transcript in
D under the secret key sk corresponding to Csk. It is clear that D′ satisfies the
first and third property of a knowledge doomed set. The second property states
that for any (i− 1)-round partial transcript (x′, tr′) ∈ D′ where i ∈ [µ+1], and
any next prover message cti, it should hold that if

Pr
ci←Chi

[(x′, tr′∥cti∥ci) /∈ D′] > εk

then Extsk(e[i],x
′, tr′∥cti) outputs a valid witness for x. Similarly as in The-

orem 6, if we define mi = E .Decsk(cti) then (x′, tr′∥cti∥ci) /∈ D′ implies
(x, tr∥mi∥ci) /∈ D for any ci and (x, tr) = E .Decsk((ct[x], tr′)). Therefore, we
can construct the extractor ExtODec as first requesting mi = E .Decsk(cti) from
ODec and subsequently running the extractor Ext(e[i],x, tr∥mi), the output will
be a valid witness for x since (x, tr) ∈ D. ⊓⊔

3.2 Designated-Verifier Blind zkSNARK (DV-BzkSNARK)

From Theorem 1 it is clear that any public-coin hIOP Π for some indexed rela-
tion R can be compiled into a zkSNARK for R in the ROM using BCS compi-
lation. In practice the RO is instantiated with some suitable hash function. The
compiler functions by committing to every oracle message sent by the prover us-
ing a Merkle Tree MT and instead sending the commitment root C. Then, when
the verifier queries some oracle message, the prover responds to the query by
including the authentication path ap from the corresponding root to the queried
value in the message. Lastly, since Π is public-coin, one can make the proof
non-interactive using a Fiat-Shamir-like transform FS to simulate the verifier’s
challenges and generate a final RO output τ .

Let us now describe public-coin hIOP verification as follows. The verifier Π.V
receives the statement x and in each round i receives a message mi, contributing
to the current partial transcript tri, and responds with a challenge ci ← Chi.
After receiving the final prover message, the verifier queries the oracle [[tr]] to
construct a list of queries {qi} (same for the oracle [[e[i]]] but we dismiss holog-
raphy for now for ease of notation). Lastly, the verifier returns acc if and only
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if some equality f(x, {qi}, τ) = 0 holds where τ represents some randomness.
In Figure 2, we illustrate the behaviour of BCS compilation from Theorem 1
using this notation. It describes the zkSNARK verifier resulting from this com-
pilation. Instead of performing queries, the verifier receives query responses and
checks their authentication paths and whether they where sampled using the RO.

IΠ.V(x, π = [{qi, api}, {Ci}, τ ])

1 : foreach j :

2 : MT.Open(qj , apj , Cqr(j))
?
= acc

3 : FS(x, {Ci})
?
= τ

4 : f(x, {qi}, τ)
?
= 0

Fig. 2: Verifier of zkSNARK compiled resulting from Theorem 1.

It should be clear that this compilation can likewise be applied to the public-
coin BhIOP from Definition 9. Since the verifier E [Π].V is public-coin, the only
difference to the hIOP verifier will be after receiving the final prover message. By
querying the oracle [[tr]], the verifier E [Π].V receives ciphertexts {ct[qi]} that are
decrypted to {qi} using sk. Similarly, the verifier decrypts the statement ct[x] to
x and then computes b← Π.Vµ+1(x, {qi}, τ), which we have previously denoted
as checking whether some equality f(x, {qi}, τ) = 0 holds, for some randomness
τ . Lastly, the verifier returns b if the commitment Csk is a valid commitment
to sk. We describe this compilation in Theorem 8 and the resulting verifier in
Figure 3. Note that we define a subroutine PartialVer that performs verifica-
tion without verifying the correspondence between the queries {ct[qi]} and their
plaintexts {qi}.

The fact that E [Π].V requires knowledge of the secret key sk has two major
consequences for BCS compilation. Most notably, the resulting zkSNARK verifier
E [dvIΠ].V inherits the same requirement, thus the compiler outputs a designated-
verifier blind zkSNARK. Secondly, the public-coin requirement that is put on
a verifier Π.V is no longer sufficient. Strictly, it ensures that the hIOP verifier
is simulatable by the zkSNARK prover in BCS compilation. It can simulate the
random challenges using the Fiat-Shamir tranform and simulate the queries by
providing Merkle Tree openings. To ensure that the blind hIOP verifier E [Π].V is
simulatable by the blind zkSNARK prover, we must additionally require that it
performs no queries where the query location is dependent on previously queried
values (since those are hidden from the prover). This holds for queries both to the
[[e[i]]] and [[tr]] oracles. We coin hIOPs with such verifiers non-adaptive public-
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E [dvIΠ].Vsk(Csk, ct[x]; πdv = [{ct[qi], api}, {Ci}, τ ])

1 : (x, {qi}) = E .Decsk((ct[x], {ct[qi]}))

2 : PartialVer(Csk, ct[x], x, {qi, ct[qi], api}, {Ci}, τ)

1 : foreach j :

2 : MT.Open(ct[qj ], apj , Cqr(j))
?
= acc

3 : FS(Csk, ct[x], {Ci})
?
= τ

4 : f(x, {qi}, τ)
?
= 0

5 : OCT (Csk, sk)
?
= acc

Fig. 3: Verifier of designated-verifier blind zkSNARK resulting from Theorem 8.

coin and remark that to our knowledge such hIOP has never been described and
so this requirement forms no restriction.

Theorem 8. Let E [Π] be a non-adaptive public-coin blind hIOP for the in-
dexed blind relation E [R] where Π has completeness error δ, proof length p,
query complexity q, round-by-round soundness error ε, round-by-round knowl-
edge soundness error εk and z-statistical honest-verifier zero-knowledge, and the
HE scheme E is correct for the homomorphic circuit in E [Π].P with security pa-
rameter λ. Such blind hIOP scheme can be compiled into a designated-verifier
zero-knowledge non-interactive argument of plaintext knowledge for E [R], which
we will coin a designated-verifier blind zkSNARK E [dvIΠ] in the ROM. Then,
against Q-query adversaries, E [dvIΠ] has:

– Completeness error δ + negl(λ),
– Proof length p′ upper bounded by

p′ = λ(µ+ 1 +

q∑
j=1

(2 + ⌈log2 |mqr(j)|/E .len⌉)) + qE .len,

– Soundness error ε′ where ε′ = Qε+ 3(Q2 + 1)2−λ,
– Knowledge soundness error ε′k where ε′k = Qεk + 3(Q2 + 1)2−λ,
– z′-Statistical honest-verifier zero-knowledge where z′ = z+negl(λ)+p2−λ/4+2.

where mi is E [Π].P’s ith prover message and | · | denotes length in λ bits rounded
up. Both soundness and knowledge soundness error are Θ(Qε) and Θ(Qεk) re-
spectively when considering quantum adversaries that perform no more than
Q−O(q log p) RO queries.

Proof. The proof follows trivially from Theorem 1 and the discussion above.
The non-adaptivity ensures that prover E [dvIΠ].P can partly simulate the verifier
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E [Π].V to compute the query locations (it can obviously not simulate the equality
checks). The proof length is similar, except for the expansion from HE encryption
of the queried values. ⊓⊔

3.3 Publicly-Verifiable Blind zkSNARK (PV-BzkSNARK)

We have shown that using an HE scheme it is possible to construct a blind
zkSNARK in the designated-verifier setting. This primitive already has applica-
tions as a vCOED scheme. In this setting, the client would encrypt the statement
and the server would compute the encrypted witness, which can then be used
to compute the proof. Now we will show how to compile this designated-verifier
blind zkSNARK into a publicly-verifiable blind zkSNARK. This also expands the
application of this contruction into delegation of zkSNARKs (the zkDel setting).
In this setting, the client computes the witness and then sends the plaintext
statement and encrypted witness to the server, who then computes the proof. In
both scenarios, the client computes a (batched) Proof of Decryption (PoD) to
make the proof publicly verifiable. Below we provide a formal definition.

Definition 11 (Proof of Decryption). For a given HE scheme E with secu-
rity parameter λ and a commitment scheme CT , a Proof of Decryption scheme
PoD[E ] = (Setup,P,V) includes the following probabilistic polynomial-time algo-
rithms:

– PoD[E ].Setup(1λ): for a given security parameter λ, it returns some public
parameters pp which are implicit inputs to the following functions.

– PoD[E ].Psk(Csk, ct): for a given secret key commitment Csk, ciphertext ct
and secret key sk, it returns a proof of decryption πPoD and plaintext m.

– PoD[E ].VCsk(π
PoD, ct,m): for a given proof of decryption πPoD, ciphertext ct,

plaintext message m and secret key commitment Csk, it returns either acc or
rej.

It should satisfy the following properties.

Completeness. For any public parameters pp ← PoD[E ].Setup(1λ),
HE keys (sk, evk) ← E .KeyGen(1λ) and ciphertexts {ct[mi]} such that
{mi} = E .Decsk({ct[mi]}), it holds that

Pr

PoD[E ].VCsk(π
PoD, {ct[mi],mi})
̸=
acc

∣∣∣∣∣∣ Csk ← Com(sk)
πPoD ← PoD[E ].Psk(Csk, {ct[mi]})


is less than or equal to some completeness error δ.

Knowledge soundness. For any public parameters pp ← PoD[E ].Setup(1λ),
HE keys (sk, evk) ← E .KeyGen(1λ) and PPT prover P∗, there exists a PPT
extractor ExtP

∗
and knowledge error εk such that

Pr

 E .Decsk∗({cti}) ̸= {mi}
∧

PoD[E ].VCsk(π
PoD, {cti,mi}) = acc

∣∣∣∣∣∣
(πPoD, Csk, {cti,mi})← P∗

sk∗ ← ExtP
∗

OCT (Csk, sk∗) = acc

 ≤ εk.
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Zero-knowledge. For any public parameters pp ← PoD[E ].Setup(1λ), HE keys
(sk, evk)← E .KeyGen(1λ) and ciphertexts {ct[mi]}, if there exists a probabilistic
polynomial-time simulator Sim such that for any probabilistic polynomial-time
distinguisher D it holds that∣∣Pr [D(πPoD, Csk) = 1

∣∣ (πPoD, Csk)← Sim(1λ)
]

− Pr

[
D(πPoD, Csk) = 1

∣∣∣∣ Csk ← Com(sk)
πPoD ← PoD[E ].Psk(Csk, {ct[mi]})

]∣∣∣∣ ≤ z
then PoD[E ] has z-computational zero-knowledge.

In the following we discuss how a proof of decryption for the HE scheme E
allows us to compile a designated-verifier blind zkSNARK E [dvIΠ] into a publicly
verifiable zkSNARK E [pvIΠ]. Any party that is able to verify a proof πdv, is able
to construct a proof πpv by appending the plaintext queries {qi} along with
a PoD that they are decryptions of the queries {ct[qi]} that were commited
to in {Ci}, using the secret key commited to in Csk. This results in the public
verification that is described in Figure 4.

