
Adaptively-Sound Succinct Arguments for NP

from Indistinguishability Obfuscation

Brent Waters

UT Austin and NTT Research

bwaters@cs.utexas.edu

David J. Wu

UT Austin

dwu4@cs.utexas.edu

Abstract

A succinct non-interactive argument (SNARG) for NP allows a prover to convince a verifier that an

NP statement 𝑥 is true with a proof of size 𝑜 (|𝑥 | + |𝑤 |), where𝑤 is the associated NP witness. A SNARG

satisfies adaptive soundness if the malicious prover can choose the statement to prove after seeing the

scheme parameters. In this work, we provide the first adaptively-sound SNARG forNP in the plain model

assuming sub-exponentially-hard indistinguishability obfuscation, sub-exponentially-hard one-way

functions, and either the (polynomial) hardness of the discrete log assumption or the (polynomial)

hardness of factoring. This gives the first adaptively-sound SNARG for NP from falsifiable assumptions.

All previous SNARGs forNP in the plainmodel either relied on non-falsifiable cryptographic assumptions

or satisfied a weak notion of non-adaptive soundness (where the adversary has to choose the statement

it proves before seeing the scheme parameters).

1 Introduction

A succinct non-interactive argument (SNARG) for NP allows a (computationally-bounded) prover to

convince a verifier that an NP statement 𝑥 is true with a proof whose size scales with 𝑜 (|𝑥 | + |𝑤 |), where𝑤
is the associated NP witness. While succinct arguments for NP can be constructed unconditionally in the

random oracle model [Kil92, Mic94], the same is not true in the plain model. In the plain model, we assume

the prover and the verifier have access to a common reference string (CRS). SNARGs for NP that do not

have a common reference string are unlikely to exist [BP04, Wee05].

Existing constructions of SNARGs in the plain model either rely on strong, non-falsifiable cryptographic
assumptions [Gro10, BCCT12, DFH12, Lip13, GGPR13, BCI

+
13, BCPR14, BISW17, BCC

+
17, BISW18, ACL

+
22,

CLM23] or only support subsets ofNP [KR09, KP16, BHK17, KPY19, JKKZ21, KVZ21, CJJ21a, CJJ21b, WW22,

JJ22, KLV23, BBK
+
23, CGJ

+
23]. To date, the only exception is the construction of Sahai and Waters of

a SNARG for NP from indistinguishability obfuscation (𝑖O) and one-way functions [SW14]. While the

existence of 𝑖O is itself not a falsifiable assumption, recent work has shown how to base 𝑖O on a collection

of falsifiable assumptions [JLS21, JLS22]. However, the Sahai-Waters construction only achieves a weak

notion of non-adaptive soundness, where soundness only holds against an adversary that declares its false

statement before seeing the common reference string. The more natural notion of security is adaptive

soundness which allows the adversary to choose its statement after seeing the scheme parameters. Achieving

adaptively-sound SNARGs for NP from standard falsifiable cryptographic assumptions has proven to be an

elusive goal and any such construction must overcome black-box separations [GW11, CGKS23].

1

mailto:bwaters@cs.utexas.edu
mailto:dwu4@cs.utexas.edu

This work. In this work, we construct the first adaptively-sound SNARG for NP assuming the existence

of a sub-exponentially-hard 𝑖O scheme,
1
a sub-exponentially-hard one-way function, and polynomial

hardness of a standard number-theoretic assumption (e.g., the hardness of discrete log or the hardness of

factoring). In conjunction with the results basing 𝑖O on falsifiable assumptions [JLS21, JLS22], this yields

the first adaptively-sound SNARG for NP from falsifiable assumptions. We summarize our construction

below and provide a technical overview of our construction in Section 1.1.

Theorem 1.1 (Informal). Assuming (1) either the polynomial hardness of computing discrete logs in a
prime-order group or the polynomial hardness of factoring, (2) the existence of a sub-exponentially-secure
indistinguishability obfuscation scheme for Boolean circuits, and (3) the existence of a sub-exponentially-secure
one-way function, there exists an adaptively-sound SNARG for NP. Specifically, we construct a SNARG for NP
with the following properties:

• Preprocessing SNARG: Similar to [SW14], we work in the preprocessing model where there is a large
CRS that depends on the Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} that computes the NP relation
(i.e., 𝑛 is the statement length and ℎ is the witness length for the NP relation). The size of the common
reference string is poly(_ + |𝐶 |), where _ denotes a security parameter.

• Proof size: The size of the proof is poly(_).

Moreover, the SNARG satisfies perfect zero-knowledge.

The Gentry-Wichs separation. A classic result of Gentry andWichs [GW11] rules out adaptively-sound

SNARGs for NPwhose security can be based on a black-box reduction to a falsifiable cryptographic assump-

tion (and in some settings, even with a CRS whose size grows with the size of the NP relation [CGKS23]).

A critical assumption in the Gentry-Wichs separation is that the running time of the SNARG security

reduction is insufficient to decide the associated NP language. The existing reductions of 𝑖O to falsifiable

assumptions [JLS21, JLS22] run in time that is exponential in the input length of the obfuscated program.

In our construction, the CRS contains obfuscated programs that take the statement and the witness as

input. Correspondingly, our security reduction runs in time that is sufficient to decide membership in the

underlying NP language. For this reason, the Gentry-Wichs separation does not apply to our construction.

As was noted in [JJ22], this caveat is also true for the original Sahai-Waters SNARG based on 𝑖O, so the

Gentry-Wichs separation also does not say anything about the Sahai-Waters construction.

One interpretation of the Gentry-Wichs separation is that to build adaptively-sound SNARGs for NP
from falsifiable assumptions, we need some form of sub-exponential hardness (and complexity leveraging).

In this case, either the size of the CRS or the size of the proof must grow with the size of the statement or

witness. The challenge then is to offload the complexity leveraging overhead in the construction entirely to

the CRS in order to keep the proofs succinct. This is precisely what our new approach achieves.

1.1 Technical Overview

We begin by describing a variant of the Sahai-Waters SNARG for NP based on indistinguishability obfusca-

tion (and one-way functions) [SW14]. We work with the language of Boolean circuit satisfiability, where

the Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} is fixed ahead of time (i.e., as part of the CRS). A statement

is a string 𝑥 ∈ {0, 1}𝑛 and the statement is true if there exists a witness𝑤 ∈ {0, 1}ℎ such that 𝐶 (𝑥,𝑤) = 1.

1
The notion of sub-exponential hardness we use in this work says that for a security parameter _, a polynomial-time adversary
cannot break the assumption except with probability at most 2

−_𝑐
for some positive constant 𝑐 < 1.

2

In addition to 𝑖O, the Sahai-Waters construction requires a one-way function 𝑓 : Y → Z and a

puncturable pseudorandom function (PRF) F with domain {0, 1}𝑛 and output space Y. A puncturable

PRF [BW13, KPTZ13, BGI14] is a pseudorandom function where the PRF key 𝑘 can be “punctured” at an

input point 𝑥 . We write 𝑘 (𝑥) to denote a key punctured at input 𝑥 . The punctured key can be used to

evaluate the PRF F(𝑘, ·) on all inputs 𝑥 ′ ≠ 𝑥 (i.e., F(𝑘, 𝑥 ′) = F(𝑘 (𝑥) , 𝑥 ′) for all 𝑥 ′ ≠ 𝑥). Moreover, the value

of the PRF F(𝑘, 𝑥) should remain pseudorandom even given the punctured key 𝑘 (𝑥) .

The Sahai-Waters construction. In the Sahai-Waters construction, the common reference string consists

of two obfuscated programs: a program Prove for generating proofs and a Verify program for validating

proofs. Here, we describe a variant where the Verify program is replaced by an “instance-generator”GenInst,
which will be a useful stepping stone to our construction. The two programs are defined as follows:

Prove(𝑥,𝑤):

• On input the statement 𝑥 ∈ {0, 1}𝑛 and the witness

𝑤 ∈ {0, 1}ℎ , if 𝐶 (𝑥,𝑤) = 1, output 𝜋 = F(𝑘, 𝑥).
• Otherwise, output ⊥.

GenInst(𝑥):

• On input the statement 𝑥 ∈ {0, 1}𝑛 , output 𝑓 (F(𝑘, 𝑥)).

The CRS contains obfuscations of the Prove and GenInst programs. To construct a proof for a statement

𝑥 and witness 𝑤 , the prover simply runs the (obfuscated) Prove program on input (𝑥,𝑤) and obtain a

proof 𝜋 . To check the proof 𝜋 on statement 𝑥 , the verifier runs the (obfuscated) GenInst program on

input 𝑥 to obtain a challenge 𝑧 ∈ Z. The verifier then checks that 𝑓 (𝜋) = 𝑧. In the original Sahai-Waters

construction [SW14, §5.5], the CRS contained a Verify program that combines GenInst and the verification

check 𝑓 (𝜋) = 𝑧. We separate it out because it will be helpful for understanding our SNARG construction.

At a high-level, we can view the GenInst as generating a challenge (for the one-way function) for each

statement 𝑥 and the Prove program as generating solutions to those challenges. Informally, soundness

follows from the fact that the Prove program only solves instances associated with the true statements

𝑥 ∈ L𝐶 , where we defineL𝐶 =
{
𝑥 ∈ {0, 1}𝑛 | ∃𝑤 ∈ {0, 1}ℎ : 𝐶 (𝑥,𝑤) = 1

}
. In order to construct a proof for a

false statement 𝑥∗ ∉ L𝐶 , the adversary essentially has to invert the one-way function 𝑓 on a (pseudorandom)

input F(𝑘, 𝑥∗), which should be hard. This is formalized via the following hybrid argument:

• In the non-adaptive soundness game, the adversary first commits to the false statement 𝑥∗ ∉ L𝐶 .

Now, we can construct an equivalent pair of programs that use a punctured key 𝑘 (𝑥
∗)
in place of 𝑘 .

In the case of the Prove program, since 𝑥∗ ∉ L𝐶 , the program never needs to evaluate F(𝑘, 𝑥∗). Thus,
we can replace the obfuscated programs in the CRS with obfuscations of the following programs

(which compute identical functionality as the previous programs):

Prove(𝑥,𝑤):

– If 𝐶 (𝑥,𝑤) = 1, output 𝜋 = F(𝑘 (𝑥∗) , 𝑥).
– Otherwise, output ⊥.

GenInst(𝑥, 𝜋):

– If 𝑥∗ = 𝑥 output 𝑓 (F(𝑘, 𝑥∗)).
– If 𝑥∗ ≠ 𝑥 , output 𝑓 (F(𝑘 (𝑥∗) , 𝑥)).

• By puncturing security of the PRF, the value of F(𝑘, 𝑥∗) is pseudorandom even given the punctured

key 𝑘 (𝑥
∗)
. More precisely, the distribution of 𝑓 (F(𝑘, 𝑥∗)) is computationally indistinguishable from

the distribution of 𝑧 = 𝑓 (𝑦) where 𝑦 r← Y is a uniformly-random string sampled from the codomain

of the PRF. This means that the following two programs are computationally indistinguishable:

Prove(𝑥,𝑤):

– If 𝐶 (𝑥,𝑤) = 1, output 𝜋 = F(𝑘 (𝑥∗) , 𝑥).
– Otherwise, output ⊥.

GenInst(𝑥, 𝜋):

– If 𝑥∗ = 𝑥 , output 𝑧.

– If 𝑥∗ ≠ 𝑥 , output 𝑓 (F(𝑘 (𝑥∗) , 𝑥)).

3

In this experiment, the only way the adversary produces a valid proof for the statement 𝑥∗ is by
outputting a 𝜋 such that 𝑓 (𝜋) = 𝑧. Thus, to come up with a valid proof for 𝑥∗, the adversary must

invert 𝑓 at a random 𝑧 = 𝑓 (𝑦). This is computationally infeasible by security of the one-way function,

and so we conclude that an efficient adversary is unable to produce a valid proof for 𝑥∗.

The challenge of adaptivity. The reduction strategy described above critically relies on knowing the

false statement 𝑥∗ ∈ {0, 1}𝑛 in advance. Indeed, the first step in the security reduction is to replace the PRF

key 𝑘 with a key punctured at 𝑥∗. Puncturing the PRF at 𝑥∗ enables us to program a random challenge (for

the one-way function) at 𝑥∗. This ensures that any successful adversary that comes up with a proof for 𝑥∗

must be able to invert the one-way function. This strategy breaks down if the statement 𝑥∗ is not known in

advance (i.e., the setting of adaptive soundness). Notably, it is not clear where to puncture the PRF key and

embed the challenge for the one-way function.

Why not complexity leverage? One possible way to argue adaptive soundness is to complexity leverage

and guess the statement 𝑥∗ and rely on sub-exponential hardness. Here, the security reduction would guess

a random statement 𝑥∗ r← {0, 1}𝑛 and then apply the previous reduction as if the adversary had committed

to 𝑥∗. The security reduction succeeds if the guess was correct, which occurs with probability 1/2𝑛 . In
turn, we rely on sub-exponential hardness of the underlying cryptographic primitives and assume that the

advantage of any computationally-bounded adversary breaking each primitive should be much smaller than

even 1/2𝑛 . In particular, this means that the probability that an efficient adversary succeeds in inverting

the one-way function 𝑓 must also be smaller than 1/2𝑛 . But this means the length of the preimage of the

one-way function must be at least 𝑛, which is the statement size (otherwise, the preimage can be guessed

with probability better than 1/2𝑛). Since the proof is precisely the preimage, this means the proof size

is now at least Ω(𝑛). Thus, while the standard complexity-leveraging strategy suffices to prove adaptive

soundness, the resulting proof system is no longer succinct.
2

Starting point: embedding a second challenge. To build an adaptively-sound SNARG, we will need

a different proof technique (and construction). Our starting point is to modify the Sahai-Waters variant

described above by having the GenInst program output two independent challenges (𝑧𝑥,0, 𝑧𝑥,1) for each
statement 𝑥 ∈ {0, 1}𝑛 . In the modified scheme, the verifier accepts if the prover solves either challenge:
namely, a proof 𝜋 = (𝑏,𝑦) is valid if 𝑏 ∈ {0, 1} and 𝑓 (𝑦) = 𝑧𝑥,𝑏 . The critical property is that the Prove
program will only output a solution to one of the challenges. In more detail, we consider three different

(puncturable) PRFs: Fsel, F0, and F1. The selector PRF Fsel takes as input a statement 𝑥 ∈ {0, 1}𝑛 and outputs

a selection bit 𝑏 ∈ {0, 1}. The PRFs F0 and F1 takes as input a statement 𝑥 ∈ {0, 1}𝑛 and outputs a value

𝑦 ∈ Y in the domain of the one-way function. We now define the Prove and GenInst programs as follows:

Prove(𝑥,𝑤):

• If 𝐶 (𝑥,𝑤) = 1, compute 𝑏 = Fsel (𝑘sel, 𝑥) and output

𝜋 = (𝑏, F𝑏 (𝑘𝑏, 𝑥)).
• Otherwise, output ⊥.

GenInst(𝑥):

• Compute 𝑦𝑥,𝑏 = F𝑏 (𝑘𝑏, 𝑥)) for 𝑏 ∈ {0, 1}.
• Output (𝑧𝑥,0, 𝑧𝑥,1) = (𝑓 (𝑦𝑥,0), 𝑓 (𝑦𝑥,1)).

2
Some works (e.g., [JJ22]) only require the size of the proof be sublinear in the length of the witness, and allow for a polynomial

dependence in the length of the statement. Under this weaker notion of succinctness, the Sahai-Waters construction would be

adaptively-sound via complexity leveraging. Our focus in this work is the more stringent and common notion of succinctness

that require the proof size to be sublinear in both the statement and the witness. This was the notion studied in [GW11].

4

Before proceeding, we provide some brief intuition for why having two challenges is beneficial for

arguing adaptive security. In the non-adaptive soundness analysis above, the adversary has to pre-commit

to the statement 𝑥∗ and the security reduction then embeds the one-way function challenge at 𝑥∗ in
the GenInst program. When considering adaptive security, the security reduction does not know which

statement the adversary will choose so it is not clear where to embed the one-way function challenge (and

guessing does not work for the reasons outlined above).

One possible approach is to changeGenInst to output the one-way function challenge on every statement

𝑥 ∈ {0, 1}𝑛 in the security proof.
3
Then, an adversary that outputs a proof for any false statement would

successfully invert the one-way function. However, this leads to a correctness issue: we still need to be able

to generate proofs for true statements (i.e., the Prove program needs to give out preimages for the challenges

associated with true statements). This is no longer possible ifGenInst outputs a one-way function challenge

for which the Prove algorithm does not know a corresponding preimage on every input 𝑥 ∈ {0, 1}𝑛 . Ideally,
we would only embed the challenge instances on inputs 𝑥 ∉ L𝐶 . However, GenInst cannot decide the
language itself to determine whether it should output a challenge instance or one with a known preimage.

Our solution is to associate two challenges with every 𝑥 . One of the challenges (as determined by

Fsel(𝑘sel, 𝑥)) will be sampled with a known preimage while the other can be arbitrary (and will be used

to embed a challenge instance in the reduction). This way, the Prove program still has the capability to

produce a proof for every statement, while simultaneously ensuring that an adversary that succeeds on any
instance 𝑥 breaks security of the one-way function. This is conceptually similar to other “two-challenge”

approaches used to argue adaptive security for digital signatures [KW03], broadcast encryption [GW09], or

registered attribute-based encryption [FWW23], albeit in the random oracle model. In fact, as we discuss in

Remark 4.21, our techniques can be used to “instantiate” the random oracle in the Katz-Wang signature

scheme with an obfuscated PRF to obtain a provably-secure variant of their scheme in the plain model.

Proving adaptive security. Our proof of adaptive security proceeds in a sequence of hybrid experiments.

Our reduction still relies on complexity leveraging (and specifically, an exponential number of hybrids), but

the parameter blowup from complexity leveraging only factors into the CRS size, and not the proof size.
We now survey our main hybrids and refer to the proof of Theorem 4.3 for the full details.

• Hyb
0
: This corresponds to the real adaptive soundness game. In this game, the adversary is considered

successful if it outputs a false statement 𝑥 ∉ L𝐶 along with a proof 𝜋 = (𝑏,𝑦) where 𝑓 (𝑦) = 𝑧𝑥,𝑏 and

(𝑧𝑥,0, 𝑧𝑥,1) ← GenInst(𝑥). Notably, there is no requirement on the value of 𝑏 (i.e., the adversary wins

if it can invert 𝑓 on either 𝑧𝑥,0 or 𝑧𝑥,1).

