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Abstract. A trapdoor Memory-Hard Function is a function that is
memory-hard to evaluate for any party who does not have a trapdoor, but
is substantially less expensive to evaluate with the trapdoor. Biryukov
and Perin [BP17] introduced the first candidate trapdoor Memory-Hard
Function called Diodon which modifies a Memory-Hard Function called
Scrypt by replacing a hash chain with repeated squaring modulo a
composite number N = pq. The trapdoor, which consists of the prime
factors p and q, allows one to compute the function with significantly
reduced cumulative memory cost (CMC) O(n logn log2 N) where n de-
notes the running time parameter, e.g., the length of the hash chain or
repeated squaring chain. By contrast, the best-known algorithm to com-
pute Diodon without the trapdoor has the CMC O(n2 logN). Auerbach
et al. [AGP24] provided the first provable lower bound on the CMC of
TdScrypt — a specific instantiation of Diodon. In particular, in ideal-

ized models, they proved that the CMC of TdScrypt is Ω( n2

logn
logN)

which almost matches the upper bound O(n2 logN) but is off by a mul-
tiplicative logn factor. In this work, we show how to tighten the analysis
of Auerbach et al. [AGP24] and eliminate the gap. In particular, our
results imply that TdScrypt has the CMC at least Ω(n2 logN).

1 Introduction

A Memory-Hard Function (MHF) [Per09] is a cryptographic primitive that re-
quires significant memory resources for evaluation. MHFs are used to design
egalitarian Proofs of Work and to help protect low-entropy secrets such as user
passwords against brute-force attacks in password hashing. After the initial con-
struction of an MHF called Scrypt by Percival [Per09], there has been a line
of work [FLW14, BDK16, BCS16, ABH17, BHK+19, BH22] on the construction
of MHFs. Those MHF constructions are all symmetric, which means that any
party will have the same cost to evaluate the function.

Biryukov and Perin [BP17] were the first to consider an asymmetry in MHFs
by introducing a trapdoor, i.e., a secret piece of information that allows the func-
tion to be evaluated much more efficiently by the party who knows the secret in-
formation. The MHFs that satisfy this property were first called asymmetrically
Memory-Hard Functions [BP17] and then later called trapdoor Memory-Hard



Functions (TMHFs) by Auerbach et al. [AGP24]1. Biryukov and Perin pro-
posed the first candidate TMHF called Diodon [BP17] which modifies Scrypt
by replacing a hash chain with repeated squaring modulo an unknown large
composite number N . The trapdoor is the number N and it allows one to com-
pute the function with significantly less cost than the one without having the
trapdoor (i.e., not knowing the order N).

An important cost metric to understand the memory-hardness of (T)MHFs
is cumulative memory cost (CMC) [AS15] which refers to the total amount of
memory required to evaluate the function over a sequence of operations. Biryukov
and Perin [BP17] showed that the best-known algorithm to compute Diodon
without the trapdoor has the CMC O(n2 logN) where n denotes the running
time parameter, i.e., the number of repeated squaring. With the trapdoor, the
CMC of Diodon is significantly reduced to O(n log n log2 N).

Auerbach et al. [AGP24] provided the first provable lower bound of the CMC
of Diodon. In particular, they considered a specific instantiation of Diodon
which mostly resembles Scrypt, which they named TdScrypt.

Review: Description of TdScrypt. TdScrypt [AGP24] is a concrete instan-
tiation of Diodon [BP17] by setting M := n,L := n, and η := 1, where M
is a parameter to control the memory-hardness of Diodon and the param-
eters L and η decide its time complexity, following the same notation from
Biryukov and Perin [BP17]. TdScrypt is defined over the quadratic residues
QRN ′ := {q ∈ Z∗N ′ : ∃x s.t. x2 ≡ q mod N ′} and consists of the following three
algorithms.

