
Fiat-Shamir Goes Rational

Matteo Campanelli1 and Agni Datta2

1 No affiliation
2 SECURE–CoE, VIT Bhopal University, India

Abstract. This paper investigates the open problem of how to construct non-
interactive rational proofs. Rational proofs, introduced by Azar and Micali (STOC
2012), are a model of interactive proofs where a computationally powerful server
can be rewarded by a weaker client for running an expensive computation f(x).
The honest strategy is enforced by design when the server is rational: any adversary
claiming a false output y ̸= f(x) will lose money on expectation.
Rational proof constructions have appealing properties: they are simple, feature
an extremely efficient verifier—reading only a sublinear number of bits of the
input x—and do not require any collateral from the prover. Currently, all non-
trivial constructions of rational proofs are interactive. Developing non-interactive
rational protocols would be a game-changer, making them practical for use in
smart contracts, one of their most natural applications.
Our investigation revolves around the Fiat-Shamir transform, a common approach
to compiling interactive proofs into their non-interactive counterparts. We are the
first to tackle the question:

Can Fiat-Shamir be successfully applied to rational protocols?

We find negative evidence by showing that, after applying Fiat-Shamir in the
random oracle model to two representative protocols in literature (AM13 and
CG15) these lose their security guarantees. Our findings point to more general
impossibility theorems, which we leave as future work.
To achieve our results we first need to address a fundamental technical challenge:
the standard Fiat-Shamir transform does not apply to protocols where the verifier
has only oracle access to its input x (a core feature of the rational setting). We
propose two versions of Fiat-Shamir for this setting, a “vanilla” variant and a
“stronger” variant (where the verifier has access to an honestly computed digest
of its input). We show that neither variant is sufficient to ensure that AM13 or
CG15 are secure in the non-interactive setting.
Finally, as an additional contribution, we provide a novel, and arguably simpler, def-
inition for the soundness property of rational proofs (interactive or non-interactive)
of independent interest.

1 Introduction

Consider an untrusted server claiming that a certain computation f executed on the
client’s data x produces the output y. For instance, f may represent a machine learning
training algorithm, x a training dataset, and y the resulting model. We are interested
in approaches to checking the server’s response without the need to recompute f(x)
from scratch (which could be unfeasible due to limited resources or too costly). A
technique widely employed to address this issue is that of cryptographic proofs [28,31]:

the server (the prover) can transmit a certificate π that the client (the verifier) can
check efficiently; if the server claims a false output, this discrepancy will be detected
with overwhelming probability via π. Despite the enormous progress in their design (see,
e.g., [31]) cryptographic proofs still have a series of limitations. They demand significant
resources (a typical overhead for proving a computation f is three or more order of
magnitudes on top of f ’s execution) and may require strong or unscrutinized security
assumptions [30,18].
Rational proofs. Our focus in this work is an alternative approach to certifying
computation: the model of rational proofs introduced by Pablo Azar and Silvio Micali [2].
In contrast to purely cryptographic counterparts, they work under the assumption that
the prover is rational and economically incentivized. In order to ascertain the result of
a computation f(x), the prover and verifier engage in an interaction, after which the
verifier will determine the reward for the prover based on the interaction transcript. The
protocol is designed so that a cheating prover, in expectation, will receive a lower reward
(in this model, a “verifier” is effectively just a “rewarder”; in this paper we adopt this
common yet slightly imprecise terminology).

In scenarios where we can assume the server to be economically incentivized, rational
proofs present two primary advantages: a simple and efficient prover and, a sublinear
verifier. A rational proof construction—in contrast to a cryptographic one—may incur
almost no overhead beyond the computation of f itself (proving may often involves
providing specific segments of the computation without further processing). Rational
protocols are also easier to implement and understand. One of the main advantages of
rational proofs stems from one their most peculiar features: the verifier will not have to
access the entirety of its input x (hence the term “sublinear”). In particular, they assume
that the verifier has random access (or “oracle” access) to x, of which it may only need
to query a few bits34.

The features above make rational proofs especially appealing in practice. There is
however a major challenge to their applicability—interaction—a challenge we gradually
introduce in the rest of this section and which is the focus of our work.
The synergy rational proofs ↔ smart contracts. When, in 2012, Azar and
Micali first proposed the model of rational proofs, they relied on the assumption that the
verifier would simply follow the protocol and reward the prover. This is not an assumption
one can apply universally. A dishonest (or rational) verifier may bias the coins chosen
throughout the protocol or simply walk away. In their work, Azar and Micali left open
how to enforce this behavior instead of simply assuming it5. The advent of smart contracts
provided a solution: these are programs collectively run on a “decentralized computer”,
3 An intuition for why this may be a reasonable model: consider a client that, after collecting

data x, uploads it to some external memory which is assumed to be trusted in a restricted:
it will later return the original bits of x. We can think of the verifier querying this memory
through random access during the interaction.

4 A couple clarifications: our of focus is on non-trivial rational proofs, i.e., where the verifier is
sublinear (this excludes standard interactive proofs which do otherwise satisfy the definition).
Also, throughout the introduction—and only there—we will, for simplicity, talk about proofs
meaning more inclusively both arguments (secure against bounded adversaries only) and
proofs (secure against any adversary).

5 We are aware of only one work studying security for when the verifier is also rational,
namely [25]. However, it applies only to specific threshold circuits.

2

with native abstractions for transferring assets and for enforcing agreements (hence the
term “contracts”).

Smart contracts not only offer solutions for rational proofs, but the reverse is also
true. Various cryptographic proofs are already being verified within smart contracts, but
the efficiency advantages of rational proofs make them particularly well-suited for this
environment. As a consequence we could run better incentivized outsourced computation
on smart contracts through rationals proofs. For instance, imagine a contract that releases
funds to a user if they can provide value y such that y = f(x). Instead of directly
checking y = f(x), the prover could submit a rational proof, and the contract would then
automatically execute the reward6. For a broader discussion on this topic, see [9].

The challenge of non-interaction. A major obstacle to applying rational arguments
in smart contracts is that all known constructions in the literature require multiple rounds
of interaction, at least for non-trivial computations. Non-interactivity is typically a critical
requirement for systems deployed on distributed ledgers. Beyond that, non-interactive
protocols are generally preferable due to their efficiency: fewer rounds mean reduced
latency, and they impose fewer demands on the prover, who can submit a proof and
disengage, rather than staying online for the entire interaction.

This work: is Fiat-Shamir secure in rational arguments? We turn our attention
to the de facto standard tool for transforming interactive protocols into non-interactive
ones, the celebrated Fiat-Shamir transform [16], which replaces the interaction with the
verifier (who is only supposed to send uniformly random challenges) by the invocation
of a public hash function. This means that the challenge at round i is computed as
ei = H(pp, x, τi−1) where pp are some parameters, x is the statement whose truth we are
ascertaining and τi−1 is the transcript so far. If the hash function H is assumed to be
random—a random oracle—one can hope that the prover has no easier time producing
“successful” proofs for false statements than when interacting with an actual verifier.
While the Fiat-Shamir heuristic does not always guarantee soundness [19]—the standard
security property for cryptographic proofs—we do know of sufficient conditions for it to
do so (which are also satisfied by widely used protocols) [1].

Unfortunately, results on Fiat-Shamir in cryptographic proofs do not apply directly
to our setting. This is due to two reasons (which we already hinted at):
a) The soundness definition for rational protocols is very different from the more tradi-

tional one for interactive proofs.
b) In a rational proof the verifier does not read the whole input x. Instead, it queries

relatively few bits from it at the end of the interaction. Yet Fiat-Shamir requires
us to feed the public input at each step. This means that the standard Fiat-Shamir
transform does not apply to our setting even from a purely syntactical point of view!

Item a) suggests we need a completely different security treatment, but item b) requires
that, first, we also need to reformalize Fiat-Shamir (FS) for our setting, where the verifier
has this special access to its public input (to which we hereby refer to as holographic for
succinctness).

6 This application scenario is being concretely considered by various organization. As an example,
consider the case where x is data for classification, f is a machine learning model and y is
the resulting output. This intuitive scenario is being explored, among others, by the gensyn
project [17].

3

Our results in a nutshell (or, FS is insecure for rational arguments) We provide
a negative answer to the question: Is Fiat-Shamir in the random oracle model (ROM)
generally secure for rational protocols? Below, we outline our findings.

First, we formalize a natural variant of Fiat-Shamir for verifiers with holographic
inputs. This variant, which we term simple Fiat-Shamir, computes challenges using the
entire visible transcript and the parameters accessible to the verifier up to that point.
Specifically, if the prover claims f(x) = y, then the challenge in each round i is computed
as ei = H(pp, f, y, τi−1) (if the verifier accesses any input bits, these are incorporated
into H for any subsequent randomized stages of the protocol). We then show:

Result 1. There exist (non-contrived) secure, interactive rational arguments that
become insecure when compiled with the “simple” Fiat-Shamir in the ROM.