• Hyb
1
: This is the same experiment as before, except we consider the adversary successful only if it

outputs a false statement 𝑥 ∉ L𝐶 and a proof 𝜋 = (𝑏,𝑦) where 𝑏 ≠ Fsel(𝑘sel, 𝑥).

We claim that this can only reduce the adversary’s advantage in winning the game by a factor of 2.

This is because for all 𝑥 ∉ L𝐶 , the value of Fsel(𝑘sel, 𝑥) is hidden from the adversary (i.e., never

computed by the Prove algorithm). If the adversary’s advantage decreased by more than a factor of 2

betweenHyb
0
andHyb

1
, then the adversary is able to predict the value of Fsel(𝑘sel, 𝑥) with probability

better than 1/2, thereby breaking security of the PRF.

Formally, we argue this by considering 2
𝑛
possible experiments (for each possible statement𝑥 ∈ {0, 1}𝑛

the adversary could output). By relying on (sub-exponential) security of 𝑖O and the puncturable

PRF, we can show that in each of these experiments, the adversary’s success probability is always

3
Ignore for a moment that GenInst is technically supposed to output independent values on each input 𝑥 .

5

within a factor of 2 of the adversary’s success probability in Hyb
0
(up to negligible differences). We

refer to Lemma 4.4 for the full details. Note that even though we rely on complexity leveraging and

sub-exponential-hardness, we are only complexity leveraging on the 𝑖O scheme and the puncturable

PRF, not on the security of the one-way function. This means the cost of complexity leveraging is

only incurred in the CRS size (now larger by a poly(𝑛) factor), but not in the proof size (whose length

is governed by the preimage length for the one-way function).

At this point in the proof, we are in a conceptually-similar end-point as in the non-adaptive soundness proof

of Sahai-Waters. In order to win, the adversary needs to invert the one-way function at a (pseudorandom)

point: to give a proof for𝑥 , the adversary needs to invert 𝑧𝑥,1−𝑏𝑥 = 𝑓 (F1−𝑏𝑥 (𝑘1−𝑏𝑥 , 𝑥)) where𝑏𝑥 = Fsel(𝑘sel, 𝑥).
All we need is a way to plant a one-way function challenge instance at each 𝑧𝑥,1−𝑏𝑥 .

Rerandomizable one-way functions. To complete the proof, we want to argue that any adversary that

succeeds at inverting 𝑧𝑥,1−𝑏𝑥 for any (false) statement 𝑥 ∈ {0, 1}𝑛 translates into one that inverts a one-way

function challenge 𝑧∗. Moreover, the challenges 𝑧𝑥,1−𝑏𝑥 for different 𝑥 should look indistinguishable from

fresh challenges. Phrased differently, we require a way to derive fresh challenges 𝑧𝑥,1−𝑏𝑥 from 𝑧∗ such
that a solution 𝑦𝑥 where 𝑓 (𝑦𝑥) = 𝑧𝑥,1−𝑏𝑥 for any 𝑥 implies a solution 𝑦∗ where 𝑓 (𝑦∗) = 𝑧∗. We refer to

one-way functions with this property as rerandomizable one-way functions (see Section 3). Suppose we

have a rerandomizable one-way function. Then, we define the final hybrid Hyb
2
as follows:

4

• Hyb
2
: In this experiment, the challenger first samples 𝑦∗ r← Y and sets the challenge 𝑧∗ = 𝑓 (𝑦∗).

The challenger also samples a new (puncturable) PRF key Frerand that will be used for rerandomizing

the challenge 𝑧∗. The CRS then consists of obfuscations of the following programs:

Prove(𝑥,𝑤):

– If𝐶 (𝑥,𝑤) = 1, compute 𝑏 = Fsel (𝑘sel, 𝑥) and output
𝜋 = (𝑏, F𝑏 (𝑘𝑏, 𝑥)).

– Otherwise, output ⊥.

GenInst(𝑥):

– Compute 𝑏 = Fsel (𝑘sel, 𝑥).
– Compute 𝑦𝑥,𝑏 = F𝑏 (𝑘𝑏, 𝑥)) and 𝑧𝑥,𝑏 = 𝑓 (𝑦𝑥,𝑏).
– Compute the rerandomized challenge 𝑧𝑥,1−𝑏 =

Rerandomize(𝑧∗; Frerand (𝑘rerand, 𝑥)).
– Output (𝑧𝑥,0, 𝑧𝑥,1).

To argue that the distributions of Hyb
1
and Hyb

2
are computationally indistinguishable, we again use

a sequence of 2
𝑛
different hybrids, one for each value of 𝑥 ∈ {0, 1}𝑛 . In the 𝑖th hybrid, we change the

distribution of 𝑧𝑖,1−𝑏 from being a freshly-sampled challenge (as in Hyb
1
) to being a rerandomized

challenge derived from 𝑧∗ (as in Hyb
2
). Each of these intermediate transitions relies on security of

𝑖O, security of the underlying puncturable PRFs, and the rerandomizability of the one-way function.

Since there are 2
𝑛
hybrids, we require sub-exponential hardness of each of the underlying primitives.

An astute reader might observe that unlike the transition fromHyb
0
toHyb

1
, the transition fromHyb

1

to Hyb
2
does rely on security of the one-way function, specifically, the property that a rerandomized

instance is indistinguishable from a fresh instance. Thus it might seem like we need to increase

the parameters of the one-way function to achieve this. However, this need not be the case. By

considering algebraic one-way functions (e.g., based on discrete log or factoring), it is possible to

statistically rerandomize an instance so that the statistical distance between a fresh instance and a

rerandomized instance is at most 2
−Ω (𝑛)

even though the length of the instances is poly(_), where _
is the security parameter (independent of the statement length 𝑛). Importantly, this hybrid transition

4
In the technical section, we introduce an intermediate hybrid between Hyb

1
and Hyb

2
to simplify the technical exposition. We

elide this intermediate hybrid in this informal overview.

6

only relies on rerandomization and not security of the one-way function. This is the reason we are

able to consider an exponential number of hybrids without affecting the proof length. Thus, once

again, we are able to complexity leverage, but not incur any overhead in the length of the proof. We

provide the full details in Lemma 4.10.

In Hyb
2
, a successful prover succeeds only if it inverts the one-way function on the value 𝑧𝑥,1−𝑏𝑥 for

some 𝑥 ∈ {0, 1}𝑛 . But in Hyb
2
, the value of 𝑧𝑥,1−𝑏𝑥 was derived by rerandomizing the instance 𝑧∗. By the

rerandomization property of the one-way function, a preimage of 𝑧𝑥,1−𝑏 can be used to recover a preimage

of 𝑧∗. In other words, inverting 𝑧𝑥,1−𝑏𝑥 for any 𝑥 is sufficient to invert 𝑧∗. By security of the one-way

function, the advantage of the adversary in Hyb
2
must be negligible, and adaptive soundness holds. This is

the only step in the security proof where we rely on security of the one-way function. As such, polynomial
hardness of the one-way function suffices for the analysis. Since the proof is still just a preimage of the

one-way function, the size of the proof is poly(_), independent of the statement length 𝑛 (or the witness

length). The overhead from the complexity leveraging only manifests in the CRS size and not the proof size.
We provide the formal description and analysis in Section 4.

Constructing rerandomizable one-way functions. The remaining ingredient we need to complete

the construction is a rerandomizable one-way function. We describe two constructions here based on the

hardness of computing discrete logs and the hardness of factoring (specifically, the hardness of computing

modular square roots). Both constructions rely on the random self-reducibility of the underlying assumption.

We give the formal constructions and analysis in Section 5.

• Construction from discrete log: Let G be a group of prime order 𝑝 and generated by 𝑔. The

discrete log assumption in G says that given ℎ
r← G, it is hard to find 𝑥 ∈ Z𝑝 such that 𝑔𝑥 = ℎ. In our

construction, we sample the challenge ℎ as ℎ
r← G \ {𝑔0}.5 This allows for perfect rerandomization:

given any challenge ℎ ∈ G \ {𝑔0}, the distribution of ℎ𝑟 where 𝑟
r← Z∗𝑝 is exactly the uniform

distribution over the original challenge space G \ {𝑔0}. Moreover, given the discrete log 𝑠 of ℎ𝑟 (i.e.,

𝑠 ∈ Z∗𝑝 where 𝑔𝑠 = ℎ𝑟), we can recover the discrete log of ℎ by computing 𝑠𝑟−1 mod 𝑝 . This yields a

perfectly rerandomizable one-way function. We give the full details in Section 5.1.

• Construction from factoring: We obtain a second rerandomizable one-way function based on the

hardness of computing square roots modulo 𝑁 = 𝑝𝑞, where 𝑝, 𝑞 are distinct primes (i.e., given 𝑥2 ∈ Z𝑁
where 𝑥

r← Z𝑁 , find 𝑧 ∈ Z𝑁 such that 𝑧2 = 𝑥2 mod 𝑁). This problem is equivalent to the hardness

of factoring 𝑁 [Rab79]. This problem also has a random self-reduction: namely, given a challenge

𝑦 ∈ Z𝑁 , we can construct a new instance by sampling 𝑟
r← Z𝑁 and outputting 𝑦𝑟 2 mod 𝑁 . Any

solution 𝑠 ∈ Z𝑁 where 𝑠2 = 𝑦𝑟 2 yields a solution 𝑠𝑟−1 mod 𝑁 for the original challenge 𝑦 (provided

that 𝑟 is invertible modulo 𝑁). Some extra care is needed to ensure that the statistical distance of the

rerandomized distribution and the original challenge distribution is at most 2
−𝑛 ≪ 2

−_
. As we show

in Section 5.2, this is possible by rejection sampling (since membership in Z∗
𝑁
is efficiently-checkable).

5
As discussed above, security of our construction requires that the distance between the original distribution and the rerandomized

distribution to be small compared to 2
𝑛
, where 𝑛 is the statement size. However, the size of the group should only be a function

of the security parameter (to preserve succinctness). In this case, if 𝑝 = 2
𝑂 (_)

, the statistical distance between the uniform

distribution on G and the uniform distribution on G \ {𝑔0} is 1/𝑝 = 2
−𝑂 (_)

, which is not small enough compared to 2
𝑛
. Thus, the

distinction between sampling from G vs. sampling from G \ {𝑔0} is essential to our construction.

7

2 Preliminaries

Throughout this work, we write _ to denote the security parameter. We write poly(_) to denote a fixed
polynomial in the security parameter _. We say a function 𝑓 (_) is negligible in _ if 𝑓 (_) = 𝑜 (_−𝑐) for
all 𝑐 ∈ N and denote this by writing 𝑓 (_) = negl(_). When 𝑥,𝑦 ∈ {0, 1}𝑛 , we will view 𝑥 and 𝑦 as both

bit-strings of length 𝑛 as well as the binary representation of an integer between 0 and 2
𝑛 − 1. We write

“𝑥 ≤ 𝑦” to refer to the comparison of the integer representations of 𝑥 and 𝑦. We say an algorithm is efficient

if it runs in probabilistic polynomial time in the length of its input.

Our construction will rely on sub-exponential hardness assumptions, so we will formulate some of

our security definitions using (𝑡, Y)-notation. Generally, we say that a primitive is (𝑡, Y)-secure, if for all
adversaries A running in time at most 𝑡 (_) · poly(_), there exists _A ∈ N such that for all _ ≥ _A , the
adversary’s advantage is bounded by Y (_). We say a primitive is polynomially-secure if it is (1, negl(_))-
secure for some negligible function negl(·) and we say that it is sub-exponentially secure if it is (1, 2−_𝑐)-
secure for some constant 𝑐 ∈ N. We now recall the main cryptographic primitives we use in this work.

Definition 2.1 (Indistinguishability Obfuscation [BGI
+
01]). An indistinguishability obfuscator for Boolean

circuits is an efficient algorithm 𝑖O(·, ·, ·) with the following properties:

• Correctness: For all security parameters _ ∈ N, circuit size parameters 𝑠 ∈ N, all Boolean circuits 𝐶

of size at most 𝑠 , and all inputs 𝑥 ,

Pr[𝐶′(𝑥) = 𝐶 (𝑥) : 𝐶′ ← 𝑖O(1_, 1𝑠 ,𝐶)] = 1.

• Security: For a bit 𝑏 ∈ {0, 1} and a security parameter _, we define the program indistinguishability

game between an adversary A and a challenger as follows:

– On input the security parameter 1
_
, the adversary outputs a size parameter 1

𝑠
and two Boolean

circuits 𝐶0,𝐶1 of size at most 𝑠 .

– If there exists an input 𝑥 such that 𝐶0(𝑥) ≠ 𝐶1(𝑥), then the challenger halts with output ⊥.
Otherwise, the challenger replies with 𝑖O(1_, 1𝑠 ,𝐶𝑏).

– The adversary A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that 𝑖O is (𝑡, Y)-secure if for all adversaries A running in time at most 𝑡 (_) · poly(_), there
exists _A ∈ N such that for all _ ≥ _A , we have that

iOAdvA (_) := |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ Y (_)

in the program indistinguishability game defined above.

Definition 2.2 (Puncturable PRF [BW13, KPTZ13, BGI14]). A puncturable pseudorandom function consists

of a tuple of efficient algorithms ΠPPRF = (KeyGen, Eval, Puncture) with the following syntax:

• KeyGen(1_, 1ℓin, 1ℓout) → 𝑘 : On input the security parameter _, an input length ℓin, and an output

length ℓout, the key-generation algorithm outputs a key 𝑘 . We assume that the key 𝑘 contains an

implicit description of ℓin and ℓout.

• Puncture(𝑘, 𝑥∗) → 𝑘 (𝑥
∗)
: On input a key 𝑘 and a point 𝑥∗ ∈ {0, 1}ℓin , the puncture algorithm outputs

a punctured key 𝑘 (𝑥
∗)
. We assume the punctured key also contains an implicit description of ℓin and

ℓout (same as the key 𝑘).

8

• Eval(𝑘, 𝑥) → 𝑦: On input a key 𝑘 and an input 𝑥 ∈ {0, 1}ℓin , the evaluation algorithm outputs a value

𝑦 ∈ {0, 1}ℓout :

In addition, ΠPPRF should satisfy the following properties:

• Functionality-preserving: For all _, ℓin, ℓout ∈ N, every input𝑥 ∈ {0, 1}ℓin , and every𝑥 ∈ {0, 1}ℓin\ {𝑥∗},

Pr

[
Eval(𝑘, 𝑥) = Eval(𝑘 (𝑥∗) , 𝑥) : 𝑘 ← KeyGen(1_)

𝑘 (𝑥
∗) ← Puncture(𝑘, 𝑥∗)

]
= 1.

• Punctured pseudorandomness: For a bit 𝑏 ∈ {0, 1} and a security parameter _, we define the

(selective) punctured pseudorandomness game between an adversary A and a challenger as follows:

– On input the security parameter 1
_
, the adversary A outputs the input length 1

ℓin
, the output

length 1
ℓout

, and commits to a point 𝑥∗ ∈ {0, 1}ℓin .
– The challenger samples 𝑘 ← KeyGen(1_, 1ℓin, 1ℓout) and gives 𝑘 (𝑥

∗) ← Puncture(𝑘, 𝑥∗) to A.

– If 𝑏 = 0, the challenger gives 𝑦∗ = Eval(𝑘, 𝑥∗) to A. If 𝑏 = 1, then it gives 𝑦∗ r← {0, 1}ℓout to A.

– At the end of the game, the adversary outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the

experiment.

We say that ΠPPRF satisfies (𝑡, Y)-punctured pseudorandomness if for all adversaries A running in

time at most 𝑡 (_) · poly(_), there exists _A ∈ N such that for all _ ≥ _A , it holds that

PPRFAdvA (_) := |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ Y (_)

in the punctured pseudorandomness security game.

Theorem 2.3 (Puncturable PRFs [GGM84, BW13, KPTZ13, BGI14]). Assuming the existence of polynomially-
secure (resp., sub-exponentially-secure) one-way functions, then there exists a selective polynomially-secure
(resp., sub-exponentially-secure) puncturable PRF.

Succinct non-interactive arguments. We now recall the definition of a succinct non-interactive argu-

ment for the language of Boolean circuit satisfiability. We start by defining the language of Boolean circuit

satisfiability:

Definition 2.4 (Boolean Circuit Satisfiability). We define the circuit satisfiability language LSAT as

LSAT =

{
(𝐶, 𝑥)

��� 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, 𝑥 ∈ {0, 1}𝑛
∃𝑤 ∈ {0, 1}ℎ : 𝐶 (𝑥,𝑤) = 1

}
.

Definition 2.5 (Succinct Non-Interactive Argument). A succinct non-interactive argument (SNARG) in

the preprocessing model for Boolean circuit satisfiability is a tuple ΠSNARG = (Setup, Prove,Verify) with
the following syntax:

• Setup(1_,𝐶) → crs: On input the security parameter _ and a Boolean circuit 𝐶 , the setup algorithm

outputs a common reference string crs.

• Prove(crs, 𝑥,𝑤) → 𝜋 : On input a common reference string crs, a statement 𝑥 , and a witness𝑤 , the

prove algorithm outputs a proof 𝜋 .

9

• Verify(crs, 𝑥, 𝜋) → 𝑏: On input a common reference string crs, a statement 𝑥 and a proof 𝜋 , the

verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

Moreover, ΠSNARG should satisfy the following properties:

• Completeness: For all security parameters _ ∈ N, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
all instances (𝑥,𝑤) where 𝐶 (𝑥,𝑤) = 1,

Pr

[
Verify(crs, 𝑥, 𝜋) = 1 :

crs← Setup(1_,𝐶)
𝜋 ← Prove(crs, 𝑥,𝑤)

]
= 1.

• Adaptive soundness: For a security parameter _, we define the adaptive soundness game between

an adversary A and a challenger as follows:

– On input the security parameter 1
_
, the adversary A starts by outputting a Boolean circuit

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.
– The challenger replies with crs← Setup(1_,𝐶).
– The adversary outputs a statement 𝑥 ∈ {0, 1}𝑛 and a proof 𝜋 .

– The output is 𝑏 = 1 if (𝐶, 𝑥) ∉ LSAT and Verify(crs, 𝑥, 𝜋) = 1. The output is 𝑏 = 0 otherwise.

We say that ΠSNARG is adaptively sound if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all _ ∈ N, Pr[𝑏 = 1] = negl(_) in the adaptive soundness game. When

𝑏 = 1, we say that “A wins the adaptive soundness game.”

• Succinctness: There exist a polynomial 𝑝 such that for all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1}, and all crs in the support of Setup(1_,𝐶), all statements 𝑥 ∈ {0, 1}𝑛 , and all witnesses 𝑤 ∈
{0, 1}ℎ , the size of the proof 𝜋 output by Prove(crs, 𝑥,𝑤) satisfies |𝜋 | ≤ 𝑝 (_ + log |𝐶 |).