– Setup(1λ): the setup algorithm first samples two distinct primes p′, q′ with
the same bit length and a hash function H : {0, 1}∗ → {0, 1}ωH . Then it
returns public parameters pp := (N ′ := p′q′,H, n) and the trapdoor td := N
where N := (p′ − 1)(q′ − 1)/4.2

– Eval(pp,W ): the deterministic evaluation algorithm (without trapdoor) on
input W ∈ QRN ′ first computes W 2n by repeated squaring, i.e., it sets
W0 := W and computes Wi := W 2

i−1 for i ∈ [n]. Now, the algorithm sets
S0 := H(Wn, 0

ωH) and computes Si := H(Wji , Si−1) for i ∈ [n], where ji :=
Si−1 mod n. Then the algorithm returns Sn ∈ {0, 1}ωH .

– TDEval(pp, td,W ): the deterministic trapdoor evaluation algorithm on input
W =: W0 with the trapdoor td = N could compute Sn efficiently (without
storing all the Wi’s) using the knowledge of N = (p′−1)(q′−1)/4 = |QRN ′ |.
In particular, it first computes m := 2n mod N and Wn := Wm

0 . Then
it computes S0 := H(Wn, 0

ωH). Similar to Eval(pp,W ), the algorithm then

1 Biryukov and Lombard-Platet [BLP23] also used the word “trapdoor” to illustrate
functions with the property we described, but they did not explicitly used the term
“trapdoor MHFs”.

2 Note that p′ and q′ are sampled such that both p := (p′ − 1)/2 and q := (q′ − 1)/2
are also primes and therefore the trapdoor N = (p′ − 1)(q′ − 1)/4 = pq is also the
product of two distinct primes. In this case, it is known that QRN′ = ⟨g⟩ is a cyclic
group of order N .
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computes Si := H(Wji , Si−1) for i ∈ [n], where ji := Si−1 mod n, but
instead of storing all the Wji ’s prior, it computes mi := 2ji mod N and
Wji := Wmi

0 for i ∈ [n]. Finally, the algorithm returns Sn ∈ {0, 1}ωH .

Review: CMC Lower Bound of TdScrypt. Auerbach et al. [AGP24] proved

that without the trapdoor the CMC of evaluating TdScrypt is Ω( n2

logn logN),

which almost matches the upper bound O(n2 logN) but off by a multiplicative
factor of log n. They proved the CMC lower bound in the Generic Group Model
(GGM) [Sho97] and the Random Oracle Model (ROM) [BR93]. In particular,
they considered the parallel oracle model where a polynomial-time algorithm
AG,H has access to the generic group oracle G (which performs group opera-
tions) and the random oracle H. They also analyzed the CMC of TdScrypt in
the preprocessing setting, i.e., we view an algorithm as a pair of deterministic
polynomial-time algorithms AG,H = (AG,Hpre ,AG,Hon ) where AG,Hpre is run during the

preprocessing phase and outputs a hint str and AG,Hon takes the hint str as input
and is run during the online phase. Then the CMC of AG,H(pp, x) for public
parameters pp and input x is defined as the CMC of AG,Hon (str, x).

To prove the CMC lower bound, they reduced evaluating TdScrypt to the
following single-challenge game where given a hint str (generated from an input
W = gw ∈ QRN ′ = ⟨g⟩) with ∥str∥ = M < n (i.e., ρ := ⌊M/ωL⌋ group elements
are encoded in str where τ : ZN → L := {0, 1}ωL denotes a random injective
labeling map to encode group elements to binary strings in the GGM) and

the challenge j ∈ [0, n), the goal of the game is to query W 2j to H with the
minimum possible number of rounds (≤ t rounds). In the GGM, this can be
interpreted as querying τ(w2j) within at most t rounds. Here, since we consider
the GGM, the only group operations the attacker can perform are via generic
group oracle G = (Add,Sub), where for a, b ∈ L, Add(a, b) := τ(τ−1(a)+ τ−1(b))
and Sub(a, b) := τ(τ−1(a)− τ−1(b)). As the attacker makes generic group oracle
queries, we keep track of the indeterminates xi and add a new one if needed (see
[AGP24] for the formal description of the game). If we have m indeterminates
at the end, we get the equation

aj,1x1 + . . .+ aj,mxm = w2j mod N.

