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Abstract
Traditional secure multiparty computation (MPC) proto-

cols presuppose a fixed set of participants throughout the
computational process. To address this limitation, Fluid MPC
[CRYPTO 2021] presents a dynamic MPC model that allows
parties to join or exit during circuit evaluation dynamically.
However, existing dynamic MPC protocols can guarantee
safety but not liveness within asynchronous networks. This
paper introduces ΠAD-MPC, a fully asynchronous dynamic
MPC protocol. ΠAD-MPC ensures both safety and liveness
with optimal resilience, capable of tolerating t (n= 3t+1) cor-
rupted participants. To achieve this, we develop a novel asyn-
chronous transfer protocol ΠTrans and a preprocessing proto-
col ΠAprep specifically tailored for dynamic environments. In
contrast to most dynamic MPC protocols that achieve security
with abort in synchronous networks, ΠAD-MPC guarantees out-
put delivery in asynchronous networks with optimal resilience,
thus enhancing robustness. We provide a formal security proof
of ΠAD-MPC under the Universal Composability (UC) frame-
work. Furthermore, an extensive evaluation involving up to
20 geographically distributed nodes demonstrates the proto-
col’s practical performance and its ability to reliably deliver
outputs in asynchronous dynamic settings. Compared to the
state-of-the-art Fluid MPC, ΠAD-MPC achieves comparable
performance while offering significantly enhanced security
guarantees.

1 Introduction

Secure multiparty computation (MPC) [8, 34, 46] allows a
group of servers to collaboratively compute a function while
preserving the privacy of their inputs. MPC protocols have
been deployed in a variety of applications, such as anonymous
voting systems [4], privacy-preserving machine learning [38],
and private smart contracts [3, 5]. Traditional MPC protocols
typically assume a static set of participants who must commit
to participating in the entire circuit evaluation process. How-
ever, this assumption prohibits dynamic participant addition

or removal, which restricts the deployment of MPC protocols
in scenarios involving complex circuits.

Recent works present dynamic MPC to address the issue of
dynamic participation. Dynamic MPC divides an arithmetic
circuit into multiple layers, each computed by a distinct set
of servers (i.e., a committee). Servers intending to partake in
the next layer of circuit evaluation invoke an election func-
tion, which yields a subset of servers designated as the next
committee following the completion of the current layer’s
evaluation. Fluid MPC [19] is the seminal work in dynamic
MPC, introducing the maximal fluidity setting where servers
participate in a single communication round per layer. Dy-
namic MPC protocols achieve security for dishonest majority
[12, 44], linear communication complexity [12], and guaran-
teed output delivery [30].

The dynamic MPC model is well-suited for distributed sys-
tems like permissionless blockchains [14, 40] deployed over
asynchronous wide-area networks (WANs). In asynchronous
networks, there are no timing assumptions and messages can
experience arbitrary delays. Unfortunately, existing dynamic
MPC protocols [12, 19, 30, 44] can only guarantee safety
in asynchronous networks, not liveness. This limitation has
motivated us to design and implement a practical dynamic
MPC protocol for asynchronous settings.

1.1 Challenges and Our Solutions

Challenge I: How to guarantee liveness? In the dynamic
MPC model, communication occurs during committee han-
dovers. The current committee transfers secret sharings of
the current layer’s outputs to the next committee. Existing
dynamic MPC protocols rely on a synchronous network as-
sumption, where the next committee receives all shares from
the current committee within an upper time bound. The next
committee then reconstructs new polynomials based on these
shares. Each reconstructed polynomial’s constant term repre-
sents the corresponding gate’s output. However, this time
assumption doesn’t hold in asynchronous networks. The
next committee can become stuck waiting indefinitely for all
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shares, preventing the protocol from ever terminating. More-
over, the arrival order of the message in honest parties cannot
be guaranteed in asynchronous networks. This means that
honest parties might reconstruct polynomials based on differ-
ent, potentially incomplete sets of shares, which compromises
the correctness of the overall evaluation.

Solution: We design an asynchronous transfer protocol
ΠTrans to securely transfer shares between committees. ΠTrans

leverages asynchronous primitives to ensure both liveness and
set consistency during handovers. During the committee han-
dover, each current committee member acts as a dealer and
utilizes the Asynchronous Complete Secret Sharing (ACSS)
protocol [42] to distribute secret shares to the next committee.
The ACSS protocol guarantees that valid shares distributed
from a dealer all lie on a polynomial. Upon receiving n− t
valid ACSS instances, the next committee calls the Multi-
valued Validated Byzantine Agreement (MVBA) protocol
[15] to reach consensus on a common subset containing at
least n− t valid instances. Subsequently, the next committee
reconstructs the new polynomial based on the common subset.
These steps ensure that all incoming committee members re-
construct the polynomial using the same set of shares, thereby
guaranteeing consistency.

Challenge II: How to achieve guaranteed output deliv-
ery with optimal resilience (n = 3t + 1)? Beyond safety
and liveness, achieving robustness becomes crucial. This
property guarantees the correctness of outputs in the pres-
ence of a malicious adversary. Existing dynamic MPC proto-
cols (e.g., [12, 19, 44]) achieve security with abort (SwA) in
synchronous networks. This means honest parties agree on
whether the protocol aborts or continues. However, SwA is
not robust. An adversary performing an additive attack [32]
on any layer can render the output unavailable. Guaranteed
output delivery (GOD) is a stronger notion than SwA and is
often synonymous with robustness [39]. GOD ensures that
corrupted parties cannot prevent honest parties from receiving
correct outputs. To the best of our knowledge, none of the
existing MPC protocols achieves GOD in asynchronous dy-
namic settings. The dynamic MPC protocol introduced in [30]
achieves GOD, but it is limited to synchronous networks and
struggles with polynomial reconstruction in asynchronous net-
works. Asynchronous MPC protocols [1, 20–24, 39] achieve
GOD under the assumption of static participants. However,
these protocols cannot guarantee robustness considering dy-
namic participants. To achieve GOD with optimal resilience,
it is crucial to guarantee the accuracy of the final output by en-
suring the correctness of values produced by each committee.
The evaluation by each committee involves computation and
handover phases, each posing challenges for GOD. During
computation, multiplication elevates the polynomial degree
from t to 2t, mandating degree reduction back to t. Under
optimal resilience, this process lacks robustness [2]. There-
fore, avoiding degree-2t polynomial reconstruction poses a
challenge. During the handover phase, verifying if transferred

values match original secret shares held by current commit-
tee servers is another critical problem. Using compromised
transferred values for polynomial reconstruction leads to an
incorrect polynomial with a constant term deviating from the
gate’s output.

Solution: We propose two novel improvements to address
the aforementioned issues. First, our protocol builds upon
the offline/online preprocessing paradigm (see section 3.1 for
more details) introduced in [39, 44]. The paradigm eliminates
the need for generating degree-2t polynomials during the on-
line phase. However, the generation of Beaver triples in the
offline phase, which are consumed in the online phase, still
involves degree-2t polynomials. We design an asynchronous
dynamic preprocessing protocol ΠAprep to generate Beaver
triples without reconstructing degree-2t polynomials. Unlike
the dynamic MPC protocol [44] that relies on universal pre-
processing, where dynamism is restricted to parties involved
in the universal preprocessing phase, we let each committee
invoke ΠAprep to dynamically generate Beaver triples for the
subsequent committee, thus allowing any server to participate
in the evaluation phase.

Second, to prove the transferred value matches the original
secret during the handover phase, we leverage the robustness
of Shamir secret sharing. Current committee servers collabo-
ratively generate a secret sharing of a random value, locally
adding it to a secret share for masked share. An additive ho-
momorphic commitment (such as Pedersen commitment [43])
is used to prove the masked-secret share relationship. Along-
side ACSS for secret distribution, the committee broadcasts
masked shares and commitments to the next committee us-
ing the Asynchronous Reliable Broadcast (RBC) protocol.
Subsequent committee servers verify masked-secret share
relationships and then use the robustness of Shamir secret
sharing to identify verified masked shares reconstructing the
masked value. This reconstruction, while preserving secret
privacy, establishes a valid dealer set where each dealer’s poly-
nomial constant term is their original secret. Interpolating a
new polynomial from these dealers’ ACSS instances guaran-
tees its constant term aligns with the previous layer’s circuit
gate output.

1.2 Contributions

We design an asynchronous transfer protocol ΠTrans to guar-
antee liveness. We further propose an asynchronous dy-
namic preprocessing protocol ΠAprep to generate Beaver
triples without reconstructing degree-2t polynomials. By in-
tegrating ΠTrans and ΠAprep, we construct the first fully asyn-
chronous dynamic MPC protocol with optimal resilience. The
protocol not only guarantees safety and liveness but also
achieves GOD. We implement our asynchronous dynamic
MPC protocol, which achieves similar performance to Fluid
MPC while ensuring GOD. The practical implementation is
open-sourced at https://anonymous.4open.science/r/
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Anonymous-Authors-ADMPC.

2 Related Work

The dynamic MPC model was first introduced by Fluid MPC
[19]. Subsequent dynamic MPC protocols have achieved se-
curity against dishonest majority [12, 44] and linear commu-
nication complexity [12], while ensuring maximal fluidity.
All of these dynamic MPC protocols only achieve security
with abort (SwA), where honest parties reach a consensus on
whether the protocol aborts. DGL23 [30] achieves guaranteed
output delivery (GOD) with maximal fluidity, but at the cost
of requiring two additional committees to rectify errors within
the current layer. Fluid MPC and DGL23 are based on the
classic BGW protocol [8], where parties locally multiply their
secret shares of two values, then perform a degree reduction
step to reduce the degree of the resulting polynomial from 2t
to t. These dynamic MPC protocols improve dynamic MPC
in synchronous networks but do not address asynchronous
networks.

