
Sunfish: Reading Ledgers with Sparse Nodes

Giulia Scaffino1, Karl Wüst2, Deepak Maram2,
Alberto Sonnino2,3, and Lefteris Kokoris-Kogias2

1 TU Wien & Common Prefix & CDL-BOT
2 Mysten Labs

3 University College of London (UCL)

Abstract. The increased throughput offered by modern blockchains,
such as Sui, Aptos, and Solana, enables processing thousands of trans-
actions per second, but it also introduces higher costs for decentralized
application (dApp) developers who need to track and verify changes in
the state of their application. This is true because dApp developers run
full nodes, which download and re-execute every transaction to track the
global state of the chain. However, this becomes prohibitively expensive
for high-throughput chains due to high bandwidth, computational, and
storage requirements. A common alternative is to use light nodes. How-
ever, light nodes only verify the inclusion of a set of transactions and
have no guarantees that the set is complete, i.e., that includes all rele-
vant transactions. Under a dishonest majority, light nodes can also be
tricked into accepting invalid transactions.
To bridge the gap between full and light nodes, we propose and formalize
a new type of blockchain node: the sparse node. A sparse node tracks
only a subset of the blockchain’s state: it verifies that the received set
of transactions touching the substate is complete, and re-executes those
transactions to assess their validity. A sparse node retains important
security properties even under adversarial majorities, and requires an
amount of resources proportional to the number of transactions in the
substate and to the size of the substate itself.
We further present Sunfish, an instantiation of a sparse node protocol.
Our analysis and evaluation show that Sunfish reduces the bandwidth
consumption of real blockchain applications by several orders of magni-
tude when compared to a full node.

1 Introduction

In recent years, the landscape of blockchain technology has rapidly evolved
thanks to the important advancements in the area of consensus and layer-2
solutions, but also to the variety of decentralized applications (dApps) that run
on-chain and, often, cross-chain. Modern blockchains, such as Sui, Aptos, and
Solana, scale up to thousands of transactions per second, while earlier-generation
chains, such as Bitcoin and Ethereum, only handle a throughput in the single or
double digits. This increased capacity enhances the user experience and allows
for onboarding hundreds of thousands of new users and dApps. Still, it also intro-
duces a new, important challenge: dApp developers who want to verifiably and

2 Scaffino, Wüst, Maram, Sonnino, Kokoris-Kogias

trustlessly track the state of their application face higher costs. Traditionally,
dApp developers run full nodes to listen to events, follow changes in the state
of their application, and keep audit proofs. Full nodes receive and re-execute
all blockchain transactions, and their bandwidth, computational, and storage
costs become prohibitively expensive for high-throughput blockchains. As a re-
sult, developers resort to querying third-party full node operators and accepting
their responses blindly. This behavior is questionable, as it fully relies on the
honesty of the full node operator and negates the trust benefits a decentralized
blockchain provides. As blockchain throughput increases with further advances
and usage, this problem is only getting worse: fewer full nodes will be operated
by independent entities as, at the moment, there are no incentives for providing
this costly infrastructure.

An alternative approach to operating full nodes is to run light nodes [1,2,3,4],
with the Bitcoin Simplified Payment Verification client [5] being an example.
Unfortunately, light nodes are insufficient to verifiably track the state of an
application: they only verify the inclusion of a set of desired transactions but
have no guarantees over whether this set is complete, e.g., if it includes all
transactions reading from or writing to the state of a particular dApp. This can
lead to stale and, over time, potentially inconsistent results if the light node
connects to a full node that withholds data, either inadvertently or maliciously.

A light node is also problematic in case the security of a blockchain is com-
promised: since it only verifies transaction inclusion, a light node can be tricked
into accepting invalid transactions. In contrast, a full node re-executes all trans-
actions and, therefore, always maintains a valid local state, regardless of the
number of adversarial validators. The lack of validity guarantees for light nodes
is troublesome, as users and dApp operators mainly care about the security of
their dApps and less about the security of the blockchain as a whole: If the
underlying chain is compromised, e.g., there are forks, dApp operators that run
their own full nodes can choose one of the forks, be sure that there are no validity
violations or lost updates, and migrate the dApp state to another blockchain.

In this paper, we introduce sparse nodes, a new type of blockchain node that
sits between light and full nodes. Sparse nodes follow a subset of the blockchain
state by retrieving, verifying inclusion of, and re-executing only the set of trans-
actions that read from or write to, e.g., the state of a specific dApp or a user.
We define sparse nodes formally through a predicate, which, when applied to
the global state, identifies a subset thereof called the sparse state. Sparse nodes
verify completeness and validity of the set of received transactions, guaranteeing
that their local sparse state is always valid. Table 1 compares the security prop-
erties of sparse nodes with those of full and light nodes. These properties hold
even under adversarial majorities, and they are the following: (i) sparse validity,
which means that the node will only accept transactions that are valid with re-
spect to its local current sparse state; (ii) fork consistency [6,7,8], which means
that two sparse nodes with the same predicate and reading from the same fork
will output the same sparse state. Finally, (iii) verifiable completeness, which

Sunfish: Reading Ledgers with Sparse Nodes 3

means that a sparse node can verify if it received all the transactions that touch
its sparse state.

Table 1: Properties of full, sparse, and light nodes under adversarial majorities.
Validity Fork Consistency Completeness

Full Node Yes Yes Per Fork
Sparse Node Sparse Yes Per Fork
Light Node No No No

The cost of running a sparse node is roughly proportional to the number
of transactions touching its sparse state, thus isolating the cost of running a
sparse node from the external workload of other dApps. This makes it feasible
again for dApp developers to download, verify, execute, and store transactions
on the dApp sparse state, thus increasing the robustness of applications in high-
throughput blockchains. Sparse nodes can be run by users or operators that wish
to monitor the state of an application and listen to the events: notable examples
are bridge operators, rollup sequencers and watchers, payment channel users and
watchtowers, re-staking and remote staking collectives [9,10], user wallets, DAO
token holders, and many more. Sparse nodes can additionally function as read
caches or replicas, facilitating the separation of read and write operations during
scaling. This enables the dynamic deployment of sparse nodes to increase redun-
dancy and read bandwidth for popular dApps, reducing the need for more full
nodes and thereby saving network bandwidth and disk space. While sparse nodes
offer more marked benefits when deployed for high-throughput blockchains, their
deployment on low-throughput chains such as Ethereum, results in lower band-
width, computational, and storage consumption when compared to full nodes.
Contributions. After presenting the model and assumptions (Section 2), we
introduce and formalize, for the first time, the concept of a sparse node, and
we define the security guarantees it provides under both honest and dishon-
est majorities (Section 3). We focus our analysis on quorum-based blockchains
that are secure in non synchronous networks, as this is the setting in which
most blockchains operate. Our formalization is, nevertheless, easily extendable
to other settings, e.g., Nakamoto-style consensus chains.