The reduction considers a subset J ⊆ [0, n) of challenges (with |J | = ℓ) that are
to be answered within ≤ t rounds, and therefore, the single-challenge game re-
duces to solving the system of linear equationsAx = b whereA = (ai,j)i∈[ℓ],j∈[m] ∈
Zℓ×m with |ai,j | ≤ 2t for all i ∈ [ℓ] and vector b = (2j1w, . . . , 2jℓw)⊤ with pair-
wise distinct j1, . . . , jℓ ∈ N. Here, we remark that the system of equations is
defined over Z instead of ZN since the attacker does not have the trapdoor
td = N . Then Auerbach et al. [AGP24, Lemma 2] gave a crucial Lemma that
lower bounds the rank of A from the condition |ai,j | ≤ 2t for all i ∈ [ℓ]. In
particular, they proved that rank(A) ≥ ℓ/(3max{t, log ℓ}) which was used to
show that the running time for the single-challenge game (denoted by TimeSC)
is upper bounded by n/(6ρ log(n/2)) with probability > 1/2 for a suitable pa-
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rameter ρ. Combining with the incompressibility argument [DTT10, CK18], they

achieved the CMC lower bound Ω( n2

logn logN) for evaluating TdScrypt.

On the Non-Tightness of the Lower Bound. As mentioned before, the CMC

lower bound Ω( n2

logn logN) [AGP24] is not tight and off from the upper bound

O(n2 logN) by a log n factor. This non-tightness occurred due to the sub-optimal
lower bound of rank(A) ≥ ℓ/(3max{t, log ℓ}) where the bound contains log ℓ
term, which leads to having log n term in the denominator of the CMC lower
bound. Hence, the question is whether we can eliminate the log ℓ term from
[AGP24, Lemma 2], i.e., if we can prove rank(A) ≥ ℓ/(ct) for some constant
c > 0.

A key idea to prove [AGP24, Lemma 2] was to prove the following com-
binatorial claim: for a subset R ⊂ Zm with |R| = ℓ and every r ∈ R with
∥r∥∞ ≤ 2t, if m < ℓ/(3max{t, log ℓ}) then there exist two distinct and disjoint
subsets R1, R2 ⊆ R such that their sums are equal, i.e.,

∑
r1∈R1

r1 =
∑

r2∈R2
r2

(see [AGP24, Claim 4]). Here, they only use the infinity norm (∥r∥∞ ≤ 2t) to
bound on rows but we observe that a stronger L1-norm bound (i.e., ∥r∥1 ≤ 2t)
can indeed be shown (as noted in [AGP24, Appendix B]). It was an open ques-
tion whether we can utilize this stronger L1-norm bound to eliminate the log ℓ
term from [AGP24, Claim 4] which consequently eliminates the log ℓ term from
[AGP24, Lemma 2] as well.

1.1 Our Contributions

In this work, we resolve the problem raised above and prove a tighter rank bound
for the system of linear equations Ax = b. In particular, we prove an improved
lower bound rank(A) ≥ ℓ/(2et) where e is the Euler’s number (see Lemma 2).
Consequently, we prove a tight CMC lower bound Ω(n2 logN) for evaluating
TdScrypt.

A key ingredient of our result is proving a stronger version of [AGP24, Claim
4] which uses a stronger L1-norm bound instead of the infinity norm bound.

Claim 2. For t,m, ℓ ∈ N with ℓ ≥ 4, let R ⊂ Zm with |R| = ℓ and every r ∈ R
satisfying ∥r∥1 ≤ 2t. If m < ℓ/(2et), two subsets R1, R2 ⊆ R exist such that at
least one subset is non-empty (R1 ∪ R2 ̸= ∅), they are disjoint (R1 ∩ R2 = ∅),
and their sums are equal (

∑
r1∈R1

r1 =
∑

r2∈R2
r2).

