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Abstract. Zero-knowledge for set membership is a building block at the
core of several privacy-aware applications, such as anonymous payments,
credentials and whitelists. We propose a new efficient construction for the
batching variant of the problem, where a user intends to show knowledge
of several elements (a batch) in a set without any leakage on the elements.
Our construction is transparent—it does not requires a trusted setup—
and based on Curve Trees by Campanelli, Hall-Andersen and Kamp
(USENIX 2023). Our first technical contribution consists in techniques
to amortize Curve Trees costs in the batching setting for which we cru-
cially exploit its algebraic properties. Even for small batches we obtain
≈ 2× speedups for proving, ≈ 3× speedups for verification and ≈ 60%
reduction in proof size. Our second contribution is a modifications of a
key technical requirement in Curve Trees (related to so called “permissi-
ble points”) which arguably simplifies its design and obtains a stronger
security property. In particular, our construction is secure even for the
case where the commitment to the set is provided by the adversary (in
contrast to the honest one required by the original Curve Trees).

1 Introduction

Zero-knowledge proofs are a cryptographic technique that enables someone to
prove they possess knowledge of a secret without disclosing the secret itself.
Various applications rely on these proofs being both short and computation-
ally efficient. A growing application of zero-knowledge proofs is to set member-
ship: given a compact digest of a set S (also called accumulator), the goal is to
later show knowledge of an element in S without revealing the element itself.
This is particularly useful in areas like privacy-preserving distributed ledgers,
anonymous broadcasting, financial identity management, and asset governance
(see [BCF+21]).

Batching: applications and challenges In this work we consider the batch-
ing variant of the set membership problem: where we want to show that several



elements are in a set (all at the same time). The batching setting is immedi-
ately applicable to scenarios we already mentioned: privacy-preserving ledgers
(proving multiple transactions at the same time) and to decentralized identities
(or DID, where a user may want to prove it possesses several identity-related
attributes to convince someone else they are eligible for a loan, voting, etc.).
Besides these concrete application settings, zero-knowledge for batch set mem-
bership can itself be used as a tool to obtain more complicated cryptographic
proofs. For example, they can be used to build lookup arguments as argued
in [ZBK+22] (which in turn can be used to build zkVMs [AST24, CFR24]).

The applications we mentioned so far assume a honestly generated accumula-
tor. This is the case for example in blockchains where updates are (in principle)
observed by all participants and agreed to through a consensus. If a proof system
for set-membership is secure even for the (harder) setting where the accumulator
may be provided by a malicious actor, then we can unlock even more applica-
tions4. These includes, for example, zero-knowledge for machine learning: as
argued in [CFF+24], it is possible to represent key features of a decision tree as
a set and then use zero-knowledge for set membership (referred to as a lookup in
that paper) to prove correct classification. We refer to the discussion in [CFK24,
Section 7] for other example applications of settings where a user provides a
hidden, but potentially malicious digest to a set of features.

Our goal In this paper we aim at providing an efficient solution to the batching
set membership problem and to extend its spectrum of applications as much as
possible, by achieving security for the malicious-accumulator setting. We now
discuss what features an acceptable solution should have.

A trivial solution to the batching problem is one that performs a set mem-
bership proof for each of the elements in the batch. This is not an interesting
solution since its proving and verification time, as well as the bandwidth re-
quired, are growing linearly with the batch size (which may be unacceptable in
several applications). We desire a solution where we can amortize the total costs
in these metrics when proving/verifying a batch.

Another aspect we will focus on in this work is the requirement for a trans-
parent setup. What this means is that the system should work securely and
efficiently without a one-time step run by a trusted entity (the setup)5.

Our starting point: Curve Trees—background and limitations The
starting point for our work is the recent construction of Curve Trees by Cam-
panelli, Hall-Andersen and Kamp [CHAK23]. This construction is interesting for
three reasons: i) efficiency, it currently represents the current state of art for

4 One intuition for why this is harder problem is that the adversary may provide a
cleverly malformed accumulator on which it can cheat later. Hereby we refer to this
scenario as the malicious-accumulator setting.

5 Trusted setups can be emulated by multi-party computations but this keeps being
complex, costly and risky. Trusted setups often defy the point of “removing as much
trust as possible” often pursued in distributed ledgers.