In an asynchronous network, there are no timing assump-
tions, and messages can be arbitrarily delayed. We define a
protocol as fully asynchronously safe and live if it can ensure
both properties in asynchronous networks. All of the afore-
mentioned dynamic MPC protocols only achieve safety in
such environments. Asynchronous MPC protocols [1, 20, 22–
24, 39] achieve fully asynchronous liveness and safety by
combining with asynchronous primitives. HoneybadgerMPC
[39] cannot guarantee liveness during the offline phase, limit-
ing it to achieving fully asynchronous safety. COPS16 [21]
implements a partial asynchronous setting by introducing a
synchronous point under the asynchronous network, thereby
not satisfying fully asynchronous liveness. The aforemen-
tioned asynchronous MPC protocols [1, 20, 22–24, 39] rely
on the robustness of Shamir secret sharing to guarantee GOD.
However, these protocols do not consider dynamic partici-
pants. With optimal resilience, if the adversary controls t cor-
rupted parties, the protocol’s robustness can be compromised
by dynamic network conditions, such as node failures.

3 Model and Preliminaries

3.1 Model
We consider a client-server model in a dynamic MPC setting.
In this scenario, a set of clients delegates the computation of
a function to a server network. The function is transformed
into a layered arithmetic circuit C̃ [19]. Assuming the depth
of C̃ is d, for each l ∈ [d], the inputs to the (l + 1)-th layer
circuit C̃l+1 come from the outputs of its previous layer C̃l

and are evaluated by a server set (i.e., a committee) denoted by
P l+1. We divide the evaluation process into three stages: the
input stage, the execution stage, and the output stage. During
the input stage, clients provide inputs to committee P 1, and

during the output stage, they receive outputs from committee
P d . In the execution stage, each committee P l evaluates the
circuit C̃l and passes the output to the next committee P l+1.

Offline/online preprocessing paradigm. During the of-
fline phase, parties collaboratively generate Beaver triples
([a], [b], [c]), where c = a · b and [a], [b], [c] are degree-t
Shamir secret sharings. These triples are used during the
online phase when evaluating multiplication gates. Given se-
cret sharings of inputs [x], [y], and sharing of a Beaver triple
([a], [b], [c]), parties locally compute shares of [α] = [x]− [a]
and [β] = [y]− [b]. Then, they broadcast their shares to recon-
struct α and β, from which parties can locally compute shares
of [xy] = α ·β+[a] ·β+[b] ·α+[c].

Fluidity. Fluidity is defined as the number of rounds of
interaction within a layer [19]. In synchronous networks, ex-
isting dynamic MPC protocols can achieve maximal fluidity
within a single communication round. However, since asyn-
chronous consensus algorithms cannot be completed within
one communication round, dynamic MPC cannot achieve
maximal fluidity in asynchronous networks.

Committee election. The committee election for each layer
is dynamic and separate from the circuit evaluation. Given
that the committee election methods (e.g., [11, 19, 33, 45])
can seamlessly integrate into our model, we opt not to delve
into the specifics of committee election. We focus on ensur-
ing that P l can reach consensus on the composition of the
next committee P l+1 through committee election. For further
insights into committee election, refer to [19].

Adversary model. We denote the number of clients as Nc,
and the committee size as Ns. We set Nc = 3tc +1 and Ns =
3ts +1, where tc and ts are the upper bounds on the number
of corrupted parties among the clients and the committee,
respectively. For simplicity, we designate P 0 as the client
set. We consider an R-adaptive adversary as defined in [19].
Specifically, the adversary A first statically selects corrupted
clients before the input stage. During the execution stage, at
the beginning of C̃l with committee P l , A adaptively chooses
a subset of servers to corrupt. Once a server is corrupted, A
can retroactively access its entire historical state and send
messages on its behalf. Therefore, for Pl

i participating in the
evaluation of C̃m (m < l), if A wants to corrupt Pl

i in C̃l , it
succeeds only if the sum of the number of corrupted servers
in C̃m and Pl

i does not exceed the threshold t.
Network assumption. We assume an asynchronous network,

which means that there are no timing assumptions and mes-
sages can be arbitrarily delivered, but all messages sent be-
tween honest parties must ultimately be delivered [7].

Fully asynchronous dynamic MPC. We summarize the
asynchronous dynamic MPC model considered in this work
in the following definition.

Definition 1 (Fully Asynchronous Dynamic MPC with Guar-
anteed Output Delivery). With optimal resilience (n = 3t+1),
we say that a dynamic MPC protocol π is a fully asynchronous
MPC with guaranteed output delivery if it satisfies the follow-
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Table 1: Comparisons of existing dynamic and asynchronous MPC protocols

t < Fluidity SwA1 GOD2 Under Fully Async Practical3 Security
Dynamic Online Offline Safety Liveness Deployment Goals

Fluid MPC [19] n/3 O(1) ✓ ✗ - ✓ ✗ ✓ Statistical
Le Mans [44] n O(1) ✓ ✗ ✗ ✓ ✗ ✗ Statistical
DGL23 [30] n/3 O(1) ✓ ✓ - ✓ ✗ ✗ Perfect4

BEP23 [12] n O(1) ✓ ✗ ✗ ✓ ✗ ✗ Statistical

Asynchronous

HoneyBadgerMPC [39] n/3 - ✓ ✓ ✗ ✓ ✗ ✓ Perfect
CHP13 [20] n/4 - ✓ ✓ ✓ ✓ ✓ ✗ Statistical
CP15 [22] n/3 - ✓ ✓ ✓ ✓ ✓ ✗ Computational
CP16 [23] n/3 - ✓ ✓ ✓ ✓ ✓ ✗ Computational
COPS16 [21] n/2 - ✓ ✓ ✓ ✓ ✗ ✗ Computational
CP23 [24] n/3 - ✓ ✓ ✓ ✓ ✓ ✗ Statistical
AAPP24 [1] n/4 - ✓ ✓ ✓ ✓ ✓ ✗ Perfect

This work n/3 O(logn) ✓ ✓ ✓ ✓ ✓ ✓ Computational
1 SwA denotes security with abort.
2 GOD denotes guaranteed output delivery.
3 Those MPC protocols that have been validated through experimental deployment.
4 DGL23 [30] achieves perfect security at t < n/3 and computational security at t < n/2 while achieving guaranteed output

delivery.

ing properties:

• Safety (Privacy): The R-adaptive adversary A cannot in-
fer more private information than what is already known
to honest clients and servers, based on the information
obtained from corrupted servers and clients.

• Liveness: The protocol π will eventually terminate.

• Guaranteed Output Delivery (Robustness): The R-
adaptive adversary A should not be able to prevent hon-
est parties from receiving correct outputs [37]. Specifi-
cally, let d be the depth of the circuit. For l ∈ [d], honest
servers in P l can correct errors injected by A from pre-
vious committee P l−1. Honest clients can correct errors
from corrupted servers in P d , ensuring the correctness
of the outputs.

3.2 Dynamic MPC
We summarize the following two key technical aspects of the
dynamic MPC model.

Transfer protocol. A transfer protocol in dynamic MPC is
designed to securely transfer sharings to the next committee.
These protocols leverage the re-randomization phase of the
BGW protocol [8] for transfer. Let [zl ] denote the output of a
gate in C̃l , where [zl ] is a degree-t polynomial. Each server Pl

i
in P l generates a degree-t polynomial [zl

i ], with its constant
term being the secret share zl

i of zl . For each Pl+1
j in P l+1, Pl

i

sends the corresponding share ( j,zl
i, j) to Pl+1

j . Upon receiving
secret sharings {[zl

1], · · · , [zl
n]} from the previous committee,

servers in P l+1 select a common subset T of size |T |= t +1.
They then perform Lagrange interpolation on the sharings in
T to reconstruct a degree-t polynomial. Consequently, P l+1

obtains a new polynomial whose constant term is the original
secret zl . The idea of multiplication evaluation is similar to
the transfer protocol. Servers locally multiply shares and then
utilize the transfer protocol to distribute the output shares
to the next committee. However, a slightly larger common
subset size (|T | = 2t + 1) is used for reconstruction in this
stage.

Security with abort in dynamic MPC. To achieve secu-
rity against the R-adaptive adversary, dynamic MPC employs
a consolidated check approach [31, 32, 41], where the cor-
rectness of the computation (for the entire circuit) is checked
once. These protocols leverage MAC techniques [10, 27] to
commit to their private inputs. During the input stage, clients
generate sharings of a random MAC key [r], along with ad-
ditional randomness. In the execution stage, for each input
sharing [z], an additional committee P 1 computes a secret
sharing of a MAC on it. The following committee utilizes
additional randomness to aggregate the outputs of each cir-
cuit gate. let [u] and [v] denote the aggregate sharing and the
corresponding MAC, respectively. During the output stage,
clients verify the validity of all the MACs in one shot. They
achieve this by locally computing [T ] = [v]− [r] · [u] and then
reconstructing [T ] to check whether it equals 0. If T = 0, the
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evaluation is considered valid, and clients obtain the output.
Otherwise, clients abort the protocol, discarding the result.

3.3 Asynchronous Primitives

Here, we present the asynchronous primitives used in our pro-
tocol. We refer readers to Appendix D for a formal description
of the security of these ideal functionalities FACSS, FRBC and
FMVBA.

Asynchronous Complete Secret Sharing (ACSS). An
ACSS protocol guarantees agreement among parties on the
successful completion of the sharing phase, even if the dealer
is corrupted. This protocol should satisfy the following prop-
erties when operating in an asynchronous network [28, 29]:

• Correctness: If the dealer L is honest, then every honest
party Pi will eventually output a share p(i) during the
sharing phase, where p(·) is a random degree-t polyno-
mial with p(0) = s. Upon completion of the sharing
phase, if all honest parties invoke the reconstruction
phase, they will output s as long as at most t parties
are corrupted.

• Secrecy: If L is honest and all honest parties have not
yet begun executing the reconstruction phase, then an
adversary that corrupts up to t parties has no information
about s.

• Completeness: If some honest party terminates the shar-
ing phase, then there exists a degree t polynomial p(·)
over Zq such that p(0) = s′ and each honest party Pi will
eventually hold a share si = p(i). Moreover, when L is
honest, s′ = s.

Asynchronous Reliable Broadcast (RBC). Informally,
an RBC protocol allows a designated sender to broadcast an
input message to all parties in asynchronous networks, even
in the presence of a malicious adversary A . An RBC protocol
satisfies the following properties [39]:

• Validity: If the sender is honest and inputs m, then all
honest parties deliver m.