We stress that even though the possibility of using a stronger L1-norm bound
was already mentioned in the original paper [AGP24], proving Claim 2 is not
a simple extension of prior work and requires nontrivial proof techniques. See
Section 2 for the details.

Notations. Throughout the paper, e denotes the Euler’s number. Unless other-
wise noted, all log’s have base 2, i.e., log x := log2 x. For a positive integer N ,
[N ] := {1, . . . , N} and [0, N) := {0, . . . , N−1}. We follow standard set notations:
N denotes the set of whole numbers, Z denotes the set of integers, ZN denotes
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the set of integers modulo N , and Z∗N := {x ∈ ZN : gcd(x,N) = 1} denotes the
set of integers in ZN that is coprime to N . The notation←$ denotes a uniformly
random sampling, e.g., we say x←$ ZN when x is sampled uniformly at random
from ZN .

2 Improved Lower Bound of rank(A)

Given a system of linear equations Ax = b, Auerbach et al. [AGP24] showed
the lower bound of rank(A) if there is an upper bound for the entries of A, i.e.,
A = (ai,j)i∈[ℓ],j∈[m] with |ai,j | ≤ 2t for all i ∈ [ℓ] and j ∈ [m], which is stated in
Lemma 1 for completeness.

Lemma 1 ([AGP24, Lemma 2]). Let ℓ, t ∈ N with ℓ ≥ 4 and m,w ∈ N+.
For any matrix A = (ai,j)i∈[ℓ],j∈[m] ∈ Zℓ×m with |ai,j | ≤ 2t for all i ∈ [ℓ] and

vector b = (2j1w, . . . , 2jℓw)⊤ with pairwise distinct j1, . . . , jℓ ∈ N, if the system
Ax = b has a solution x ∈ Zm, then

rank(A) ≥ ℓ

3max{t, log ℓ}
.

A key idea to prove Lemma 1 was to prove the following combinatorial claim.

Claim 1 ([AGP24, Claim 4]). For t,m, ℓ ∈ N with ℓ ≥ 4, let R ⊂ Zm with |R| =
ℓ and every r ∈ R satisfying ∥r∥∞ ≤ 2t. If m < ℓ/(3max{t, log ℓ}), two subsets
R1, R2 ⊆ R exist such that at least one subset is non-empty (R1 ∪R2 ̸= ∅), they
are disjoint (R1 ∩R2 = ∅), and their sums are equal (

∑
r1∈R1

r1 =
∑

r2∈R2
r2).

In this work, we improve the condition on m in Claim 1 which is stated in
Claim 2, which leads to Lemma 2. While Lemma 2 has a stronger precondition
than Lemma 1, we note that stronger precondition does hold i.e., Auerbach et
al. [AGP24] already observed in [AGP24, Lemma 6] that the infinity norm can
be improved to the 1-norm.

Lemma 2. Let ℓ, t ∈ N and m,w ∈ N+. For any matrix A = (ai,j)i∈[ℓ],j∈[m] ∈
Zℓ×m with

∑m
j=1 |ai,j | ≤ 2t for all i ∈ [ℓ] and vector b = (2j1w, . . . , 2jℓw)⊤ with

pairwise distinct j1, . . . , jℓ ∈ N, if the system Ax = b has a solution x ∈ Zm,
then

rank(A) ≥ ℓ

2et
.

The proof of Lemma 2 follows the exact same steps as the proof of Lemma 1
(see [AGP24, Lemma 2]) except that we use Claim 2 instead of Claim 1 so that
“3max{t, log ℓ}” part is updated to “2et”. Hence, it is sufficient to prove Claim 2
to prove Lemma 2.

