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Abstract

This paper studies transaction execution mechanisms (TEMs) for blockchains, as

the efficient resource allocation across multiple parallel executions queues or "local

fee markets." We present a model considering capacity constraints, user valuations,

and delay costs in a multi-queue system with an aggregate capacity constraint due

to global consensus. We show that revenue maximization tends to allocate capacity

to the highest-paying queue, while welfare maximization generally serves all queues.

Optimal relative pricing of different queues depends on factors such as market size,

demand elasticity, and the balance between local and global congestion. Our results

have implications for evolving blockchain architectures, including parallel execution,

DAG-based systems, and multiple concurrent proposers, and can help design more

efficient TEMs.

Keywords: Blockchain, Transaction Execution Mechanisms, Parallel Execution,

Fee Markets, Consensus
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1 Introduction

1.1 Transaction Execution on Blockchains

Blockchain protocols guarantee that transactions are ultimately executed (liveness) and

that a decentralized network of computers called "validators" can agree on the state of

the blockchain after execution (safety). The first step in executing a set of transactions

is their inclusion in a block appendix to a history of blocks. While transaction fee

mechanisms that guarantee inclusion have been extensively studied,1 little is known

about Transaction Execution Mechanism (TEM) Design.

Yet, guaranteeing efficient transaction execution is the motivation behind the emer-

gence of several blockchain systems.

Parallel execution blockchains - such as Solana, Avalanche, or the planned Ethereum

2.0 upgrade after sharding - divide the blockchain’s state into multiple, non-overlapping

partitions, or "local fee markets," each of which can handle transactions independently.

Optimal pricing of these local markets can allow for a TEM where fees are determined

by the demand within each partition rather than the entire network. This can ensure

that high-demand areas do not congest the blockchain as a whole.

In Directed Acyclic Graph (DAG)-based blockchains - such as Aptos, Sui, and IOTA-

transactions are included in a graph of blocks without requiring them to be ordered in

a single chain. However, their TEM is crucial at the necessary step of "flattening the

DAG," which means organizing the unordered transactions into a logical sequence for

execution and achieving consensus on the final state across the whole network.

Lastly, blockchains with multiple concurrent proposers - such as in current proposals

for the Ethereum blockchain - a key challenge is to ensure that concurrent proposals

do not lead to conflicts or forks that compromise the network’s safety. A TEM is,

therefore, needed to aggregate proposals from multiple validators or proposers.

These examples raise several questions related to TEMs. When is the relative

pricing of different blockchain states optimal? What determines relative prices in the

1See (Buterin, 2018; Roughgarden, 2020; Shi et al., 2022; Ndiaye, 2024a,b)
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posted-price TEM? What are the differences between revenue-maximizing and welfare-

mazimizing TEMs?

1.2 The Problem of Execution in Standard TFMs: An Ex-

ample

Consider the following example (see Figure 1) where there are two queues of 3 transac-

tions in A and B with expected values respectively 10 and 6. In every period, two new

transactions arrive in each queue, A and B. However, the blockchain collects up to 5

transactions at a time for inclusion due to the necessity for global consensus.

Queue A: E[va] = 10 15

a1

10

a2

5

a3

Queue B: E[vb] = 6 8

b1

6

b2

4

b3

Figure 1: Example Transaction Queues

1.3 The Problem with Global Ordering and a Uniform

Price

Under a uniform price and global ordering for all transactions, because of the global

capacity constraint, more transactions from queue A get executed. B can grow in size

even though its transactions can be executed in parallel. B becomes underserved (see

Figure 2).
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Global Ordering for Execution:

a1

15

a4

12

a2

10

b1

8

a5

7

Queue A: 5

a3

. . .

Queue B: 7

b5

6

b2

5

b4

4

b3

. . .

Figure 2: Global Ordering under Uniform Price. Newly arrived and executed transactions
are in red.

1.4 A Potential Solution: Market Value-Weighted Order-

ing

Suppose that E[va] and E[vb] are known or that there is a reliable signal for it. One

potential solution is to treat transactions in A and B with bids discounted according

to these expectations. That is Each transaction is treated as if its bid is ai/E[va] or

bi/E[vb] (see Figure 3).