• Agreement: If any two honest parties deliver m and m′,
then m = m′.

• Totality: If any honest party delivers m, then all honest
parties deliver m.

Multi-valued Validated Byzantine Agreement (MVBA).
An MVBA protocol [15] allows a set of parties, where each
party provides an input value, to eventually agree on the
same value that satisfies a predefined external predicate
P(m) : {0,1}|m|→{0,1}, which is known to all parties. The
MVBA protocol satisfies the following properties [26, 36]:

• Termination: If every honest party inputs with an ex-
ternally valid value, then every honest party outputs a
value.

• External-Validity: If an honest party outputs a value m,
then P(m) = 1.

• Agreement: All honest parties that terminate output the
same value.

• Integrity: If all parties are honest and if some parties
output m, them some parties proposed m.

4 Technical Overview

4.1 Achieving Liveness in Asynchronous Dy-
namic MPC

Key Technique I: Achieve consistent polynomial inter-
polation across committee handovers. In section 3.2, we
introduce the transfer protocol for the dynamic MPC model.
However, this protocol is not well-suited for asynchronous
networks. Due to the lack of guaranteed synchronization, the
parties cannot definitively agree on the set of received shares.
If parties utilize Lagrange interpolation based on inconsistent
share sets, the reconstructed points will not be distributed over
the same polynomial. Consequently, these points cannot be
used to reconstruct the polynomial whose constant term is the
original secret.

To ensure polynomial consistency among committee mem-
bers in an asynchronous network, we utilize FACSS and
FMVBA to construct the asynchronous transfer protocol ΠTrans.
Specifically, servers in P l first invoke FACSS to distribute their
shares. The functionality FACSS ensures that only ACSS in-
stances distributed on a degree-t polynomial will be received
by P l+1. Verified ACSS instances are then collected into the
local set LTi held by every server Pl+1

i . Once |LTi|= 2t +1,
Pl+1

i invokes FMVBA to agree on a common subset T , from
which the first t +1 shares are selected to interpolate a new
polynomial. ΠTrans guarantees liveness in asynchronous net-
works by leveraging FACSS and FMVBA. Furthermore, ΠTrans

guarantees polynomial consistency during committee han-
dovers.

4.2 Achieving GOD with Optimal Resilience

Key Technique II: Avoid reconstructing degree-2t polyno-
mials during the offline phase. As discussed earlier, achiev-
ing GOD with optimal resilience necessitates avoiding the
reconstruction of degree-2t polynomials. However, traditional
MPC protocols employing "double sharing" [6] for Beaver
triple generation still reconstruct degree-2t polynomials. In
double sharing, a random value r is shared using both t- and
2t-sharings. Servers then calculate ⟨c⟩ = [a] · [b], where [a]
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and [b] are uniformly random sharings, resulting in a degree-
2t polynomial ⟨c⟩. Subsequently, servers locally compute
⟨γ⟩= ⟨c⟩−⟨r⟩ and broadcast. After reconstructing γ, servers
can compute [c] = γ+ [r] to get the triple ([a], [b], [c]). The
outlined process for generating Beaver triples necessitates the
reconstruction of a degree-2t polynomial ⟨γ⟩, compromising
the robustness under optimal resilience.

We design an asynchronous dynamic preprocessing proto-
col ΠAprep that dynamically generates triples without recon-
structing degree-2t polynomials. Specifically, let’s assume
C̃l+1 has only one multiplication gate. Server Pl

i (for i ∈ [n])
in P l first generates two types of triples ([al

i ], [b
l
i ], [c

l
i ]) and

([xl
i ], [y

l
i ], [z

l
i ]), with the latter triple used to verify cl

i = al
i ·bl

i .
Pl

i then calls FACSS to distribute shares of these triples to
P l+1. Servers in P l+1 gather the verified triples ([al

i ], [b
l
i ], [c

l
i ])

and call FMVBA on it to output a common subset |T |, where
|T | = 2t +1. P l+1 selects the first t +1 [al

i ] and [bl
i ] from T

to interpolate new degree-t polynomials U(·) and V (·). To
construct a degree-2t polynomial W (·) =U(·) ·V (·), we note
that the first t +1 [cl

i ] are already distributed on W (·). Hence,
we require t additional points on W (·). P l+1 identifies points
i (for i ∈ {t + 2, · · ·2t + 1}) on U(·) and V (·), and use an-
other t triples from T to compute W (i) = U(i) ·V (i). This
process yields 2t + 1 correct points for interpolating W (·),
guaranteeing that any point j on U(·), V (·), and W (·) satisfies
W ( j) =U( j) ·V ( j).

Key Technique III: Guarantee robustness in ΠTrans. The
protocol ΠTrans ensures that committee members interpolate
the polynomial based on a consistent share set. However, it
cannot guarantee that the constant term of the interpolated
polynomial matches the original secret. Although FACSS con-
firms that ACSS instances originate from a degree-t polyno-
mial generated by the dealer, a corrupted dealer could produce
a polynomial whose constant term does not match the initially
held secret. To achieve guaranteed output delivery, P l must
prove to P l+1 that the constant of the polynomial generated
is indeed the output of C̃l .

We achieve GOD using the commitment ideal functionality
FCommit (see Appendix D for details) with additive homomor-
phic property. Specifically, assuming C̃l contains only one
gate. Each server Pl

i (for i ∈ [n]) receives a random share αl
i

from the previous committee P l−1 and locally computes a
masked share ml

i = zl
i +αl

i , where zl
i is its shares of the circuit

output. Pl
i invokes FCommit to generate a commitment for its

random share, then calls FRBC to broadcast its masked share
and commitment to P l+1. Meanwhile, Pl

i calls FACSS to dis-
tribute its secret share like in the original ΠTrans. Each server
Pl+1

j utilizes the additive homomorphic property of FCommit

to verify the relationship between the masked share and the
ACSS instance. Then, Pl+1

j puts the verified masked share
to a local set LTj. Upon |LTj| ≥ 2t +1, Pl+1

j invokes online
error correction OEC (see Appendix C for details) to find a
set GTj from LTj where the polynomial interpolated from
2t + 1 masked shares satisfies p(0) = ml . Since [αl ] is uni-

formly random and independent, reconstructing the masked
value ml does not reveal the original secret zl . Subsequently,
Pl+1

j invokes FMVBA to output a common subset T . Using the
masked value, we demonstrate (without revealing the original
secret) that the secret shares corresponding to ACSS instances
from T are all distributed in a degree-t polynomial. Finally,
Pl+1

j interpolates a new polynomial based on the first t + 1
ACSS instances in T .

5 Protocol Design

5.1 AD-MPC Protocol
As shown in Figure 1, our asynchronous dynamic MPC pro-
tocol ΠAD-MPC is divided into three main stages:

Input Stage: During this stage, clients in P 0 provide
their private inputs and additional randomness for circuit
evaluation to the first committee P 1. Specifically, each
client P0

i (for i ∈ [n]) calls FACSS to distribute private
input si. Concurrently, P0

i invokes ΠRand and ΠAprep to
generate random values ([α1

1], ..., [α
1
n]) and Beaver triples

{([a1
1], [b

1
1], [c

1
1]), · · · ,([a1

cm ], [b
1
cm ], [c

1
cm ])} for P 1, where cm

denotes the number of multiplication gates in the subsequent
layer.

Execution Stage: This stage is responsible for circuit eval-
uation, carried out by committees composed of servers. Given
a layered arithmetic circuit C̃, with a depth of d, each commit-
tee P l (for l ∈ [d]) is responsible for the evaluation of C̃l . P l

first evaluates the current circuit, which includes the following
types of gates:

• Addition: To perform [zl ] = [xl ]+ [yl ], Pl
i locally com-

putes zl
i = xl

i + yl
i .

• Addition by Constant: To perform [zl ] = [xl ] + c, Pl
i

locally computes zl
i = xl

i + c.

• Multiplication by Constant: To perform [zl ] = c · [xl ],
Pl

i locally computes zl
i = c · xl

i .

• Multiplication: To perform [zl ] = [xl ] · [yl ], servers in
P l run ΠMult with ([xl ], [yl ]) and triple ([al ], [bl ], [cl ]) as
inputs to get sharing [zl ].

Subsequently, servers in P l (for l ∈ [d−1]) invoke ΠRand and
ΠAprep to generate random values and Beaver triples for the
next committee P l+1. Finally, P l (for l ∈ [d−1]) calls ΠTrans

with [αl
i ] and [zl

i ] (for i ∈ [w]) as inputs to securely transfer
the output to the next committee P l+1, where w denotes the
width of C̃l .

Output Stage: After completing the evaluation of C̃d , P d

invokes ΠTrans to transfer the final output of the circuit to
P 0. Upon receiving these shares, clients in P 0 call ΠRec to
reconstruct the output.

The workflow of our protocol is shown in Figure 2.
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Protocol ΠAD-MPC

(A) Input Stage

1. Each client P0
i (for i ∈ [n]) in P 0 calls FACSS with si as input to generate sharing of [si].

2. Clients in P 0 run ΠRand with n as input to generate random values ([α1
1], ..., [α

1
n]) for the next committee P 1.

3. Clients in P 0 run ΠAprep with cm as input to generate Beaver triples {([a1
1], [b

1
1], [c

1
1]), · · · ,([a1

cm ], [b
1
cm ], [c

1
cm ])} for P 1, where cm is the number of

multiplication gates on the next layer.

(B) Execution Stage

1. Servers in P l(l ∈ [d]) evaluates the current layer:

• Addition: To perform [zl ] = [xl ]+ [yl ], Pl
i locally computes zl

i = xl
i + yl

i .
• Addition by Constant: To perform [zl ] = [xl ]+ c, Pl

i locally computes zl
i = xl

i + c.
• Multiplication by Constant: To perform [zl ] = c · [xl ], Pl

i locally computes zl
i = c · xl

i .
• Multiplication: To perform [zl ] = [xl ] · [yl ], servers in P l run ΠMult with ([xl ], [yl ]) and ([al ], [bl ], [cl ]) as inputs to get sharing [zl ].