2



transparent zero-knowledge set membership in terms of number of constraints6;
ii)impact, it may soon constitute the backbone for proofs in the privacy-preserving
cryptocurrency Monero7; iii)techniques, since every node in a Curve Tree is a
point on an elliptic curve, this gives us a broad set of algebraic tricks we can
exploit for our problem.

Unfortunately, as of today, Curve Trees does not provide any form of batch-
ing besides the trivial one outlined above (we note that it allows to amortize
verification of several proofs through techniques from [BBB+18] but it does not
improve bandwidth or proving time). Also, the construction relies on the accu-
mulator being provided honestly. As mentioned, this does match the require-
ments of settings like distributed ledgers, but at the same time prevents others
applications.

Our contributions In this work:
– We provide a non-trivial batching version of Curve Trees that trades a larger

accumulator for a more efficient prover and smaller proof. We dub the output
of this construction a Curve Forest because of the key idea at its core: an
accumulator is now encoding not a single tree, but several ones (each con-
structed in a particular way). At proving time we can exploit the redundant
representation of multiple trees and “merge” several opening proofs as much
as possible through (standard) techniques from the DLOG setting. Even for
small batches, our construction obtains ≈ 2× speedups for proving, ≈ 3×
speedups for verification and ≈ 60% reduction in proof size compared to the
original [CHAK23].

– We show how to remove an idiosyncratic requirement during the building
process for Curve Trees and how this can lead to stronger security. The
specific requirement is that of having nodes being of a specific form, i.e. being
permissible points. Enforcing the requirements require additional steps while
computing the digest. While these steps are shown to be efficient on average
in [CHAK23], they are not guaranteed to always be. We show how to build
a Curve Tree structure without permissible points. As a result we obtain
a modest efficiency improvement, but also stronger security, in particular
making the scheme applicable in the scenario where the accumulator may
be untrusted.

Related Work Given that this work and Curve Trees overlap significantly in
scope and approach, most of the work related to this paper is the same as the one
6 More than as a proof system, Curve Trees can be thought of as a way to reduce

set membership to an efficient relation on a cycle of elliptic curves with DLOG.
Other transparent solutions (e.g., ZCash Orchard) can achieve better concrete per-
formance than Curve Trees when applying a more sophisticated proof system, e.g.,
Halo2 rather than Bulletproofs [BBB+18]. Using Halo2 to prove the Curve Trees
relation would provide analogous speedups and potentially lead to the most efficient
approach.

7 For the last year the Monero community has been actively developing a prototype
to which it may switch and that includes Curve Trees as a core tool. See https:
//www.getmonero.org/2024/04/27/fcmps.html.
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in [CHAK23], to which we refer the reader. The discussion points in the full ver-
sion [CHAK22]) will generally also apply to this work. Among additional works
related to the more specific setting in this paper, we cite works on zero-knowledge
lookups, such as the already mentioned Caulk [ZBK+22],cq+ [CFF+24] and
the recent zkLasso [CFR24]8. With the exception of the last one, these are not
transparent. We also cite two state-of-the-art constructions on zero-knowledge
for batch set-membership [CFH+22] and [SKBP22], which are not transparent
([CFH+22] is not transparent in its most efficient instantiation based on RSA
and LegoGro16 [CFQ19]).

Outline After providing some background, we describe the problem of permissi-
ble points and our solution in Section 3. We then combine these ideas with others
specific to batching in Section 4. Section 5 provides an experimental evaluation.

2 Preliminaries

Basic building blocks We assume familiarity with elliptic curves. We denote
by E[Fq] ⊆ Fq × Fq the set of points in (x,y) on the elliptic curve E [Mil86].
The curve points form an Abelian group (E[Fq],+); we use “additive notation”.
We always assume that the order of E[Fq] denoted by p := |E[Fq]| is prime. We
call the prime field Fp

∼= Z/(pZ) the scalar field of E[Fq] and denote by [s] · G
the “scalar multiplication” operation. We denote by ⟨s⃗, G⃗⟩ =

∑
i [si] · Gi the

“inner product” between a vector of scalars s⃗ ∈ Fn
p and a list of group elements

G⃗ ∈ E[Fq]
n. We will be using 2-cycles (or simply cycles) of elliptic curves. These

consist of two elliptic curves {E(evn),E(odd)} and two prime fields {Fp,Fq} such
that: p = |E(evn)[Fq]| and q = |E(odd)[Fp]|. In other words: the base/scalar fields
of the two curves are complementary. A point on a curve is a pair; we denote by
x(G) and y(G) the coordinates of a point G. We sometimes abuse this notation
by extending it to a vector of points in the natural way (e.g., x(G⃗)).