The “non-contrived” constructions above are such because they represent established
constructions in the literature for non-trivial subsets of P: the rational protocol for
threshold circuits of O(1) depth by Azar and Micali [3] and the protocol for NC1 circuits
(boolean circuits with logarithmic depth) by Campanelli and Gennaro [10].

We observe that the attacks breaking “simple” Fiat-Shamir have a recognizable patter
which stems from lack of dependence of the challenges from the whole input. We then
design a different (“stronger”) Fiat-Shamir for holographic inputs where the same attacks
are not possible.

We find, however, that the same constructions mentioned above can be compromised
(through a different approach) even in this stronger scenario:

Result 2. There exist (non-contrived) secure, interactive rational arguments that
become insecure when compiled with the “strong” Fiat-Shamir in the ROM.

1.1 Technical Overview

Background on Rational Proofs. In rational proofs, the prover and verifier engage
in an interactive protocol, at the end of which the prover receives a monetary reward for
the prover. The verifier is public-coin, that is her messages consist of uniformly random bit
strings (and this is what makes the Fiat-Shamir transform applicable, at least in principle).
The final step of the protocol involves the verifier invoking the function rewardx(pp, f, y),
which returns a non-negative amount R̃—the superscript notation for x indicates that
this function possesses random—holographic—access to the public input x. The property
of “rational soundness” mandates that a cheating prover, claiming ỹ ̸= f(x), receives a
reward R̃ such that E [Rhon]− E

[
R̃

]
is deemed “substantial”, where Rhon represents the

reward of the honest prover. A formal treatment of rational soundness typically requires
several additional notions, including that of the “reward gap” as articulated in [20]. We
propose what we believe to be a simpler model based on a security game, which we
demonstrate to be equivalent to prior ones (Appendix B).
A simple Fiat-Shamir for holographic inputs. Our first attempt in defining Fiat-
Shamir for the rational setting is the natural one: we apply its underlying principle by
properly adapting it (“hash all the public inputs and messages up to the current point
of the interaction”). See Fig. 3. The astute reader will notice that this, however, cannot

4

include the full input x from the beginning—x is queried only at the end and partly. We
now discuss how this is problematic.

True-to-false statement attacks. We identify a class of potential attacks stemming
from our previous observation. Consider an input x, a function f , and the honest (Fiat-
Shamir) proof πhon used to assert the output yhon = f(x). By the definition of rational
proofs, πhon assures the “maximum expected reward.” Yet, we can show that this same
proof may yield the same reward even for a fraudulent output. Here is how: let x̃ be an
input that is identical to x except in certain positions specified by the set I, under the
condition that f(x̃) ̸= f(x). If the positions in I are not among those observed by the
verifier, one can receive the honest reward for the false claim y = f(x̃) (example: let x
with parity 1 and let x′ be as x but with one non-queried bit that has been flipped). The
reason why this “true-to-false statement” attack is potentially feasible is that the input
positions queried by the verifier are determined by the random oracle (RO) invocations
and rely solely on public parameters y and f , which remain consistent in both scenarios7.

The ΠAM13 and ΠCG15 Constructions. From the observations above, we are aware
of which potential attacks may occur, but it remains unclear whether these attacks
manifest in concrete protocols. We show, however, that such attacks are actually possible.
Our case studies focus on ΠAM13 from [3], which applies to constant-depth threshold
circuits, and ΠCG15 from [10], which targets logarithmic-depth Boolean circuits. Both
protocols proceed in a layer-by-layer fashion, but differ in their reward mechanisms:
ΠAM13 utilizes scoring rules8 (specifically, Brier’s rule [8]), whereas ΠCG15 employs a
specially designed spot-checking method. We show that both protocols are vulnerable
to true-to-false statement attacks and are therefore insecure when compiled using the
strengthened FS transform discussed above.

Strengthening FS by Incorporating the Full Statement. The attacks we just
described rely on a key observation: two distinct statements, x and x′, can (intuitively)
have the prover face the same challenges during the proof, and therefore the same set
of queried positions. Naturally, this raises the question of whether strengthening the
Fiat-Shamir transform could offer a solution. To address this, we consider an augmented
model where the verifier retains its usual “spot” access to x, but also takes as input
information depending on x in its entirety—a digest9 δx. We strengthen the Fiat-Shamir
transform by including δx in each challenge. As a result, two distinct inputs will now
yield distinct digests, effectively preventing the aforementioned attacks.

7 Variants of such attacks are recognised in traditional cryptographic proof settings (see, e.g.,
[14]). While astute readers may find such attacks plausible, the implications for verification
and rewarding mechanisms are not immediately apparent. The soundness notions in traditional
versus rational interactive proofs diverge significantly; the former permits the verifier to access
the entire input. Accordingly, previous analyses of the Fiat-Shamir approach do not necessarily
illuminate our context.

8 A (proper) scoring rule rewards a forecast provided by an expert and has the key property
that any forecast deviating from the true distribution of events (modelled as a probability
distribution) will cause the expert to incur a loss. Azar and Micali show how these techniques
can be applied to gates in a circuit [2,3].

9 Intuitively, this can be understood as a compact hash value that the verifier computes once
before uploading its input to some memory. See also Footnote 3.

5

Further Attacks. The goal of this “stronger” FS approach is to provide a litmus
test: they make things harder for the adversary assuming more from the model (a digest
δx); if we can show security of rational schemes in this stronger model, then there may
be hope to later develop an intermediate Fiat-Shamir approach based on slightly less
stringent assumptions. Unfortunately, this is not the case. We can show that both ΠAM13
and ΠCG15 are vulnerable to other forms of attack beyond the true-to-false statement
manipulations. These new attacks allow an adversary to fix an attempted target input x̃
and then identify a pair (f, y) such that: i) f(x̃) ̸= y, and ii) the reward obtained from
proving this false claim is nearly as high as what an honest prover would earn.

1.2 Discussion and Future Work

Our findings have two key implications. First, they demonstrate that adapting the Fiat-
Shamir transform to the context of holographic verifiers is non-trivial—this is evident
from our “simple” FS construction and the associated attacks. Second, they suggest that
such an adaptation may not be feasible at all, since even imposing stronger requirements
on the Fiat-Shamir transform, different attacks on the protocols we analyzed still emerged.
These attacks are not limited to the specific cases of ΠAM13 and ΠCG15, and likely extend
to other similar constructions. Formalizing these generalizations is left as future work.

It is important to emphasize that rational proofs are not the only class of interactive
proofs involving holographic verifiers. Indeed, proofs of proximity [23,22,6,29,32] also
allow for sublinear verification, and the feasibility of applying Fiat-Shamir in that context
remains an open question. Our work provides initial tools that may help explore this area
further.

1.3 Related Work

Azar and Micali [2] introduced rational proofs and showed their power for large complexity
classes constructing a single-round scheme for all of #P (with a non-polynomial prover);
they propose efficient protocols for restricted classes in [3]. The work of Campanelli
and Gennaro [10,11] constructs rational proofs with composition properties (e.g., that
are reusable for multiple executions) for bounded-depth circuits and bounded-space
computations. The work of Guo, Hubacek, Rosen, and Vald [20] restrict the rational
prover to be computationally bounded, obtaining the notion of rational arguments and
proposing constructions with a sublinear verifier rational arguments for the class NC1.
This work was extended to the class P in [21]. Recently, Campanelli, Ganesh, and Gennaro
have proposed extractability properties for rational arguments [9]. Another line of work
achieves verifiable computation against rational parties in an indirect manner through
approaches based on fine-grained cryptographic primitives [12].

A long line of work has studied Fiat-Shamir in traditional interactive arguments. A
partial list includes [16,15,4,19,7,26,24,27].
Paper outline We introduce our model of rational arguments in Section 2 (both
interactive and non-interactive in the ROM). We describe our Fiat-Shamir variants
in Section 3; the same section discusses generic attacks. Finally, Section 4 provides
background on our case study schemes and formal results on their insecurity.

6

2 Modeling Rational Arguments

Interactive Rational Arguments Here we describe our model interactive arguments.
Notice that a rational proof (where the adversary may be unbounded) also satisfies this
definition with an empty setup; we therefore provide only a definition of arguments. In
the appendix, we discuss the difference between our model and earlier ones showing they
are equivalent.

Syntactically, a rational argument consists of a tuple of (PPT, possibly interactive)
algorithms (Setup,P,V, reward) that work as follows:

– Setup(1λ)→ pp: outputs parameters pp on input security parameter λ;
– ⟨P,V⟩ → τ : (P, V) are an interactive protocol producing transcript τ . Both parties

take parameters pp and V only returns random challenges (it is public-coin). P also
takes inputs (x, f, y), where x is the input, y the purported output f(x), and f ∈ Fλ

is a function from a family Fλ parametrized by λ.
– rewardx(pp, f, y, τ)→ R ∈ R≥0: produces a non-negative real number R representing

the reward on input pp, f, y, transcript τ and with oracle access to input x.
We require two properties, roughly corresponding to traditional completeness and sound-
ness. Rational completeness intuitively captures the idea that the honest strategy is the
one obtaining (essentially) the highest reward.