Definition 2.6 (Perfect Zero-Knowledge). A preprocessing SNARG ΠSNARG = (Setup, Prove,Verify) for
Boolean circuit satisfiability satisfies perfect zero-knowledge if there exists an efficient simulator S =

(S0,S1) such that for all adversaries A, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, and all (𝑥,𝑤) ∈
{0, 1}𝑛 × {0, 1}ℎ where 𝐶 (𝑥,𝑤) = 1, we have that{

(crs, 𝑥, 𝜋) : crs← Setup(1_,𝐶)
𝜋 ← Prove(crs, 𝑥,𝑤)

}
≡
{
(crs, 𝑥, 𝜋) : (crs, stS) ← S0(1

_,𝐶)
𝜋 ← S1(stS, 𝑥)

}
.

Remark 2.7 (Fast Verification). In a preprocessing SNARG, the length of the common reference string

crs can depend polynomially on the size of 𝐶 (i.e., |crs| = poly(_ + |𝐶 |)). Correspondingly, this means the

running time of Verify(crs, ·, ·) can be as large as poly(_ + |𝐶 |). We can compose the SNARG with a RAM

delegation scheme (i.e., a SNARG for P) [CJJ21b, KVZ21, KLVW23] to obtain a SNARG for NP where the

verification time is poly(_ + |𝑥 | + log |𝐶 |). Instead of computing Verify itself, the verifier delegates the

computation of Verify(crs, 𝑥, 𝜋) to the prover and verifies the proof that Verify(crs, 𝑥, 𝜋) = 1. We sketch

the full construction below:

• Let𝑀 be an arbitrary RAM machine that takes two inputs 𝑥 and 𝑦 and outputs a bit 𝑏 ∈ {0, 1}.6 A
RAM delegation scheme allows a prover to convince the verifier that𝑀 (𝑥,𝑦) = 𝛽 with a proof 𝜋 of

6
The approach in [CJJ21b] considers a RAM machine with a single input 𝑥 (i.e., the initial state of the RAM program) and the

verification algorithm needs to read a digest of 𝑥 . The same approach extends to the case where the RAM machine takes two

inputs 𝑥 and 𝑦, and the verification algorithm is provided a digest for 𝑥 and 𝑦 individually.

10

size |𝜋 | = poly(_+ log |𝑀 | + log |𝑥 | + log |𝑦 | + log𝑇), where𝑇 is the running time of𝑀 . The verification

algorithm VerifyRAM takes as input a common reference string crsRAM for the delegation scheme, a

hash digest dig of (𝑀,𝑥), the value 𝑦, the proof 𝜋 , and the claimed value 𝛽 and either accepts (with

output 1) or rejects (with output 0). The length of the verification key and the length of the proof

satisfies |vk|, |𝜋 | = poly(_ + log |𝑀 | + log |𝑥 | + log |𝑦 | + log𝑇). The soundness requirement says that

if dig is an honestly-generated digest of (𝑀,𝑥), then an efficient prover cannot produce (𝑦, 𝜋, 𝑏) such
that VerifyRAM(crsRAM, dig, 𝑦, 𝜋, 𝑏) = 1 and𝑀 (𝑥,𝑦) ≠ 𝑏, except with negligible probability.

• To support fast verification for the SNARG, we define the new common reference string to be

crs = (crsSNARG, crsRAM, dig), where crsSNARG is a CRS for the underlying SNARG forNP, crsRAM is the

CRS for the RAM delegation scheme, and dig is a digest for (𝑀, crsSNARG), where𝑀 (crsSNARG, (𝑥, 𝜋))
is the RAM machine that computes the verification algorithm VerifySNARG(crsSNARG, 𝑥, 𝜋) for the
underlying SNARG.

• A proof for a statement 𝑥 consists of a SNARG proof 𝜋SNARG together with a RAM delegation proof

𝜋RAM that 𝑀 (crsSNARG, (𝑥, 𝜋SNARG)) := VerifySNARG(crsSNARG, 𝑥, 𝜋) = 1. The verification algorithm

simply runs VerifyRAM(crsRAM, dig, (𝑥, 𝜋SNARG), 𝜋RAM, 1).

Adaptive computational soundness follows from the fact that if VerifyRAM(crsRAM, dig, (𝑥, 𝜋SNARG), 𝜋RAM, 1),
then with all but negligible probability, VerifySNARG(crsSNARG, 𝑥, 𝜋SNARG) = 1, and soundness reduces to that

of the underlying SNARG. Moreover, the size of 𝜋RAM is poly(_ + log |𝐶 |), so the composed scheme remains

succinct. In the composed scheme, the verification algorithm only needs crsRAM and dig (but not crsSNARG).
Thus, we can define a separate verification key for the composed scheme vk = (crsRAM, dig), which has size

poly(_ + log |𝐶 |). The running time of the composed verification algorithm is then poly(_ + |𝑥 | + log |𝐶 |).

3 Rerandomizable One-Way Functions

In this section, we introduce the notion of a rerandomizable one-way function, which is one of the main

building blocks we use in our construction. Then, in Section 5, we show that rerandomizable one-way

functions can be based on standard number-theoretic assumptions.

Definition 3.1 (Rerandomizable One-Way Functions). A rerandomizable one-way function is a tuple of effi-

cient algorithms ΠROWF = (Setup,GenInstance,Rerandomize,Verify,RecoverSolution) with the following

syntax:

• Setup(1_, 1𝑚) → crs: On input a security parameter _ and a rerandomization parameter𝑚, the setup

algorithm outputs a common reference string crs.

• GenInstance(crs) → (𝑦, 𝑧): On input the common reference string crs, the instance-generator

algorithm outputs an instance 𝑦 together with a solution 𝑧.

• Rerandomize(crs, 𝑦) → (𝑦′, st): On input the common reference string crs, the rerandomize algorithm

outputs a new instance 𝑦′ and a randomization state st.

• Verify(crs, 𝑦, 𝑧) → 𝑏: On input the common reference string crs, an instance 𝑦, and a solution 𝑧, the

verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

• RecoverSolution(crs, 𝑧′, st) → 𝑧: On input the common reference string crs, a solution 𝑧′ and a

randomization state st, the solution-recovery algorithm outputs a solution 𝑧.

11

We require that ΠROWF satisfy the following properties:

• Correctness: For all _,𝑚 ∈ N, it holds that

Pr

[
Verify(crs, 𝑦, 𝑧) = 1 :

crs← Setup(1_, 1𝑚)
(𝑦, 𝑧) ← GenInstance(crs)

]
= 1.

• Rerandomization correctness: For all _,𝑚 ∈ N, all crs in the support of Setup(1_, 1𝑚), all (𝑦, 𝑧)
in the support of GenInstance(crs), all (𝑦′, st) in the support of Rerandomize(crs, 𝑦), and for all 𝑧′

where Verify(crs, 𝑦′, 𝑧′) = 1, it holds that

Pr[Verify(crs, 𝑦, 𝑧) = 1 : 𝑧 ← RecoverSolution(crs, 𝑧′, st)] = 1.

• One-wayness: For an adversary A, a security parameter _, and a rerandomization parameter𝑚, we

define the one-wayness security game as follows:

– On input the security parameter 1
_
, algorithm A outputs the rerandomization parameter 1

𝑚
.

– The challenger samples crs← Setup(1_, 1𝑚) and (𝑦∗, 𝑧∗) ← GenInstance(crs). It gives (crs, 𝑦∗)
to A.

– Algorithm A outputs a solution 𝑧. The challenger outputs 𝑏 = Verify(crs, 𝑦∗, 𝑧).

We say that the rerandomizable one-way function is one-way if for all efficient adversaries A, there

exists a negligible function negl(·) such that for all _ ∈ N,

OWFAdvA (_) := Pr[𝑏 = 1] ≤ Y (_)

in the one-wayness game.

• Rerandomization security: For an adversary A, a bit 𝑏 ∈ {0, 1}, a security parameter _, and a

rerandomization parameter𝑚, we define the rerandomization security game as follows:

– The challenger starts by sampling crs← Setup(1_, 1𝑚) and (𝑦base, 𝑧base) ← GenInstance(crs).
– If 𝑏 = 0, the challenger samples (𝑦∗, 𝑧∗) ← GenInstance(crs). If 𝑏 = 1, the challenger samples

(𝑦∗, st) ← Rerandomize(crs, 𝑦base). The challenger gives (1_, 1𝑚 (_) , crs, 𝑦base, 𝑦∗) to A.

– Algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that the rerandomizable one-way function satisfies (𝑡, Y)-rerandomizable security if for all

polynomials𝑚 =𝑚(_), all adversaries A running in time 𝑡 (_) · poly(_), there exists _A,𝑚 ∈ N such

that for all _ ≥ _A,𝑚 ,

RerandAdvA,𝑚 (_) := |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | ≤ Y (𝑚(_))

in the rerandomization security game. In particular, the distinguishing advantage Y is a function of

the rerandomization parameter𝑚. We say that ΠROWF satisfies Y-statistical rerandomizable security if

for all polynomials𝑚 =𝑚(_), all (possibly unbounded) adversaries A, and all _ ∈ N,

RerandAdvA,𝑚 (_) ≤ Y (𝑚(_)) .

We say ΠROWF satisfies perfect rerandomizable security if it satisfies Y-statistical rerandomizable

security for Y = 0.

• Succinctness: There exists a polynomial 𝑝 such that for all _,𝑚 ∈ N, all crs in the support of

Setup(1_, 1𝑚), and all (𝑦, 𝑧) in the support of GenInstance(crs), it holds that |𝑧 | ≤ 𝑝 (_ + log𝑚).

12

4 Constructing Adaptively-Sound SNARGs for NP

In this section, we show how to construct an adaptively-sound SNARG from indistinguishability obfuscation

together with a rerandomizable one-way function.

Construction 4.1 (Adaptively-Sound SNARGs). Our construction relies on the following primitives:

• Let 𝑖O be an indistinguishability obfuscator for Boolean circuits.

• Let ΠROWF = (R.Setup,R.GenInstance,R.Rerandomize,R.Verify,R.RecoverSolution) be a rerandom-

izable one-way function.

• Let ΠPPRF = (F.KeyGen, F.Eval, F.Puncture) be a puncturable PRF. For a key 𝑘 and an input 𝑥 , we

will write F(𝑘, 𝑥) to denote F.Eval(𝑘, 𝑥).

Our construction will leverage sub-exponential hardness of 𝑖O and ΠPPRF. In the following, let _obf =

obf (, 𝑛), _PRF = _PRF(_, 𝑛), and 𝑚 = 𝑚(_, 𝑛) be fixed polynomials in the scheme’s security parameter

_ and the statement length 𝑛. We will describe how to define the polynomials _obf , _PRF, and𝑚 in the

security analysis. We construct a (preprocessing) succinct non-interactive argument ΠSNARG = (Setup,
Prove,Verify) for Boolean circuit satisfiability as follows:

• Setup(1_,𝐶): On input the security parameter _ and a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1},
the setup algorithm does the following:

– Let crsROWF ← R.Setup(1_, 1𝑚).
– Sample a “selector” PRF key 𝑘sel ← F.Setup(1_PRF, 1𝑛, 11).
– Let 𝜌 be a bound on the number of bits of randomness the R.GenInstance(crsROWF) algorithm

takes. Sample two additional PRF keys 𝑘0, 𝑘1 ← F.Setup(1_PRF, 1𝑛, 1𝜌).
– Define the following programs GenProof and GenInst:

Input: statement 𝑥 and witness𝑤

Hard-coded: Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and common reference string

crsROWF for the rerandomizable one-way function, puncturable PRF keys 𝑘sel, 𝑘0, 𝑘1

On input a statement 𝑥 ∈ {0, 1}𝑛 and a witness𝑤 ∈ {0, 1}ℎ :

∗ If 𝐶 (𝑥,𝑤) = 0, output ⊥.

∗ If 𝐶 (𝑥,𝑤) = 1, then compute 𝑏 = F(𝑘sel, 𝑥) and (𝑦𝑏, 𝑧𝑏) =

R.GenInstance(crsROWF; F(𝑘𝑏, 𝑥)). Output (𝑏, 𝑧𝑏).

Figure 1: The proof-generation program GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1].

Input: statement 𝑥

Hard-coded: Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and common reference string

crsROWF for the rerandomizable one-way function, puncturable PRF keys 𝑘0, 𝑘1

On input a statement 𝑥 ∈ {0, 1}𝑛 :

∗ Compute (𝑦𝑏, 𝑧𝑏) = R.GenInstance(crsROWF; F(𝑘𝑏, 𝑥)) for 𝑏 ∈ {0, 1}. Output (𝑦0, 𝑦1).

Figure 2: The instance-generation program GenInst[𝐶, crsROWF, 𝑘0, 𝑘1].

13

Let 𝑠 = 𝑠 (_, 𝑛, |𝐶 |) be the maximum size of the GenProof and GenInst programs as well as those

appearing in the proof of Theorem 4.3 (specifically, the programs in Figs. 3 to 5). By construction,

we note that 𝑠 = poly(_, |𝐶 |) is polynomially-bounded.

– Construct the obfuscated programs ObfProve← 𝑖O(1_obf , 1𝑠 ,GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1])
andObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst[𝐶, crsROWF, 𝑘0, 𝑘1]). Output the common reference string

crs = (crsROWF,ObfProve,ObfVerify).

• Prove(crs, 𝑥,𝑤): On input the common reference string crs = (crsROWF,ObfProve,ObfVerify), the
prove algorithm outputs the proof 𝜋 = (𝑏, 𝑧𝑏) = ObfProve(𝑥,𝑤).

• Verify(crs, 𝑥, 𝜋): On input the common reference string crs = (crsROWF,ObfProve,ObfVerify), the
statement 𝑥 ∈ {0, 1}𝑛 , and the proof 𝜋 = (𝑏, 𝑧), the verification algorithm runs (𝑦0, 𝑦1) = ObfVerify(𝑥).
It outputs R.Verify(crsROWF, 𝑦𝑏, 𝑧).

Theorem 4.2 (Completeness). If 𝑖O and ΠROWF are correct, then Construction 4.1 is complete.

Proof. Take any security parameter _ ∈ N, any Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, and any

instance-witness pair (𝑥,𝑤) where 𝐶 (𝑥,𝑤) = 1. Let crs = (crsROWF,ObfProve,ObfVerify) ← Setup(1_,𝐶)
and 𝜋 = (𝑏, 𝑧) ← Prove(crs, 𝑥,𝑤). Consider the output of Verify(crs, 𝑥, 𝜋):

• By construction, ObfProve is an obfuscation of the program GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1], where
crsROWF ← R.Setup(1_, 1𝑚), 𝑘sel ← F.Setup(1_PRF, 1𝑛, 11), and 𝑘0, 𝑘1 ← F.Setup(1_PRF, 1𝑛, 1𝜌). In
this case (𝑏, 𝑧) is obtained by evaluating ObfProve on input (𝑥,𝑤). By correctness of 𝑖O and defini-

tion of GenProof, this means that 𝑏 = F(𝑘sel, 𝑥) and (𝑦, 𝑧) = R.GenInstance(crsROWF; F(𝑘𝑏, 𝑥)). By
correctness of ΠROWF, it follows that R.Verify(crsROWF, 𝑦, 𝑧) = 1

• By construction ObfVerify is an obfuscation of the program GenInst[𝐶, crsROWF, 𝑘0, 𝑘1]. The veri-
fication algorithm first evaluates GenInst on input 𝑥 to obtain (𝑦′

0
, 𝑦′

1
). By correctness of 𝑖O and

definition of GenInst, for 𝛽 ∈ {0, 1}, we have that (𝑦′
𝛽
, 𝑧′

𝛽
) = R.GenInstance(crsROWF; F(𝑘𝛽 , 𝑥)).

• The verification algorithm now outputs R.Verify(crsROWF, 𝑦
′
𝑏
, 𝑧). By definition 𝑦′

𝑏
= 𝑦 and the verifi-

cation algorithm outputs 1. □

Theorem 4.3 (Adaptive Soundness). Suppose 𝑖O is (1, 2−_
Yobf
obf)-secure, ΠPPRF satisfies selective (1, 2−_

YPRF
PRF)-

punctured security, andΠROWF satisfies (1, 2−𝑚
YROWF)-rerandomization security for constants Yobf, YPRF, YROWF ∈

(0, 1). Let _obf = (_ + 𝑛)1/Yobf , _PRF = (_ + 𝑛)1/YPRF , and𝑚 = (_ + 𝑛)1/YROWF . In addition, suppose 𝑖O is correct,
ΠPPRF satisfies punctured correctness, and ΠROWF satisfies rerandomization correctness. Then, Construction 4.1
is adaptively sound.

Proof. Let A be an efficient adversary for the adaptive soundness game for Construction 4.1 that succeeds

with (non-negligible) advantage Y = Y (_). We first claim that without loss of generality, we can assume

that for every security parameter _, algorithm A always outputs a Boolean circuit 𝐶 with statements of a

fixed length 𝑛 = 𝑛(_). To argue this formally, we first use the fact that A is a polynomial-time algorithm,

so on input the security parameter 1
_
, algorithmA outputs a Boolean circuit of size at most 𝑠max(_), where

𝑠max(_) = poly(_). This in turn define a maximum statement length 𝑛max(_) ≤ 𝑠max(_). In an execution

of the adaptive soundness game, let E𝑖 be the event that algorithm A outputs a Boolean circuit 𝐶 with

statements of length 𝑖 . Then,

Pr[A wins the soundness game] =
∑︁

𝑖∈[𝑛max]
Pr[A wins the soundness game ∧ E𝑖] .

14

If A wins the soundness game with advantage Y (_), then it must be the case that there exists some index

𝑖∗ ∈ [𝑛max(_)] such that

Pr[A wins the soundness game ∧ E𝑖∗] ≥
Y (_)

𝑛max(_)
. (4.1)

For each security parameter _, define 𝑛(_) := 𝑖∗ to be the smallest index 𝑖∗ where Eq. (4.1) holds. We

can now construct a new (non-uniform) adversary A′ that functions as a wrapper around A. Namely,

algorithm A′ takes as input the security parameter 1
_
and the non-uniform advice 𝑛(_). Algorithm A′

runs A on the same security parameter 1
_
. If A outputs a Boolean circuit 𝐶 where the statement length

is not 𝑛(_), then algorithm A′ aborts. Otherwise, algorithm A′ simply follows the behavior of A (and

outputs whatever A outputs). By construction,

Pr[A′ wins the soundness game] = Pr[A wins the soundness game ∧ E𝑛 (_)] ≥
Y (_)

𝑛max(_)
.