Under this Market Value-Weighted Ordering, the queue remains balanced, and both

are served (see Figure 4).

In the remainder of this article, we will generalize this idea in a model of a blockchain

with parallel execution and a global capacity constraint due to consensus.

2 Model

We consider a capacity-constrained blockchain execution system, modeled as an N -

queue system that serves delay-sensitive customers.2 Without loss of generality, we
2These queues can be associated with each contract, high-level resource transactions try to access, or each

shared object in the case of object-centric blockchains.
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Queue A’: E[va′ ] = 1 1.5

a′1

1

a′2

0.5

a′3

Queue B’: E[vb′ ] = 1 4
3

b′1

1

b′2

2
3

b′3

Figure 3: Market Value-Weighted Ordering. Each transaction is treated as if its bid is
ai/E[va] or bi/E[vb]

assume that execution times are i.i.d with unit mean.3 Each user submits a transaction

that arrives in one queue i ∈ {1, . . . , N} following an exogenous renewal process with

rate or market size Λi. Since the consensus mechanism takes into account transactions

in all queues, there is a global capacity constraint for inclusion in one of the queues. We

consider mechanisms with posted prices pi for each submarket or queue i for simplicity.

Here, we focus on the capacity constraints in parallel execution and embed a fairly

general queueing model in the standard price theory framework. Upon arrival and

observing prices, users decide whether or not to submit their transaction at the posted

price pi. A more complex model studying optimal local priority auctions is studied in

Ndiaye (2024c).

User valuations We consider users to be atomistic relative to the market size.

They differ in their valuations v, i.e., their willingness to pay for execution without

delay. For each submarket i, valuations are i.i.d. draws from a continuous distribution

Φi (independent of arrival and execution times) with pdf ϕi, assumed strictly positive

and continuous on the positive segment [v, v̄]. Let Φ̄i = 1− Φi If all transactions with

values greater than v join queue i, the arrival (or demand) rate in market i will be

3For transactions with different execution times, we can interpret derived prices below as gross prices
rather than per unit prices.
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Market Value-Weighted Ordering for Execution:

a′1

1.5

b′1

4
3

a′4

1.2

b′5

7
6

a′2

1

Queue A’: 0.7

a′5

0.5

a′3

. . .

Queue B’: 1

b′2
5
6

b′4
2
3

b′3

. . .

Figure 4: Execution under Market Value-Weighted Ordering. Executed transactions from
queue B’ in blue.

λi = ΛiΦ̄i(v). Conversely, when the arrival rate is λi, the marginal value v is equal to

Φ̄−1
i (λi/Λi), where Φ̄−1

i is the inverse of Φ̄i. Following Afeche and Mendelson (2004),

let Vi(λi) denote the expected aggregate (gross) value in submarket i per unit of time

without delay. Then, it follows that the downward-sloping marginal value (or inverse

gross demand) function Vi(λi) ≡ Φ̄−1
i (λi/Λi) defines a one-to-one mapping between the

demand rate λi and the marginal value V
′
i (λi). Each Vi increasing and is assumed to

be strictly concave, V ′
i (λi) > 0, V

′′
i (λi) < 0 for λi < Λi.

Delay Costs We consider the following utility function for a user with value v who

pays a price p and experiences a delay in execution t that incorporates a multiplicative

delay cost and an additive delay cost

u(v, t, p, i) = v ·Di(t)− Ci(t)− p (1)

These costs capture a variety of losses that can occur due to the deterioration of ex-

ecution performance.4 Denote a λ ≡ (λ1, . . . , λN ) a vector of demand rates in each

4Typical costs due to slow execution can be the failure to purchase a good, loss of an arbitrage opportunity,
sandwich-attacked transactions, and other MEV attacks.
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submarket. Each user in lane i maximizes their own expected utility, which she fore-

casts using the distribution of the steady-state delay W̃ (λi). It depends on the set

of paying users only through the resulting demand rates λi and is not affected by the

actions of an individual atomistic user. In addition, we allowed the individual delay

costs Di(t) and Ci(t) to depend directly on i, which can reflect the selection of different

types of users in lanes. Let Di(λi) ≡ E[D(W̃ (λi))] and Ci(λi) ≡ E[C(W̃ (λi))] be the

expected delay discount and delay cost functions, respectively. Given λi, a user with

value vi for submarket i who pays pi has expected utility

u(vi|pi, λi) ≡ vi ·Di(λi)− Ci(λi)− pi. (2)

Local Equilibrium Demand Let i ∈ {1, . . . , N} and pi the price in submarket i.