Definition 1 (Rational Completeness). There exists a negligible function negl(·) such
that for every probabilistic polynomial-time algorithm P∗, for all λ ∈ N, inputs x ∈ {0, 1}∗,
functions f ∈ Fλ, strings y ∈ {0, 1}∗, s.t. the transcripts τ∗ ← ⟨P∗(pp, x, f, y),V⟩(pp),
τ ← ⟨P(pp, x, f, f(x)),V⟩(pp) satisfy:

E[rewardx(pp, f, y, τ∗)]− E[rewardx(pp, f, f(x), τ)] ≤ negl(λ), w/ pp← Setup(1λ)

Rational soundness, on the other hand, ensures that a dishonest prover should suffer
a substantial loss. This property is defined within an adaptive reward game, where an
adversary seeks to maximize its reward by deviating from honest behaviour.

Game ExpRewardA(λ):

pp← Setup(1λ);
(f, x, y)← A(pp);
RP ← rewardx(pp, f, f(x), ⟨P, V⟩) if

y ̸= f(x) ∧ f ∈ Fλ then
RA ← rewardx(pp, f, y, ⟨A,V⟩)

else
RA ← 0;

return (RP − RA)/RP ;

Fig. 1: Game ExpRewardA

Game ExpRewardA
RO(λ):

H← SampleRO(1λ);
pp← SetupH(1λ);
(f, x, y, πA)← AH(pp);
πP ← PH(pp, f, x, f(x));
RP ← rewardH,x(pp, f, f(x), πP);
if y ̸= f(x) ∧ f ∈ Fλ then

RA ← rewardH,x(pp, f, y, πA);
else

RA ← 0;
return (RP − RA)/RP ;

Fig. 2: Game ExpRewardA
RO

Definition 2 (Rational Soundness). A rational argument system satisfies rational
soundness for a function domain F if, for all stateful PPT adversaries A, there exists a
polynomial q(·) s.t. for all security parameters λ ∈ N:

E
[
ExpRewardA(λ)

]
≥ 1/q(λ)

7

where ExpReward is defined in Fig. 1.

This definition guarantees that, in expectation, even an adversary with adaptive
capabilities cannot avoid incurring a loss that increases polynomially with the security
parameter.

Remark 1. For a rational argument to be non-trivial, we require that the reward be
polynomial in λ and the verifier run in time o(|x|).

Non-Interactive Rational Arguments in the ROM Here we present a variant of the
rational arguments model for the non-interactive case in the random oracle model (ROM).
A non-interactive rational argument in the ROM is a tuple of algorithms (Setup,P, reward)
which work almost as in Section 2 with the exception that P is a non-interactive algorithm
returning a proof π, there is no interactive challenger V, all algorithms have access to
a random oracle H. Rational completeness in the ROM is a straightforward variant
of Definition 1 and we do not present it; however, we explicitly show an analogue
of Definition 2:

Definition 3 (Rational Soundness in the ROM). We say that a non-interactive
rational argument satisfies rational soundness (in the ROM) w.r.t. a function domain
F if, for all (potentially non-uniform) PPTA, there exists a polynomial q(·) s.t. for all
security parameters λ ∈ N

E
[
ExpRewardA

RO(λ)
]
≥ 1/q(λ)

where ExpRewardRO is defined in Fig. 2.

3 Fiat-Shamir Transforms for Rational Arguments

Here we present two versions of Fiat-Shamir. The “simple” variant (sFS) directly adapts
the standard FS to the holographic setting. The “stronger” variant (digFS) works in
a model where the verifier is also given a digest to its input. Naturally, for it to be
interesting, an FS transform for holographic settings should preserve the sublinearity of
the verifier—this is the case for our two compilers.

3.1 A Simple Fiat-Shamir for Rational Arguments

Let Π be a (standard) interactive rational argument. We denote by sFS[Π] the non-
interactive rational argument in the random oracle mode obtained by applying the
transform in Fig. 310.

10 Notice we make a change from the syntax in Section 2 that is without loss of generality: we
make explicit the part of the reward function that simply queries the input x (Query) and
the part without access to x that simply outputs the reward. This makes it easier to see why
some of (in)security claims hold in later sections.

8

PH (ppRP, f, x, y):
m1 ← P(ppRP, x, y);
for i = 2 to r do

ei−1 ←
H(ppRP, f, y, m1, . . . , mi−1);

mi ← P(ei−1);
return π ← (m1, . . . , mr);

VH,x(ppRP, f, y, π):
π ← (m1, . . . , mr);
for i = 1 to r do

ei ←
H(ppRP, f, y, m1, . . . , mi);

τ ← (m1, e1, . . . , mr, er);
I ← Queryx(τ);
I is a set of indices;
x̃← xI ;
R← reward(ppRP, f, y, τ, x̃);
return R;

Fig. 3: “Simple” FS Transform for
Rational Proofs. Setup is unchanged.

PH (ppRP, f, x, y):
δ ← H(x);
m1 ← P(ppRP, x, y);
for i = 2 to r do

ei−1 ← H(ppRP, f, δ, y, m1, . . . , mi−1);
mi ← P(ei−1);

return π ← (m1, . . . , mr);

VH,x(ppRP, f, δ, y, π):
π ← (m1, . . . , mr);
for i = 1 to r do

ei ← H(ppRP, f, δ, y, m1, . . . , mi);
τ ← (m1, e1, . . . , mr, er);
I ← Queryx(τ);
I is a set of indices;
x̃← xI ;
R← reward(ppRP, f, δ, y, τ, x̃);
return R;

Fig. 4: “Stronger” FS Transform for Ra-
tional Proofs in the Input-Digest Model
(changes from Fig. 3 are in blue). Setup is
unchanged.

True-to-False-Input Attacks Here we describe a class of general attacks on schemes
compiled with sFS.

Definition 4 (Input Query Set). Let Π denote a rational argument11. The input
query set for Π is defined as the set of indices and values queried during the reward stage
of the rational argument. Specifically, for a function f , input x, alleged output y, proof π,
and parameters pp:

QSetpp(f, x, y, π) := (i, x[i])i∈I where I ← Queryx(pp, f, y, π)

We will often omit the parameters pp when their context is clear.

The following lemma introduces the input query set as a valuable abstraction. Its
proof follows immediately.

Lemma 1. Let Π, f , y, and π be as in Definition 4. If the inputs x and x′ satisfy
QSetpp(f, x, y, π) = QSetpp(f, x′, y, π), then we have rewardx(f, x, y, π) = rewardx′

(f, x′, y, π).

Next, we define a true-to-false-input adversary. Informally, such an adversary, upon
receiving a function f and input x (as appropriately quantified), efficiently outputs x′ ≠ x
such that: (i) QSetpp(f, x, f(x), π) = QSetpp(f, x′, f(x), π) for a given π; and (ii) f(x) is
a false output for x′, i.e., f(x′) ̸= f(x).
11 The rational argument may be interactive or non-interactive in general. The distinction in

this definition is straightforward. For results concerning true-to-false-input adversaries, we
assume interactive arguments for QSet, while we assume non-interactive arguments in the
ROM for the robustness definition.

9

Definition 5 (True-to-false-input adversary). A true-to-false-input adversary against
an interactive rational argument Π is a probabilistic polynomial-time (PPT) algorithm A
such that for all security parameters λ, there exists12 a function f ∈ Fλ(Π) and an input x
such that for all transcripts π, the adversary A(pp, f, x, π) outputs x′, with overwhelming
probability, satisfying QSetpp(f, x, f(x), π) = QSetpp(f, x′, f(x), π)∧x ̸= x′∧f(x) ̸= f(x′),
where pp← Setup(1λ).

Theorem 1 (True-to-false-input adversaries break the FS transform). Let Π
be a secure interactive rational argument. If there exists a true-to-false-input adversary
AT against Π, then the compiled protocol sFS[Π] is insecure.

Proof. We construct a true-to-false-input adversary A∗(pp) as follows (note that this
adversary has access to a random oracle, as in Fig. 2):

– Let f and x be as in Definition 5. We assume that A∗ is non-uniform and has these
strings embedded in its code for each value of λ.

– The honest prover PH(pp, f, x, f(x)) is executed, yielding the proof πhon.
– The adversary computes xdis ← A(pp, f, x, πhon).
– It then returns (f, xdis, f(x), πhon).