E [pvIΠ].V(x; πpv = [Csk, ct[x], πPoD, {qi, ct[qi], api}, {Ci}, τ ])

1 : PoD[E ].VCsk(π
PoD, (ct[x], {ct[qi]}), (x, {qi}))

?
= acc

2 : PartialVer(Csk, ct[x], x, {qi, ct[qi], api}, {Ci}, τ)
?
= acc

Fig. 4: Verifier of publicly-verifiable zkSNARK resulting from Theorem 9.

In Figure 5, we describe the construction of πpv and in Theorem 9 we prove
that it describes a publicly-verifiable blind zkSNARK. If the PV-BzkSNARK is
used in the zkDel setting, one can replace ct[x] by x in the blind relation and thus
ct[x] requires no PoD and is not included in πpv. Note that it is not necessary
for the delegator to send the entire encrypted (extended) witness ct[w], they
can also only send an encryption of the private inputs from which ct[w] can
be computed homomorphically. This would demand less encryption cost from
the verifier and would not increase HE parameters. In the vCOED setting, one
depends on Theorem 2 to hide x from the blind prover and therefore ct[x] should
be included in the proof.

Theorem 9. For security parameter λ, the protocol in Figure 5 is a publicly-
verifiable zkSNARK for the relation R in the ROM against Q-query adversaries
with completeness error δΠ + δPoD + negl(λ) and knowledge soundness error
εPoDk +QεΠk +3(Q2+1)2−λ that is zΠ+negl(λ)+p2−λ/4+2+zPoD-computational
zero-knowledge if E is an IND-CPA secure and correct HE scheme, PoD is a
zero-knowledge proof of decryption with completeness error δPoD and knowledge
soundness error εPoDk that is zPoD-computational zero-knowlege, and Π is an
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hIOP scheme with completeness error δΠ and knowledge soundness εΠk that is
zΠ-computational zero-knowledge with proof length p.

Proof. Completeness follows immediately from the completeness of the PoD
scheme along with Theorem 8. Similarly, the zero-knowledge property follows
from a hybrid argument using the zero-knowledge property of the PoD and The-
orem 8. We discuss knowledge soundness in more detail.

Let us denote P∗ as a prover that outputs a proof πpv for the index i and state-
ment x such that the verifier E [pvIΠ].V (see Figure 4) accepts with probability p.
To prove knowledge soundness, we will show that there exists a polynomial-time
extractor Ext that outputs w with probability greater than p − εPoDk − ε

E[dvIΠ]
k ,

when given access to P∗. Firstly, when E [pvIΠ].V accepts, the first line in Figure 4
states that PoD[E ].VCsk also accepts. Therefore, by the knowledge soundness of
PoD, the prover P∗ can be used to extract a secret key sk ← PoD[E ].Ext such
that

(x, {qi}) = E .Decsk((ct[x], {ct[qi]}))

and sk is the secret key committed to in Csk. Secondly, from Theorem 8 we know
that the designated-verifier zkSNARK E [dvIΠ] is plaintext knowledge sound. In
other words, any prover that can produce a proof πdv such that the verifier
in Figure 3 satisfies, can be used to extract a witness w ← E [dvIΠ].Extsk such
that (i,x,w) ∈ R. Note that by assumption, P∗ generates proofs that satisfy
the PartialVer subroutine in E [dvIΠ].Vsk. The knowledge soundness of the PoD
discussed before ensures that also the first line in Figure 3 is satisfied. Therefore,
our prover P∗ can be used by the extractor E [dvIΠ].Extsk where sk is the secret
key extracted previously using PoD[E ].Ext. ⊓⊔

Remark. Note that the execution of PartialVer by the client is only required in a
setting where the blind prover is incentivized to be dishonest. In such setting it
is also required to not reuse the same HE secret key. Note that most HE schemes
are vulnerable to key-recovery attacks when the client leaks to the server whether
the ciphertexts properly decrypt. In the zkDel setting, the server would learn this
when it has access to the publicly-verifiable proof.

Remark. In our PoD construction, the Csk would be included in the πPoD. Nat-
urally, the proof size of πpv (see Theorem 8) is still larger than a normal proof
for the zkSNARK IΠ. This could be mediated by sending πpv to the delegatee to
delegate the computation of a recursion step.

4 Instantiation of blind zkSNARKs

In this section, we will describe algorithms for computing blind zkSNARKs effi-
ciently. Concretely, for some specific Π, we optimize the computation of E [Π].P
such that the blind zkSNARK resulting from Theorem 8 has efficient proof gen-
eration. The input to E [Π].P is the encrypted trace ct[z] = (x, ct[w]) where x
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zkDel Setting: Delegator
vCOED Setting: Designated verifier

sk, evk← E .KeyGen(1λ)
Csk ← CT .Com(sk)

w ← ExtWit(i, x)

(ct[x], ct[w])← E .Encsk((x,w)) evk, Csk, ct[x], ct[w] Blind prover

πdv ← E [dvIΠ].Pevk(e[i], (Csk, ct[x]), ct[w])

πdv = [{ct[qi], api}, {Ci}, τ ] πdv

{qi} ← E .Decsk({ct[qi]})

PartialVer(x, {qi, ct[qi], api}, {Ci}, τ)
?
= acc

πPoD ← PoD[E ].Psk(Csk, {ct[qi]}, {qi})

πpv = [Csk, ct[x], πPoD, {qi, ct[qi], api}, {Ci}, τ ]) πpv

Public verifier

E [pvIΠ].V(Csk, x; πpv)
?
= acc

Fig. 5: Compilation of a DV-BzkSNARK into a PV-BzkSNARK.

and w are vectors in some finite field F and computing E [Π].P consists of ho-
momorphically evaluating Π.P using E .Eval. Therefore, let us first outline this
computational framework.

Most HE schemes naturally suppport Single Instruction Multiple Data (SIMD)
operations since the plaintext space can be interpreted as the vector space
P = FP for some finite field F. Operating on plaintexts pt and/or ciphertexts
ct corresponds to pointwise operations on elements in P, such as pointwise ad-
dition and multiplication. Using automorphisms, it is also possible to compute
arbitrary linear operations on an encrypted vector, i.e. a matrix-vector multiply.

The inherent noise in a ciphertext grows depending on the type of operation:
additions (both pt-ct as well as ct-ct) cause additive noise growth, whereas
multiplication incurs a fixed multiplicative factor depending on the parameters
of the scheme. A pt-ct multiplication incurs a smaller noise growth than a ct-
ct multiplication and is also much faster to compute. As an example, for the
parameter set used in our implementation the noise growth would be on average
6.2 bits for pt-ct and 10.6 bits for a ct-ct, and a pt-ct multiply is 70× faster
than a ct-ct. An automorphism causes minimal noise growth as it does not
change the norm in the canonical embedding and in our implementation, takes
1/4 the time of a ct-ct multiplication. Multiplying a vector by a matrix can
be performed using P parallel pt-ct operations, P parallel automorphisms and
P − 1 additions using the Halevi-Shoup method [46]. In terms of noise depth,
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it incurs the equivalent of one pt-ct operation, one automorphism and ⌈log2 P ⌉
additions. As will become clear in this section, designing efficient homomorphic
circuits is largely a trade-off between number of operations performed and the
amount of noise they require.

Because its proof generation can be computed using mostly linear opera-
tions, we suggest to use the Fractal hIOP ΠF [31], similar to Garg et al. [38].
When compiling Fractal into a blind hIOP, this is convenient for homomorphic
computation in two ways. Firstly, many of the operations in Fractal can be
performed element-wise on vectors, which allows us to significantly lower the
number of homomorphic operations using SIMD as described above. Secondly,
Fractal’s linearity implies that many of the homomorphic operations will consist
of the cheaper pt-ct operations. Note that in Section 6, we will select an HE
scheme that is specifically designed to exploit both these conveniences optimally.
In what follows we describe the Fractal scheme and discuss an efficient algorithm
for computing it blindly, namely the algorithm E [ΠF].P from Definition 9.

4.1 Computing Fractal blindly

Fractal is a transparent, post-quantum, preprocessing zkSNARK that proves the
Rank-1 Constraint Satisfiability (R1CS) Az ◦Bz = Cz of z = (x,w) where x is
the statement, w is the (extended) witness and A,B,C are sparse matrices that
represent the computation to be proven. Its construction starts from a type of
IOP named Reed Solomon encoded-holographic IOP (RS-hIOP) that is compiled
into an hIOP. In a RS-hIOP, an indexer provides RS codes in an offline phase,
the prover’s messages are RS codes and the verifier outputs a set of rational
constraints on these RS codes. A rational constraint on some RS codes checks
that some rational function of the underlying polynomials has a limited degree.
For proofs of invalid statements, at least one of these rational constraints will
not hold.

Denote with (fz, fAz, fBz, fCz) the polynomials that interpolate the vectors
(z,Az,Bz,Cz) over some cyclic subgroupH of F, then the prover’s first messages
will be the RS codes (

#»

fz,
#    »

fAz,
#    »

fBz,
#    »

fCz) over some domain L = {ℓi}i∈[|L|]. In
particular, the RS codes correspond to evaluations of these polynomials on the
set L and are used to prove three statements that together imply the satisfiability
of the R1CS constraint system:

(1) fAz
∣∣
H
◦ fBz

∣∣
H
− fCz

∣∣
H

= 0

(2) fz
∣∣
I
= fx

∣∣
I
= x for some subset I of H

(3) fMz

∣∣
H

=M · fz
∣∣
H

for M ∈ {A,B,C}.

The previous three statements are proven using some rational constraints on
#»

fz,
#    »

fAz,
#    »

fBz,
#    »

fCz and other RS codes derived from z also defined over the do-
main L. In our setting however, the blind prover will have as input the HE
encrypted (extended) witness ct[w], leading to the (partially) encrypted trace
ct[z] = (x, ct[w]). Therefore all RS codes derived from the trace, as well as all
subsequent prover messages required for proving the rational constraints, will
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similarly be encrypted and from now on referred to as Encrypted RS (ERS)
codes. Computing them efficiently is a trade-off between minimizing noise de-
termined by the homomorphic depth and minimizing execution time determined
by the number of homomorphic computations that have to be performed.

4.2 Proving statement (1)

Starting from the encrypted trace ct[z] = (x, ct[w]), the prover computes the
ERS codes ct[

#     »

fMz] for M ∈ {A,B,C}. Computing the underlying ct[Mz] =
ct[fMz

∣∣
H
] requires a sparse matrix-vector product of size |H| over ciphertexts.

