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Abstract

For Password-Based Authenticated Key Exchange (PAKE), an idealized setup such as random oracle
(RO) or a trusted setup such as common reference string (CRS) is a must in the universal composability
(UC) framework (Canetti, FOCS 2001). Given the potential failure of a CRS or RO setup, it is natural to
consider distributing trust among the two setups, resulting a CRS-or-RO-setup (i.e., CoR-setup).

However, the infeasibility highlighted by Katz et al. (PODC 2014) suggested that it is impossible to
construct UC-secure PAKE protocols with a straightforward CoR-setup (i.e., either the CRS is functional
but the RO is compromised, or the RO is functional but the CRS is compromised). To circumvent this
impossibility result, we investigate how to design UC-secure PAKE protocols with a fine-grained CoR-setup,
where either the CRS is functional but the RO is non-functional, or vice versa. Different from the straight-
forward CoR-setup, a fine-grained non-functional setup is not necessarily completely compromised and
fully controlled by the adversary; Instead, we consider this non-functional setup may still offer certain
security properties. Certainly, the non-functional setup alone should be useless for achieving UC-security.

We present a UC-secure PAKE protocol under two conditions: either the CRS is functional while the RO
is non-functional (falling back to a collision-resistant hash function), or the RO is functional while the CRS
is non-functional (falling back to a global CRS). Before presenting our construction, we first prove that a
global CRS setup alone is insufficient for achieving UC-secure PAKE. This impossibility result highlights
the non-triviality of our approach.

To obtain our construction, we introduce several techniques as follows:

(1) We propose a new variant of Non-Interactive Key Exchange (NIKE), called homomorphic NIKE with
associated functions, which captures key properties of existing RO-based PAKE protocols. This new
primitive serves as an important component in our construction.

(2) We develop a “Brute Force” extraction strategy which allows us to provide security analysis for our
UC-secure PAKE with a fine-grained CoR-setup for polynomial-sized password spaces.

(3) We introduce a novel password space extension technique that enables the expansion of PAKE protocols
from polynomial-sized to arbitrary-sized password spaces.

(4) Finally, to ensure provable security for our password space extension in UC-secure PAKEs, we mod-
ify existing PAKE functionalities to prevent responses that reveal the correctness of password guesses.
This is a reasonable adjustment, as our protocol provides only implicit authentication.

We further present a PAKE protocol in the BPR framework (Bellare, Pointcheval, Rogaway, EuroCrypt
2000), assuming either the CRS is functional while the RO falls back to a collision-resistant hash function,
or the RO is functional but the CRS trapdoor is allowed to be learned by the adversary.
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1 Introduction

In modern cryptography, we follow a rigorous provable security approach. New cryptographic schemes
and protocols must have security proofs, demonstrating that they meet specified security definitions under
given assumptions and setups. These setups1 include: (1) “trusted setups”, which assume trusted initial-
ization processes, such as the common reference string (CRS) where all parties access a string generated
by a trusted entity [BFM88, BSMP91]; and (2) “idealized setups”, such as the random oracle (RO), where a
function is assumed to behave as a truly random function [BR93] accessible by all parties.

RO vs. CRS: which setup is better? Clearly these setups are incomparable. Take succinct non-interactive
argument of knowledge (SNARK) as an example. Many fast SNARKs have been developed using a CRS
(e.g., [Gro10, GGPR13]; please see [Tha22] for a great survey). However, in a real-world blockchain project
(e.g., Zcash [Zca, BCG+14]), it could be hard to convince people that the CRS trapdoor for the SNARK
protocol was properly eliminated during the setup phase. Then in such applications, RO-based2 SNARKs
can be more desirable, as unlike the CRS, no trapdoor information is required for setting up the RO. It is
important to note that this does not imply that an idealized setup is perfect. It is already established that
ROs within a provably secure protocol may never be instantiated using real-world hash functions [CGH98,
GK03, BBP04, MRH04, DOP05].
Multi-setups. It remains unclear whether using RO is definitively better than using CRS, or vice versa.
Consequently, one might naturally attempt to distribute trust among multiple setups, hoping that even if
most setups fail, the desired security can still be achieved as long as at least one remains functional. In-
deed, along this way, researchers have developed interesting ideas for constructing protocols with multi-
setups [GO07, GK08, GGJS11, KKZZ14, Yon14]. Groth and Ostrovsky [GO07] were the first to propose a
multi-CRS model for non-interactive zero-knowledge proof (NIZK), in which the minority of the CRS’s can
fail (i.e., be adversarially generated). Then, Goyal and Katz [GK08] studied secure multi-party computation
(MPC) in the Universal Composability (UC) framework, under a combination of a CRS and the honest majority
of protocol parties (i.e., either the CRS is compromised but a majority of the parties are honest, or the CRS
is not compromised but a majority of the parties are no longer honest). Garg et al. [GGJS11] initiated the
research of feasibility of UC-secure MPC with potentially different setups that can fail in certain ways. Katz
et al. [KKZZ14] unified and extended the above results, by showing that MPC with dishonest majority of
setups is impossible in the UC framework, where the adversary can actively corrupt setups.

1.1 Related work on PAKEs, and our main question

In this paper, we focus on Password-based Authenticated Key Exchange (PAKE) protocols. A PAKE protocol
enables two users to authenticate each other over an open network using a shared low-entropy password,
and output a shared high-entropy session key. Typically, a PAKE protocol is considered to be secure if the best
attack is online password-guessing where the adversary is able to validate one password-guess per session.
Regarding the formal security definitions for PAKEs, Bellare, Pointcheval and Rogaway [BPR00] presented
a widely-used game-based security definition, denoted as BPR-security. Later, Canetti, Halevi, Katz, Lindell
and MacKenzie [CHK+05] introduced a security definition in the UC framework, denoted as UC-security.
It was shown that UC-security implies BPR-security [CHK+05].
Constructing PAKEs with RO/CRS. PAKEs have been constructed using a CRS [KOY01,GL03,JG04,CHK+05,
ACP09,KV09,GK10,CDVW12,ABB+13,BBC+13,ABP15,JR15,BC16,ZY17,JGH+20], or using a RO [BMP00,
Mac02, HL18, MRR20, AHH21]3. Many interesting protocols [AP05, HS14, HR10, PW17] use both CRS and
RO. We note that, there are PAKE protocols [GL01,NV04,BCL+05,GJO10,Goy12,CGJ15] in the plain model,
where neither a trusted setup nor an idealized setup is used. Unfortunately these protocols are far from
practical. In addition, as already proven by Canetti et al. [CHK+05], a UC-secure PAKE does not exist in the
plain model, regardless of efficiency.

1In this paper, we focus on trusted setups and idealized setups. Researchers have also investigated “hardware setups” (e.g., [Kat07,
BFSK11, PST17]), and other different types of setups.

2These RO-based SNARKs are sometimes called “SNARKs with a transparent setup”.
3A different idealized setup, the ideal cipher (IC), has also been used [BPR00, ACCP08, BCJ+19].
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Straightforward CoR-setup for UC-secure PAKE fails. It is known that a trusted setup or an idealized
setup is necessary for constructing UC-secure PAKE protocols. Suppose such setups may fail, then one may
come up with a “straightforward” CRS-or-RO-setup (i.e., CoR-setup), by combining one CRS and one RO,
expecting that either fails, the other can remain functional. Unfortunately, such straightforward CoR-setup
cannot achieve UC-security. As mentioned above, Katz et al. [KKZZ14] have already demonstrated an
impossibility result: UC-secure MPC is infeasible when the majority of the setups are actively corrupted
(i.e., fully controlled by the adversary). That means, among the two setups, namely a CRS and a RO, we
cannot obtain UC-secure MPC protocols when either setup is actively corrupted. This impossibility is true
for UC-secure PAKE protocols.
Maximizing the utility of RO/CRS: Fine-grained CoR-setup. In the above straightforward CoR-setup, the
worst-case scenario is assumed: one setup is considered functional, and the other setup is considered to be
completely controlled by the adversary. We note that, the impossibility result by Katz et al [KKZZ14], holds if
the majority of the setups are completely controlled by the adversary.

How can we maximize the utility of setups? In many real-world applications, a setup may still pro-
vide certain security guarantees even when it becomes non-functional. We refer to this as a fine-grained
CoR-setup, where either the CRS or RO can be non-functional yet does not have to be fully controlled by the
adversary. For instance, ROs are often instantiated with deterministic hash functions like SHA2 or SHA3.
When an RO can no longer be treated as an idealized setup for security proofs, it can fall back to a collision-
resistant hash function (CRHF). In contrast, a straightforward CoR-setup assumes the RO is fully controlled
by the adversary, making it unsuitable for treating as a CRHF.

Similarly, a CRS is essentially a set of pre-generated public parameters. In situations where we nei-
ther rely on it for security proofs nor wish adversaries to exploit its advantages, the CRS can fall back to a
global CRS (gCRS). We note that, a global CRS is fundamentally weaker than a regular CRS: A global CRS
cannot be used as a setup for UC-secure MPC (cf. [CDPW07]) or for UC-secure PAKE (details given in Sec-
tion 3). We stress that weakened variants of the CRS have previously been investigated: Canetti, Pass and
shelat [CPs07] study the case that the reference string is taken from an adversarially specified distribution
unknown to the players; Katz et al. [KKZZ14] studied the case that the CRS is passively corrupted. Very
differently, these weakened versions of the CRS can still be used as a setup for achieving UC-secure MPC.

From the above discussions, it is easy to see that there is a fundamental difference between a straight-
forward CoR-setup and a fine-grained CoR-setup; See Fig. 1 for the comparison.

CRS + RO

CRS + RO

or

*

*

CRS + CRHF

gCRS + RO

orvs.Straightforward CoR-setup Fine-grained CoR-setup

‡ The text in red with superscript “∗” means that the corresponding setup is actively corruptible, and can be completely controlled by the adversary.

Figure 1: Straightforward CoR-setup vs. Fine-grained CoR-setup

It is worth emphasizing that our fine-grained CoR-setup focuses on the case that, among the two setups,
one is functional, while the other falls back to a “useless” setup4 (i.e., the setup is not fully controlled by the
adversary, yet still insufficient to achieve UC-security).

Our pursuit of a fine-grained CoR-setup arises from a proactive approach to mitigating potential vul-
nerabilities that may emerge in protocols relying solely on one setup, i.e., “Don’t put all your eggs in one
basket”. Consider a scenario where protocols based on a setup deemed satisfactory today become com-
promised or outdated in the future. The consequences could be severe, especially if these protocols have

4In contrast, in previous works (e.g., [CPs07, KKZZ14]), a functional setup falls back to a useful setup: the sunspot [CPs07] and
the passively corrupted CRS [KKZZ14] could be used as a setup for achieving UC-secure MPC. Furthermore, in [CPs07, KKZZ14],
only feasibility results are demonstrated; secure MPC protocols using techniques in [CPs07, KKZZ14] are far from being efficient for
practical applications.
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already been deployed in practical settings, potentially leading to significant damage. However, if a fine-
grained CoR-setup were developed, the security of an already deployed protocol could be maintained as
long as at least one of the two setups remains satisfied. This effectively means that the same protocol can
be proven secure under two different setups simultaneously. We therefore can provide two security inter-
pretations for the same (already deployed) protocol.

These lead to our main research question:
Main question. Is it possible to develop UC-secure PAKEs with a fine-grained CoR-setup?

1.2 Our results

We give an affirmative answer to the above question, and we have several theoretical contributions towards
the goal.

Main result: A PAKE protocol with a fined-grained CoR-setup in the UC framework. We construct a
UC-secure PAKE protocol that can be interpreted either in the FCRS-hybrid world with CRHFs—using a
functional CRS setup FCRS alongside a non-functional RO setup that relies on CRHF—or in the {GCRS,FRO}-
hybrid world—employing a functional RO setup FRO and a non-functional CRS setup that falls back to a
global CRS setup GCRS. It is important to note that constructing a UC-secure PAKE protocol under a global
setup GCRS is impossible (see Sec. 3), as there is no known method to embed a trapdoor into the global CRS.

Towards this goal, novel design and analysis techniques are discovered and listed below.

A New primitive for PAKE constructions: Introducing a novel Non-Interactive Key Exchange (NIKE) [FHKP13]
variant termed as homomorphic NIKE with associated functions.
We present this new primitive to encapsulate essential properties found in several existing RO-based PAKE
protocols to establish their security, including the well-known group-based standards, PPK [Mac02] and
SPAKE2 [AP05].

Informally, a NIKE scheme enables a party P to compute a shared key k with party P ′ from P’s secret
key dk and P ′’s public key ek′, where k = KEY(dk, ek′). Using a NIKE as the foundation for PAKE protocols,
both parties must incorporate their passwords in such a way that they can negotiate the same NIKE shared
key only when they use identical passwords, allowing them to subsequently derive the same session key.
To encapsulate this, we first define homomorphic property for NIKE scheme, which requires that:{

KEY(dk0 + dk1, ek
′) = KEY(dk0, ek

′) · KEY(dk1, ek
′);

KEY(dk, ek′0 · ek
′
1) = KEY(dk, ek′0) · KEY(dk, ek′1).

We then define two pairs of associated functions (fσ, f̂σ)σ∈{0,1}: If pek = fσ(x, ek), then f̂σ(x, pek) = ek and
f̂σ(x, pek · ek′) = f̂σ(x, pek) · ek′, where x is used to capture passwords in PAKE protocols. Furthermore, we
define the following properties:

• Perfect hiding. Regarding pek = fσ(x, ek), it can be viewed as generating a perfect hiding commitment
of x.

• Equivocability. Regarding pek, with the knowledge of the corresponding secret key pdk, it can be
opened as a commitment of any x.

• Intractability. This property encapsulates the security guarantee that the target NIKE shared key is
difficult to compute. It applies to two types of PAKE protocols: those in which both parties must
commit to their passwords and those where only one party is required to do so. It primarily captures
two security aspects: (1) A passive adversary cannot carry out successful offline guessing attacks; (2)
An active adversary can validate only a single password guess within a single session.

New analysis: Developing the “Brute Force” extraction strategy.
To complete a UC analysis, it is crucial to ensure that the simulator can extract the adversary’s input, re-
gardless of which setup is non-functional. In this work, a non-functional RO setup falls back to a CRHF
(denoted asH). It is well known that low-entropy inputs can make hash functions susceptible to exhaustive
search attacks. This motivates our “Brute Force” extraction strategy: if the password pw is chosen from a
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polynomial-sized space, the simulator only needs to extract H(pw, ∗) and try each candidate password to
recompute the hash values in order to match the target.

Password space extension: Extending PAKEs from a polynomial-sized password space to an arbitrary-sized
password space.
To ensure the success of the “Brute Force” extraction strategy, we must assume a polynomial-sized pass-
word space, which may be a limitation in certain application scenarios. To address this, we propose a
method that extends a PAKE protocol with a polynomial-sized password space to accommodate arbitrary-
sized password spaces.

New modifications to PAKE functionalities: Parameterizing the functionalities with a password space; Prevent-
ing the functionality from offering responses related to the correctness of a password guess.
To be compatible with the above “Brute Force” extraction strategy and password space extension, we made
two modifications to existing PAKE functionalities:

(1) The functionality is parameterized with a password space, and the functionality only accepts pass-
words belonging to the given password space.

(2) For the TestPwd interface provided to the ideal adversary to test its password guess, the functional-
ity no longer directly responds with “correct guess” or “wrong guess.” With this modification, the
functionality will not provide feedback on the accuracy of a password guess.

We seek clarification on the rationale behind the second modification. We believe this is reasonable because
our work focuses solely on implicit authentication5. In a PAKE protocol providing implicit authentication,
the involved parties generate their session keys independently. If they use the same input password, they
derive the same session key; otherwise, they produce random independent session keys. Crucially, neither
party can distinguish between these outcomes until they compare their session keys.

Even if an adversary actively participates in the protocol execution, it cannot ascertain the correctness
of its password guess without obtaining additional input or output from an honest party. Therefore, we
propose modifying the functionality to limit the capabilities of the ideal adversary accordingly.

Additional result: PAKE with a weaker fine-grained CoR-setup in the BPR framework. We also present a
BPR-secure PAKE protocol with a weaker fine-grained CoR-setup than we used in the UC framework: (1)
The CRS setup is functional, while the RO setup falls back to CRHFs; or (2) The RO setup is functional,
while the CRS setup falls back to a case that the adversary may obtain the trapdoor embedded in the CRS.
This result is presented in Appendix E.

1.3 Our techniques

We address our main question by composing a RO-based sub-protocol, ΠRO, and a CRS-based sub-protocol,
ΠCRS. At a very high level, our protocol generates two session keys using these sub-protocols and computes
the XOR of the resulting keys. The primary challenge of this work lies in ensuring that the simulator
operates correctly, regardless of which setup is non-functional during this composition.6 In particular, we
face the following two technical issues:

• How can the simulator extract the adversary’s input?
• How can the simulator produce an indistinguishable view, when the adversary makes a correct pass-

word guess?
5PAKE protocols can have two types of authentication: implicit and explicit. Implicit authentication means that at the end of the

protocol, if both parties used the same password, they share the same session key; otherwise, they end up with random independent
session keys. Explicit authentication ensures that both parties are aware of their situation.

6A trivial solution involves executing ΠRO and ΠCRS in parallel, which proves ineffective. To successfully complete a UC analysis, we
need to construct a simulator that must possess both CRS and RO capabilities simultaneously. Our goal is to achieve UC security with
a fine-grained CoR-setup, where the simulator has only one capability in each case. When the CRS setup is functional, the simulator
is restricted to embedding trapdoors in the CRS, causing it to falter when simulating the view of ΠRO . This issue similarly arises in the
opponent case.
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1.3.1 A non-functional RO setup admits a candidate “Brute Force” extraction strategy.

Recall that a non-functional RO setup falls back to a CRHF (denoted as H). If the password pw is selected
from a polynomial-sized space, then the structure H(pw, ∗) allows for a “Brute Force” extraction strategy.
Once the simulator extracts ppw = H(pw, ∗), it can recompute hash values for all candidate passwords to
match ppw. Here, we use the notation ppw to indicate a “processed” password, distinguishing it from the
original password pw.

We have ΠRO and ΠCRS executed, sequentially. That means we start with ΠRO, followed by ΠCRS. In
particular, ΠRO takes pw as input and generates ppw, which serves as the input for ΠCRS. This sequential
composition serves as the foundation of our protocol. To guarantee the success of the Brute-Force extraction
strategy when the RO setup is non-functional, while also accommodating a successful extraction strategy
when the RO setup is functional, we must meticulously design ΠRO. In particular, we take homomorphic
NIKE with associated functions as our building block. The core of our design for ΠRO is shown in Fig. 2.

Client Pi (pwi): Server Pj (pwj):

(ek0, dk0)
$← GEN(pp); (ek′0, dk

′
0)

$← GEN(pp);
(ek1, dk1)

$← GEN(pp); (ek′1, dk
′
1)

$← GEN(pp);
pek0 = f0(pwi, ek0); pek′1 = f1(pwj , ek

′
1);

msg = (pek0, ek1)
−−−−−−−−−−−−−→
msg′ = (ek′0, pek

′
1)

←−−−−−−−−−−−−−−
ki,0 = KEY(dk0, ek

′
0); kj,0 = KEY(dk′0, f̂0(pwj , pek0));

ki,1 = KEY(dk1, f̂1(pwi, pek
′
1)); kj,1 = KEY(dk′1, ek1);

trans = i|j|msg|msg′; trans = i|j|msg|msg′;
ωi,0 = H0(trans|ki,0|pwi); ωj,0 = H0(trans|kj,0|pwj);
ωi,1 = H1(trans|ki,1|pwi); ωj,1 = H1(trans|kj,1|pwj);
µi|µ̂i|θi = H(trans|ωi,0|ωi,1|pwi); µj |µ̂j |θj = H(trans|ωj,0|ωj,1|pwj);
Output θi as the session key. Output θj as the session key.

† GEN is the key generation algorithm of the underlying NIKE scheme. H0 : {0, 1}∗ → {0, 1}2λ, H1 : {0, 1}∗ → {0, 1}2λ and H : {0, 1}∗ →
{0, 1}6λ are three hash functions.

Figure 2: The core of our design for ΠRO

If we view the entire protocol of ΠRO as a “Full RO-PAKE”, which can be viewed as concurrently running
two instances of the same “Half RO-PAKE”:

• The first one is Client-to-Server, where the client masks its NIKE contribution ek0 with its input pass-
word pwi, sending pek0 = f0(pwi, ek0) (that can be viewed as a perfect hiding commitment to pwi),
while the server only sends its NIKE contribution ek′0.

• The second one is Sever-to-Client, where the server masks its NIKE contribution ek′1 with its input
password pwj , sending pek′1 = f1(pwj , ek

′
1) (that can be viewed as a perfect hiding commitment to

pwj), while the client only sends its NIKE contribution ek1.

If the two parties use the same password, they can compute a shared secret k0 = Key(ek0, ek
′
0) (resp.,

k1 = Key(ek1, ek
′
1)) from the first (resp., second) instance, then process k0 (resp., k1) throughH0 (resp.,H1)

into a shared output ω0 (resp., ω1). The shared outputs ω0 and ω1 of these two “Half RO-PAKEs” are finally
combined via Ĥ into values (µ, µ̂, θ).

Plugging ΠRO shown in Fig. 2 into our ΠRO-then-ΠCRS design, we have that:
(1) The “Brute-Force” extraction strategy is effective when the RO setup is non-functional. When simulat-

ing an honest server (resp., client), the simulator can extract the adversary’s input password from the 1st
(resp., 2nd) instance of “Half RO-PAKE”: The simulator knows dk′0 (resp., dk1), which allows it to try each
candidate password to compute k0 (resp., k1) and match ω0 (resp., ω1).

(2) When the RO setup is functional, its observability provides the simulator with a mean of extraction. When
simulating an honest server (resp., client), the simulator can extract the adversary’s input password from
the 1st (resp., 2nd) instance of “Half RO-PAKE”: The simulator observes all queries the adversary made on
H0 (resp., H1). The Type-II (ii) intractability (cf. Sec. 2.2.2) of the underlying homomorphic NIKE scheme
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ensures that the adversary can only compute one valid k0 (resp., k1) value with its committed password
through pek0 (resp., pek′1).

1.3.2 Twisting the two “Half RO-PAKEs” in a subtle manner ensures the simulator can always produce
indistinguishable view.

Given ΠRO shown in Fig. 2, we now need to define ppw that will be used as the input for ΠCRS. In the next,
we have three design attempts. We will explain why the first two attempts do not work, with the goal of
understanding the rationale of the final successful attempt.
– The first attempt: Set ppw := ω0|ω1.

By doing so, the simulator can effectively implement the “Brute Force” extraction strategy when the
RO setup is non-functional. However, issues arise when the adversary guesses the correct password. In
this scenario, the simulator must compute the same output session key as the environment, which requires
the simultaneous recomputation of k0 and k1. Unfortunately, the simulator can only recompute one, corre-
sponding to the instance of “Half RO-PAKE” where it does not commit to a input password.
Possible Solution: Let the server (resp., the client) “send” the value k0 (resp., k1) to its peer party.

– The second attempt: Set ppw := (ω0 � k1)|(ω1 � k0).
By doing so, the simulator can compute the exact value as the adversary does when the RO setup is

non-functional. However, new issues appear when the RO setup is functional (meanwhile the CRS setup is
not functional). A key observation is as follows:

Assume an adversary is playing the role of server. After receiving the message msg′ = (ek′0, pek
′
1), the

simulator may be unable to extract the adversary’s input at once.7 Meanwhile, the simulator is expected to
provide its input ppw := (ω0�k1)|(ω1�k0) for ΠCRS, necessitating an immediate assignment of ω0. However,
since the adversary knows dk′0, such that it may have tried all candidate passwords inH0 queries. Without
knowing the honest server’s input password, the simulator fails with high probability when the adversary
makes a correct password guess.
Possible Solution: Let ω0 and ω1 be XORed, such that the simulator can postpone assigning ω0 until it
detects that the adversary has queriedH1 on the correct value. More concretely, when an input is expected
to be provided for ΠCRS, the simulator replaces the value ω0 ⊕ ω1 with a random value η∗, which is also
recorded to program subsequent H1 queries. Since the adversary has previously sent pek′1, the underlying
password guess pw∗ was already fixed. Given a tuple (ek1, pek

′
1), the adversary can compute at most one

valid k1 value. When detecting the adversary queries H1 on a correct value, the simulator is also able to
extract pw∗. (Remark that we are considering the case that the adversary makes a correct password guess.)
After that, the simulator can use pw∗ as index to search in the list that records all H0 queries, and use the
corresponding record to assign ω0. Finally, the simulator sets ω1 = η∗ ⊕ ω0 and uses ω1 to answer the
correspondingH1 query.