2. Servers in P l (for l ∈ [d−1]) run ΠRand with w as input to generate random value ([αl+1
1 ], ..., [αl+1

w ]) for the next committee P l+1, where w is the
width of the next layer.

3. Servers in P l (for l ∈ [d−1]) run ΠAprep with cm as input to generate Beaver triples {([al+1
1 ], [bl+1

1 ], [cl+1
1 ]),· · · ,([al+1

cm ], [bl+1
cm ], [cl+1

cm ])}, where cm is the
number of multiplication gates on the next layer.

4. Servers in P l (for l ∈ [d−1]) run ΠTrans with [αl
i ] and [zl

i ] (for i ∈ [w]) as inputs to securely transfer sharing [zl
i ] to the next committee P l+1.

(C) Output Stage

1. Servers in P d run ΠTrans with [αd
i ] and [zd

i ] (for i ∈ [w]) as inputs to securely transfer sharing [zd
i ] to P 0.

2. Upon receiving sharing [zd
i ] from P d , clients in P 0 run ΠRec with [zd

i ] as input to reconstruct value zd
i and output.

Figure 1: Asynchronous Dynamic MPC

5.2 Building Blocks
This section describes the building blocks required by ΠAprep

and ΠTrans.
Generating random values. We design the protocol ΠRand

to generate random values. The basic idea is that P l employs
the randomization extraction technique RE (see Appendix A
for details) based on the hyper-invertible matrix to generate a
batch of random values for P l+1. The hyper-invertible prop-
erty of this matrix ensures that we can extract n− t uniformly
random and independent secret sharings from n inputs.

Protocol ΠRand

• Input: The number of random values w.
• Output: The shares of random values {[rl+1

1 ], ..., [rl+1
w ]}.

• Procedure:
Committee P l :

1. If w > n− t, servers in P l call ΠRand

⌊ w
n−t

⌋
times using

n− t as input, and then call ΠRand again with an input of
w−

⌊ w
n−t

⌋
. Otherwise, continue with the following steps.

2. Each server Pl
i (for i ∈ [n]) chooses a random element

el
i ← Zq.

3. Pl
i invokes FACSS with el

i as input to P l+1.

Committee P l+1:
4. Request output from FACSS. After receiving n− t valid

request-based delayed ACSS instances (el
i, j , πel

i
) from Pl

i ,

Pl+1
j (for i ∈ [n]) designates these valid instances as Tj and

maintains a set S j to record all received valid instances.

Define predicate P(·) outputs 1 only when |Tj|= n− t and
Tj ∈ S j . Pl+1

j calls FMVBA with (Tj , S j , P(·)) as input.
5. Request output form FMVBA until receiving T , where
|T |= n− t. Servers in P l+1 set [el

i ] = 0 for i /∈ T .
6. Servers in P l+1 calls RE with their shares as inputs to

obtain random values {[rl+1
1 ], ..., [rl+1

w ]}.

Figure 3: Protocol ΠRand

Specifically, each server Pl
i (for i ∈ [n]) initially selects a

random value el
i ← Zq, where Zq is a finite field. Then, Pl

i
calls FACSS with el

i as input to P l+1. Upon receiving valid
ACSS instances through FACSS, Pl+1

j adds these instances to
a set Tj. Let the set S j record all valid instances. For a set
Tk from Pl+1

k , define an external predicate P(·) that outputs 1
if and only if |Tk| = 2t +1 and Tk ∈ S j. When |Tj| = 2t +1,
Pl+1

j calls FMVBA with (Tj, S j, P(·)) as input. Let T be the
output of FMVBA, determines which el

i, j values are considered
valid, setting el

i, j = 0 for any i /∈ T . Servers in P l+1 locally run
RE using a public w-by-n Vandermonde matrix to randomize
the extraction from the seed, The protocol ΠRand is shown in
Figure 3.

Robust reconstruction. The primary function of ΠRec is to
robustly reconstruct a secret from shares provided by servers.
Specifically, servers in P l calls FRBC to broadcast their shares.
Upon receiving at least 2t+1 shares, Pl

i (for i∈ [n]) uses these

7
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Figure 2: The workflow of ΠAD-MPC.

shares to invoke OEC function, till the secret is reconstructed.
The protocol is depicted in Figure 4.

Protocol ΠRec

• Input: The shares [xl ].
• Output: The value xl .
• Procedure:

Committee P l :

1. Server Pl
i (for i ∈ [n]) calls FRBC with xl

i as input.
2. Request output from FRBC. Pl

i continuously receives shares
from FRBC while invoking OEC with these shares as
inputs, till xl is reconstructed.

Figure 4: Protocol ΠRec

Multiplication evaluation. We design protocol ΠMult to
evaluate multiplication during the execution stage. Specif-
ically, when P l evaluates a multiplication gate with inputs
[xl ], [yl ], and a Beaver triple ([al ], [bl ], [cl ]). Each server Pl

i
(for i ∈ [n]) locally computes γl

i = xl
i − al

i and δl = yl
i − bl

i .
Subsequently, P l invokes ΠRec to robustly reconstruct γ and
δ. Once reconstructed, P l calculates the the output [zl ] of
the multiplication gate using [zl ] = [cl ]+ γl [bl ]+δl [al ]+ γlδl .
The protocol ΠMult is shown in Figure 5.

Protocol ΠMult

• Input: Sharing of inputs [xl ] and [yl ], and a Beaver triple
([al ], [bl ], [cl ]).

• Output: Sharing of multiplication [zl ].
• Procedure:

Committee P l :
1. Each server Pl

i locally computes γl
i = xl

i −al
i and

δl
i = yl

i −bl
i .

2. Servers in P l run ΠRec twice, once with [γl ] and once with
[δl ] as inputs, to robustly reconstruct γl and δl .

3. Servers in P l locally compute
[zl ] = [cl ]+ γl [bl ]+δl [al ]+ γlδl to determine the shares of
the multiplication [zl ].

Figure 5: Protocol ΠMult

5.3 Asynchronous Dynamic Preprocessing
Our asynchronous dynamic preprocessing protocol ΠAprep

aims to dynamically generate triples for the following com-
mittee, while avoiding the reconstruction of degree-2t poly-
nomials. ΠAprep consists of the following four main stages:

Sharing random Beaver triples. The first step in ΠAprep is
to share random beaver triples. Pl

i (for i ∈ [n]) first selects two
sets of random triples:

{(al
(i,g),b

l
(i,g),c

l
(i,g)),(x

l
(i,g),y

l
(i,g),z

l
(i,g))}g∈[cm]

where cl
(i,g) = al

(i,g) · b
l
(i,g), zl

(i,g) = xl
(i,g) · y

l
(i,g) and cm is the

number of multiplication gates for C̃l+1. We utilize the stan-
dard "sacrificing trick" [24, 27], which involves sacrificing the
latter triple to verify that indeed al

(i,g) ·b
l
(i,g) = cl

(i,g). Pl
i calls

FACSS with these triples as inputs to P l+1. Then servers in P l

run ΠRand with n · cm as inputs to generate random values [rl
i ]

for P l+1.
Upon receiving valid ACSS instances and random shar-

ings, since FACSS ensures that these shares are distributed
over degree-t polynomials, P l+1 no longer needs to validate
these instances but needs to verify that al

(i,g) · b
l
(i,g) = cl

(i,g).

Specially, each server Pl+1
j runs ΠRec to reconstruct rl

i . Pl+1
j

subsequently locally computes ρl
(i,g), j = rl

i · al
(i,g), j − xl

(i,g), j

and σl
(i,g), j = bl

(i,g), j− yl
(i,g), j. ‘ Servers in P l+1 run ΠRec to

reconstruct ρl
(i,g) and σl

(i,g). Pl+1
j locally computes τl

(i,g), j, fol-

lowed by executing ΠRec to reconstruct τl
(i,g).

Agreeing on a Common Subset. If τl
(i,g) = 0 for g ∈ [cm], it

proves that indeed al
(i,g) ·b

l
(i,g) = cl

(i,g) without revealing any

private information. Pl+1
j puts index i into a set Tj. Upon re-

ceiving 2t+1 valid triples, let the set S j record all valid shares.
For a set Tk provided by Pl+1

k , define an external predicate

8



Protocol ΠAprep

• Input: The number of multiplication gates cm.
• Output: The random Beaver triples {([ul+1

1 ], [vl+1
1 ], [wl+1

1 ]), · · · ,([ul+1
cm ], [vl+1

cm ], [wl+1
cm ])}

• Procedure:
Sharing Random Beaver Triples:
Committee P l :

1. Each server Pl
i (for i ∈ [n]) chooses random triples {(al

(i,g),b
l
(i,g),c

l
(i,g))}g∈{1,···cm}, where cl

(i,g) = al
(i,g) ·b

l
(i,g).

2. Pl
i chooses random triples {(xl

(i,g),y
l
(i,g),z

l
(i,g))}g∈{1,···cm}, where zl

(i,g) = xl
(i,g) · y

l
(i,g).

3. Pl
i calls FACSS with (al

(i,g),b
l
(i,g),c

l
(i,g)) and (xl

(i,g),y
l
(i,g),z

l
(i,g)) as inputs to P l+1.

4. Servers in P l run ΠRand with n as inputs to generate random values [rl+1
i ] (for i ∈ [n]).

Committee P l+1:

5. Request output from FACSS. Upon receiving valid shares {(al
(i,g), j,b

l
(i,g), j,c

l
(i,g), j),(x

l
(i,g), j,y

l
(i,g), j,z

l
(i,g), j),r

l+1
i, j }i∈[n],g∈[cm ], Pl+1

j runs ΠRec to

reconstruct rl+1
i .

6. Pl+1
j locally computes ρ

l+1
(i,g), j = rl+1

i ·al
(i,g), j− xl

(i,g), j , σ
l+1
(i,g), j = bl

(i,g), j− yl
(i,g), j .

7. Servers in P l+1 run ΠRec to reconstruct ρ
l+1
(i,g) and σ

l+1
(i,g).