These ciphertext vectors are evaluations on domain H of some polynomial and
computing the corresponding ERS codes amounts to evaluating them on some
domain L. This is referred to as domain extensions and they are usually im-
plemented using an inverse NTT transform to compute f(x) from f

∣∣
H

, fol-
lowed by an NTT transform to compute f

∣∣
L

=
#»

f . This would result in only
O(|L| log |L|) operations but require a depth of 2 log |L| pt-ct multiplications.
Instead one could significantly reduce the pt-ct depth by computing the exten-
sion from {f (i) = f(hi−1)}i∈[|H|] where H = {hi−1}i∈[n] to domain L by using
the barycentric form

f(ℓi) =
∑
j∈[n]

f (i)λHj (ℓi) = ZH(ℓi)
∑
j∈[n]

f (i)

Z ′H(hj−1)(ℓi − hj−1)
=
ℓni − 1

n

∑
j∈[n]

f (i)
hj−1

ℓi − hj−1

where i ∈ [|L|]. However, even when using the method previously described for
homomorphic matrix-vector multiplication (on submatrices), the large number of
operations would lead to an unrealistic execution time. A naive hybrid algorithm
would perform the first layers of the NTT as matrix-vector products and the
remaining layers using the traditional butterfly algorithm (possibly in some other
base b). This seems like a trade-off between homomorphic depth and execution
time but it has one major problem. To prevent the bit-reversal permutation
caused by the butterfly algorithm, one would have permute around elements
between vectors.

Therefore we propose a different approach. Assume that the input vector is of
size bs for some base b and and integer s. Represent this vector as a bs−u−r×bu+r
matrix in row-major order. In other words, each row consists of br vectors of size
bu, where bu ≤ P , with P the dimension of the plaintext space. Now, one can
perform the NTT by first performing a column-wise NTT of size bu+r followed by
a row-wise NTT of size bs−u−r. Using this approach we can trade off the number
of operations for smaller homomorphic depth, while still being able to avoid the
bit-reversal caused by the butterfly algorithm. This is achieved by representing
and then computing the column-wise NTT as a matrix-vector product. The
subsequent row-wise NTT is performed element-wise using the normal butterfly
algorithm. Importantly the bit-reversal caused by this NTT can, if necessary,
be reverted by simply permuting the rows of the matrix. In the case where one
performs an inverse NTT followed by an NTT with only element-wise operations
inbetween, there is no need for reverting the row-wise bit-reversal.
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Now that one has all the relevant ERS codes, one can prove statement (1)
by proving the rational constraint deg(s) ≤ |H| − 2 for

s(X) =
fAz(X)fBz(X)− fCz(X)

ZH(X)
.

Notice that the numerator of s will vanish onH if and only if statement (1) holds.
The computation of ct[ #»s ] = ct[s

∣∣
L
] only requires one ct-ct multiplication, an

addition and one pt-ct multiplication. The verifier is provided with the required
ct[

#»

fMz] and can compute the vector ZH
∣∣
L

efficiently.

4.3 Proving statements (2) and (3)

Starting from the encrypted trace ct[z] = (x, ct[w]), the prover computes the
ERS code ct[

# »

fw] that corresponds to a polynomial fw of degree |H| − |I| − 1
such that

∀a ∈ H \ I : fw(a) =
ct[w]Ind(a) − fx(a)

ZI(a)

where Ind : H \ I → [|H \ I|] indexes H \ I, the polynomial fx interpolates
the statement x over I and ZI is the vanishing polynomial over I. This can
be computed using the domain extension described above. From ct[

# »

fw] the
prover (and in verification the verifier) can derive the RS code ct[

#»

fz] such that
fz
∣∣
H

= fw
∣∣
H
◦ ZI

∣∣
H
+ fx

∣∣
H

= (x,w). Computing the ciphertext vector that fw
interpolates requires one element-wise pt-ct multiplication and addition.

In order to prove statements (2) and (3), i.e. that fMz

∣∣
H

= M · fz
∣∣
H

for
fz(X) = fw(X)ZI(X) + fx(X), the Fractal protocol performs a “holographic
lincheck” [31]. We only discuss a subprotocol of the holographic lincheck, named
the “polynomial sumcheck”, since only this particular part would require homo-
morphic computations in the blind setting. It is a univariate sumcheck protocol
that is used to prove

∑
b∈H fsc(b) = 0 for

fsc(X) = α(X)fz(X) +
∑

M∈{A,B,C}

βM (X)fMz(X) = 0 (1)

where α and βM are polynomials such that fsc is of degree 2|H| − 2. In the
sumcheck protocol the prover sends an RS code of the degree |H|−2 polynomial
g = fsc mod ZH , and the verifier checks the rational constraint deg(h) ≤ |H|−2
where h(X) = fsc(X)−Xg(X)

ZH(X) . Notice that there is no need to send RS codes for
fsc(X) and Xg(X) since the verifier can efficiently derive them from previously
sent RS codes.

Let us now discuss the computation of the ERS code ct[ #»g ] starting from the
previously derived ciphertexts. Similar to domain extension one could minimize
the homomorphic depth by expressing this computation as one matrix-vector
product as follows. First, notice that g(ℓi) =

∑
j∈[|H|] rjℓ

j−2
i where rj are the co-

efficients of r = fsc mod ZH . Now, w.l.o.g., assume that deg(f)+1 = k|H| = kn
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whereH is the cyclic subgroup of F of size n. Then, we have that ZH(X) = Xn−1
and therefore rj =

∑k−1
s=0 Coeff(fsc)sn+j . Lastly, we compute these coefficients

Coeff(fsc)i =
∑
j∈[|L|] Λijf(ℓj) where Λij are the coefficients of the Lagrange

polynomials such that λLj (X) =
∑
i∈[|L|] ΛijX

i−1. Therefore, #»g and similarly
ct[ #»g ] could be computed as

g(ℓi) =
∑
t∈[|L|]

fsc(lt)
∑
j∈[|L|]

ℓj−2i

k−1∑
s=0

Λsn+j,t for i ∈ [|L|]

which would require |L|2 pt-ct multiplications and |L| log |L| additions. As was
the case for domain extension in the barycentric from, we will have to lower the
number of required operations in exchange for a larger homomorphic depth. We
propose the following algorithm.

Computing the ERS code of g

1 : {α
∣∣
L
, βA

∣∣
L
, βB

∣∣
L
, βC

∣∣
L
} = NTT(α, βA, βB , βC)

2 : ct[
# »

fsc] = α
∣∣
L
◦ ct[ #»

fz] +
∑

M∈{A,B,C}
βM

∣∣
L
◦ ct[ #     »

fMz]

3 : ct[Coeff(fsc)] = iNTT(ct[
# »

fsc])

4 : foreach i ∈ [n] :

5 : ct[Coeff(Xg)i] =
∑k−1

s=0
ct[Coeff(fsc)sn+i]

6 : ct[
#   »
Xg] = NTT(ct[Coeff(Xg)])

7 : ct[ #»g ] = ct[
#   »
Xg] ◦

[
l−1
1 l−1

2 . . . l−1
|L|

]
Again we minimize the homomorphic depth of the ciphertext space NTTs on lines
3 and 4 as described before. Notice that we can reuse the domain evaluations of
fz and fMz since we will always have |L| ≥ deg(f). The bit-reversal of the NTTs
in step 3 and 6 has to be reverted before the computations in steps 3 and 4. As
described previously, using our approach for computing the NTTs, this can be
achieved without performing homomorphic operations.

4.4 Proving rational constraints

We have so far shown how to blindly compute the Fractal RS-hIOP while Sec-
tion 3 and specifically Theorem 8 only apply to hIOPs. The computations in-
volved in the compilation from the Fractal RS-hIOP to the hIOP also require
homomorphic operations when this hIOP is computed blindly. This compilation
utilizes the FRI IOP [8] for checking the rational constraints and the validity
of the RS codes. We perform this protocol batched, as first described by the
authors of Aurora [10]. In batched FRI, one checks whether the rational con-
straint fFRI(X) =

∑
i(αi+βiX

d−di)fi(X) has degree d = maxi{di} where αi, βi
are some random challenges provided by the verifier instead of checking whether
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each rational constraint fi is of degree di. Computing the ERS code for the
batched rational constraint ct[

#    »

fFRI] requires one pt-ct multiplication.
For the Fractal RS-hIOP, the set of polynomials {fi} will be equal to{

fAzfBz − fCz
ZH

, g,
fsc −Xg
ZH

, fz, fAz, fBz, fCz, fpt

}
where fpt is a polynomial that interpolates plaintext values and has therefore
not been discussed. A linear combination of these polynomials can be rewritten
as a linear combination over the set {fi} equal to{

fAzfBz, g, fsc, Xg, fz, fAz, fBz, fCz, fpt
}
.

By this we mean that ct[ #»s ] can be computed using element-wise homomorphic
operations on ct[

#»

fi ]. Notice that every ct[
#»

fi ] has been previously computed.
In the FRI IOP, the prover interacts with the verifier in approximately log d
rounds. Let us assume that the evaluation domain L is a multiplicative coset
of some cyclic subgroup such that L = {gωi}i∈[2k] for k = log2(|L|) and g
a field element. In round j ∈ [log2 d], the prover sends the folded evaluation
{fFRI/2j ((gωi)2

j

)}i∈[2k−j ] of the degree d/2j polynomial fFRI/2j where

fFRI/2j ((gω
i)2

j

) =
1 + αj(gω

−i)2
j

2
fFRI/2j−1((gωi)2

j−1

) +
1− αj(gω−i)2

j

2
fFRI/2j−1((gω2k−1+i)2

j−1

)

and αj is the j-th round verifier challenge. After the last round, the prover sends
the remaining |L|/d evaluations to the verifier, who checks that they are colinear.
Now in the blind setting, we propose to stop FRI at round k − v (where bv

elements can be encrypted in a single ciphertext), since this would only amount
to sending one ciphertext, the minimal number we can send. This way we also
avoid the need for computations between elements of different packing vectors
and FRI can be entirely computed as element-wise operations on vectors. It
is clear that the computation of ct[

#            »

fFRI/2j ] from ct[
#                 »

fFRI/2j−1 ] would require 2
element-wise pt-ct multiplications on vectors of size 2k−j . Again we compromise
between homomorphic depth and number of operations by composing the last r
rounds into which would require 2r element-wise pt-ct multiplications on vectors
of size 2v+r.

5 Proof of Decryption

The proof of decryption (PoD) is a key component to build a publicly-verifiable
blind zkSNARK, as explained in Section 3.3. In this section, we construct PoDs
from our vectorized description of the LNP22 proof system, which is described
in detail in Appendix C.