– The final successful attempt: Set ppw := (ω0 ⊕ ω1)|(µ� k0)|(µ̂� k1).
By doing so, when the RO setup is non-functional, the simulator can still employ the “Brute Force”

extraction strategy. Since the sub-protocol ΠCRS is invoked in a black box manner, the simulator can use
existing CRS-based simulation strategy to extract ppw (then employ the “Brute Force” extraction strategy
to extract pw) and generate indistinguishable view for the adversary.

Conversely, when the RO setup is functional, the simulator can extract the adversary’s password guess
through observing queries it made on H0 or H1. In particular, the third RO H is used to ensure that the
adversary must make valid such queries before computing the correct values for µ, µ̂ and θ, where θ will
be XORed with the output session key of ΠCRS to derive the final session key. The simulator can also apply
the programmability of RO to generate indistinguishable view for the adversary.

More details can be found in Sec. 4 and Theorem 5.

7In the discussed case, the simulator can extract the adversary’s input by observing all queries it made on H1. However, the
adversary may not necessarily queryH1 before sending out the message msg′.
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1.3.3 A modified functionality meets password space extension.

Given a protocol ProtUNIT that UC-realizes PAKE for a polynomial-sized password space D, we can con-
struct another protocol that UC-realizes PAKE for an arbitrary-sized password spaceDn = D×· · ·×D with
n ∈ N. For simplicity, a password pw ∈ Dn can be expressed as the concatenation of n shorter passwords
pw1, . . . , pwn ∈ D. Specifically, we have pw = pw1| . . . |pwn. We begin by concurrently running n instances
of ProtUNIT; each instance uses pwi as its input, where i = 1, . . . , n. Let SKi denote the output session key
from each execution instance of ProtUNIT. Finally, we set the overall session key SK :=

⊕n
i=1 SKi.

Intuitively, as long as ProtUNIT only provides implicit authentication, we have constructed a proto-
col that UC-realizes PAKE with Dn. It is important to note that the honest party’s secret intermediates
(SK1, . . . ,SKn) will not be revealed to the environment; instead, a summary value SK :=

⊕n
i=1 SKi will be

output. As a result, the adversary cannot verify whether its guess for each sub-password pwi is correct. In
contrast, the adversary’s guesses for all sub-passwords (pw1, . . . , pwn) are treated as a whole.

What contradicts intuition is how existing PAKE functionalities define the adversary’s ability to guess
passwords online. In particular, they offer the adversary with a TestPwd interface. Upon receiving the
adversary’s password guess, the functionality first compares it with the honest party’s password and then
replies with either “correct guess” or “wrong guess” accordingly. If we use this type of functionality, the
simulator will get stuck when it needs to reply to the adversary with “correct guess” or “wrong guess” for
a sub-password guess. To avoid this, we define a modified functionality that removes TestPwd’s reply of
“correct guess” or “wrong guess”.

More details can be found in Sec. 5.1 and Theorem 6.

1.3.4 The roadmap of our main results.

By applying the above techniques, we obtain our main results, summarized in Fig. 3, which incorporates
several variants of PAKE functionality. Let FPAKE denote the original PAKE functionality [CHK+05], and
Fle-PAKE denote its “lazy extraction” variant [ABB+20]. In this paper, we add a password space parameter
to their top right corner, indicating the space of allowable passwords. We also use the presence or ab-
sence of “m” to indicate whether the functionality’s TestPwd interface has been modified as we previously
discussed.

CoR-setup GCRS + FROFD̂mPAKE + CRHF

FDmPAKE FDle-mPAKE

FDnPAKE FDnle-PAKE

CRS + CRHF gCRS + RO

Theorem 5, Case (1) Theorem 5, Case (2)

Theorem 6 Theorem 6

Sec. 5.2

† The notation “A→ B” indicates that we construct a protocol that UC-realizes B in the A-hybrid world. The dashed arrow indicates the possibility to
upgrade the security.
‡ The notationFps

name denotes the functionalityFname parameterized with a password space ps, where name ∈ {PAKE, le-PAKE, mPAKE, le-mPAKE}
and ps ∈ {D̂,D,Dn}. The prefixes “m” and “le-” denote different variants of the original PAKE functionality FPAKE: “m” indicates that the Test-
Pwd interface is modified; “le-” means the “lazy extraction”. In addition, {0, 1}6λ ⊆ D̂, |D| = poly(λ) andDn = D × · · · × D.

Figure 3: The results of our UC-secure PAKE protocols with a CoR-setup

We construct a PAKE protocol based on homomorphic NIKE with associated functions, a sub-protocol
ProtPAKE that UC-realizes F D̂mPAKE in the FCRS-hybrid world, and three hash functions (that will be treated
as CRHFs or ROs). In Theorem 5, we show our PAKE protocol is UC-secure with a CoR-setup. In particular,
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our protocol UC-realizes FDmPAKE when the CRS setup is functional but the RO setup falls back to CRHFs;
it also UC-realizes FDle-mPAKE when the RO setup is functional but the CRS setup falls back to gCRS.

No matter in which case, based on Theorem 6, the password space of the protocol can be extended from
D to Dn for n ∈ N, achieving FDnPAKE and FDnle-PAKE, respectively. Now, the achieved functionality is no
longer the variant with “m”, i.e., TestPwd’s reply of “correct guess” or “wrong guess” is kept.

Since our construction merely black-box invokes ProtPAKE, we only achieve a “lazy extraction” PAKE
functionality variant, FDnle-PAKE when the RO setup is functional. We also discussed in Sec. 5.2, if we explore
the internal structure of ProtPAKE, the result can be upgraded to FDnPAKE. As a result, we achieveFDnPAKE using
a CoR-setup.

1.4 Paper organization

In Sec. 2, we define some useful ideal functionalities for PAKE, homomorphic NIKE with associated func-
tions. In Sec. 3, we prove impossibility of UC-secure PAKE in the GCRS-hybrid world. In Sec. 4, we present
our PAKE protocol with a fine-grained CoR-setup in the UC framework. In Sec. 5, we present three im-
portant extensions (including our password space extending protocol) and discuss the practicality of our
UC-secure PAKE protocol.

For completeness, we provide supplemental preliminaries in Appendix A and supplemental materials
for homomorphic NIKE with associated functions in Appendix B. In Appendix C, we present the security
proof details for our protocol in the UC framework. In Appendix D, we present the security proof details
for our password space extending protocol. In Appendix E, we present our further results in the BPR
framework.

2 Preliminaries

Notations. We use λ ∈ N to denote a security parameter. We use | · | to denote the cardinality of a set or the
bit length of a string. We use “|” to denote concatenation of strings. We use “:=” to denote “be defined as”.
We use “

c
≈” to denote computational indistinguishability. We use “ $←” to denote a randomized process, and

“=” to denote a deterministic process. For a deterministic algorithm DALG, we use y = DALG(x) to denote
running it with x as input and obtain output y. For a probabilistic algorithm PALG, we use y $← PALG(x) to
denote running it with x as input and obtain output y. A probabilistic algorithm will become deterministic
once its internal randomness r is explicitly specified, which is denoted as y = PALG(x; r). We use “�” to
denote the extension of ⊕ to non-bit strings. For example, for a ∈ {0, 1}λ and b ∈ G, where G denotes
a cyclic group. Assume there exist two coding algorithms, ENCODE that maps a group element into a bit
string, and DECODE that inverts a bit string into a group element. Then a � b := a ⊕ ENCODE(b). For
simplicity, the reverse process to compute b = DECODE((a� b)⊕ a) is denoted as b = a� b� a. A positive
function negl(λ) is called negligible, if for all positive polynomial p(·), there exists a constant λ0 > 0 such
that for all λ > λ0, it holds that negl(λ) < 1/p(λ).

2.1 Security definitions for PAKE

In this paper, we define the security for PAKE both in the UC framework [Can01, Can00] (Appendix A.1),
and in the BPR framework [BPR00] (Appendix A.2). The differences between the two definition frameworks
are discussed in Appendix A.3. Here, we only describe four functionalities (as shown in Fig. 4) for PAKE
following the formulations in [ABB+20], which are further based on that in [CHK+05]; and adopting the
fix recommended by [AHH21] (i.e., deleting “either Pi or Pj corrupt” case in the NewKey interface).

In particular, we introduce two new modifications:

(1) Parameterizing the functionalities with a password space D. This was never done in the existing
PAKE functionalities [CHK+05, GK10, ABB+20];

(2) Preventing the functionality from offering responses related to the correctness of a password guess
(i.e., deleting ‘reply with “correct guess”’ and ‘reply with “wrong guess”’ in the TestPwd interface).
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Functionalities for PAKE
The functionalities FDPAKE, FDle-PAKE, FDmPAKE and FDle-mPAKE are parameterized by a security parameter λ and a password
space D for passwords.

Session initialization:
On a query (NewSession, sid,Pi,Pj , pw, role) from Pi, ignore this query if pw /∈ D or record 〈sid,Pi, ·, ·, ·〉 already exists.
Otherwise, record 〈sid,Pi,Pj , pw, role〉marked fresh and send (NewSession, sid,Pi,Pj , role) to S.

Password guessing:
On a query (TestPwd, sid,Pi, pw∗) from S, if pw∗ ∈ D, and there exists a record 〈sid,Pi,Pj , pw, role〉marked fresh:

If pw∗ = pw, mark it compromised and reply with “correct guess” ;

If pw∗ 6= pw, mark it interrupted and reply with “wrong guess” .

On a query (RegisterTest, sid,Pi) from S, if there exists a fresh record 〈sid,Pi,Pj , pw, role〉, then mark it interrupted

and flag it tested.

On a query (LateTestPwd, sid,Pi, pw∗) from S, if there exists a completed record 〈sid,Pi,Pj , pw, ∗, SK〉with flag tested,

then remove its flag and do:

If pw∗ = pw, reply with SK ;

If pw∗ 6= pw, reply with SK
$← {0, 1}λ .

Key generation:
On a query (NewKey, sid,Pi,SK∗) from S, if ∃ a record 〈sid,Pi,Pj , pw, role〉 that is not marked completed:

(1) If this record is compromised, set SKi ← SK∗;
(2) Else if this record is fresh and ∃ a completed record 〈sid,Pj ,Pi, pw, role′, SKj〉with role 6= role′, set SKi ← SKj .

(3) Otherwise, sample SK
$← {0, 1}λ.

Send SKi to Pi, mark 〈sid,Pi,Pj , pw, role〉with completed, and append SKi to the record.

Figure 4: UC PAKE variants. The original PAKEFDPAKE: Includes the boxed text but excludes the gray text. The modified-PAKEFDmPAKE:

Excludes both the boxed text and gray text. The lazy-extraction PAKE FDle-PAKE: Includes both the boxed text and gray text. The lazy-extraction

modified-PAKE FDle-mPAKE: Includes the gray text but excludes the boxed text.

Let FPAKE denote the original PAKE functionality [CHK+05], and Fle-PAKE denote its “lazy extraction”
variant proposed in [ABB+20]. In this paper, the password space parameter is labeled as a superscript. We
also use the presence or absence of “m” to indicate whether the functionality’s TestPwd interface has been
modified as we previously discussed.

The reasonability of the Modification (1). For the first modification, we note that all PAKE protocols
proven w.r.t any known PAKE functionality can still be considered secure, where all passwords are in fact
chosen from an implicit password space. It is helpful for us to explicitly define the parameter D, because
our protocol in the UC framework deals with passwords with low entropy. In practice, this modification
is also reasonable, where the passwords are pre-restricted with selection rules (that may include the type
of characters, the shortest and longest length of passwords). For example, the passwords used to unlock
most mobile phones are 6-digit numbers; WiFi passwords in the WPA/WPA2-PSK require 8-16 digits com-
bination of numbers and letters; Bank card passwords are generally 6-8 digits numbers. We also remark
one can replace D with an explicitly defined password length parameter ` which defines the length of all
passwords.

However, we should point out that, in these functionalities, the password space (or equivalently, the
password length) must be a priori fixed and known to the ideal adversary. This functionality is clearly
weaker than the standard one.

The reasonability of the the Modification (2). For the second modification, it is also reasonable as we
discussed in Sec. 1.2. We note that if a protocol UC-realizes FDPAKE, it can also be shown to UC-realize
FDmPAKE. In a UC analysis for FDPAKE, there is a particular case to consider, where the simulator must send
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messages before receiving any from the adversary. This means that the simulator must “commit to” a
password before extracting the adversary’s password guess, without knowing the honest party’s password
in advance; however, if the adversary makes a correct password guess, the simulator should be capable of
computing the same output session key as the adversary.

Now, compare the following two different ways of the simulator querying NewKey to make FDPAKE to
send a session key to the honest party:

• If the adversary’s password guess is correct, the simulator computes the adversary’s output session
key and sends it to FDPAKE. Otherwise, the simulator sends a random session key to FDPAKE.

• No matter the adversary’s password guess is correct or wrong, the simulator always computes the
adversary’s output session key and sends it to FDPAKE.

In both cases, the result is essentially the same: if the adversary’s guess is correct, it determines the
honest party’s output session key; If the guess is incorrect, the honest party’s output session key is in-
dependently chosen at random. This implies that even when the functionality is switched from FDPAKE

to FDmPAKE, such that the simulator no longer knows whether the adversary’s guess is correct, it can still
function correctly.

2.2 Homomorphic Non-Interactive Key Exchange with associated functions

We recall Non-Interactive Key Exchange (NIKE) with one-wayness [FHKP13], before we introduce a novel
NIKE variant, called homomorphic NIKE with associated functions. We use this new primitive to encapsulate
a few necessary properties to design and prove security of many RO-based PAKE protocols.

2.2.1 NIKE with one-wayness

A NIKE scheme consists of three polynomial-time algorithms:
SETUP(1λ): On input a security parameter 1λ, this probabilistic algorithm outputs a public parameter
pp.
GEN(pp): On input a public parameter pp, this probabilistic algorithm outputs a key pair (ek, dk) ∈
EK ×DK.
KEY(dk, ek′): On input a secret key dk ∈ DK and a public key ek′ ∈ EK, this deterministic algorithm
outputs a session key k ∈ K.

Here, EK, DK and K are the sets of public keys, secret keys and session keys.

Correctness. For all pp $← SETUP(1λ), (ek, dk)
$← GEN(pp) and (ek′, dk′)

$← GEN(pp), it holds that KEY(dk, ek′) =
KEY(dk′, ek).

One-wayness (OW). A NIKE scheme Π = (SETUP,GEN,KEY) is called OW-secure, if for any PPT algorithm
A, there exists a negligible function negl, s.t.,

Pr

 pp
$← SETUP(1λ); (ek, dk)

$← GEN(pp);

k = k∗ (ek′, dk′)
$← GEN(pp); k∗ = KEY(dk, ek′);

k
$← A(1λ, ek, ek′).

 ≤ negl(λ).

For simplicity, in clear contexts, we sometimes use Key(·, ·) to denote computing a session key for a
pair of public keys.

2.2.2 Homomorphic NIKE with associated functionalities

Using a NIKE as a building-block for PAKE protocols, both parties must incorporate their passwords in a
way such that they can negotiate the same NIKE shared key only when they use an identical password. To
implement this idea, we define homomorphic NIKE with associated functionalities.
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Homomorphic property. Consider a NIKE scheme Π = (SETUP,GEN,KEY), whose secret key space DK are
associated with group operation “+” and public key space EK (resp., session key space K) with group
operation “·”. For any ek′0, ek

′
1, ek

′ ∈ EK and dk0, dk1, dk ∈ DK, the following holds:{
KEY(dk0 + dk1, ek

′) = KEY(dk0, ek
′) · KEY(dk1, ek

′);
KEY(dk, ek′0 · ek

′
1) = KEY(dk, ek′0) · KEY(dk, ek′1).

The associated functions. To have a better view of passwords in a PAKE protocol, we introduce a pair of
functions (fσ, f̂σ) with space X to which passwords are mapped. Let fσ : X × EK → EK and f̂σ : X × EK →
EK for σ ∈ {0, 1}. For any x ∈ X , ek, ek′ ∈ EK and pek = fσ(x, ek), the following holds:{

f̂σ(x, pek) = ek;

f̂σ(x, pek · ek′) = f̂σ(x, pek) · ek′.

Perfect hiding. For a homomorphic NIKE scheme Π = (SETUP,GEN,KEY) with associated functions
{fσ, f̂σ}σ∈{0,1}, we say the perfect hiding property holds, if the following distributions are identical for any
x0, x1 ∈ X : {

(ek, dk)
$← GEN(pp);

pek
pek = fσ(x0, ek).

}
,

{
(ek, dk)

$← GEN(pp);
pek

pek = fσ(x1, ek).

}
Applying the functions f0 and f1 can be viewed as generating commitments for x ∈ X , which perfectly hide
the committed values. However, applying the functions f̂0 and f̂1 can only be viewed as partially opening
the corresponding commitments, because they only output public keys in EK, leaving certain inherent
hard-to-solve problems unresolved (i.e., computing the secret keys).

Equivocability. For a homomorphic NIKE scheme Π = (SETUP,GEN,KEY) with associated functions
{fσ, f̂σ}σ∈{0,1}, we say the equivocability holds, if there exists a PPT algorithm EXT, s.t., for any x ∈ X the
following distributions are indistinguishable:{

(ek, dk)
$← GEN(pp);

(x, pek, ek, dk)
pek = fσ(x, ek).

}
c
≈

{
(pek, pdk)

$← GEN(pp);
(x, pek, ek, dk)

(ek, dk) = EXT(x, pek, pdk, f̂σ).

}
Equivocability bears resemblance to the equivocability of commitment scheme [Bea96]. Regarding pek, with
the knowledge of the corresponding secret key pdk, invoking the algorithm EXT can open it to any x ∈ X .

Intractability. For a homomorphic NIKE scheme Π = (SETUP,GEN,KEY) with associated functions {fσ,
f̂σ}σ∈{0,1}, we say the Type-I/II (w.r.t. i/ii) intractability holds, if for any pp

$← SETUP(1λ), (ek, dk)
$←

GEN(pp), (pek, pdk)
$← GEN(pp), (pek′, pdk′)

$← GEN(pp) and PPT algorithm A defined in Table 1, the
success probability of A is negligible.

Table 1: The two types of Intractability

A’s Input A’s Output A’s Success Condition

Type-I

i (pek, pek′) (x, k) k = Key(f̂0(x, pek), f̂1(x, pek′))

ii pek (pek′, (x0, k0), (x1, k1))
x0 6= x1;

k0 = Key(f̂σ(x0, pek), f̂1−σ(x0, pek
′));

k1 = Key(f̂σ(x1, pek), f̂1−σ(x1, pek
′)).

Type-II

i (ek, pek) (x, k) k = Key(ek, f̂σ(x, pek))

ii ek (pek, (x0, k0), (x1, k1))
x0 6= x1

k0 = Key(ek, f̂σ(x0, pek));
k1 = Key(ek, f̂σ(x1, pek)).

Note that if using a NIKE as the foundation for PAKE protocols, a basic security principle to be followed is
that: Only when the both parties use the same password, they can negotiate the same NIKE shared key. The

11



security property Intractability guarantees that the target shared NIKE key is difficult to compute in several
typical application scenarios. In particular, Type-I Intractability deals with the type of PAKE protocols
where both parties need to commit their password, while Type-II Intractability deals with the type of PAKE
protocols where only one party needs to commit its password. Furthermore, Type-I/II(i) Intractability is
employed to address the case that a passive adversary cannot launch successful offline-guessing attacks.
Type-I/II(ii) Intractability is utilized to address the case that an active adversary can only validate a single
password guess within one session.

2.3 Instantiations of homomorphic NIKE with associated functions

PPK [Mac02] and SPAKE2 [AP05] share the same underlying homomorphic NIKE yet with different asso-
ciated functions as shown in Fig. 5.

The underlying homomorphic NIKE scheme
SETUP(1λ) : GEN(pp) : //EK := G andDK := Zq KEY(dk, ek′) :

1. (G, q, g)
$← Gen(1λ); 1. a $← Zq ; 1. Phrase dk := a;

2. Output pp := (G, q, g). 2. Output (ek, dk) := (ga, a). 2. Output k := (ek′)a.

The associated functions derived from PPK [Mac02]
(H0 : X → EK andH1 : X → EK){

f0(x, ek) := ek · H0(x); f̂0(x, pek) := pek/H0(x);

f1(x, ek) := ek · H1(x); f̂1(x, pek) := pek/H1(x).

The associated functions derived from SPAKE2 [AP05]
(M,N ∈ EK){

f0(x, ek) := ek ·Mx; f̂0(x, pek) := pek/Mx;

f1(x, ek) := ek ·Nx; f̂1(x, pek) := pek/Nx.

Figure 5: The homomorphic NIKE with asscoatied functions derived from PPK [Mac02] and
SPAKE2 [AP05]

Theorem 1. If the computational Diffie-Hellman (CDH) assumption holds, the NIKE scheme in Fig. 5 is OW-secure
and homomorphic.

Theorem 2. If H0 and H1 are modeled as ROs, the perfect hiding, equivocability and intractability properties hold
for the homomorphic NIKE scheme with associated functions derived from PPK in Fig. 5, simultaneously.

Theorem 3. If M and N are treated as CRS, The perfect hiding, equivocability and intractability properties hold for
the homomorphic NIKE scheme with associated functions derived from SPAKE2 in Fig. 5, simultaneously.

We postpone the proofs to the above theorems to Appendix B.

3 Impossibility Result regarding Global CRS

In this section, we will show that global CRS is not sufficient to realize FDPAKE, FDle-PAKE, FDmPAKE or
FDle-mPAKE. The result refers to non-trivial protocols. A protocol is non-trivial, if it is guaranteed that two
honest parties agree on matching session keys at the conclusion of a protocol execution (except perhaps
with negligible probability), provided that (i) both parties use the same password, and (ii) the adversary
forwards all messages between them without modifying or inserting any messages.

Theorem 4. There exists no non-trivial protocol that UC-realizes the functionality FDPAKE, FDle-PAKE, FDmPAKE or
FDle-mPAKE in the GCRS-hybrid world.
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The proof extends Canetti et al.’s impossibility proof in [CHK+05]. There, Canetti et al. prove that
it is impossible to construct a non-trivial protocol for UC-realizing the PAKE functionality in the plain
model; but here, we will show that even certain setup such as a global CRS are given, it is still impossible
to construct a non-trivial UC-secure protocol for the PAKE functionality. More details can be found in
Appendix C.1.

4 Our construction in the UC framework

In this section, we first present a formal description of our PAKE protocol. Then we prove that it is UC-
secure with a fine-grained CoR-setup.

4.1 Formal description of the construction

Our construction will use the following ingredients:

• A homomorphic NIKE scheme Π = (SETUP,GEN,KEY), where EK, DK and K are the sets of public
keys, secret keys and session keys. In addition, this scheme is equipped with associated functions
fσ : X × EK → EK and f̂σ : X × EK → EK for σ ∈ {0, 1}.

• A sub-protocol ProtPAKE that UC-realizes F D̂mPAKE in the FCRS-hybrid world.
• Three hash functions: H1 : {0, 1}∗ → {0, 1}2λ,H2 : {0, 1}∗ → {0, 1}2λ andH3 : {0, 1}∗ → {0, 1}6λ.

Public parameters. A setup phase is required to assign the security parameter λ, the password space
D ⊂ X , pp $← SETUP(1λ) and INHERITED PARAMETER that consists of parameters inherited from ProtPAKE.
Jumping ahead, in our analysis, INHERITED PARAMETER will be treated as the following different cases:

(1) INHERITED PARAMETER is treated as a local parameter when (H1,H2,H3) are assumed as collision
resistant hash functions;

(2) INHERITED PARAMETER is treated as a global parameter when (H1,H2,H3) are modeled as ROs.

Remark 1. In Case-(1), all the three hash functions should be collision-resistant. In particular, for any input x ∈
{0, 1}∗, the output y1|y2|y3 computed from H3(x) will be used as three individual values, where |yi| = λ for i ∈
{1, 2, 3}. For security, we necessitate a more special collision-resistance property, i.e., for any x′ 6= x and y′1|y′2|y′3 =
H3(x′), it should hold that yi 6= y′i for i ∈ {1, 2, 3}. Note that this property is not hard to achieve: Simply choose a
collision-resistant hash function H̃ : {0, 1}∗ → {0, 1}2λ, and setH3(x) = H̃(1|x)|H̃(2|x)|H̃(3|x).

In Case-(2), H3 should be modeled as a single RO. The same property can also be achieved. Let the simulator
internally use three different ROs. For a new query x, treat it as three queries on these internal ROs with the same
input x.

Protocol execution. Assume two parties, Pi and Pj initially holding their inputs, (NewSession, sid,Pi,Pj ,
pwi, client) and (NewSession, sid,Pj ,Pi, pwj , server) received from the environment, respectively. They
execute as shown in Fig. 6 to negotiate a session key. In particular, during the course, they need to jointly
execute the sub-protocol ProtPAKE, where the party Pj first prepares its input, thus playing the role of client.