Applying Lemma 1, we observe that with overwhelming probability,

rewardxdis(pp, f, f(x), πhon) = rewardxhon(pp, f, f(x), πhon)

implying that Definition 3 does not hold. This concludes the proof. ⊓⊔

3.2 Strengthening Fiat-Shamir: the Input-Digest Model
The attacks above depend on the ability of the adversary to “have the same challenges on
the same inputs”. If Fiat-Shamir could somehow compute challenges that depend on the
whole input, we might be able to prevent them. This is not immediate in the holographic
setting since we do not want to read the whole input. We therefore propose a model
where the verifier takes as input also a (collision resistant) digest δx. For simplicity we let
the digest be the RO invocation on x. We dub this the input-digest model. The latter is
a straightforward adaptation of the baseline notion in Section 2 and is described in the
appendix (Fig. 4 also implicitly illustrates how it works)13.
Let Π be a (standard) interactive rational argument. We denote by digFS[Π] the non-
interactive rational argument in the input-digest model obtained by applying the transform
in Fig. 4.

Robustness A simple sanity check for digFS is that it should prevent the attacks
from the previous section. The following notion captures protocols not susceptible to
true-to-false-input attacks. Notice that it assumes a simple adaptation of Definition 5
(Definition 13 in appendix) since the latter assumes interaction.
12 Alternatively, one could define this adversary to output (f, x, x′, . . .) satisfying the properties

mentioned above. This definition highlights that the adversary A transitions from the honest
input (x, f(x)) to a dishonest one (x′, f(x)), which underpins the vulnerability of the basic
Fiat-Shamir transformation.

13 The input-digest model could also be interesting for the case of interactive rational arguments.
For us it is a tool to study the security of Fiat-Shamir; we leave studying this model in the
interactive setting as an open problem.

10

Definition 6 (Robust protocol). We say that a rational argument in the input-digest
model is robust if there exist no true-to-false-input adversaries (as by the variant of
Definition 5 in Definition 13).

The following theorem actually shows that, for our target schemes, digFS leads to
robust protocols. We do not generalize this result but it can be done; it extends to all
rational arguments with query sets with enough entropy.

Theorem 2. Let Π ∈ {ΠAM13, ΠCG15}, then digFS[Π] is robust.

Unfortunately, as we show in the next section (Theorem 6 and Theorem 8) it is the
case that robustness ⇏ soundess (where soundness is in the rational sense).

4 Negative Results on the Security of Fiat-Shamir

4.1 Background on our case studies

P(x, Gn,t, y) Vx(Gn,t, y)

// count #1’s in x

m̃←
∑n

i=1
xi

m̃

p̃← m̃/n

i
$← [1 . . . n]

b← xi

reward = BSR(p̃, b)

Fig. 5: Construction ΠAM13 for threshold gates.

Azar-Micali Rational Interactive Protocol [3]. The protocol evaluates a thresh-
old gate Gn,t(x1, . . . , xn), where n is the number of Boolean inputs, and t is the minimum
number of 1s needed for an output of 1. The Prover first announces m̃, the claimed
number of inputs set to 1, allowing the Verifier to compute the gate’s output based on m̃
and t.

The Verifier randomly selects an index i ∈ [1, . . . , n] and observes the corresponding
input bit b = xi, which helps evaluate the Prover’s claim. The Verifier then computes
p̃ = m̃/n, the Prover’s claimed probability that a random input is 1. The reward
mechanism, based on Brier’s Scoring Rule (BSR) [8], adjusts according to b: if b = 1, the
reward is BSR(p̃, 1) = 2p̃(2− p̃); if b = 0, BSR(p̃, 0) = 2(1− p̃2).

The expected reward is E[reward] = p · BSR(p̃, 1) + (1− p) · BSR(p̃, 0), where m is the
true number of 1s, and p = m/n. The reward is maximized when p̃ = p, encouraging
honest reporting. Misreporting reduces the reward by at least 2(p − p̃)2, implying a
minimum penalty of 2/n2.

For a dishonest Prover P̃, misreporting with probability ϵP̃ , the penalty δP̃ must
satisfy δP̃ > 2ϵP̃/n2. This ensures the penalty for dishonesty exceeds any gains, affirming

11

P(x, C, y) Vx(C, y)

ỹ ← y check← 1
g̃ ← OutputGate(C)

(⋆)
v0 ← val(inpWire0(g̃))
v1 ← val(inpWire1(g̃))

v0, v1

if g̃(v0, v1) ̸= ỹ :
check← 0

b b
$← {0, 1}

ỹ ← vb

g̃ ← gate(inpWireb(g̃))
if g̃ ̸∈ lastLayer(C) : goto (⋆)

x0 ← x[inpWire0(g̃)]
x1 ← x[inpWire1(g̃)]
if x0 ̸= v0 ∨ x1 ̸= v1 :

check← 0
reward = check · R

Fig. 6: The construction ΠCG15 from [10]. Ours is a more specific variant for a (layered) formula
C of logarithmic depth. Operations in the centre are run by both parties. val(w) is the value of
the wire w in the evaluation C(x), inpWire0(g) (resp. inpWire1(g)) returns the left (resp. right)
input wire of gate g, g(u, w) returns the output of gate g on inputs bits u, w, lastLayer is the
formula’s last layer of gates (whose input wires are from x). The quantity R is some fixed positive
reward which depends only on the parameters.

the protocol’s rationality. Therefore, honesty maximizes the Prover’s reward, with the
quadratic penalty and random verification enforcing an efficient, secure protocol.

Theorem 3 ([3]). The protocol ΠAM13 in Fig. 5 is a secure interactive rational argument
for threshold gates with constant rounds, O(log n log log n)14 verification time and O(1)
queries to the input x.

Campanelli-Gennaro Rational Interactive Protocol [10]. ΠCG15 is an efficient
interactive proof system for a Boolean formula f : {0, 1}n → {0, 1}, computed by a circuit
C with size |C|, depth d, and fan-in 2. The protocol is defined as an interaction between
(P(x, C, f(x)),Vx(C, f(x))), where x ∈ {0, 1}n is the input. For more details, see Fig. 6.

Intuitively speaking, the protocol begins with the Prover sending the claimed output
y for input x to the Verifier, who then enters a recursive process. The Prover provides the
values yL and yR for a specific output gate g, enabling the Verifier to check if g(yL, yR) = y.
The Verifier randomly selects yL or yR to continue the recursion for other gates in the
14 Azar and Micali show that the running time can be optimised to O(log n) through the

application of a randomised variant of Brier’s scoring rule (see [3]).

12

subcircuit. For uniform circuits—whose structure can be efficiently computed—the Verifier
remains particularly low.

Theorem 4 ([10]). The protocol ΠCG15 in Fig. 6 is a secure interactive rational argument
for the class of formulas C of logarithmic depth for an n-bit input x. It requires logarithmic
rounds and assuming the circuits are T -uniform, the verifier runs in O(log n · T (n)) time,
with O(1) queries to the input.

4.2 Negative Results for ΠAM13

True-to-false-input attacks against simple Fiat-Shamir The proof of the following
theorem is in the appendix and closes an approach similar to that for Theorem 7.
Theorem 5. The protocol sFS[ΠAM13] is insecure.

Attacks in the input-digest model
Theorem 6. The construction digFS[ΠAM13] is insecure.

Proof. At the high level, we build an adversary that can find a function for which the
transcript through Fiat-Shamir is going to be “benign” for them (i.e., it is going to lead
to a reward as high as in the case the output had been honest). The adversary can do
this after fixing a target input x and that is intuitively why its digest is not going to help.
We construct an adversary as follows:

– Let x be a string with half of its inputs 1s and the rest 0s, i.e., x = 1n/2 ∥ 0n/2.
– Compute the digest for x, i.e., δ ← H(x).
– Let the (false) claimed output be y ← 1.
– We iterate over all possible threshold gates that output 0 on x, i.e. for t ∈ {n/2 +

1, . . . , n}:
• Let m̃t := t be the prover’s message (that is the adversary is claiming there are

exactly t 1-s in x; see Fig. 5);
• Compute challenge e∗ ← H(Gn,t, δ, y, m̃t)
• If e∗ ≤ n/2 (i.e., if x[n/2] = 1) return (Gn,t, x, y, π := m̃t)

– Return ⊥ if all iterations above fail.
We first claim that the probability that the loop finds a “good” cheating challenge e∗

after a polynomial number of steps is overwhelming. Let us bound the probability that
this event does not happen. Now, this is the event:

∀t ∈ {n/2 + 1, . . . , n}
∧

i∈[n/2]

H(Gn,t, δ, y, m̃t) ̸= i

This probability of this event is at most 2−n/2 (negligible) and our claim follows.
The second observation we need is that for a m̃t returned by the adversary, the reward

is the highest possible reward for that particular input (by inspection of ΠAM13 we can see
that there are two possible rewards and the highest one in this case is given by a queried
bit 1 in the input, which is exactly what a “good” challenge e∗ provides). Combining
this observation with the previous claim we see we built an always cheating adversary
(as in always returning a false output) achieving in expectation (1− negl(n)) ·Rhon with
Rhon the honest reward. This violates the noticeable loss required by Definition 3 and
concludes the proof. ⊓⊔

13

1 1 1 1 1 · · · 1 1 1

Query set I

Original input x = 1n

1 1 1 1 1 · · · 1 0 1

Modified input x′ i∗ /∈ I

True-to-False-Input Attack

f (n-ary AND formula)

f (n-ary AND formula)

f(x) = 1

f(x′) = 0

Fig. 7: Example of a true-to-false-input attack on ΠCG15. The original input x is transformed
into a modified input x′ by changing a bit, affecting the function’s output f . The query set I
does not include the index of the changed bit i∗.