All RLWE-based HE schemes such as BFV [18,36] and the Generalized-BFV
(GBFV) scheme [39], but also BGV [19] and CKKS [27], fit in a general frame-
work: the secret key sk ∈ χkey is an element of small norm in Rm,q and a
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ciphertext (c0, c1) ∈ C = R2
m,q encrypts a message m ∈ P = Rm /I for some

ideal I ⊂ Rm. For invariant schemes such as GBFV, we have that I = (t) and
the decryption equation is given by

c0 + c1 · sk = ⌊∆ ·m⌉+ vinh ∈ Rq,m (2)

where ∆ = q/t ∈ Km is a scaling factor and vinh is called the inherent noise,
i.e. the polynomial with the lowest infinity norm such that the above equation
holds. Furthermore, the ciphertext will decrypt correctly as long as the modulus
q ≫ Bt := ∥t∥can∞ and ∥vinh∥∞ < Bq := q

2·EFm·ht·∥t∥∞
− 1

2 , where ht is the
number of non-zero terms in t(X) and the bound is proven in Appendix B.2. For
other schemes such as BGV and CKKS, a slight variation of the above equation
describes valid decryption; in particular, in all cases, valid decryption is given by
a relation over the ring Rq,m, which is linear in the secret key sk and with the
requirement that ∥vinh∥∞ < Bq for some bound Bq depending on the parameters
of the scheme.

5.1 Relations for the proof of decryption

Let Csk denote a commitment to a secret key sk ∈ χkey. For 1 ≤ i ≤ r, let
ct(i) = (c

(i)
0 , c

(i)
1 ) ∈ R2

m,q denote a ciphertext that decrypts to m(i) under the
secret key sk. Since valid decryption requires each of the norm of the inherent
noise v

(i)
inh in each ciphertext ct(i) to be bounded by Bq, we can derive the

relation:

R1 =


(
x = (Csk, {ct(i),m(i)}i∈[r])
w = (sk)

) ∣∣∣∣∣∣∣
OCT (Csk, sk) = acc

∧∀i ∈ [r] :
∥∥∥v(i)inh∥∥∥∞ < Bq where

v
(i)
inh := c

(i)
0 + c

(i)
1 · sk−

⌊
∆ ·m(i)

⌉
 (3)

Any statement-witness pair in R1 gives r valid plaintext-ciphertext pairs in
RLWE-based HE with respect to the secret key committed to in Csk.

In our work, Csk is instantiated using the ABDLOP commitment scheme. For
messages committed under ABDLOP, the LNP22 proof system (details can be
found in Appendix C) allows proving various relations over the commitment ring
Rq′ . This includes Approximate Norm bound proofs (ANP) of linear relations
in the commitment ring Rq′ , as detailed in Appendix C.4. While it may seem
promising to apply ANP directly to prove the boundness of inherent noises in
ciphertexts, the commitment ring Rq′ in the LNP22 proof system differs from
the HE ciphertext ring Rm,q in two aspects.

– Firstly, the LNP22 commitment ring is defined by a power-of-two cyclotomic
polynomial, typically of degree d = 64, 128. In the above HE schemes, the
ring Rm is defined modulo the m-th cyclotomic polynomial where m is much
larger than 128 and also not necessarily a power of two.

– Secondly, in LNP22, the modulus q′ =
∏
q′i is chosen such that the cyclo-

tomic polynomial Xd + 1 has two irreducible factors modulo q′i. So even
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in the case where Φm would be a power-of-two cyclotomic polynomial, the
ciphertext modulus in HE is chosen such that Φm fully splits modulo each
prime factor of the ciphertext modulus.

To accommodate the first incompatibility, we first represent elements and
relations in the ciphertext ring Rm,q as relations on vectors over Zq using the
coefficient embedding. Thus, the relations for the inherent noises are given by

#»v
(i)
inh = Rotm,q(c

(i)
1 ) · # »sk+ #»c

(i)
0 −

#                     »⌊
∆ ·m(i)

⌉
∈ Znq , ∀i ∈ [r]. (4)

In order to prove the boundedness of #»v
(i)
inh, we describe a vectorized version of

ANP in Appendix C.5, which is referred to as vec-ANP.
As for the second incompatibility, a natural solution to accommodate dif-

ferent moduli is to include overflows, as in [53, Section 6.3]. Concretely, for a
sufficiently large modulus q′, there exist bounded overflows { #»

ℓ (i), ∀i ∈ [r]} sat-
isfying

#»v
(i)
inh = Rotm,q(c

(i)
1 ) · # »sk+ #»c

(i)
0 −

#                     »⌊
∆ ·m(i)

⌉
+ q

#»

ℓ (i) ∈ Znq′ , ∀i ∈ [r]. (5)

Since inherent noises and overflows are not independent linear combinations of
# »sk, proving their bounds would require us to commit to at least one of the two.
This not only increases the commitment size, but also requires a higher modulus
q′ > q than HE ciphertexts.

To avoid this blow-up, we use a well known technique from HE, namely
modulus switching, which allows to transform a valid ciphertext modulo q to a
valid ciphertext modulo q′, which is taken to be lower than q in our protocols.
Let ct[m] = (c0, c1) ∈ R2

m,q denote a ciphertext with ciphertext modulus q
and inherent noise vinh. Switching the ciphertext modulus to q′ amounts to
computing

ct′ =
(⌊

q′

q
c0

⌉
,

⌊
q′

q
c1

⌉)
∈ R2

m,q′ .

In Appendix B.3 we derive the noise bound in ct′ as ∥v′inh∥∞ ≤
q′

q ∥vinh∥∞+Bms,
where Bms is a constant depending on the secret key distribution. As long as we
have ∥v′inh∥∞ ≤ Bq′ , the ciphertext ct′ will be valid and thus satisfies the same
equation as (4), but with q′ instead of q.

5.2 Relaxed proof of decryption

For modulus switched ciphertexts {ct′(i) ∈ R2
m,q′ , i ∈ [r]}, the proof of decryption

amounts to proving the relation

R2 =


(
x = (Csk, {ct′(i),m(i)}i∈[r])
w = (sk)

) ∣∣∣∣∣∣∣
OCT (Csk, ŝk) = acc

∧∀i ∈ [r] :
∥∥∥ #»v

(i)
inh

∥∥∥
∞
< Bq′ where

#»v
(i)
inh := Rotm,q′(c

′(i)
1 ) · # »sk+ #»c

′(i)
0 −

#                    »

⌊∆ ·m(i)⌉

,
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where ŝk denotes an embedding of sk into the message space of the commitment
scheme CT . In the instantiation of the ABDLOP scheme, for an element v ∈ Rm,
we define its embedding v̂ ∈ Rn̂q′ as n̂ =

⌈
n
d

⌉
elements in the commitment ring

Rq′ , such that the coefficient vector of v̂ equals #»v modulo q′.
In this section, we describe a protocol PoD(Csk, {ct′(i),m(i)}i∈[r]) using vec-ANP,

which is complete for ciphertexts whose inherent noises satisfy
∥∥∥ #»v

(i)
inh

∥∥∥
∞
< BPoD,

where
BPoD := min

{
Bq′

ψ(L2)
√
r ·n

,
q′

41(r ·n)3/2ψ(L2)

}
and the factor ψ(L2) is defined in Appendix C.3. In other words, our protocol is
a relaxed proof of decryption with a relaxation factor

Φr := Bq′ /BPoD ≈ ψ(L2)
√
r ·n ·max

{
1,

41 r ·n
2δm∥t∥∞

}
.

The protocol. To begin with, the prover commits to the secret key sk using
the Ajtai part of the ABDLOP commitment scheme, i.e. Csk = A1 · ŝk+A1 · s2
where s2 ∈ Rm2

q′ is a small randomness satisfying ∥s2∥∞ ≤ ν.
To generate a proof of decryption for r ciphertext-plaintext pairs whose in-

herent noises are bounded by BPoD, the prover applies the vec-ANP protocol
with inputs

Πvec-ANP
(
(s1 = ŝk,m = ∅, s2), (W,w, Bw = BPoD)

)
,

where

W =


Rotm,q′(c

(1)
1 )

...
Rotm,q′(c

(r)
1 )

 ∈ Zr ·n×n
q′ , w =


#»c

(1)
0 −

#                     »

⌊∆ ·m(1)⌉
...

#»c
(r)
0 −

#                    »

⌊∆ ·m(r)⌉

 ∈ Zr ·n
q′ .

Denote the vector W · # »sk+w =
[

#»v
(1)
inh · · ·

#»v
(r)
inh

]⊤
as #»u , then the above vec-ANP

protocol convinces the verifier that the prover knows ŝk such thatOCT
(
Csk, ŝk

)
=

acc and ∥ #»u∥∞ ≤ BPoD·ψ∞ ≤ Bq′ . This guarantees the validity of each ciphertext-
plaintext pair with respect to the secret key committed in Csk.

Asymptotic Analysis. With ABDLOP parameters ensuring sufficient hardness
of MSIS (for binding) and MLWE (for hiding), the protocol PoD(Csk, {ct′(i),m(i)}i∈[r])
achieves a constant amortized proof size (including commitment size, without
applying the Huffman coding optimization [53]) with respect to the number of
ciphertext-plaintext pairs r.

The computation cost is dominated by a subprotocol Π(2)
eval(·), where both

the prover and the verifer need to compute the function Hj , as detailed in Sec-
tion C.5. This results in O

(
rn2

)
computation costs. In Section 5.3, we describe

a protocol that achieves computation cost O
(
n2 + rn log n

)
.
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5.3 Reducing the computation costs

In Figure 6 we describe another batched proof of decryption protocol that has
a reduced computation cost compared to the protocol from Section 5.2. In-
stead of having the linear relation in the vec-ANP proof grow with the amount
of ciphertexts r, we prove the decryption of a random linear combination of
ciphertexts. The soundness of the protocol is based on the Schwartz-Zippel
Lemma. Since the computations on the r ciphertexts are moved to the ring
space, the computations are more efficient. In particular, we reduce the cost
from O

(
rn2

)
to O

(
n2 + rn log n

)
. This comes with the change of relaxation fac-

tor from Φr = O
(
(rn)

3
2

)
to ΦSZ = O

(
rn

5
2

)
. Using the Fiat-Shamir transform,

this protocol can be compiled into a non-interactive proof in the ROM.

Lemma 1. Let P = FP denote the plaintext space of an HE scheme with P slots.
If r / |F| = negl(λ), then the protocol in Figure 6 is a proof of decryption for r
ciphertexts {ct′[m(i)],m(i)}i∈[r] with negligible soundness error and relaxation
factor ΦSZ := Φr ·Nptct · 2⌈log r⌉ where Nptct = O(n) is the noise increase bound
for 1 pt-ct multiplication.