If the protocol is analyzed in the FRO-hybrid world, all local hash computations should be replaced by
querying the functionality FRO = {FROi}i∈[3]. In particular, (i) H1 (resp., H2) computations are replaced by
querying FRO1 (resp., FRO2 ) parameterized with domain {0, 1}∗ and range {0, 1}λ; (ii) H3 computations are
replaced by querying FRO3 parameterized with domain {0, 1}∗ and range {0, 1}3λ. Abusing notations, in
Fig. 6, we still useHi(x) to denote the answer of querying FROi on x.

4.2 The security analysis

The protocol shown in Fig. 6 is UC-secure PAKE with a fine-grained CoR-setup. In particular, we have the
following theorem.

Theorem 5. Suppose |D| = poly(λ). Given the following building blocks:
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Pi(NewSession, sid,Pi,Pj , pwi, client): Pj(NewSession, sid,Pj ,Pi, pwj , server):

(ek0, dk0)
$← GEN(pp);

(ek1, dk1)
$← GEN(pp);

pek0 = f0(pwi, ek0);
msg = (pek0, ek1)
−−−−−−−−−−−−→

(ek′0, dk
′
0)

$← GEN(pp);

(ek′1, dk
′
1)

$← GEN(pp);
pek′1 = f1(pwj , ek

′
1);

kj,0 = KEY(dk′0, f̂0(pwj , pek0));
kj,1 = KEY(dk′1, ek1);
trans = sid|i|j|msg|msg′

ωj,0 = H1(trans|kj,0|pwj);
ωj,1 = H2(trans|kj,1|pwj);
µj |µ̂j |θj = H3(trans|ωj,0|ωj,1|pwj);
ppwj = (ωj,0 ⊕ ωj,1)|(µj � kj,0)|(µ̂j � kj,1);
ssid = sid|i|j|msg|msg′;
inputj = (NewSession, ssid,Pj ,Pi, ppwj , client);

msg′ = (ek′0, pek
′
1)

←−−−−−−−−−−−−−
ki,0 = KEY(dk0, ek

′
0);

ki,1 = KEY(dk1, f̂1(pwi, pek
′
1));

trans = sid|i|j|msg|msg′

ωi,0 = H1(trans|ki,0|pwi);
ωi,1 = H2(trans|ki,1|pwi);
µi|µ̂i|θi = H3(trans|ωi,0|ωi,1|pwi);
ppwi = (ωi,0 ⊕ ωi,1)|(µi � ki,0)|(µ̂i � ki,1);
ssid = sid|i|j|msg|msg′;
inputi = (NewSession, ssid,Pi,Pj , ppwi, server);

ProtPAKE

inputi

ϑi

inputj

ϑj

Output θi ⊕ ϑi as the session key. Output θj ⊕ ϑj as the session key.

Figure 6: Our PAKE protocol in the UC framework

• A homomorphic NIKE scheme Π = (SETUP,GEN,KEY) with associated functions {fσ, f̂σ}σ∈{0,1}, where the
prefect hiding property holds; In addition, the scheme satisfies the Equivocability and Type-II Intractability in
the RO model.

• A sub-protocol ProtPAKE that UC-realizes F D̂mPAKE in the FCRS-hybrid world, where {0, 1}6λ ⊆ D̂; In addition,
the sub-protocol ProtPAKE satisfies the correctness property in the GCRS-hybrid world.

• Three hash functionsH1,H2 andH3.

The protocol in Fig. 6 is secure in the UC framework, in particular:

(1) It UC-realizes FDmPAKE in the FCRS-hybrid world when H1, H2 and H3 are sampled from collision-resistant
hash families;

(2) It UC-realizes FDle-mPAKE
8 in the {GCRS,FRO}-hybrid world by modelingH1,H2 andH3 as ROs.

Proof. In Case-(1) (resp.,Case-(2)), we will construct a simulator S, which interacts with the functionality
FDmPAKE (resp., FDle-mPAKE) and an environment Z , and we show that for any efficient environment Z and

8Jumping ahead, in the next section (Sec. 5.2), we will show that FDmPAKE is also achieveable in Case-(2).
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any real-world adversary A, Z cannot distinguish the ideal-world execution, created by S in interaction
with FDmPAKE (resp., FDle-mPAKE), from the real-world execution, created by A in interaction with real-world
parties executing protocol in Fig. 6. For simplicity, assume the adversary Ais a “dummy” adversary, solely
relaying all messages and computations to Z .

Proof sketch in Case-(1). Since we assume that sub-protocol ProtPAKE realizes functionality F D̂mPAKE, the
real-world adversary can be without loss of generality replaced by a hybrid-world adversary, where the
sub-protocol ProtPAKE executed by the real-world parties within the protocol in Fig. 6 is replaced by the ideal
functionalityF D̂mPAKE. In our proof, we assume thatA operates within thisF D̂mPAKE-hybrid world, albeit for
terminological convenience, we persist in referring to A as a “real-world” adversary. We implicitly assume
that ⊥will be accepted but treated as a wrong password guess by the functionalities.

When A corrupts the party Pj that plays the role of server:

The simulator S generates the message msg = (pek0, ek1) using a specified value pw ∈ X \D. The prefect
hiding property of the underlying homomorphic NIKE with associated functions ensures that A cannot
observe the change. Upon receiving the message msg′ = (ek′1, pek

′
1) and (TestPwd, ssid,Pi, ppw∗ = η1|η2|η3)

from A, S can extract A’s password guess by trying all candidate passwords in D to find pw∗ that makes
the following equations hold simultaneously:

k∗i,1 = KEY(dk1, f̂1(pw∗, pek′1));
ω∗i,1 = H2(sid|i|j|msg|msg′|k∗i,1|pw∗);
ω∗i,0 = η1 ⊕ ω∗i,1;
µ∗i |µ̂∗i |θ∗i = H3(sid|i|j|msg|msg′|ω∗i,0|ω∗i,1|pw∗);
µ̂∗i = η3 � k∗i,1;
k∗i,0 = η2 � µ∗i ;
ω∗i,0 = H1(sid|i|j|msg|msg′|k∗i,0|pw∗).

(1)

Since all computations included in Equations 1 are deterministic andH1,H2 andH3 are collision-resistant,
at most one valid value pw∗ can be found. If not found such value, then set pw∗ = ⊥. Then, S can send
(TestPwd, sid,Pi, pw∗) toFDmPAKE. Upon receiving (NewKey, ssid,Pi, ϑ∗) fromA, send (NewKey, sid,Pi,SK∗)
to FDmPAKE, where SK∗ = ϑ∗ ⊕ θ∗i if pw∗ 6= ⊥, and SK∗ is randomly chosen otherwise. It can be verified that
if pw∗ is a correct guess, FDmPAKE will make the honest party Pi outputs the session key determined by A;
otherwise, a random session key is output.

When A corrupts the party Pi that plays the role of client:

Similar proof idea is also applied here. After receiving the message msg = (pek0, ek1), S generates
msg′ = (ek′1, pek

′
1) using the specified value pw. Upon receiving (TestPwd, ssid,Pj , ppw∗ = η1|η2|η3) from

A, try all candidate passwords in D to find pw∗ that makes the following equations hold simultaneously;
otherwise set pw∗ = ⊥. 

k∗j,0 = KEY(dk′0, f̂0(pw∗, pek0));
ω∗j,0 = H1(sid|i|j|msg|msg′|k∗j,0|pw∗);
ω∗j,1 = η1 ⊕ ω∗j,0;
µ∗j |µ̂∗j |θ∗j = H3(sid|i|j|msg|msg′|ω∗j,0|ω∗j,1|pw∗);
µ̂∗j = η3 � k∗j,0;
k∗j,1 = η2 � µ∗j ;
ω∗j,1 = H2(sid|i|j|msg|msg′|k∗j,1|pw∗).

(2)

Then, S can send (TestPwd, sid,Pj , pw∗) to FDmPAKE. Upon receiving (NewKey, ssid,Pj , ϑ∗) from A, send
(NewKey, sid,Pj ,SK∗) to FDmPAKE, where SK∗ = ϑ∗⊕ θ∗j if pw∗ 6= ⊥, and SK∗ is randomly chosen otherwise.

The detailed proof will be found in Appendix C.2.

Proof sketch in Case-(2). For notational simplicity, in the next paragraph, we will employ the following
two terminologies, which correspond to the important computations to detect whether A provides a valid
input in its FRO queries:
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• k 4-satisfies (pw, dk, pek, fσ): k = KEY(dk, f̂σ(pw, pek));
• k O-satisfies (pw, pdk, ek, fσ): k = KEY(dk∗, ek) with dk∗ = EXT(pw, pdk, f̂σ).

where the algorithm EXT can be invoked because the Equivocability of the underlying NIKE with asso-
ciated functions holds in the RO model.
When A corrupts the party Pj that plays the role of server:

S first generates msg = (pek0, ek0) with (pek0, pdk0)
$← GEN(pp) and (ek1, dk1)

$← GEN(pp). After
receiving the message msg′ = (ek′0, pek

′
1), S distinguishes the following cases:

• In the case thatA has queriedFRO2
on “sid|i|j|msg|msg′|k1|pw” such that k1 4-satisfies (pw, dk1, pek

′
1, f̂1).

Given pek′1, the Type-II(ii) Intractability ensures that A can only makes one such valid query. In this
case, S sends (TestPwd, sid,Pi, pw) to FDle-mPAKE. Due to the equivocability of underlying homomor-
phic NIKE with associated functions, S can compute the secret key of f̂0(pw, pek0) using pdk0. Since
S also knows dk1 and pw, it can proceed as if pw was the input. Upon completing the protocol and
obtaining a session key SK∗, send (NewKey, sid,Pi,SK∗) to FDle-mPAKE.

• Otherwise, S executes the sub-protocol ProtPAKE using a random value as input, which is recorded to
program all subsequent FRO queries. If, before completing the execution,A has made a valid query to
FRO2 with a password guess pw, S sends (TestPwd, sid,Pi, pw) followed by (NewKey, sid,Pi,SK∗) to
FDle-mPAKE, where SK∗ is computed using pw as input based on the protocol description. Otherwise, S
sends (RegisterTest, sid,Pi) followed by (NewKey, sid,Pi,SK∗) to FDle-mPAKE, where SK∗ is randomly
chosen. In particular, for the latter case, whenA later makes a valid query toFRO3

(that requires a valid
query to FRO2

in advance) with a password guess pw, S sends (LateTestPwd, sid,Pi, pw) to FDle-mPAKE

and uses the replied session key to program the answer for the corresponding query to FRO3 .

It can be verified that if A makes correct password guess before the protocol completes with a session
key, FDle-PAKE will make the honest party Pi outputs the session key determined by S; otherwise, a random
session key is output. For the case that A makes a correct late password guess, it can compute to the same
session key as the honest party.

When A corrupts the party Pi that plays the role of client:

Similar proof idea is also applied here. After receiving the message msg = (pek0, ek1), S generates
msg′ = (ek′0, pek

′
1) with (ek′0, dk

′
0)

$← GEN(pp) and (pek′1, pdk
′
1)

$← GEN(pp) and executes the sub-protocol
ProtPAKE using a random value as input, which is recorded to program all subsequent FRO queries.

• If, before completing the execution of ProtPAKE, A has queried FRO1
on “sid|i|j|msg|msg′|k0|pw” such

that k0 4-satisfies (pw, dk′0, pek0, f̂0). Similarly, given pek0, the Type-II(ii) Intractability ensures that
A can only makes one such valid query. In this case, S sends (TestPwd, sid,Pj , pw) followed by
(NewKey, sid,Pi,SK∗) to FDle-mPAKE, where SK∗ is computed using pw as input based on the proto-
col description.

• Otherwise, S sends (RegisterTest, sid,Pi) followed by (NewKey, sid,Pj ,SK∗) to FDle-mPAKE in order,
where SK∗ is randomly chosen. In particular, for the latter case, when A later makes a valid query to
FRO3

(that requires a valid query toFRO1
in advance) with a password guess pw, S sends (LateTestPwd,

sid,Pj , pw) toFDle-mPAKE and uses the replied session key to program the answer for the corresponding
query to FRO3 .

The detailed proof is given in Appendix C.3.

5 Extensions and discussions

In this section, we will present three important extensions and discuss the practicality of our main results
presented in Sec. 4.
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5.1 Extending the password space

Now, we show how to extend the password space. Given a sub-protocol ProtUNIT that UC-realizesFDle-mPAKE,
we can obtain a protocol that UC-realizes FDnle-PAKE for n ∈ N. We achieve this goal by: First, splitting a long
password inDn into n shorter passwords inD; Next, invoking n instances of the sub-protocol ProtUNIT with
each shorter password as input; Finally, XORing all output session keys.

Pi(NewSession, sid,Pi,Pj , pwi, client): Pj(NewSession, sid,Pj ,Pi, pwj , server):

Phrase pwi = pw1
i | . . . |pwni ; Phrase pwj = pw1

j | . . . |pwnj ;

For k ∈ [n]: For k ∈ [n]:
ssidk = sid|i|j|k; ssidk = sid|i|j|k;

inputki = (NewSession, ssidk,Pi,Pj , pwki , client); inputkj = (NewSession, ssidk,Pj ,Pi, pwkj , server);

ProtUNIT

inputki

SKki

inputkj

SKkj

Wait all SK1
i , . . . , SK

n
i ; Wait all SK1

j , . . . , SK
n
j ;

Output
⊕
k∈[n] SK

k
i as the session key. Output

⊕
k∈[n] SK

k
j as the session key.

Figure 7: Our password space extending protocol

Protocol execution. Assume two parties, Pi and Pj initially holding their inputs, (NewSession, sid,Pi,Pj ,
pwi, client) and (NewSession, sid,Pj ,Pi, pwj , server) received from the environment, respectively. In par-
ticular, pwi, pwj ∈ Dn. They execute as shown in Fig. 7 to negotiate a session key.

Theorem 6. Let n ∈ N. If the sub-protocol ProtUNIT UC-realizes FDle-mPAKE, then the protocol in Fig. 7 UC-realizes
FDnle-PAKE. Meanwhile, if the sub-protocol ProtUNIT UC-realizes FDmPAKE, then the protocol UC-realizes FDnPAKE.

Proof. We construct a simulator S that interacts with the functionality FDnle-PAKE and an environment Z .
Similarly, since we assume that the sub-protocol ProtUNIT UC-realizes the functionality FDle-mPAKE, in our
proof, we assume thatA operates within the FDle-mPAKE-hybrid world. For simplicity, we persist in referring
to A as a “real-world” adversary and denote functionality FDnle-PAKE throughout the proof as simply F ,
assume the adversary A is a “dummy” adversary, solely relaying all messages and computations to Z .
Since there are no interactions between parties in the real world, the simulator S only needs to simulate
the interactions between A and the functionality FDle-mPAKE. In particular, the simulator S is constructed
as shown in Fig. 8. Proof of indistinguishability between the real world and ideal world can be found in
Appendix D.

The proof idea outlined above can similarly be applied to show that if the sub-protocol ProtUNIT UC-
realizes FDmPAKE, then the protocol in Fig. 8 UC-realizes FDnPAKE. The necessary modifications involve re-
moving the parts that correspond to RegisterTest and LateTestPwd that are not included in the functional-
ities FDPAKE and FDnPAKE.

5.2 Upgrading to the standard UC security

The protocol shown in Fig. 6 only UC-realizes the functionality FDle-mPAKE, when the RO setup is functional
but the CRS setup falls back to gCRS. If combining with the password space extending protocol shown in
Fig. 8, it only achieves FDnle-PAKE. One might think our results are limited. Actually, we can easily achieve the
standard UC-security (i.e., FDnPAKE) by investigating the internal structure of ProtPAKE and slightly modifying
the simulator.

Recall the main difference between FDle-mPAKE and FDmPAKE is that the former allows the ideal-world
adversary to postpone its password guess until a session is complete, i.e., a session key is computed. To
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On (NewSession, sid,Pi,Pj , role) from F :
For k ∈ [n], set ssidk := sid|i|j|k, store a record 〈ssidk,Pi,Pj , role,⊥,⊥〉marked fresh and
send (NewSession, ssidk,Pi,Pj , role) to A.

On (TestPwd, ssidk,Pi, p̂wki ) from A on behalf of a corrupted party Pj :
If ∃〈ssidk,Pi,Pj , role,⊥,⊥〉 that is marked with fresh, update it as 〈ssidk,Pi,Pj , role, p̂wki ,⊥〉.

On (RegisterTest, ssidk,Pi) from A on behalf of a corrupted party Pj :
If ∃〈ssidk,Pi,Pj , role,⊥,⊥〉 that is marked with fresh, update it as 〈ssidk,Pi,Pj , role,>,⊥〉.

On (NewKey, ssidk,Pi, ŜK
k

i ) from A on behalf of a corrupted party Pj :
If ∃〈ssidk,Pi,Pj , role, pwki ,⊥〉 that is not marked completed:

• If pwki 6= ⊥ ∧ pwki 6= >, update it as 〈ssidk,Pi,Pj , role, pwki , ŜK
k

i 〉.
• Else if pwki = >, update it as 〈ssidk,Pi,Pj , role,>,>〉.
• Otherwise, update it as 〈ssidk,Pi,Pj , role,⊥,SKki 〉, where SKki

$← {0, 1}λ.

In all cases, mark this record with completed.

On (LateTestPwd, ssidk,Pi, p̂wki ) from A on behalf of a corrupted party Pj :
If ∃〈ssidk,Pi,Pj , role,>,>〉, do as follows:

• If for all k′ ∈ [n] with k′ 6= k, pwk
′

i 6= > ∧ pwk
′

i 6= ⊥ holds, then set pw∗ := pw1
i | . . . |pwni ,

where pwki := p̂w
k
i . In addition, send (LateTestPwd, sid,Pi, pw∗) to F . After receving a

reply SK, set SKki := SK
⊕

k′∈[n]\{k} SK
k′

i .

• Otherwise, randomly choose SKki
$← {0, 1}λ.

In both cases, send SKki to A and update this record as 〈ssidk,Pi,Pj , role, pw∗,SKki 〉.

Extracting A’s password guess:
If ∃〈ssidk,Pi,Pj , role, pwki 6= ⊥, ∗〉 for all k ∈ [n], where ssidk = sid|i|j|k:

• If pwki 6= > for all k ∈ [n], set pw∗ := pw1
i | . . . |pwni and send (TestPwd, sid,Pi, pw∗) to F .

• Otherwise, send (RegisterTest, sid,Pi) to F .

Computing the session key:
If ∃〈ssidk,Pi,Pj , role, ∗,SKki 6= ⊥〉 for all k ∈ [n], where ssidk = sid|i|j|k:

• If SKki 6= > for all k ∈ [n], set SK∗ :=
⊕

k∈[n] SK
k
i .

• Otherwise, randomly choose SK∗
$← {0, 1}λ.

In both cases, send (NewKey, sid,Pi,SK∗) to F .

Figure 8: The simulator for password space extending protocol

have the standard FDmPAKE security, the simulator should always be able to extract the adversary’s input
before the session key is determined. We notice that both parties should contribute randomness to the
output in the sub-protocol ProtPAKE, however, the current black-box calls to ProtPAKE hinder to use its nice
features. But these do help!

At a high level, CRS-based PAKEs [KOY01, GL03, JG04, CHK+05, ACP09, KV09, GK10, BBC+13, ABP15],
are based on PKE with associated Smooth Projective Hash Function (SPHF, Appendix A.6) with the follow-
ing design:

• Each party sends a ciphertext encapsulating the party’s password to and receives a projection key
from its peer party.

• Given a specific ciphertext and projection key, if the two parties share the same input password, they
can use different ways to compute the same SPHF hash, using either the witness (i.e., the randomness)
used to generate the ciphertext, or the secret hashing key. The resulted SPHF value is used as a piece
of material to derive the session key.

Here, the smoothness of the underlying SPHF is essential: For an adversarially generated ciphertext, the
corresponding SPHF hash value is statistically indistinguishable from a random one. Consequently, the
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resulting session key is also statistically indistinguishable from a random session key.
Applying the aforementioned idea into the construction of the simulator in Fig. 14, we immediately have

that: If an adversary has never queried FRO on the correct value before the execution of the sub-protocol
ProtPAKE, the ciphertext generated by the adversary during the execution of ProtPAKE would not contain the
value ppw used by the honest party, except for negligible probability. In this case, the simulator can safely
send (TestPwd, ∗, ∗,⊥) and (NewKey, ∗, ∗,SK∗) to F , which yields a random session key for the honest
party. By doing so, the simulator avoids to use the interfaces RegisterTest and LateTestPwd. We can then
obtain a proof for achieving FDmPAKE instead of FDle-mPAKE.

5.3 Achieving post-quantum security

If we instantiate the sub-protocol ProtPAKE using a post-quantum secure one, our proposed protocol in
Fig. 6 is immediately post-quantum secure when the CRS setup is functional. This assurance remains valid
regardless of the underlying assumptions used to instantiate the underlying homomorphic NIKE scheme.
For an honest party acting as the client, the only message sent before executing ProtPAKE is msg = (pek0, ek1).
Importantly, this message reveals no information about the input password, even against an adversary
with unlimited computational power. In particular, pek0 hides the input password perfectly, while ek1 is
independently from the input password. The same applies to the server side. These facts indicate that even
if the homomorphic NIKE scheme is not post-quantum secure, an adversary would still need to guess the
password to compromise the post-quantum secure sub-protocol ProtPAKE. Therefore, we can conclude that
the entire protocol is post-quantum secure.

However, achieving post-quantum security when the RO setup is functional seems not easy, as it re-
quires a post-quantum secure homomorphic NIKE scheme. Isogeny-based NIKE schemes [DKS18,DHK+22,
Ler22] show promise in this area. However, we currently do not know how to instantiate such a scheme
with lattice-based techniques due to challenges in handling errors. Nonetheless, our design is fairly generic,
and we believe it can be adapted to the lattice-based setting — an interesting open question for future work.

5.4 Practicality Considerations

We now discuss the practicality of our protocol. While it incurs some overhead, it is less efficient than
existing PAKE protocols based on number-theoretic assumptions but still more efficient than those in the
plain model.

Let’s examine the internal structure of the two sub-protocols. As mentioned in the introduction, sub-
protocol ΠRO can be seen as a combination of two Half RO-PAKEs. The term “Half” does not imply reduced
overhead; thus, the overhead of ΠRO is roughly double that of existing RO-based PAKEs. Sub-protocol ΠCRS,
on the other hand, must handle a password space of at least {0, 1}6λ. In existing CRS-based PAKEs, the
password space is linked to the message space of the underlying encryption scheme. Therefore, selecting
appropriate parameters is crucial, as it can lead to parameter expansion in the underlying schemes.

If we instantiate the sub-protocol ProtPAKE using the DDH-based one-round PAKE protocol [KV11] and
assume λ = 128, our design would require an elliptic curve of prime order 768 bits. In this case, the ci-
phertext size and computation cost for the CRS-based sub-protocol expand by about 3 and 9 times, respec-
tively. However, this remains practical and can be further optimized using generalized Mersenne numbers
(GMN) with low Hamming weight. More importantly, this is the first PAKE to achieve UC security with
fine-grained CoR-setup. We leave further performance improvements as future work.
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A Supplemental Preliminaries

A.1 The UC framework

The UC framework of Canetti [Can01, Can00] is based on the real/ideal simulation paradigm, i.e., the
security is defined based on indistinghuishability between what an adversary can do in the real execution
of the protocol and what it can do in an ideal world that is secure by definition.

The real world. An execution of a protocol π in the real world consists of n ∈ N interactive Turing ma-
chines (ITMs) P1, . . . ,Pn representing the parties, along with two additional ITMs, an adversary A and an
environment Z , representing the external environment in which the protocol executes: Z gives inputs to
the honest parties, receives their outputs, and can communicate with A at any point during the execution;
A controls the corrupted parties and the delivery of messages between the parties. π completes once Z
stops activating other parties and outputs a single bit. Let REALπ,A,Z denote Z’s output in this execution.

The ideal world. A computation in the ideal world involves n dummy parties P1, . . . ,Pn, a simulator S,
an environment Z , and a functionality F . The environment Z gives inputs to the honest (dummy) parties
and receives their outputs; it also communicates with S at any point during the execution. As before,
the computation completes once Z stops activating other parties and outputs a single bit. Let IDEALF,S,Z
denote Z’s output in this execution.

Definition 1. We say a protocol π UC-realizes a functionality F , if for any PPT real world adversaryA, there exists
a PPT ideal world adversary S, such that for any PPT environment Z , the following holds.

REALπ,A,Z
c
≈ IDEALF,S,Z .
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The G-hybrid world. The execution of π proceeds as in the real world, however, the parties have access
to a functionality G. The communication of the parties with the functionality G is performed as in the ideal
world. Let REALGπ,A,Z denote Z’s output in this case.