Then, we present Sunfish (Section 4), the first secure protocol for sparse
nodes. We describe two instances of Sunfish that differ in the choice of data
structures to offer different trade-offs: Sunfish-C uses counters and minimizes val-
idator overhead, Sunfish-HC uses trees and hash chains and optimizes the reads
(proof size). Afterward, we showcase the required resources for both Sunfish-C
and Sunfish-HC (Section 5) based on real-world usage data of two dApps: a
blockchain bridge and a wallet user. We estimate bandwidth reductions of 10x
and 108x for the bridge and wallet, respectively, when compared to running a
full node (improvement is inversely proportional to how frequently the app in-
teracts with the chain). Finally, we compare sparse nodes with related work and
conclude with a discussion of the impact of our work along with new research
directions (Section 6).

4 Scaffino, Wüst, Maram, Sonnino, Kokoris-Kogias

2 Preliminaries and Models

Notation. The curly bracket notation {·} refers to sets, whereas the square
bracket notation [·] refers to ordered sequences. The symbols A ⪯ B and A ≺ E
indicate that A is a prefix of B and a strict prefix of E. The notation |D| denotes
the size of the sequence if D is a sequence, or the size of a set if D is a set.
Ledger Model. We model a ledger L as the output of a Byzantine fault tolerant
state machine replication (BFT-SMR) protocol [11,12,13]. State machines are
deterministic machines that, at all times, store the state of the system and,
upon receiving a set of inputs, they output a new, updated state by evaluating
the inputs over a state transition function δ. A state transition is valid if δ
executes without errors. In a network of mutually distrusting nodes, each running
a replica of the same state machine, a BFT-SMR protocol ensures that all correct
nodes maintain a consistent state, even in the presence of a subset of adversarial
nodes. Consider a BFT-SMR protocol with n = 3f + 1 nodes of which f are
controlled by the adversary. Upon receiving on input a new transaction tx from
the environment, a correct node moves from state Si to Si+1 = δ(Si, tx) only
if δ(Si, tx) is a valid state transition and if a quorum of at least 2f + 1 nodes
have acknowledged the transition. Consider an empty ledger L0 with genesis
state S0. To ascertain the i-th state Si of a ledger Li = [tx1, . . . , txi], with
i > 0, transactions are applied as follows: Si := δ(. . . δ(δ(S0, tx1), tx2) . . . , txi).
As shorthand notation, we use Si := δ(S0,Li) to denote successive application
of all transactions tx ∈ Li given an initial state S0. The definitions in this paper
also apply to longest chain protocols [14,15,16] by considering the stable ledger.

Let K and V be sets of valid keys and valid values, respectively. We model
the state of a node as a key-value store, i.e., a collection of (k, v), with k ∈ K
and v ∈ V . k is a unique identifier (e.g., account or contract address) used to
reference a specific value in the store, whereas v is the data (e.g., account balance
or contract state) associated with a particular key. A transaction reads from an
input state Si and writes to an output state Si+1 by consuming some state
elements (k, v) in Si and generating new ones. We refer to the values that are
read and written by a transaction as read set and write set, respectively. This
is to clearly distinguish it from the input and output of a transaction, which, in
some chains like Ethereum [17], is the whole state of the ledger.
Adversarial Model. Since sparse nodes retain interesting security properties
under dishonest majority, we follow [18] and consider an adversary whose corrup-
tion level varies over time. The adversarial resilience for synchronous protocols is
f < n/2, while for asynchronous and partially synchronous protocols is f < n/3.
We focus on asynchronous and partially synchronous protocols. When f < n/3,
a ledger fulfills the following properties:

Definition 1 (Ledger Validity). A ledger L is valid if, for any round r,
Sr+1 = δ(S0,Lr+1) executes errorless.

Definition 2 (Ledger Safety). At any round s, r ≤ s, any two correct nodes
i, j output a ledger L such that Li

r ⪯ Lj
s.

Sunfish: Reading Ledgers with Sparse Nodes 5

Definition 3 (Ledger Liveness). Any valid transaction that is provided to a
correct node will eventually be included in the ledger.

In a round with n/3 ≤ f ≤ 2n/3, the adversary can break liveness by pre-
venting correct nodes from creating a quorum, and safety by creating quorums
over conflicting states (forks) of the ledger. However, at least one correct node
must have participated in the quorum and each fork remains valid.

For f > 2n/3, the adversary can single-handedly violate validity, safety and
liveness of the ledger by including invalid state transitions, creating forks, or
stop appending transactions to the ledger.
Prover-Verifier Model. A sparse node protocol is an interactive protocol
between a sparse node, acting as verifier V , and a non-empty set P of provers.
We assume V is honest and adheres to the correct protocol execution. Provers
can be adversarial and execute any probabilistic polynomial-time algorithm.

Light nodes operate under the assumption that they connect to multiple
full node-provers, with at least one of them being honest (existential honesty
assumption). In Sunfish, we adopt a different model, motivated in Section 4.1:
we let our sparse node connect to a single validator-prover, only trusted for
liveness.
Cryptographic Assumptions. We assume collision resistant hash functions.
Network Assumptions. We consider protocols whose execution proceed in
discrete rounds r = {0, 1, 2, . . . }. We inherit the classic network assumption of a
full node, i.e., the sparse node can receive transactions by either connecting to
full nodes or validators, or by joining the gossip network.

3 Sparse Nodes

A full node downloads, validates, and re-executes all transactions, maintaining a
complete copy of the ledger and storing the entire state. A sparse node, instead,
downloads, validates, and re-executes only a specific set of transactions, main-
taining a partial copy of the ledger, named sparse ledger, and storing a subset
of the global state, named sparse state. Transactions in the sparse ledger share
a common property: for instance, they all read from or write to the state of the
same contract or of the same address. The sparse ledger output by a sparse node
must be both complete and sparsely valid, which means that it must include all
transactions in the ledger with the desired property and these transactions must
correctly execute when applied to the node’s sparse state. Otherwise, the sparse
node outputs an error.

3.1 Definitions

Consider a ledger L. At any round r, the state Sr of Lr is the set of (k, v) s.t.
∀(k, v) ∈ Sr : k ∈ K, v ∈ V .

Definition 4 (State Predicate Xs). A state predicate Xs is a function Xs(k) :
K → {1, 0}.