4.3 Negative Results for ΠCG15

True-to-false-input attacks against simple Fiat-Shamir

Theorem 7. The construction sFS[ΠCG15] is insecure.

Proof. We show a true-to-false-input attacker against ΠCG15. Consider the function
f : {0, 1}n → {0, 1}, which is composed of n-ary AND gates. Let x := 1n, representing
the input where every bit is set to 1. Let π denote an arbitrary transcript. We define the
adversary true-to-false-input A as follows: First, the adversary retrieves the query set I
by executing Queryx(pp, f, f(x), π). Next, the adversary selects the smallest index i∗ from
the set {1, . . . , n} \ I, ensuring that i∗ /∈ I. The adversary then constructs a modified
input x′ by setting x′[i∗] = 0, while leaving all other bits unchanged.

We now verify that A satisfies the required properties of an adversary, as defined
in Definition 5. First, we show that the query set is preserved, i.e., Qpp(f, x, f(x), π) =
Qpp(f, x′, f(x), π). Since x[i] = x′[i] for all i ∈ I, the query set remains identical. Next,
we observe that x ̸= x′, as x′[i∗] = 0 ̸= 1 = x[i∗]. Lastly, we establish that f(x) ̸= f(x′):
since f is an n-ary AND function, we know that f(x) = 1; however, because x′ has a 0 at
index i∗, we have f(x′) = 0, as the AND operation outputs 0 if any input bit is 0. This
completes the proof. The argument can be trivially extended to n-ary OR gates. ⊓⊔

Attacks in the input-digest model The proof of the next result is a slightly more
complicated variant of that of Theorem 6 which we defer to Appendix E.

Theorem 8. The construction digFS[ΠCG15] is insecure.

Acknowledgement. We thank Ron Rothblum for engaging in useful discussions and
steering us towards what became our stronger variant of the Fiat-Shamir transform.
Matteo Campanelli would like to thank Pavel Hubáček who indirectly made this work
possible by sending Agni Datta his way (Matteo’s way) for thesis supervision. Matteo
also thanks Chaya Ganesh and Rosario Gennaro with whom, during another project,
he had shared conversations on the initial hunch that Fiat-Shamir “may definitely not
have worked” in the rational setting. Agni would like to thank Matteo Campanelli for

14

supervising him and for motivating and enabling him to work in theory and cryptography.
We designate both authors as first authors due to their substantial contributions to the
research and manuscript preparation.

References

1. Attema, T., Fehr, S., Klooß, M.: Fiat-shamir transformation of multi-round interactive
proofs. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022: 20th Theory of Cryptography
Conference, Part I. Lecture Notes in Computer Science, vol. 13747, pp. 113–142. Springer,
Cham, Switzerland, Chicago, IL, USA (Nov 7–10, 2022). https://doi.org/10.1007/978-3
-031-22318-1_5

2. Azar, P.D., Micali, S.: Rational proofs. In: Karloff, H.J., Pitassi, T. (eds.) 44th Annual ACM
Symposium on Theory of Computing. pp. 1017–1028. ACM Press, New York, NY, USA
(May 19–22, 2012). https://doi.org/10.1145/2213977.2214069

3. Azar, P.D., Micali, S.: Super-efficient rational proofs. In: Proceedings of the Fourteenth Acm
Conference on Electronic Commerce. EC ’13, ACM (Jun 2013). https://doi.org/10/gtxc77

4. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual Symposium
on Foundations of Computer Science. pp. 106–115. IEEE Computer Society Press, Las Vegas,
NV, USA (Oct 14–17, 2001). https://doi.org/10.1109/SFCS.2001.959885

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM
CCS 93: 1st Conference on Computer and Communications Security. pp. 62–73. ACM Press,
Fairfax, Virginia, USA (Nov 3–5, 1993). https://doi.org/10.1145/168588.168596

6. Berman, I., Rothblum, R.D., Vaikuntanathan, V.: Zero-knowledge proofs of proximity. In:
Karlin, A.R. (ed.) ITCS 2018: 9th Innovations in Theoretical Computer Science Conference.
vol. 94, pp. 19:1–19:20. LIPIcs, Cambridge, MA, USA (Jan 11–14, 2018). https://doi.org/
10.4230/LIPIcs.ITCS.2018.19

7. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for keyless
hash functions. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th Annual ACM
Symposium on Theory of Computing. pp. 671–684. ACM Press, Los Angeles, CA, USA
(Jun 25–29, 2018). https://doi.org/10.1145/3188745.3188870

8. Brier, G.W.: Verification of forecasts expressed in terms of probability. Monthly Weather
Review 78(1), 1–3 (Jan 1950). https://doi.org/10.1175/1520-0493(1950)0782.0.co;2

9. Campanelli, M., Ganesh, C., Gennaro, R.: How to make rational arguments practical
and extractable. IACR Communications in Cryptology (CiC) 1(1), 19 (2024). https:
//doi.org/10.62056/a63zl86bm

10. Campanelli, M., Gennaro, R.: Sequentially Composable Rational Proofs, pp. 270–288.
Springer International Publishing (2015). https://doi.org/10/gtx3j5

11. Campanelli, M., Gennaro, R.: Efficient Rational Proofs for Space Bounded Computations,
pp. 53–73. Springer International Publishing (2017). https://doi.org/10/gt7hrx

12. Campanelli, M., Gennaro, R.: Fine-grained secure computation. In: Beimel, A., Dziembowski,
S. (eds.) TCC 2018: 16th Theory of Cryptography Conference, Part II. Lecture Notes
in Computer Science, vol. 11240, pp. 66–97. Springer, Cham, Switzerland, Panaji, India
(Nov 11–14, 2018). https://doi.org/10.1007/978-3-030-03810-6_3

13. Dao, Q., Grubbs, P.: Spartan and bulletproofs are simulation-extractable (for free!). In:
Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023, Part II. Lecture
Notes in Computer Science, vol. 14005, pp. 531–562. Springer, Cham, Switzerland, Lyon,
France (Apr 23–27, 2023). https://doi.org/10.1007/978-3-031-30617-4_18

14. Dao, Q., Miller, J., Wright, O., Grubbs, P.: Weak fiat-shamir attacks on modern proof
systems. In: 2023 IEEE Symposium on Security and Privacy. pp. 199–216. IEEE Computer

15

https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1145/2213977.2214069
https://doi.org/10.1145/2213977.2214069
https://doi.org/10/gtxc77
https://doi.org/10/gtxc77
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.4230/LIPIcs.ITCS.2018.19
https://doi.org/10.4230/LIPIcs.ITCS.2018.19
https://doi.org/10.4230/LIPIcs.ITCS.2018.19
https://doi.org/10.4230/LIPIcs.ITCS.2018.19
https://doi.org/10.1145/3188745.3188870
https://doi.org/10.1145/3188745.3188870
https://doi.org/10.1175/1520-0493(1950)0782.0.co;2
https://doi.org/10.1175/1520-0493(1950)0782.0.co;2
https://doi.org/10.62056/a63zl86bm
https://doi.org/10.62056/a63zl86bm
https://doi.org/10.62056/a63zl86bm
https://doi.org/10.62056/a63zl86bm
https://doi.org/10/gtx3j5
https://doi.org/10/gtx3j5
https://doi.org/10/gt7hrx
https://doi.org/10/gt7hrx
https://doi.org/10.1007/978-3-030-03810-6_3
https://doi.org/10.1007/978-3-030-03810-6_3
https://doi.org/10.1007/978-3-031-30617-4_18
https://doi.org/10.1007/978-3-031-30617-4_18

Society Press, San Francisco, CA, USA (May 21–25, 2023). https://doi.org/10.1109/SP
46215.2023.10179408

15. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th Annual
Symposium on Foundations of Computer Science. pp. 523–534. IEEE Computer Society Press,
New York, NY, USA (Oct 17–19, 1999). https://doi.org/10.1109/SFFCS.1999.814626

16. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature
problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology – CRYPTO’86. Lecture Notes
in Computer Science, vol. 263, pp. 186–194. Springer, Berlin, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 1987). https://doi.org/10.1007/3-540-47721-7_12