Definition 2. We say a protocol π UC-realizes a functionality F in the G-hybrid world, if for any PPT real world
adversary A, there exists a PPT ideal world adversary S, such that for any PPT environment Z , the following holds.

REALGπ,A,Z
c
≈ IDEALF,S,Z .

If π is a protocol that UC-realizes the functionality F in the G-hybrid world, and ρ is another protocol
that UC-realizes the functionality G. Then the composition theorem guarantees that π composed with ρ
(i.e., replacing G by ρ) also UC-realizes the functionality F .

Remark 2. In this paper, we consider a malicious A, i.e., it may instruct the corrupted parties to deviate from
the protocol arbitrarily. We only consider static corruptions, which means the corrupted parties are fixed before the
protocol starts, and is known to Z , S and F . In addition, A fully controls the communication between the parties,
i.e., it can omit, change or inject messages.

A.1.1 UC with global subroutines

Note that the UC theorem requires that both the functionality F and the protocol π are subroutine respect-
ing. A protocol is subroutine respecting if, within any extended session of the protocol, the only machines
that take input from or provide output to machines outside this session are the main machines of a sub-
routine. The first attempt [CDPW07] to handle scenarios with multiple sessions of protocols within the
basic model of execution involved extending the UC framework, which increased complexity and caused
incompatibility with the basic UC framework. In the subsequent work [BCH+20], it has been shown that
the following formalism suffices for capturing universal composition with global subroutines within the
basic UC framework.

Say, a protocol π is said to UC-realize a functionality F in the presence of a global subroutine G if there exists
an efficient simulator S such that no environment can distinguish whether it is interacting with π and G, or
with F , G, and S. Here, G can be a single machine or an entire protocol instance, acting as a subroutine of π
or F , while also taking inputs directly from and providing outputs directly to the environment.

Therefore, without loss of generality, we consider our UC experiments in the hybrid world (as defined
in Definition 2) for functionality G, which can be either local or global.

A.1.2 The functionalities FCRS, GCRS and FRO

Here, we recall several functionalities for CRS and RO.
CRS and global CRS. The functionality FCRS as shown in Fig. 9 was defined by Cannetti and Fischlin
in [CF01]. The functionality GCRS as shown in Fig. 10 defined by Canetti et al. [CDPW07] is a shared func-
tionality, which differs from FCRS. FCRS provides the reference string only to the parties that take part in the
actual protocol execution. In particular, the environment does not have direct access to the reference string,
while GCRS provides the same string to all parties and all protocol executions.

Functionality FCRS

The functionality FCRS is parameterized by a distribution DCRS . When activated by any party with input sid, proceeds in the
following way:

• Find the recorded value r. If no value r has been previously recorded, then sample r in DCRS and record (sid, r) .
• Send (sid, r) to the activating party.

Figure 9: The functionality FCRS

Random oracle. The functionality FRO as shown in Fig. 11 for a RO was defined by Hofheinz and Müller-
Quade in [HM04], which captures an “idealisation” of a hash function. Given a query, it returns a random
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Functionality GCRS

The functionality GCRS is parameterized by a distribution DCRS . When activated by any party, proceeds in the following way:
If no value r has been previously recorded, then sample r in DCRS and records the value r.
Sends the value r to the activating party.

Figure 10: The functionality GCRS

Functionality FRO

The functionality FRO is parameterized by a domain D and a range R. It performs in the following way:
Initializes a list Lsid = ∅;
Upon receiving (sid, x) (with x ∈ D) from any party:

• If there is a pair (x, h∗) for some h∗ ∈ R in the Lsid, set h = h∗.

• Otherwise, randomly choose h $← R and store (x, h) in Lsid.

Once h is set, reply with (sid, h).

Figure 11: The functionality FRO

value. It also updates a local list Lsid in order to return the same value to similar queries. In particular, we
consider ROs with respect to domain D and range R.

A.2 The BPR-security definition for PAKE

Here, we present the definition for PAKE in the BPR framework [BPR00]. The following description and
definition is based on [ABP15], which in turn follows [BPR00, AFP05].

Let Client and Server denote the two sets of client and server users, respectively. Let User := Client∪Server
denote the set of all users. Each client user C ∈ Client holds a password pwC that is uniformly chosen from a
dictionary PW , while each sever S ∈ Server holds a password pwS,C for each client user C ∈ Client. Assume
each client password is chosen independently.

Execution of the protocol. Each user U ∈ User can execute the protocol multiple times with different
partners, and each execution instance is called a session. We use Πi

U to denote the i-th session of U. Each
session can be used only once associated with the following variables (that will be updated during the
course of the experiment):

sidiU, denotes the session id to keep track of different sessions. It is set as the (ordered) concatenation of
all messages sent and received by Πi

U.
pidiU, denotes the partner id. It is set as the identity of the user with whom Πi

U believes it is interacting.
acciU and termi

U, denote whether Πi
U has accepted or terminated.

SKiU, denotes the session key of Πi
U.

For every distinct users C ∈ Client and S ∈ Server, the two sessions Πi
C and Πj

S are called partnered if: (1)
sidiC = sidjS 6= NULL; and (2) pidiC = S, pidjS = C.

Security. The security is defined via an experiment played between a challenger and an adversary A. In
particular, the challenger should initialize the system and allow A adaptively query the following oracles:

Execute(C, i, S, j): For C ∈ Client and S ∈ Server, if both Πi
C and Πj

S have not been used, this oracle
executes as the protocol specification to activate them on C and S, respectively. The corresponding
transcript is returned. This models passive attacks.
Send(U, i, in_msg): For U ∈ User, this oracle sends a message in_msg to the session Πi

U, which computes
what the protocol says and returns a response message out_msg. This oracle models active attacks.
Corrupt(C): For C ∈ Client, this oracle returns pwC. This oracle models client corruptions.
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Corrupt(S, C, pw): For S ∈ Server and C ∈ Client, if pw = ⊥, this oracle returns the stored password pwS,C,
otherwise the stored password pwS,C is then changed to pw. This oracle models server corruptions.
Reveal(U, i): For U ∈ User, if Πi

U has accepted and terminated with a session key SKiU derived, this oracle
returns it. This oracle models session key leakages.
Test(U, i): This oracle is allowed to be queried for only once and the tested session Πi

U must be termi-
nated and accepted. To complete this query, a random coin b is flipped: if b = 1, the real session key
SKiU is returned; otherwise, a random session key is returned.

The adversary A finally outputs a bit b′. Let Succ denote the event that A succeeds, i,e., the tested
session Πi

U is fresh and b′ = b. For any U ∈ User, a session Πi
U is called fresh unless one of the following is

true at the conclusion of the experiment: (1) the session key has never been determined; or (2) A queried
Reveal on Πi

U or its partnered session; or (3) A corrupted password of C either via a query Corrupt(C) or via
a query Corrupt(·, C, ·) before Πi

U determining its session key, where C = U or the partnered session of Πi
U is

a session of C.

Definition 3. We say a protocol π is BPR-secure if:
(Correctness) For any partnered sessions Πi

C and Πj
S, it holds that acciC = accjS = true and SKiC = SKjS, i.e., both

sessions accept with the same session key;
(Security) For any non-empty dictionary PW and PPT adversary A who makes at most nSend online password-
guessing attacks via the Send oracle, it holds that

Advbpr
A,π := |Pr[Succ]− 1

2
| ≤ nSend/|PW|+ negl(λ).

A.3 BPR-security vs UC-security

In [CHK+05], Canetti et al. have shown that UC-security implies BPR-security. Here, we provide further
clarification of the differences between the two definitional frameworks. Consider the case that the adver-
sary corrupts one party and interacts with another honest party. Let x∗ denote the adversary’s input, and x
denote the honest party’s input.

In the BPR framework, to complete the security analysis, we need to construct a challenger to bound
the adversary’s advantage. Typically, in the thought experiment, the best attack for the adversary is
to launch online-guessing attack. Recall that, in the thought experiment in the BPR framework, the
challenger is already aware of the honest party’ input x. A direct extraction is not always a must; Often
the challenger could play an indirect extraction strategy.

More explicitly, consider a function f . (This f will be a hash function as we use in the next sections.)
Instead of extracting the adversary’s input x∗, now the challenger could be able to obtain/extract the
image of x∗. If that is the case, i.e., the challenger obtains a value y = f(x∗), then the challenger
can test if the value y is equal to f(x). This single-bit information will be sufficient for the challenger
to decide the adversary’s advantage. To the best of our knowledge, known instantiations of f(·) in
existing PAKEs (including the GK-design [GK10] we use in the next sections) are identity functions. In
our understanding, that is not necessary. As long as f is injective, i.e., ∀ x 6= x′, f(x) 6= f(x′), equality

test on x ?
= x∗ is equivalent to f(x)

?
= f(x∗).

Very differently, in the UC framework, to complete the security analysis, we need to construct a simu-
lator who should be able to directly extract the adversary’s input value x∗.

Recall that, in the UC framework, the input x of the honest party is provided by the environment,
and the simulator is not aware of the input x. (This is fundamentally different from the challenger in
the BPR framework, where the challenger is aware of the honest party’s input x.) More concretely, the
simulator first extracts the adversary’s input x∗. The simulator then invokes the PAKE functionality to
learn whether the adversary makes a correct password-guess.

Consider the case that x = x∗ holds (i.e., the adversary makes a correct password-guess). The challenger
in the BPR framework can halt the thought experiment and declare that the adversary wins. Because, in this
case, the adversary can compute the real session key by itself and trivially win the experiment. However,
the simulator in the UC framework still needs to continue simulating (the adversary’s view).
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A.4 Collision-resistant hash function family

Let Ĥ be a family of hash functions from domain X to range Y , i.e., Ĥ := {H : X → Y}. A collision-resistant
hash function family is defined as follows: For any distinct x1, x2 ∈ X , if H is chosen uniformly at random
from Ĥ, then the probability of findingH(x1) = H(x2) in polynomial time is negligible. Formally, we define
it as follows:

Definition 4. We say Ĥ is collision-resistant if for any PPT algorithm A, there exists a negligible function negl,

Pr

[
H $← Ĥ

(x1, x2)
$← A(H)

: x1 6= x2 andH(x1) = H(x2)

]
≤ negl(λ).

A.5 Public key encryption

A Public Key Encryption (PKE) scheme consists of the following polynomial time algorithms:
KG(1λ): on input a security parameter 1λ, this probabilistic algorithm outputs a pair of public-secret
keys (pk, sk) ∈ PK × SK.
ENC(pk,m): on input public key pk ∈ PK, a message m ∈ M, this probabilistic algorithm outputs a
ciphertext CT ∈ CT . In particular, it uses an internal randomness r ∈ R.
DEC(sk,CT): on input secret key sk ∈ SK and a ciphertext CT ∈ C, this deterministic algorithm outputs
a message m ∈M or a special symbol ⊥ indicating the ciphertext is invalid.

where PK, SK,M, R and C are the sets of public keys, secret keys, messages, randomness and cipher-
texts.

A labeled PKE scheme is defined in a similar way but adapted to support the inclusion of labels (as
inputs) when encrypting and decrypting. We require normal correctness.
CPA-secure PKE. For any PPT algorithm A = (A0,A1), there exists a negligible function negl such that:

Pr

∣∣∣∣∣∣∣∣∣∣∣


b

$← {0, 1};
(pk, sk) = KG(1λ);

|m0| = |m1|; b′ = b. (m0,m1)
$← A0(1λ, pk);

CT∗ = ENC(pk,mb);

b′
$← A1(1λ, pk,CT∗).

− 1/2

∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

CCA-secure labeled PKE. For any PPT algorithm A = (A0,A1), there exists a negligible function negl such
that:

Pr

∣∣∣∣∣∣∣∣∣∣∣


b

$← {0, 1};
Pr[(pk, sk) = KG(1λ);

|m0| = |m1|; b′ = b. (`∗,m0,m1)
$← ADEC(sk,·,·)

0 (1λ, pk);
CT∗ = ENC(pk, `∗,mb);

b′
$← ADEC(sk,·,·)

1 (1λ, pk).

− 1/2

∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where A’s queries are forbade on the input (`∗,CT∗).

A.6 Smooth projective hash function

Now, we define Smooth Projective Hash Function (SPHF). The descriptions and definitions are based on
[BBC+13]. For a clearer formulation, we give the definitions in a manner specific to PKE. Fix a PKE scheme
(KG, ENC,DEC) (cf. Appendix A.5). Let CT andM denote the ciphertext and message spaces with respect
to a fixed public key pk, where (pk, sk)

$← KG(1λ). Define a set X := {(CT ∈ CT ,m ∈ M)}. For m ∈ M,
let Lm := {(CT,m)| DEC(sk,CT) = m} ⊂ X and L :=

⋃
m∈M Lm. For each CT ∈ CT , there is at most one

m ∈ M for which (CT,m) ∈ L. An associated SPHF scheme consists of the following polynomial time
algorithms:

PG(1λ): this probabilistic algorithm generates a public parameter Γ. Note that Γ determines a set X
and a language L as defined above, and a set V of computed hash values. A public key pk is implicitly
fixed by Γ.
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HKG(Γ): this probabilistic algorithm generates a hashing key hk for Γ.
PKG(Γ, hk,CT): this deterministic algorithm derives the projective key hp of hk, depending on CT.
HASH(Γ, hk, (CT,m)): this deterministic algorithm derives the hash value from the hashing key hk, for
the tuple (CT,m) ∈ X .
PHASH(Γ, hp, (CT,m), w): this deterministic algorithm derives the hash value from the projection key
hp, and the witness w for an element (CT,m) ∈ L. In particular, w equals the randomness used when
generating the ciphertext CT that encrypts m.

Correctness. For all (CT,m) ∈ L with a witness w of this fact, it holds that HASH(Γ, hk, (CT,m)) =
PHASH(Γ, hp, (CT,m), w).

Smoothness for SPHF. For any Γ
$← PG(1λ) and (CT,m) /∈ L, the following two distributions are statistical

close:  hk
$← HKG(Γ);

(CT,m, hp, k) hp = PKG(Γ, hk,CT);
k = HASH(Γ, hk, (CT,m)).

 ,


hk

$← HKG(Γ);
(CT,m, hp, k) hp = PKG(Γ, hk,CT);

k
$← V.


B Supplemental Material for Homomorphic NIKE with Associated Func-

tions

The proof of Theorem 1 is quite easy so we omit it here. Then we prove Theorem 2 and Theorem 3 in the
next subsections, respectively.

B.1 Proof of Theorem 2

Recall: Given two hash functions H0 : X → EK and H1 : X → EK, for any ek, pek ∈ EK and x ∈ X , the
associated functions (for σ ∈ {0, 1}) derived from PPK are defined as follows:{

fσ(x, ek) := ek · Hσ(x);

f̂σ(x, pek) := pek/Hσ(x).

It is obvious that for pek← fσ(x, ek), ek = f̂σ(x, pek) holds. In addition, for any ek′ ∈ EK, f̂σ(x, pek·ek′) =

f̂σ(x, pek) · ek′ holds.

Perfect hiding. For any x ∈ X we have that

Pr[PEK = pek|X = x] = Pr[pek = EK · Hσ(x)|X = x]

= Pr[EK = pek/Hσ(x)] =
1

|X |
,

where PEK, EK and X denote three different variables. In particular, EK is assigned by invoking the
probabilistic algorithm GEN. Due to this, we have that

Pr[X = x|PEK = pek] =
Pr[X = x ∧ PEK = pek]

Pr[PEK = pek]

=
Pr[PEK = pek|X = x] · Pr[X = x]

Σx∈X Pr[PEK = pek|X = x] · Pr[X = x]

=

1

q
· Pr[X = x]

Σx∈X
1

|X |
· Pr[X = x]

=
Pr[X = x]

Σx∈X Pr[X = x]

= Pr[X = x].
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Equivocability. When Hσ is modeled as RO. Let the algorithm EXT has the ability of programming RO such

that it can compute the discrete-log ofHσ(x) easily, then compute the secret key of f̂σ(x, pek) with pdk.

Type-I(i) Intractability. Assume there exists an algorithm A that breaks the Type-I(i) intractability, we can
construct an algorithm B to break the one-wayness of the underlying homomorphic NIKE scheme as fol-
lows:

• Input a challenge tuple (ek∗0, ek
∗
1).

• Initialize two empty lists L0 and L1.
• For a freshHσ(x) query:

– If (x, ek, dk) ∈ Lσ , return ek;

– Otherwise, generate (ek, dk)
$← GEN(pp), return ek and append (x, ek, dk) into the list Lσ .

• Set (pek, pek′) = (ek∗0, ek
∗
1) and send (pek, pek′) as the challenge tuple to A.

• After receiving the answer (x, k) from A, if there exist (x, ek, dk) ∈ L0 and (x, ek′, dk′) ∈ L1. Output
k · KEY(dk, ek∗1/ek

′) · KEY(dk′, ek∗) as the solution; otherwise, output ⊥.

If A has never query both H0 and H1 on x, then its answer (x, k) cannot be true. In the case that A has
queried, if A outputs the correct answer, the following equation holds:

k = Key(pek/H0(x), pek′/H1(x)) = Key(ek∗0/ek, ek
∗
1/ek

′).

We can adjust the equation to derive the value of Key(ek∗0, ek
∗
1). Therefore, B computes the correct answer.

Type-I(ii) intractability. Here, we fix σ = 0. The analysis for σ = 1 is similar. Assume there exists an algorithm
A that breaks the Type-I(ii) intractability, we can construct an algorithm B to break the one-wayness of the
underlying homomorphic NIKE scheme. Given a challenge tuple (ek∗0, ek

∗
1), B works as follows:

• Initialize two empty lists L0 and L1.
• For a freshH0(x) query:

– If (x, ek, dk) ∈ L0, return ek;

– Otherwise, generate (ek, dk)
$← GEN(pp), return ek and append (x, ek, dk) into the list L0.

• For a freshH1(x) query:

– If (x, δ, ek′, dk′) ∈ L1, return ek′;

– Otherwise, choose a random bit δ, generate (ek′, dk′)
$← GEN(pp), and append (x, δ, ek′, dk′) into

the list L1. If δ = 0, return ek′; else if δ = 1, return ek′ · ek∗1.

• Set pek = ek∗0 and send pek as the challenge to A.
• After receiving the answer (pek′, (x0, k0), (x1, k1)) fromA, if there exist (x0, ek0, dk0) ∈ L0, (x1, ek1, dk1) ∈
L0, (x0, δ0, ek

′
0, dk

′
0) ∈ L1 and (x1, δ1, ek

′
1, dk

′
1) ∈ L1, do as follows:

– Compute the following values:

∗ k̄1 = KEY(dk0, ek
∗
0 · pek

′);
∗ k̄2 = KEY(dk1, ek

∗
0 · pek

′);
∗ k̄3 = KEY(dk0, ek

′
0);

∗ k̄4 = KEY(dk1, ek
′
1);

∗ k̄5 = KEY(dk0, ek
∗
1);

∗ k̄6 = KEY(dk1, ek
∗
1).

– If δ1 = 1 and δ0 = 0, output k∗ = (k0 · k̄1 · k̄4 · k̄6)/(k1 · k̄2 · k̄3).

– Else if δ1 = 0 and δ0 = 1, output k∗ = (k1 · k̄2 · k̄3 · k̄5)/(k0 · k̄1 · k̄4).

– Otherwise, output ⊥.
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IfA has never query bothH0 andH1 on x0 and x1, then its answer (x, k) cannot be true. In the case that
A has queried, if A outputs the correct answer, then the following equations hold simultaneously:{

k0 = Key(pek/H0(x0), pek′/H1(x0)) = Key(ek∗0/ek0, pek
′/(ek′0 · (ek

∗
1)δ0));

k1 = Key(pek/H0(x1), pek′/H1(x1)) = Key(ek∗0/ek1, pek
′/(ek′1 · (ek

∗
1)δ1)).

Note that δ0 6= δ1 holds with probability 1/2. In this case, we can compute k0/k1 and adjust the resulted
equation to derive the value of Key(ek∗0, ek

∗
1). Therefore, B computes the correct answer too.

Type-II(i) intractability. Here, we fix σ = 0. The analysis for σ = 1 is similar. Assume there exists an algorithm
A that breaks the Type-II(i) intractability, we can construct an algorithm B to break the one-wayness of the
underlying homomorphic NIKE scheme. Given a challenge tuple (ek∗0, ek

∗
1), B works as follows:

• Initialize an empty list L0.
• For a freshH0(x) query:

– If (x, ek′, dk′) ∈ L0, return ek;

– Otherwise, generate (ek′, dk′)
$← GEN(pp), return ek and append (x, ek′, dk′) into the list L0.

• Set (ek, pek) = (ek∗0, ek
∗
1) and send (ek, pek) as the challenge tuple to A.

• After receiving the answer (x, k) fromA, if there exist (x, ek′, dk′) ∈ L0. Output k ·KEY(dk′, ek∗0) as the
solution; otherwise, output ⊥.

If A has never query both H0 and H1 on x, then its answer (x, k) cannot be true. In the case that A has
queried, if A outputs the correct answer, the following equation holds:

k = Key(ek, pek/H0(x)) = Key(ek∗0, ek
∗
1/ek

′).

We can adjust the equation to derive the value of Key(ek∗0, ek
∗
1). Therefore, B computes the correct answer.

Type-II(ii) Intractability. Here, we fix σ = 0. The analysis for σ = 1 is similar. Assume there exists an
algorithmA that breaks the Type-II(ii) intractability of the underlying homomorphic NIKE scheme, we can
construct an algorithm B to break the one-wayness of the underlying homomorphic NIKE scheme. Given
a challenge (ek∗0, ek

∗
1), B works as follows:

• Initialize two empty lists L0.
• For a freshH0(x) query:

– If (x, δ, ek′, dk′) ∈ L1, return ek′;

– Otherwise, choose a random bit δ, generate (ek′, dk′)
$← GEN(pp), and append (x, δ, ek′, dk′) into

the list L1. If δ = 0, return ek′; else if δ = 1, return ek′ · ek∗1.

• Set ek = ek∗0 and send ek as the challenge to A.
• After receiving the answer (pek, (x0, k0), (x1, k1)) from A, if there exist (x0, δ0, ek

′
0, dk

′
0) ∈ L0 and

(x1, δ1, ek
′
1, dk

′
1) ∈ L1, do as follows:

– Compute k̄1 = KEY(dk′0, ek
∗
0) and k̄2 = KEY(dk′1, ek

∗
0);

– If δ1 = 1 and δ0 = 0, output k∗ = (k0 · k̄1)/(k1 · k̄2).

– Else if δ1 = 0 and δ0 = 1, output k∗ = (k1 · k̄2)/(k0 · k̄1).

– Otherwise, output ⊥.

If A has never query H0 on x0 and x1, then its answer (x, k) cannot be true. In the case that A has
queried, if A outputs the correct answer, then the following equations hold simultaneously:{

k0 = Key(ek, pek/H0(x0)) = Key(ek∗0, pek/(ek
′
0 · (ek

∗
1)δ0));

k1 = Key(pek/H0(x1), ek) = Key(ek∗0, pek/(ek
′
1 · (ek

∗
1)δ1)).

Note that δ0 6= δ1 holds with probability 1/2. In this case, we can compute k0/k1 and adjust the resulted
equation to derive the value of Key(ek∗1, ek

∗
1). Therefore, B computes the correct answer too.
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B.2 Proof of Theorem 3

Recall: Given two different generators M,N ∈ EK (from public parameters), for any ek, pek ∈ EK and
x ∈ X , the associated functions derived from SPAKE2 are defined as follows:{

f0(x, ek) := ek ·Mx; f̂0(x, pek) := pek/Mx;

f1(x, ek) := ek ·Nx; f̂1(x, pek) := pek/Nx.

For σ ∈ {0, 1}, it is obvious that for pek← fσ(x, ek), ek = f̂σ(x, pek) holds. In addition, for any ek′ ∈ EK,
f̂σ(x, pek · ek′) = f̂σ(x, pek) · ek′ holds.

Perfect hiding. This can be proved by using the same proof idea in the previous subsection.

Equivocability. Since (M,N) are treated as CRS, this can be easily proved.

Type-I(i) intractability. Assume there exists an algorithm A that breaks the Type-I(i) intractability, we can
construct an algorithm B to break the one-wayness of the homomorphic NIKE scheme. Given a challenge
tuple (ek∗0, ek

∗
1), B works as follows:

• Generate (M, dkM )
$← GEN(pp) and (N, dkN )

$← GEN(pp), and open (M,N) as the public parameters.
• Set (pek, pek′) = (ek∗0, ek

∗
1) and send (pek, pek′) as the challenge tuple to A.

• After receiving the answer (x, k) fromA, output k ·KEY(Mx, dkxM , pek
′/Nx) ·KEY(Nx, dkxN , ek

∗
0) as the

solution.

If A outputs the correct answer, the following equation holds:

k = Key(pek/Mx, pek′/Nx) = Key(ek∗0/M
x, ek∗1/N

x).