8. Pl+1
j locally computes τ

l+1
(i,g), j = rl+1

i · cl
(i,g), j− zl

(i,g), j−σ
l+1
(i,g) · x

l
(i,g), j−ρ

l+1
(i,g) · y

l
(i,g), j−ρ

l+1
(i,g) ·σ

l+1
(i,g).

9. Servers in P l+1 run ΠRec to reconstruct τ
l+1
(i,g).

Agreeing on a Common Subset:
Committee P l+1:

10. If τ
l+1
(i,g) = 0 for g ∈ {1, · · ·cm}, Pl+1

j puts index i into a set Tj . Upon receiving n− t valid indexes, define predicate P(·) outputs 1 only when

|Tj|= n− t and Tj ∈ S j . Pl+1
j calls FMVBA with (Tj , S j , P(·)) as input.

11. Request output form FMVBA until receiving T , where |T |= n− t.

Extracting Random Polynomials:
Committee P l+1:

12. Pl+1
j sets ul+1

(i,g), j = al
(i,g), j , vl+1

(i,g), j = bl
(i,g), j and wl+1

(i,g), j = cl
(i,g), j , with i = {1, · · · , t +1}.

13. Pl+1
j locally computes ul+1

(k,g), j = Lagrange(t +1,{(1,ul+1
(1,g), j), · · · ,(t +1,ul+1

(t+1,g), j)},k) and

vl+1
(k,g), j = Lagrange(t +1,{(1,vl+1

(1,g), j), · · · ,(t +1,vl+1
(t+1,g), j)},k) with k = {t +2, · · · ,2t +1}.

14. Pl+1
j computes dl+1

(i,g), j = ul+1
(i,g), j−al

(i,g), j , el+1
(i,g), j = vl+1

(i,g), j−bl
(i,g), j with i = {t +2, · · · ,2t +1}.

15. Servers in P l+1 run ΠRec to reconstruct dl+1
(i,g) and el+1

(i,g).

16. Pl+1
j locally computes wl+1

(i,g), j = dl+1
(i,g) · e

l+1
(i,g)+dl+1

(i,g) ·b
l
(i,g), j + el+1

(i,g) ·a
l
(i,g), j + cl

(i,g), j , with i = {t +2, · · · ,2t +1}.

Output Random Triples:
Committee P l+1:

17. For g ∈ [cm], Pl+1
j locally computes ul+1

g, j = Lagrange(t +1,{(1,ul+1
(1,g), j), · · · ,(t +1,ul+1

(t+1,g), j)},β),
vl+1

g, j = Lagrange(t +1,{(1,vl+1
(1,g), j), · · · ,(t +1,vl+1

(t+1,g), j)},β) and wl+1
g, j = Lagrange(2t +1,{(1,wl+1

(1,g), j), · · · ,(2t +1,wl+1
(2t+1,g), j)},β), where

β ∈ Zq\{1, · · · ,2t +1} is a non-zero value.
18. Servers in P l+1 output {([ul+1

g ], [vl+1
g ], [wl+1

g ])}g∈[cm ].

Figure 6: Protocol ΠAprep

P(·) that outputs 1 if and only if |Tk| = 2t + 1 and Tk ∈ S j.
Pl+1

j calls FMVBA with (Tj, S j, P(·)) as input. Let T be the
output of FMVBA, and |T |= 2t +1. From this, we agree on a
common subset T , consisting of 2t +1 valid multiplication
triples.

Extracting Random Triples. Since each triple within the set
T is generated independently by potentially corrupted servers
in P l , T may contain triples generated by such servers. These
triples are used to evaluate the multiplication, which could
leak private information. Therefore, we need additional steps
to extract uniformly random and independent triples from the
set T .

Inspired by [9, 20, 24], we use elements from the set T to
interpolate three sets of polynomials: Ug(·), Vg(·) and Wg(·)
for g ∈ [cm], where Wg(·) =Ug(·) ·Vg(·). Both Ug(·) and Vg(·)
are degree-t polynomials, while Wg(·) is a degree-2t polyno-
mial. Pl+1

j locally sets ul+1
(i,g), j = al

(i,g), j, vl+1
(i,g), j = bl

(i,g), j and

wl+1
(i,g), j = cl

(i,g), j, with i ∈ {1, · · · , t + 1}. Interpolating Ug(·)
and Vg(·) can be done directly through the first t +1 points,
but Wg(·) is a degree-2t polynomial, needs 2t + 1 distinct
points to interpolate the polynomial. Therefore, we sacrifice
additional t triples from T to evaluate Wg(i) = Ug(i) ·Vg(i)
with i ∈ {t +2, · · · ,2t +1}. Specially, using Lagrange inter-
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polation Lagrange (see Appendix B for details), servers in
P l+1 can obtain their respective shares of points on the poly-
nomials Ug(·) and Vg(·). For i ∈ {t +2, · · · ,2t +1}, let ul+1

(i,g)

and vl+1
(i,g) represent point i on Ug(i) and Vg(i). Afterwards,

servers in P l+1 consume additional t triples from T to com-
pute wl+1

(i,g) = ul+1
(i,g) · v

l+1
(i,g). Given that T contains at most t

triples from A , A cannot uniquely interpolate degree-t polyno-
mials Ug(·) and Vg(·). As a result, we obtain three uniformly
random polynomials Ug(·), Vg(·) and Wg(·).

Output Random Triples. For g ∈ [cm], servers in P l+1 in-
voke Lagrange on point β to get triples (ul+1

g , vl+1
g , wl+1

g ),
where β is a predefined value known by servers, set to 2t +2
for simplicity. By executing this four-step process, P l+1 suc-
cessfully acquires the necessary triples for C̃l+1. The work-
flow of ΠAprep is illustrated in Figure 6.

5.4 Asynchronous Committee Handovers

To ensure consistent polynomial interpolation and guaran-
teed output delivery in asynchronous networks, we design the
protocol ΠTrans. The detailed process of ΠTrans is shown in
Figure 7.

Robust Secure Transfer. Let [zl
k] represents the output of

the k-th gate in C̃l . Upon receiving random sharing [αl
k] from

ΠRand, each server Pl
i (for i ∈ [n]) locally computes masked

share ml
k,i = zl

k,i +αl
k,i, where zl

k,i and αl
k,i are shares of [zl

k]

and [αl
k] held by Pl

i . Pl
i calls FACSS with zl

k,i as input to P l+1.
Meanwhile, Pl

i runs FCommit with αl
k,i to generate commit-

ment π
αl

k,i
. Then Pl

i runs FRBC with (ml
k,i, π

αl
k,i

) to P l+1.

Upon receiving a valid ACSS instance (zl
(k,i), j, πzl

k,i
) from

Pl
i through FACSS, where zl

(k,i), j represents the share sent to

Pl+1
j of secret zl

(k,i), and πzl
k,i

is the commitment to zl
(k,i). Pl+1

j

invokes FCommit with (πzl
k,i

, π
αl

k,i
, ml

k,i) as input. The goal of
this step is to check the relationship between the masked
share ml

k,i and the secret share zl
k,i without revealing zl

k,i, i.e.,
ml

k,i = zl
k,i +αl

k,i. We can implement the above steps using the
Pedersen commitment [43] and the ACSS protocol [28] based
on it. If FCommit outputs 1, Pl+1

j adds i to a set LTj. When
|LTj| = 2t + 1, Pl+1

j locally runs OEC to identify a set GTj
from LTj that contains 2t +1 masked shares that interpolate
a degree-t polynomial p j(·) satisfying p j(0) = ml

k. Since the
random sharing [αl

k] is uniformly random and independent, re-
constructing the masked value ml

k does not reveal the original
secret zl

k. Moreover, since our previous steps have proven the
relationship between the masked share and the secret share,
every honest server Pl+1

j reconstructing ml
k with GTj also im-

plies that the original secret zl
k can be reconstructed with the

secret shares corresponding to the masked shares in that set
as well. The next step is to agree on a common subset. Pl+1

j
maintains the set LTj to record all received valid shares. For

a set GTk provided by Pl+1
k , define an external predicate P(·)

that outputs 1 if and only if |GTk| = 2t + 1 and GTk ∈ LTj.
Pl+1

j calls FMVBA with (GTj, LTj, P(·)) as input. Let T be the
output of FMVBA, servers select the first t +1 elements from
the set T to form the common subset CS. Pl+1

j runs Lagrange
based on CS to get a new share zl+1

k, j on [zl+1
k ] that satisfies

zl
k = zl+1

k .

6 Implementation and Evaluation

6.1 Implementation

We implement a prototype of ΠAD-MPC using over 5000 lines
of Python code. We use bls123811 for elliptic curve operations
and asyncio2 for asynchronous operations. Our prototype
supports the evaluation of arbitrary layered arithmetic circuits
over a field Zq. Since Fluid MPC [19] is not open-source, we
implement it to facilitate subsequent comparison.

In our implementation, we implement FCommit and im-
plement the remaining ideal functionalities by referring to
DXKR23 [28] to optimize overhead. DXKR23 relies on the
Pedersen commitment [43] to implement its ACSS protocol,
achieving a communication overhead of O(κn2), where κ rep-
resents the security parameter. Therefore, DXKR23 achieves
computational security, and our protocol inherits this security
property from DXKR23. If we use a statistically secure ACSS
protocol [24] to instantiate FACSS, our protocol can achieve
statistical security, but at the cost of increased communication
overhead to O(κn4 + n5). Furthermore, given the Pedersen
commitment is additively homomorphic, we leverage it to
instantiate FCommit, which satisfies the Verify function.

For the committee election, similar to Fluid MPC, we omit
the election function, allowing P l to directly determine the
next committee P l+1. There are multiple methods for select-
ing which servers will be in each committee, we want our
evaluation to be independent of these specific selection meth-
ods.

6.2 Evaluation Setup

In our evaluation, the client set Nc contains at most tc cor-
rupted parties, while the server set (i.e., the committee) Ns
contains at most ts corrupted parties. Our evaluation setup is
designed to answer the following questions:

• What is the latency of each sub-protocol?