17. Gensyn: Gensyn litepaper (Feb 2022), https://docs.gensyn.ai/litepaper
18. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable

assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual ACM Symposium on Theory
of Computing. pp. 99–108. ACM Press, San Jose, CA, USA (Jun 6–8, 2011). https:
//doi.org/10.1145/1993636.1993651

19. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: 44th Annual
Symposium on Foundations of Computer Science. pp. 102–115. IEEE Computer Society Press,
Cambridge, MA, USA (Oct 11–14, 2003). https://doi.org/10.1109/SFCS.2003.1238185

20. Guo, S., Hubácek, P., Rosen, A., Vald, M.: Rational arguments: single round delegation
with sublinear verification. In: Naor, M. (ed.) ITCS 2014: 5th Conference on Innovations in
Theoretical Computer Science. pp. 523–540. Association for Computing Machinery, Princeton,
NJ, USA (Jan 12–14, 2014). https://doi.org/10.1145/2554797.2554845

21. Guo, S., Hubácek, P., Rosen, A., Vald, M.: Rational sumchecks. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016-A: 13th Theory of Cryptography Conference, Part II. Lecture Notes in
Computer Science, vol. 9563, pp. 319–351. Springer, Berlin, Heidelberg, Germany, Tel Aviv,
Israel (Jan 10–13, 2016). https://doi.org/10.1007/978-3-662-49099-0_12

22. Gur, T., Rothblum, R.D.: Non-interactive proofs of proximity. In: Roughgarden, T. (ed.)
ITCS 2015: 6th Conference on Innovations in Theoretical Computer Science. pp. 133–
142. Association for Computing Machinery, Rehovot, Israel (Jan 11–13, 2015). https:
//doi.org/10.1145/2688073.2688079

23. Gur, T., Rothblum, R.D.: A hierarchy theorem for interactive proofs of proximity. In:
Papadimitriou, C.H. (ed.) ITCS 2017: 8th Innovations in Theoretical Computer Science
Conference. vol. 4266, pp. 39:1–39:43. LIPIcs, Berkeley, CA, USA (Jan 9–11, 2017). https:
//doi.org/10.4230/LIPIcs.ITCS.2017.39

24. Holmgren, J., Lombardi, A., Rothblum, R.D.: Fiat-Shamir via list-recoverable codes (or:
parallel repetition of GMW is not zero-knowledge). In: Khuller, S., Williams, V.V. (eds.)
53rd Annual ACM Symposium on Theory of Computing. pp. 750–760. ACM Press, Virtual
Event, Italy (Jun 21–25, 2021). https://doi.org/10.1145/3406325.3451116

25. Inasawa, K., Yasunaga, K.: Rational proofs against rational verifiers. Cryptology ePrint
Archive, Report 2017/270 (2017), https://eprint.iacr.org/2017/270

26. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.Y.: SNARGs for bounded depth computations
and PPAD hardness from sub-exponential LWE. In: Khuller, S., Williams, V.V. (eds.) 53rd
Annual ACM Symposium on Theory of Computing. pp. 708–721. ACM Press, Virtual Event,
Italy (Jun 21–25, 2021). https://doi.org/10.1145/3406325.3451055

27. Kiyoshima, S.: Public-coin 3-round zero-knowledge from learning with errors and keyless
multi-collision-resistant hash. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology –
CRYPTO 2022, Part I. Lecture Notes in Computer Science, vol. 13507, pp. 444–473. Springer,
Cham, Switzerland, Santa Barbara, CA, USA (Aug 15–18, 2022). https://doi.org/10.100
7/978-3-031-15802-5_16

28. Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4), 1253–1298
(2000)

29. Rothblum, G.N., Vadhan, S.P., Wigderson, A.: Interactive proofs of proximity: delegating
computation in sublinear time. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th

16

https://doi.org/10.1109/SP46215.2023.10179408
https://doi.org/10.1109/SP46215.2023.10179408
https://doi.org/10.1109/SP46215.2023.10179408
https://doi.org/10.1109/SP46215.2023.10179408
https://doi.org/10.1109/SFFCS.1999.814626
https://doi.org/10.1109/SFFCS.1999.814626
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://docs.gensyn.ai/litepaper
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1145/2554797.2554845
https://doi.org/10.1145/2554797.2554845
https://doi.org/10.1007/978-3-662-49099-0_12
https://doi.org/10.1007/978-3-662-49099-0_12
https://doi.org/10.1145/2688073.2688079
https://doi.org/10.1145/2688073.2688079
https://doi.org/10.1145/2688073.2688079
https://doi.org/10.1145/2688073.2688079
https://doi.org/10.4230/LIPIcs.ITCS.2017.39
https://doi.org/10.4230/LIPIcs.ITCS.2017.39
https://doi.org/10.4230/LIPIcs.ITCS.2017.39
https://doi.org/10.4230/LIPIcs.ITCS.2017.39
https://doi.org/10.1145/3406325.3451116
https://doi.org/10.1145/3406325.3451116
https://eprint.iacr.org/2017/270
https://doi.org/10.1145/3406325.3451055
https://doi.org/10.1145/3406325.3451055
https://doi.org/10.1007/978-3-031-15802-5_16
https://doi.org/10.1007/978-3-031-15802-5_16
https://doi.org/10.1007/978-3-031-15802-5_16
https://doi.org/10.1007/978-3-031-15802-5_16

Annual ACM Symposium on Theory of Computing. pp. 793–802. ACM Press, Palo Alto,
CA, USA (Jun 1–4, 2013). https://doi.org/10.1145/2488608.2488709

30. Thaler, J.: Measuring snark performance, https://a16zcrypto.com/posts/article/measu
ring-snark-performance-frontends-backends-and-the-future/

31. Thaler, J., et al.: Proofs, arguments, and zero-knowledge. Foundations and Trends® in
Privacy and Security 4(2–4), 117–660 (2022)

32. Vaudenay, S.: Proof of proximity of knowledge. Cryptology ePrint Archive, Report 2014/695
(2014), https://eprint.iacr.org/2014/695

A Prior Definitions of Rational Proofs and Arguments

In this appendix, we provide the definitions of rational arguments as introduced by Guo
et al. [20] (and slightly adapted in [9]). As we emphasized in the main text, our approach
diverges by using a security game-based definition instead of the reward gap-based
definitions we present here.

Definition 7 (Rational Argument [20,9]). Let f : {0, 1}n → {0, 1}∗ be a circuit. We
say that f admits a rational argument if there exists an interactive protocol (P,V) and a
reward function reward : {0, 1}∗ → R≥0 such that, for every input x ∈ {0, 1}n and prover
P̂ of size at most 2λ(n), the following hold:

– Correctness: The protocol achieves correctness15 with high probability:

Pr[output((P,V)(x)) = f(x)] ≥ 1− negl(λ).

– Reward Bound: The expected reward of any alternative prover P̂ is close to that of
the honest prover:

E[reward((P̂(x),V [x]))] ≤ E[reward((P(x),V [x]))] + negl(λ).

– Noticeable Reward Gap for Incorrect Outputs: The protocol has a noticeable
reward gap (defined in Definition 8)

Reward Gap. The reward gap quantifies the incentive for honest behaviour by measuring
the expected loss that provers incur when they consistently deviate from correctly reporting
f(x).

Definition 8 (Reward Gap). Let (P,V) be a rational argument for the function
f : {0, 1}n → {0, 1}∗ with a reward function reward. Define the following quantities:

– ϵP̂ = Pr[output((P̂,V)(x)) ̸= f(x)], representing the probability that an alternative
prover P̂ outputs an incorrect result.

– δP∗(x) = E[reward((P(x),V [x]))]− E[reward((P̂(x),V [x]))], representing the expected
reward difference between the honest prover P and an alternative prover P∗.

15 Differently from the treatment in the main text, here there is an explicit output from the
verifier. We find this unnecessary and model this by implicitly assuming that the verifier
directly reports the claimed output.

17

https://doi.org/10.1145/2488608.2488709
https://doi.org/10.1145/2488608.2488709
https://a16zcrypto.com/posts/article/measuring-snark-performance-frontends-backends-and-the-future/
https://a16zcrypto.com/posts/article/measuring-snark-performance-frontends-backends-and-the-future/
https://eprint.iacr.org/2014/695

The reward gap ∆ : N→ R is defined as:

∆(n) = min
x

min
P∗:ϵP∗ =1

[δP∗(x)],

where the inner minimisation is over all provers P∗ that consistently output incorrect
results (ϵP∗ = 1).

Remark 2. It holds for any prover P̂ that:

δP̂(x) ≥ ϵP̂ ·∆(x).

Therefore, an implication of the requirement on reward gap is that any adversary cheating
with noticeable probability will incur a noticeable reward loss.

B Equivalence Between Our Model and Earlier Ones

Here we compare our model of rational arguments with previous models (e.g., the ones
from Appendix A).