The advantage of A′ is only polynomially-smaller than that of A and moreover, algorithm A′ always
outputs a Boolean circuit with fixed statement 𝑛(_) size. Thus, if there exists an adaptive soundness

adversary A that succeeds with non-negligible probability, then we can construct from A an efficient

(non-uniform) adversary A′ that also succeeds with non-negligible probability. For the remainder of this

proof, we will thus assume that the adaptive soundness adversary always outputs a circuit𝐶 for statements

of length exactly 𝑛 = 𝑛(_). We now define a sequence of hybrid experiments:

• Hyb
0
: This is the real adaptive soundness experiment. Namely, the adversary starts by outputting a

Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}. The challenger then constructs the CRS as follows:

– Sample crsROWF ← R.Setup(1_, 1𝑚).
– Sample PRF keys 𝑘sel ← F.Setup(1_PRF, 1𝑛, 11) and 𝑘0, 𝑘1 ← F.Setup(1_PRF, 1𝑛, 1𝜌).
– The challenger then constructs ObfProve← 𝑖O(1_obf , 1𝑠 ,GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1]) and

ObfVerify ← 𝑖O(1_obf , 1𝑠 ,GenInst[𝐶, crsROWF, 𝑘0, 𝑘1]) where GenProof and GenInst on the

programs from Figs. 1 and 2, and 𝑠 is the same size parameter from Construction 4.1.

The challenger gives the crs = (crsROWF,ObfProve,ObfVerify) to A. Algorithm A then outputs a

statement 𝑥 and a proof 𝜋 = (𝑏, 𝑧). The challenger then computes (𝑦0, 𝑦1) = ObfVerify(𝑥) and the

output is 1 if

(𝐶, 𝑥) ∉ LSAT and R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1.

• Hyb
1
: Same as Hyb

0
except the output of the experiment is 1 if the following hold:

(𝐶, 𝑥) ∉ LSAT and R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥).

• Hyb
2
: Same as Hyb

1
except when computing the output, the challenger no longer checks that

(𝐶, 𝑥) ∉ LSAT. Namely, the output of the experiment is 1 if

R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥) .

• Hyb
3
: Same as Hyb

2
, except the challenger changes how it constructs ObfVerify. During setup, the

challenger now does the following:

15

– Sample an instance (𝑦base, 𝑧base) ← R.GenInstance(crsROWF).
– Let ^ be the number of bits of randomness the R.Rerandomize(crsROWF, 𝑦) takes. Sample a PRF

key 𝑘rerand ← F.Setup(1_PRF, 1𝑛, 1^). Define the following program GenInst1 :

Input: statement 𝑥

Hard-coded: Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and common reference string

crsROWF for the rerandomizable one-way function, puncturable PRF keys 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand,

and instance 𝑦base

On input a statement 𝑥 ∈ {0, 1}𝑛 :

∗ Compute 𝑏 = F(𝑘sel, 𝑥).

∗ Compute (𝑦𝑏, 𝑧𝑏) = R.GenInstance(crsROWF; F(𝑘𝑏, 𝑥)).

∗ Compute (𝑦1−𝑏, st) = R.Rerandomize(crsROWF, 𝑦base; F(𝑘rerand, 𝑥)).

∗ Output (𝑦0, 𝑦1).

Figure 3: The instance-generation program GenInst1 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base].

The challenger sets ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst1 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base]) in
crs. The rest of the experiment proceeds exactly as in Hyb

2
.

We write Hyb𝑖 (A) to denote the output distribution of an execution of hybrid Hyb𝑖 with the adversary A.

We now analyze each adjacent pair of hybrid distributions.

Lemma 4.4. Suppose 𝑖O is (1, 2−_
Yobf
obf)-secure and suppose ΠPPRF satisfies selective (1, 2−_

YPRF
PRF)-punctured

security for constants Yobf, YPRF ∈ (0, 1). In addition, suppose that _obf = (_ + 𝑛)1/Yobf and _PRF = (_ + 𝑛)1/YPRF .
Finally, suppose ΠPPRF satisfies punctured correctness. Then,

Pr[Hyb
1
(A) = 1] ≥ 1

2

Pr[Hyb
0
(A) = 1] − 2−Ω (_) .

Proof. Consider an execution ofHyb
0
orHyb

1
. For an index 𝑖 ∈ {0, 1}𝑛 , let E𝑖 be the event that the adversary

A outputs 𝑖 as its statement in an execution of Hyb
0
or Hyb

1
. By definition, we can now write

Pr[Hyb
0
(A) = 1] =

∑︁
𝑖∈{0,1}𝑛

Pr[Hyb
0
(A) = 1 ∧ E𝑖]

Pr[Hyb
1
(A) = 1] =

∑︁
𝑖∈{0,1}𝑛

Pr[Hyb
1
(A) = 1 ∧ E𝑖] .

(4.2)

To show the claim, we show that for all 𝑖 ∈ {0, 1}𝑛 ,

Pr[Hyb
1
(A) = 1 ∧ E𝑖] ≥

1

2

Pr[Hyb
0
(A) = 1 ∧ E𝑖] −

1

2
𝑛
· 𝑂 (1)

2
_

. (4.3)

To show this, we consider two cases.

Case 1. Suppose (𝐶, 𝑖) ∈ LSAT. If the adversary outputs 𝑖 as its statement (i.e., if E𝑖 occurs), then the

output in Hyb
0
and Hyb

1
are both 0. Thus,

Pr[Hyb
0
(A) = 1 ∧ E𝑖] = 0 = Pr[Hyb

1
(A) = 1 ∧ E𝑖] .

Correspondingly, Eq. (4.3) holds.

16

Case 2. Suppose (𝐶, 𝑖) ∉ LSAT. In this case, we proceed by defining a sequence of hybrids:

• Hyb(0)
0,𝑖

: Same as Hyb
0
except the challenger outputs 1 only if

(𝐶, 𝑥) ∉ LSAT and R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1 and 𝑥 = 𝑖 .

• Hyb(1)
0,𝑖

: Same as Hyb(0)
0,𝑖

except when setting up the CRS, the challenger defines the modified solution-

generation problem GenProof1 as follows:

Input: statement 𝑥 and witness𝑤

Hard-coded: Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and common reference string crsROWF

for the rerandomizable one-way function, puncturable PRF keys 𝑘sel, 𝑘0, 𝑘1, statement 𝑖 ∈ {0, 1}𝑛

On input a statement 𝑥 ∈ {0, 1}𝑛 and a witness𝑤 ∈ {0, 1}ℎ :

– If 𝑥 = 𝑖 , output ⊥.

– If 𝐶 (𝑥,𝑤) = 0, output ⊥.

– If 𝐶 (𝑥,𝑤) = 1, then compute 𝑏 = F(𝑘sel, 𝑥) and (𝑦𝑏, 𝑧𝑏) =

R.GenInstance(crsROWF; F(𝑘𝑏, 𝑥)). Output (𝑏, 𝑧𝑏).

Figure 4: The solution-generation program GenProof1 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑖].

Next, after sampling 𝑘sel ← F.Setup(1_PRF, 1𝑛, 11), the challenger computes 𝑘
(𝑖)
sel ← F.Puncture(𝑘sel, 𝑖).

It then constructs the prover program ObfProve← 𝑖O
(
1
_obf , 1𝑠 ,GenProof1 [𝐶, crsROWF, 𝑘

(𝑖)
sel , 𝑘0, 𝑘1, 𝑖]

)
.

The remainder of the program proceeds as in Hyb(0)
0,𝑖

.

• Hyb(2)
0,𝑖

: Same as Hyb(1)
0,𝑖

, except after the adversary outputs its statement 𝑥 and the proof 𝜋 = (𝑏, 𝑧),
the challenger samples a random bit 𝑏′ r← {0, 1} and outputs 1 if

(𝐶, 𝑥) ∉ LSAT and R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1 and 𝑥 = 𝑖 and 𝑏 ≠ 𝑏′.

• Hyb(3)
0,𝑖

: Same as Hyb(2)
0,𝑖

, except after the adversary outputs its statement 𝑥 and the proof 𝜋 = (𝑏, 𝑧),
the challenger outputs 1 if

(𝐶, 𝑥) ∉ LSAT and R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1 and 𝑥 = 𝑖 and 𝑏 ≠ F(𝑘sel, 𝑖) .

• Hyb(4)
0,𝑖

: Same as Hyb(3)
0,𝑖

, except when setting up the CRS, the challenger reverts to computing

ObfProve← 𝑖O(1_obf , 1𝑠 ,GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1]).

By definition,

Pr[Hyb(0)
0,𝑖
(A) = 1] = Pr[Hyb

0
(A) = 1 ∧ E𝑖] and Pr[Hyb(4)

0,𝑖
(A) = 1] = Pr[Hyb

1
(A) = 1 ∧ E𝑖] .

We now consider each pair of adjacent distributions.

Claim 4.5. Suppose 𝑖O is (1, 2−_
Yobf
obf)-secure for some constant Yobf ∈ (0, 1). In addition, suppose _obf =

(_ + 𝑛)1/Yobf and ΠPPRF satisfies punctured correctness. Then, there exists _A ∈ N such that for all _ ≥ _A ,

| Pr[Hyb(1)
0,𝑖
(A) = 1] − Pr[Hyb(0)

0,𝑖
(A) = 1] | ≤ 1/2_+𝑛 .

17

Proof. Wefirst show thatGenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1] inHyb0 andGenProof1 [𝐶, crsROWF, 𝑘
(𝑖)
sel , 𝑘0, 𝑘1, 𝑖]

in Hyb
1
compute identical functionality. We consider the possibilities. Let (𝑥,𝑤) be an input to the two

programs.

• Suppose 𝑥 = 𝑖 . We are analyzing the case (𝐶, 𝑖) ∉ LSAT, so 𝐶 (𝑖,𝑤) = 0. In this case, both programs

output ⊥.

• Suppose 𝐶 (𝑥,𝑤) = 0. Then both programs output ⊥.

• Suppose 𝐶 (𝑥,𝑤) = 1. In this case 𝑥 ≠ 𝑖 . Since the key 𝑘
(𝑖)
sel is punctured at input 𝑖 , it follows that

F(𝑘sel, 𝑥) = F(𝑘 (𝑖)sel , 𝑥). Once again, the behavior of the two programs are identical.

We conclude that the two programs output identical functionality. The claim now follows by 𝑖O security.

Formally, suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ ΛA ,

| Pr[Hyb(1)
0,𝑖
(A) = 1] − Pr[Hyb(0)

0,𝑖
(A) = 1] | > 1/2_+𝑛 (_) . (4.4)

Let ΛB =
{
(_ + 𝑛(_))1/Yobf : _ ∈ ΛA

}
. Since 𝑛 is a non-negative function, ΛB is also an infinite set. We use

A to construct an efficient adversary B such that for all _obf ∈ ΛB , iOAdvB (_obf) > 1/2−_
Yobf
obf . For each

value of _obf ∈ ΛB , we provide the associated value of _ ∈ ΛA to B as non-uniform advice (if there are

multiple such _ ∈ ΛA associated with a particular _obf , we pick the largest such _; note that since Yobf < 1

and 𝑛(_) > 0, it will always be the case that _ < _obf). Algorithm B proceeds as follows:

1. On input the security parameter 1
_obf

(and advice string 1
_
), algorithmB runs algorithmA on security

parameter 1
_
to get a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

2. Algorithm B samples crsROWF ← R.Setup(1_, 1𝑚). It sets _PRF = _PRF(_, 𝑛) and samples PRF keys

𝑘sel ← F.Setup(1_PRF, 1𝑛, 11), 𝑘0, 𝑘1 ← F.Setup(1_PRF, 1𝑛, 1𝜌). It computes 𝑘
(𝑖)
sel ← F.Puncture(𝑘sel, 𝑖).

3. Algorithm B computes 𝑠 as in Construction 4.1 and gives 1
𝑠
, GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1], and

GenProof1 [𝐶, crsROWF, 𝑘
(𝑖)
sel , 𝑘0, 𝑘1, 𝑖] to the challenger to receive the obfuscated program ObfProve.

4. Algorithm B computes ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst[𝐶, crsROWF, 𝑘0, 𝑘1]) and gives A the com-

mon reference string crs = (crsROWF,ObfProve,ObfVerify).

5. After algorithm A outputs a statement 𝑥 and a proof 𝜋 = (𝑏, 𝑧), algorithm B computes (𝑦0, 𝑦1) =
ObfVerify(𝑥) and outputs 1 if 𝑥 = 𝑖 and R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1.

If the challenger obfuscates the program GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1], then algorithm B perfectly

simulates Hyb(0)
0,𝑖

. In this case, algorithm B outputs 1 with probability Pr[Hyb(0)
0,𝑖
(A) = 1]. Alternatively,

if the challenger obfuscates the program GenProof1 [𝐶, crsROWF, 𝑘
(𝑖)
sel , 𝑘0, 𝑘1, 𝑖], then algorithm B perfectly

simulates Hyb(1)
0,𝑖

and outputs 1 with probability Pr[Hyb(1)
0,𝑖
(A) = 1]. By Eq. (4.4),

iOAdvB (_obf) > 2
−(_+𝑛 (_)) = 2

−_Yobfobf . □

Claim 4.6. It holds that Pr[Hyb(2)
0,𝑖
(A) = 1] = 1

2
Pr[Hyb(1)

0,𝑖
(A) = 1].

Proof. The only difference between Hyb(1)
0,𝑖

and Hyb(2)
0,𝑖

is the extra condition 𝑏 ≠ 𝑏′ in Hyb(2)
0,𝑖

. Since the

challenger samples 𝑏′ r← {0, 1} after the adversary outputs 𝑏, we have that 𝑏′ = 𝑏 with probability 1/2. □

18

Claim 4.7. Suppose ΠPPRF satisfies selective (1, 2−_
YPRF
PRF)-punctured security for some constant YPRF ∈ (0, 1)

and _PRF = (_ + 𝑛)1/YPRF . Then, there exists _A ∈ N such that for all _ ≥ _A , it holds that

| Pr[Hyb(2)
0,𝑖
(A) = 1] − Pr[Hyb(3)

0,𝑖
(A) = 1] | ≤ 1/2_+𝑛 .

Proof. Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ ΛA ,

| Pr[Hyb(2)
0,𝑖
(A) = 1] − Pr[Hyb(3)

0,𝑖
(A) = 1] | > 1/2_+𝑛 (_) .

Let ΛB =
{
(_ + 𝑛(_))1/YPRF : _ ∈ ΛB

}
. We use A to construct an efficient adversary B such that for all

_PRF ∈ ΛB , PPRFAdvB (_PRF) > 2
−_YPRFPRF . For each _PRF ∈ ΛB , we provide the associated value of _ ∈ ΛA to

B as non-uniform advice (if there are multiple such _ ∈ ΛA associated with a particular _PRF, we pick the

largest such _). Algorithm B now proceeds as follows:

1. On input the security parameter 1
_PRF

(and advice 1
_
), algorithm B runs algorithm A on input 1

_
to

get a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

2. Algorithm B samples crsROWF ← R.Setup(1_, 1𝑚) and 𝑘0, 𝑘1 ← F.Setup(1_PRF, 1𝑛, 1𝜌). It gives the
input length 1

𝑛
, the output length 1

1
, and the point 𝑖 ∈ {0, 1}𝑛 to the punctured PRF challenger. The

challenger replies with a punctured key 𝑘
(𝑖)
sel and a challenge bit 𝑏′ ∈ {0, 1}.

3. Algorithm B sets _obf = _obf (_, 𝑛), and computes

ObfProve← 𝑖O
(
1
_obf , 1𝑠 ,GenProof1 [𝐶, crsROWF, 𝑘

(𝑖)
sel , 𝑘0, 𝑘1, 𝑖]

)
ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst[𝐶, crsROWF, 𝑘0, 𝑘1]) .

It gives crs = (crsROWF,ObfProve,ObfVerify) to A.

4. After algorithm A outputs a statement 𝑥 and a proof 𝜋 = (𝑏, 𝑧), algorithm B computes (𝑦0, 𝑦1) =
ObfVerify(𝑥) and outputs 1 if 𝑥 = 𝑖 , R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1, and 𝑏 = 𝑏′.

By construction, algorithm B perfectly simulates an execution ofHyb(2)
0,𝑖

andHyb(3)
0,𝑖

forA. If the challenger

samples 𝑏′ r← {0, 1}, then algorithm B computes its output according to the specification of Hyb(2)
0,𝑖

. If the

challenger computes 𝑏′ = F(𝑘sel, 𝑖), then algorithm B computes its output according to the specification of

Hyb(3)
0,𝑖

. Correspondingly, PPRFAdvB (_PRF) > 2
−(_+𝑛 (_)) = 2

−_YPRFPRF . □

Claim 4.8. Suppose 𝑖O is (1, 2−_
Yobf
obf)-secure for some constant Yobf ∈ (0, 1). In addition, suppose _obf =

(_ + 𝑛)1/Yobf and ΠPPRF satisfies punctured correctness. Then, there exists _A ∈ N such that for all _ ≥ _A ,

| Pr[Hyb(3)
0,𝑖
(A) = 1] − Pr[Hyb(4)

0,𝑖
(A) = 1] | ≤ 1/2_+𝑛 .

Proof. This follows by an analogous argument as the proof of Claim 4.5. □

Combining Claims 4.5 to 4.8, we have demonstrated that for all 𝑖 ∈ {0, 1}𝑛 where (𝐶, 𝑖) ∉ LSAT, Eq. (4.3)

holds. Combined with Eq. (4.2), we can now write

Pr[Hyb
1
(A) = 1] =

∑︁
𝑖∈{0,1}𝑛

Pr[Hyb
1
(A) = 1 ∧ E𝑖] ≥

1

2

∑︁
𝑖∈{0,1}𝑛

Pr[Hyb
0
(A) = 1 ∧ E𝑖] −

2
𝑛

2
𝑛
· 𝑂 (1)

2
_

=
1

2

Pr[Hyb
0
(A) = 1] − 2−Ω (_) . □

19

Lemma 4.9. It holds that Pr[Hyb
2
(A) = 1] ≥ Pr[Hyb

1
(A) = 1].

Proof. This follows by construction since the conditions for outputting 1 in Hyb
2
is a strict subset of those

in Hyb
1
. Thus, whenever the challenger outputs 1 in Hyb

1
, it would also do so in Hyb

2
, and the lemma

follows. □

Lemma 4.10. Suppose 𝑖O is (1, 2−_
Yobf
obf)-secure, ΠPPRF satisfies selective (1, 2−_

YPRF
PRF)-punctured security, and

ΠROWF satisfies (1, 2−𝑚YROWF)-rerandomization security for constants Yobf, YPRF, YROWF ∈ (0, 1). Let _obf =

(_ +𝑛)1/Yobf , _PRF = (_ +𝑛)1/YPRF , and𝑚 = (_ +𝑛)1/YROWF . Finally, suppose ΠPPRF satisfies punctured correctness.
Then,

| Pr[Hyb
2
(A) = 1] − Pr[Hyb

3
(A) = 1] | ≤ 2

−Ω (_) .