Proof. We start by discussing soundness. Let us define a function f : Pr → P :
{m(j)}i∈[r] 7→

∑
i∈[r] αim

(i) for some set of challenges {αi}i∈[r] such that each αi
encodes P elements {αij}j∈[P ]. The proof of decryption that is verified at the
end implies that

f
(
{m(i)}i∈[r]

)
= E .Decsk

(
E .Eval

(
f, {ct′[m(i)]}i∈[r]

))
except with negligible probability. Under the assumption that E is still correct
for f on those ciphertexts, this implies that

f
(
{m(i)}i∈[r]

)
= f

(
E .Decsk

(
{ct′[m(i)]}i∈[r]

))
⇒

∑
i∈[r]

(
m(i) − E .Decsk

(
ct′[m(i)]

))
αi = 0

⇒ ∀j ∈ [P ] :
∑
i∈[r]

(
m

(i)
j − E .Decsk

(
ct′[m(i)]

)
j

)
αij = 0

where the subscript j denotes the j-th slot of a plaintext encoding. Now if the
values αij were randomly sampled from F, by the Schwartz-Zippel lemma we
can conclude that for each j ∈ [P ] it holds that

∀i ∈ [r] : m
(i)
j = E .Decsk

(
ct′[m(i)]

)
j

except with probability r/ |F|. The relaxation factor ΦSZ comes from the relax-
ation factor required for a PoD on one ciphertext multiplied by the noise factors
added by homomorphically computing f . This ensures that the correctness as-
sumption above holds. ⊓⊔
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Prover Verifier

Csk, {ct′[m(i)],m(i)}i∈[r]

c̃t :=
∑
i∈[r]

ptMult(ct′[m(i)], αi)
#»α #»α←Fr×P

m̃ :=
∑
i∈[r]

αi ·m(i)

πPoD←PoD.P(Csk, c̃t, m̃) πPoD
c̃t :=

∑
i∈[r]

ptMult(ct′[m(i)], αi)

m̃ :=
∑
i∈[r]

αi ·m(i)

PoD.V(πPoD, Csk, c̃t, m̃)
?
= acc

Fig. 6: A PoD protocol for {ct′[m(i)],m(i)}i∈[r] with reduced computation costs.

5.4 Proving decryptions of a subset

As discussed in Section 4, efficient instantiations of blind zkSNARKs rely on the
SIMD capabilities of the used HE scheme. Therefore, when opening the com-
mitment to a ciphertext and proving its decryption in order to reveal a queried
value, we are instead revealing an entire batch of elements in the zkSNARK field.
To ensure that the zero-knowledge property of the zkSNARK scheme extends to
the blind zkSNARK scheme, we must avoid revealing more queried values than
intended, by only revealing the queried values. We give two methods to do so.

Masking. The first method consists of simply masking the ciphertext using a
plaintext-ciphertext multiplication, where the masking plaintext M encodes a 1
in the slots we want to reveal and a 0 in all other slots. Instead of giving a PoD
(πPoD, ct,m) that some ciphertext ct = (c0, c1) ∈ R2

q′ decrypts to a plaintext
message m ∈ P, we can simply replace the ciphertext by ct∗ = ptMult(ct,M)
and give a PoD (πPoD, ct∗,m∗) where m∗ =M ·m.

Ring switching. The GBFV parameter sets we use in the blind zkSNARK
are particular instances of a family of parameter sets. To illustrate this, con-
sider the case where we want to encrypt elements in Fp2 with p the Golidlocks
prime, then the family consists of the following: the plaintext space is given by
Z[x]/(Φm(x), t(x)) with m = 7 · 3 · 2j and t(x) = xk − b, with k = 7 · 2i+j−6 and
b = 22

i

for some integers 0 ≤ i ≤ 5 and 6 ≤ j ≤ 16. The blind zkSNARK is exe-
cuted using the set j = 11 and i = 0 resulting in a plaintext space corresponding
to a vector of 96 elements in Fp2 . As explained above, we are only interested in
a subset of these elements, which opens up the possibility to construct a valid
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ciphertext for a smaller parameter set in the same family only encrypting the
subset of values we want to reveal. For this we can use a technique called ring
switching [42] to map a valid ciphertext for j = 11 to the smaller ring defined
by j = 8, which is the smallest dimension that ensures 100-bit security for the
modulus q′ in the relaxed PoD. The resulting protocol can be found in Ap-
pendix D. The ring switch decreases the ciphertext size by a factor of 8, which
speeds up the PoD by a factor of 64. A similar approach can be taken for the
other parameter sets.

6 Implementation

In this section we demonstrate the practicality of using our protocols in the zkDel
setting (which implies their practicality in the vCOED setting). As discussed be-
fore, we select Fractal as the hIOP scheme and GBFV as the HE scheme. In what
follows we will focus on 100-bit security since this is the security level targeted
by FRI-based zkSNARK implementations [14]. For the server, all runtimes were
tested on a machine with an Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, 96
cores and 512GB RAM. For the client which runs PoD, we employed a machine
with an Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, 8 cores and 377GB
RAM.

6.1 GBFV parameter sets

As explained above, we instantiate GBFV over the ring Rm for m = 7 · 3 · 211
and t(X) = X7·25 − 2, with ciphertext space C = Rm,q for log2 q ≈ 398 bits
and plaintext space corresponding to a vector space of dimension 96 over Fp2
where p = 264 − 232 + 1. This prime p is known as the Goldilocks prime and is
popular in zkSNARK implementations because of its efficient arithmetic. These
parameters result in a lattice dimension of n := ϕ(m) = 12288, which guarantees
100-bit security according to the Albrecht et al. lattice estimator [2].

For the PoD, we use the ring switching technique described in Section 5.4.
As explained in Appendix D, we switch to smaller ring for m′ = 7 · 3 · 28 with
dimension n′ := φ(m′) = 1536 and ciphertext modulus of size 48 bits.

6.2 Computing Fractal blindly

We prove that the homomorphic circuit outlined in Section 4 is feasible in prac-
tice for computing blind proofs of computations with C = 220 R1CS constraints.
This is achieved by selecting parameters for Fractal and GBFV and then demon-
strating the following facts:

– they are secure instantiations of an hIOP and HE scheme respectively,
– the HE scheme will remain correct for that homomorphic circuit,
– the number of required homomorphic computations is reasonable.
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Fractal is calculated in a field of size log2 F = 128, thus the Fractal RS-
hIOP will remain sound for circuit sizes up to approximately 228 constraints.
The maximal degree on which we will have to perform the FRI IOP will be
approximately C = 220. Thus, from the recent paper by Block et al. [14], we can
derive that FRI will remain secure for this field size when choosing rate ρ = 1/2
(so |L| = C/ρ = 221) and performing l = 101 repetitions of the query phase. In
Appendix D, we argue this implies opening to 3727 Fp2 elements on average.

Now let us first discuss the practicality of encrypting and sending a circuit
trace of size C, as shown in Figure 5. We propose to encrypt the trace into
normal BFV ciphertexts, and then unpack them into GBFV ciphertexts at the
server side. As described in [39], when instantiating BFV using the same cyclo-
tomic polynomial Φm, this can be achieved using one automorphism and one
pt-ct operation per resulting GBFV ciphertext. Since the packing size for BFV
will be n/2, the client needs to encrypt ⌈221/n⌉ = 171 ciphertexts, which takes
approximately 1.2s. The resulting communication size would be 209MB. How-
ever, these are actually upper bounds since one would likely not encrypt and
send the entire trace but only the private inputs to the computation. Then the
server could compute the other trace values homomorphically, which might re-
quire bootstrapping. Fortunately, in GBFV, this would not necessitate larger
parameters than the ones already selected here.

The first operation performed by the server will be unpacking into GBFV
ciphertexts. Recall that the plaintext space corresponds to a vector space of
dimension 96. In the NTTs however, it is more convenient to only work with
vectors whose length is a power of 2, so we use only 64 out of the available
96. Now we can estimate the number of pt-ct operations and automorphisms
required in the first computation step. We will keep track of these numbers
cumulatively in Table 1.

Computation Noise (bits) Cadd Cptct Caut Cctct

Unpacking 9 0 16416 16416 0

Computing ct[Mz] 31 196602 163872 163872 0

Computing ct[
#»

fz]/ct[
#     »

fMz] 164 6389922 6455412 6455328 0

Computing ct[ #»g ] 298 10633448 10780823 10649632 0

Computing ct[ #»g ] 298 10895592 11042967 10649632 32768

Computing FRI 318 11354345 11075735 10649632 32768

Table 1: Operation count and noise estimates for computing blind Fractal.
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We have performed similar estimates for the computations listed in Section 4
and have compiled them in Table 1. The resulting 318 bit noise is lower than the
decryption bound Bq ≈ 392 bits. For the inverse NTT required in domain exten-
sion, we choose b = 4 and r = 0. For all other NTTs we have chosen b = 8 and
r = 0. Regarding the FRI computation, we chose to compose all rounds into one
to maximally reduce noise depth. Note that we only report on the noise required
in the “critical path”. For example, in the third row, the reported noise is that
in the ciphertexts ct[

#     »

fMz]. Also, often we can reduce the required noise depth
by combining subsequent pt-ct operations. For example, all consecutive pt-ct
multiplications αn(. . . (α1 ·ct)) can be computed using one pt-ct multiplication
(α1 · · ·αn) · ct.

Now we will estimate the execution time of blind Fractal proof generation
using the operation counts in Table 1. Since GBFV is currently not implemented
for non-power-of-two cyclotomics, we cannot get exact runtimes for the homo-
morphic operations. However, we can use the runtimes for the same operations
in a power-of-two lattice dimension of similar size, namely 213. Although this
is slightly smaller than our proposed lattice dimension, optimizations such as
dynamic scaling were also not taken into account, which makes the operations
at larger depth cheaper and would result in a factor of 2 speed-up. Using the
timings from Table 2, we can calculate that if we were to compute blind Fractal
completely sequential, then the computation time would be 29 hours. Since all
operations can be performed perfectly in parallel, on our server with 96 cores,
blind Fractal for a circuit size of 220 could be computed in 18 min. Note here
that we have chosen an extremely large circuit size to demonstrate the worst
case performance of our blind zkSNARK.

Tenc Tadd Tptct Taut Tctct

7ms 0.25ms 0.5ms 9ms 36ms

Table 2: Timings of operations in GBFV for n = 213.

6.3 Proof of Decryption

We implemented the proof-of-decryption protocol presented in Section 5 using
the C programming language. We leveraged basic primitives used in Lazer [57],
a library for lattice-based zero-knowledge proofs, and thoroughly extended it to
construct our proof of decryption for GBFV ciphertexts.

Below, we present execution times for the Πvec-ANP protocol with increasing
number of input ciphertexts. We conclude that, in practice, following the tech-
nique from Figure 6 is always beneficial performance-wise, since the client needs
to apply Πvec-ANP to a single ciphertext at the comparably negligible expense of
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executing additional HE operations. Lazer parameters for the complete proof of
decryption using the protocol from Figure 6 with r = 2919 ciphertexts and noise
bound BPoD = 16.9 bits are presented in Table 5 (Appendix D.1). The proof
size for this parameter set is 12KB and can be computed as described in [53,
Section 6.1].

r
Πvec-ANP

w/out Π
(2)
eval

Π
(2)
eval Total runtime

single thread 8 threads single thread 8 threads
1 0.04 1.15 0.45 1.19 0.49

8 0.14 6.92 1.26 7.06 1.40

64 0.93 53.01 8.09 53.94 9.02

512 7.28 424.17 64.30 431.45 71.58

1024 14.68 846.59 126.89 861.27 141.57

2048 29.40 1688.15 253.55 1717.55 282.95

4096 58.81 3407.10 516.12 3465.91 574.93

Table 3: Runtimes in seconds for the PoD instantiated with the parameters in
Table 5 and increasing number of pt-ct pairs (r). Using the optimized method
given in Figure 6 we can always reduce to the first row in practice.