6 Scaffino, Wüst, Maram, Sonnino, Kokoris-Kogias

A state predicate is valid for a ledger L, if it is supported by the ledger protocol.
A sparse state Ŝ ⊆ S is the subset of the state elements (k, v) ∈ S s.t. Xs(k) = 1.

Definition 5 (Sparse State Ŝ). At any round r, Ŝr := {(k, v)|(k, v) ∈ Sr ∧
Xs(k)} is the sparse state identified by Xs.

Since Sr changes any time a new transaction is appended to the ledger, at every
new append Xs must be evaluated on all updated and added elements (k, v) ∈ Sr.

We now define the sparse state transition δ̂, the function that allows to move
from Ŝi to Ŝi+1. Let us look at the inputs to δ̂. The standard transition function
δ of the ledger takes as inputs the global state and a transaction; a sparse node,
however, does not have the global state, but just the sparse state. If we let δ̂
take as input the sparse state and a transaction, δ̂ cannot properly execute,
as the transaction might read from state elements (e.g., gas objects, contract
bytecode) not in the sparse state. Let R(tx),W(tx) be the read and write sets
of a transaction tx, respectively. Now, we solve this by letting δ̂ take Ŝ and
(R(tx), tx) as inputs.

Some ledgers have transactions that directly include a commitment to the
values in their read set, e.g., in Bitcoin is the hash of the transaction holding
the unspent output. Other ledgers, e.g., Ethereum, have transactions that spec-
ify the keys of the state elements they read from (e.g., account addresses or
contract storage slots), but the actual values associated with those keys (e.g.,
account balances, contract storage values) are not included nor committed in
the transaction itself. This way of interacting with the global state is known
as access-by-key. To define δ̂ for access-by-key chains, we therefore need to as-
sume that any transaction includes a commitment to the values in its read set
or, alternatively, being δ̂ deterministic, a commitment to the values in its write
set.4 In this way, even if a transaction reads from state elements external to the
sparse state, a sparse node can verify the values v provided by an untrusted
prover against the commitment and, after assessing their correctness, it can ap-
ply δ̂ over the values. In the following, to ease notation, we will omit the data
and metadata necessary to open the commitment, and, w.l.o.g., assume that the
commitment is to the read set of the transaction.

Definition 6 (Sparse State Transition δ̂ (aka. Sparse Execution)). At
any round r, on input Ŝr and (R(tx), tx), a sparse state transition function δ̂

outputs a sparse state Ŝr+1 = δ̂(Ŝr, (R(tx), tx)) by executing the following steps:

1. It computes R̂r = Ŝr ∪R(tx).
2. It checks that ∀(k, v) ∈ R̂r s.t. Xs(k) = 1, (k, v) ∈ Ŝr.
3. It checks that ∀(k, v) ∈ R(tx), (k, v) is in the commitment in tx.
4. It executes δ(R̂r, tx) assuming that ∀(k, v) ∈ R̂r s.t. Xs(k) = 0, (k, v) ∈ Sr.
5. It outputs Ŝr+1 computed by taking the result of δ(R̂r, tx) and removing all

(k, v) s.t. Xs(k) = 0.
4In many blockchains, e.g. Ethereum, such commitments are provided in blocks

through a commitment to a state tree.

Sunfish: Reading Ledgers with Sparse Nodes 7

If any of the checks fail, or if δ fails, output error.

Informally, δ̂ checks that all elements in R (tx) s.t. Xs(k) = 1 are valid and that
all values in the read set of tx are in the commitment. Then, on input R̂r and
tx, δ̂ executes the transition function δ of the ledger assuming that all the state
elements in R̂r s.t. Xs(k) = 0 are valid. Finally, δ̂ outputs the result of δ pruned
by all the elements for which Xs(k) = 0.

We highlight that while the standard execution of δ fails if any state element
in R̂r s.t. Xs(k) = 0 is not in the global state Sr of the ledger, δ̂ assumes that
all elements in R̂r s.t. Xs(k) = 0 are in Sr and therefore it does not fail. The
definition above can be generalized to a sequence of transactions by applying δ̂
sequentially: Ŝ2 = δ̂(δ̂(Ŝ0, (R(tx1), tx1)), (R(tx2), tx2)). As a shorthand notation
for δ̂, we consider the read set as part of the transactions: Ŝ2 = δ̂(δ̂(Ŝ0, [tx1, tx2])).

From a state predicate Xs we now derive a transaction predicate Xt which,
on input a transaction tx, it outputs 1 if at least one of the elements in R(tx) or
W(tx) yields Xs(k) = 1.

Definition 7 (Transaction Predicate Xt). Let Xs be a state predicate. On
input a transaction tx, a transaction predicate Xt outputs 1 if ∃(k, v) ∈ (R ∪
W)(tx) s.t. Xs(k) = 1. Else, it outputs 0.

We define a sparse ledger as the sequence of transactions in L s.t. Xt(tx) = 1.

Definition 8 (Sparse Ledger L̂). Let L be a ledger. At any round r, L̂r :=
[tx ∈ Lr|Xt(tx)] is the sparse ledger identified by Xt.

We observe that a full node is a sparse node for which, at any round r, Ŝr = Sr

and L̂r = Lr. By definition, L̂ is complete with respect to L.

Definition 9 (Completeness). Consider a ledger L and a transaction predi-
cate Xt. A sparse ledger L̂ is complete with respect to L if, at any round r, it
does not exist a transaction tx s.t. Xt(tx) ∧ tx /∈ L̂r ∧ tx ∈ Lr.

We now state another interesting property of a sparse ledger, namely sparse
validity. Let L̂r \ L̂r−1 denote the transactions in L̂r but not in L̂r−1.

Definition 10 (Sparse Validity). A sparse ledger L̂r is valid if, for any round
r, δ̂(Ŝr−1, L̂r \ L̂r−1) executes errorless.

A ledger for which sparse validity holds is termed sparsely valid ledger or a
valid sparse ledger. We note that sparse validity follows from sparse execution
and it is weaker than validity.

The above definitions are general and apply to different flavours of sparse
states. For instance, a sparse state can only include the state elements identifying
the coins owned by a particular address, the balance maintained by a set of
addresses, the state of a specific contract or, as discussed in Section 3.4, the
events emitted by a contract. The flavours of sparse states that can be defined
depend on the variety of state predicates the ledger supports; this, in turn,
depends on the availability of authenticated data structures and commitments
for addresses, accounts, or contracts.

8 Scaffino, Wüst, Maram, Sonnino, Kokoris-Kogias

3.2 Sparse Node Security

We define sparse node security under the adversarial model defined in Section 2.
Consider an adversary f ≤ 2n/3.