Proof. We define a sequence of intermediate hybrids indexed by 𝑖 ∈ {0, . . . , 2𝑛}:

• Hyb(0)
2,𝑖

: Same as Hyb
2
, except the challenger defines the following program GenInst2:

Input: statement 𝑥

Hard-coded: Boolean circuit𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} and common reference string crsROWF

for the rerandomizable one-way function, puncturable PRF keys 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, instances

𝑦base, 𝑦
∗
, index 𝑖 ∈ {0, 1}𝑛

On input a statement 𝑥 ∈ {0, 1}𝑛 :

– Compute 𝑏 = F(𝑘sel, 𝑥).

– Compute (𝑦𝑏, 𝑧𝑏) = R.GenInstance(crsROWF; F(𝑘𝑏, 𝑥)).

– Compute 𝑦1−𝑏 as follows:

∗ If 𝑥 < 𝑖 , let (𝑦1−𝑏, st) = R.Rerandomize(crsROWF, 𝑦base; F(𝑘rerand, 𝑥)).
∗ If 𝑥 = 𝑖 , let 𝑦1−𝑏 = 𝑦∗.

∗ If 𝑥 > 𝑖 , let (𝑦1−𝑏, 𝑧1−𝑏) = R.GenInstance(crsROWF; F(𝑘1−𝑏, 𝑥)).

– Output (𝑦0, 𝑦1).

Figure 5: The instance-generation program GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base, 𝑦
∗, 𝑖].

Then, the challenger samples crsROWF ← R.Setup(1_, 1𝑚) and PRF keys 𝑘sel ← F.Setup(1_PRF, 1𝑛, 11),
𝑘0, 𝑘1 ← F.Setup(1_PRF, 1𝑛, 1𝜌), 𝑘rerand ← F.Setup(1_PRF, 1𝑛, 1^). The challenger also samples the

following additional components:

– Sample (𝑦base, 𝑧base) ← R.GenInstance(crsROWF).
– Let 𝑏∗ = 1 − F(𝑘sel, 𝑖). Compute 𝑟 ∗ = F(𝑘𝑏∗, 𝑖) and (𝑦∗, 𝑧∗) ← R.GenInstance(crsROWF; 𝑟

∗).

The challenger computesObfProve← 𝑖O(1_obf , 1𝑠 ,GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1]) andObfVerify←
𝑖O(1_obf , 1𝑠 ,GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base, 𝑦

∗, 𝑖]) whereGenProof andGenInst2 are the
programs from Figs. 1 and 5 and 𝑠 is the bound on the program size from Construction 4.1. Algorithm

B gives crs = (crsROWF,ObfProve,ObfVerify) to A. After A outputs the statement 𝑥 and the proof

𝜋 = (𝑏, 𝑧), the challenger computes (𝑦0, 𝑦1) = ObfVerify(𝑥) and outputs 1 if

R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥) .

20

• Hyb(1)
2,𝑖

: Same as Hyb(0)
2,𝑖

, except after computing 𝑏∗ = 1 − F(𝑘sel, 𝑖), the challenger punctures 𝑘𝑏∗ and
𝑘rerand at index 𝑖 . Namely, it computes 𝑘

(𝑖)
𝑏∗ ← F.Puncture(𝑘𝑏∗, 𝑖) and 𝑘 (𝑖)rerand ← F.Puncture(𝑘rerand, 𝑖)

It still sets 𝑟 ∗ = F(𝑘𝑏∗, 𝑖) and (𝑦∗, 𝑧∗) = R.GenInstance(crsROWF; 𝑟
∗). Then, it uses the punctured

keys 𝑘
(𝑖)
𝑏∗ and 𝑘

(𝑖)
rerand in place of 𝑘𝑏∗ and 𝑘rerand in ObfProve and ObfVerify. Specifically, ObfProve and

ObfVerify are now defined as follows:

– If 𝑏∗ = 0, then the challenger sets ObfProve← 𝑖O(1_obf , 1𝑠 ,GenProof [𝐶, crsROWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1])

and ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1, 𝑘

(𝑖)
rerand, 𝑦base, 𝑦

∗, 𝑖]).

– If 𝑏∗ = 1, then the challenger sets ObfProve← 𝑖O(1_obf , 1𝑠 ,GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘
(𝑖)
𝑏∗])

and ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘
(𝑖)
𝑏∗ , 𝑘

(𝑖)
rerand, 𝑦base, 𝑦

∗, 𝑖]).

• Hyb(2)
2,𝑖

: Same as Hyb(1)
2,𝑖

, except the challenger samples 𝑟 ∗ r← {0, 1}𝜌 .

• Hyb(3)
2,𝑖

: Same as Hyb(2)
2,𝑖

, except the challenger first samples 𝑟 ∗ r← {0, 1}^ and rerandomizes 𝑦base to

obtain 𝑦∗: (𝑦∗, st) = R.Rerandomize(crsROWF, 𝑦base; 𝑟
∗).

• Hyb(4)
2,𝑖

: Same as Hyb(3)
2,𝑖

, except the challenger sets 𝑟 ∗ = F(𝑘rerand, 𝑖).

We now show that each pair of adjacent experiments are indistinguishable.

Claim 4.11. Suppose 𝑖O is (1, 2−_Yobf)-secure for some constant Yobf ∈ (0, 1) and suppose _obf = (_ + 𝑛)1/Yobf .
Suppose ΠPPRF satisfies punctured correctness. Then, there exists _A ∈ N such that for all _ ≥ _A ,

| Pr[Hyb
2
(A) = 1] − Pr[Hyb(0)

2,0
(A) = 1] | ≤ 1/2_+𝑛 .

Proof. We start by showing that the program GenInst[𝐶, crsROWF, 𝑘0, 𝑘1] in Hyb
2
and the correspond-

ing program GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base, 𝑦
∗, 0] in Hyb(0)

2,0
compute identical functionalities.

Take any input 𝑥 ∈ {0, 1}𝑛 , and consider the program GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base, 𝑦
∗, 0] in

Hyb(0)
2,0

:

• Let 𝑏 = F(𝑘sel, 𝑥). Then GenInst2 computes (𝑦𝑏, 𝑧𝑏) = R.GenInstance(crsROWF; F(𝑘𝑏, 𝑥)), which is

exactly how the program GenInst computes (𝑦𝑏, 𝑧𝑏).

• Consider the distribution of 𝑦1−𝑏 . In Hyb(0)
2,0

, when 𝑥 satisfies 𝑥 > 0, the program GenInst2 computes

(𝑦1−𝑏, 𝑧1−𝑏) = R.GenInstance(crsROWF; F(𝑘1−𝑏, 𝑥))), which matches the behavior of GenInst. When

𝑥 = 0, GenInst2 sets 𝑦1−𝑏 = 𝑦∗, where (𝑦∗, 𝑧∗) = R.GenInstance(crsROWF; 𝑟
∗) and 𝑟 ∗ = F(𝑘1−𝑏, 𝑥).

Once again, this is the behavior of GenInst.

We conclude that on all inputs 𝑥 , the verification programs GenInst and GenInst2 in Hyb
2
and Hyb(0)

2,0
have

identical input/output behavior. The claim now holds by security of 𝑖O. Formally, suppose there exists an

infinite set ΛA ⊆ N such that for all _ ∈ ΛA ,

| Pr[Hyb
2
(A) = 1] − Pr[Hyb(0)

2,0
(A) = 1] | > 1/2_+𝑛 (_) .

Let ΛB =
{
(_ + 𝑛(_))1/Yobf : _ ∈ ΛA

}
. We use A to construct an efficient adversary B such that for all

_obf ∈ ΛB , iOAdvB (_obf) > 1/2−_
Yobf
obf . For each value of _obf ∈ ΛB , we provide the associated value of

_ ∈ ΛA to B as non-uniform advice (if there are multiple such _ ∈ ΛA associated with a particular _obf , we

pick the largest such _). Algorithm B works as follows:

21

1. On input the security parameter 1
_obf

(and advice string 1
_
), algorithmB runsA on security parameter

_ to get a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

2. Algorithm B samples crsROWF ← R.Setup(1_, 1𝑚). It sets _PRF = _PRF(_, 𝑛) and then samples PRF

keys 𝑘sel ← F.Setup(1_PRF, 1𝑛, 11), 𝑘0, 𝑘1 ← F.Setup(1_PRF, 1𝑛, 1𝜌), 𝑘rerand ← F.Setup(1_PRF, 1𝑛, 1^).

3. AlgorithmB then computes𝑏∗ = 1−F(𝑘sel, 0), 𝑟 ∗ = F(𝑘𝑏∗, 0) and (𝑦∗, 𝑧∗) = R.GenInstance(crsROWF; 𝑟
∗).

It also samples (𝑦base, 𝑧base) ← R.GenInstance(crsROWF).

4. AlgorithmB computes the parameter 𝑠 as in Construction 4.1 and gives 1𝑠 ,GenInst[𝐶, crsROWF, 𝑘0, 𝑘1],
and GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base, 𝑦

∗, 0] to the challenger. The challenger replies with

an obfuscated program ObfVerify.

5. Algorithm B computes ObfProve ← 𝑖O(1_obf , 1𝑠 ,GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1]) and gives the

common reference string crs = (crsROWF,ObfProve,ObfVerify) to A.

6. After A outputs the statement 𝑥 and the proof 𝜋 = (𝑏, 𝑧), the challenger computes (𝑦0, 𝑦1) =

ObfVerify(𝑥) and outputs 1 if R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥).

If the challenger obfuscates the program GenInst[𝐶, crsROWF, 𝑘0, 𝑘1], then algorithm B perfectly simulates

Hyb
2
. If the challenger obfuscates the program GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base, 𝑦

∗, 0], then
algorithm B perfectly simulates Hyb(0)

2,0
. Correspondingly, iOAdvB (_obf) > 2

−(_+𝑛 (_)) = 2
−_Yobfobf . □

Claim 4.12. Suppose 𝑖O is (1, 2−_Yobf)-secure for some constant Yobf ∈ (0, 1) and suppose _obf = (_ + 𝑛)1/Yobf .
Suppose ΠPPRF satisfies punctured correctness. Then, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, there exists _A ∈ N such that
for all _ ≥ _A ,

| Pr[Hyb(0)
2,𝑖
(A) = 1] − Pr[Hyb(1)

2,𝑖
(A) = 1] | ≤ 2/2_+𝑛 .

Proof. Take any 𝑖 ∈ {0, . . . , 2𝑛 − 1}. Consider an execution of Hyb(0)
2,𝑖

and Hyb(1)
2,𝑖

. Let 𝑏∗ = 1 − F(𝑘sel, 𝑖).
We first show that if 𝑏∗ = 0, then the program GenProof [𝐶, crsROWF, 𝑘sel, 𝑘𝑏∗, 𝑘1] in Hyb(0)

2,𝑖
has the same

functionality as the program GenProof [𝐶, crsROWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1] in Hyb(0)

2,𝑖
:

• First, the key 𝑘
(𝑖)
𝑏∗ is punctured on input 𝑖 , so it follows that F(𝑘 (𝑖)

𝑏∗ , 𝑥) = F(𝑘𝑏∗, 𝑥) for all 𝑥 ≠ 𝑖 . Thus,

on all inputs (𝑥,𝑤) where 𝑥 ≠ 𝑖 , the two programs behave identically.

• Consider an input (𝑥,𝑤) where 𝑥 = 𝑖 . In this case, both programs first computes 𝑏 = F(𝑘sel, 𝑖) and
then evaluate R.GenInstance(crsROWF; F(𝑘𝑏, 𝑖)). However, by definition, 𝑏∗ = 1−F(𝑘sel, 𝑖) = 1−𝑏 ≠ 𝑏.

In this case, both programs derive the randomness using F(𝑘1−𝑏∗, 𝑥) = F(𝑘1, 𝑥). Once again, the two
programs have identical functionality.

Next, we show that the program GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base, 𝑦
∗, 𝑖] in Hyb(0)

2,𝑖
has the same

functionality as the program GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1, 𝑘

(𝑖)
rerand, 𝑦base, 𝑦

∗, 𝑖] in Hyb(1)
2,𝑖

:

• By punctured correctness, for all 𝑥 ≠ 𝑖 , it follows that

F
(
𝑘
(𝑖)
𝑏∗ , 𝑥

)
= F(𝑘𝑏∗, 𝑥) and F

(
𝑘
(𝑖)
rerand, 𝑥

)
= F(𝑘rerand, 𝑥) .

Thus, for all inputs 𝑥 ≠ 𝑖 , the two programs have identical behavior.

22

• Suppose 𝑥 = 𝑖 . Then, both programs compute 𝑏 = F(𝑘sel, 𝑖) and R.GenInstance(crsROWF; F(𝑘𝑏, 𝑖)). By
definition, 𝑏∗ = 1 − F(𝑘sel, 𝑖) = 1 − 𝑏 ≠ 𝑏. In this case, both programs derive the randomness using

F(𝑘1−𝑏∗, 𝑥) = F(𝑘1, 𝑥). Once again, the two programs have identical functionality.

An analogous argument shows that theGenProof andGenInst programs inHyb(0)
2,𝑖

andHyb(1)
2,𝑖

have identical

behavior when 𝑏∗ = 1. To complete the proof, we first introduce an intermediate hybrid:

• iHyb𝑖 : Same as Hyb(1)
2,𝑖

except the challenger computes the ObfVerify as in Hyb(0)
2,𝑖

. Namely, it

computes ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base, 𝑦
∗, 𝑖]).

Suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ ΛA ,

| Pr[Hyb(0)
2,𝑖
(A) = 1] − Pr[iHyb𝑖 (A) = 1] | > 1/2_+𝑛 (_) .

Let ΛB =
{
(_ + 𝑛(_))1/Yobf : _ ∈ ΛA

}
. We use A to construct an efficient adversary B such that for all

_obf ∈ ΛB , iOAdvB (_obf) > 1/2−_
Yobf
obf . For each value of _obf ∈ ΛB , we provide the associated value of

_ ∈ ΛA to B as non-uniform advice (if there are multiple such _ ∈ ΛA associated with a particular _obf , we

pick the largest such _). Algorithm B works as follows:

1. On input the security parameter 1
_obf

(and advice 1
_
), algorithm B runs algorithm A on input 1

_
to

get a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

2. Algorithm B samples crsROWF ← R.Setup(1_, 1𝑚). It sets _PRF = _PRF(_, 𝑛) and samples PRF keys

𝑘sel ← F.Setup(1_PRF, 1𝑛, 11), 𝑘0, 𝑘1 ← F.Setup(1_PRF, 1𝑛, 1𝜌), and 𝑘rerand ← F.Setup(1_PRF, 1𝑛, 1^).

3. AlgorithmB then computes𝑏∗ = 1−F(𝑘sel, 𝑖), 𝑟 ∗ = F(𝑘𝑏∗, 𝑖) and (𝑦∗, 𝑧∗) = R.GenInstance(crsROWF; 𝑟
∗).

It also samples (𝑦base, 𝑧base) ← R.GenInstance(crsROWF) and 𝑘 (𝑖)𝑏∗ ← F.Puncture(𝑘𝑏∗, 𝑖).

4. Algorithm B computes the parameter 𝑠 as in Construction 4.1. It then constructs its challenge as

follows:

• If 𝑏∗ = 0, it gives 1
𝑠
, GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1], and GenProof [𝐶, crsROWF, 𝑘sel, 𝑘

(𝑖)
𝑏∗ , 𝑘1]

to the challenger.

• If 𝑏∗ = 1, it gives 1
𝑠
, GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1], and GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘

(𝑖)
𝑏∗]

to the challenger.

The challenger replies with an obfuscated program ObfProve.

5. Algorithm B computes ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base, 𝑦
∗, 𝑖])

and gives the common reference string crs = (crsROWF,ObfProve,ObfVerify) to A.

6. After A outputs the statement 𝑥 and the proof 𝜋 = (𝑏, 𝑧), the challenger computes (𝑦0, 𝑦1) =

ObfVerify(𝑥) and outputs 1 if R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥).

If the challenger obfuscates the program GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1], then algorithm B perfectly

simulates Hyb(0)
2,𝑖

. If the challenger obfuscates the program GenProof [𝐶, crsROWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1] (in the case

where 𝑏∗ = 0) or GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘
(𝑖)
𝑏∗] (in the case where 𝑏∗ = 1), algorithm B perfectly

23

simulates iHyb𝑖 . Correspondingly, iOAdvB (_obf) > 2
−(_+𝑛 (_)) = 2

−_Yobfobf . As such, algorithm B breaks

(1, 2−_Yobf)-security of 𝑖O. Thus, for all sufficiently-large _ ∈ N,

| Pr[Hyb(0)
2,𝑖
(A) = 1] − Pr[iHyb𝑖 (A) = 1] | ≤ 1/2_+𝑛 (_) . (4.5)

By an analogous argument (where the reduction algorithm obtains ObfVerify from the challenger), we can

show that for all sufficiently-large _ ∈ N, it holds that

| Pr[Hyb(1)
2,𝑖
(A) = 1] − Pr[iHyb𝑖 (A) = 1] | ≤ 1/2_+𝑛 (_) . (4.6)

Combining Eqs. (4.5) and (4.6), we conclude that for all sufficiently-large _ ∈ N,

| Pr[Hyb(0)
2,𝑖
(A) = 1] − Pr[Hyb(1)

2,𝑖
(A) = 1] | ≤ 2/2_+𝑛 (_) . □

Claim 4.13. Suppose ΠPPRF satisfies selective (1, 2−_
YPRF
PRF)-punctured security for some constant YPRF ∈ (0, 1)

and _PRF = (_ + 𝑛)1/YPRF . Then, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, there exists _A ∈ N such that for all _ ≥ _A , it
holds that

| Pr[Hyb(1)
2,𝑖
(A) = 1] − Pr[Hyb(2)

2,𝑖
(A) = 1] ≤ 1/2_+𝑛

Proof. Take any 𝑖 ∈ {0, . . . , 2𝑛 − 1} and suppose there exists an infinite set ΛA ⊆ N such that for all _ ∈ ΛA ,

| Pr[Hyb(1)
2,𝑖
(A) = 1] − Pr[Hyb(2)

2,𝑖
(A) = 1] | > 1/2_+𝑛 (_) .