• What is the impact of circuit shape on the latency of our
protocols?

• Can ΠAD-MPC achieve our goals in comparison to Fluid
MPC and HoneybadgerMPC?

1https://github.com/zkcrypto/pairing
2https://github.com/python/cpython

10



Protocol ΠTrans

• Input: The shared value [zl
k], the random value [αl

k] (for k ∈ [w]).
• Output: The sharing [zl+1

k ] after updating the polynomial.
• Procedure:

Committee P l :

1. Pl
i (for i ∈ [n]) locally computes ml

k,i = zl
k,i +αl

k,i.
2. Pl

i calls FCommit with αl
k,i as input to get commitment π

αl
k,i

.

3. Pl
i invokes FRBC with ml

k,i and π
αl

k,i
as inputs to P l+1.

4. Pl
i invokes FACSS with zl

k,i as input to P l+1.

Committee P l+1:

5. Request output from FACSS. Upon receiving valid ACSS instance (zl
(k,i), j , πzl

k,i
) from Pl

i , Pl+1
j invokes FCommit with (πzl

k,i
, π

αl
k,i

, ml
k,i) as input,

executing w times in parallel. If FCommit outputs all 1, Pl+1
j puts i into a set LTj . Otherwise, Pl+1

j discards the share zl
i, j .

6. When |LTj|= 2t +1, Pl+1
j calls OEC with LTj as input to find a set GTj that contains 2t +1 valid shares that interpolate a polynomial p j(·)

satisfying p j(0) = ml .
7. Define predicate P(·) outputs 1 only when |GTj|= n− t and GTj ∈ LTj . Pl+1

j calls FMVBA with (GTj , LTj , P(·)) as input.
8. Request output form FMVBA until receiving T , where |T |= n− t. Servers in P l+1 select the first t +1 elements from the set T to form the

common subset CS. Pl+1
j locally computes zl+1

k, j = Lagrange(|CS|,{(1,zl
(k,1), j), · · · ,(|CS|,zl

(k,|CS|), j)}, j)

Figure 7: Protocol ΠTrans

• What is the impact of circuit size on the latency of
ΠAD-MPC, Fluid MPC and HoneybadgerMPC?

For the first question, we fix a layered arithmetic circuit
and vary the committee size to test the latency of each
sub-protocol, thereby identifying the bottleneck of the main-
protocol ΠAD-MPC. Specifically, we design a rectangular arith-
metic circuit with depth d and width w, where the num-
ber of multiplication gates in each layer is ⌊w/2⌋, and the
rest are composed of linear gates such as addition. For
l ∈ {1, · · · ,d − 1} and k ∈ {1, · · · ,w− 1}, the input of the
circuit gate zl+1

k comes from zl
k and zl

k+1, and the input of zl+1
w

comes from zl
w and zl

w−1. We fix the circuit’s inputs to 2w,
provided by clients.

For the second question, we modify the shape of the cir-
cuit to discuss its impact on our protocols. Specifically, we
generate rectangular circuits and adjust their depth and width
simultaneously, but keep the number of circuit gates consis-
tent across different circuits. The rest of the circuit settings
are the same as above. Under this condition, we measure the
latency of main-protocol and sub-protocols under the same
committee settings.

For the third question, we mainly focus on the impact of
asynchronous and dynamic settings on guaranteed output de-
livery. We compare ΠAD-MPC with Fluid MPC to analyze the
impact of asynchronous setting on guaranteed output delivery.
Given that Fluid MPC assumes a synchronous network, in an
asynchronous network, the committee P l+1 may not receive
all shares from P l . This could cause P l+1 to become stuck
during the committee handover, preventing further circuit
evaluation. Therefore, we modify Fluid MPC to accommo-

date asynchronous networks. Specifically, in the semi-honest
adversary model, we allow P l+1 to proceed with the circuit
evaluation after receiving n− t shares from P l (Fluid MPC
1.0). Furthermore, under the malicious adversary model, we
enhance it to allow P l+1 to call the MVBA protocol, ensuring
the consistency of the set used for Lagrange interpolation.
Each committee contains up to t corrupted parties. We sim-
ulate these corrupted parties implementing additive attacks
during committee handovers and observe the correctness of
the protocol.

Additionally, we compare ΠAD-MPC with Honeybad-
gerMPC to discuss the impact of dynamic setting on guaran-
teed output delivery. To maintain consistency in other prop-
erties, we replace its non-robust offline phase with our sub-
protocol ΠAprep to implement the fully asynchronous Honey-
badgerMPC protocol. Under the malicious adversary model,
we establish a single committee to evaluate the circuit, where
the adversary can control up to t servers. Subsequently, we ran-
domly select other servers to remain silent during the circuit
evaluation, simulating the impact of dynamic party behavior
on guaranteed output delivery. In the malicious adversary
model, our main-protocol ΠAD-MPC runs under asynchronous
and dynamic settings. we observe whether it can achieve
guaranteed output delivery in these conditions. For the final
question, we fix the circuit width and committee size, and test
the latency of protocols (ΠAD-MPC, Fluid MPC and Honey-
badgerMPC) by changing the circuit depth.

We deploy ΠAD-MPC along with Fluid MPC and Honey-
BadgerMPC, across a Wide Area Network (WAN) using 20
C6.2XLARGE32 instances from different cities. To simulate
multiple parties, we configure each instance to run the pro-
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tocols using different ports. Each instance is equipped with
a 16-Core CPU, 32GB memory, and 50GB SSD, and is con-
figured with Debian 12.0. The bandwidth capacity of each
instance is 100Mbps. We simulate twenty times and present
the average for each data point.

6.3 Evaluation Results
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Figure 8: The latency of sub-protocols. We fix the circuit
depth d = 6 and width w = 100, and change the committee
size n = 4,8,12,16,20 to evaluate the latency of each sub-
protocol. The ratio of multiplication gates to linear gates in
each layer is 1:1. Exec represents the circuit evaluation.

6.3.1 The latency of each sub-protocol

We set up a layered arithmetic circuit with depth d = 6 and
width w = 100, and test the total latency of each sub-protocol
under different committee sizes (n = 4,8,12,16,20). The ra-
tio of multiplication gates to linear gates in each layer is 1:1.
The results are shown in Figure 8. We observe that ΠAprep con-
sistently accounts for the largest proportion of latency, which
gradually increases from 62.3% to 72.3% as the committee
size increases. The reason ΠAprep is so time-consuming is
that each server in P l independently generates Beaver triples
required for the next committee P l+1, as well as an equal
number of additional triples to verify the correctness of these
Beaver triples. Consequently, each committee P l needs to
generate a total of n ·w triples. By calling ΠAprep, we can
obtain correct triples while maintaining optimal resilience in
asynchronous networks, without relaxing network assump-
tions during the preprocessing [39]. Compared to ΠAprep, the
latency of the circuit evaluation Exec is significantly smaller.
When committee size is 20, the delay is reduced by approxi-
mately 117.18s. Therefore, our protocol will perform better
in circuits with sparse multiplication gates.

6.3.2 The impact of circuit shape on latency

We fix the number of gates in the circuit to w · d =
600,960,1200 and change the depth d and the correspond-
ing width w to evaluate the latency of ΠAD-MPC. Figure 9(a)

shows our results, with the protocol latency gradually increas-
ing as the circuit depth increases. Compared to d = 2, when
d = 10, with w ·d = 600,960 and 1200, the protocol delays
increased by approximately 2.00s, 3.99s, and 6.09s, respec-
tively. To explain the reasons, we measure the latency of each
sub-protocol when w ·d = 600, as shown in Figure 9(b). We
find that the latency of ΠAprep increases with the number of
circuit layers, while the latency of ΠTrans decreases. Although
both ΠAprep and ΠTrans have a communication complexity
of O(κn2 +κn3), the coefficient in front of κn3 for ΠAprep is
greater than that for ΠTrans. Consequently, the overall latency
tends to increase as the number of circuit layers increases.
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Figure 9: (a) The latency of ΠAD-MPC under different circuit
shapes. We set the number of gates in the circuit to 600, 960
and 1200 (i.e., w ·d = 600,960,1200) and then vary both the
depth d and width w simultaneously to test the latency of
ΠAD-MPC under committee size n = 16. (b) The latency of
sub-protocols for each circuit when w ·d = 600.

6.3.3 The impact of asynchronous and dynamic settings
on guaranteed output delivery

We set the circuit width w = 100, depth d = 6, and committee
size n = 16, allowing for up to t = 5 corrupted parties. We
then evaluate the progress of different protocols (ΠAD-MPC,
Fluid MPC 1.0, Fluid MPC 2.0 and HoneybadgerMPC). The
7-th layer represents the output stage where clients receive
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Figure 10: The progress of ΠAD-MPC, Fluid MPC 1.0, Fluid
MPC 2.0 and HoneybadgerMPC. We fix the circuit width
w = 100, the circuit depth d = 6, and the committee size
n = 16. The (7)-th layer represents the phase where clients
receive shares and attempt to reconstruct them.

and verify shares. Note that Fluid MPC adds an additional
layer (the 0-th layer) to compute a MAC of each client input
and incrementally compute two random linear combinations.
For HoneybadgerMPC, we simulate an honest server going
offline during the evaluation of the 4-th layer and observe the
protocol’s behavior. The results are shown in Figure 10.

While running Fluid MPC 1.0, we observe that at the 1-
th layer, different servers in P 1 produced six distinct sets
(Warning: Inconsistent sets!), leading to the interpolation of
six different degree-t polynomials, though their constant terms
remain the original secrets. By the 2-th layer, each server
in P 2 uses a set for interpolation that includes at least two
polynomials from P 1. This results in new polynomials whose
constant terms are no longer the original secrets, causing
incorrect outputs (Error: MAC verification failed!). In all
twenty of our tests, inconsistent sets are found at the 2-th
layer, leading to incorrect outputs. This indicates that Fluid
MPC 1.0 cannot achieve guaranteed output delivery in an
asynchronous network.