Definition 11 (Sparse Node Security, f ≤ 2n/3). When f ≤ 2n/3, a
sparse node protocol Π(P, V) is secure if, at any round r, V outputs (L̂r, Ŝr)
such that L̂r is complete with respect to Lr and sparsely valid with respect to its
previous outputs (if any), or it outputs an error.

A sparse node fulfilling Definition 11 is secure. One can define a custom error
handling : for instance, if an update to L̂ leads to an incomplete sparse ledger, the
node can be instructed to connect to a different set P of provers and continue.
Similarly, if an update to L̂ leads to an sparsely invalid L̂, the node can be
instructed to terminate, deeming the security of L compromised. We note that,
in the absence of a byzantine quorum, a sparse node outputs a valid L̂.

In Appendix A, we prove that a secure sparse nodes i fulfill the future self-
consistency (defined in Lemma 2) and the fork consistency properties.

Lemma 1 (Fork Consistency, f ≤ 2n/3). For any rounds r and r′ ≤ r,
any two secure sparse nodes i, j reading from the same fork of L output sparse
ledgers s.t. L̂r′

i ⪯ L̂r
j and sparse states s.t. Ŝr

j = δ̂(Ŝr′

i , L̂r
j \ L̂r′

i), if none of them
outputs an error.

As the name suggests, fork consistency is a per-fork property. In this paper, we
do not discuss fork detection, but synchronous gossip techniques are shown to
solve this problem [19,7,8].

Consider now an adversary f > 2n/3. In this setting, any security notion on L
is compromised and any notion of completeness is meaningless. However, a sparse
node still outputs a sparse ledger that is sparsely valid (and self-consistent).

Definition 12 (Sparse Node Security, f > 2n/3). When f > 2n/3, a
sparse node protocol Π(P, V) is secure if, at any round r, V outputs (L̂r, Ŝr)
such that L̂r is sparsely valid with respect to its previous outputs (if any), or it
outputs an error.

3.3 Continuous, Intermittent, and On-Demand Sparse Nodes

Sparse nodes can have various operating modes that differ in the extent of com-
pleteness. Sparse validity is unconditional in all modes.

A continuous sparse node is always online and is immediately notified when
a relevant transaction (Xt(tx) = 1) gets appended to the ledger. Assuming that
at least one node it is connected to is live, a continuous sparse node is complete
at all times.5 This is the primary operating mode we consider in this work.

5We can further categorize based on how quickly a sparse node is notified, e.g., as
soon as a transaction gets added to a block or as soon as it gets finalized (which is
consensus-specific and may be earlier). We leave this exploration for future work.

Sunfish: Reading Ledgers with Sparse Nodes 9

A header node is also always online but reads all block headers (similarly
to SPV nodes) irrespective of whether a relevant transaction is in the block.
This mode offers the benefit that liveness failures are immediately detectable
(assuming blocks are produced at a known rate), although at the cost of increased
resource consumption.

An intermittent sparse node alternates between wake and sleep periods, ei-
ther with some periodicity or at random. The sparse ledger of an intermittent
node is only complete up to the most recent wake period, a property we call
prefix completeness. Such a node only exhibits completeness when awake.

An on-demand sparse node is a node that wakes up, stays awake for the time
it takes to get the data, and then falls asleep forever. This node is only interested
in a single snapshot of a complete and valid sparse ledger and its state.

3.4 Event-Based Sparse Node

A typical way to read blockchains is to listen to events emitted by transactions
that call a smart contract. Blockchains exhibit more structure than a ledger, and
events are stored as part of the transaction’s metadata, called transaction logs.
Importantly, they are not stored in the state of the chain. Events inform about
changes in the state of a contract or about calls to specific functions. At present,
most applications developers or operators run full nodes to listen to specific logs
generated during execution.

In the spectrum between full and light nodes, a special type of sparse node is
an event node, i.e., a node that only reads specific events. An event node is more
lightweight than a sparse node: it has no sparse ledger and no sparse execution,
as events cannot be executed. Its sparse state is an append-only key-value store
whose elements (k, v) are the events of interest emitted. Completeness is now a
property of the sparse state: Ŝr is complete w.r.t. Lr if, at any round r, ∄(k, v)
s.t. Xs(k) = 1 ∧ v /∈ Ŝr ∧ v ∈ Lr .

It follows that an event node has weaker security than a sparse node, as there
is no notion of sparse validity. An event node either outputs a complete sparse
state or outputs an error. In the remainder of the paper, we will focus on sparse
nodes as defined in Section 3.1 and Section 3.2, as they are more complex. In
Section 5, besides sparse nodes, we evaluate event nodes, showing their efficiency.

3.5 Sparse Node Resources
Table 2: Normalized resources
for a full, sparse, and light node.

Norm. Res.
Full Node O(|L|+ |S|)

Sparse Node O(η|L̂|+ |Ŝ|)
Light Node O(1)

A sparse node requires bandwidth, computa-
tional power, and storage for downloading,
validating, and storing transactions as well
as storing the sparse state. These resources
are proportional to the number of transactions
in L̂ and to the size of Ŝ. In ledgers using
commitments with non-constant-sized open-
ings (e.g., Merkle trees), a small multiplying factor η appears next to |L̂|, pro-
portional to the opening sizes.

10 Scaffino, Wüst, Maram, Sonnino, Kokoris-Kogias

On top of this, like light and full nodes, sparse nodes also need to receive
regular updates about consensus parameters, e.g., validators in the current com-
mittee. This requires expending O(λ|L|) resources where λ captures the rate of
committee changes. For most existing PoS chains, these changes occur rarely,
e.g., once a day, so λ is extremely small. Therefore, in this work, we omit it from
resource usage for all types of nodes.6

Table 2 compares the resources consumed by full, sparse, and light nodes
excluding the resources expended to verify committee changes. We assume a
constant upper bound on the computation associated with a transaction.

Definition 13 (Sparse Node Resources). The bandwidth, computational,
and storage resources consumed by a sparse node are O(η|L̂|+ |Ŝ|).

Note that the above refers to both intermittent, continuous, and on-demand
sparse nodes. The complexity for header nodes is in-between the one of a sparse
and of a full node, i.e., O(η|L|+ |Ŝ|), where |L| appears because all headers are
read.

4 Sunfish: A Protocol for Sparse Nodes

While a ledger outputs a partial order of transactions, a blockchain forces trans-
actions in a total order to have more structure and enable, e.g., efficient reads. To
describe Sunfish, we leverage a blockchain that is enhanced with commitments
to allow for efficient reads.