Experiments. In Table 3, we present the runtimes in seconds for our Πvec-ANP
proof of decryption protocol. We provide separate numbers for the following two
subprotocols:

– The Πvec-ANP protocol up to the execution of Π(2)
eval, including the initial

commitment to the FHE secret key and the computation of #»z = bR #»u + #»y .
– The Π(2)

eval protocol for proving that #»z was computed correctly, including
the computation of the quadratic functions Hj .

Constructing the Hj functions involves a relatively large matrix multiplication
(for computing

#»

Rj ·W) which represents around 96% of the total runtime.
Therefore, we tested two variations of the PoD: (1) a single-threaded version that
would be used by a proof delegator with low-end device, and (2) a multi-threaded
matrix multiplication using OpenMP leveraging 8 cores for when a more powerful
machine is available. We note that the referred matrix multiplication involves
only public information, meaning that it would be possible to delegate it to the
server computing the zkSNARK. However, the single thread execution is already
significantly faster than locally computing the zkSNARK proof itself.

As we discuss in Section 5.3, executing the PoD using the optimized method
presented in Figure 6 results in reduced computational costs for the client. In
fact, not using this method and instead directly applying the Πvec-ANP to all
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the ciphertexts resulting from the Fractal query phase would imply executing
the protocol with on average r = 2919, as detailed in Appendix D. Conversely,
with the protocol in Figure 6, we need to prove correct decryption of a single
ciphertext, taking the client less than 2 seconds. Our current implementation
consumes 15MB RAM for r = 1, but with better memory management this
number could be further optimised.
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A Supplementary preliminaries

A.1 Number fields, rings and coefficient embedding

For any positive integer m, let Φm(X) denote the m-th cyclotomic polynomial
of degree n = ϕ (m), where ϕ(·) is the Euler totient function. Specifically, when
m is a power-of-two, Φm(X) = Xm/2 + 1. The m-th cyclotomic number field is
Km = Q[X]/ (Φm(X)) and the m-th cyclotomic ring is Rm = Z[X]/ (Φm(X)).
For g =

∑n−1
i=0 giX

i ∈ Km, its coefficient vector [g0 g1 . . . gn−1]⊺ ∈ Qn is denoted
as #»g , and its coefficient-wise norms ∥g∥p = ∥

#»g ∥p, e.g.

∥g∥1 =
∑
|gi|, ∥g∥2 = (

∑
g2i )

1
2 , ∥g∥∞ = max{|gi|}.

For c(X), s(X), b(X) ∈ Rm and b(X) = c(X) · s(X), their coefficient represen-
tations satisfy

#»

b = Rotm (c) · #»s , where

Rotm (c) ∈ Zn×n =

 #    »c(0)
#    »c(1) . . .

#          »c(n−1)


and c(i) = Xi · c(X) mod Φm(X). The expansion factor with respect to the
infinity norm is defined as

δm = sup

{
∥g · f mod Φm∥∞
∥g∥∞ · ∥f∥∞

| g, f ∈ Z[X] \ 0 and deg(g),deg(f) ≤ (n− 1)

}
.
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For elements in Rotm (c), let
∥∥ #   »c(i)

∥∥
∞ ≤ EFm · ∥c∥∞, which consecutively gives

δm ≤ n · EFm. Specifically, when m is a power-of-two, EFm = 1 and δm = n.
For the ring Zq = Z /q Z, we use [− q2 ,

q
2 ) as the representative interval, and

for x ∈ Z, we denote the centered reduction modulo q by [x]q ∈ Zq. Let ⌊·⌋
and ⌈·⌉ denote the flooring and ceiling functions respectively, and let ⌊·⌉ denote
the rounding function that rounds half up. All these notations are extended to
elements in Km and Rm coefficient-wise.

For a non-zero element t(X) ∈ Rm, denote the quotient ring of Rm modulo
t(X) as Rm,t(X) = Rm /tRm. Specifically, for q ∈ Z, the quotient ring of Rm
modulo q is denoted as Rm,q. Notations for coefficient vectors and norms in Rm
naturally extend to Rm,q using representatives in [− q2 ,

q
2 ). For d(X) ∈ Rm,q,

the rotation matrix Rotm,q (d) contains columns
#   »

d(i) where d(i) = Xi ·d(X) mod
(q, Φm), which are bounded as∥∥∥ #   »

d(i)

∥∥∥
∞
≤ min{EFm · ∥d∥∞,

q

2
}, 0 ≤ i ≤ n− 1.

Moreover, for an explicit power-of-two cyclotomic order 2k, let R denote the
ring RΦ

2k
= Z[X]/

(
Xd + 1

)
where d = 2k−1, and Rq := R /q R.

A.2 Probability distributions

Given a probability distribution χ, the notation a←χ implies that a is sampled
from χ. Let U(Zq) and U(Rm,q) denote the uniform distribution over Zq and over
Rm,q, respectively. For example, a←U(Rm,3) is a uniformly random polynomial
in Rm with ternary coefficients.

Let Dσ denote the discrete Gaussian distribution with standard deviation σ
over the integers, then the following properties are satisfied [52,6]

Pr [|z| > kσ | z←Dσ] ≤ 2e−k
2/2 (6)

Pr
[
∥z∥2 > t

√
r · σ | z←Dr

σ

]
≤
(
te

1−t2

2

)r
. (7)

The notation naturally extends to the ring Rm, i.e. DRm,σ denotes the discrete
Gaussian distribution with standard deviation σ over Rm.

Let Binκ denote the binomial distribution parameterized by κ, i.e. the dis-
tribution

∑κ
i=0(ai − bi) where ai, bi←{0, 1}. For example, for c←Bin1, Pr(c =

0) = 1
2 and Pr(c = 1) = Pr(c = −1) = 1

4 .

B Background on the GBFV Scheme [39]

B.1 Canonical embedding

For polynomials in Km, defining norms on coefficient vectors provides a straight-
forward measure of sizes. However, analyzing the coefficient norm growth upon
multiplication requires the expansion factor δRm

, which depends heavily on the
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polynomial modulus Φm(X) and often results in loose bounds. This leads to the
broad use of canonical norm ∥·∥can [55,56,43,33,32], which is defined from the
canonical embedding into Cn. Recall that the canonical embedding is

τ : Km ↪→ Cn : a(X) 7→ {a(ξjm)}j∈Z×
m
,

where ξm = exp(2πi/m) is a primitive complex m-th root of unity. The canonical
norm is ∥a∥canp = ∥τ(a)∥p, and common values of p are 1, 2,∞.

Lemma 2 (Adapted from [33]). For all a, b ∈ Km, the following properties
are satisfied

– ∥a∥can∞ ≤ ∥a∥1
– ∥a∥∞ ≤ cm · ∥a∥can∞ , where cm is a constant determined by the cyclotomic

order m
– ∥a · b∥can∞ ≤ ∥a∥can∞ + ∥b∥can∞
– ∥a · b∥canp ≤ ∥a∥can∞ · ∥b∥canp

Specifically, cm = 1 for power-of-two m, and for m = pe11 · · · p
ek
k , if p1 · · · pk ≤ 400

then cm ≤ 8.6 [33].

B.2 The inherent noise bound in the GBFV Scheme

Let ∆ = q/t(X) ∈ Km denote the scaling factor in GBFV. The inherent noise in
the GBFV Scheme [39] can be defined in the same way as for BFV as follows.

Definition 12. Let (c0, c1) ∈ R2
m,q be a ciphertext in the GBFV scheme that

decrypts to m ∈ Rm,t, then its inherent noise vinh ∈ Rm is the polynomial with
the lowest infinity norm such that

c0 + c1 · sk = ⌊∆ ·m⌉+ vinh + aq ∈ Rm (8)

for some polynomial a ∈ Rm.

For correct decryption, we present the following inherent noise bound Bq.

Lemma 3. The ciphertext (c0, c1) ∈ R2
m,q in the GBFV scheme decrypts to

message m correctly if its inherent noise vinh satisfies ∥vinh∥∞ < Bq := q
2·EFm·ht·∥t∥∞

−
1
2 , where ht is the number of non-zero terms in t(X).

Proof. The decryption procedure requires computing⌊
t(X)

q
(c0 + c1 · s)

⌉
mod t(X) =

⌊
t(X)

q
(⌊∆ ·m⌉+ vinh + aq)

⌉
mod t(X)

=

⌊
m+

t(X)

q
(ϵ+ vinh)

⌉
,

where ∥ϵ∥∞ < 1
2 , and the decryption is correct as long as∥∥∥∥ t(X)

q
(ϵ+ vinh)

∥∥∥∥
∞
<

1

2
. (9)
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Let ht is the number of non-zero terms in t(X), then ∥t(X) · (ϵ+ vinh)∥∞ ≤
EFm · ht · ∥t∥∞ · (

1
2 + ∥vinh∥∞), relation (9) is guaranteed by

∥vinh∥∞ <
q

2 · EFm · ht · ∥t∥∞
− 1

2
.

⊓⊔

B.3 Modulus switching

Let ct[m] = (c0, c1) ∈ R2
m,q denote a ciphertext with ciphertext modulus q and

inherent noise vinh, i.e. it satisfies c0 + c1 · sk = ⌊∆ ·m⌉ + vinh + aq for some
a ∈ Rm. Switching ciphertext modulus to q′ amounts to computing

ct′ =
(⌊

q′

q
c0

⌉
,

⌊
q′

q
c1

⌉)
∈ R2

m,q′ .

The derived ciphertext satisfies⌊
q′

q
c0

⌉
+

⌊
q′

q
c1

⌉
· sk =

q′

q
(c0 + c1 · sk) + (ϵ0 + ϵ1 · sk)

=
q′

q
(⌊∆ ·m⌉+ vinh + aq) + (ϵ0 + ϵ1 · sk)

=
q′

q

(q
t
·m+ ϵ3 + vinh + aq

)
+ (ϵ0 + ϵ1 · sk)

=
q′

q

(q
t
·m+ ϵ3 + vinh + aq

)
+ (ϵ0 + ϵ1 · sk)

= ⌊∆′ ·m⌉+ ϵ4 +
q′

q
(ϵ3 + vinh) + (ϵ0 + ϵ1 · sk) + q′ · a

for ∆′ = q′

t and ∥ϵi∥∞ ≤
1
2 , i ∈ [4]. Its inherent noise is

v′inh =
q′

q
· vinh + (ϵ4 +

q′

q
ϵ3 + ϵ0 + ϵ1 · sk), (10)

which can be bounded as ∥v′inh∥∞ ≤
q′

q ∥vinh∥∞+Bms and Bms = 1+ q′

2q +
1
2δm ·

∥sk∥∞. Moreover, for a ternary secret key with hamming weight h, the bound
Bms can be lower into (1+ q′

2q +
1
2EFm ·h) in the worst-case, and (1+ q′

2q +EFm ·

3 ·
√

h
12 ) heuristically.