When running Fluid MPC 2.0, we find that although all
servers in the committee can interpolate new polynomials
from a consistent set, this set already includes additive errors
from corrupted parties (Warning: Corrupted parties!), which
leads to wrong outputs (Error: MAC verification failed!). This
demonstrates that merely adding asynchronous primitives
cannot achieve guaranteed output delivery.

For HoneybadgerMPC, the protocol terminates because
when an honest server goes offline, the remaining honest
servers cannot call OEC to interpolate a correct polynomial
during the multiplication evaluation (Error: Interpolation
failed!). This indicates that considering dynamic settings can
affect protocols that were originally able to guarantee output
delivery. The reason for the steeper progress of Honeybad-
gerMPC is that its primary overhead is incurred during the
preprocessing phase, which involves calling ΠAprep.

In our main-protocol ΠAD-MPC, although it operates in asyn-
chronous and dynamic settings, it still achieves guaranteed
output delivery, thus meeting our goals set out in Section 3.1.
Moreover, ΠAD-MPC is only slower by approximately 8.693s
and 5.894s compared to Fluid MPC 1.0 and 2.0, respectively.
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Figure 11: The latency of ΠAD-MPC, Fluid MPC 1.0, Fluid
MPC 2.0 and HoneybadgerMPC. We fix the circuit width
w = 100 and committee size n = 16, and change the circuit
depth d = 2,4,6,8,10.

6.3.4 The impact of circuit size on latency

We also test the impact of different circuit sizes on these
protocols. We fix the circuit width w = 100, the committee
size n = 16, and vary the circuit depth d to 2, 4, 6, 8, and 10.
The results are shown in Figure 11. We find that the overhead
of all protocols increases linearly with increasing circuit depth,
indicating that these protocols maintain stable processing
efficiency across each layer. The latency for both Fluid MPC
1.0 and 2.0 is higher than that of HoneybadgerMPC, indicating
that the dynamic setting incurs higher overhead compared to
the asynchronous setting. This observation also explains why
the slope of the curve for ΠAD-MPC is steeper.

7 Conclusion

In this paper, we proposed ΠAD-MPC, a fully asynchronous
dynamic MPC protocol that achieves guaranteed output de-
livery with optimal resilience (i.e., n = 3t + 1). To the best
of our knowledge, ΠAD-MPC is the first dynamic MPC proto-
col designed for asynchronous networks. We formally prove
the security of ΠAD-MPC within the Universal Composabil-
ity (UC) framework. Furthermore, we provide a prototype
implementation and evaluate its performance using geograph-
ically distributed nodes. The result shows that ΠAD-MPC and
Fluid MPC exhibit comparable runtimes, ΠAD-MPC achieves
guaranteed output delivery, whereas Fluid MPC only achieves
security with abort.
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Ethics Considerations and Open Science Policy

Research Ethics Considerations

We ensure that our research adheres to the four ethical prin-
ciples outlined in the Menlo Report: "Respect for Persons,"
"Beneficence," "Justice," and "Respect for Law and Public In-
terest." The specific ethical considerations are detailed below:

• Respect for Persons: This research has been approved
by all authors, developers, and contributors involved.
Since our research focuses on the MPC protocol, which
does not involve human subjects, no additional volun-
teers were required. All external code referenced in our
experiments has been appropriately cited with links pro-
vided in the paper.

• Beneficence: Our research does not involve external data,
thereby ensuring that there is no risk of privacy violations
for individuals or organizations. We also confirm that the
deployment of our protocol complies with all relevant
laws.

• Justice: The interests of all authors, developers, and con-
tributors involved in this research were fully considered
to ensure fairness and equity.

• Respect for Law and Public Interest: We ensure that
our research complies with all relevant laws and regula-
tions. Additionally, we have open-sourced our code and
provided detailed descriptions of our protocols in the
paper, ensuring compliance, transparency, and account-
ability.

Compliance with Open Science Policy

The research adheres to the principles of open science,
ensuring transparency, replicability, and accessibility. We
have open-sourced our code and datasets, allowing other re-
searchers to replicate our experiments and validate our results.
Furthermore, our paper includes detailed descriptions of pro-
tocols, algorithms, and experimental setups, ensuring that the
processes involved are clear and understandable to others.
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A Randomness Extraction

We utilize the randomness extraction technique based on
the hyper-invertible matrix [6]. A hyper-invertible matrix is
one where every square sub-matrix is invertible. By utilizing
a hyper-invertible matrix, parties can extract n− t uniform
random values from n input secrets through local linear oper-
ations. Taking {[x1], · · · [xn]} as our n input sharings, parties
use the following Vandermonde Matrix and locally compute
the subsequent formula to obtain n− t random sharings:

 [r1]
...

[rn−t ]

=


1 ω1 · · · ω

n−1
1

1 ω2 · · · ω
n−1
2

...
...

. . .
...

1 ωn−t · · · ω
n−1
n−t



[s1]
[s2]

...
[sn]

 (1)

Since the matrix is hyper-invertible, if at least n− t input
sharings are uniformly random and independent, we can en-
sure that n− t output sharings are also uniformly random and
independent. We refer to the randomness extraction technique
as RE and will employ this technique in subsequent protocols.

B Computing Linear Functions of t-sharings

t-sharings are linear. Specifically, given k t-sharings
{[x1],· · · ,[xk]} and a publicly known linear function g :
Fk → Fl , where g(x1, · · · ,xk) = (y1, · · · ,yl), it holds that
g([x1], · · · , [xk]) = ([y1], · · · , [yl ]). Each party Pi ∈ P can
locally compute (y1,i, · · · ,yl,i) = g(x1,i, · · · ,xk,i), where
{x1,i,· · · ,xk,i} are shares held by Pi.

Our protocol employs the standard Lagrange’s polynomial-
evaluation function Lagrange to compute a "new" point
on a polynomial based on "old" points [24]. Specifically,
Lagrange takes a set K as input, which contains |K | dis-
tinct value pairs {(x1, y1),· · · ,(x|K |, y|K |)}. Let p(·) be a
degree-(|K | − 1) polynomial that satisfies p(xi) = yi. For
x j ∈ Zq\{x1, · · · ,x|K |}, by calling the function Lagrange, we
can obtain a corresponding y j such that p(x j) = y j holds.
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Here, there exist publicly known Lagrange’s coefficients [2]
{c1,· · · ,c|K |} associated with {x1, · · · ,x|K |,x j} which satisfy
y j = c1 · x1 + · · ·+ c|K | · x|K |. We represent this computation
as follows:

y j = Lagrange(|K |,{(x1,y1), · · · ,(x|K |,y|K |)},x j) (2)

C Robust Interpolation

Our protocol utilizes the online error-correction (OEC) pro-
tocol [7, 16] for robust interpolation. Consider a degree-t
polynomial p(·), where p(0) = s. In the protocol, every party
sends its share to each other. Parties then invoke the Reed-
Solomon (RS) error-correction procedure on the received
shares. If t < n/3, parties can correct the received corrupt
shares and reconstruct a new degree-t polynomial p′(·), sat-
isfying p′(·) = p(·) and p′(0) = s. We denote the resultant
protocol as OEC and employ it in our protocols.

D Some Ideal Functionalities

Figure 12 shows our ideal functionality FACSS, which captures
the properties we propose. implementations of the ACSS pro-
tocol are available in [24, 28, 29], so we omit their instances
for brevity.

Ideal Functionality FACSS

FACSS proceeds as follows, running with parties Set= {Pl
s , Pl+1

1 , · · · ,
Pl+1

n } and an adversary S , where Pl
s represents the sender in committee

P l .
• Upon receiving (dealer, ACSS, id, p(·)) from Pl

s , proceed as
follows:

– If p(·) is a degree-t polynomial, store (p(0), πp(0)), where
πp(0) is a unused identifier to represent p(0). Generate a
request-based delayed output (Pl

s , ACSS, id, p(i), πp(0)) for
each Pl+1

i ∈ Set.
– If p(·) is not a degree-t polynomial, generate a

request-based delayed output (Pl
s , ACSS, id, ⊥) for each

Pl+1
i ∈ Set.

Figure 12: Ideal Functionality FACSS

The ideal functionality is shown in Figure 13. Bracha [13]
proposed an elegant RBC protocol, and Choudhury [24] gave
a UC proof of their protocol.

Ideal Functionality FRBC

FRBC proceeds as follows, running with parties Set and an adversary S .
Assume that Pc is the set of corrupted parties, where |Pc| ≤ t.

• Upon receiving (sender, RBC, id, m) from Pi, send (Pi, RBC, id,
m) to S and generate a request-based delayed output (Pi, RBC, id,
m) for each Pj ∈ Set\{Pc,Pi}.

Figure 13: Ideal Functionality FRBC

Figure 14 illustrates the ideal functionality FMVBA, which cap-
tures the aforementioned properties. While numerous MVBA
protocol implementations already exist (e.g., [28, 29, 36]), we
will omit specific details here for brevity.

Ideal Functionality FMVBA

FMVBA proceeds as follows, running with parties Set and an adversary S .
Assume that P l

c is the set of corrupted parties, where |P l
c | ≤ t.

• Upon receiving (MVBA, id, LTi, GT , P(·)) from Pi ∈ Set, where
GT represents a public set accessible to all parties. If
P(LTi,GT ) = 1, record LTi. Otherwise, ignore the message.

• After recording n− t LTi that satisfy predicate P(·), select a set T
from these valid sets and generate a request-based delayed output
T for all parties.

Figure 14: Ideal Functionality FMVBA

In our paper, we leverage the standard commitment function-
ality, denoted as FCommit in Figure 15.

Ideal Functionality FCommit

FCommit proceeds as follows, running with parties Set and an adversary
S .

• Upon receiving (Commit, id, m, πm) from Pi ∈ Set, where πm is a
previously unused identifier, store (id, m, πm), and send (id, πm) to
all parties.

• Upon receiving (Verify, id, πx, πy, z) from Pi ∈ Set, retrieve x and
y, check whether z = x+ y. If the check passes, output 1 to all
parties. Otherwise, output 0 to all parties.