4.1 Design Choices

Consider a sparse node that wants to receive information about all historical
transactions that read from or write to a sparse state defined by a state predi-
cate Xs. Currently, a sparse node would connect to a large set P of full nodes
(provers), so that at least one of them can be assumed honest and, therefore,
be sure it will receive all relevant transactions. The sparse node will then wait
until a timeout to get the responses from as many provers as possible and adopt
the response carrying the largest number of transactions, without the ability to
verify completeness other than by trusting the existential honesty assumption.

Besides the non-verifiability of completeness, connecting to multiple full nodes
comes with additional disadvantages: (i) the communication and computation of
the sparse node is proportional to the number of provers; (ii) the time it takes the
sparse node to synchronize with the ledger is bottlenecked by the synchroniza-
tion time of full nodes - interestingly, even a low throughput chain like Ethereum
has roughly 1/3 of its full nodes constantly out-of-sync [23]; (iii) finally, as the
resource requirements for operating a full node increase proportionally to the

6For sparse nodes that sync very rarely or only once, committee change updates
can be further compressed using Succinct Zero-Knowledge Proofs [20,21,22].

Sunfish: Reading Ledgers with Sparse Nodes 11

size and/or the throughput of the ledger, the initial existential honesty assump-
tion becomes less realistic as the number of public full nodes reduces, especially
for high-throughput blockchains.

If we require the sparse node to connect to validators, under existential hon-
esty, the node would need to connect to at least f + 1 validators. Instead, in
Sunfish, we want to minimize bandwidth requirements for the sparse node and
reduce the communication load on validators, thus our sparse node connects to a
single validator, only trusted for liveness. In case this validator does not respond
or stops responding, the sparse node can connect to a different one, until it finds
a validator that is live. To prevent a malicious validator from withholding trans-
actions and remain undetected, we equip the sparse node with a mechanism to
verify completeness.

4.2 Sunfish Data Structures for Verifying Completeness

To verify completeness, in Sunfish, we present two distinct authenticated data
structures (counters and hash chains) that achieve different trade-offs.

Sunfish-C. A sparse node can verify completeness by having knowledge of the
total number of transactions in the ledger that touch its sparse state.

Consider validators maintaining a global counter ctrG for any sparse state
whose predicate is supported by the ledger. The global counter is initialized at
0 at genesis and incremented by 1 every time a new transaction tx s.t. Xt(tx)
= 1 is added to the ledger. One option would be to have validators building a
Merkle tree with all the counters ctrG, and include the Merkle roots in every
block header; unfortunately, this comes with the unpractical cost of having val-
idators maintaining a massive tree and updating it at every block. Alternatively,
validators could maintain a local counter ctrL for any sparse state whose predi-
cate is supported by the ledger, with ctrL initialized at 0 at every new block and
incremented by 1 every time a transaction tx s.t. Xt(tx) = 1 is added to the
block. For each new block, validators construct a Merkle tree with the non-zero
local counters for the block and commit this tree within the block header. Since
the number of transactions in a block is rather small, it is feasible for validators
to handle these trees; however, to know the total number of transactions in the
sparse state, a sparse node needs to download and check all block headers (it
needs to necessarily be a header node).

While the first approach commits to the global state of counters ctrG, the
second approach commits to the local, per-block state of counters ctrL. Towards
our final data structure, we get the best of both worlds by combining global and
local counters, but without committing to the global state of counters. Instead,
we periodically and deterministically include in the local per-block tree a subset
of global counters, to ease bootstrapping and securely enable other operating
modes (continuous, intermittent, on-demand). Let each sparse state Ŝ supported
by the chain have a unique identifier idŜ.

Sunfish-C requires validators building a per-block Merkle tree as follows: (i)
the leaves of the tree are tuples (idŜ, ctrG, ctrL) lexicographically sorted by idŜ,

12 Scaffino, Wüst, Maram, Sonnino, Kokoris-Kogias

(ii) the tree has one leaf for each sparse states with ctrL ̸= 0, and (iii) the tree has
one leaf for each sparse states whose idŜ, given on input to a function ψ along
with the height h of the block, yields 0. We require ψ to be a deterministic,
predictable, and periodic function: e.g., ψ(idŜ, h) := (idŜ + h)%N for a period
N . The root of the tree is then included in the block header. Thus, block headers
commit to the counters updated in the block and, periodically, to a subset of
global counters as well.

With this data structure, we get several advantages. A sparse node can verify
if its sparse state with identifier idŜ has a leaf in the tree of a block (inclusion
proof) and, if this is the case, it checks completeness by reading the correspon-
dent counters. A sparse node can also verify if its sparse state lacks a leaf in the
tree because the tree is lexicographically sorted. A non-inclusion proof consists
of two inclusion proofs for the leaves lexicographically preceding and following
the idŜ of the sparse state, and it is verified by checking adjacency and validity
of the two proofs. With this data structure, a sparse node can only download the
block headers relevant for its sparse state, while periodically having complete-
ness guarantees (no relevant block header was skipped) by verifying that the
number of transactions received match the value of ctrG committed in the last
block for which ψ = 0. Finally, by reading the counters for two adjacent blocks
with ψ = 0, sparse nodes can read chunks of the chain with constant cost.

Sunfish-HC. An alternative approach to using counters, is to ask validators
to generate, per sparse state, a hash chain of transactions and include the chain
head in every block header. A sparse node can be certain to have a complete set
of transactions by locally computing the hash chain and compare the obtained
chain head with the one in the block header. Given the possibly high number of
sparse states, to optimize space, validators could arrange the chain heads of all
sparse states supported by the ledger in a tree and include the root in every block
header. However, this has two drawbacks: validators maintaining a massive tree
and updating it at every block, and requiring strict sequentiality in processing
transactions of each sparse state.

Towards efficiency and parallelizability, we combine hash chains and trees
in a different manner. The data structure used by Sunfish-HC is constructed
as follows: for each sparse state and each block, validators build a Merkle tree
with the transactions in the block that touch the sparse state. Then, per sparse
state, they generate a hash chain with the roots of these trees spread across
different blocks. Finally, per each block, validators construct an overlay Merkle
tree including the chain heads of the sparse states that got transactions in the
block; the leaves of this tree are of the form (idŜ, head), with head being the
chain head for the sparse state idŜ. To enable the same features of Sunfish-C,
i.e., non-inclusion proofs, efficient bootstrapping and reads, the overlay tree is
lexicographically sorted by idŜ and further includes a leaf for a sparse state with
periodicity given by ψ. Finally, validators include the Merkle root of the overlay
tree in the block header.

Comparison. Let Q be the average number of sparse states having transactions
in a block, and M the average number of transactions per block.