Let ΛB =
{
(_ + 𝑛(_))1/YPRF : _ ∈ ΛA

}
. We use A to construct an efficient adversary B such that for all

_PRF ∈ ΛB , PPRFAdvB (_PRF) > 1/2−_
YPRF
PRF . For each value of _PRF ∈ ΛB , we provide the associated value of

_ ∈ ΛA to B as non-uniform advice (if there are multiple such _ ∈ ΛA associated with a particular _PRF,

we pick the largest such _). Algorithm B works as follows:

1. On input the security parameter 1
_PRF

(and advice string 1
_
), algorithm B runs algorithm A on input

1
_
to obtain a circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

2. Algorithm B samples crsROWF ← R.Setup(1_, 1𝑚), (𝑦base, 𝑧base) ← R.GenInstance(crsROWF), and
𝑘sel ← F.Setup(1_PRF, 1𝑛, 11). It computes 𝑏∗ = 1 − F(𝑘sel, 𝑖). It samples 𝑘1−𝑏∗ ← F.Setup(1_PRF, 1𝑛, 1𝜌)
and 𝑘rerand ← F.Setup(1_PRF, 1𝑛, 1^). Algorithm B also computes 𝑘

(𝑖)
rerand ← F.Puncture(𝑘rerand, 𝑖).

3. AlgorithmB submits the input length 1
𝑛
, the output length 1

𝜌
, and a point 𝑖 ∈ {0, 1}𝑛 to the punctured

PRF challenger. It receives the punctured key 𝑘
(𝑖)
𝑏∗ as well as the challenge value 𝑟 ∗ ∈ {0, 1}𝜌 .

4. Algorithm B now samples (𝑦∗, 𝑧∗) ← R.GenInstance(crsROWF; 𝑟
∗). Then, algorithm B sets _obf =

obf (, 𝑛) and constructs the programs ObfProve and ObfVerify as follows:

• If 𝑏∗ = 0, then it computes ObfProve← 𝑖O(1_obf , 1𝑠 ,GenProof [𝐶, crsROWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1−𝑏∗]) and

ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1−𝑏∗, 𝑘

(𝑖)
rerand, 𝑦base, 𝑦

∗, 𝑖]).

• If 𝑏∗ = 1, then it computes ObfProve← 𝑖O(1_obf , 1𝑠 ,GenProof [𝐶, crsROWF, 𝑘sel, 𝑘1−𝑏∗, 𝑘
(𝑖)
𝑏∗]) and

ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘1−𝑏∗, 𝑘
(𝑖)
𝑏∗ , 𝑘

(𝑖)
rerand, 𝑦base, 𝑦

∗, 𝑖]).

Algorithm B gives the common reference string crs = (crsROWF,ObfProve,ObfVerify) to A.

24

5. After algorithmA outputs the statement 𝑥 and the proof 𝜋 = (𝑏, 𝑧), algorithm B computes (𝑦0, 𝑦1) ←
ObfVerify(𝑥) and outputs 1 if R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥).

By definition, the punctured PRF challenger constructs key𝑘
(𝑖)
𝑏∗ by first sampling𝑘𝑏∗ ← F.Setup(1_PRF, 1𝑛, 1𝜌)

and setting 𝑘
(𝑖)
𝑏∗ ← F.Puncture(𝑘𝑏∗, 𝑖). This matches the specification in Hyb(1)

2,𝑖
to Hyb(2)

2,𝑖
. Consider now

the distribution of the challenge value 𝑟 ∗:

• Suppose 𝑟 ∗ = F(𝑘𝑏∗, 𝑖). Then, algorithm B perfectly simulates an execution of Hyb(1)
2,𝑖

and outputs 1

with probability Pr[Hyb(1)
2,𝑖
(A) = 1].

• Suppose 𝑟 ∗ r← {0, 1}𝜌 . Then, algorithm B perfectly simulates an execution of Hyb(2)
2,𝑖

and outputs 1

with probability Pr[Hyb(2)
2,𝑖
(A) = 1].

Then PPRFAdvB (_PRF) > 2
−(_+𝑛 (_)) = 2

−_YPRFPRF , and the claim follows. □

Claim 4.14. Suppose ΠROWF satisfies (1, 2−𝑚
YROWF)-rerandomization security for some constant YROWF ∈ (0, 1],

and suppose𝑚 = (_ +𝑛)1/YROWF . Then, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, there exists _A ∈ N such that for all _ ≥ _A ,
it holds that

| Pr[Hyb(2)
2,𝑖
(A) = 1] − Pr[Hyb(3)

2,𝑖
(A) = 1] | ≤ 1/2_+𝑛 .

Proof. Take any 𝑖 ∈ {0, . . . , 2𝑛 − 1} and suppose there exists an infinite set Λ ⊆ N such that for all _ ∈ Λ,

| Pr[Hyb(2)
2,𝑖
(A) = 1] − Pr[Hyb(3)

2,𝑖
(A) = 1] | > 1/2_+𝑛 (_) .

Let 𝑚(_) = (_ + 𝑛(_))1/YROWF
. We use A to construct an efficient adversary B such that for all _ ∈ Λ,

RerandAdvB,𝑚 (_) > 1/2−𝑚 (_)YROWF
. Algorithm B works as follows:

1. On input the challenge (1_, 1𝑚 (_) , crs, 𝑦base, 𝑦∗), algorithm B runs algorithm A on input 1
_
to obtain

the circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

2. Algorithm B computes _PRF = _PRF(_, 𝑛) and samples PRF keys 𝑘sel ← F.Setup(1_PRF, 1𝑛, 11), 𝑘0, 𝑘1 ←
F.Setup(1_, 1𝑛, 1𝜌), and 𝑘rerand ← F.Setup(1_PRF, 1𝑛, 1^).

3. AlgorithmB computes𝑏∗ = 1−F(𝑘sel, 𝑖). It then computes the punctured keys𝑘
(𝑖)
𝑏∗ ← F.Puncture(𝑘𝑏∗, 𝑖)

and 𝑘
(𝑖)
rerand ← F.Puncture(𝑘rerand, 𝑖). Finally, it sets _obf = _obf (_, 𝑛) and constructs ObfProve and

ObfVerify as follows:

• If 𝑏∗ = 0, then it computes ObfProve ← 𝑖O(1_obf , 1𝑠 ,GenProof [𝐶, crsROWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1]) and

ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1, 𝑘

(𝑖)
rerand, 𝑦base, 𝑦

∗, 𝑖]).

• If 𝑏∗ = 1, then it computes ObfProve ← 𝑖O(1_obf , 1𝑠 ,GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘
(𝑖)
𝑏∗]) and

ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘
(𝑖)
𝑏∗ , 𝑘

(𝑖)
rerand, 𝑦base, 𝑦

∗, 𝑖]).

4. After algorithmA outputs the statement 𝑥 and the proof 𝜋 = (𝑏, 𝑧), algorithm B computes (𝑦0, 𝑦1) ←
ObfVerify(𝑥) and outputs 1 if R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1 and 𝑏 ≠ F(𝑘sel, 𝑥).

The challenger samples crsROWF ← R.Setup(1_, 1𝑚) and (𝑦base, 𝑧base) ← R.GenInstance(crsROWF). This
matches the distribution of crsROWF and 𝑦base in Hyb(2)

2,𝑖
and Hyb(3)

2,𝑖
. Consider the distribution of 𝑦∗:

25

• Suppose the challenger samples 𝑟 ∗ r← {0, 1}𝜌 and computes (𝑦∗, 𝑧∗) = R.GenInstance(crsROWF; 𝑟
∗). In

this case, algorithm B perfectly simulates Hyb(2)
2,𝑖

and outputs 1 with probability Pr[Hyb(2)
2,𝑖
(A) = 1].

• Suppose the challenger samples 𝑟 ∗ r← {0, 1}^ and sets (𝑦∗, st) = R.Rerandomize(crsROWF, 𝑦base; 𝑟
∗). In

this case, algorithm B perfectly simulates Hyb(3)
2,𝑖

and outputs 1 with probability Pr[Hyb(3)
2,𝑖
(A) = 1].

We conclude that algorithm B succeeds with advantage RerandAdvB,𝑚 (_) > 2
−(_+𝑛 (_)) = 2

−𝑚YROWF
. □

Claim 4.15. Suppose ΠPPRF satisfies selective (1, 2−_
YPRF
PRF)-punctured security for some constant YPRF ∈ (0, 1)

and _PRF = (_ + 𝑛)1/YPRF . Then, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, there exists _A ∈ N such that for all _ ≥ _A , it
holds that

| Pr[Hyb(3)
2,𝑖
(A) = 1] − Pr[Hyb(4)

2,𝑖
(A) = 1] ≤ 1/2_+𝑛

Proof. This follows by a similar argument as in the proof of Claim 4.13, except the reduction algorithm

outputs 1
^
as the output length and programs 𝑘

(𝑖)
rerand to be the punctured key (and samples 𝑘0, 𝑘1 itself).

The rest of the argument proceeds analogously. □

Claim 4.16. Suppose 𝑖O is (1, 2−_Yobf)-secure for some constant Yobf ∈ (0, 1) and suppose _obf = (_ + 𝑛)1/Yobf .
Suppose ΠPPRF satisfies punctured correctness. Then, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, there exists _A ∈ N such that
for all _ ≥ _A ,

| Pr[Hyb(4)
2,𝑖
(A) = 1] − Pr[Hyb(0)

2,𝑖+1(A) = 1] | ≤ 2/2_+𝑛 .

Proof. This follows by a similar argument as the proof of Claim 4.12. For completeness, we show that

the programs associated with ObfProve and ObfVerify have identical behavior in the two experiments.

The claim then follows by security of 𝑖O (as in the proof of Claim 4.12). Take any 𝑖 ∈ {0, . . . , 2𝑛 − 1} and
consider an execution of Hyb(4)

2,𝑖
and Hyb(0)

2,𝑖+1. Let 𝑏
∗ = 1 − F(𝑘sel, 𝑖). First, consider the case where 𝑏∗ = 0.

The GenProof programs. When 𝑏∗ = 0, by the identical analysis as in the proof of Claim 4.12, the

programs GenProof [𝐶, crsROWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1] in Hyb(4)

2,𝑖
computes the same functionality as the program

GenProof [𝐶, crsROWF, 𝑘sel, 𝑘𝑏∗, 𝑘1] in Hyb(0)
2,𝑖+1.

The GenInst programs. Consider the programs GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘
(𝑖)
𝑏∗ , 𝑘1, 𝑘

(𝑖)
rerand, 𝑦base, 𝑦

∗, 𝑖] in
Hyb(4)

2,𝑖
and GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base, 𝑦

∗, 𝑖 + 1] in Hyb(0)
2,𝑖+1. Again, suppose 𝑏

∗ = 0:

• By punctured correctness, for all 𝑥 ≠ 𝑖 , it follows that

F
(
𝑘
(𝑖)
𝑏∗ , 𝑥

)
= F(𝑘𝑏∗, 𝑥) and F

(
𝑘
(𝑖)
rerand, 𝑥

)
= F(𝑘rerand, 𝑥) .

Thus, for all inputs 𝑥 ∉ {𝑖, 𝑖 + 1}, the two programs have identical behavior.

• Suppose 𝑥 = 𝑖 . In this case, the GenInstance2 program in Hyb(4)
2,𝑖

sets 𝑦1−𝑏 = 𝑦∗ where (𝑦∗, st) =
R.Rerandomize(crsROWF, 𝑦base; 𝑟

∗) and 𝑟 ∗ = F(𝑘rerand, 𝑖). This coincides with the behavior of the

program in Hyb(0)
2,𝑖+1.

• Suppose 𝑥 = 𝑖 + 1. Let 𝑏 = F(𝑘sel, 𝑖 + 1). Then, the program in Hyb(4)
2,𝑖

sets 𝑦1−𝑏 as follows:

– If 1−𝑏 = 𝑏∗ = 0, it computes (𝑦1−𝑏, 𝑧1−𝑏) = R.GenInstance
(
crsROWF; F

(
𝑘
(𝑖)
𝑏∗ , 𝑖+1

))
. By punctured

correctness, F
(
𝑘
(𝑖)
𝑏∗ , 𝑖 + 1

)
= F(𝑘𝑏∗, 𝑖 + 1) = F(𝑘0, 𝑖 + 1).

26

– If 1 − 𝑏 = 1 − 𝑏∗ = 1, it computes (𝑦1−𝑏, 𝑧1−𝑏) = R.GenInstance(crsROWF; F(𝑘1, 𝑖 + 1)).

In particular, the program in Hyb(4)
2,𝑖

sets 𝑦1−𝑏 = R.GenInstance(crsROWF; F(𝑘1−𝑏, 𝑖 + 1)). In Hyb(0)
2,𝑖+1,

the challenger sets 𝑦1−𝑏 = 𝑦∗, where 𝑦∗ = R.GenInstance(crsROWF; F(𝑘1−𝑏, 𝑖 + 1)). Once more, the

two programs have identical behavior.

Completing the proof of Claim 4.15. The above analysis shows that when 𝑏∗ = 0, the GenProof and
GenInst programs in Hyb(4)

2,𝑖
and Hyb(0)

2,𝑖+1 compute identical functionality. An analogous argument applies

when 𝑏∗ = 1. The claim now follows by security of 𝑖O (following the exact same structure as in the proof of

Claim 4.12). □

Claim 4.17. Suppose 𝑖O is (1, 2−_
Yobf
obf)-secure for some constant Yobf ∈ (0, 1) and suppose _obf = (_ + 𝑛)1/Yobf .

Suppose ΠPPRF satisfies punctured correctness. Then, there exists _A ∈ N such that for all _ ≥ _A ,

| Pr[Hyb(0)
2,2𝑛
(A) = 1] − Pr[Hyb

3
(A) = 1] | ≤ 1/2_+𝑛 .

Proof. This follows by a similar argument as the proof of Claim 4.11. We first show that the programs

GenInst2 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base, 𝑦
∗, 2𝑛] andGenInst1 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base] in hy-

brids Hyb(0)
2,2𝑛

and Hyb
3
, respectively, compute identical functionalities. Take any input 𝑥 ∈ {0, 1}𝑛 . Let

𝑏 = F(𝑘sel, 𝑥).

• Consider the behavior of GenInst2. Since 𝑥 ∈ {0, 1}𝑛 , it follows that 𝑥 < 2
𝑛
. In this case, GenInst2

computes

(𝑦𝑏, 𝑧𝑏) = R.GenInstance(crsROWF; F(𝑘𝑏, 𝑥))
(𝑦1−𝑏, st) = R.Rerandomize(crsROWF, 𝑦base; F(𝑘rerand, 𝑥)) .

• Consider the behavior of GenInst1. By definition, GenInst1 sets

(𝑦𝑏, 𝑧𝑏) = R.GenInstance(crsROWF; F(𝑘𝑏, 𝑥))
(𝑦1−𝑏, st) = R.Rerandomize(crsROWF, 𝑦base; F(𝑘rerand, 𝑥)) .

Both experiments sample the quantities crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, and 𝑦base using identical procedures.

We conclude that the two programs compute identical functionality. The claim now follows via 𝑖O security

(as in the proof of Claim 4.11). □

We now return to the proof of Lemma 4.10. By Claims 4.12 to 4.16, for all 𝑖 ∈ {0, . . . , 2𝑛 − 1}, and all

sufficiently-large _ ∈ N, it follows that

| Pr[Hyb(0)
2,𝑖
(A) = 1] − Pr[Hyb(0)

2,𝑖+1(A) = 1] | ≤ 7/2_+𝑛 (_) .

By the triangle inequality, this means that

| Pr[Hyb(0)
2,0
(A) = 1] − Pr[Hyb(0)

2,2𝑛
(A) = 1] | ≤ 2

𝑛 (_) · 7

2
+𝑛 () =

7

2
_
.

Combined with Claims 4.11 and 4.17, we conclude that

| Pr[Hyb
2
(A) = 1] − Pr[Hyb

3
(A) = 1] | ≤ 𝑂 (1)

2
_

= 2
−Ω (_) . □

27

Lemma 4.18. Suppose ΠROWF is one-way, 𝑖O satisfies correctness, and ΠROWF satisfies rerandomizable
correctness. Then, there exists a negligible function negl(·) such that for all _ ∈ N,

Pr[Hyb
3
(A) = 1] ≤ negl(_) .

Proof. Suppose Pr[Hyb
3
(A) = 1] > Y (_) for some non-negligible function Y. We use A to construct an

efficient adversary B:

1. On input the security parameter 1
_
, algorithm B runs algorithm A on 1

_
and obtains the circuit

𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}.

2. Algorithm B computes𝑚 = 𝑚(_, 𝑛) and gives 1
𝑚
to the challenger. The challenger replies with a

challenge (crsROWF, 𝑦base).

3. Algorithm B computes _PRF = _PRF(_, 𝑛) and samples PRF keys 𝑘sel ← F.Setup(1_PRF, 1𝑛, 11), 𝑘0, 𝑘1 ←
F.Setup(1_PRF, 1𝑛, 1𝜌), and 𝑘rerand ← F.Setup(1_PRF, 1𝑛, 1^).

4. Algorithm B sets _obf = _obf (_, 𝑛) and constructs the obfuscated programs

ObfProve← 𝑖O(1_obf , 1𝑠GenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1])
ObfVerify← 𝑖O(1_obf , 1𝑠 ,GenInst1 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base]) .

It gives crs = (crsROWF,ObfProve,ObfVerify) to A.

5. After A outputs a statement 𝑥 ∈ {0, 1}𝑛 and a proof 𝜋 = (𝑏, 𝑧), algorithm B computes (𝑦, st) =
R.Rerandomize(crsROWF, 𝑦base; F(𝑘rerand, 𝑥)) and outputs R.RecoverSolution(crsROWF, 𝑧, st).

By definition, the one-wayness challenger samples crsROWF ← R.Setup(1_, 1𝑚) and (𝑦base, 𝑧base) ←
R.GenInstance(crsROWF), which matches the distribution in Hyb

3
. Thus, with probability Y, algorithm A

outputs (𝑥, 𝑏, 𝑧) with the following properties:

𝑏 ≠ F(𝑘sel, 𝑥) and R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1,

where (𝑦0, 𝑦1) = ObfVerify(𝑥). By correctness of 𝑖O,

(𝑦0, 𝑦1) = ObfVerify(𝑥) = GenInst1 [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1, 𝑘rerand, 𝑦base] (𝑥) .

By definition of GenInst1, the instance 𝑦𝑏 (for 𝑏 ≠ F(𝑘sel, 𝑥)) is computed as

(𝑦𝑏, st) = R.Rerandomize(crsROWF, 𝑦base; F(𝑘rerand, 𝑥)) .