Remark 3 (Advantages compared to previous definitions). A previous definition of “mean-
ingful” rational soundness, due to [20], is based on the notion of reward gap (see Ap-
pendix A). This is defined as the minimum over all possible inputs and all possible
adversaries of the gap between the honest and adversarial reward. This notion was meant
to fix the excessively strong requirements of the original definition by Azar and Micali [2].

Arguably, both approaches have limitations: Azar and Micali’s is not well-defined,
whereas the one based on the reward gap requires this arguably complicated notion and
adds additional requirements to the rational soundness definition (namely that is limited
to adversaries with noticeable deviations).

Our definition has the advantage of being arguably simpler and being in the spirit of
cryptographic games. Most importantly, as we show, in Theorem 9 it also captures the
definition in [20]. Finally, it does not require us to concern ourselves with the probability
of cheating of the adversary because of Lemma 2.

It is easy to see that the correctness-like properties correspond in the two models. A
minor difference is that the previous definitions have a notion of “output” of the verifier
while we do not (we assume w.l.o.g. the verifier will always output the claimed out from
the prover). We ignore this minor difference in the formal comparison below where we
show that the notions of soundness of the two models are equivalent.

Theorem 9. A rational argument satisfies rational soundness as for Definition 2 if and
only if it has a noticeable reward gap as defined Definition 8.

Proof. For simplicity, we assume the reward to be in the interval [0, 1], with the expected
reward for the honest prover being 1 (the general case can be obtained by proper scaling).
This allows us to think of the difference RP−RA as the same as (RP−RA)/RP simplifying
certain steps. We will also crucially use the fact n, the size of x, is a polynomial in λ.

Let (P,V) be a rational argument system for a function f , and let reward be
its reward function. We start by proving the forward direction. Assume the system

18

satisfies rational soundness as per Definition 2. We need to show it has a notice-
able reward gap. By Definition 2, there exists a polynomial q(·) such that for all
λ ∈ N, we have E[ExpRewardA(λ)] ≥ 1/q(λ). From the game definition in Fig. 1,
we have ExpRewardA(λ) = 1 − RA, where RP is the reward for the honest prover
and RA is the reward for the adversary. For any adversary A that consistently out-
puts incorrect results (i.e., ϵA = 1), we have E[RP − RA] ≥ 1/q(λ). This implies
E[RP] − E[RA] ≥ 1/q(λ). By the definition of reward gap ∆(λ) in Definition 8, we
have ∆(n) = minx minP∗:ϵP∗ =1[δP∗(x)] ≥ 1/q(λ). Since q(λ) is a polynomial the reward
gap is noticeable.

Now we prove the reverse direction. Assume the system has a noticeable reward gap.
We need to show it satisfies rational soundness. By the noticeable reward gap assumption,
there exists a polynomial p(·) such that for all n ∈ N, we have ∆(n) ≥ 1

p(n) . For any
adversary A, in the adaptive reward game ExpRewardA, we have:

E[ExpRewardA(λ)] = E[RP]− E[RA] ≥ E[RP]− E[RA′] ≥ ∆(n) ≥ 1
p(n)

where A′ is as by Lemma 2. This concludes the proof. ⊓⊔

Lemma 2. Let A be a PPT adversary satisfying E[ExpRewardA(λ)] ≥ g(λ) for all
security parameters λ, where g is a given function. Assume further that A behaves
honestly with non-zero probability, i.e.,

Pr[f(x) = y ∧ f ∈ Fλ | (f, x, y)← A(pp)] > 0

Then, there exists a PPT adversary A′ such that E[ExpRewardA′
(λ)] ≤ g(λ) for all λ and

such that A′ deviates from honest behaviour with probability one, i.e.,

Pr[f(x) = y ∧ f ∈ Fλ | (f, x, y)← A′H(pp)] = 0

Proof. We construct the adversary A′ by modifying A as follows: whenever A would
produce an honest output y, A′ instead outputs an incorrect response y′ ̸= y. In all other
instances, A′ replicates the function, input, and proof as generated by A. Notice that
in scenarios where A would incur zero reward (i.e. RA = 0 in Fig. 1), the adversary A′
receives some non-negative reward RA′ . This ensures that the output of the experiment
involving A′ yields RP −RA′ ≥ RP − 0, thereby concluding the proof. ⊓⊔

C Standard Fiat-Shamir Transform

Here we provide more background on the standard Fiat-Shamir transform for the reader’s
reference. The Fiat-Shamir transform, initially introduced by Fiat and Shamir [16], is
a cornerstone technique of cryptographic protocol design. It allows to transform an
interactive proof systems into a non-interactive one. This transformation is often used
within the idealised Random Oracle Model (ROM) [5], where cryptographic hash functions
are modelled as random oracles (i.e. a random function). In this setting, the verifier’s
random challenges, crucial in interactive protocols, are systematically replaced by the
outputs of the random oracle.

19

Below is a formalisation of the Fiat-Shamir transformation, following the Dao and
Grubbs [13]. Let Π = (Setup,P,V) denote a public-coin interactive argument with r
rounds (and hence 2r + 1 messages=. The complete transcript of this interaction is
denoted as τ = (a1, c1, . . . , ar, cr, ar+1), where ai ∈ {0, 1}∗ represents the i-th prover
message and ci ∈ {0, 1}∗ denotes the i-th verifier challenge. By convention, we assume
c0 = ϵ, indicating that the prover initiates the communication and concludes the protocol.

Definition 9 (Fiat-Shamir Transformation). Let Π = (Setup,P,V) be a public-coin
(2r + 1)-message interactive argument of knowledge for a relation R, with transcript
τ = (a1, c1, . . . , ar, cr, ar+1). The Fiat-Shamir transformation FS converts Π into a
non-interactive argument ΠFS = (SetupFS,PFS,VFS) in the Random Oracle Model as
by Fig. 8.

1. Setup: SetupFS(λ)
– Generate the public parameters pp by executing pp← Setup(λ).
– Sample a hash function H : {0, 1}∗ → {0, 1}λ.
– Output the transformed public parameters ppFS := (pp,H).

2. Prover: PFS(ppFS, x, w)
– Parse the public parameters ppFS as (pp,H).
– Initialise the prover P(x, w) using the statement x and the witness w.
– For each round i = 1 to r:
• Generate the i-th prover message ai ← P.
• Compute the corresponding verifier challenge ci := H(pp, x, a1, . . . , ai) using

the random oracle.
• Input the challenge ci into P for subsequent computations.

– Generate the final prover message ar+1 ← P.
– Output the non-interactive proof π := (a1, . . . , ar, ar+1).

3. Verifier: VFS(ppFS, x, π)
– Parse ppFS as (pp,H) and the proof π as (a1, . . . , ar, ar+1).
– For each round i = 1 to r:
• Calculate the verifier challenge ci := H(pp, x, a1, . . . , ai).

– Evaluate the interactive verifier V with the complete transcript, returning
V(pp, x, (a1, c1, . . . , ar, cr, ar+1)).

Fig. 8: Standard Fiat-Shamir Transform.

D Rational Arguments in the Input-Digest Model

A rational argument in the input-digest model is non-interactive and assumes the ROM,
but in addition, lets the prover have a digest to its input (we can imagine the verifier
preprocessed it once and for all). Here we present the small changes from the other
definitions in the paper.

A rational argument in the input-digest model consists of a tuple of (PPT, possibly
interactive) algorithms (Setup,P, reward) that work as follows (all algorithms have access
to a random oracle H):

20

– SetupH(1λ)→ pp: outputs parameters pp on input security parameter λ;
– PH(pp, x, f, y)→ π produces a proof.
– rewardx,H(pp, f, δ, y, π)→ R ∈ R≥0: provides a reward from usual inputs, a proof π

and a digest of the input δ ← H(x).

Definition 10 (Rational Completeness). There exists a negligible function negl(·)
such that for every PPT algorithm P∗, for all λ ∈ N, inputs x ∈ {0, 1}∗, functions f ∈ Fλ,
strings y ∈ {0, 1}∗, s.t. the proofs π∗ ← P∗(pp, x, f, y), π ← P(pp, x, f, f(x)) satisfy the
condition:

E[rewardx(pp, f,H(x), y, π)]− E[rewardx(pp, f,H(x), f(x), π)] ≤ negl(λ)

where pp← Setup(1λ).

Definition 11 (Rational Soundness in the input-digest model). We say that a
non-interactive rational argument satisfies rational soundness (in the input-digest model)
w.r.t. a function domain F if, for all (potentially non-uniform) PPT A, there exists a
polynomial q(·) s.t. for all security parameters λ ∈ N

E
[
ExpRewardA

dig(λ)
]
≥ q(λ)

where ExpRewarddig is defined in Fig. 9.