Sunfish: Reading Ledgers with Sparse Nodes 13

Proof Size: In Sunfish-C, the sparse node receives O(|L̂|) transactions, reads
the counters in O(|L̂| logQ), and checks transaction inclusion in O(|L̂| logM).
The proof size is O(η|L̂|), with η = logM + logQ. In Sunfish-HC, the sparse
node receives O(|L̂|) transactions and verifies the chain head inclusion in O(η|L̂|)
with η = logQ. The proof size for Sunfish-HC is smaller because the hash chain
already guarantees transaction inclusion.

Validators’ storage and compute: In Sunfish-C, validators store and update 1
counter per sparse state (8 bytes with O(1) updates). In Sunfish-HC, validators
store and update 1 chain head per sparse state (64 bytes with O(1) updates).

4.3 Sunfish Prover-Verifier Protocol

Consider a sparse node V that when wakes up is only aware of the genesis
state. The node selects a predicate Xs supported by the ledger, it connects to
1 validator-prover P and sends Xs to P , asking for all historical transactions
that read from or write to the sparse state defined by Xs. Upon receiving Xs, P
extracts Xt from Xs and starts sending to V all transactions in L s.t. Xt(tx) =
1, along with the completeness and inclusion proofs. Specifically, P sends to V :

1. The block headers necessary to extract the historical consensus parameters
of the chain. For BFT protocols, these are end-of-epoch block headers [2];

2. all transactions such that Xt(tx) = 1, along with the headers of the blocks
they are included in, and the inclusion proofs;

3. The header of the latest block Bc that includes the completeness indicator
for Xs (ctrG or chain head) and the completeness proof;

4. The header of any block following Bc that includes transactions s.t. Xt(tx) =
1, the transactions themselves, and the inclusion and completeness proofs;

5. Optional (header node): The header of any block descending from Bc that do
not include transactions s.t. Xt(tx) = 1, along with the non-inclusion proof.

Upon receiving this data from P , V checks: (i) the validity of the history of
consensus parameters, (ii) the validity of all received block headers, (iii) the
correct inclusion of transactions s.t. Xt(tx) = 1 in a valid block header, and
(iv) the completeness of the set of received transactions. If any check fails, V
outputs error. Else, V sparsely executes the transactions in the chain: If any error
is output by δ̂, the node outputs error. Otherwise, it stores all the transactions
(optionally, e.g., to serve reads to light nodes, it also stores the received block
headers and proofs) and maintains the state resulting from the sparse execution.

4.4 Analysis

In Appendix A we prove the following theorems:

Theorem 1 (Sunfish Security, f(r) ≤ 2n/3). Sunfish is a secure protocol for
sparse nodes as per Definition 11.

Theorem 2 (Sunfish Security, f > 2n/3). Sunfish is a secure protocol for
sparse nodes as per Definition 12.

14 Scaffino, Wüst, Maram, Sonnino, Kokoris-Kogias

Theorem 3 (Sunfish Resources). The bandwidth, computational, and stor-
age resources consumed by Sunfish are O(η|L̂|+ |Ŝ|).

5 Evaluation

Since Sunfish performs simple operations (DB lookups, integer arithmetic, hash-
ing), we expect minimal computational impact on validators. We evaluate Sun-
fish on the Sui blockchain to show that it is practical even for high-performance
blockchains, although it can be integrated in most chains.
The Sui Blockchain. Sui [24] is a recent decentralized, permissionless smart-
contract platform designed for high-throughput and low-latency asset manage-
ment. Sui uses the Move programming language to define assets as objects. The
basic unit of storage in Sui is the object, addressable on-chain by a unique ID.
A smart contract is also an object (“package”), and it manipulates objects on
the Sui network. To support on-chain activity monitoring, the Sui network emits
events. Sui validators produce certified checkpoints [25] that contain a sequence
of transactions and form a hash-chain, similar to traditional blockchains. Each
Sui checkpoint contains a summary, i.e., equivalent to a block header, containing
the various digests: We assume each summary includes the Merkle root of all
the transactions in the checkpoint and their execution results (“effects”), as well
as the Merkle root for checking completeness.
Integrating Sunfish into Sui. We consider a few applications currently run-
ning on the Sui blockchain. The state of Sui can be viewed as a key-value store
with object IDs as keys and the digests as values. We compare the data consumed
by a full and a sparse node for the Wormhole bridge [26] and the Wave wallet
[27]. We consider sparse states identified by different predicates: package-based,
event-based, and address-based. We consider: (i) the Wormhole bridge, via pack-
age: Xt(tx) = 1 if tx touches a Wormhole package. (ii) The Wormhole bridge,
via events: Xt(tx) = 1 if tx emits Wormhole events. Here, the sparse node only
receives events, not transactions. (iii) The Wave wallet, via address: Xt(tx) = 1
if tx sends coins to or receives coins from the address of a Wave wallet user.
Data collection. We have collected real-world data from the Sui blockchain
measuring past traffic patterns of the aforementioned applications. Specifically,
we looked at a day’s worth of data corresponding to epoch 507 (August 31st,
2024). On that day, Sui had 356279 checkpoints, i.e., an average of 4.12 check-
points per second. We then measured the following data: (1) Number of dapp-
specific transactions or events emitted per second (R); (2) Number of checkpoints
with at least one dapp-specific transaction or event emitted per second (C ≤ R
and C ≤ 4.12; worst-case estimate, C = min(R, 4.12)); (3) Avg. transaction effect
size e = 1044.74 B and avg. event size v = 106.48 B; (4) Avg. number of transac-
tions per checkpoint (T = 9.35) and unique streams touched per checkpoint (S,
which we approximate and set to S = T); (5) Avg size of summary α = 1457.40
B/s and full checkpoint β = 213.49 KB/s. In Table 3 we show the actual stream
rate R, obtained from a blockchain analytics software. We approximate other
values by sampling 1000 checkpoints (out of 356279) and calculating the mean.

Sunfish: Reading Ledgers with Sparse Nodes 15

Results. We compare the proof sizes. The average size of a transaction inclusion
proof is |πtx| = e + 32 · log(T) = 1172.74 B, and the average size of a stream
inclusion proof is |πs| = 32 · log(S) = 128 Bytes.

If the blockchain implements Sunfish-C, a sparse node only needs to download
πc = R|πtx| + C(α+|πs|) B/s. With Sunfish-HC, we have πtx

hc = Re+C(α+|πs|)
B/s. With event-nodes and Sunfish-HC, the proof sizes are smaller at πevent

hc =
Rv+C(α+ |πs|) B/s (because transactions are not downloaded by event nodes).