We can adjust the equation to derive the value of Key(ek∗0, ek
∗
1). Therefore, B computes the correct answer

too.

Type-I(ii) intractability. Here, we fix σ = 0. The analysis for σ = 1 is similar. Assume there exists an algorithm
A that breaks Type-I(ii) intractability, we can construct an algorithm B to break the one-wayness of the
underlying homomorphic NIKE scheme. Given a challenge tuple (ek∗0, ek

∗
1), B works as follows:

• Generate (M, dkM )
$← GEN(pp) and N = ek∗1, and open (M,N) as the public parameters.

• Set pek = ek∗0 and send pek as the challenge tuple to A.
• After receiving the answer (pek′, (x0, k0), (x1, k1)) from A, if x0 6= x1:

– Compute k̄1 = KEY(Mx0 , dkx0

M , pek
′/Nx0) and k̄2 = KEY(Mx1 , dkx1

M , pek
′/Nx1).

– Output k∗ = ((k0 · k̄1)/(k1, k̄2))1/(x1−x0).

If A outputs the correct answer, then the following equations hold simultaneously:{
k0 = Key(pek/Mx0 , pek′/Nx0) = Key(ek∗0/M

x0 , pek′/(ek∗1)x0);
k1 = Key(pek/Mx1 , pek′/Nx1) = Key(ek∗0/M

x1 , pek′/(ek∗1)x1).

In the case that x0 6= x1, we can compute k0/k1 and adjust the resulted equation to derive the value of
Key(ek∗0, ek

∗
1). Therefore, B computes the correct answer.

Type-II(i) intractability. Here, we fix σ = 0. The analysis for σ = 1 is similar. Assume there exists an algorithm
A that breaks Type-II(i) intractability, we can construct an algorithm B to break the one-wayness of the
underlying homomorphic NIKE scheme. Given a challenge tuple (ek∗0, ek

∗
1), B works as follows:

• Replace the generation of the public parameter M as (M, dkM )
$← GEN(pp).

• Set (ek, pek) = (ek∗0, ek
∗
1) and send (ek, pek) as the challenge tuple to A.

• After receiving the answer (x, k) from A, output k · KEY(Mx, dkxM , ek
∗
0) as the solution.

If A outputs the correct answer, the following equation holds:

k = Key(ek, pek/Mx) = Key(ek∗0, ek
∗
1/M

x).
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We can adjust the equation to derive the value of Key(ek∗0, ek
∗
1). Therefore, B computes the correct answer.

Type-II(ii) intractability. Here, we fix σ = 0. The analysis for σ = 1 is similar. Assume there exists an
algorithmA that breaks Type-II(ii) intractability, we can construct an algorithm B to break the one-wayness
of the underlying homomorphic NIKE scheme. Given a challenge tuple (ek∗0, ek

∗
1), B works as follows:

• Replace the generation of the public parameter M as M = ek∗0.
• Set ek = ek∗1 and send ek as the challenge to A.
• After receiving the answer (pek, (x0, k0), (x1, k1)) from A, output

k∗ = (k0/k1)1/(x1−x0).

If A outputs the correct answer, then the following equations hold simultaneously:{
k0 = Key(pek/Mx0 , ek) = Key(pek/(ek∗0)x0 , ek∗1);
k1 = Key(pek/Mx1 , ek) = Key(pek/(ek∗0)x1 , ek∗1).

In the case that x0 6= x1, we can compute k0/k1 and adjust the resulted equation to derive the value of
Key(ek∗0, ek

∗
1). B computes the correct answer too.

C Supplementary Proofs in the UC Framework

Here, we first prove that a global CRS setup is useless to UC-realize FDPAKE. Then we present the detailed
security proofs of our PAKE protocol in the UC framework. In particular, we will complete the UC-security
analysis.

C.1 Proof of Theorem 4

Intuitively, a global CRS is also obtainable by the environment, which prevents the simulator from choosing
the CRS on its own (in order to set up a trapdoor). Therefore, the simulator gains no more advantage. In
order to deduce contradictions, we assume there exists a protocol π that UC-realizes FDPAKE in the GCRS-
hybrid world.

First, consider an environment Z who plays the role of an honest party Pj , and starts an execution
instance of the protocol π with another honest part Pi and a dummy adversary A (who corrupts no par-
ties and simply forwards messages between Z and the two parties as instructed). In addition, all parties
(including Z) access the shared functionality GCRS. The environment Z randomly chooses a password pw
from {0, 1}`, and provides Pi with (NewSession, sid,Pi,Pj , pw, server) as input. The environment Z also
internally executes the code of Pj with (NewSession, sid,Pj ,Pi, pw, client) as input, and let A to forward
all messages between itself and Pi. When the protocol terminates, Z compares the session-key SKj that it
obtained by playing Pj to the session-key SKi that Pi outputs. If SKi = SKj and SKi 6= ⊥, Z outputs 1; oth-
erwise, Z outputs 0. Remark that the protocol π runs in an unauthenticated channel, Pi cannot distinguish the
messages sent by the real honest party Pj and the messages sent by Z in the name of Pj . By the assumption
that π is non-trivial, we have that, in a real execution, Z outputs 1 except with negligible probability.

Next, consider the ideal-world simulator S that is guaranteed to exist by the security of π. Simulator S
interacts with the FDPAKE functionality, the GCRS functionality and with Z (who follows the same strategy as
above). Due to the security of π, it holds that except with negligible probability, SKi = SKj and SKi 6= ⊥ in
this ideal execution. Therefore, in an ideal execution, Z outputs 1 except with negligible probability.

Then, consider a different environment Z ′ in the real world, who plays the role of the honest party
Pi in a specific way, and starts an execution instance of the protocol π with the honest party Pj and a
dummy adversary A′. In particular, the environment Z ′ internally plays the simulator S, a copy of the
functionality FDPAKE, and an ideal-mode honest party Pi. In addition, Z ′ will run the algorithm for S using
the same CRS as obtained from GCRS to respond to all of S’s GCRS queries. Next, Z ′ hands (NewSession,
sid,Pi,Pj , pw, server) to its internal honest party Pi and (NewSession, sid,Pj ,Pi, pw, client)) to the external
honest party Pj as inputs, respectively. Furthermore, Z ′ instructsA′ to forward all messages between itself
and Pj . When the protocol terminates, Z ′ compares the session key SKi that it obtained from the internal
honest party Pi and the session-key SKj that Pj outputs. If SKi = SKj and SKi 6= ⊥, Z outputs 1; otherwise,
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Z outputs 0. The main observation is that the real execution of Z ′ withA′ and the real honest Pj is identical
to the ideal execution of Z above with S and FDPAKE. Therefore, we have that, in this real execution, Z ′
outputs 1 except with negligible probability.

Last, consider Z ′ in the ideal world, it internally runs the simulator S above, and externally interacts
with a new simulator S ′ to emulateA′. Note that, all messages that S ′ received are simulated by S. Neither
S nor S ′ are given the input handed to the internal honest party Pi and the external honest party Pj . There-
fore, as long as neither simulator guesses a password to its copy of FDPAKE, their execution is independent
of the password pw. To make Z ′ outputs 1, S and S ′ should both guess the correct password pw. Since
pw is randomly chosen from D, thus the correct password can be guessed with probability at most 1/|D|.
Therefore, the probability 1−1/|D| that Z ′ outputs 0 would not be negligible. This contradicts the assumed
security of π and concludes the proof.

The above proof idea also applies to the case that FDle-PAKE, FDmPAKE or FDle-mPAKE is considered.

C.2 Proof of Theorem 5 in Case-(1)

Now, we complete the proof of Theorem 5 in Case-(1). In particular, we investigate our protocol shown in
Fig. 6. In particular, the protocol runs in theF D̂mPAKE-hybrid model. We then prove this protocol UC-realizes
FDmPAKE in the F D̂mPAKE-hybrid world.

For a simulator S and an adversary A, let IDEALFDmPAKE,S,Z denote the output of the environment Z in

the ideal world when interacting with S, and let REALF
D̂
mPAKE

π,A,Z denote the output ofZ in the real world (i.e., a

F D̂mPAKE-hybrid world) when the protocol π in Fig. 6 is being run. We should prove that these distributions

are computationally indistinguishable, i.e., IDEALFDmPAKE,S,Z
c
≈ REAL

FD̂mPAKE

π,A,Z .
In the next, we will consider a sequence of hybrid executions Execi for 0 ≤ i ≤ 9 and let EXECi,A,Z

denote the view of Z in Execi, where Exec0 corresponds to the real-world execution. We will show that
EXECi,A,Z

c
≈ EXECi−1,A,Z for all i, and argue that the final view is identical to IDEALFDmPAKE,S,Z .

Execution Exec0: Real
This is the real execution of Π where the environment Z runs the protocol (Fig. 6) with parties Pi and Pj ,
both having access to F D̂mPAKE, and a dummy adversary A.

Claim 1. EXEC0,A,Z = REAL
FD̂mPAKE

π,A,Z .

Execution Exec1: Adding Ideal Layout
This is same as the real execution, but adding two dummy parties and a dummy functionality F , and all
previously existing nodes (except Z) grouped into one machine called the simulator S.

Claim 2. EXEC1,A,Z = EXEC0,A,Z

Proof. This is an internal modification, such that the claim holds.

Execution Exec2: Adding Book-Keeping and NewKey Interface
Modifications to F : We now allow F to do all record-keeping and label all instances described in Fig. 4. F
still forwards NewSession queries from the dummy parties in their enitemizey (including the password) to
S.
Modifications to S: S creates NewKey queries for F from whatever output the simulated parties produce.
S also locally labels for all simulated instances with an initialized label fresh.

Claim 3. EXEC2,A,Z = EXEC1,A,Z

Proof. These modifications are internal modifications, such that the claim holds.
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Execution Exec3: Allowing F to Set Session Keys for Two Honest Parties
Modifications to F : We now allow F to follow the instructions in Fig. 4 to set session keys when Pi and Pj
are both honest and no matter pwi = pwj or pwi 6= pwj .
Modifications to S: When simulating two honest instances with the adversary A who just forwards all
messages sent between the two parties:

• On (NewSession, sid,Pi,Pj , pwi, client) from F to Πsid
Pi :

– Generate (ek0, dk0)
$← GEN(pp), pek0 = f0(pw, ek0) and (ek1, dk1)

$← GEN(pp). Send msg = (pek0,
ek1) to A on behalf of Pi.

• On (NewSession, sid,Pj ,Pi, pwj , server) from F to Πsid
Pj :

– If it previously received msg = (pek0, ek1) from A, continue.

– Generate (ek′0, dk
′
0)

$← GEN(pp), (ek′1, dk
′
1)

$← GEN(pp) and pek′1 = f1(pw, ek′1). Send msg′ =
(ek′0, pek

′
1) to A on behalf of Pj .

– Send (NewSession, ssid,Pj ,Pi, client) toA, where the sub-session identifier ssid = sid|i|j|msg|msg′

and store 〈ssid,Pj ,Pi, client〉marked fresh.

• On msg′ = (ek′0, pek
′
1) from A to Πsid

Pi :

– If it previously sent msg = (pek0, ek1) to A, wait (NewSession, ssid,Pj ,Pi, ppwj , client). Until it
comes, send (NewSession, ssid,Pi,Pj , server) to A and store 〈ssid,Pi,Pj , server〉marked fresh.

• On (NewKey, ssid,Pi, ∗) from A to F D̂mPAKE.

– If there exists a record 〈ssid,Pi,Pj , role〉 not marked completed, then do:

∗ If the record is fresh and there exists a completed record 〈ssid,Pj ,Pi, role′, ϑj〉 with role 6=
role′ that was fresh when Pj output (ssid, ϑj), then phrase ssid into sid|i|j|msg|msg′. If Πsid

Pj
and Πsid

Pi use the same password, set ϑi = ϑj .
∗ In other cases, set ϑi = {0, 1}λ.

Finally, append ϑi to record 〈ssid,Pi,Pj , role〉, mark it completed, output (ssid, ϑi) to Pi.

– Send (NewKey, sid,Pi,SK∗) to F with SK∗
$← {0, 1}λ.

Claim 4. EXEC3,A,Z
c
≈ EXEC2,A,Z .

Proof. The prefect hiding property of the underlying homomorphic NIKE with associated functions guar-
antes that the modifications for the way generating pek0 and pek′1 does not introduce any observable differ-
ence.

Execution Exec4: Simulating An Honest Client Instance with Corrupt Partner
Modifications to S: When simulating as honest client instance with corrupt partner, do as follows:

• On (NewSession, sid,Pi,Pj , pwi, client) from F :

– Generate (ek0, dk0)
$← GEN(pp), pek0 = f0(pw, ek0) and (ek1, dk1)

$← GEN(pp). Send msg =
(pek0, ek1) to A on behalf of Pi.

– Wait msg′ = (ek′0, pek
′
1). Until it comes, send (NewSession, ssid,Pi, server) to A, where the sub-

session identifier ssid = sid|i|j|msg|msg′. In addition, store 〈ssid,Pi,Pj , server〉marked fresh.

• On (TestPwd, ssid,Pi, ppw∗) from A to F D̂mPAKE:

– Phrase ssid into sid|i|j|msg|msg′.

– Phrase ppw∗ into η1|η2|η3, and try all possible passwords to find pw∗ that makes Equations 1 hold
simultaneously, otherwise set pw∗ = ⊥.

∗ If pw∗ = pwj , store a record 〈sid,Pi, θi〉with θi = θ∗i .

∗ Otherwise, store a record 〈sid,Pi, θi〉with θi
$← {0, 1}λ.
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• On (NewKey, ssid,Pi, ϑ∗) from A to F D̂mPAKE:

– Send (NewKey, sid,Pi,SK∗) toF , where SK∗ = θi⊕ϑi with θi retrieved from the record 〈sid,Pi, ∗〉.

Claim 5. EXEC4,A,Z
c
≈ EXEC3,A,Z .

Proof. First, the modification of the way generating pek0 does not introduce any observable difference.
Second, since (H1,H2,H3) are all collision resistant, and the invoked algorithms in Equations 1 are all de-
terministic, if any suitable password can be found, that should be unique except with negligible probability.
The found password pw∗ is identical to the corrupted party Pj ’s input. If both parties use different pass-
words, they also use different passwords to invoke the functionality F D̂mPAKE. In this case, the F D̂mPAKE

will send independent randomly chosen sub-session keys to both parties, which yields both parties output
independent randomly chosen final session keys.

Summarizing all, this claim holds.

Execution Exec5: Simulating An Honest Server Instance with Corrupt Partner
Modifications to S: When simulating an honest server instance with corrupt partner, do as follows:

• On (NewSession, sid,Pj ,Pi, pwj , server) from F :

– Wait msg = (pek0, ek0) from A. Until it comes, generate (ek′0, dk
′
0)

$← GEN(pp), (ek′1, dk
′
1)

$←
GEN(pp) and pek′1 = f1(pw, ek′1). Send msg′ = (ek′0, pek

′
1) and (NewSession, ssid,Pj , client) to

A, where the sub-session identifier ssid = sid|i|j|msg|msg′. In addition, store 〈ssid,Pj ,Pi, client〉
marked fresh.

• On (TestPwd, ssid,Pj , ppw∗) from A to F D̂mPAKE:

– Phrase ssid into sid|i|j|msg|msg′.

– Phrase ppw∗ into η1|η2|η3, and try all possible passwords to find pw∗ that makes Equations 2 hold
simultaneously, otherwise set pw∗ = ⊥.

∗ If pw∗ 6= pwi, store a record 〈sid,Pj , θj〉with θj = θ∗j .

∗ Otherwise, store a record 〈sid,Pj , θj〉with θj
$← {0, 1}λ.

• On (NewKey, ssid,Pj , ϑ∗) from A to F D̂mPAKE:

– Send (NewKey, sid,Pj ,SK∗) toF , where SK∗ = θj⊕ϑj with θj retrieved from the record 〈sid,Pj , ∗〉.

Claim 6. EXEC5,A,Z
c
≈ EXEC4,A,Z .

Proof. The proof idea is similar to the proof of Claim C.2.

Execution Exec7: Allowing F to Set Session Keys for An Honest Instance with Corrupt Partner
Modifications to F : We now allow F to follow the instructions Fig. 4 to set session keys when only one of
Pi and Pj is honest.
Modifications to S: When simulation an honest instance with corrupt partner: if an honest instance con-
cludes with a session key SK∗, send (NewKey, sid,Pi,SK∗) or (NewKey, sid,Pj ,SK∗) to F .

Claim 7. EXEC7,A,Z
c
≈ EXEC6,A,Z .

Proof. From Exec5 and Exec6, all variables needed to compute a session key that is same as the adversary
A have been set for honest server and client instances labeled with compromised, respectively. If Πsid

Pj in
question is labeled with interrupted, a random chosen session key is send to F . All these are consistent with
allowing F to set session keys for honest party with corrupt partner.
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Execution Exec8: Adding TestPwd Interface And Removing Password Forwarding
Modifications to F : We now allow F to follow the instructions Fig. 4 to posses TestPwd queries. F still
forwards NewSession queries from the dummy parties but not in their enitemizey to S, as the password is
removed.
Modifications to S : When simulating an honest client (or server) instance, the local password equality tests
about whether pw∗ equals pwi (or pwj) are replaced by sending TestPwd(sid,Pi, pw∗) (or TestPwd(sid,Pj , pw∗))
to F . Futhermore, the way to answer TestPwd query is modified as follows:

• On (TestPwd, ssid,Pi, ppw∗) from A to F D̂mPAKE:

– Phrase ssid into sid|i|j|msg|msg′.

– Phrase ppw∗ into η1|η2|η3, and try all possible passwords to find pw∗ that makes Equations 1 hold
simultaneously, otherwise set pw∗ = ⊥.

∗ If pw∗ 6= ⊥, store a record 〈sid,Pi, θi〉with θi = θ∗i .

∗ Otherwise, store a record 〈sid,Pi, θi〉with θi
$← {0, 1}λ.

• On (TestPwd, ssid,Pj , ppw∗) from A to F D̂mPAKE:

– Phrase ssid into sid|i|j|msg|msg′.

– Phrase ppw∗ into η1|η2|η3, and try all possible passwords to find pw∗ that makes Equations 2 hold
simultaneously, otherwise set pw∗ = ⊥.

∗ If pw∗ 6= ⊥, store a record 〈sid,Pj , θj〉with θj = θ∗j .

∗ Otherwise, store a record 〈sid,Pj , θj〉with θj
$← {0, 1}λ.

Claim 8. EXEC8,A,Z
c
≈ EXEC7,A,Z .

Proof. From Exec6, S is unnecessary to use pwi or pwj to simulate the messages expected to be sent to A.
Therefore, the internal modifications of invoking the TestPwd interface to replace local password equality
tests do not introduce any observable difference. In the case that pw∗ 6= pwj (resp., pw∗ 6= pwi), no matter
the simulator sends what session key to F , it will set Πsid

Pi (resp., Πsid
Pj ) in question with a random session

key.
Summarize the above, this claim holds.

Execution Exec9: Disallowing S Labels for Simulated Instances
Stop letting S to label for all simulated instances and let the job done internally by F .

Claim 9. EXEC9,A,Z = EXEC8,A,Z

Proof. These modifications are only internal modifications. Note that the way of S labeling for all simu-
lated instances are consistent with the way F do for dummy parties. Therefore, this modification do not
introduce any observable difference such that the claim holds.

In the final execution, F is equivalent to FDmPAKE. The simulator S is finally constructed as shown in
Fig. 12, which is no need to use the passwords and perfectly simulates the ideal world.

Combine all above discussions together, we conclude that

IDEALFDmPAKE,S,Z
c
≈ REAL

FD̂mPAKE

π,A,Z .

C.3 Proof of Theorem 5 in Case-(2)

Now, we complete the proof of Theorem 5 in Case-(2). In particular, we investigate our UC-secure proto-
col interpreted in Case-(2) as shown in Fig. 6, where the INHERITED PARAMETER is obtained by querying
the functionality GCRS and all local hash computations are replaced by querying the functionality FRO =
{FROi}i∈[3]. In particular, (i) H1 (resp., H2) computations are replaced by querying FRO1

(resp., FRO2
) pa-

rameterized with domain {0, 1}∗ and range {0, 1}λ; (ii) H3 computations are replaced by querying FRO3
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Simulating an honest client instance Πsid
Pi

On (NewSession, sid,Pi,Pj , client) from FDmPAKE:

Generate (ek0, dk0)
$← GEN(pp), pek0 = f0(pw, ek0) and (ek1, dk1)

$← GEN(pp). Send msg = (pek0, ek1) to
A on behalf of Pi. Store statesidPi := 〈client,Pj ,msg, pdk0, dk1〉.

On msg′ = (ek′0, pek
′
1) from A:

If statesidPi 6= ∅, then update statesidPi := 〈client,Pj ,msg, pdk0, dk1,msg′〉, send (NewSession,
ssid,Pi,Pj , server) to A and store 〈ssid,Pi,Pj , server〉, where ssid := sid|i|j|msg|msg′.

On (TestPwd, ssid,Pi, ppw∗) from A:

1. If there is a record 〈ssid,Pi,Pj , server〉, then phrase ssid into sid|i|j|msg|msg′. Futhermore, if
statesidPi = 〈client,Pj ,msg, ∗, ∗,msg′〉:

• Retrieve dk1 from statesidPi and phrase ppw∗ into η1|η2|η3.
• Try all possible passwords inD to determine pw∗ that makes Eequations 1 hold simultaneously,

otherwise set pw∗ = ⊥.
• Send (TestPwd, sid,Pi, pw∗) to FDmPAKE.
• If pw∗ 6= ⊥, set θ = θ∗i ; otherwise, θ $← {0, 1}λ.
• Update statesidPi = 〈client,Pj ,msg, pdk0, dk1,msg′, θ〉

2. Otherwise, ignore this query.

On (NewKey, ssid,Pi, ϑ∗) from A:
Set SK∗ = θ ⊕ ϑ∗ and send (NewKey, sid,Pi,SK∗) to FDmPAKE.

Simulating an honest server instance Πsid
Pj

On (NewSession, sid,Pj ,Pi, server) from FDmPAKE:

1. Wait msg = (pek0, ek1) from A. When it comes, generate (ek′0, dk
′
0)

$← GEN(pp), (ek′1, dk
′
1)

$←
GEN(pp) and pek′1 = f1(pw, ek′1), send msg′ = (ek′0, pek

′
1) to A on behalf of Pj .

2. Store statesidPj := 〈server,Pi,msg,msg′, dk′0, pdk
′
1〉.

3. Send (NewSession, ssid,Pj ,Pi, client) to A and store 〈ssid,Pj ,Pi, client〉, where ssid :=
sid|i|j|msg|msg′

On (TestPwd, ssid,Pj , ppw∗) from A:

1. If there is a record 〈ssid,Pj ,Pi, client〉, then phrase ssid into sid|i|j|msg|msg′. Futhermore, if statesidPj =

〈server,Pi,msg,msg′, ∗, ∗〉:
• Retrieve dk′0 from statesidPj and phrase ppw∗ into η1|η2|η3.
• Try all possible passwords in D to determine pw∗ that makes the Equations 2 hold simultane-

ously, otherwise set pw∗ = ⊥.
• Send (TestPwd, sid,Pi, pw∗) to FDmPAKE.
• If pw∗ 6= ⊥, set θ = θ∗j ; otherwise, θ $← {0, 1}λ.
• Update statesidPj = 〈server,Pi,msg,msg′, dk′0, pdk

′
1, θ〉.

2. Otherwise, ignore this query.

On (NewKey, ssid,Pj , ϑ∗) from A:
Set SK∗ = θ ⊕ ϑ∗ and send (NewKey, sid,Pj ,SK∗) to FDmPAKE.

Figure 12: Simulation of honest instances when the CRS setup is functional and the RO setup falls back to
CRHF
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parameterized with domain {0, 1}∗ and range {0, 1}3λ. Abusing notations, we use Hi(x) to denote the an-
swer of querying FROi on x. We then prove this protocol UC-realizes FDle-mPAKE in the {GCRS,FRO}-hybrid
world.

For S and A, let IDEALGCRS

FDle-mPAKE,S,Z
denote the output of the environment Z in the ideal world when

interacting with S and GCRS, and let REALGCRS,FRO

π,A,Z denote the output of Z in the real world (i.e., a {GCRS,FRO}-
hybrid world) when the protocol π in Fig. 6 is being run. We should prove that these distributions are
computationally indistinguishable, i.e., IDEALGCRS

FDle-mPAKE,S,Z
c
≈ REALGCRS,FRO

π,A,Z . In the next, we will also consider
a sequence of hybrid executions Execi for 0 ≤ i ≤ 9 and let EXECi,A,Z denote the view ofZ in Execi, where
Exec0 corresponds to the real-world execution. We will show that EXECi,A,Z

c
≈ EXECi−1,A,Z for all i, and

argue that the final view is identical to IDEALGCRS

FDle-mPAKE,S,Z
.