Claim 2. For t,m, ℓ ∈ N with ℓ ≥ 4, let R ⊂ Zm with |R| = ℓ and every r ∈ R
satisfying ∥r∥1 ≤ 2t. If m < ℓ/(2et), two subsets R1, R2 ⊆ R exist such that at
least one subset is non-empty (R1 ∪ R2 ̸= ∅), they are disjoint (R1 ∩ R2 = ∅),
and their sums are equal (

∑
r1∈R1

r1 =
∑

r2∈R2
r2).
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Proof. We observe that for any subset’s sum
∑

r1∈R1
r1 =: s1, we have ∥s1∥1 ≤∑

r1∈R1
∥r1∥1 ≤ 2tℓ since ∥r1∥1 ≤ 2t for all r1 ∈ R1 ⊆ R and there are at

most ℓ elements in R1. Next, we know that there are 2ℓ distinct (not necessarily
disjoint) subsets.

Suppose that all subset’s sums are distinct. Then by pigeonhole principle, it
must hold that

2m
(
m+ 2tℓ

m

)
≥ 2ℓ, (1)

since there are at most 2m
(
m+2tℓ

m

)
possible s1’s that satisfies ∥s1∥1 ≤ 2tℓ by

Claim 3. Then by Claim 5, we observe that Equation (1) implies m ≥ ℓ/(2et),
which contradicts the condition m < ℓ/(2et). This contradiction occurred due
to the assumption that all subset’s sums are distinct. Hence, there exist two
distinct, but not necessarily disjoint subsets R′1 and R′2 with the equal subset’s
sum. Applying the same trick from [AGP24, Claim 4], we can easily get disjoint
sets R1 and R2 (by defining Ri := R′i \ (R′1 ∩R′2) for i ∈ [2]). This completes the
proof.

Claim 3. For t,m, ℓ ∈ N. Then there are at most 2m
(
m+2tℓ

m

)
possible s ∈ Zm

that satisfies ∥s∥1 ≤ 2tℓ.

Proof. If we restrict our domain to Nm, we observe that any dimension-m vec-
tor s = (s1, . . . , sm) ∈ Nm that satisfies ∥s∥1 ≤ 2tℓ can be encoded by a binary
string of length 2tℓ + m with Hamming weight exactly m, and therefore the

number of such vectors is
(
m+2tℓ

m

)
. The encoding works as follows: initialize the

strong x = ∅ and define sm+1 = 2tℓ − ∥s∥1 ≥ 0, Foreach i = 1 to m update
x← x◦0si ◦1. After the loop set x = x◦0sm+1 to ensure that the final string has
lengthm+2tℓ. Given a binary string with Hamming weightm, we can decode the
string x by setting s1 = (the number of leading 0’s) and, more generally, si =
(the number of 0’s between the (i − 1)th instance of 1 and the ith instance of 1)
for i ∈ [2,m].

Since we allow for positive/negative entries, the number of s ∈ Zm is at most

2m
(
m+2tℓ

m

)
since we multiply by 2m to account for all possible sign vectors. This

completes the proof.3

Claim 4. Let t, ℓ ∈ N be constants. Then the function f : R→ R defined by

f(x) := x(log e+ t+ 2 + log ℓ− log x)

is increasing over x < ℓ
2et .

Proof. For x < ℓ
2et , we observe

f ′(x) = (log e+ t+ 2 + log ℓ− log x) + x(log e+ t+ 2 + log ℓ− log x)′

3 One can also prove the claim with an alternate interpretation of the problem and
prove it using Pascal’s triangle or by induction. See Appendix A for alternate proofs.
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= (log e+ t+ 2 + log ℓ− log x) + x ·
(
− 1

x ln 2

)
= log e+ t+ 2 + log ℓ− 1

ln 2
− log x

> log e+ t+ 2 + log ℓ− 1

ln 2
− log

(
ℓ

2et

)
= 2 log e+ t+ log t+ 3− 1

ln 2
> 2 log e+ t+ log t > 0,

which completes the proof.

Claim 5. If m <
ℓ

2et
then for t ≥ 2, 2m

(
m+ 2tℓ

m

)
< 2ℓ.