Recall Pedersen commitments: commit to a vector v⃗ ∈ Fℓ
p with randomness

r we compute C = Com(v⃗; r) = ⟨v⃗, G⃗⟩+ [r] ·H ∈ E[Fq] where G⃗,+ are random
group elements. We assume familiarity with the DLOG assumptions, on which
binding of Pedersen relies (see, e.g., Assumption 1 in [CHAK23]). We will cru-
cially exploit the rerandomization properties of Pedersen: C rernd−−−→ C ′ through
C ′ ← C + [r̃] ·H.
Batch zero-knowledge for set membership on the back of a napkin
We briefly review syntax and properties for zero-knowledge set membership.
We directly provide a syntax for the batching setting (the standard setting is

8 This is work is possibly one of the others with the strongest potential for efficiency
in this setting. The treatment in the original paper [CFR24] is of zkLasso as a the-
oretical tool for non-malleability of zkVMs. We leave a full comparison as future
work, but mention that several of the caveats for Hyrax [WTs+18] already discussed
in [§1.1.5][CHAK22] will probably apply to zkLasso (especially its “generalized” ver-
sion, which is the one required for our setting).

4



a special case). Our presentation slightly deviates from the abstractions used
in [CHAK23], but it is equivalent.

We already outlined the goal of such a system in the introduction (to which we
hereby refer to as a BatchZKSet scheme). It consists of the following algorithms:

Setup(1λ)→ pp produces public parameters (NB: these are transparent).
Accum(pp, S = {C1, . . . , CN},m)→ A deterministically accumulates a set of

(Pedersen) commitments of size N preparing it for batches of size m.
PrvBatch (pp, S,B = (C1, . . . , Cm))→

(
Ĉ =

(
Ĉ1, . . . , Ĉm

)
, π

)
returns a proof

showing B ⊆ S together with “masked handles” Ĉ9.
VfyBatch(pp, A, Ĉ, π)→ 0/1 checks that handles in Ĉ refer to elements in set S.

The presentation above is for batches on the same set, but it can be directly
extended to batches with multiple sets S1, . . . , Sm. The properties we require 10

are a form of binding—no adversary can claim something is in the set if it was
not in the original S—and hiding—I cannot learn anything from a membership
proof and its handle, except that the handle “opens” to some element in S.
Background on Curve Trees The design of a curve tree is simple and re-
lies on the hardness of discrete logarithm and the random oracle model (ROM)
for its security. A curve tree can be described as a shallow Merkle tree where
the leaves are points over an elliptic curve (and so are the internal nodes). Like
Merkle trees, Curve Trees uses a hash, but the hash at each level is a specific
Pedersen hash. There are three caveats to this: i) what one really uses is not
a straightforward Pedersen hash of the children (each child being a curve point
is a pair (x,y) but that is not exactly what we are hashing); ii) in a sense the
hash function changes a little at each level (we have two curves, E(evn),E(odd)
and we use them respectively for even and odd layers) and we alternate the
curve at each layer (we require the two curves to be on a cycle); iii) differently
from a standard Merkle tree we need zero-knowledge. To prove membership in
zero-knowledge we use commit-and-prove [CFQ19] capabilities of a proof system
like Bulletproofs [BBB+18] (or some other DLOG-based proof system), i.e., a
proof system where the verifier takes as input a commitment—a Pedersen com-
mitment, in our case—and can efficiently verify a relation on the opening of that
commitment.

Curve Trees from 5000 feet : The protocol is building a tree where the N leaves are
the accumulated set and is parameterized by arity ℓ and depth D (s.t. N = ℓD).

– The parameters are two vectors of ℓ+ 1 generators G⃗(evn) ∈ Eℓ
(evn),H(evn) ∈

E(evn) and G⃗(odd) ∈ Eℓ
(odd), H(odd) ∈ E(odd). The groups E(evn) and E(odd)

are related to elliptic curves on a 2-cycle.
– To accumulate a set S = {C1, . . . , CN} we iteratively build a tree proceeding

as follows until we reach the root: the leaves are the elements of S; at each
9 These “handles” are rerandomized version of C1, . . . , Cm that can be used for verifi-

cation without revealing which original accumulated commitments we are referring.
10 We will not formalize these properties here; see [CHAK23] for the non batching case.
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level we group the elements into vectors C ′
1, . . . , C