Suppose Vi is continuously differentiable in R+ and that the net value to the highest

value user of being served immediately in each queue is positive, that V
′
i (0)Di(0) −

Ci(0) > 0. Furthermore, without loss of generality, assume that the queues are indexed

in decreasing order, without ties, of their net value of being served immediately. That

is V
′
1 (0)D1(0) − C1(0) > V

′
2 (0)D2(0) − C2(0) > · · · > V

′
N (0)DN (0) − CN (0). Given

a price pi, queue i is served if the highest-value user has positive expected utility if

prioritized first ( that is V
′
i (0) ·Di(0) − Ci(0) > pi). The marginal user has valuation

V
′
i (λi(pi)) and zero expected utility in equilibrium. That is, in any Nash equilibrium,

users join if, and only if demand in market i, λi(pi), satisfies

u(V
′
i (λi(pi))|pi, λi) = V

′
i (λi(pi)) ·Di(λi)− Ci(λi)− pi = 0 (3)

This equilibrium condition can be interpreted in at least two ways. First, if users can

choose their queue, entry and exit occur across queues in equilibrium until the marginal

user has zero value from each queue equals her outside option.5 Second, if the protocol

dictates the queues toward which transactions are allocations, entry, and exit within,

5This would be for instance the case of multi-proposer consensus, or DAG-based blockchains where users
choose to what part of the graph they send their transactions
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each queue equalizes the value to the marginal user equals her outside option. This

equilibrium condition maps the demand rate λi to the price in queue i and vice-versa

for queues served. Henceforth, we will write such expression as pi(λi)

Global Inclusion Constraint Because all transactions need to be considered for

consensus before the execution phase, there is global capacity κ of transactions that

can be served. This constraint is denoted as:

N∑
i=1

λi ≤ κ (4)

The problem of variable global capacity would deliver similar insights to ours, and we

focus in this analysis on instances where the global capacity constraint is binding.

2.1 Revenue Maximization

Revenue Denote S, the set of served queues. The protocol’s revenue is the collected

fees
∑

i∈S λipi(λi). This can be written, for the simplicity of notation assuming here

all queues are served,6 as

Π = max
(p1,...,pN )

N∑
i=1

λiV
′
i (λi) ·Di(λi)− λi · Ci(λi) (6)

We will consider uniform pricing where p1 = · · · = pN = p ∈ R+ and relative

pricing optima (p1, . . . , pN ) ∈ RN
+ for both revenue maximization. The revenue optimal

set of prices and served queues S maximizes (6) subject to (3) and (4) in all served

queues. The following proposition shows that revenue maximization nontrivially entails

restricting service to the highest-paying queue for both uniform and nonuniform prices.

Proposition 1. There exists κ ∈ (0,+∞) such that ∀κ ≤ κ, the revenue-maximizing

6The general expression is

Π = max
S,(pi;i∈S)

∑
i∈S

λiV
′

i (λi) ·Di(λi)− λi · Ci(λi). (5)
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uniform price optimum and the revenue-maximizing relative price optimum are the same

and allocate all capacity to the unique queue highest price queue, i.e., S = {1}.