App [type] R |πc| |πhc|
Wormhole bridge [package] 8.55 16.56 KB/s (7.75%) 15.46 KB/s (7.24%)
Wormhole bridge [event] 8.55 16.56 KB/s (7.75%) 7.44 KB/s (3.4%)

Wave wallet user [address] 2 · 10−5 0.05 B/s (10−7%) 0.05 B/s (10−7%)

Table 3: Rate of traffic (R) generated by different dapps on 31st August, 2024.
Last two columns show the amount of data a sparse node needs to download if a
blockchain enables Sunfish commitments along with the percentage improvement
over a full node (213.49 KB/s).

6 Related Work, Discussion, and Future Work

Sunfish has no close related work. It positions itself as a middle ground between
full nodes [28,29,30] and light nodes [4,31,32,1,3,2,22,21]. Unlike full nodes, Sun-
fish does not require to download and re-execute a complete copy of the ledger:
it only downloads and re-execute a subset thereof. Sunfish ensures (sparse) valid-
ity, completeness, and fork consistency (Section 3), properties that light clients
do not provide because of their minimalist design and the lack of transaction
re-execution. Some light client designs [33,34] consider completeness as an im-
portant property, however, they achieve it by relying on trusted execution envi-
ronments [35] and do not consider re-execution.

Users can choose which node type fits their desiderata and use case best.
Prior to our work, if they have high-security requirements (e.g., exchange), run-
ning a full node is the go-to option; if they run an application over a resource-
constrained environment (e.g., a wallet on a phone) and favor efficiency over
security, light nodes are instead the best fit. However, after a blockchain enables
support for sparse nodes, operators, developers, or users that want strong secu-
rity guarantees while retaining practical costs can now choose to run a sparse
node. Examples are bridge operators, DAO token holders, re-staking [9] and re-
mote staking projects [10], on-chain gaming platforms, sequencers and watchers
of rollups, and users and watchtowers of state and payment channels.

Sparse nodes can also help optimize the blockchain infrastructure: they can
serve reads to light nodes, maintain custom indexes for on-chain data, take care
of hot spots to take load off of full nodes, and communicate with other sparse
nodes in a transparency network to detect forks [19]. Finally, we conjecture that
full nodes could be fully replaced by a fleet of sparse nodes whose combined
sparse states cover the whole state of the ledger. We leave this as future work.

16 Scaffino, Wüst, Maram, Sonnino, Kokoris-Kogias

Acknowledgments

This work was supported by Mysten Labs and conducted during Giulia Scaffino’s
internship with the company. We thank the Mysten Labs Data Science team for
providing necessary data to conduct our evaluation. The support by the Chris-
tian Doppler Research Association through the Christian Doppler Laboratory
Blockchain Technologies for the Internet of Things (CDL-BOT) is gratefully
acknowledged.

References

1. Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Giulia Scaffino, and Dionysis Zin-
dros. Blink: An optimal proof of proof-of-work. Cryptology ePrint Archive, Paper
2024/692, 2024. https://eprint.iacr.org/2024/692.

2. Shresth Agrawal, Joachim Neu, Ertem Nusret Tas, and Dionysis Zindros. Proofs
of Proof-Of-Stake with Sublinear Complexity. In 5th Conference on Advances
in Financial Technologies (AFT 2023). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023.

3. Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of
proof-of-work. In Joseph Bonneau and Nadia Heninger, editors, Financial Cryp-
tography and Data Security. Springer International Publishing, 2020.

4. Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros. Light clients for
lazy blockchains. In Financial Cryptography and Data Security 2024 (FC24), 2024.

5. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. http:
//bitcoin.org/bitcoin.pdf.

6. Jinyuan Li and David Maziéres. Beyond one-third faulty replicas in byzantine fault
tolerant systems. In Proceedings of the 4th USENIX Conference on Networked
Systems Design & Implementation. USENIX Association, 2007.

7. David Mazières and Dennis Shasha. Building secure file systems out of byzantine
storage. New York, NY, USA, 2002. Association for Computing Machinery.

8. Christian Cachin, Abhi Shelat, and Alexander Shraer. Efficient fork-linearizable
access to untrusted shared memory. PODC ’07. Association for Computing Ma-
chinery, 2007.

9. EigenLayer Team. Eigenlayer: The restaking collective. https://shorturl.at/sl9tE.
10. Xinshu Dong, Orfeas Stefanos Thyfronitis Litos, Ertem Nusret Tas, David Tse,

Robin Linus Woll, Lei Yang, and Mingchao Yu. Remote staking with economic
safety, 2024.

11. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 1982.

12. Leslie Lamport. The implementation of reliable distributed multiprocess systems.
1978.

13. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proac-
tive recovery. 2002.

14. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017. Springer
International Publishing, 2017.

15. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone
protocol: Analysis and applications. In Journal of the ACM (to appear), 2024.

https://eprint.iacr.org/2024/692
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Sunfish: Reading Ledgers with Sparse Nodes 17

16. Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake. Berlin, Heidelberg,
2019. Springer-Verlag.

17. Ethereum yellowpaper, 2024.
18. Srivatsan Sridhar, Dionysis Zindros, and David Tse. Better safe than sorry: Re-

covering after adversarial majority. Cryptology ePrint Archive, Paper 2023/1556,
2023.

19. Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and
Michael J. Freedman. CONIKS: Bringing key transparency to end users. In 24th
USENIX Security Symposium (USENIX Security 15), pages 383–398, Washington,
D.C., August 2015. USENIX Association.

20. Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decen-
tralized cryptocurrency at scale, 2020. https://eprint.iacr.org/2020/352.pdf.

21. Mina docs, 2023. https://docs.minaprotocol.com/about-mina.
22. Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon, Philipp Jovanovic, Geor-

gios Konstantopoulos, Asa Oines, Marek Olszewski, and Eran Tromer. Plumo: An
Ultralight Blockchain Client, 2023. https://celo.org/papers/plumo.

23. Nodewatch, 2024.
24. Same Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris

Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto Son-
nino, et al. Sui lutris: A blockchain combining broadcast and consensus. arXiv
preprint arXiv:2310.18042, 2023.

25. Sam Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris
Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto Son-
nino, Brandon Williams, and Lu Zhang. Sui lutris: A blockchain combining broad-
cast and consensus, 2024.

26. Wormhole Bridge. https://docs.sui.io/concepts/tokenomics/sui-bridging.
27. Wave Wallet on Sui. https://waveonsui.com/.
28. Sui full node transaction signatures are not verified, 2024.
29. Anamika Chauhan, Om Prakash Malviya, Madhav Verma, and Tejinder Singh Mor.

Blockchain and scalability. In 2018 IEEE international conference on software
quality, reliability and security companion (QRS-C), pages 122–128. IEEE, 2018.