Proof. We first recall that for any n ∈ N and k ∈ [n] the following holds:(n
k

)k

≤
(
n

k

)
≤

(en
k

)k

. (2)

By Claim 4, we have that the function f(m) = m(log e + t + 2 + log ℓ − logm)
is increasing over m < ℓ

2et . Hence, if m < ℓ
2et , we have

m(log e+ t+ 2 + log ℓ− logm) = f(m)

< f

(
ℓ

2et

)
=

ℓ

2et

(
log e+ t+ 2 + log ℓ− log

(
ℓ

2et

))
=

ℓ

2et
(2 log e+ t+ log t+ 3)

< ℓ, (3)

for t ≥ 2. Hence,

2m
(
m+ 2tℓ

m

)
≤ 2m

(
e(m+ 2tℓ)

m

)m

◁ by Equation (2)

< 2m
(
e2t+1ℓ

m

)m

◁ since m <
ℓ

2et
< 2tℓ

= 2m(log e+t+2+log ℓ−logm)

< 2ℓ, ◁ by Equation (3)

which completes the proof.
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3 Improved CMC Lower Bound of TdScrypt

Now, we can improve [AGP24, Lemma 1] to Lemma 3. Here, params(λ) denotes
the set of all possible parameters of the form (N, τ,H, w) where N is the group
order, τ denotes the labeling map, H is a random oracle, and w is a discrete log
of W ∈ QRN ′ .

Lemma 3 (Single-Challenge Tradeoff). For every pair of deterministic par-
allel oracle machines A = (Apre,Aon), all c ∈ N with security parameter λ large
enough, and all n,M,Q ∈ poly(λ) with n ≥ 8 and subsets bad ⊆ params(λ), if, for
every (N, τ,H, w) ∈ bad, Aon makes at most Q queries, str := Aτ,H

pre (τ(1), τ(w))
is of size |str| ≤M and

Pr
j←$[0,n)

[
TimeSCτ,H

Aon
(str, j) ≤ n

4eρ

]
≥ 1

2
,

where ρ = (M + log n+ logQ+ c log λ+ 1)/(logN − 3(logQ− log n)− 3), then
|bad| < λ−c|params(λ)|.

We remark that the improvement here is removing the 1/ log n factor from
[AGP24, Lemma 1]. The proof of Lemma 3 is largely the same as the proof of
[AGP24, Lemma 1], except that the n/(6ρ log(n/2)) part is updated to n/(4eρ),
which simplifies the case analysis. In particular, [AGP24, Claim 2] can be up-
dated to the following:

Claim 6. If Lemma 3 does not hold and ρ ≤ n/(4e), for all (N, τ,H, w) ∈ bad,
rank(A) ≥ ρ.

Proof. By the assumption that Lemma 3 does not hold, Aon answers at least
ℓ := n/2 ≥ 4 challenges within t := n/(4eρ) rounds of queries. By [AGP24,
Claim 1], we may assume that bad only contains parameters where the system
Ax = b has a solution. Hence, we can apply Lemma 2 to get

rank(A) ≥ n

4et

=
n

4e
· 4eρ

n
= ρ,

which completes the proof.

Proof of Lemma 3. We consider the following two cases.
Case ρ > n/(4e): Then n/(4eρ) < 1 and the tradeoff holds for any j ∈ [0, n)

since TimeSC ≥ 1 by [AGP24, Definition 6].
Case ρ ≤ n/(4e): Towards contradiction, suppose that Lemma 3 does not

hold. Then by Claim 6, we have rank(A) ≥ ρ. However, [AGP24, Claim 3] tells
us that if Lemma 3 does not hold then there exists a tuple (N, τ,H, w) ∈ bad
such that rank(A) < ρ (the same proof carries over when we update the number
of rounds t = n

6ρ log(n/2) − 1 in the proof of [AGP24, Claim 5] to t = n
4eρ − 1),

which contradicts each other. Hence, Lemma 3 holds.
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Applying the improvements that we achieved, [AGP24, Theorem 1] can be
improved as follows. Here, ccmem denotes the cumulative memory cost.