Proof. The idea of the proof is to construct a small capacity (or equivalent a large

enough level of congestion and price for queue 1) so that no customers will be willing

to join queues 2, . . . , N and net revenue from queue one is increasing with respect

to its allocated capacity. In these conditions, allocating all capacity to queue one

is revenue maximizing. Since V
′
1 (0)D1(0) − C1(0) > V

′
2 (0)D2(0) − C2(0) > · · · >

V
′
N (0)DN (0)−CN (0) without loss of generality, and V

′
i (λ)Di(λ)−Ci(λ) is continuously

decreasing in λ for all i, there exists κ1 ∈ (0,+∞) such that V ′
1 (κ1)D1(κ1)−C1(κ1) >

V
′
2 (0)D2(0) − C2(0) > · · · > V

′
N (0)DN (0) − CN (0). Denote gross revenue from queue

1 absent any delays as R1(λ1) = λ1V
′
1 (λ1), the marginal net revenue from this queue

is R
′
1(λ1)D1(λ1) − C1(λ1) + λ1V

′
1 (λ1)D

′

1(λ1) − λ1C
′

1(λ1). Evaluated at λ1 = 0 yields

R
′
1(0)D1(0)− C1(0) = V

′
1 (0)D1(0)− C1(0) > 0, therefore, by continuity, the marginal

net revenue from queue is increasing in a neighborhood of 0. That is, ∃ 0 < k ≤ κ1

such that V
′
1 (κ)D1(κ) − C1(κ) > V

′
2 (0)D2(0) − C2(0) > · · · > V

′
N (0)DN (0) − CN (0)

and the net revenue function κ 7→ κ[V
′
1 (κ)D1(κ)−C1(κ)] is increasing in [0, κ]. In both

the relative price and uniform price case, for capacity below κ it is revenue maximizing

to allocate all capacity to queue 1, since at those capacity and price, no customers will

be willing to join queues 2, . . . , N and the total capacity is used since net revenue from

queue 1 is increasing in this segment.

2.2 Welfare Maximization

The protocol’s social welfare over all queues7

SW = max
λi∈[0,Λi)N

N∑
i=1

Vi(λi) ·Di(λi)− λi · Ci(λi) (8)

7Th general problem is

SW = max
S,λi∈[0,Λi)N ,i∈S

∑
i∈S

Vi(λi) ·Di(λi)− λi · Ci(λi). (7)
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Subject to the local equilibrium condition (3) and the global inclusion constraint

(4). This is the expected net value of delay cost over all served queues per unit of time.

The relative price social optimum (p1, . . . , pN ) ∈ RN
+ is equivalent to a planner choosing

the demand rates λi ∈ [0,Λi)
N , i ∈ S directly subject to constraints (3) in all served

queues and (4). The following proposition shows that the relative price social optimum

generically serves all queues.

Proposition 2. Suppose that the discount rate and linear delay cost functions are so

that the net utility function from queue i, that is Wi ≡ λi 7→ Vi(λi)·Di(λi)−λi ·Ci(λi) is

strictly concave, and ∃ν > 0 such that W ′
i (0) > ν for all i, and

∑N
i=1(W

′
i )

−1(ν) = κ then

in the relative price social optimum, capacity is allocated in all queues, S = {1, . . . , N}.

Proof. Since each Wi is strictly concave, their sum is strictly concave. Let λ∗ be an

optimal solution to the problem. By the Karush–Kuhn–Tucker conditions, ∃µ ≥ 0 such

that W ′
i (λ

∗
i ) = µ if λ∗

i > 0 and W ′
i (λ

∗
i ) ≤ µ if λ∗

i = 0 Suppose, for contradiction, that

∃j such that λ∗
j = 0. Then, W ′

j(0) ≤ µ. But we know that W ′
j(0) > ν, therefore, µ > ν.

There exists at least one index i so that λ∗
i > 0, otherwise total capacity would be zero.

For all i where λ∗
i > 0, we have W ′

i (λ
∗
i ) = µ > ν. Since Wi is strictly concave, W ′

i

is strictly decreasing. Therefore, λ∗
i < (W ′

i )
−1(ν) for all i where λ∗

i > 0. This implies

that
∑N

i=1 λ
∗
i <

∑N
i=1(W

′
i )

−1(ν) = κ. But this contradicts the optimality of λ∗ because

we can increase the objective function by increasing λ∗
j slightly while still satisfying the

constraint. Therefore, our assumption of the existence of j is a contradiction, and we

conclude that λ∗
i > 0 for all i.