′
ℓ of size ℓ and make an

inner (parent) node as the Pedersen commitment Cpar = ⟨x(C⃗ ′), G⃗⟩, where
G⃗ are generators for the curve corresponding to the level. Notice we are
alternating curve each time, e.g., if elements C ′ are in E(evn), then Cpar ∈
E(odd)

11.
– Zero-knowledge membership: in order to show membership of some leaf

C ∈ E(evn), we basically provide a hiding path on algebraic Merkle Tree
we obtained. First we give a hiding handle for the leaf C∗ ← C + [r] ·H(evn)
to the verifier; we then send analogous hiding handles C∗

par for all the parents
along the path to the root; for each level i we then two prove two facts for
handles C∗

i and C∗
i−1 (alleged child and parent respectively): a) C∗

i−1 can
be opened as ⟨⃗x, G⃗⟩ + [r] · H; b) for some x̂ in x⃗ and some ŷ it holds that
(x̂, ŷ)

rernd−−−→ C∗
i . In other words, a) shows that C∗

i−1 is the (rerandomized)
parent of children with x coordinates x⃗ and b) shows that one of them (the
one with x being x̂ ) is rerandomized in C∗

i .

We point out that the steps a) and b) above are grouped by curve (i.e., all the
even layers will be proved together and same for the odd ones). Each group of
constraints will be proved with a Bulletproofs execution on the related field.
Done this way, most “openings” of elliptic curve points in a) and b) will be
represented as inner products with native field arithmetic. This is a main reason
behind the scheme’s efficiency.

3 Removing Permissible Points and Stronger Security

In our presentation of Curve Trees accumulation we intentionally skipped an
important detail for sake of clarity. The reader may notice that an internal
node in the tree uses only the x coordinate of a point. Without introducing
extra nuances, the resulting approach would be insecure. Since there can be two
points on a curve with the same first coordinate ( (x,y) and (x,−y)) either of
them could be used in the proof for step b) above (but only one of them has been
accumulated!). In order to ensure an efficient check, the authors of [CHAK23]
propose that, at accumulation time, points need to be made permissible” by being
“shifted” several times until a simple test defined by a universal hash function is
passed (see [CHAK23, Section 6.1]) (this same test will be carried out at step
b) at proving time). It is possible to show that on average a constant number of
shifts will give a permissible point.
Issues with permissibility We have already discussed one issue earlier: per-
missibility provides a solution for only the case where the accumulator is com-
puted honestly. We now discuss additional limitations of requiring permissible
points. First, it does complicate the implementation of the Curve Trees approach.
In fact, since we are using a universal hash function this should be in principle

11 We are intentionally leaving out the requirements on permissibility, which we discuss
in the next section.
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sampled independently of the leaf/node we are inserting into the tree. In prac-
tice, this is taken care of by the Fiat-Shamir heuristic [FS87], but this requires
special care and is a notorious source of vulnerabilities if not approached cor-
rectly [DMWG23]. The second issues is that, while on average the permissibility
step is efficient, we cannot a priori dismiss it having an extremely long running
time for some inputs. It is not even clear that such points would be hard to find.
If possible, this may potentially lead to DoS attacks when this construction is
applied in distributed ledgers (an attacker could find many of these points and
release them all as transactions at the same time).
Our solution Instead of “making points permissible” and taking their x coor-
dinate, we propose that a child is shifted by a common known group element ∆
before we commit to the x coordinate in the parent. We elaborate below.
Setup For each curve, in addition to the usual generators we also sample two
additional ones, ∆(evn) ∈ E(evn) and ∆(odd) ∈ E(odd).

Accumulating / Computing parent Given children commitments C⃗(evn) ∈
E(evn) compute the parent as follows

Cpar = ⟨⃗x, G⃗(odd)⟩ ∈ E(odd), where x⃗ = x

(
C⃗(evn) +∆(evn)

)
∈ F|E(odd)|

That is, for each child C, we first add the ∆ generator and take the x-coordinate
of the result. We then compute a commitment to the resulting list of x-coordinates.
If working in the other curve at any given layer, we adapt the above accordingly.
Proving Membership We adopt the syntax from the preliminaries. We perform
steps a) and b) as above but with the minor differences:
– while the public input for the parent remains the same (the handle C∗

i−1),
for the child the public input will be C†

i := C∗
i +∆. That is, step b) is now

showing (x̂, ŷ)
rernd−−−→ C†

i (NB: this adds no extra constraints).
– we add constraints to check (x̂, ŷ) is on the curve.