Execution Exec0: Real
This is the real execution of Π where the environment Z runs the protocol (Fig. 6) with parties Pi and Pj ,
both having access to GCRS and FRO, and a dummy adversary A.

Claim 10. EXEC0,A,Z = REALGCRS,FRO

π,A,Z .

Execution Exec1: Adding Ideal Layout
This is same as the real execution, but adding two dummy parties and a dummy functionality F , and all
previously existing nodes (except Z) are grouped into one machine called the simulator S.

Claim 11. EXEC1,A,Z = EXEC0,A,Z .

Proof. This is an internal modification, such that the claim holds.

Execution Exec2: Adding Book-Keeping, NewKey and RegisterTest Interfaces
Modifications to F :

We now allow F to do all record-keeping and label all instances described in Fig. 4. F still forwards
NewSession queries from the dummy parties in their enitemizey (including the password) to S.
Modifications to S:
S creates NewKey queries for F from whatever output the simulated parties parties produce.

Claim 12. EXEC2,A,Z = EXEC1,A,Z

Proof. These modifications are internal modifications, such that the claim holds.

Execution Exec3: Allowing S to Simulate FRO

Modifications to S: Initialize three empty lists, LH1
and LH2

and LH3
, and simulate FRO queries as follows:

• On (sid|i|j|msg|msg′|k0|pw) to FRO1
:

– If (sid|i|j|msg|msg′|k0|pw, ω) ∈ LH1
, return ω.

– Otherwise, return ω $← {0, 1}λ and append (sid|i|j|msg|msg′|k0|pw, ω) to the list LH1
.

• On (sid|i|j|msg|msg′|k1|pw) to FRO2 :

– If (sid|i|j|msg|msg′|k1|pw, ω̂) ∈ LH2
, return ω̂.

– Otherwise, return ω̂ $← {0, 1}λ and append (sid|i|j|ek1|pek′1|k1|pw, ω̂) to the list LH2 .

• On (sid|i|j|msg|msg′|ω|ω̂|pw) to FRO3
:

– If (sid|i|j|msg|msg′|ω|ω̂|pw, µ|µ̂|θ) ∈ LH3
, return µ|µ̂|θ.

– Otherwise, return µ|µ̂|θ $← {0, 1}3λ and append (sid|i|j|msg|msg′|ω|ω̂|pw, µ|µ̂|θ) to the list LH3 .

Claim 13. EXEC3,A,Z = EXEC2,A,Z .

Proof. These modifications are internal modifications, such that the claim holds.
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Execution Exec4: Allowing F to Set Session Keys for Two Honest Parties
Modifications to F : We now allow F to follow the instructions in Fig. 4 to make a client instance get ready
and set session keys when Pi and Pj are both honest and no matter pwi = pwj or pwi 6= pwj .
Modifications to S : When simulating two honest instances with the adversary A just forwarding all mes-
sages sent between them:

• When Πsid
Pi receiving (NewSession, sid,Pi,Pj , pwi, client) from F :

– Generate (pek0, pdk0)
$← GEN(pp) and (ek1, dk1)

$← GEN(pp).
– Send msg = (pek0, ek1) to A on behalf of Pi.
– Wait msg′ = (ek′0, pek

′
1) from A. When it comes, execute the sub-protocol ProtPAKE using ppwi =

ppwj as input if both parties use the same password, or a random value chosen from {0, 1}3λ in
another case.

– Until ProtPAKE completes with an output, send (NewKey, sid,Pj ,SK∗) to F , where SK∗
$← {0, 1}λ.

• When Πsid
Pj receiving (NewSession, sid,Pj ,Pi, pwj , server) from F :

1. Wait msg = (pek0, ek1) fromA. When it comes: generate (ek′0, dk
′
0)

$← GEN(pp) and (pek′1, pdk
′
1)

$←
GEN(pp); send msg′ = (ek′0, pek

′
1) to A on behalf of Pj ; execute the sub-protocol ProtPAKE using a

random value chosen from {0, 1}3λ as Pj ’s input ppwj .
2. Until ProtPAKE completes with an output, send (NewKey, sid,Pj ,SK∗) to F , where SK∗

$← {0, 1}λ.

Claim 14. EXEC4,A,Z
c
≈ EXEC3,A,Z .

Proof. Due to the perfect hiding property of the underlying homomorphic NIKE scheme, the modifications
on the way generating pek0 and pek′1 does not introduce any difference.

Note that S simulates the two honest instances without making any FRO queries and any bachpatch
method to makeA’s subsequent queries be consistent with these values. The adversaryAwould notice the
difference introduced only when it queried FRO on correct values, including:

• A FRO1 query on sid|i|j|msg|msg′|Key(f̂0(pw, pek0), ek′0)|pw that returns ω;
• A FRO2

query on sid|i|j|msg|msg′|Key(ek1, f̂1(pw, pek′1))|pw that returns ω̂;
• A FRO3

query on sid|i|j|msg|msg′|ω|ω̂|pw that returns µ|µ̂|θ.

In particular, pek0, ek
′
0, ek1 and pek′1 are simulated messages by two honest instances that used the same

password pw. Without loss of generality, we assume the query order isFRO1/FRO2 -FRO3 . No matter in which
case, the adversary must query FRO1

on the correct value. If A makes this event occur, we may construct
a PPT algorithm B to break the Type-II(i) intractability of the underlying homomorphic NIKE scheme. In
particular, given a challenge tuple (pek∗, ek∗). B simulate Exec4 but with modifications as follows:

• When receiving (NewSession, sid,Pi,Pj , client) from F , set pek0 = pek∗ · eksidi with (eksidi , dk
sid
i )

$←
GEN(pp).

• When receiving (NewSession, sid,Pj ,Pi, server) from F , set ek′0 = ek∗ · eksidj with (eksidj , dk
sid
j )

$←
GEN(pp).

• When A stops, for every FRO2
query on sid|i|j|msg|msg′|k0|pw, where pek0 and ek′0 were actually sim-

ulated as before, do as follows:
– Compute k̄1 = KEY(dksidi , ek

∗ · eksidj ) and k̄2 = KEY(dksidj , f̂0(pw, pek∗)).

– Compute k∗ = k0/(k̄1 · k̄2).
– Add (pw, k∗) into the list of possible solutions.

Note that there exists only one correct value such that

k0 = Key(f̂0(pw, pek∗) · eksidi , ek
∗ · eksidj ).

thus we can adjust the equation so that only Key(f̂0(pw, pek∗), ek∗) remains on the right. If the above-
mentioned event occurs, the correct answer was added in the list. Thus, it only occurs with negligible
probability.

To summarize the above, this claim holds.
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Execution Exec6: Simulating An Honest Server Instance with Corrupt Partner
Modifications to S: When simulating an honest server instance with a corrupt partner, do as follows:

• Initialize three new lists: Lserver to record S’s simulated information specific to honest server instances;
LTestPwd,S to record the adversary’s password-guess against server instances.

• On (sid|i|j|msg|msg′|k0|pw) to FRO1 , where msg = (pek0, ek1) and msg′ = (ek′0, pek
′
1):

– If (sid|i|j|msg|msg′|k0|pw, ω0) ∈ LH1
, return ω0.

– If (sid, i, j,msg,msg′, dk′0, pdk
′
1, η
∗
1 |η∗2 |η∗3 , ϑ∗) ∈ Lserver ∧ k0 4-satisfies (pw, dk′0, pek0, f̂0):

∗ If ϑ∗ = ⊥, then append (sid, j, pw) to LTestPwd,S.

∗ Else if (sid|i|j|msg|msg′|k1|pw, ω1) ∈ LH2
∧ k1O-satisfies (pw, pdk′1, ek1, f̂1), then return ω0 =

η∗1 ⊕ ω1 and append (sid|i|j|msg|msg′|k0|pw, ω0) to LH1 .

– Otherwise, return ω0
$← {0, 1}λ and append (sid|i|j|msg|msg′|k0|pw, ω0) to LH1

.

• On (NewSession, sid,Pj ,Pi, pwj , server) from F :

1. Wait msg = (pek0, ek1) fromA. When it comes, generate (ek′0, dk
′
0)

$← GEN(pp) and (pek′1, pdk
′
1)

$←
GEN(pp). In addition, send msg′ = (ek′0, pek

′
1) to A on behalf of Pj .

2. Sample η∗1 |η∗2 |η∗3
$← {0, 1}3λ, and append (sid, i, j,msg,msg′, dk′0, pdk

′
1, η
∗
1 |η∗2 |η∗3 ,⊥) to the listLserver.

3. Continue execute the sub-protocol ProtPAKE using η∗1 |η∗2 |η∗3 as Pj ’s input, until this sub-protocol
completes with an output ϑj :

– If msg was not output by simulation of Πsid
Pi , (sid, j, pw∗) ∈ LTestPwd,S, and pw∗ = pwj , send

(NewKey, sid,Pj ,SK∗) to F , where SK∗ is computed as the protocol description.
//Note that from dk′0 and pdk′1, the simulator can compute k0 = KEY(dk′0, f̂1(pw, pek0)) and dk∗1 = EXT(pw, pdk′1, f̂0),
k1 = KEY(dk∗1, ek1). Then query the corresponding RO query to retrieve ωi, ω̂i and µi|µ̂i|θi.

– Else if msg was not output by simulation of Πsid
Pi but (sid, j, pw∗) /∈ LTestPwd,S, send (RegisterTest,

sid,Pj) and (NewKey, sid,Pj ,SK∗) to F in order, where SK∗
$← {0, 1}λ. In addition, update

the associated record in Lserver as (sid, ∗, j, ∗, ∗, ∗, ∗, ∗, ϑj) and separately record SK∗.

– Otherwise, send (NewKey, sid,Pj ,SK∗) to F , where SK∗
$← {0, 1}λ.

Claim 15. EXEC5,A,Z
c
≈ EXEC4,A,Z .

Proof. Due to the perfect hiding property of the underlying homomorphic NIKE scheme, the modification
on the generation of pek′1 does not introduce any difference.

Note that, S simulates the honest server instance without making any FRO queries. There are two cases
that need to be distinguished: (i) when msg was not output by the simulation of Πsid

Pi , the subsequent FRO

queries made by A is backpatched to be consistent with these random values η∗|η̂∗|µ̂∗ chosen during the
course; (ii) when msg was output by the simulation of Πsid

Pi , no backpatch strategies are used. Then, we
consider the following two cases.

Case I: msg was not output by the simulation of Πsid
Pi .

In this case, the introduced difference would be noticed, if A has previously used the pair (pek0, ek
′
0) in

its FRO1 queries before receiving ek′0, or it made two different password-guesses against a single server in-
stance. The latter sub case means thatAmade twoFRO1

queries on sid|i|j|msg|msg′|k0|pw and sid|i|j|pek0|ek
′
0|k̃0|p̃w,

such that pw 6= p̃w, k0 = Key(f̂0(pw, pek0), ek′0) and k̃0 = Key(f̂0(p̃w, pek0), ek′0).
The first event only occurs with negligible probability since ek′0 is randomly generated. Then, we show

that if the second event occurs, we may construct a PPT algorithm B to break the Type-II(ii) intractability
of the underlying homomorphic NIKE scheme. In particular, given a challenge ek∗, B simulate Exec5 with
modifications as follows:

• When Πsid
Pj receiving msg, set ek′0 = ek∗ · eksidj , where (eksidj , dk

sid
j )

$← GEN(pp).
• When A finishes, for every pair of FRO1

queries on sid|i|j|msg|msg′|k0|pw and sid|i|j|msg|msg′|k̃0|p̃w,
and ek′0 was output by Πsid

Pj , do as follows:

– Compute k̄1 = KEY(dksidj , f̂0(pw, pek0)) and k̄2 = KEY(dksidj , f̂0(p̃w, pek0)).
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– Compute k∗0 = k0/k̄1 and k∗1 = k̃0/k̄2.

– Add (pek0, 0, (pw, k
∗
0), (p̃w, k∗1)) into the list of possible solutions.

Note that if the event in question occurs, the following two equations must hold:{
k0 = Key(f̂0(pw, pek0), ek∗ · eksidj );

k̃0 = Key(f̂0(p̃w, pek0), ek∗ · eksidj ).

If the above-mentioned event occurs, the correct answer was added to the list. Thus, it only occurs with
negligible probability.

Case II: msg was output by the simulation of Πsid
Pi .

In this case, both pek0 and ek′0 are simulated. We can use the same proof idea as in Expt5 to prove
that the adversary cannot query FRO for correct ωj,0, and thus cannot query FRO for correct µj |µ̂j |θj . These
values are indistinguishable from uniform in the view of the adversary.

To summarize the above, this claim holds.

Execution Exec6: Simulating An Honest Client Instance with Corrupt Partner
Modifications to S: When simulating an honest client instance with corrupt partner, do as follows:

• Initialize three new lists, Lclient, LTestPwd,C. In particular, use Lclient to record S’s simulated information
specific to honest client instances, and use LTestPwd,C to record password-guesses against honest client
instances.

• On (sid|i|j|msg|msg′|k1|pw) to FRO2
, where msg = (pek0, ek1) and msg′ = (ek′0, pek

′
1):

– If (sid|i|j|msg|msg′|k1|pw, ω1) ∈ LH2 , return ω1.

– If (sid, i, j,msg,msg′, pdk0, dk1, η
∗
1 |η∗2 |η∗3 , ϑ∗) ∈ Lclient ∧ k1 4-satisfies (pw, dk1, pek

′
1, f̂1):

∗ If msg′ = ⊥ ∧ η∗1 |η∗2 |η∗3 = ⊥ ∧ ϑ∗ = ⊥, then append (sid, i, pw,msg′) to LTestPwd,C.
∗ If msg′ 6= ⊥ ∧ η∗1 |η∗2 |η∗3 6= ⊥ ∧ ϑ∗ = ⊥, then append (sid, i, pw,⊥) to LTestPwd,C.

∗ If (sid|i|j|msg|msg′|k0|pw, ω0) ∈ LH1∧k0 O-satisfies (pw, pdk0, ek
′
0, f̂0), then return ω1 = η∗1⊕ω0

and append (sid|i|j|ek1|pek′1|k1|pw, ω1) to LH2
.

– Otherwise, return ω1
$← {0, 1}λ and append (sid|i|j|ek1|pek′1|k1|pw, ω1) to LH2

.

• On (sid|i|j|msg|msg′|ω|ω̂|pw) to FRO3 , where msg = (pek0, ek1) and msg′ = (ek′0, pek
′
1):

– If (sid|i|j|msg|msg′|ω|ω̂|pw, µ|µ̂|θ) ∈ LH3
, return µ|µ̂|θ.

– Else if one of the following two cases holds:
(sid, i, j,msg,msg′, pdk0, dk1, η

∗
1 |η∗2 |η∗3 , ∗) ∈ Lclient ∧ η∗1 = ω ⊕ ω̂;

(sid|i|j|msg|msg′|k0|pw, ω) ∈ LH1
∧ (sid|i|j|msg|msg′|k1|pw, ω̂) ∈ LH2

;

k0 O-satisfies (pw, pdk0, ek
′
0, f̂0) ∧ k1 4-satisfies (pw, dk1, pek

′
1, f̂1).

(sid, i, j,msg,msg′, dk′0, pdk
′
1, η
∗
1 |η∗2 |η∗3 , ∗, ∗) ∈ Lserver ∧ η∗1 = ω ⊕ ω̂;

(sid|i|j|msg|msg′|k0|pw, ω) ∈ LH1
∧ (sid|i|j|msg|msg′|k1|pw, ω̂) ∈ LH2

;

k0 4-satisfies (pw, dk′0, pek0, f̂0) ∧ k1 O-satisfies (pw, pdk′1, ek1, f̂1).

Set µ = η∗2�k0 and µ̂ = η∗3�k1. If the last variable ϑ∗ 6= ⊥ in the associated record in Lclient (resp.,
Lserver) and pw = pwi (resp., pw = pwj), set θ = SK∗⊕ϑ∗; otherwise, set θ $← {0, 1}λ. Return µ|µ̂|θ
with and append (sid|i|j|msg|msg′|ω|ω̂|pw, µ|µ̂|θ) to LH3

.

– Otherwise, return µ|µ̂|θ $← {0, 1}3λ and append (sid|i|j|msg|msg′|ω|ω̂|pw, µ|µ̂|θ) to the list LH3
.

• On msg′ = (ek′0, pek
′
1) from A:

1. If (sid, i, ∗, ∗,⊥, ∗, ∗, ∗, ∗) ∈ Lclient, update this record as (sid, i, ∗, ∗,msg′, ∗, ∗, ∗, ∗).
2. If msg′ was not output by the simulation of Πsid

Pj :

(a) If (sid, i, pw∗,msg′) ∈ LTestPwd,C:
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i. If pw∗ = pwi, execute the sub-protocol ProtPAKE using the correct input (ωi,0 ⊕ ˆωi,0)|(µi �
k0)|(µ̂i � k1).
//Note that from pdk0 and dk1, the simulator can compute dk∗0 = EXT(pw, pdk0, f̂0), k0 = KEY(dk∗0, ek

′
0) and

k1 = KEY(dk1, f̂1(pw, pek′1)). Then query ROs to retrieve ωi,0, ωi,1 and µi|µ̂i|θi.
Until ProtPAKE completes with an output ϑi, set SK∗ = θi ⊕ ϑi and send (NewKey,
sid,Pi,SK∗) to F .

ii. Otherwise, execute the sub-protocol ProtPAKE using a random value chosen from {0, 1}3λ.
Until ProtPAKE completes with an output, send (NewKey, sid,Pi,SK∗) to F , where SK∗

$←
{0, 1}λ.

(b) Otherwise, execute the sub-protocol ProtPAKE using η∗1 |η∗2 |η∗3
$← {0, 1}3λ as Pi’s input and up-

date the associated record in Lclient as (sid, i, ∗, ∗,msg′, ∗, ∗, η∗1 |η∗2 |η∗3 , ∗). Until ProtPAKE com-
pletes with an output ϑi:

– If now there exists (sid, i, pw∗,⊥) ∈ LTestPwd,C:
i. If pw∗ = pwi, retrieve θi using the same method in Case (a)-i.

ii. Otherwise, set θi
$← {0, 1}λ.

Finally, send (NewKey, sid,Pi,SK∗) to F , where SK∗ = θi ⊕ ϑi.
– Otherwise, send (RegisterTest, sid,Pi) and (NewKey, sid,Pi,SK∗) to F in order, where
SK∗

$← {0, 1}λ. In addition, update the associated record inLclient as (sid, i, ∗, ∗, ∗, ∗, ∗, ∗, ϑi)
and separately record SK∗.

3. Otherwise, continue the simulation. If it concludes with a session key, send (NewKey, sid,Pi,
SK∗) to F , where SK∗

$← {0, 1}λ.

Claim 16. EXEC6,A,Z
c
≈ EXEC5,A,Z .

Proof. First, due to the perfect hiding property of the underlying homomorphic NIKE scheme, the modifi-
cation on the generation of pek0 does not introduce any difference. Then, we finish the proof by considering
the following three cases.

Case I: msg′ was not output by the simulation of Πsid
Pj .

First, we will show that for each pek′1, at most one such record will be found in LTestPwd,C. Otherwise, the
adversary may notice the introduced difference. By this, we want to prove the adversary A cannot make
two different password guesses against a single client instance.

In order to deduce a contradiction, assumeA can make this event occurs, there should exist two different
records (sid, i, pw, pek′1) ∈ LTestPwd,C and (sid, i, p̄w, pek′1) ∈ LTestPwd,C with pw 6= p̄w. That also means the
adversary made two FRO2 queries on sid|i|j|msg|msg′|k1|pw and sid|i|j|msg|msg′|k̃1|p̃w, such that pw 6= p̃w,
k1 = Key(ek1, f̂1(pw, pek′1), ) and k̃1 = Key(ek1, f̂1(p̃w, pek′1)).

We then show how to construct a PPT algorithm B to break the Intractability-II (ii) of the underlying
homomorphic NIKE scheme. In particular, given a challenge ek∗, B simulate Exec6 with modifications as
follows:

• When Πsid
Pi receiving (NewSession, sid,Pi,Pj , pwi, client) from F , set ek1 = ek∗ · eksidi , where (eksidi ,

dksidi )
$← GEN(pp).

• When A stops, for every pair of FRO2 queries on sid|i|j|msg|msg′|k1|pw and sid|i|j|msg|msg′|k̃1|p̃w,
where pek′1 was received from the adversary A and ek1 was actually simulated as before, do as fol-
lows:

– Compute k̄1 = KEY(dksidi , f̂1(pw, pek′1)) and k̄2 = KEY(dksidi , f̂1(p̃w, pek′1)).

– Compute k∗0 = k1/k̄1 and k∗1 = k̃1/k̄2.

– Add (pek′1, 1, (pw, k
∗
0), (p̃w, k∗1)) into the list of possible solutions.

Note that if the event in question occurs, the following two equations hold:{
k1 = Key(ek∗ · eksidi , f̂1(pw, pek′1));

k̃1 = Key(ek∗ · eksidi , f̂1(p̃w, pek′1)).
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If the event in question occurs, B adds the correct answer to the list. Thus, this event only occurs with
negligible probability.

Case II: msg′ was output by the simulation of Πsid
Pj .

In this case, both (ek1, pek
′
1) as simulated. We can use the same proof idea as in Expt4 to prove that the

adversary cannot query FRO for correct ωi,1, and thus cannot query FRO for correct µi|µ̂i|θi. These values
are indistinguishable from uniform in the view of the adversary A.

Summarize the above, this claim holds.

Execution Exec7: Allowing F to Set Session Keys for An Honest Instance with Corrupt Partner
Modifications to F : We now allow F to follow the instructions Fig. 4 to set session keys for an honest party
(Pi or Pj) with corrupt partner.

Claim 17. EXEC7,A,Z
c
≈ EXEC6,A,Z .

Proof. If there exits (sid, i, pw∗, ∗) ∈ LTestPwd,C, or (sid, j, pw∗) ∈ LTestPwd,S, S extracts the adversary’s input.
If pw∗ is a correct guess. The simulator S can compute the exact session key as the adversary do, with
knowledge of pw∗. Otherwise, A has not queried FRO on correct values, the session key is random.

Execution Exec8: Adding TestPwd and LateTestPwd Interfaces, Removing Password Forwarding
Modifications to F : We now allow F to follow the instructions Fig. 4 to poss TestPwd and LateTestPwd
queries. F still forwards NewSession queries from the dummy parties but not in their enitemizey to S, as
the password is removed.
Modifications to S : When simulating RO queries, the local password equality tests of pw∗ and pwi (resp.,
pwj) are replaced by sending LateTestPwd(sid,Pi, pw∗) (resp., LateTestPwd(sid,Pj , pw∗)) to F . In addi-
tion, S no longer stores SK∗ in the associated cases. Instead, the replied SK∗ (that is received from F
via invoking LateTestPwd) is used. All other tests of pw∗ and pwi (resp., pwj) are replaced by sending
TestPwd(sid,Pi, pw∗) (resp.,TestPwd(sid,Pj , pw∗)) to F . In particular, the simulator will no longer differen-
tiate between equality; instead, it will always treat them as equal to continue the simulation.

Claim 18. EXEC8,A,Z
c
≈ EXEC7,A,Z .

Proof. From Exec6, S is unnecessary to use pwi or pwj to simulate the messages expected to be sent to A.
Therefore, the internal modifications of invoking the TestPwd and LateTestPwd interfaces to replace local
password equality tests do not introduce any observable difference.

In the final execution, F is equivalent to FDle-mPAKE. The simulator S is constructed as shown in Fig. 13
and Fig. 14, where does not need to use the passwords. In addition, the simulator perfectly simulates the
ideal world except for the cases where it aborts, which we have already shown to happen with negligible
probability.

Combine all above discussions together, we conclude that

IDEALGCRS

FDle-mPAKE,S,Z
c
≈ REALGCRS,FRO

π,A,Z .

D Proof of Theorem 6

Now, we complete the proof of Theorem 6, by showing the indistinguishability between the real world and
ideal world.

In the real world: The input password pwi for an honest party Pi is phrased as pw1
i | . . . |pwni , where each

sub-password is used as input to the sub-protocol ProtUNIT. If A wants to make a correct password guess
for sid of the whole protocol, then it must make correct password guesses for ssidk for k ∈ [n] of the sub-
protocol ProtUNIT, simultaneously. Note that there are two strategies for A to test its password guess p̂w

k
i

for a sub-session ssidk:
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On (sid|i|j|msg|msg′|k0|pw) to FRO1 , where msg = (pek0, ek1) and msg′ = (ek′0, pek
′
1):

• If (sid|i|j|msg|msg′|k0|pw, ω0) ∈ LH1
, return ω0.