2.3 Welfare Maximizing Relative Pricing

We now characterize the welfare maximizing relative prices further under the condi-

tions of Proposition 2. Let µ denote the shadow price of including an additional user

transaction in a block, the Lagrangian on the global capacity constraint. The following

propositions link the socially optimal prices in each queue to this shadow price and

demand characteristics.
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Proposition 3. The socially optimal relative price satisfies

pi = −Vi(λi)D
′

i(λi) + λiC
′

i(λi) + µ (9)

This proposition emerges from the first order condition for λi and replacing pi from

(3). At the socially optimal relative prices, the marginal customer’s expected net value

is equal to the expected net externality it adds to the system. A marginal increase in λi

has a local and a global externality. The local externality is the following: a marginal

increase in λi raises the discount by D
′

i(λi) weighted by the value in queue i, Vi(λi) and

the linear cost by λiC
′

i(λi). Globally, it imposes a shadow cost µ on all other queues

competing for inclusion. The Nash equilibrium is socially optimal if the price in queue

i is set to the total externality.

We now specialize the environment without loss of generality to a setting where

the time between arrivals is exponentially distributed, and the execution times for each

user also follow an exponential distribution. Each market has size Λi each with a dif-

ferent isoelastic marginal value function V
′
i (λi) = (λi/Λi)

−1/εi where εi > 1 represents

demand elasticity for queue/resource i. In this setting, Vi(λi) =
(λi/Λi)

1−1/εi

1−1/εi
.

When the delay discount function is exponential D(t) = e−dt and the additive delay

cost is linear C(t) = c× t where c, d > 0, as we assume below, then: (see Appendix A

for the detailed proof)

Ci(λi) =
c

1− λi

Di(λi) =
1− λi

1 + d− λi
(10)

Corollary 4. Suppose that λi, λj are negligible relative to 1 and the discount rate d (high

parallelization assumption), then the following approximation of the socially optimal

relative prices in queues i and j hold:

pi
pj

≈
(λi/Λi)

1−1/εi

1−1/εi
· d
(1+d)2

+ cλi + µ

(λj/Λj)
1−1/εj

1−1/εj
· d
(1+d)2

+ cλj + µ
(11)
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Proof. Calculate derivatives V ′
i (λi) = Λiλ

−1/εi
i , D

′
(λi) = − d

(1+d−λi)2
, C

′
(λi) =

c
(1−λi)2

.

Substitute into the equation for pi, pi =
(λi/Λi)

1−1/εi

1−1/εi
·
(

d
(1+d−λi)2

)
+ λi · c

(1−λi)2
+ µ.

Consider the ratio pi/pj . Assuming λi and λj are small compared to 1 and d we have

(1 + d − λi)
2 ≈ (1 + d)2, (1 − λi)

2 ≈ 1, replacing in the expression for relative prices

yields pi
pj

≈
(λi/Λi)

1−1/εi

1−1/εi
· d
(1+d)2

+cλi+µ

(λj/Λj)
1−1/εj

1−1/εj
· d
(1+d)2

+cλj+µ

.

The price ratio can be interpreted as follows. When µ is small compared to the

other terms, that is when local congestion is stronger than then global congestion, the

price ratio is primarily determined by the queue-specific characteristics (market size Λ,

elasticity ε, and demand rates λ). As µ increases, that is global congestion becomes

more important than local congestion, its effect is to push the price ratio closer to 1.

Corollary 5. Suppose in addition to assumptions of Corollary 4 that local congestion

dominates global congestion, that is µ negligible relative to pi, pj and demand is perfectly

elastic, εi, εj → ∞ then

pi
pj

≈ λi

λj
· Λj

Λi
(12)

This limit expression reveals several key insights. First, at the perfect elasticity

demand limit, pricing individual queues weighting by demand relative to market size

λi/Λi is approximately optimal. Second, the relative price of a queue is increasingly

different from a uniform price as the market size for a congested queue decreases Λ ↓

(example: hyped NFT contract with a small market size)

3 Conclusion

This paper studies posted price transaction execution mechanisms (TEMs), focusing on

the efficient allocation of blockchain resources across multiple queues or "local fee mar-

kets" while satisfying a global inclusion constraint for consensus across all transactions.