Finally, we explicitly require the prover to show knowledge of the DLOGs of the
leaf node handle C⋆

D (already ordinarily done in common applications).

Security Consider an adversary A successfully claiming two distinct v ̸= v′

are “inside” the same leaf12. Notice this is not something we can immediately
reduce to DLOG; it can be reduced, however, to A knowing (r, r′) s.t. Cleaf =
[v]G+[r]H,C ′

leaf = [v′]G+[r′]H with x(C+∆) = x(C ′+∆). But this implies also
y(C+∆) = −y(C ′+∆) =⇒ C+∆ = −(C ′+∆) =⇒ C+C ′ = [−2]∆, and the
latter can be reduced to finding a non-trivial DLOG relation. We observe it is
crucial for this proof thatA knows DLOGs for the leaves which motivates the last
extra proof we introduced above. While we do not frame this security statement
in a full formal framework, it is straightforward to do so extending the one
in [CA23] and incorporating it into the original security proof for Curve Trees.
We stress that our argument above does essentially argue that the resulting
12 This approach can easily be adapted, mutatis mutandis, to the more general case

where the adversary is not trying to cheat on the same leaf node.
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accumulator (the root of the tree) has binding properties even if generated by a
malicious party.

We now discuss the flavor of security we aim at satisfying in more detail.
The reader can find a formal version of a similar treatment in [Fis18, §A.4]. Our
goal is to describe what an adversary providing a malicious accumulator cannot
do. Intuitively (as also hinted from the proof sketch above) we want to prevent
the adversary from being able to state anything inconsistent. This inconsistency
can refer to the leaves but it will refer more in general to a more global property
of the data structure. As an example, consider the more familiar setting of an
adversarial root rt of Merkle tree: although we may not be able to retrieve the
whole alleged set “behind” rt, we can still require that no adversary should be able
to provide two inconsistent paths. This notion of inconsistency is at the hearth
of what we need to define binding.

How does this concept of inconsistency translate into our setting? Since Curve
Trees / Forests are zero-knowledge in flavor, defining inconsistency will require
additional care (two proofs, i.e., two randomized paths will not reveal inconsis-
tency by themselves since they hide what path they refer to in the first place).
Since we cannot define the binding notion on the randomized proofs themselves
we define it on the material the proofs can depend on, which we dub generically
opening hints. For instance, in Merkle trees a opening hint is a path to a leaf. In
Curve Trees we define an opening hint as a path path to a leaf (i.e., the opening
material for each of the internal nodes—which are Pedersen commitments—on
the path), plus the opening (v, r) of the leaf. We say that two paths are incom-
patible if any of the following holds:

– they refer to the same leaf and v ̸= v′ (the case we considered explicitly in
our proof sketch above);

– they refer to distinct leaves and there is some internal node they share for
which they claim different openings.

In order to properly define binding we need a way to go from a opening hint to
an actual proof, we call this algorithm ProveFromHint. This algorithm takes as
input public parameters and a hint and returns a proof π. For us, ProveFromHint,
consists of the straightforward algorithm that, on input a path and leaf opening,
rerandomizes the commitments on the path and produces the appropriate zero-
knowledge proofs of opening.

One can then define a binding notion as follows:

Definition 1 (Binding against adversarial accumulator). For any PPT
A the following probability is negligible:

Pr


hint and hint′ are incompatible

∧ Vfy(pp, Â, C, π) = 1

∧ Vfy(pp, Â, C ′, π′) = 1

:

pp← Setup(1λ)

(Â, hint, hint′)← A(pp)
(C, π)← ProveFromHint(pp, hint)

(C ′, π′)← ProveFromHint(pp, hint′)


The extension to batching is straightforward.
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4 Batching Proofs of Set Membership

The first place to look for an optimization for Curve Trees batching is its reran-
domization check (in step b) ): this is the only one with non-native operation
and typically the source of roughly half of the constraints in the circuit. Our so-
lution will try and eliminate as many rerandomization checks as possible when
proving a batch. For a warm up to our approach: recall that proving a batch in-
volves proving m paths in the tree. Could we show a “batched rerandomization”
by just summing all internal nodes on each level of the path and just showing
rerandomization of the resulting “multi-node”? Pedersen commitments are after
all homomorphic, so the resulting “multi-path” hides the original nodes and the
prover can open the the nodes individually. An issue though is that the nodes
are all commitments created from the same set of generators. So, considering a
set of paths that all start by choosing the first branch of the root. If we let the
first branch of the root be committed to a value x, then in the sum of the root
nodes the first generator is multiplied by m · x. This can be opened honestly to
x for all m paths, but it can also be “opened” to m values that sum to m · x.