• If (sid, i, j,msg,msg′, dk′0, pdk
′
1, η
∗
1 |η∗2 |η∗3 , ϑ∗) ∈ Lserver ∧ k0 4-satisfies (pw, dk′0, pek0, f̂0):

– If ϑ∗ = ⊥, then append (sid, j, pw) to LTestPwd,S.

– Else if (sid|i|j|msg|msg′|k1|pw, ω1) ∈ LH2 ∧k1O-satisfies (pw, pdk′1, ek1, f̂1), then return ω0 = η∗1⊕
ω1 and append (sid|i|j|msg|msg′|k0|pw, ω0) to LH1

.

• Otherwise, return ω0
$← {0, 1}λ and append (sid|i|j|msg|msg′|k0|pw, ω0) to LH1 .

On (sid|i|j|msg|msg′|k1|pw) to FRO2 , where msg = (pek0, ek1) and msg′ = (ek′0, pek
′
1):

• If (sid|i|j|msg|msg′|k1|pw, ω1) ∈ LH2
, return ω1.

• If (sid, i, j,msg,msg′, pdk0, dk1, η
∗
1 |η∗2 |η∗3 , ϑ∗) ∈ Lclient ∧ k1 4-satisfies (pw, dk1, pek

′
1, f̂1):

– If msg′ = ⊥ ∧ η∗1 |η∗2 |η∗3 = ⊥ ∧ ϑ∗ = ⊥, then append (sid, i, pw,msg′) to LTestPwd,C.

– If msg′ 6= ⊥ ∧ η∗1 |η∗2 |η∗3 6= ⊥ ∧ ϑ∗ = ⊥, then append (sid, i, pw,⊥) to LTestPwd,C.

– If (sid|i|j|msg|msg′|k0|pw, ω0) ∈ LH1
∧ k0 O-satisfies (pw, pdk0, ek

′
0, f̂0), then return ω1 = η∗1 ⊕ ω0

and append (sid|i|j|ek1|pek′1|k1|pw, ω1) to LH2
.

• Otherwise, return ω1
$← {0, 1}λ and append (sid|i|j|ek1|pek′1|k1|pw, ω1) to LH2 .

On (sid|i|j|msg|msg′|ω0|ω1|pw) to FRO3 , where msg = (pek0, ek1) and msg′ = (ek′0, pek
′
1):

• If (sid|i|j|msg|msg′|ω0|ω1|pw, µ|µ̂|θ) ∈ LH3
, return µ|µ̂|θ.

• Else if one of the following two cases holds:

Case 1


(sid, i, j,msg,msg′, pdk0, dk1, η

∗
1 |η∗2 |η∗3 , ∗) ∈ Lclient ∧ η∗1 = ω0 ⊕ ω1;

(sid|i|j|msg|msg′|k0|pw, ω0) ∈ LH1
∧ (sid|i|j|msg|msg′|k1|pw, ω1) ∈ LH2

;

k0 O-satisfies (pw, pdk0, ek
′
0, f̂0) ∧ k1 4-satisfies (pw, dk1, pek

′
1, f̂1).

Case 2


(sid, i, j,msg,msg′, dk′0, pdk

′
1, η
∗
1 |η∗2 |η∗3 , ∗) ∈ Lserver ∧ η∗1 = ω0 ⊕ ω1;

(sid|i|j|msg|msg′|k0|pw, ω0) ∈ LH1 ∧ (sid|i|j|msg|msg′|k1|pw, ω1) ∈ LH2 ;

k0 4-satisfies (pw, dk′0, pek0, f̂0) ∧ k1 O-satisfies (pw, pdk′1, ek1, f̂1).

Set µ = η∗2 � k0 and µ̂ = η∗3 � k1. If the last variable ϑ∗ 6= ⊥ in the associated record in Lclient
(resp., Lserver), send (LateTestPwd, sid,Pi, pw) (resp., (LateTestPwd, sid,Pj , pw)) to FDle-mPAKE. After
receiving a reply SK∗, set θ = SK∗ ⊕ ϑ∗; otherwise, set θ $← {0, 1}λ. Return µ|µ̂|θ with and append
(sid|i|j|msg|msg′|ω0|ω1|pw, µ|µ̂|θ) to LH3

.
• Otherwise, return µ|µ̂|θ $← {0, 1}3λ and append (sid|i|j|msg|msg′|ω0|ω1|pw, µ|µ̂|θ) to LH3 .

Figure 13: Simulation of FRO queries when the RO setup is functional and the CRS setup falls back to gCRS

(1) First query (TestPwd, ssidk,Pi, p̂wki ), then query (NewKey, ssidk,Pi, ŜK
k

i ) to make this session com-
putes the session key;

(2) First query (RegisterTest, ssidk,Pi) to register a future password guess, then query (NewKey, ssidk,Pi, ∗)
to make the target the session computing the session key, finally query (LateTestPwd, ssidk,Pi, p̂wki ).

For Case-(1), if p̂wki is a correct password guess, A determines the session key of ssidk as ŜK
k

i , otherwise
that will be randomly choosen. While for Case-(2), the session key of ssidk is always randomly choosen; but
if p̂wki is a correct password guess, A should receive the same sub-session key as the honest party.

Recall that Pi’s output sesssion key is computed by XORing all sub-session keys from executing the
sub-protocol ProtUNIT. There are three associated cases:

(1) If A correctly query (TestPwd, ssidk,Pi, p̂wki ) for all k ∈ [n] simultaneously, it can determine Pi’s
output session key;

(2) If A correctly query (TestPwd, ssidk,Pi, p̂wki ) for k ∈ T ⊂ [n] and (LateTestPwd, ssidk′ ,Pi, p̂wk
′

i ) for
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Simulating an honest client instance Πsid
Pi

On (NewSession, sid,Pi,Pj , client) from FDle-mPAKE:

1. Generate (pek0, pdk0)
$← GEN(pp) and (ek1, dk1)

$← GEN(pp).
2. Send msg = (pek0, ek0) to A on behalf of Pi.
3. Append (sid, i, j,msg,⊥, pdk0, dk1,⊥,⊥) to Lclient.

On msg′ = (ek′0, pek
′
1) from A:

1. If (sid, i, ∗, ∗,⊥, ∗, ∗, ∗, ∗) ∈ Lclient, update this record as (sid, i, ∗, ∗,msg′, ∗, ∗, ∗, ∗).
2. If msg′ was not output by the simulation of Πsid

Pj :

(a) If (sid, i, pw∗,msg′) ∈ LTestPwd,C:
First, send (TestPwd, sid,Pi, pw∗) to FDle-mPAKE. Then, execute the sub-protocol ProtPAKE using
the input (ωi ⊕ ω̂i)|(µi � k0)|(µ̂i � k1).
// Note that from pdk0 and dk1, the simulator can compute dk∗0 = EXT(pw, pdk0, f̂0), k0 = KEY(dk∗0, ek

′
0) and k1 =

KEY(dk1, f̂1(pw, pek′1)). Then query ROs to retrieve ωi, ω̂i and µi|µ̂i|θi.

Until the sub-protocol ProtPAKE completes with ϑi, set SK∗ = θi ⊕ ϑi and send (NewKey,
sid,Pi,SK∗) to FDle-mPAKE.

(b) Otherwise, execute the sub-protocol ProtPAKE using η∗1 |η∗2 |η∗3
$← {0, 1}6λ as Pi’s input and up-

date the associated record in Lclient as (sid, i, ∗, ∗,msg′, ∗, ∗, η∗1 |η∗2 |η∗3 , ∗). Until the sub-protocol
ProtPAKE completes with an output ϑi:

• If now there exists (sid, i, pw∗,⊥) ∈ LTestPwd,C, send (TestPwd, sid,Pi, pw∗) to FDle-mPAKE. In
addition, retrieve θi using the same method as in Case 2.(a). Then, send (NewKey, sid,Pi,
SK∗) to FDle-mPAKE, where SK∗ = θi ⊕ ϑi.

• Otherwise, send (RegisterTest, sid,Pi) and (NewKey, sid,Pi,SK∗) to FDle-mPAKE in or-
der, where SK∗

$← {0, 1}λ. In addition, update the associated record in Lclient as
(sid, i, ∗, ∗, ∗, ∗, ∗, ∗, ϑi).

3. Otherwise, continue the simulation. If it concludes with a session key, send (NewKey, sid,Pi,SK∗)
to FDle-mPAKE, where SK∗

$← {0, 1}λ.

Simulating an honest server instance Πsid
Pj

On (NewSession, sid,Pj ,Pi, server) from FDle-mPAKE:

1. Wait msg = (pek0, ek1) from A. When it comes, generate (ek′0, dk
′
0)

$← GEN(pp) and (pek′1, pdk
′
1)

$←
GEN(pp). In addition, send msg′ = (ek′0, pek

′
1) to A on behalf of Pj .

2. Append (sid, i, j,msg,msg′, dk′0, pdk
′
1, η
∗
1 |η∗2 |η∗3 ,⊥) to Lserver, where η∗1 |η∗2 |η∗3

$← {0, 1}3λ.
3. Execute the sub-protocol ProtPAKE using η∗1 |η∗2 |η∗3 as Pj ’s input, until this sub-protocol completes

with an output ϑj :

• If msg was not output by simulation of Πsid
Pi and (sid, j, pw∗) ∈ LTestPwd,S, send (NewKey, sid,

Pj ,SK∗) to FDle-mPAKE, where SK∗ is computed as the protocol description.
//Note that from dk′0 and pdk′1, the simulator can compute k0 = KEY(dk′0, f̂1(pw, pek0)) and dk∗1 = EXT(pw, pdk′1, f̂0),
k1 = KEY(dk∗1, ek1). Then query the corresponding RO query to retrieve ωi, ω̂i and µi|µ̂i|θi.

• Else if msg was not output by simulation of Πsid
Pi but (sid, j, pw∗) /∈ LTestPwd,S, send

(RegisterTest, sid,Pj) and (NewKey, sid,Pj ,SK∗) to FDle-mPAKE in order, where SK∗
$← {0, 1}λ.

In addition, update the associated record in Lserver as (sid, ∗, j, ∗, ∗, ∗, ∗, ∗, ϑj).
• Otherwise, send (NewKey, sid,Pj ,SK∗) to FDle-mPAKE, where SK∗

$← {0, 1}λ.

Figure 14: Simulation of honest instances when the RO setup is functional and the CRS setup falls back to
gCRS
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k′ ∈ [n] \ T , A should reconstruct Pi’s output session key.
(3) In all other cases, Pi’s output session key is uniformly distributed.

In the ideal world: For each sub-session ssidk with k ∈ [n], the simulator S creates a record 〈ssidk,Pi,Pj , role,
pwki ,SK

k
i 〉, where the last two variables pwki and SKki are updated as the simulation progresses:

• When such a record is created, both variables pwki and SKki are set as ⊥.
• When (TestPwd, ssidk,Pi, p̂wki ) is queried, the variable pwki is updated as p̂w

k
i ; in contrast, when

(RegisterTest, ssidk,Pi) is queried, the variable pwki is updated as >.

• When (NewKey, ssidk,Pi, ŜK
k

i ) is queried: if pwki 6= ⊥ ∧ pwki 6= >, the variable SKki is updated as ŜK
k

i ;
otherwise, it is updated as >.

• When (LateTestPwd, ssidk,Pi, p̂wki ) is queried: Only when pwki = > ∧ SKki = > holds, this query will
not be ignored.

According to the assigned values of the two variables pwki and SKki , the simulator S can distinguish
the adversary’s different strategies of guessing the password of the whole protocol. Since ssidk := sid|i|j|k,
the simulator S can find all records correspongding to the same sid. Using pwki 6= ⊥ for all k ∈ [n], the
simulator S can extract the adversary’s password guess for sid: if at least one of these values equals to >,
S sends (RegisterTest, sid,Pi) to F ; otherwise, S sends (TestPwd, sid,Pi, pw1

i | . . . |pwni ) to F . In addition,
using SKki 6= ⊥ for all k ∈ [n], the simulator S can form a proper query (NewKey, sid,Pi,SK∗) to F : if at
least one of these values equals to >, SK∗ $← {0, 1}λ; otherwise, SK∗ :=

⊕
k∈[n] SK

k
i .

In the case that A makes correct password guesses for all sub-sessions via TestPwd queries, F will
output SK∗, determined by A, to Pi as its session key. In the case that A makes correct password guesses
for part of the sub-sessions via LateTestPwd queries and other part of the sub-sessions via TestPwd queries,
the simulator S ensures that A’s received sub-session keys in LateTestPwd queries are consistent with Pi’s
session key it received from F . In all other cases, F will output a random value to Pi as its session key.

We can conlude that the simulator S shown in Fig. 8 perfectly simulates the view ofA in the real world.

E Our Further Result in the BPR Framework

For thoroughness, we present a further result within the BPR framework. Firstly, our scheme’s security can
be established with a CRS setup. Secondly, even in the event of the CRS trapdoor being compromised to
the adversary, its security remains provable within a RO setup.

We adhere to the overarching concept of initially executing a RO-based sub-protocol, followed by the
execution of a CRS-based sub-protocol. However, we invoke them in a non black-box manner. For the
RO-based sub-protocol, both parties only need to send a single message that commit their own input pass-
words. This protocol also provides mutual key confirmation mechanism. For the CRS-based sub-protocol,
we employ a particular variant of the GK-design [GK10] to instantiate it, which directly provides mutual
key confirmation mechanism and is relative efficient than other CRS-based PAKEs. In contrast to the GK-
design [GK10], the primary distinction lies in the method of generating the two ciphertexts. In the variant
we employed, the two ciphertexts encrypt two unequal but related values. This adjustment guarantees that
the mutual key confirmation mechanism provided by the RO-based sub-protocol remains effective even if
the adversary possesses knowledge of the CRS trapdoor.

E.1 Description of the construction

Our construction uses: A homomorphic NIKE scheme Π = (SETUP,GEN,KEY) with associated functions
{fσ, f̂σ}σ∈{0,1}; A PKE scheme Σ = (KG, ENC,DEC) with an associated SPHF scheme ΩΣ = (PG,HKG,
PKG,HASH, PHASH); A labeled PKE scheme Σ′ = (KG′, ENC′,DEC′).
Public parameters. A setup phase is required to assign the security parameter λ and the following param-
eters:

A public parameter pp $← SETUP(1λ);
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Two public keys pk and pk′ generated by KG(1λ) and KG(1λ), respectively; and a parameter Γ gener-
ated by PG(1λ). In particular, we use L to denote the language determined by (pk,Γ).
Description for one hash functionH : {0, 1}∗ → {0, 1}6λ.

Protocol execution. Consider a client C and a server S holding their input passwords pwC and pwS,C, respec-
tively. They interact as shown in Fig. 15.

Client C(pwC): Server S(pwS,C):

(ek, dk)
$← GEN(pp);

pek = f0(pwC, ek); C, pek
−−−−−→

(ek′, dk′)
$← GEN(pp);

pek′ = f1(pwS,C, ek
′);

kS = KEY(dk′, f̂0(pwS,C, pek));

ωS|µS|θS = H(C|S|pek|pek′|kS|pwS,C);

r
$← {0, 1}∗;CT = ENC(pk, ωS; r);S, pek′,CT

←−−−−−−−−
kC = KEY(dk, f̂1(pwC, pek

′));

ωC|µC|θC = H(C|S|pek|pek′|kC|pwC);

hk
$← HKG(Γ); hp = PKG(Γ, hk,CT);

$C|τC|ϑC = HASH(Γ, hk, (CT, ωC));
label = C|S|pek|pek′|CT|hp;
CT′ = ENC′(pk′, label, µC;$C);

hp,CT′
−−−−−→ $S|τS|ϑS = PHASH(Γ, hp, (CT, ωS), r);

label = C|S|pek|pek′|CT|hp;
Abort if CT′ 6= ENC′(pk′, label, µS;$S);τS←−−

Abort if τS 6= τC;
Output θC ⊕ ϑC as the session key; Output θS ⊕ ϑS as the session key;

‡ The text with gray background embodies the RO-based subroutine we use to achieve BPR-secure PAKE with a weaker fine-grained CoR-setup, which is
different from the one we used in the UC framework. In this process, each party only needs to send a single message that can be viewed as a commitment
of its input password.

Figure 15: Our proposal in the BPR framework

E.2 Security analysis

For the protocol shown in Fig. 15, we have the following theorem.

Theorem 7. Given the following building blocks:

• Π is a OW-secure homomorphic NIKE scheme with associated functions {fσ, f̂σ}σ∈{0,1}, where the perfect
hiding property holds; In particular, the equivocability and Type-I intractability also holds in the RO model.

• Σ is a CPA-secure PKE scheme with an associated SPHF scheme ΩΣ;
• Σ′ is a CCA-secure labeled PKE scheme;
• H is a hash function.

The protocol in Fig. 15 is secure in the BPR framework. In particular:

(1) It is BPR-secure with a CRS setup whenH is sampled from a collision-resistant hash family;
(2) It is BPR-secure with a RO setup by modeling H as a RO, even if the CRS trapdoor is compromised by the

adversary.

Proof. For simplicity, we divide the Send queries into five sub-queries:
Send0(C, i, S) models that the adversary activates a client session Πi

C with a partner S.
Send1(S, j,msg1) models that the adversary sends the first message (denoted as msg1) to Πj

S.
Send2(C, i,msg2) models that the adversary sends the second message (denoted as msg2) to Πi

C.
Send3(S, j,msg3) models that the adversary sends the third message (denoted as msg3) to Πj

S.
Send4(C, i,msg4) models thats the adversary sends the last message (denoted as msg4) to Πi

C.
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An adversary A may impersonate client or server to launch active attacks. Without loss of generality,
we use the following terminologies:

Attack to a client instance to indicate “A is impersonating a server S to attack a client session Πi
C".

In this case, A should query Send0(C, i, S) that returns msg1 and Send2(C, i,msg2) that returns msg3 in
order. Optionally, A should query Send4(C, i,msg4) to make the session Πi

C complete.
Attack to a server instance to indicate “A is impersonating a client C to attack a server session Πj

S". In
this case, A should query Send1(S, j,msg1) that returns msg2 and Send3(S, j,msg3) that returns msg4 in
order.

Note that the input message of each Send query may be adversarially generated or just a message replay.
There exists a special case that the adversary attacks a protocol instance on both sides simultaneously and
the input of querying Sendk(·) is the output of querying Sendk−1(·) for all k ∈ [4].

Proof of Case-(1):

The proof follows the one by Groth and Katz [GK10]. The correctness can be easily verified. If both
users honestly follow the protocol, they must conclude with the same session key, because it is easy to
verify that θC = θS and ϑC = ϑS hold simultaneously in this case. We denote the number of Execute and
Send queries made by A as nExecute and nSend, respectively. Next, we will use a series of experiments
Expt0, . . . ,Expt8 to bound the advantage of A. In particular, Expt0 is the original experiment, where an
independently chosen random password will be fixed for each pair of users (C, S). We denote the advantage
of A in experiment Expti as:

Advbpr
A,i (λ) := 2|Pr[A succeeds in Expti]− 1|.

It immediately holds that Advbpr
A,0 = Advbpr

A,π .

Experiment Expt1: This experiment is same as Expt0 except that for answering an Execute(C, i, S, j)

query, generate CT as an encryption of a random value ω $← {0, 1}λ rather than ωS.

Claim 19. Advbpr
A,1 ≤ Advbpr

A,0 + negl(λ).

Proof. This follows in a straightforward way from the IND-CPA security of the underlying scheme Σ. We
construct a PPT adversary B attacking it as follows: given a public key pk, B simulates the experiment for
A including choosing random passwords for each pair of users. When a ciphertext CT is expected to be
sent to A, B using ωS or ω (i.e., a random value independent of the anything that previously occurred)
as its pair of messages to query its oracle; upon receiving a ciphertext, return it to A. Note that B can
compute correct session keys SKiS = SKjC, since Πi

C is still simulated exactly as in the real protocol. At the
end of the experiment, B outputs 1 if and only if A succeeds. The distinguishing advantage of B is exactly
|Adv1 − Adv0|, and IND-CPA security of the underlying scheme Σ yields this Claim.

Experiment Expt2: This experiment is same as Expt1 except that in response to an Execute(C, i, S, j) query,
randomly choose $C|τC|ϑC

$← {0, 1}3λ and set $S|τS|ϑS = $C|τC|ϑC.

Claim 20. Advbpr
A,2 ≤ Advbpr

A,1 + negl(λ).

Proof. This follows in a straightforward way from the smoothness of the underlying SPHF scheme ΩΣ. In
particular, as CT generated in Expt1 is an encryption of a random value ω rather than ωS (that equals to ωC),
thus (CT, ωC) /∈ L holds. Therefore, the SPHF hash value computed is statistically close to uniform even
conditioned on hp.

Experiment Expt3: This experiment is same as Expt2 except that in response to an Execute(C, i, S, j) query,
choose SKiS

$← {0, 1}λ and set SKjC = SKiS.

Claim 21. Advbpr
A,3 ≤ Advbpr

A,2 + negl(λ).

Proof. It is straightforward since ϑC = ϑS are set randomly in Expt2.
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Experiment Expt4: This experiment is same as Expt3 except that in response to an Execute(C, i, S, j) query,
set CT′ as an encryption of a random µ

$← {0, 1}λ rather than µC.

Claim 22. Advbpr
A,4 ≤ Advbpr

A,3 + negl(λ).

Proof. This follows in a straightforward way from the IND-CCA security of the underlying PKE scheme
Σ′. Note that in Expt3, the ciphertext CT′ is encrypted using truly randomness, thus we can build a PPT
adversary B attacking this PKE scheme as follows: given a public key pk′, B simulates the experiment
for A. When a ciphertext CT′ is expected to be sent to A, B using the real µC or µ (i.e., a random value
independent of the anything that previously occurred) as its pair of messages to query its oracle; upon
receiving a ciphertext, return it to A. Note that session keys SKiS = SKjC are set random. At the end of the
experiment, B outputs 1 if and only if A succeeds. The distinguishing advantage of B is exactly |Advbpr

A,4 −
Advbpr

A,3|. Therefore, the IND-CCA (in fact, IND-CPA security is enough here) security of the underlying PKE
scheme Σ′ yields this Claim.

Experiment Expt5: This experiment is same as Expt4 except that now the secret keys (sk, sk′) are recorded
when the public keys (pk, pk′) in the CRS are generated. Furthermore, the way to answer a Send3(S, j, (hp,CT′))
query is changed as follows:

If the message (hp,CT′) was output by a previous query Send2(C, i, ·), continue as before.
Else if the message (hp,CT′) was not previously output, decrypt it (using sk′) to derive µ, halt and
declare “success" if µ = µS.
Otherwise, abort the session Πj

S.

Claim 23. Advbpr
A,5 ≤ Advbpr

A,4.

Proof. Assume the password of the server S associated with C is pw∗. SinceH is collision resistant, no other
password pw 6= pw∗ can make the following equality hold simultaneously

ωS|µS|θS = H(C|S|pek|pek′|kS|pwS,C).

Therefore, check whether µ = µS is equivalent to check whether the adversary guesses the correct
password pw∗, except with negligible probability. The change still introduces a new way for A to succeed,
however, such that A’s advantage increases.

Experiment Expt6: This experiment is same as Expt5 except that the ways to answer a Send1(S, j, (C, pek))
and a Send3(S, j, (hp,CT′)) query are changed. In particular, in response to a Send1(S, j, (C, pek)) query, gen-
erate CT as an encryption of the random value ω $← {0, 1}λ rather than ωS. In response to a Send3(S, j, (hp,
CT′)) query:

1. If the message (hp,CT′) was output by a previous query Send2(C, i, (C, pek′,CT)) and the same tran-
scripts (i.e., C, S, pek, pek′,CT) are recorded in both Πi

C and Πj
S, set $S|τS|ϑS = $C|τC|ϑC and SKjS = SKiC

using the internal variables of the session Πi
C. Then send τS to the adversary in the name of the server

user S.
2. Else if the message (hp,CT′) was not previously output, decrypt it (using sk′) to derive µ, halt and

declare “success" if µ = µS;
3. Otherwise, abort the session Πj

S.

Claim 24. Advbpr
A,6 ≤ Advbpr

A,5 + negl(λ).

Proof. Consider an intermediate experiment Expt5′ , where the Send3 oracle is modified as described above,
but Send1 still computes CT exactly as in Expt5. This is simply a syntactic rewriting of Expt5, and so the
adversary’s advantage remains unchanged.

Next we show that A’s advantage can change by only a negligible amount in moving from Expt5′ to
Expt6. It comes in a straightforward way from the IND-CPA security of the underlying PKE scheme Σ. We
construct a PPT adversary B attacking it as follows: given a public key pk, B simulates the experiment for
A including generating pk′ and recording the corresponding secret key sk′ by itself. When a ciphertext CT
is expected to be sent to A, B using the real ωS or ω (i.e., a random value independent of the anything that
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previously occurred) as its pair of messages to query its oracle; upon receiving a ciphertext, return it to A.
Note that B can still respond to Send3(S, j, (hp,CT′)) queries, since knowledge of the randomness used to
generate CT′ is no longer used (in either Expt5′ or Expt6). At the end of the experiment, B outputs 1 if and
only if A succeeds. The distinguishing advantage of B is exactly |Advbpr

A,6 − Advbpr
A,5′ |. Therefore, IND-CPA

security of the underlying PKE scheme Σ yields this Claim.