30. Christos Stefo, Zhuolun Xiang, and Lefteris Kokoris-Kogias. Executing and proving
over dirty ledgers. In Financial Cryptography and Data Security 2023, 2023.

31. Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. Sok:
Blockchain light clients. In International Conference on Financial Cryptography
and Data Security, pages 615–641. Springer, 2022.

32. Sean Braithwaite, Ethan Buchman, Ismail Khoffi, Igor Konnov, Zarko Milosevic,
Romain Ruetschi, and Josef Widder. A tendermint light client. arXiv preprint
arXiv:2010.07031, 2020.

33. Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame,
and Srdjan Capkun. BITE: Bitcoin lightweight client privacy using trusted execu-
tion. In 28th USENIX Security Symposium (USENIX Security 19), pages 783–800,
2019.

34. Karl Wüst, Sinisa Matetic, Moritz Schneider, Ian Miers, Kari Kostiainen, and
Srdjan Čapkun. Zlite: Lightweight clients for shielded zcash transactions using
trusted execution. In Financial Cryptography and Data Security: 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019,
Revised Selected Papers 23, pages 179–198. Springer, 2019.

https://docs.minaprotocol.com/about-mina

18 Scaffino, Wüst, Maram, Sonnino, Kokoris-Kogias

35. Moritz Schneider, Ramya Jayaram Masti, Shweta Shinde, Srdjan Capkun, and
Ronald Perez. Sok: Hardware-supported trusted execution environments. arXiv
preprint arXiv:2205.12742, 2022.

A Proofs

Lemma 1 (Fork Consistency, f ≤ 2n/3). For any rounds r and r′ ≤ r,
any two secure sparse nodes i, j reading from the same fork of L output sparse
ledgers s.t. L̂r′

i ⪯ L̂r
j and sparse states s.t. Ŝr

j = δ̂(Ŝr′

i , L̂r
j \ L̂r′

i), if none of them
outputs an error.

Proof. Towards contradiction, suppose that there exists a round r such that
sparse nodes i, j reading from the same fork of L output L̂r′

i ⪯̸ L̂r
j and Ŝr

j ̸=
δ̂(Ŝr′

i , L̂r
j \ L̂r′

i). This happens only if L̂r′

i or L̂r
j are not complete with respect to

L or not sparsely valid, contradicting the fact that the nodes are secure. ⊓⊔

Lemma 2 (Future Self-Consistency). For any correct sparse node i and
any round r, L̂r′≤r

i ⪯ L̂r
i .

Proof. This trivially follows from sparse validity (execution). ⊓⊔

Theorem 4 (Sunfish Security, f ≤ 2n/3). Sunfish is a secure protocol for
sparse nodes as per Definition 11.

Proof. We recall that f ≤ 2n/3 guarantees that at least one correct consensus
node contributed to the quorum. To prove Sunfish security against a f ≤ 2n/3
adversary, we prove that, at any new block with a quorum, the sparse node
either outputs a complete and sparsely valid ledger, or it outputs error. For
both Sunfish-C and Sunfish-HC, sparse validity is trivially fulfilled by applying
δ̂ (sparse execution) to the set of received transactions.

Sunfish-C : At each new block, the sparse node receives a completeness proof
that opens the commitment to the values of local and global counters for sparse
states. If the counters for the desired sparse state are included in the commit-
ment, the sparse node knows the number of transactions tx s.t. Xt(tx) = 1
included in the block (ctrL) and in the whole ledger (ctrG). If the commitment
includes no entry for the counters of the sparse state, the sparse node knows there
are no transactions tx s.t. Xt(tx) = 1 in the block. Therefore, upon receiving a
set of transactions from the prover, the sparse node can verify completeness. If
it does not hold, it outputs error; else, it outputs a complete ledger.

Sunfish-HC : The security of Sunfish-HC follows from the security of Sunfish-
C, with the only difference that counter values are replaced by hash chain heads.
We recall that the head of the hash chain for a sparse state is a tuple that includes
the roots of the Merkle trees for the sparse state in the second-to-last and in the
last block. Two hash chains have the same head if and only if they have been
generated from the same sequences of transactions and blocks. Therefore, if any
transaction tx s.t. Xt(tx) = 1 has been withheld by the prover, the sparse node
outputs an error as its locally computed chain head differs from the one in the
commitment. Else, the sparse node outputs a complete ledger. ⊓⊔

Sunfish: Reading Ledgers with Sparse Nodes 19

Theorem 5 (Sunfish Security, f > 2n/3). For f > 2n/3, at any round r,
Sunfish achieves sparse node protocol security as per Definition 12.

Proof. For f > 2n/3 it is sufficient to prove that, at any new block, the sparse
node either outputs a sparsely valid ledger, or it outputs error.

For both Sunfish-C and Sunfish-HC, sparse validity is trivially fulfilled by
the sparse execution of the received transactions. Either the sparse execution
succeeds, or the sparse node outputs an error. ⊓⊔

Theorem 3 (Sunfish Resources). The bandwidth, computational, and stor-
age resources consumed by Sunfish are O(η|L̂|+ |Ŝ|), as per Definition 13.

Proof. Bandwidth: a Sunfish sparse node needs to download all transactions
touching its sparse state, as well as the inclusion and completeness proofs.
Downloading transactions requires O(|L̂|). Downloading inclusion proofs requires
O(|L̂| logM) with M being the average number of transactions in a block. Down-
loading completeness proofs requires O(|L̂| logQ), with Q being the average
number of updated sparse states in a block. Therefore, for Sunfish-C we have
O(η|L̂|) with η = logM + logQ, while for Sunfish-HC we have O(η|L̂|) with
η = logQ. Computation: a Sunfish sparse node needs to verify transaction in-
clusion, completeness, and it needs to execute all transactions and compute
the sparse state. We consider an upper bound β to the computation associated
to a transaction. The computation required to verify transaction inclusion and
completeness is O(|L̂| logM) and O(|L̂| logQ), respectively. The computational
complexity of execution is O(|L̂|), being β a constant. Therefore, this makes for
a total computation of O(η|L̂|) with η = logM+logQ for Sunfish-C and O(η|L̂|)
with η = logQ for Sunfish-HC. Storage: the sparse node stores L̂ as well as Ŝ,
yielding O(|L̂|+ |Ŝ|) storage complexity.

It follows that the resources consumed by Sunfish are O(η|L̂| + |Ŝ|), with
η = logM + logQ for Sunfish-C and η = logQ for Sunfish-HC.

⊓⊔

	Sunfish: Reading Ledgers with Sparse Nodes