Figure 15: Ideal Functionality FCommit

E Security Analysis

Security Model. We follow the dynamic MPC model intro-
duced by [12, 19, 44], based on the UC framework [17, 18].
To capture the asynchronous setting, we refer to the models
in [24, 25, 35]. Specifically, to model the scenario where an
adversary can control when each honest party receives the out-
put from an ideal functionality F , we introduce the concept of
activations. When F has an output for some parties, the party
requests F for output, and the adversary can instruct F to
delay the output. The party will eventually receive the output
within a polynomial number of activations. As in [24, 25, 35],
we use the term F sends a request-based delayed output to
Pi to describe such behavior.
Our ideal functionality, FAD-MPC, depicted in Figure 16, op-
erates over a finite field Zq. The functionality is initialed by
clients P 0 through an Init input, with the current layer i and
committee P i controlled by variable i; the first committee
P 1 is determined by P 0. P 0 provides secrets through Input,
assigning each variable xi a public identifier idxi . During the
execution stage, the committee evaluates addition and multi-
plication by inputting Add and Multiply, respectively. The
current committee inputs Next-Committee to determine the
following committee. Finally, P 0 retrieves the result by in-
putting Output.
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Ideal Functionality FAD-MPC

Parameters: Finite field Zq where q is prime, the total number of clients
P 0 and each committee P is n = 3t +1 where t is the number of
corrupted parties. Each variable x used in the computation has a public
identifier idx.
Init: On input (Init,P ) from every C j ∈ C , where each P0

i sends the
same set P , initialize i = 1, P 1 = P as the first active committee.
Generate a request-based delayed output (Init,P 1).
Input: Upon receiving (Input, idx j ,x j) from C j ∈ C , and (Input, idx j )

from all other parties in P 0, store the pair (idx j ,x j). Generate a
request-based delayed output (Input, idx j ).
Next-Committee: Upon receiving (Next-Committee, P ) from every
Pi

j ∈ P i, where each Pi
j sends the same set P , sets i = i+1, P i = P .

Generate a request-based delayed output (Next-Committee,P i).
Add: Upon receiving (Add, idx, idy, idz) from every Pi

j ∈ P i, compute
z = x+ y and store (idz,z). Generate a request-based delayed output
(Add, idx, idy, idz).
Multiply: Upon receiving (Multiply, idx, idy, idz) from every Pi

j ∈ P i,
compute z = x · y and store (idz,z). Generate a request-based delayed
output (Multiply, idx, idy, idz).
Output: Upon receiving (Output, idz) from every C j ∈ C , where idz has
been stored previously, retrieve (idz, z) and output (Output, idz, z).

Figure 16: Ideal Functionality FAD-MPC

Lemma 1. The output of protocol ΠRand is simulatable with
random values.

Proof. In the committee P l , the value zl
i chosen by each hon-

est server Pl
i is not known to the adversary A . According to

the security of Shamir secret sharing, the t shares of [zl
i ] from

each honest dealer Pl
i received by corrupted servers in P l+1

are uniformly random and independent. In an asynchronous
network, the completeness property of FACSS ensures that all
honest servers in P l+1 obtain ACSS instances from the same
degree-t polynomial, even if the dealer in P l is corrupted. The
termination property of FMVBA ensures that all honest servers
in P l+1 can terminate, and the agreement and external valid-
ity properties of FMVBA ensure that all honest servers agree
on an output T from FMVBA and |T | = n− t. Randomness
extraction RE can extract n− t independent and uniformly
random values from the set T .

Lemma 2. The correctness of Protocol ΠRec is assured. As-
suming the original secret is z, upon calling ΠRec, the output
z′ obtained by all honest parties should satisfy z′ = z.

Proof. The agreement and totality properties of FRBC guar-
antee that all honest parties receive shares broadcast by their
honest counterparts. Therefore, each honest party will receive
at least 2t+1 correct shares. The correctness property of OEC
guarantees that from these shares, each honest party can in-
terpolate the correct degree-t polynomial, where the constant
term is the original secret.

Lemma 3. The output of protocol ΠAprep is simulatable with
random values.

Proof. The proof idea in the sharing random Beaver triples
phase is similar to Lemma 1. The triples (al

(i,g), bl
(i,g), cl

(i,g))

and (xl
(i,g), yl

(i,g), zl
(i,g)) chosen by each honest server Pl

i in P l

are not known to the adversary A . By the security of Shamir
secret sharing, any t shares of ([al

(i,g)], [b
l
(i,g)], [c

l
(i,g)]) and

([xl
(i,g)], [y

l
(i,g)], [z

l
(i,g)]) from each honest dealer Pl

i received by

corrupted servers in P l+1 are uniformly random and indepen-
dent. The completeness of FACSS ensures that honest servers
in P l+1 only receive shares that are correctly distributed on a
degree-t polynomial. Lemma 1 ensures that the random value
generated by ΠRand are perceived as uniformly random and
independent from the A’s standpoint. Servers in committee
P l+1 invoke OEC to recover the random value rl

i . Following
this step, in line with Lemma 2, the integrity of rl

i is verified.
Finally, the protocol sacrifices the triple (xl

(i,g),y
l
(i,g),z

l
(i,g)) to

confirm cl
(i,g) = al

(i,g) ·b
l
(i,g), thereby ensuring the correctness

of the triple (al
(i,g),b

l
(i,g),c

l
(i,g)).

During the phase of agreeing on a common subset, the ter-
mination property of FMVBA ensures that all honest servers
in P l+1 can terminate. The agreement and external validity
properties of FMVBA ensure that all honest servers agree on
an output T where |T | = n− t. Through FMVBA, all honest
servers in P l+1 have access to a set T of valid triples.
After executing the above two steps, the set T contains at
most t valid triples from A that satisfy cl

(i,g) = al
(i,g) · b

l
(i,g).

Therefore, the last two steps of ΠAprep involve re-randomizing
these valid triples to ensure that the generated triples are
uniformly random and independent from the A’s perspective.
For each g ∈ [cm], new polynomials Ug(·), Vg(·) and Wg(·)
are interpolated using triples in T , with Wg(·) =Ug(·) ·Vg(·).
Since Ug(·) and Vg(·) are degree-t polyn omials requiring
t + 1 shares to interpolate, and considering that T contains
at most t triples from A , Ug(·), Vg(·) and Wg(·) are rendered
uniformly random for A . Consequently, the secret sharing
over these three polynomials also appears uniformly random
and independent from A’s perspective.

Lemma 4. Protocol ΠMult is simulatable.

Proof. According to Lemma 3, ΠAprep can be simulated using
random values. Meanwhile, Lemma 2 ensures the correctness
of γl and δl outputted according to ΠRec, allowing for their
simulation with random values as well.

Lemma 5. Protocol ΠTrans is correct and simulatable. As-
suming the secret [zl ] inputted into the protocol corresponds
to the degree-t polynomial p(·), and the secret [zl+1] outputted
corresponds to the degree-t polynomial p̂(·). ΠTrans ensures
that p(0) = p̂(0), and the coefficients of p̂(·) are uniformly
random and independent from the adversary’s perspective.

Proof. In the committee P l , based on Lemma 1, we can con-
clude that ΠRand is simulatable with random values. There-
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fore, the masked value ml
i does not expose the secret zl

i . The
agreement and totality properties of FRBC guarantee that all
honest servers in P l+1 receive shares (ml

i , π
αl

i
) broadcast by

honest server Pl
i . The completeness of FACSS ensures that

honest servers in P l+1 only receive shares that are correctly
distributed on a degree-t polynomial. FCommit ensures the re-
lationship between the masked value ml

i and the secret zl
i . The

correctness property of OEC ensures that each honest server
can interpolate a degree-t polynomial p(·) based on [ml ], satis-
fying p(0) = ml . The termination property of FMVBA ensures
that all honest servers can terminate. The agreement and exter-
nal validity properties of FMVBA further ensure that all honest
servers agree on an output T . When all honest servers apply
OEC to the set T , they can reconstruct a consistent polynomial
whose constant term is the original secret. The coefficients of
the polynomial are uniformly random and independent.

Theorem 1. Let A be an R-adaptive adversary in ΠAD-MPC.
ΠAD-MPC UC-securely computes FAD-MPC in the presence of
A within the (FACSS, FMVBA, FRBC, FCommit)-hybrid model.

Proof. We construct a simulator S to run the adversary A as
a subroutine, which also has access to FAD-MPC. It internally
emulates functionalities FACSS, FMVBA, FRBC and FCommit.
S relays all communication between the adversary A and
the environment Z. It tracks the current committee through
input (Init,P ) and (Next-Committee,P ) from FAD-MPC. The
simulation proceeds as follows:
Input: Upon all (even corrupted) clients sending inputs to
FAD-MPC, call FACSS with corresponding inputs, invoke ΠRand

as in Lemma 1 and ΠAprep as in Lemma 3.
Next-Committee: Upon all (even corrupted) servers sending
(Next-Committee,P ) to FAD-MPC, run ΠTrans as in Lemma
5.
Addition, Addition by constant, Multiplication by con-
stant: Need not be simulated as they are local operations.
Multiplication: Upon all (even corrupted) servers sending
(Mult, idx, idy, idz) to FAD-MPC, run ΠMult as in Lemma 4.
Output: Upon all (even corrupted) servers sending
(Output, idz) to FAD-MPC, run ΠRec as in Lemma 2.
We now argue that A cannot distinguish between interacting
with S and FAD-MPC. During the input stage, the secrecy prop-
erty of FACSS ensures that shares from an honest dealer are
uniformly random and independent from A’s view. Hence,
this is a perfect simulation. Similarly, Lemmas 1 and 3 demon-
strate that ΠRand and ΠAprep can be perfectly simulated using
random values. In the execution stage, operations like addi-
tion, constant addition, and constant multiplication are lin-
ear and require no simulation. For multiplication evaluation,
Beaver triples generated by ΠAprep are indistinguishable from
random by Lemma 3. Additionally, Lemma 4 establishes the
perfect simulatability of ΠMult. The correctness and simulata-
bility of committee handovers are guaranteed by Lemma 5.

Finally, Lemma 2 guarantees the reconstructed secret’s cor-
rectness during the output stage, implying the accuracy of the
final output.
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