C The LNP22 Proof System

This section provides an overview of the LNP22 proof system, including the
ABDLOP commitment, commit-and-prove protocols of qudratic relations and
approximate proofs of bounded norms (ANP). The latter is extended into proving
relations in the coefficient encoding in C.5, and parameters for our instantiation
are provided in D.1. For future works, it would be interesting to prove relations
with other encodings, such as the new CLPX-like encoding in [48].
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C.1 Module-SIS, Module-LWE and the ABDLOP commitment
scheme

For some integer k let R denote the ring R2k = Z[X]/
(
Xd + 1

)
where d = 2k−1,

and Rq = R /q R. The ABDLOP commitment scheme [53] is defined over the
ring Rq and relies on the hardness of the Module-SIS (MSIS) problem and the
Module-LWE (MLWE) problem over Rq, as defined below [50].

Definition 13 (MSISκ,m,q,B). Given A←Rκ×mq , the MSISκ,m,q,B problem is to
find z ∈ Rmq such that A · z = 0κ mod q and ∥z∥2 ≤ B.

Definition 14 (MLWEκ,m,q,χ). Given a distribution χ and parameters κ, the
MLWEκ,m,q,χ problem is to distinguish (A,A · s+ e) for A←Rm×κq , secret vector
s←χκ and error vector e←χm, from (A, b)←Rm×κq ×Rmq .

The hardness of MSISκ,m,q,B and MLWEκ,m,q,χ are estimated using SISκ·d,q,B
and LWEκ·d,q,χ in the lattice estimator by Albrecht et al. [2].

The ABDLOP commitment scheme [53]. The ring modulus in ABDLOP is
q =

∏
i qi where qi = 5 mod 8 is a prime and q1 is the smallest factor. Let

σi denote an automorphism in Rq where σi(X) = Xi for odd i. This notation
extends to arbitrary vectors m ∈ Rk element-wise, i.e. σi(m) = (σi (m[j]))1≤j≤k.

In the ABDLOP commitment scheme, the public parameters pp are generated
as

pp = (A1,A2,B)←Rω×m1
q ×Rω×m2

q ×Ru×m2
q .

In order to commit to a small message s1 ∈ Rm1
q where ∥s1∥ ≤ α and an

arbitrarily large message m ∈ Ruq , one samples a small randomness s2←χm2

where χ is a distribution over Rq with bounded infinity norm ν and computes

ABDLOP .Com (pp, (s1,m, s2)) =

[
tA
tB

]
=

[
A1

0

]
· s1 +

[
A2

B

]
· s2 +

[
0
m

]
mod q.

As such, the ABDLOP scheme not only allows the commitment of large messages
m as in the BDLOP commitment [7], but also compresses small messages s1 as
in the Ajtai commitment [1]. The commitment tB of m and tA of s1 are referred
as the BDLOP part and the Ajtai part of ABDLOP, respectively.

Moreover, the commitment does not reveal messages if
([

A2

B

]
,

[
A2

B

]
· s2
)

is indistinguishable from uniform. In other words, if the MLWEm2−(ω+u),ω+u,q,χ
problem is hard, then ABDLOP is computationally hiding.

For the proof of opening, with fixed parameters ξ, η and a power-of-two k,
the challenge space Ch is defined as

Ch =

{
c ∈ Rq : ∥c∥∞ ≤ ξ, σ−1(c) = c and 2k

√
∥c2k∥

1
≤ η

}
,

and it should be exponentially large in the security parameter for soundness
purposes. Its set of differences is denoted as Ch = {c− c′ : c, c′ ∈ Ch and c ̸= c′},
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d ξ η k |C|

64 8 140 32 2129

128 2 59 32 2147

Table 4: Example parameters in [16] to instantiate the challenge space C assum-
ing q1 > 16

and elements in Ch are invertible if ξ < q1
2 . Example parameters for the challenge

space taken from [16] are listed in Table 4.
As in other lattice-based commitment schemes [1,7], the opening algorithm

in ABDLOP is relaxed. For an ABDLOP commitment [tA tB]
⊺, its relaxed opening

with respect to the commitment key ck is a tuple (s1,m, s2, c) ∈ Rm1
q ×Ruq ×Rm2

q ×Ch
that satisfies

ABDLOP .Com (ck, (s1,m, s2)) =

tA
tB


∥cs1∥2 ≤ B1 and ∥cs2∥2 ≤ B2,

where B1 = B1(α) and B2 = B2(ν) are pre-determined constants. Furthermore,
as explained in [53, Lemma 3.1] and in [16, Lemma 5.2], if MSIS

ω,m1+m2,4η
√
B2

1+B
2
2

is hard, then ABDLOP is computationally binding with respect to the relaxed
openings.

C.2 Commit-and-prove of elementary relations

Let G = {g : R2(m1+u)
q → Rq} denote the set of quadratic functions over Rq, i.e.

any g ∈ G can be explicitly written as

g(a) = a⊺G2a+ g1a+ g0, ∀a ∈ R2(m1+u)
q

for some G2 ∈ R2(m1+u)×2(m1+u)
q , g1 ∈ R2(m1+u)

q and g0 ∈ Rq.
Given an ABDLOP commitment (tA, tB) to the message (s1,m) with ran-

domness s2, the commit-and-prove protocol in [53, Figure 8] (together with the
optimization in [53, Section 4.4]) allows one to prove the knowledge of the mes-
sage

s =


s1

m

σ−1(s1)

σ−1(m)

 ∈ R2(m1+u)
q
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such that evaluations of public functions g1, . . . , gN in G at s satisfy

gj(s) = 0 ∈ Rq,∀j ∈ [N ] (11)

and evaluations of public functions G1, . . . , GM in G at s satisfy

#         »

Gj(s)[1] = 0 mod q,∀j ∈ [M ], (12)

where
#         »

Gj(s)[1] denotes the constant term of Gj(s) ∈ Rq. For convenience, this
protocol is denoted as

Π
(2)
eval ((s1,m, s2), σ−1, (g1, . . . , gN ), (G1, . . . , GM )) .

In other words, condition (11) allows proving quadratic relations of committed
messages over Rq, and the vanishing constant condition in (12) allows proving
inner products between coefficient vectors of committed messages over Zq using
the following map T.

Inner product from the T map Given two vectors #»a = (a0, . . . , akd−1),
#»

b =
(b0, . . . , bkd−1) ∈ Zkdq , define the following map

T : Zkdq ×Zkdq −→ Rq

( #»a ,
#»

b )→
k−1∑
i=0

σ−1

d−1∑
j=0

aid+jX
j

 ·
d−1∑
j=0

bid+jX
j

 .

Then the constant coefficient of T( #»a ,
#»

b ) is equal to the inner product of #»a and
#»

b modulo q.

C.3 Approximate range proofs

The approximate range proofs [41,53] allow one to prove smallness of a message
#»w ∈ Zm, with respect to the proof system modulus q. Firstly, the prover com-
putes a projection #»v = R #»w, where R←Bin256×m1 is a random challenge from
the verifier. Note that [53, Lemma 2.8] provides a probabilistic bound for #»v

Pr
R←Bin256×m

1

[
∥ #»v ∥22 > 337β2

]
≤ 2−128,

where β is an upper bound on ∥ #»w∥2. Secondly, by using rejection sampling, the
prover generates a vector #»z = #»v + #»y whose distribution is independent of #»v
and indistinguishable from the masking vector #»y . The standard deviation of
#»y (hence also #»z ) is s = γ∥ #»v ∥2 = γ

√
337β, where γ is a constant defining the

rejection sampling repetition rate. The following lemma shows that if #»z is small,
then the vector #»w is small with high probability.



Blind zkSNARKs for zkDel and vCOED 49

Lemma 4 ([53, Lemma 2.9]). Given q,m, a fixed bound b ≤ q/41m and
#»w ∈ Zmq such that ∥ #»w∥2 ≥ b, then for arbitrary #»y ∈ Z256

q , the following holds

Pr
R←Bin256×m

1

[
∥R #»w + #»y mod q∥2 <

1

2

√
26b

]
< 2−128.

Following the tail bound in Equation (7) for t ≥ 1.64, the verifier check
∥ #»z ∥2 ≤ t

√
256 · s will hold with overwelming probability for a ∥ #»w∥2 ≤ β. By

rewriting this check as

∥ #»z ∥2 ≤ t
√
256 · s = t

√
256 · γ

√
337β

=
1

2

√
26

(
2

√
256

26
tγ
√
337

)
β,

it is clear that the vector #»w is proven to be small with negligible soundness error.
More precisely, if the prover knows a small #»w where ∥ #»w∥2 ≤ β and computes #»z

as described, then the verifier can extract a vector
#  »

w∗ such that
∥∥∥ #  »

w∗
∥∥∥
2
≤ ψ(L2)·β,

assuming ψ(L2) · β < q
41m , where the factor ψ(L2) = 2

√
256
26 tγ

√
337 is called the

slack.
The procedure above can also be applied to generate approximate infinity

norm proofs with slack ψ(∞) = ψ(L2)
√
m. Specifically, consider a prover that

knows #»w ∈ Zmq satisfying ∥ #»w∥∞ ≤ α, then its L2 norm is bounded by
√
mα.

The previous procedure allows the verifier to extract a vector
#  »

w∗ where∥∥∥ #  »

w∗
∥∥∥
∞
≤
∥∥∥ #  »

w∗
∥∥∥
2
≤ ψ(L2) · ∥ #»w∥2 ≤ ψ

(L2)
√
mα,

resulting in a slack ψ(∞) = ψ(L2)
√
m.

C.4 Approximate proofs of bounded norms

In the Approximate Norm bound Proofs (ANP), the prover knows the secret
message (s1,m) ∈ Rm1+u

q which satisfies∥∥∥∥∥∥E
s1
m

+ e

∥∥∥∥∥∥
∞

≤ Be (13)

for public elements E ∈ Rℓe×(m1+u)
q , e ∈ Rℓeq and a public bound Be. After com-

mitting (s1,m) into (tA, tB), the commit-and-prove protocol convinces the ver-
ifier that the prover knows (s1,m) ∈ Rm1+u

q such that OCT ((tA, tB), (s1,m)) =
acc and ∥∥∥∥∥∥E

s1
m

+ e

∥∥∥∥∥∥
∞

≤ ψ(∞) ·Be, (14)
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where the infinity norm slack is ψ(∞) = ψ(L2)
√
dℓe = 2

√
256
26 tγ

√
337
√
dℓe. More-

over, approximate proofs are only complete for bounds Be ≤ q
41(dℓe)3/2ψ(L2) , as

explained in Section C.3.