Game ExpRewardA
dig(λ):

H← SampleRO(1λ);
pp← SetupH(1λ);
(f, x, y, πA)← AH(pp);
πP ← PH(pp, f, x, f(x));
RP ← rewardH,x(f,H(x), f(x), πP);
if y ̸= f(x) ∧ f ∈ Fλ then

RA ← rewardH,x(pp, f,H(x), y, πA);
else

RA ← 0;
return RP − RA;

Fig. 9: Game ExpRewardA
dig for rational soundness in the input-digest model.

We adapt the definition of input query set and true-to-false-input adversary to the
input-digest model.

Definition 12 (Input Query Set). Let Π denote a rational argument in the input-
digest model. The input query set for Π is defined as the set of indices and values queried
during the reward stage of the rational argument. Specifically, for a function f , input x,
alleged output y, proof π, and parameters pp:

QSetpp(f, x, y, π) := (i, x[i])i∈I where I ← Queryx,H(pp, f,H(x), y, π)

We will often omit the parameters pp when their context is clear.

21

Definition 13 (True-to-false-input adversary). A true-to-false-input adversary
against a non-interactive rational argument Π in the input-digest model is a PPT algorithm
A such that for all security parameters λ, there exists a function f ∈ Fλ(Π) and an input
x such that for all proofs π, the adversary AH(pp, f, x, π) outputs x′, with overwhelming
probability, satisfying QSetpp(f, x, f(x), π) = QSetpp(f, x′, f(x), π)∧x ̸= x′∧f(x) ̸= f(x′),
where pp← SetupH(1λ) and QSet is from Definition 12.

E Missing Proofs

E.1 Proof of Theorem 2

We start by approaching the robustness of digFS[ΠAM13]. Our goal is to show that there
does not exist a successful true-to-false-input adversary A against digFS[ΠAM13]. Accord-
ing to Definition 13, this implies that for every security parameter λ ∈ N, there exists a
function f in the domain Fλ(digFS[ΠAM13]), an input x ∈ {0, 1}∗, and for every proof
π, the adversary AH(pp, f, x, π) outputs a distinct input x′ with overwhelming proba-
bility 1− negl(λ). This result should satisfy the conditions that QSetpp(f, x, f(x), π) =
QSetpp(f, x′, f(x), π), x ̸= x′, and f(x) ̸= f(x′), where pp ← Setup(1λ) and QSet is
defined as per Definition 12.

In order for A to succeed, it must identify an input x′ such that f(x) ̸= f(x′), implying
that x and x′ contain different quantities of 1s, while ensuring that QSetpp(f, x, f(x), π) =
QSetpp(f, x′, f(x), π). This requires that the queried bit b remain identical for both x and
x′. However, in digFS[ΠAM13], the selection of index i for querying b is naturally linked
to δ = H(x) (see Definition 12). Given that x ̸= x′, the collision resistance property of
the random oracle H guarantees that the probability of H(x) being equal to H(x′) is
noticeable, but this is far from being overwhelming, proving our statement.

For the case of ΠCG15 we can proceed analogously as above observing that the queried
position is determined completely by the challenges of the verifier. Here, again, it is easy
to observe that a collision can only occur with probability 1/n, which is not overwhelming.

⊓⊔

E.2 Proof of Theorem 5

We prove the result by showing that there exists a true-to-false-input adversary against
ΠAM13. Let Gn,t : {0, 1}n → {0, 1} be a threshold gate with positive threshold t. Notice
that Gn,t(x) = 1 if and only if the Hamming weight (denoted by H) of x is at least t. Let
x ∈ {0, 1}n be an input such that Gn,t(x) = 1 and n > t. Such an x always exists; for
instance, we can choose x to have exactly t ones and n− t zeros. Let π be a ΠAM13 proof
for the claim Gn,t(x) = 1 where the prover’s messages have been computed honestly.
Let QSet(Gn,t, x, 1, π) be the query set for this claim given the proof π. We define two
crucial quantities: u, the minimum number of bit flips (switching 1 to 0 in x) required to
falsify the claim, and v, the maximum number of such bit flips that are possible without
having to touch the indices in the query set. We can observe that u = H(x)− t + 1 and
v = n− |QSet(Gn,t, x, 1, π)|.

A true-to-false-input adversary succeeds if and only if u ≤ v. This condition can be
rewritten as H(x)−t+1 ≤ n−|QSet(Gn,t, x, 1, π)|, or equivalently, n−|QSet(Gn,t, x, 1, π)|−

22

1 + (t − H(x)) ≥ 0. Given our choice of x with H(x) = t, this inequality simplifies to
|QSet(Gn,t, x, 1, π)| ≤ n − 1. This inequality always holds in the AM13 protocol, as it
queries at most n− 1 bits of the public input. Accordingly, we can construct a true-to-
false-input adversary A as follows: On input (Gn,t, x, π), A computes QSet(Gn,t, x, 1, π)
and constructs x′ by flipping u bits of x that are not in the query set. Such bits always
exist due to the proven inequality. By construction, Gn,t(x′) = 0 ̸= Gn,t(x), x′ ̸= x, and
QSet(Gn,t, x, Gn,t(x), π) = QSet(Gn,t, x′, Gn,t(x), π). Therefore, A satisfies all conditions
of a true-to-false-input adversary against the AM13 protocol. ⊓⊔

E.3 Proof of Theorem 8

At the high level, we build an adversary that is able to find a function for which the
transcript through Fiat-Shamir is going to be “benign” for them (i.e., it is going to lead
to a reward as high as in the case the output had been honest). The adversary is able to
do this after fixing a target input x and that is intuitively why its digest is not going to
help. We construct an adversary as follows :

– Let x be a string with half of its inputs 1s and the rest 0s, i.e., x = 0n/2 ∥ 1n/2.
– Compute the digest for x, i.e., δ ← H(x).
– Let the (false) claimed output be y ← 1.
– Define the formula CAND as the one computing the n-ary AND through a tree of

binary AND gates. Notice that the bottom layer of gates is composed of n/2 AND
gates. For i ∈ [n/2] denote by CAND

i→OR the formula that is exactly like CAND except
that we replace the i-th AND gate in the bottom layer with an OR gate. Observe
that, for i ∈ [n/4] CAND

i→OR(x) = 0. This is because CAND(x) = 0 and changing the i-th
gate to an OR in the “left half” of the tree (i ∈ [n/4]) will not change any of the
internal wires.

– We iterate over some of the possible CAND
i→OR formulas that output 0 on x, i.e. for

i ∈ [n/4]:
• Construct a proof π by at each round always providing v0, v1 = (1, 1) (see Fig. 6)

and computing the challenges as prescribed by digFS[ΠCG15];
• Let b1 be the first (bit) challenge, that is b1 = H(CAND

i→OR, δ, y, (1, 1)) where
δ = H(x);
• If b1 = 1 (i.e. if the protocol continues on the right side of the formula) then

return
(
CAND

i→OR, x, y, π
)
;

– Return ⊥ if all iterations above fail.
We first observe that, if b1 = 1 in some proof π as above, then the adversary has

“won”: it will receive the full reward since the verifier will end up on the right side of
the formula tree where the input wires will be consistent with the claimed outputs (also
notice that by returning (1, 1) at each level, the adversary ensures all the intermediate
AND checks will be satisfied).

Changing one gate to an OR is for the adversary just a strategy to have completely
fresh challenges (variations of this approach are possible). All that is left is to claim that
this allows them to find a “good” cheating challenge b1 with overwhelming probability.
Let us bound the probability that this event does not happen. Now, this is the event:

∀i ∈ {1, . . . , n/4} H(CAND
i→OR, δ, y, (1, 1)) ̸= 1

23

This probability of the event above is at most 2−n/4, which is negligible. Therefore, the
claim follows.

We can finally observe that we built an always cheating adversary (as in always
returning a false output) achieving in expectation (1− negl(n)) ·Rhon where Rhon is the
honest reward. This violates the noticeable loss required by Definition 3 and concludes
the proof. ⊓⊔

24

	Fiat-Shamir Goes Rational
	1 Introduction
	1.1 Technical Overview
	1.2 Discussion and Future Work
	1.3 Related Work

	2 Modeling Rational Arguments
	3 Fiat-Shamir Transforms for Rational Arguments
	3.1 A Simple Fiat-Shamir for Rational Arguments
	3.2 Strengthening Fiat-Shamir: the Input-Digest Model

	4 Negative Results on the Security of Fiat-Shamir
	4.1 Background on our case studies
	4.2 Negative Results for AM13
	True-to-false-input attacks against simple Fiat-Shamir

	4.3 Negative Results for CG15
	True-to-false-input attacks against simple Fiat-Shamir
	Acknowledgement.

	A Prior Definitions of Rational Proofs and Arguments
	B Equivalence Between Our Model and Earlier Ones
	C Standard Fiat-Shamir Transform
	D Rational Arguments in the Input-Digest Model
	E Missing Proofs
	E.1 Proof of thm:robustness
	E.2 Proof of thm:AM-ttf
	E.3 Proof of thm:CG-strong-attack