Experiment Expt7: This experiment is same as Expt6 except that the way to answer a Send2(C, i, (S, pek′,
CT)) query is changed as following:

If (S, pek′,CT) was not output by a previous query Send1(S, j, (C, pek)), decrypt it (using sk) to derive ω,
halt and declare “success" if ω = ωC;
Otherwise, randomly set $C|τC|ϑC and continue as before.

Claim 25. Advbpr
A,7 ≤ Advbpr

A,6 + negl(λ).

Proof. Assume the password of the client C is pw∗. SinceH is collision resistant, no other password pw 6= pw∗

can make the following equality holds:

ωC|µC|θC = H(C|S|pek|pek′|kC|pwC)

Therefore, check whether ω = ωC is equivalent to check whether the adversary guesses the correct
password pw∗, except with negligible probability. Case 1 still introduces a new way for A to succeed,
however, such that A’s advantage increases. Case 2 introduces negligible advantage for A and this follows
from the smoothness of the underlying SPHF scheme ΩΣ when (CT, ωC) /∈ L holds. Therefore, the output
is statistically close to uniform even conditioned on hp.

Experiment Expt8: The way to answer a Send2(C, i, (S, pek′,CT)) query is changed again. In particular, for
Case 2 in Expt7, CT′ is generated as an encryption of a random value µ $← {0, 1}λ rather than µC.

Claim 26. Advbpr
A,8 ≤ Advbpr

A,7 + negl(λ).

Proof. The change introduces negligible advantage for A and this can be shown by the IND-CCA security
of the underlying PKE scheme Σ′. There are two observations: (1) the randomness used to generate CT′

is truly random now; (2) we may need to decrypt CT′ in Send3 queries. We construct a PPT adversary B
attacking this PKE scheme as follows: given public key pk′, B simulates the experiment for A including
generating pk and recording the corresponding secret key sk by itself. When a ciphertext CT′ is expected
to be sent to A, B using the real µC or µ (i.e., a random value independent of the anything that previously
occurred) as its pair of messages to query its oracle; upon receiving a ciphertext, return it to A. Note that B
can still respond to Send3(S, j, (hp,CT′)) queries using its decryption oracle. At the end of the experiment,
B outputs 1 if and only if A succeeds. The distinguishing advantage of B is exactly |Advbpr

A,8 − Advbpr
A,7|.

Therefore, the IND-CCA security of the underlying PKE scheme Σ′ yields this Claim.

Bounding the advantage in Expt8. A can succeed in following ways:
1. Successfully launch off-line guessing attack to some honest party via the transcripts it has seen before

making any Corrupt query.
2. Query Send2(C, i, (pek′,CT)) with DEC(sk,CT) = ωC.
3. Query Send3(S, j, (hp,CT′)) with DEC′(sk′,CT′) = µS.
4. Query Send4(C, i, τ) with τS = τC but τS was not output by Πi

C’s paired instance.
5. Successfully guess the bit of the Test oracle.

In the view of the adversary, all transcripts except pek and pek′ are simulated and independent of all
passwords. As for pek and pek′, they perfectly hide the passwords according perfect hiding property of
the underlying homomorphic NIKE scheme. Therefore, the adversary is information-theoretically unable to
make Case 1 occur. Case 2 or Case 3 occurs only with probability at most nSend/|PW|, since the view of the
adversary is independent of all correct passwords until one of the two cases occurs. Case 4 only occurs with
negligible probability, since τC is a uniform λ-bit string that is independent of the adversary’s view if τC was
not output by any instance paired with Πi

C. Conditioned on Case 1 - Case 3 not occurring, the adversary
can only success in Case 5. But in that case, all session keys are chosen uniformly and independently at
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random with non-paired instances, so the success probability is exactly 1/2. Thus, it is straightforward that
Advbpr

A,8 ≤ nSend/|PW|. Taken all above together, we have that Advbpr
A,π ≤ nSend/|PW|+ negl(λ).

Proof of Case-(2):

We model H as RO built on the fly, i.e., each new query is answered with a fresh random output, and
each query that is not new is answered consistently with the previous quires. In particular, one empty list
LH is initialized first. Then, for eachH query on C|S|pek|pek′|k|pw is answered as follows:

• If there exists (C|S|pek|pek′|k|pw, ω|µ|θ) ∈ LH, return ω|µ|θ.
• Otherwise, return a random value ω|µ|θ $← {0, 1}3λ.

Append (C|S|pek|pek′|k|pw, ω|µ|θ) to LH.

For each pair of users (C, S), fix their shared password as an independently chosen random value pw∗S,C.
If A has never queried H on the correct input associated to the test session, the session key is perfectly
indistinguishable from random. For a client instance Πi

C, it is called paired with a server instance Πj
S if there

is a Send0(C, i, S) query that returns (C, pek), a Send1(S, j, (C, pek)) query that returns (S, pek′,CT), and a
Send2(C, i, (pek′, ∗)) query. For a server instance Πj

S, it is called paired with a client instance Πi
C if there is a

Send0(C, i, S) that returns (C, pek), and a Send1(S, j, (C, pek)) query.
In the next, we define several events corresponding to A successfully launching password-guessing

attacks via Send or Execute queries. In each case, an associated value for the event is defined, which is
determined by the protocol before that event occurs.

testpwC(C, i, S, pw): (A is attacking to a client instance.) For some (pek, pek′,CT, pw), A makes a H
query on C|S|pek|pek′|k|pw, a Send0(C, i, S) query that returns (C, pek), a Send2(C, i, (S, pek′,CT)) query,
where the latest query is either Send2(·) orH,

k = Key(f̂0(pw, pek), f̂1(pw, pek′)).

The associated value is the output of theH query, denoted as ωiC|µiC|θiC.
testpwC∗(C, i, S, pw): For some (pek, pek′,CT, pw), a Send2(C, i, (C, pek′,CT)) query causes a testpwC(C, i,
S, pw) event to occur, with associated value ωiC|µiC|θiC.
testpwC#(C, i, S, pw): Amakes a Send4(C, i, τS) query, and previously made a testpwC∗(C, i, S, pw) event
occurs with associated value ωiC|µiC|θiC, and τS equals to τC computed from ωiC as the protocol description.
testpwS(S, j, C, pw): (A is attacking to a server instance.) For some (pek, pek′,CT, pw), A makes a H
query on C|S|pek|pek′|k|pw, and previously made a Send1(S, j, (C, pek)) query that returns (S, pek′,CT),
where

k = Key(f̂0(pw, pek), f̂1(pw, pek′)).

The associated value is the output of theH query, denoted as ωjS |µ
j
S|θ

j
S .

testpwS#(S, j, C, pw): Amakes a Send3(S, j, (hp,CT′)) query, and previously made a testpwS(S, j, C, pw)

event occurs with associated value ωjS |µ
j
S|θ

j
S , and CT′ = ENC′(pk′, label, µjS;$S) where $S is computed

according to the protocol description.
testpwExec(C, i, S, j, pw): (A is passively attacking via Execute oracle.) For some tuple (pek, pek′, pw),A
makes a H query on C|S|pek|pek′|k|pw, and previously made an Execute(C, i, S, j) query that generates
(pek, pek′), where

k = Key(f̂0(pw, pek), f̂1(pw, pek′)).

The associated value is the output of theH query, denoted as ωiS|µiS|θiS = ωjC |µ
j
C|θ

j
C .

testpw(C, i, S, j, pw): (A is passively attacking via Send oracle.)
Both a testpwC(C, i, S, pw) and a testpwS(S, j, C, pw) event occur, where Πi

C is paired with Πj
S and Πj

S is
paired with Πi

C after its corresponding Send1(·) query.
pairedpwGuess: A testpw(C, i, S, j, pw) event occurs for some (C, i, S, j).
doublepwC: Both a testpwC(C, i, S, pw0) event and a testpwC(C, i, S, pw1) event occur, for some (C, S, i,
pw0, pw1) and pw0 6= pw1.
doublepwS: Both a testpwS(S, j, C, pw0) and a testpwS(S, j, C, pw1) occur, for some (S, C, j, pw0, pw1) and
pw0 6= pw1.
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correctpwSend: Before any Corrupt(·) query, a testpwC(C, i, S, pw) event occurs for some (S, C, i); or a
testpwS(S, j, C, pw) event occurs for some (C, S, j).
correctpwExec: A testpwExec(C, i, S, j, pw) event occurs for some (C, i, S, j).

We denote the number of Execute, Send and RO queries made by A as nExecute, nSend and nRO, respec-
tively. We will use a series of experiments Expt0, . . . ,Expt8 to bound the advantage of A. We denote the
advantage of A in Expti as:

Advbpr
A,i (λ) := 2|Pr[A succeeds in Expti]− 1|.

In particular, we let Expt0 denote the original experiment, such that Advbpr
A,0 = Advbpr

A,π holds.

Experiment Expt1: This experiment is same as Expt0 except that it halts whenever honest parties ran-
domly choose pek or pek′ seen previously.

Claim 27. Advbpr
A,1 ≤ Advbpr

A,0 + negl(λ).

Proof. Let E1 be the event that a pek value generated in a Send0 query or Execute query is equal to a pek
value generated in previous Send0 query or Execute query, or a pek value sent as input in a previous Send1

query, or a pek value in a previousH query. Let E2 be the event that a pek′ value generated in a Send1 query
or Execute query is equal to a pek′ value generated in a previous Send1 query or Execute query, or a pek′

value sent as input in a previous Send2 query, or a pek′ value in a previous H query. Let E = E1 ∨ E2. If
E does not occur, Expt1 is identical to Expt0. There are nSend + nExecute such values are required to be
generated, thus Pr[E occurs ] ≤ (nSend + nExecute)(nSend + nExecute + nRO)/|EK|.

Experiment Expt2: This experiment is same as Expt1 except that the ways to answer Execute and Send
queries are changed without making any RO (i.e., H) queries. Subsequent RO queries made by the adver-
sary are backpatched to be consistent with these responses. In particular:

In an Execute(C, i, S, j) query: set (pek, pdkiC)
$← GEN(pp), (pek′, pdkjS)

$← GEN(pp) and ωiC|µiC|θiC =

ωjS |µ
j
S|θ

j
S

$← {0, 1}3λ.
In a Send0(C, i, S) query: set (pek, pdkiC)

$← GEN(pp).
In a Send1(S, j, (C, pek)) query: set (pek′, pdkjS)

$← GEN(pp) and ωjS |µ
j
S|θ

j
S

$← {0, 1}3λ.
In a Send2(C, i, (S, pek′,CT)) query:
(1) If it causes a testpwC∗(C, i, S, pw∗S,C) event to occur, set ωiC|µiC|θiC as the associated value of that event.
(2) Else if Πj

S is paired with a session Πi
C, set ωiC|µiC|θiC = ωjS |µ

j
S|θ

j
S .

(3) Otherwise, set ωiC|µiC|θiC
$← {0, 1}3λ.

In a Send3(S, j, (hp,CT′)) query: if it causes a testpwS#(S, j, C, pw∗S,C) event to occur or Πj
S is paired with

a session Πi
C, continue; otherwise, abort.

In a Send4(C, i, τS) query: if it causes a testpwC#(C, i, S, pw∗S,C) event to occur or Πi
C is paired with a

session Πj
S, continue; otherwise, abort.

For aH query on C|S|pek|pek′|k|pw:
(1) If it causes a testpwC(C, i, S, pw∗S,C) event, a testpwS(S, j, C, pw∗S,C) event or a testpwExec(C, i, S, j, pw∗S,C)

event to occur, output the associated value of that event.
(2) Otherwise, output random values.

Claim 28. Advbpr
A,2 ≤ Advbpr

A,1 + negl(λ).

Proof. Due to the perfect binding property of the underlying homomorphic NIKE scheme, the modification
on the generations of pek and pek′ does not introduce any difference.

Due to the equivocability of the underlying homomorphic NIKE scheme, the above modification does
not influence detecting the occurrence of the events testpwC, testpwS and testpwExec. Because with the
algorithm EXT, we can easily compute the secret key of f̂σ(pw, pek) for any password pw if knowing the
corresponding secret key of pek.
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From Expt1 we can see thatH queries are new, therefore the values ωjS |µ
j
S|θ

j
S created by a server instance

Πi
C in a Send1(S, j, (C, pek)) query are uniformly chosen from {0, 1}3λ, independently of anything that previ-

ously occurred. Then in a Send3(S, j, (hp,CT′)) query, if it causes a testpwS#(S, j, C, pw∗S,C) event to occur or
Πj

S is paired, the instance continues (in particular, terminates after sending the reply message); otherwise,
the instance terminates or aborts. The total probability of any instance terminating in the second case is at
most max(nSend/2

λ, nSend/|CT ′|), where CT ′ denotes the ciphertext space of the underlying PKE scheme
Σ′.

For a client instance Πi
C, either:

A testpwC∗(C, i, S, pw∗S,C) event occurs, the values ωiC|µiC|θiC are set as the associated value of that event,
which are guaranteed by the original assumption.
No testpwC∗(C, i, S, pw∗S,C) event occurs, but a testpwC#(C, i, S, pw∗S,C) event occurs, Πi

C will terminate
and the values ωiC|µiC|θiC have been set previously.
No testpwC∗(C, i, S, pw∗S,C) and testpwC#(C, i, S, pw∗S,C) events occur, but exactly one instance Πj

S is paired
with Πi

C, in which case ωiC|µiC|θiC = ωjS |µ
j
S|θ

j
S .

No testpwC∗(C, i, S, pw∗S,C) event occurs, no testpwC#(C, i, S, pw∗S,C) event occurs, and no instance is
paired with Πi

C, then either the instance terminates or aborts. In this case, the probability of any in-
stance terminating in this case is at most max(nSend/2

λ, nSend/|V|), where V denotes the hash values’
space of the underlying SPHF scheme ΩΣ.

For anyH query on C|S|pek|pek′|k|pw:
1. It causes a testpwC(C, i, S, pw∗S,C), a testpwS(S, j, C, pw∗S,C) or a testpwExec(C, i, S, j, pw∗S,C) event to occur,

in which case the output is the associated value of the corresponding event;
2. The output is randomly chosen, independent of anything that previously occurred, since this is a new

query.

If an unpaired server instance Πj
S never terminates without occurring a testpwS#(S, j, C, pw∗S,C) event,

an unpaired client instance Πj
S never terminates without occurring a testpwC∗(C, i, S, pw∗S,C) event or a

testpwC#(C, i, S, pw∗S,C) event, then we have that Expt2 is consistent with Expt1.
Summarize the above, this claim holds

Experiment Expt3: This experiment is same as Expt2 except that RO queries are answered as before but
checking consistency against Execute queries is dropped.

Claim 29. Advbpr
A,4 ≤ Advbpr

A,3 + negl(λ).

Proof. If A makes a correctpwExec event occur, it will notice the change. Next, we will construct an algo-
rithm B that attempts to break the Type-I(i) intractability of the underlying homomorphic NIKE scheme Π
by running A as a subroutine.

Given a challenge tuple (pek, pek
′
), B changes the way to answer Execute(·) queries as follows:

In an Execute(C, i, S, j) query: set pek = pek · ekiC, where (ekiC, dk
i
C)

$← GEN(pp); set pek′ = pek
′ · ekjS,

where (ekjS, dk
j
S)

$← GEN(pp).
When A stops, for every H query on C|S|pek|pek′|k|pw, where pek and pek′ were generated in an
Execute(C, i, S, j) query, do as follows:

• Compute k̄1 = KEY(dkiC, ek
j
S · f̂0(pw, pek′)) and k̄2 = KEY(dkjS, f̂0(pw, pek));

• Compute k∗ = k/(k̄1 · k̄2).
• Add (pw, k∗) into the possible solution list.

Given (pek, pek′), for a password-guess pw, there exists an unique correct value:

k = Key(f̂0(pw, pek) · ekiC, f̂1(pw, pek′) · ekjS)

We can adjust the equation so that only Key(f̂0(pw, pek), f̂1(pw, pek′)) on the right. If a correctpwExec
event occurs, B adds the correct answer. Assume the Type-I(i) intractability of the underlying homomorphic
NIKE scheme holds, correctpwExec only occurs with negligible probability.
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Experiment Expt4: This experiment is same as Expt3 except when the adversary guesses the correct pass-
word (i.e., A makes a correctpwSend event occur), halts and declare “success". Note that this involves the
following changes:

In a Send2 query to a client instance Πj
S, if a testpwC∗(C, i, S, pw∗S,C) event occurs and no Corrupt query

has been made, halt and declare “success".
In a H query, if a testpwC(C, i, S, pw∗S,C) or a testpwS(S, j, C, pw∗S,C) event occurs and no Corrupt query
has been made, halt and declare “success".

Claim 30. Advbpr
A,4 ≤ Advbpr

A,3.

Proof. These changes introduce new ways for A to succeed, such that the A’s advantage increases.

Experiment Expt5: This experiment is same as Expt4 except that ifAmakes a pairedpwGuess event occur,
halt and declare “loss". We suppose that when a query is made, the test for correctpwSend occurs after the
test for pairedpwGuess.

Claim 31. Advbpr
A,5 ≤ Advbpr

A,4 + negl(λ).

Proof. If A makes a pairedpwGuess event occur, it will notice the change. Next, we will construct an algo-
rithm B that attempts to break the Type-I(i) Intractability of the underlying homomorphic NIKE scheme by
running A as a subroutine. Given a challenge (pek, pek

′
), B chooses a random d

$← [nse], and changes the
ways to answer Send(·) queries as follows:

In the d-th Send0 query, say to a client instance Πi
C with C as input, set pek = pek.

In a Send1 query to a server instance Πj
S, where there was a Send0(C, i, S) query that generates pek, set

pek′ = pek
′ · ekjS with (ekjS, dk

j
S)

$← GEN(pp).
In a Send2 query to Πi

C, if Πi
C is unpaired, B outputs 0 and halts.

In a Send3 query to a server instance Πj
S, if Πj

S was paired with Πi
C after its Send1 query, but is not now

paired with Πi
C, no test for correctpwSend is made, and Πj

S aborts.
In a Send4 query to Πi

C, if Πi
C was paired with a server instance Πj

S after its Send2 query, but is not now
paired with Πj

S, no test for correctpwSend is made, and Πi
C aborts.

WhenA stops, for everyH query on C|S|pek|pek′|k|pw, where com and pek′ were respectively generated
by the instances Πi

C and Πj
S, and Πj

S is paired with Πi
C after the corresponding Send1(·) query, do as

follows:

• Compute k̄ = KEY(ekjS, dk
j
S, f̂0(pw, pek));

• Compute k∗ = k · k̄.
• Add (pw, k∗) into the possible solution list.

Given (pek, pek′), for a password-guess pw, there exists an unique correct

k = Key(f̂0(pw, pek), f̂1(pw, pek′) · ekjS).

We can adjust this equation so that only Key(f̂0(pw, pek), f̂1(pw, pek′)) remains on the right. If a pairedpwGuess
event occurs, with probability 1/nSend, B adds the correct answer. Assume the Type-I(i) intractability of the
underlying homomorphic NIKE with associated functions holds, pairedpwGuess only occurs with negligi-
ble probability.

Experiment Expt6: This experiment is same as Expt5 except that ifAmakes a doublepwS event occur, halt
and declare “loss". We suppose that when a query is made, the test for correctpwSend or pairedpwGuess
occurs after the test for doublepwS.

Claim 32. Advbpr
A,6 ≤ Advbpr

A,5 + negl(λ).

Proof. IfAmakes a doublepwS event occur, it will notice the change. Next, we will construct an algorithm B
that attempts to break the Type-I(ii) intractability of the underlying homomorphic NIKE scheme by running
A as a subroutine. Given a challenge pek, B changes the way to answer Send(·) queries as follows:

In a Send0(C, i, S) query, set pek = pek · ekiC with (ekiC, dk
i
C)

$← GEN(pp).
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Tests for correctpwSend (from Expt4) and pairedpwGuess (from Expt5) are not made.
When A finishes, for every pair ofH queries on values C|S|pek|pek′|k0|pw0 and C|S|pek|pek′|k1|pw1 with
pw0 6= pw1, there was a Send0(C, i, S) query generates pek and a Send2(C, i, (pek′, ·)) query with pek′ as
input, if pw0 6= pw1, do as follows:

• Compute k̄0 = KEY(dkiC, f̂1(pw0, pek
′)) and k̄1 = KEY(dkiC, f̂1(pw1, pek

′)).
• Compute k∗0 = k0/k̄0 and k∗1 = k1/k̄1.
• Add (pek′, (pw0, k

∗
0), (pw1, k

∗
1)) into the possible solution list.

Note that if the event in question occurs, the following two equations hold:{
k0 = Key(f̂0(pw0, pek) · ekiC, f̂1(pw0, pek

′));

k1 = Key(f̂0(pw1, pek) · ekiC, f̂1(pw1, pek
′)).

If a doublepwS event occurs, B adds the correct answer to the list. Assume the Type-I(ii) intractability
of the underlying homomorphic NIKE scheme holds, doublepwS only occurs with negligible probability.

Experiment Expt7: This experiment is same as Expt6 except that if A makes a doublepwC event oc-
cur, halt and declare “loss". We suppose that when a query is made, the test for the events doublepwS,
correctpwSend or pairedpwGuess occurs after the test for doublepwC.

Claim 33. Advbpr
A,7 ≤ Advbpr

A,6 + negl(λ).

Proof. If Amakes a doublepwC event occur, it will notice the change. Next, we will construct an algorithm
B that attempts to break the Intractability-I (ii) of the underlying homomorphic NIKE scheme by running
A as a subroutine. Given a challenge pek

′
, B changes the way to answer Send(·) queries as follows:

In a Send1(S, j, in_msg) query, set pek′ = pek′ · ekjS, where (ekjS, dk
j
S)

$← GEN(pp).
Tests for correctpwSend (from Expt4), pairedpwGuess (from Expt5) and doublepwS (from Expt6) are
not made.
When A finishes, for every pair ofH queries on values C|S|pek|pek′|k0|pw0 and C|S|pek|pek′|k1|pw1 with
pw0 6= pw1, there was a Send1(S, j, pek) query that generates pek′, do as follows:

• Compute k̄0 = KEY(dkjS, f̂1(pw0, pek)) and k̄1 = KEY(dkjS, f̂1(pw1, pek)).
• Compute k∗0 = k0/k̄0 and k∗1 = k1/k̄1.
• Add (pek, (pw0, k

∗
0), (pw1, k

∗
1)) into the possible solution list.

Note that if the event in question occurs, the following two equations hold:{
k0 = Key(f̂0(pw0, pek), f̂1(pw0, pek

′) · ekjS);
k1 = Key(f̂0(pw1, pek), f̂1(pw1, pek

′) · ekjS).

If a doublepwC event occurs, B adds the correct answer to the list. Assume the Intractability-I (ii) of the
underlying homomorphic NIKE scheme holds, doublepwC only occurs with negligible probability.

Experiment Expt8: This experiment is same as Expt7 except that it uses an internal password oracle that
holds all passwords and only accepts simple queries that test whether a given password is the correct
password for a given users pair. The test for password-guesses (from Expt4) is changed so that whenever
A guesses a password, a query is submitted to the oracle to determine if it is correct.

By inspection, Expt7 and Expt8 are indistinguishable.

Bounding the advantage in Expt8. The probability of A succeeding in Expt8 can be bounded:

Pr[A succ. in Expt8] ≤ Pr[correctpwSend]+

Pr[A succ. in Expt8|¬correctpwSend] Pr[¬correctpwSend].

It is straightforward that Pr[correctpwSend] ≤ nSend/|PW|.
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If correctpwSend does not occur, then A succeed by making Test query to a fresh instance Πi
U. Re-

call that Reveal queries are not allowed on the target instance and it’s paired instance, and session id
includes the messages pek and pek′, no more than one server instance and one client instance will ac-
cept with the same session id. Thus, the output of Reveal queries is independent of the session key of
Πi

U. Then recall in Expt2, no unpaired client or server instance will terminate, and thus the target fresh
instance must be paired. However, a (H, ·) query will never reveal the session key of Πi

U if it is paired
(from Expt5). Therefore, the view of the adversary is independent of the session key of Πi

U, so that the
probability Pr[A succeeds|¬correctpwSend] = 1/2 holds. We can conclude that Pr[A succeeds in Expt8] ≤
1/2 + nSend/|PW|.

Taken all above together, we have that

Advbpr
A,π ≤ nSend/|PW|+ negl(λ).
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