Since R.Verify(crsROWF, 𝑦𝑏, 𝑧) = 1, we appeal to rerandomization correctness of ΠROWF to conclude that

R.Verify(crs, 𝑦base, 𝑧∗) = 1 when 𝑧∗ = R.RecoverSolution(crsROWF, 𝑧, st). In this case, algorithm B wins the

one-wayness game and OWFAdvB (_) > Y (_). □

Combining Lemmas 4.4, 4.9 and 4.10, we have for all sufficiently-large _ ∈ N,

Pr[Hyb
3
(A) = 1] ≥ 1

2

Pr[Hyb
0
(A) = 1] − 2−Ω (_) .

By Lemma 4.18, we have Pr[Hyb
3
(A) = 1] = negl(_). We conclude that

Pr[Hyb
0
(A) = 1] ≤ negl(_) .

Since Hyb
0
corresponds to the real adaptive soundness security game, Theorem 4.3 follows. □

28

Theorem 4.19 (Succinctness). If ΠROWF is succinct, then Construction 4.1 is succinct.

Proof. A proof 𝜋 in Construction 4.1 consists of a bit 𝑏 ∈ {0, 1} and an element 𝑧 output by algorithm

R.GenInstance(crsROWF). Since ΠROWF is succinct, there exists a fixed polynomial 𝑝 such that |𝑧 | ≤
𝑝 (_ + log𝑚). Since𝑚(_, 𝑛) in Construction 4.1 is a fixed polynomial in the security parameter _ and the

statement length 𝑛 and the statement length is always upper-bounded by the circuit size, it follows that

|𝜋 | ≤ poly(_ + log |𝐶 |). □

Theorem 4.20 (Perfect Zero-Knowledge). If 𝑖O is correct, then Construction 4.1 satisfies perfect zero-
knowledge.

Proof. We construct the simulator as follows:

• S0(1_,𝐶): On input the security parameter _ and a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, the
simulator samples the common reference string crs ← Setup(1_,𝐶) exactly as in the real scheme.

Let 𝑘sel, 𝑘0, 𝑘1 be the underlying PRF keys sampled in Setup. The simulator algorithm outputs crs
together with the state stS = (𝑘sel, 𝑘0, 𝑘1).

• S1(stS, 𝑥): On input the state stS = (𝑘sel, 𝑘0, 𝑘1) and a statement 𝑥 ∈ {0, 1}𝑛 , the simulator computes

𝑏 = F(𝑘sel, 𝑥) and (𝑦𝑏, 𝑧𝑏) = R.GenInstance(crsROWF; F(𝑘𝑏, 𝑥)). It then outputs (𝑏, 𝑧𝑏).

Take any Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}. First, observe that the common reference string

crs = (crsROWF,ObfProve,ObfVerify) output by S0 is distributed exactly as Setup(1_,𝐶). Thus, it suffices

to consider the simulated proofs. Consider any pair (𝑥,𝑤) where 𝐶 (𝑥,𝑤) = 1. By construction, the proof

𝜋 = (𝑏, 𝑧) output by Prove(crs, 𝑥,𝑤) is obtained by evaluating ObfProve on input (𝑥,𝑤). By correctness of

𝑖O, the output ofObfProve on input (𝑥,𝑤) is the output ofGenProof [𝐶, crsROWF, 𝑘sel, 𝑘0, 𝑘1] on input (𝑥,𝑤).
By construction of GenProof, it computes 𝑏 = F(𝑘sel, 𝑥) and (𝑦𝑏, 𝑧𝑏) = R.GenInstance(crsROWF; F(𝑘𝑏, 𝑥)).
This is how the simulator S1 constructs the proof and perfect zero-knowledge follows. □

Remark 4.21 (Katz-Wang Signatures in the Plain Model). Our two-challenge approach for constructing

adaptively-sound SNARGs shares a similar structure as the approach from Katz and Wang [KW03] for

constructing adaptively-secure digital signatures in the random oracle model with a tight security reduction.

In fact, our approach can be viewed as a way to “implement” the Katz-Wang proof strategy using an

obfuscated PRF in place of the random oracle; as such, we obtain an adaptively-secure digital signature

scheme in the plain model. We provide an overview of this relationship below:

• The Katz-Wang signature scheme. The core signature scheme is the short signature scheme

of Boneh, Lynn, and Shacham [BLS01]. Let (G,G𝑇) be a pairing group of prime order 𝑝 . Let 𝑔 be

a generator of G and 𝑒 : G × G → G𝑇 be an efficiently-computable non-trivial bilinear map. The

public verification key in the signature scheme is vk = 𝑔𝛼 and the secret key is the exponent 𝛼 ∈ Z𝑝
along with a PRF key 𝑘sel (for a PRF F with one-bit outputs). A signature on a message𝑚 is then

(𝑏, 𝐻 (𝑚,𝑏)𝛼), where 𝑏 = F(𝑘sel,𝑚) and 𝐻 is a hash function with codomain G (and modeled as a

random oracle). To verify a signature (𝑏, 𝜎) on a message 𝑚 with respect to the verification key

vk = 𝑔𝛼 , the verifier checks that

𝑒 (𝑔𝛼 , 𝐻 (𝑚,𝑏)) = 𝑒 (𝑔, 𝜎).

In the signature security proof, the reduction algorithm needs a way to (1) create a signature for

any message (to answer signing queries), and (2) convert a successful forgery into a solution to a

computational problem (in this case, the computational Diffie-Hellman problem (CDH) in G). Katz

29

andWang achieve this through a two-challenge approach. For each message𝑚, there are two possible

signatures: (0, 𝐻 (𝑚, 0)𝛼) and (1, 𝐻 (𝑚, 1)𝛼). For each message, the reduction algorithm programs

the outputs of the random oracle so for every𝑚 it knows (𝑏𝑚, 𝐻 (𝑚,𝑏𝑚)𝛼) for some 𝑏𝑚 ∈ {0, 1}. It
embeds the computational challenge into the value of 𝐻 (𝑚, 1 − 𝑏𝑚). This way, it has the ability to

answer all signing queries, and simultaneously, if the adversary produces a valid forgery for any𝑚∗

with respect to bit 1 − 𝑏𝑚∗ , then it solves the hard problem. Since the bit 𝑏𝑚∗ associated with each

message is pseudorandom and hidden from the adversary, this happens with probability 1/2.

• Replacing the random oracle with an obfuscated PRF. Instead of using a random oracle to

construct the challenge, we can replace it with an indistinguishability obfuscation of a puncturable PRF

(i.e., as in the programGenInst fromConstruction 4.1). Then, by relying on (sub-exponential) hardness

of 𝑖O and the puncturable PRF (by following an analogous structure as the proof of Theorem 4.3)

as well as the hardness of CDH (as in the Katz-Wang construction), we obtain an adaptively-secure

digital signature scheme with a tight reduction to the CDH problem.

Thus, our techniques provide a way to instantiate the Katz-Wang techniques for arguing adaptive security in

the plainmodel without random oracles through the use of obfuscation. Of course, using indistinguishability

obfuscation in place of the random oracle will incur significant overhead in the size of the public verification

key. Nonetheless, our result highlights an interesting conceptual point that it is possible to instantiate the

random oracle with a concrete hash function and base hardness on (standard) cryptographic assumptions in

the plain model. Previously, [HSW14] showed how to replace the random oracle with indistinguishability

obfuscation in the setting of full-domain hash signatures.

5 Constructing Rerandomizable One-Way Functions

In this section, we describe two constructions of rerandomizable one-way functions from classic number-

theoretic assumptions. Our first construction is based on the discrete log assumption and the second is

based on the hardness of computing modular square roots (which reduces to factoring [Rab79]). Both

constructions rely on random self-reducibility.

5.1 Rerandomizable One-Way Function from Discrete Log

In this section, we show how to construct a rerandomizable one-way function from discrete log. We begin

by recalling the discrete log assumption in prime-order groups.

Notation. For a positive integer 𝑝 > 1, we write Z𝑝 to denote the set of integers {0, . . . , 𝑝 − 1}. We write

Z∗𝑝 to denote the multiplicative group of integers modulo 𝑝 .

Definition 5.1 (Prime-Order Group Generator). Let _ be a security parameter. A prime-order group

generator is an efficient algorithm GroupGen that takes as input a security parameter 1
_
and outputs the

description G = (G, 𝑝, 𝑔) of a group G of prime order 𝑝 = 2
Θ(_)

and generated by 𝑔 ∈ G. Moreover, we

require that the group operation in G be efficiently-computable.

Definition 5.2 (Discrete Log Assumption). Let GroupGen be a prime-order group generator. We say that

the discrete log assumption holds with respect to GroupGen if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all _ ∈ N,

Pr

[
A(1_,G, 𝑔𝑥) = 𝑥 : G = (G, 𝑝, 𝑔) ← GroupGen(1_), 𝑥 r← Z𝑝

]
≤ negl(_) .

30

Construction 5.3 (Rerandomizable One-Way Functions from Discrete Log). Let GroupGen be a prime-

order group generator. We construct a rerandomizable one-way function ΠROWF = (Setup,GenInstance,
Rerandomize,Verify,RecoverSolution) as follows:

• Setup(1_, 1𝑚): On input the security parameter _ and a rerandomization parameter𝑚, the setup

algorithm samples G = (G, 𝑝, 𝑔) ← GroupGen(1_) and outputs crs = G.

• GenInstance(crs): On input the common reference string crs = (G, 𝑝, 𝑔), the instance-generator

algorithm samples 𝑧
r← Z∗𝑝 and outputs (𝑔𝑧, 𝑧).7

• Rerandomize(crs, 𝑦): On input the common reference string crs = (G, 𝑝, 𝑔) and an instance 𝑦 ∈ G,
the rerandomization algorithm samples 𝑟

r← Z∗𝑝 and outputs (𝑦𝑟 , 𝑟).

• Verify(crs, 𝑦, 𝑧): On input the common reference string crs = (G, 𝑝, 𝑔), an instance 𝑦 ∈ G, and a

candidate solution 𝑧 ∈ Z∗𝑝 , the verification algorithm outputs 1 if 𝑦 = 𝑔𝑧 .

• RecoverSolution(crs, 𝑧′, st): On input the common reference string crs = (G, 𝑝, 𝑔), a solution 𝑧′ ∈ Z∗𝑝 ,
and the rerandomization state st = 𝑟 ∈ Z∗𝑝 , the solution-recovery algorithm outputs 𝑧′𝑟−1 ∈ Z∗𝑝 .

Theorem 5.4 (Correctness). Construction 5.3 is correct.

Proof. Take any _,𝑚 ∈ N and let crs = (G, 𝑝, 𝑔) ← Setup(1_, 1𝑚) and (𝑦, 𝑧) ← GenInstance(crs). By
construction, this means 𝑧 ∈ Z∗𝑝 and 𝑦 = 𝑔𝑧 . As such, Verify(crs, 𝑦, 𝑧) = 1. □

Theorem 5.5 (Rerandomization Correctness). Construction 5.3 satisfies rerandomization correctness.

Proof. Take any _,𝑚 ∈ N and any common reference string crs = (G, 𝑝, 𝑔) in the support of Setup(1_, 1𝑚).
Take any (𝑦, 𝑧) in the support of GenInstance(crs) and (𝑦′, st) in the support of Rerandomize(crs, 𝑦). By
construction of GenInstance, this means that 𝑧 ∈ Z∗𝑝 and 𝑦 = 𝑔𝑧 . Similarly, by construction of Rerandomize,
we have that st = 𝑟 ∈ Z∗𝑝 and 𝑦′ = 𝑦𝑟 . Consider any 𝑧′ where Verify(crs, 𝑦′, 𝑧′) = 1. This means 𝑧′ ∈ Z∗𝑝 and

moreover, 𝑔𝑧
′
= 𝑦′ = 𝑦𝑟 = 𝑔𝑧𝑟 . Since 𝑟 ∈ Z∗𝑝 , this means that 𝑧 = 𝑧′𝑟−1 ∈ Z∗𝑝 and Verify(crs, 𝑦, 𝑧′𝑟−1) = 1.

Since RecoverSolution(crs, 𝑧′, st) outputs 𝑧′𝑟−1, the claim holds. □

Theorem 5.6 (One-Wayness). If the discrete log assumption holds with respect to GroupGen, then Construc-
tion 5.3 is one-way.

Proof. Suppose there exists an efficient adversaryA whereOWFAdvA (_) > Y (_) for some non-negligible Y.

We use A to construct an adversary B for the discrete log problem:

1. At the beginning of the game, algorithm B receives the security parameter 1
_
, the group G = (G, 𝑝, 𝑔)

and the challenge ℎ ∈ G. If ℎ = 𝑔0, then algorithm B outputs 0.

2. Algorithm B runs A on the security parameter 1
_
. Algorithm A outputs the rerandomization

parameter 1
𝑚
, and algorithm B replies with crs = (G, 𝑝, 𝑔) and the instance ℎ ∈ G.

3. After algorithm A outputs a solution 𝑧, algorithm B also outputs 𝑧.

7
It is important that GenInstance samples the challenge from Z∗𝑝 and not Z𝑝 . Our proof of rerandomization security will critically

rely on this distinction.

31

By construction, the discrete log challenger samples crs = (G, 𝑝, 𝑔) ← Setup(1_, 1𝑚), 𝑥 r← Z𝑝 , and sets

ℎ = 𝑔𝑥 . If ℎ = 𝑔0, then algorithm B solves the discrete log problem. If 𝑥 ≠ 0, then 𝑥 is uniformly distributed

over Z∗𝑝 , so algorithm B perfectly simulates the one-wayness game for A. In this case, with probability at

least Y, algorithm A outputs 𝑧 ∈ Z∗𝑝 such that Verify(crs, ℎ, 𝑧) = 1, or equivalently, 𝑧 such that ℎ = 𝑔𝑧 . But

in this case, algorithm B also solves the discrete log problem. We conclude that algorithm B succeeds in

solving the discrete log problem with the same non-negligible advantage Y. □

Theorem 5.7 (Rerandomization Security). Construction 5.3 satisfies perfect rerandomizable security. Namely,
for all polynomials𝑚 =𝑚(_) and all adversaries A, RerandAdvA,𝑚 (_) = 0.

Proof. Take any polynomial 𝑚 = 𝑚(_). Let crs = (G, 𝑝, 𝑔) ← Setup(1_, 1𝑚). Sample (𝑦base, 𝑧base) ←
GenInstance(crs). This means that 𝑧base

r← Z∗𝑝 and 𝑦base = 𝑔𝑧base . Suppose (𝑦, 𝑧) ← GenInstance(crs) and
(𝑦′, st) ← Rerandomize(crs, 𝑦base). We argue that (crs, 𝑦base, 𝑦) is distributed identically to (crs, 𝑦base, 𝑦′):

• By construction of GenInstance, the distribution of 𝑧 is uniform over Z∗𝑝 so 𝑦 = 𝑔𝑧 is uniform over

G \
{
𝑔0
}
.

• By construction of Rerandomize, the distribution of st = 𝑟 is uniform over Z∗𝑝 . Next𝑦
′ = 𝑦𝑟base = 𝑔𝑟𝑧base .

Since 𝑧base ∈ Z∗𝑝 , it follows that 𝑧base ≠ 0.
8
This means that the distribution of 𝑧base𝑟 is uniform over

Z∗𝑝 and so 𝑦′ is uniform over G \
{
𝑔0
}
(and independent of 𝑦base).

We conclude that the joint distribution of (crs, 𝑦base, 𝑦) and (crs, 𝑦base, 𝑦′) are identically distributed and the

claim follows. □

Theorem 5.8 (Succinctness). Construction 5.3 is succinct.

Proof. Take any _,𝑚 ∈ N and let crs = (G, 𝑝, 𝑔) ← Setup(1_, 1𝑚) and (𝑦, 𝑧) ← GenInstance(crs). By
construction of Setup, (G, 𝑝, 𝑔) is output by GroupGen(1_). This means 𝑝 = 2

Θ(_)
. By construction of

GenInstance, this means 𝑧 ∈ Z∗𝑝 so |𝑧 | = Θ(_). □

5.2 Rerandomizable One-Way Functions from Computing Modular Square Roots

In this section, we show how to construct a rerandomizable one-way function from factoring. Specifically,

we base hardness on the hardness of computing modular square roots, which is equivalent to the factoring

problem. We begin by recalling the computational assumptions we use:

Definition 5.9 (Composite Modulus Sampler). Let _ be a security parameter. A composite-modulus sampler

is an efficient algorithm SampleN that takes as input the security parameter 1
_
and outputs (𝑁, 𝑝, 𝑞) where

𝑁 = 𝑝𝑞 and 𝑝, 𝑞 are distinct _-bit primes (i.e., 𝑝, 𝑞 ∈ [2_−1, 2_ − 1]).

Definition 5.10 (Hardness of Factoring). Let SampleN be a composite-modulus sampler. Factoring is hard

with respect to SampleN if for all efficient adversaries A, there exists a negligible function negl(·) such
that for all _ ∈ N,

Pr[A(1_, 𝑁) ∈ {𝑝, 𝑞} : (𝑁, 𝑝, 𝑞) ← SampleN(1_)] = negl(_).
8
This is where we use the fact that 𝑧base is drawn from Z∗𝑝 and not Z𝑝 . If we sampled 𝑧base from Z𝑝 , then these two distributions

have a statistical distance of 1/𝑝 = 1/2Θ(_) , which may not be small enough relative to the rerandomization parameter𝑚.

32

Definition 5.11 (Hardness of Computing Modular Square Roots). Let SampleN be a composite-modulus

sampler. Computing modular square roots is hard if with respect to SampleN if for all efficient adversaries

A, there exists a negligible function negl(·) such that for all _ ∈ N,

Pr

[
𝑧2 = 𝑥2 mod 𝑁 :

(𝑁, 𝑝, 𝑞) ← SampleN(1_), 𝑥 r← Z𝑁
𝑧 ← A(1_, 𝑁 , 𝑥2)

]
= negl(_).

Fact 5.12 (Computing Modular Square Roots is Equivalent to Factoring [Rab79]). For every composite-

modulus sampler SampleN, factoring is hard with respect to SampleN if and only if computing modular

square roots is hard with respect to SampleN.

Construction 5.13 (Rerandomizable One-Way Functions from Factoring). Let SampleN be a composite-

modulus sampler. We construct a rerandomizable one-way function ΠROWF = (Setup,GenInstance,
Rerandomize,Verify,RecoverSolution) as follows:

• Setup(1_, 1𝑚): On input the security parameter _ ∈ N and a rerandomization parameter 𝑚 ∈ N,
the setup algorithm samples (𝑁, 𝑝, 𝑞) ← SampleN(1_). It outputs the common reference string

crs = (1𝑚, 𝑁).