The protocol. Let Bb←R1×m2
q , By←R256/d×m2

q , s := γ
√
337
√
dℓe ·Be and rej0

denote the optimized bimodal rejection sampling [53]. The protocol

ΠANP ((s1,m, s2), (E, e, Be))

gives an approximate bounded norm proof for u ∈ Rℓeq := E [ s1 m ]
⊤
+ e and

is presented in Figure 7.
Specifically, line 1 samples for a sign b used for bimodal rejection sampling

and line 2 samples a vector y used for masking. In line 3-4, elements b and y are
committed to in the BDLOP part, i.e. the secret messages become

s′ := (s1, (m, b,y)) ,

and dim(s′) = m1+u+1+256/d. The correct computation of #»z in line 8 and that
b ∈ {−1, 1} are proven by calling the Π(2)

eval in line 12 with appropriate public
functions v and V. These public functions are elements of V = {v : R2·dim (s′)

q →
Rq}.

To prove #»z was computed correctly, public quadratic functions Hj ∈ V for
j ∈ [256] are constructed such that their evaluations at (s′, σ−1(s

′)) satisfy

Hj (s
′, σ−1(s

′)) := T
(
b

#»

Rj ,
#»u
)
+ T( #»ej ,

#»y )− #»z [j], j ∈ [256], (15)

where
#»

Rj denote the j-th row of R and #»ej is the j-th unit vector for j ∈ [256].
The construction of Hj ∈ V is detailed later on. Then, #»z was computed correctly
iff the constant term of all equations in (15) are zero modulo q.

Similarly, to prove b ∈ {−1, 1}, public quadratic functions g ∈ V and Jk ∈ V
for k ∈ [d− 1] are constructed such that their evaluations at (s′, σ−1(s′)) satisfy

g (s′, σ−1(s
′)) = (b− 1)(b+ 1) (16)

Jk (s
′, σ−1(s

′)) = T
(

#»

b ,
#   »

Xk
)
, k ∈ [d− 1]. (17)

Then b ∈ {−1, 1} iff Equation (16) gives the zero element in Rq and constant
terms of all equations in (17) are zero modulo q.

Therefore, for line 12, we define v := {g} and V := {(Jk)k∈[d−1] , (Hj)j∈[256]}
as inputs for the subprotocol Π(2)

eval.

The construction of Hj from (15). We follow the construction in [58, Section
6.4.4] to derive quadratic functions Hj ∈ V that satisfy

Hj (s
′, σ−1(s

′)) := T
(
b

#»

Rj ,
#»u
)
+ T( #»ej ,

#»y )− #»z [j], j ∈ [256]. (18)
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Prover Verifier
1 : b←{−1, 1} ⊂ Rq

2 : y←D
256/d
Rq,s

3 : tb = Bbs2 + b

4 : ty = Bys2 + y

5 : tb, ty

6 : R←Bin256×ℓe
1

7 : R

8 : #»z = bR #»u + #»y

9 : If rej0(
#»z , bR #»u , s)

10 : Then continue, else abort

11 :
#»z

12 : Run Π = Π
(2)
eval

(
(s′, s2), σ−1, v,V

)
return acc iff

13 : • ∥ #»z ∥2 ≤ t
√
256s

14 : •Π verifies.

Fig. 7: The protocol ΠANP ((s1,m, s2), (E, e, Be)) that provides an approximate

norm proof for u = E

s1
m

+ e.

Let Ks ∈ R(m1+u)×2·dim(s′)
q , Kb ∈ R1×2·dim(s′)

q and Ky ∈ R256/d×2·dim(s′)
q

denote projection matrices such thats1
m

 = Ks

 s′

σ−1(s
′)


b = Kb

 s′

σ−1(s
′)


y = Ky

 s′

σ−1(s
′)

 .
Let rj ∈ Rℓeq denote a vector of polynomials such that #»rj equals

#»

Rj , the j-th row
of R. Let ej ∈ R256/d

q denote a vector of polynomials such that #»ej equals the j-th
unit vector of dimension 256.
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Then the quadratic function Hj ∈ V can be explicitly written as

Hj(a) = a⊺Gja+ gja+ gj , ∀a ∈ R2(dim(s′))
q

where

Gj = K⊤b · σ−1(rj)⊤ ·E ·Ks

gj = e⊤ · σ−1(rj) ·Kb + σ−1(ej)
⊤Ky

gj = − #»z [j].

C.5 Our vectorized description of the approximate norm bound
proof in LNP22

In our vectorized version of the approximate norm bound proof (vec-ANP), the
prover knows the secret message (s1,m) ∈ Rm1+u

q which satisfies∥∥∥∥∥∥W
 #»s1

#»m

+w

∥∥∥∥∥∥
∞

≤ Bw, (19)

for public elements W ∈ Zℓw ×(m1+u)d
q , w ∈ Zℓwq and a public bound Bw ≤

q

41ℓ
3/2
w ψ(L2)

. After committing (s1,m) into (tA, tB), the commit-and-prove pro-

tocol convinces the verifier that the prover knows (s1,m) ∈ Rm1+u
q such that

OCT ((tA, tB), (s1,m)) = acc and∥∥∥∥∥∥W
 #»s1

#»m

+w

∥∥∥∥∥∥
∞

≤ ψ(∞) ·Bw, (20)

where the slack is ψ(∞) = ψ(L2)
√
ℓw = 2

√
256
26 tγ

√
337
√
ℓw.

In contrast, ANP in Appendix C.4, proves the knowledge of secret messages
(s1,m) ∈ Rm1+u

q such that ∥∥∥∥∥∥E
s1
m

+ e

∥∥∥∥∥∥ ≤ Be, (21)

for public bound Be and public elements E ∈ Rℓe×(m1+u)
q , e ∈ Rℓeq with slack

ψ(∞). Note that relation (21) is a special case of the relation (19) by taking
ℓw = ℓe ·d and taking W and w as concatenations of rotation matrices for
elements in E and e, respectively.

In the vec-ANP, we define #»u := W [ #»s1
#»m ]
⊤
+w ∈ Zℓwq . The approximate

norm proof for ∥ #»u∥∞ ≤ Bw is denoted as

Πvec-ANP ((s1,m, s2), (W,w, Bw)) ,

which contains the same steps as ANP in Figure 7, except that the standard
deviation in line 2 is s := γ

√
337
√
ℓw · Bw, the projection matrix R in line 6 is

R←Bin256×ℓw1 , and the quadratic functions Hj as inputs for the subprotocol are
derived differently.
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The construction of Hj in vec-ANP To derive quadratic functions Hj ∈ V
that satisfy

Hj (s
′, σ−1(s

′)) := T
(
b

#»

Rj ,
#»u
)
+ T( #»ej ,

#»y )− #»z [j], j ∈ [256], (22)

we define Ks, Kb and Ky as in Appendix C.4.
Let rj

(W ) ∈ R(m1+u)
q denote a vector of polynomials such that

#         »

rj
(W ) equals

#»

Rj ·W ∈ Zd(m1+u)
q , and r(w)

j denote
#»

Rj ·w ∈ Zq.
Then the quadratic function Hj ∈ P can be explicitly written as

Hj(a) = a⊺Gja+ gja+ gj , ∀a ∈ R2(dim(s′))
q

where

Gj = K⊺
b · σ−1(rj

(W ))⊺ ·Ks

gj = r
(w)
j ·Kb + σ−1(ej)

⊺ ·Ky

gj = − #»z [j].

D Our instantiation of the PoD protocol

Let us first discuss how we estimate the amount of ciphertexts to decrypt. This
is based on the following lemma.

Lemma 5. For a set B constructed by taking m random values (with repetition)
from a set A, it holds that fm(n) := E[|B|] = n(1− (1− 1/n)m) with n = |A|.

Now notice that for a FRI query phase that is repeated ℓ times over a domain
|L| that is packed into vectors of size P , we can compute the expected number
of values to open as

1 + 2 · 5 · fℓ
(
|L|
2P

)
+ 2 ·

log2(
|L|
P )∑

i=2

fℓ

(
|L|
2iP

)
since for each of the ℓ queries, we are taking a random evaluation point in
half of each evaluation domain and, in Fractal, opening to the first evaluation
domain requires opening to 5 polynomials at the same evaluation point. For the
parameters discussed in Section 6, namely P = 16, this results in on average
2919 ciphertexts to open. For reference, in the non-blind setting, i.e. P = 1, one
would open to on average 3728 values.

Now let us justify the parameters chosen for the PoD implementation in
Section 6. The ciphertexts obtained by computing Fractal blindly have modulus
q = 398 bits and contain 318-bit noise, as demonstrated in Table 1. To achieve
100-bit security during ring switching, we first apply modulus switching to q′′ =
97 bits, which reduces noises to 17 bits. Then we ringswitch into dimension
n′′ = 3072, which means each ciphertext holds 16 Fp2 elements. This is the
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form that the ciphertexts are committed to in BCS compilation. Using Fiat-
Shamir, the prover computes the evaluation points for the FRI query phase
which determine the masks described in Section 5. Notice that since masking is
deterministic, we can perform the linear combinations from Figure 6 along with
the masking. This results in ciphertexts with 45-bit noise.

To make the PoD protocol less costly, the resulting ciphertext is ringswitched
further to dimension n′ = 1536 for PoD. Before this ringswitching, we need
to perform an homomorphic trace operation to aggregate messages of the 16
relevant slots in dimension n′′ = 3072 into the 8 remaining slots, and a modulus
switching to gaurantee the 100-bit security. After these two steps, the ciphertext
modulus is q′ ≈ 48 bits, where q′ is compatible with the requirements of the
LNP22 proof system; and the noise is Bms ≤ 6.2 bits for a ternary secret key
with Hamming weight 140. Finally, we switch the ring further to n′ = 1536,
which increases the noise to 14.2 bits. Since the resulting noise is below the
threshold BPoD = 16.9 bits in Appendix D.1, the final ciphertext-plaintext pair
can be proven from our instantiation of the PoD protocol.

D.1 Parameters for our instantiation of the PoD

parameters description value
log q′ # bits of ciphertext and proof system modulus 48

n′ GBFV ring dimension after ring switch 1536

r average number of ciphertext-plaintext pairs 2919

BSZ
PoD noise bound 216.9

d proof ring dimension 64

ω height of A1, A2 in ABDLOP 11

m1 length of the Ajtai message s1 24

u length of the BDLOP message m 0

λ 2·(# of gj ∈ Rd,q′ for boosting soundness) 4

m2 length of the randomness s2 in ABDLOP 43

γ rejection sampling constant for ΠANP 5

sANP standard deviation for ΠANP 614147325

s1 standard deviation for Π
(2)
eval 1587.2

s2 standard deviation for Π
(2)
eval 50790.4

ξ max. coeff. of a challenge in Ch 8

D number of low-order bits cut from tA 8

Table 5: Parameters for our instantiation of the proof of decryption protocol
from Figure 6 with 100-bit security.
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