We salvage the strawman idea above by applying it with twist: we use m
independent curve trees constructed from independent sets of generators (the
blinding generators will instead, crucially, stay the same). That is for E(evn)

we need m independent length ℓ generators G⃗1
(evn), . . . , G⃗

m
(evn) but only a single

common blinding generator H(evn), and likewise for E(odd). Now the sum of nodes
on the same level across the m different paths can be viewed as a single Pedersen
commitment with ℓ ·m generators, and it is no longer possible to mix and match
entries. We describe the relation for opening an odd parent multi-node to a
rerandomized sum of its even children, for even parents the same relation is used
with odd and even reversed.



i1, . . . , im, r, δ,

x⃗
1, . . . , x⃗m,

y
1, . . . ,ym

 :

C =

m∑
j=1

⟨
[
x⃗
j
]
, G⃗j

(odd)⟩+ [r] ·H(odd)

m∧
j=1

(xj
ij ,y

j) ∈ E(evn)

∧ Ĉ + [m]∆(evn) =

m∑
j=1

(xj
ij ,y

j) + [δ] ·H(evn)


However, note that at the leaf level all the trees contain the same set of

commitments and in particular those commitments use the same generators. So
at the leaf level the optimization would be unsound. We fix this by treating
the rerandomized sum of the parents of the selected leaves as a parent in the
regular select and rerandomize relation, except the ith child must in the circuit
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be selected from a the ith set of generators. 13 We give the relation for the
opening rerandomized leaf commitments.




i1, . . . , im, r,

δ1, . . . , δm,

x⃗
1, . . . , x⃗m,

y
1, . . . ,ym

 :

C =

m∑
j=1

⟨
[
x⃗
j
]
, G⃗j

(odd)⟩+ [r] ·H(odd)

m∧
j=1

(xj
ij ,y

j) ∈ E(evn)

m∧
j=1

Ĉj +∆(evn) = (xj
ij ,y

j) + [δj ] ·H(evn)



This batching trick replaces (D− 1) · (m− 1) rerandomizations in the circuit
with curve additions that contribute 2 orders of magnitude fewer constraints to
the circuit. Because only a single multi-path needs to be sent, the size of the
proof is reduced by (D − 1) · (m − 1) commitments, in addition to potential
reduction in proof size resulting from reducing the number of constraints.

5 Implementation and Evaluation

We provide an implementation of Curve Trees with the improvements described
in this paper, namely removing the permissibility requirement as described in
Section 3 and allowing efficient batching of multiple proofs of inclusion as de-
scribed in Section 4. We then benchmarks proofs of m inclusions using m separate
select-and-rerandomize relations in a single circuit and using a single Curve Tree
against using proving/verifying a batch with m independent Curve Trees proofs.
In both cases we use curve trees without permissible points. The experiment was
run on a Macbook with an M2 Pro chip and 16 GB RAM and the results are
given in Table 1. The implementation is available in the Curve Trees repo at:

https://github.com/simonkamp/curve-trees.

13 Alternatively one could ensure at the application level that the commitments being
“selected and rerandomized” also have independent generators for each membership
in a batch.
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Batch Constraints |πππ| (bytes) Prove Vfy AmortizedVfy
2 9,320 3,446 3,978 44 2.74

Curve Trees [CHAK23] 4 18,640 4,270 7,932 87 5.77
8 37,280 5,786 15,417 169 12.54
2 6,620 2,927 2,014 24 1.59

Curve Forests 4 10,540 3,059 4,071 34 2.41
(this work) 8 18,380 3,323 8,151 60 4.35

Table 1: Comparison for costs of proving inclusion in the accumulator for various
batch sizes using either Curve Trees or our batching construction (Curve Forests) with
D = 4 and ℓ = 256, i.e. with 232 commitments. All timings are in milliseconds. The last
column specifies the amortized cost of verifying 100 proofs using standard techniques
(NB: this is called “batch” verification in [CHAK23] but it not the full-blown batching
that is the focus of this work; it is simply amortized verification in Bulletproofs).
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