• GenInstance(crs): On input the common reference string crs = (1𝑚, 𝑁), the instance-generator

algorithm proceeds as follows:

– Sample 𝑥1, . . . , 𝑥𝑚
r← Z𝑁 . If gcd(𝑥𝑖 , 𝑁) ≠ 1 for all 𝑖 ∈ [𝑚], then output (1, 1).

– Otherwise, take the smallest such 𝑖 ∈ [𝑚] where gcd(𝑥𝑖 , 𝑁) = 1 and output (𝑥2𝑖 mod 𝑁, 𝑥𝑖).

• Rerandomize(crs, 𝑦): On input the common reference string crs = (1𝑚, 𝑁) and an instance 𝑦 ∈ Z𝑁 ,
the rerandomizable algorithm does the following:

– Sample 𝑟1, . . . , 𝑟𝑚
r← Z𝑁 . If gcd(𝑟𝑖 , 𝑁) ≠ 1 for all 𝑖 ∈ [𝑚], then output (𝑦, 1).

– Otherwise, take the smallest such 𝑖 ∈ [𝑚] where gcd(𝑟𝑖 , 𝑁) = 1 and output (𝑦𝑟 2𝑖 mod 𝑁, 𝑟𝑖).

• Verify(crs, 𝑦, 𝑧): On input the common reference string crs = (1𝑚, 𝑁), an instance 𝑦 ∈ Z𝑁 , and a

candidate solution 𝑧 ∈ Z𝑁 , the verification algorithm outputs 1 if 𝑦 = 𝑧2 mod 𝑁 .

• RecoverSolution(crs, 𝑧′, st): On input the common reference string crs = (1𝑚, 𝑁), a solution 𝑧′ ∈ Z𝑁 ,
and the rerandomizable state st = 𝑟 ∈ Z∗

𝑁
, the solution-recovery algorithm outputs 𝑧′/𝑟 mod 𝑁 .

Theorem 5.14 (Correctness). Construction 5.13 is correct.

Proof. Take any _,𝑚 ∈ N and let crs = (1𝑚, 𝑁) ← Setup(1_, 1𝑚) and (𝑦, 𝑧) ← GenInstance(crs). By
construction, this means 𝑦 = 𝑧2 mod 𝑁 , and Verify(crs, 𝑦, 𝑧) = 1. □

Theorem 5.15 (Rerandomization Correctness). Construction 5.13 satisfies rerandomization correctness.

Proof. Take any _,𝑚 ∈ N and any common reference string crs = (1𝑚, 𝑁) in the support of Setup(1_, 1𝑚).
Take any (𝑦, 𝑧) in the support of GenInstance(crs) and (𝑦′, st) in the support of Rerandomize(crs, 𝑦). By
construction of GenInstance, this means gcd(𝑁, 𝑧) = 1. This means 𝑧 ∈ Z∗

𝑁
and 𝑦 = 𝑧2 mod 𝑁 . By

construction of Rerandomize, we have that st = 𝑟 ∈ Z∗
𝑁
and 𝑦′ = 𝑦𝑟 2 mod 𝑁 . Consider any 𝑧′ where

Verify(crs, 𝑦′, 𝑧′) = 1. This means 𝑦′ = (𝑧′)2 mod 𝑁 . Thus,

𝑦𝑟 2 = (𝑧′)2 mod 𝑁 =⇒ 𝑦 = (𝑧′/𝑟)2 mod 𝑁 .

Here, 𝑟 is invertible since 𝑟 ∈ Z∗
𝑁
. Now RecoverSolution(crs, 𝑧′, st) outputs 𝑧′/𝑟 and Verify(crs, 𝑦, 𝑧′/𝑟) = 1,

so the claim holds. □

33

Theorem 5.16 (One-Wayness). If computing modular square roots is hard, then Construction 5.13 is one-way.

Proof. We start by defining a sequence of hybrid experiments:

• Hyb
0
: This is the real one-wayness experiment. Namely, on input the security parameter 1

_
, the

adversary A outputs 1
𝑚
. Then, the challenger does the following:

– Sample (𝑁, 𝑝, 𝑞) ← SampleN(1_).
– Sample 𝑥1, . . . , 𝑥𝑚

r← Z𝑁 . If gcd(𝑥𝑖 , 𝑁) ≠ 1 for all 𝑖 ∈ [𝑚], the challenger sets the challenge
to be 𝑦 = 1. Otherwise, it takes the smallest such 𝑖 ∈ [𝑚] where gcd(𝑥𝑖 , 𝑁) = 1 and sets the

challenge to be 𝑦 = 𝑥2𝑖 mod 𝑁 .

The challenger gives crs and 𝑦 to A. Algorithm A outputs a solution 𝑧 ∈ Z𝑁 and the output of the

experiment is 1 if 𝑦 = 𝑧2 mod 𝑁 .

• Hyb
1
: Same asHyb

0
, except to generate the challenge𝑦 ∈ Z𝑁 , the challenger instead samples 𝑥

r← Z∗
𝑁

and sets 𝑦 = 𝑥2 mod 𝑁 . The rest of the experiment proceeds as in Hyb
0
.

For an adversary A, we write Hyb𝑖 (A) to denote the output distribution of Hyb𝑖 with adversary A. We

now analyze the experiments.

Lemma 5.17. For all adversaries A, there exists a negligible function negl(·) such that for all _ ∈ N,

| Pr[Hyb
0
(A) = 1] − Pr[Hyb

1
(A) = 1] | ≤ 2

−Ω (_) .

Proof. We argue that the distribution of 𝑦 in the two experiments are statistically close. Consider the

distribution of 𝑦 in Hyb
0
. Let 𝑥1, . . . , 𝑥𝑘

r← Z𝑁 be the values sampled by the challenger in Hyb
0
. We

consider two possibilities:

• Suppose for all 𝑖 ∈ [𝑚], gcd(𝑥𝑖 , 𝑁) ≠ 1. Since 𝑁 = 𝑝𝑞, the primes 𝑝, 𝑞 are _-bits each, and each

𝑥𝑖
r← Z𝑁 , the probability that gcd(𝑥𝑖 , 𝑁) ≠ 1 is

Pr[gcd(𝑥𝑖 , 𝑁) ≠ 1 : 𝑥𝑖
r← Z𝑁] =

𝑝 + 𝑞 − 1
𝑝𝑞

= 2
−Ω (_) . (5.1)

Thus, this case happens with probability at most 2
−Ω (_)

.

• Suppose there exists an 𝑖 ∈ [𝑚] where gcd(𝑥𝑖 , 𝑁) = 1. For all such 𝑖 , the distribution of 𝑥𝑖 is uniform

over Z∗
𝑁
. In this case, the challenger sets 𝑦 = 𝑥2𝑖 mod 𝑁 . This is exactly the distribution of 𝑦 in Hyb

1
.

We conclude that the statistical distance between the distribution of (1𝑚, 𝑁 ,𝑦) in Hyb
0
and Hyb

1
is at most

2
−Ω (_)

and the claim holds. □

To complete the proof of Theorem 5.16, we show that under the hardness of computing modular square

roots with respect to SampleN, Pr[Hyb
1
(A) = 1] = negl(_) for all efficient adversaries A. To show this,

suppose there exists an efficient adversary A where OWFAdvA (_) > Y (_) for some non-negligible Y. We

use A to construct an adversary B for computing modular square roots:

1. At the beginning of the game, algorithm B receives the security parameter 1
_
, the common reference

string crs = (1𝑚, 𝑁), and the challenge 𝑦 ∈ Z𝑁 . Algorithm B first checks if gcd(𝑦, 𝑁) = 1. If

gcd(𝑦, 𝑁) ≠ 1, then algorithm B aborts with output ⊥.9

9
Technically, algorithm B learns a factor of 𝑁 in this case and can use the factorization of 𝑁 to obtain a square root 𝑦. However,

since the event gcd(𝑦, 𝑁) = 1 happens with negligible probability, it also suffices to ignore this case and simplify the analysis.

34

2. If gcd(𝑦, 𝑁) = 1, then algorithm B runs A on the security parameter 1
_
. Algorithm A outputs the

rerandomization parameter 1
𝑚
and algorithm B replies with crs = (1𝑚, 𝑁) and the instance 𝑦 ∈ Z𝑁 .

3. After algorithm A outputs a solution 𝑧, algorithm B also outputs 𝑧.

By construction, the challenger samples (𝑁, 𝑝, 𝑞) ← SampleN(1_) and 𝑦 = 𝑥2 where 𝑥
r← Z𝑁 . We consider

two possibilities:

• Suppose gcd(𝑥, 𝑁) ≠ 1. From Eq. (5.1), this case happens with probability 2
−Ω (_)

.

• Suppose gcd(𝑥, 𝑁) = 1. Then the distribution of 𝑥 is uniform over Z∗
𝑁
. In this case, algorithm B

perfectly simulates an execution of Hyb
1
forA. By assumption, with probability at least Y, algorithm

A outputs 𝑧 ∈ Z𝑁 such that 𝑦 = 𝑧2 mod 𝑁 . In this case, algorithm B successfully outputs a square

root of 𝑦 mod 𝑁 .

Thus, we conclude that algorithm B succeeds with probability at least Y (1 − 2−Ω (_)) = Y − negl(_), which
is non-negligible. Thus, we conclude that for all efficient adversaries A, Pr[Hyb

1
(A) = 1] = negl(_).

Combined with Lemma 5.17, this means that for all efficient adversaries A,

OWFAdvA (_) = Pr[Hyb
0
(A) = 1] = negl(_). □

Theorem 5.18 (Rerandomization Security). Construction 5.13 satisfies 2−Ω (𝑚) -statistical rerandomizable
security. Namely, for all polynomials𝑚 =𝑚(_) and all adversaries A, RerandAdvA,𝑚 (_) ≤ 2

−Ω (𝑚 (_)) .

Proof. Take any polynomial𝑚 =𝑚(_). We define three distributions:

• D0: Sample crs = (1𝑚, 𝑁) ← Setup(1_, 1𝑚), (𝑦base, 𝑧base) ← GenInstance(crs), and (𝑦, 𝑧) ←
GenInstance(crs). Output (crs, 𝑦base, 𝑦).

• D1: Sample crs = (1𝑚, 𝑁) ← Setup(1_, 1𝑚) and (𝑦base, 𝑧base) ← GenInstance(crs). Sample 𝑥
r← Z∗

𝑁

and set 𝑦 = 𝑥2 mod 𝑁 . Output (crs, 𝑦base, 𝑦).

• D2: Sample crs = (1𝑚, 𝑁) ← Setup(1_, 1𝑚), (𝑦base, 𝑧base) ← GenInstance(crs), and (𝑦, st) ←
Rerandomize(crs, 𝑦base). Output (crs, 𝑦base, 𝑦).

We argue that the statistical distance between each pair of distributions is bounded by 2
−Ω (𝑚)

:

• Consider distributions D0 and D1. Since crs and 𝑦base are identically distributed in the two dis-

tributions, it suffices to consider the distribution of 𝑦. In D0, the GenInstance algorithm samples

𝑥1, . . . , 𝑥𝑚
r← Z𝑁 and outputs 𝑦 = 𝑥2𝑖 mod 𝑁 if there exists some 𝑖 ∈ [𝑚] where gcd(𝑥𝑖 , 𝑁) = 1. In

this case, the distribution of 𝑥𝑖 (given crs and 𝑦base) in D0 is uniform over Z∗
𝑁
, and the distribution

of 𝑦 is distributed exactly as in D1. The only setting where the two distributions differ is if in D0,

for all 𝑖 ∈ [𝑚], gcd(𝑥𝑖 , 𝑁) ≠ 1. Since 𝑁 = 𝑝𝑞, the primes 𝑝, 𝑞 are _-bits each, and each 𝑥𝑖
r← Z𝑁 , the

probability that gcd(𝑥𝑖 , 𝑁) = 1 for all 𝑖 ∈ [𝑚] is

Pr[∀𝑖 ∈ [𝑚] : gcd(𝑥𝑖 , 𝑁) = 1 | 𝑥𝑖 r← Z𝑁] =
(
𝑝 + 𝑞 − 1

𝑝𝑞

)𝑚
≤ 2
−Ω (𝑚) .

Thus, the statistical distance between D0 and D1 is at most 2
−Ω (𝑚)

.

35

• Consider distributions D1 and D2. Again, it suffices to consider the distribution of 𝑦 in the two

experiments. By construction of GenInstance, in distribution D2, it is the case that 𝑧base ∈ Z∗𝑁
and 𝑦base = 𝑧2base mod 𝑁 . In D2, the Rerandomize algorithm samples 𝑟1, . . . , 𝑟𝑚

r← Z𝑁 and outputs

𝑦 = 𝑦base𝑟
2

𝑖 if there exists some 𝑖 ∈ [𝑚] where gcd(𝑟𝑖 , 𝑁) = 1. In this case, we can write 𝑦 as

𝑦 = (𝑧base𝑟𝑖)2 where 𝑟𝑖 r← Z∗
𝑁
, which coincides exactly with the distribution of 𝑦 in D1. Thus, the

only setting where the two distributions differ is if in D2, for all 𝑖 ∈ [𝑚], gcd(𝑟𝑖 , 𝑁) ≠ 1. By the

same calculation as in the previous case, this happens with probability at most 2
−Ω (𝑚)

, and so the

statistical distance between D1 and D2 is at most 2
−Ω (𝑚)

.

Since the statistical distance between D0 and D1 as well as that between D1 and D2 is at most 2
−Ω (𝑚)

, it

follows that the statistical distance between D0 and D2 is also bounded by 2
−Ω (𝑚)

. □

Theorem 5.19 (Succinctness). Construction 5.13 is succinct.

Proof. Take any _,𝑚 ∈ N and let crs = (1𝑚, 𝑁) ← Setup(1_, 1𝑚) and (𝑦, 𝑧) ← GenInstance(crs). By
construction of Setup, 𝑁 = 𝑝𝑞 where 𝑝, 𝑞 are _-bit primes. By construction of GenInstance, this means

𝑧 ∈ Z𝑁 so |𝑧 | = log𝑁 ≤ 2_. □

Acknowledgments

BrentWaters is supported by NSF CNS-1908611, CNS-2318701, and a Simons Investigator award. David J.Wu

is supported by NSF CNS-2151131, CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellowship,

and a Google Research Scholar award.

References

[ACL
+
22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krish-

nan Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively

composable - (extended abstract). In CRYPTO, pages 102–132, 2022.

[BBK
+
23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer Paneth.

SNARGs for monotone policy batch NP. In CRYPTO, pages 252–283, 2023.

[BCC
+
17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,

and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–1066, 2017.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision

resistance to succinct non-interactive arguments of knowledge, and back again. In ITCS, pages
326–349, 2012.

[BCI
+
13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct

non-interactive arguments via linear interactive proofs. In TCC, pages 315–333, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable

one-way functions. In STOC, pages 505–514, 2014.

[BGI
+
01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,

and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

36

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom

functions. In PKC, pages 501–519, 2014.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and

batch NP verification from standard computational assumptions. In STOC, pages 474–482, 2017.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their

application to more efficient obfuscation. In EUROCRYPT, pages 247–277, 2017.

[BISW18] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal SNARGs via linear

multi-prover interactive proofs. In EUROCRYPT, pages 222–255, 2018.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In

ASIACRYPT, pages 514–532, 2001.

[BP04] Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge. In TCC,
pages 121–132, 2004.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In

ASIACRYPT, pages 280–300, 2013.

[CGJ
+
23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang. Cor-

relation intractability and snargs from sub-exponential DDH. In CRYPTO, pages 635–668,
2023.

[CGKS23] Matteo Campanelli, Chaya Ganesh, Hamidreza Khoshakhlagh, and Janno Siim. Impossibilities

in succinct arguments: Black-box extraction and more. In AFRICACRYPT, pages 465–489, 2023.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for

NP from standard assumptions. In CRYPTO, pages 394–423, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In FOCS,
pages 68–79, 2021.

[CLM23] Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. Lattice-based succinct arguments from

vanishing polynomials - (extended abstract). In CRYPTO, pages 72–105, 2023.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low

communication. In TCC, pages 54–74, 2012.

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered

abe, flexible broadcast, and more. In CRYPTO, pages 498–531, 2023.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications of

random functions. In CRYPTO, pages 276–288, 1984.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs

and succinct nizks without pcps. In EUROCRYPT, pages 626–645, 2013.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT,
pages 321–340, 2010.

37

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with short

ciphertexts). In EUROCRYPT, pages 171–188, 2009.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all

falsifiable assumptions. In STOC, pages 99–108, 2011.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain

hash from indistinguishability obfuscation. In EUROCRYPT, pages 201–220, 2014.

[JJ22] Abhishek Jain and Zhengzhong Jin. Indistinguishability obfuscation via mathematical proofs

of equivalence. In FOCS, pages 1023–1034, 2022.

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. SNARGs for

bounded depth computations and PPAD hardness from sub-exponential LWE. In STOC, pages
708–721, 2021.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded

assumptions. In STOC, pages 60–73, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over F𝑝 ,

DLIN, and PRGs in NC0
. In EUROCRYPT, pages 670–699, 2022.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In

STOC, pages 723–732, 1992.

[KLV23] Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. SNARGs and PPAD hardness

from the decisional diffie-hellman assumption. In EUROCRYPT, pages 470–498, 2023.

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch arguments

and RAM delegation. In STOC, pages 1545–1552, 2023.

[KP16] Yael Tauman Kalai and Omer Paneth. Delegating RAM computations. In TCC, pages 91–118,
2016.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegat-

able pseudorandom functions and applications. In ACM CCS, pages 669–684, 2013.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In

STOC, pages 1115–1124, 2019.

[KR09] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In CRYPTO, pages
143–159, 2009.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical

soundness, post-quantum security, and SNARGs. In TCC, pages 330–368, 2021.

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight

security reductions. In ACM CCS, pages 155–164, 2003.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs and

linear error-correcting codes. In ASIACRYPT, pages 41–60, 2013.

38

[Mic94] Silvio Micali. CS proofs (extended abstracts). In FOCS, pages 436–453, 1994.

[Rab79] Michael Rabin. Digitalized signatures and public-key functions as intractable as factorization.

1979.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,

and more. In STOC, pages 475–484, 2014.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In ICALP, pages 140–152, 2005.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear group

assumptions. In CRYPTO, pages 433–463, 2022.

39

	Introduction
	Technical Overview

	Preliminaries
	Rerandomizable One-Way Functions
	Constructing Adaptively-Sound SNARGs for NP
	Constructing Rerandomizable One-Way Functions
	Rerandomizable One-Way Function from Discrete Log
	Rerandomizable One-Way Functions from Computing Modular Square Roots