The analysis reveals several key insights. Revenue maximization tends to allocate all
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capacity to the highest-paying queue, especially when capacity is limited. Welfare max-

imization generally serves all queues, balancing efficiency across the system. Optimal

relative pricing in different queues depends on factors such as market size, demand elas-

ticity, and the balance between local and global congestion. In cases of high elasticity

and dominant local congestion, pricing individual queues weighted by demand relative

to market size is approximately optimal.

The paper suggests that implementing local fee markets could improve overall sys-

tem efficiency. This could be achieved by defining local values for each state, contract,

or object, using an adaptive base fee mechanism for inclusion, and assigning transac-

tions to queues with different relative prices. These findings have implications for the

design of blockchains, particularly as they evolve towards more complex structures like

parallel execution, DAG-based systems, and multiple concurrent proposers. In sum-

mary, our work provides a foundational model that can guide the development of more

efficient transaction execution mechanisms in future blockchain architectures.

The question of optimal local priority auctions is left for future work. Future re-

search could study the implementation of local priority auctions in a two-stage bidding

process for managing queues in a system with multiple service points. In such a model,

customers would first bid for priority in a global queue and then bid for specific services

in parallel queues. Such a system could be optimized for either social welfare or revenue

maximization.

3.1 Related Work

Buterin (2018), Ndiaye (2023), and Ndiaye (2024a) study the the pricing of blockspace.

Shi et al. (2022), Roughgarden (2021), Roughgarden (2020), Chung and Shi (2023),

and Bahrani et al. (2023), provide foundational analysis of transaction fee mechanisms,

focusing on single-lane blockchains. Our work extends this analysis to multi-queue

systems, considering the complexities introduced by parallel execution. Diamandis et

al. (2022), and Ferreira et al. (2021) study multidimensional fees and dynamic posted

price TFMs.
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A Appendix

A.1 Expression of delay costs

Proof. We begin by considering the definitions of Ci(λi) and Di(λi):

Ci(λi) = E[C(Ti)] =

∫ ∞

0
C(t)fTi(t)dt (13)

Di(λi) = E[D(Ti)] =

∫ ∞

0
D(t)fTi(t)dt (14)

where fTi(t) is the probability density function of the exponential distribution with

rate parameter λi:

fTi(t) = λie
−λit (15)

For Ci(λi), we substitute C(t) = ct and solve:

Ci(λi) =

∫ ∞

0
ctλie

−λitdt (16)

= cλi

∫ ∞

0
te−λitdt (17)

= cλi

[
− t

λi
e−λit

∣∣∣∣∞
0

−
∫ ∞

0
− 1

λi
e−λitdt

]
(18)

= cλi

[
0 +

1

λ2
i

]
(19)

=
c

λi
=

c

1− λi
(20)

For Di(λi), we substitute D(t) = e−dt and solve:
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Di(λi) =

∫ ∞

0
e−dtλie

−λitdt (21)

= λi

∫ ∞

0
e−(d+λi)tdt (22)

= λi

[
− 1

d+ λi
e−(d+λi)t

∣∣∣∣∞
0

]
(23)

= λi

[
0 +

1

d+ λi

]
(24)

=
λi

d+ λi
=

1− λi

1 + d− λi
(25)

Thus, when the delay discount function is exponential D(t) = e−dt and the additive

delay cost is linear C(t) = c× t where c, d > 0, the following equations hold:

Ci(λi) =
c

1− λi

Di(λi) =
1− λi

1 + d− λi
(26)

17


	Introduction
	Transaction Execution on Blockchains
	The Problem of Execution in Standard TFMs: An Example
	The Problem with Global Ordering and a Uniform Price
	A Potential Solution: Market Value-Weighted Ordering

	Model
	Revenue Maximization
	Welfare Maximization
	Welfare Maximizing Relative Pricing

	Conclusion
	Related Work

	Appendix
	Expression of delay costs