Theorem 1. Let n ∈ poly(λ) with n ≥ 8 and let A be a deterministic parallel
oracle machine that evaluates TdScrypt correctly with probability χ(λ) over
the choice of the parameters and input W . Then, assuming that the factoring is
hard, in the GGM and ROM with probability at least χ(λ)− ϵ(λ),

ccmem

(
Aτ,H(τ(1), τ(w))

)
∈ Ω

(
n2 logN

)
,

where ϵ(λ) ∈ negl(λ), and the probability is taken over (N, τ,H, w)←$ params(λ).
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A Alternate Proofs of Claim 3

Reminder of Claim 3. For t,m, ℓ ∈ N. Then there are at most 2m
(
m+2tℓ

m

)
possible s ∈ Zm that satisfies ∥s∥1 ≤ 2tℓ.

Proof using Pascal’s triangle. We want to find the number of tuples (s1, . . . , sm)
that satisfies

∑m
i=1 |si| ≤ 2tℓ. This can be reformulated as a problem of placing

m − 1 dividers among k units (i.e., 1’s) for integer k ∈ [0, 2tℓ], where each
partition represents the sum assigned to |si| for each i ∈ [m]. We observe that
there are

(
m−1+k
m−1

)
ways to allocate m − 1 dividers, and since si can be either

positive or negative to have the same value |si| for each i ∈ [m], the total number
of valid tuples (s1, . . . , sm) is 2m

(
m−1+k
m−1

)
for each k ∈ [0, 2tℓ]. Hence, the total

number of tuples (s1, . . . , sm) ∈ Zm that satisfies
∑m

i=1 |si| ≤ 2tℓ is at most∑2tℓ
k=0 2

m
(
m−1+k
m−1

)
= 2m

(
m+2tℓ

m

)
using Pascal’s triangle. In particular, we have

2tℓ∑
k=0

2m
(
m− 1 + k

m− 1

)
=

2tℓ∑
k=0

2m
(
m− 1 + k

k

)
= 2m

[(
m− 1

0

)
+

(
m

1

)
+

(
m+ 1

2

)
+ . . .+

(
m− 1 + 2tℓ

2tℓ

)]
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= 2m


(
m

0

)
+

(
m

1

)
︸ ︷︷ ︸

(m+1
1 )

+

(
m+ 1

2

)
+ . . .+

(
m− 1 + 2tℓ

2tℓ

)

= 2m


(
m+ 1

1

)
+

(
m+ 1

2

)
︸ ︷︷ ︸

=(m+2
2 )

+ . . .+

(
m− 1 + 2tℓ

2tℓ

)
= . . . = 2m

[(
m− 1 + 2tℓ

2tℓ− 1

)
+

(
m− 1 + 2tℓ

2tℓ

)]
= 2m

(
m+ 2tℓ

2tℓ

)
= 2m

(
m+ 2tℓ

m

)
.

Proof using Induction. From the previous proof, we observe that the total num-

ber of tuples (s1, . . . , sm) ∈ Zm that satisfies
∑m

i=1 |si| ≤ 2tℓ is at most
∑2tℓ

k=0 2
m
(
m−1+k
m−1

)
,

and it remains to show that
∑2tℓ

k=0 2
m
(
m−1+k
m−1

)
= 2m

(
m+2tℓ

m

)
, which is immedi-

ately followed by Claim 7 (using induction).

Claim 7. For any nonnegative integer q,
∑q

k=0

(
m−1+k
m−1

)
=

(
m+q
m

)
.

Proof. We can prove this by induction.

– (Base Case) If q = 0 then
(
m−1
m−1

)
= 1 =

(
m
m

)
.

– (Inductive Hypothesis) Suppose that
∑q

k=0

(
m−1+k
m−1

)
=

(
m+q
m

)
for some inte-

ger q ≥ 0.
– (Inductive Step) Then we have

q+1∑
k=0

(
m− 1 + k

m− 1

)
=

q∑
k=0

(
m− 1 + k

m− 1

)
+

(
m+ q

m− 1

)
=

(
m+ q

m

)
+

(
m+ q

m− 1

)
=

(
m+ q + 1

m

)
,

which completes the proof.
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