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Abstract. The native plaintexts of the Cheon-Kim-Kim-Song (CKKS)
fully homomorphic encryption scheme are vectors of approximations to
complex numbers. Drucker et al [J. Cryptol.’24] have showed how to
use CKKS to efficiently perform computations on bits and small bit-
length integers, by relying on their canonical embeddings into the com-
plex plane. For small bit-length integers, Chung et al [IACR eprint’24]
recently suggested to rather rely on an embedding into complex roots of
unity, to gain numerical stability and efficiency. Both works use CKKS
in a black-box manner.
Inspired by the design by Bae et al [Eurocrypt’24] of a dedicated boot-
strapping algorithm for ciphertexts encoding bits, we propose a CKKS
bootstrapping algorithm, SI-BTS (small-integer bootstrapping), for ci-
phertexts encoding small bit-length integers. For this purpose, we build
upon the DM/CGGI-to-CKKS conversion algorithm from Boura et al
[J. Math. Cryptol.’20], to bootstrap canonically embedded integers to
integers embedded as roots of unity. SI-BTS allows functional boot-
strapping: it can evaluate an arbitrary function of its input while boot-
strapping. It may also be used to batch-(functional-)bootstrap multiple
DM/CGGI ciphertexts. For example, its amortized cost for evaluating an
8-bit look-up table on 212 DM/CGGI ciphertexts is 3.75ms (single-thread
CPU, 128-bit security).
We adapt SI-BTS to simultaneously bootstrap multiple CKKS cipher-
texts for bits. The resulting BB-BTS algorithm (batch-bits bootstrap-
ping) allows to decrease the amortized cost of a binary gate evaluation.
Compared to Bae et al, it gives a 2.4x speed-up.

Keywords: Fully Homomorphic Encryption · Bootstrapping · Binary
Circuits · Functional Bootstrapping

1 Introduction

The diverse Fully Homomorphic Encryption (FHE) schemes handle different
primary data types. In BGV/BFV [BGV12,Bra12,FV12], a plaintext is a vec-
tor of elements in a finite field. DM/CGGI [DM15,CGGI16a] considers bits,
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and can be extended to process small bit-length integers [CJP21,KS22]. Finally,
CKKS [CKKS17] enables computations on vectors of (approximations to) com-
plex numbers. Even though computations on a second data type can be expressed
as computations on a first data type, this incurs a “data type translation” cost.
For example, simulating a multiplication between reals with a boolean circuit
may incur a large extra cost. For this reason, it can be tempting to choose an
FHE scheme whose primary data type matches the considered application, to
maximize efficiency. In this work, we go against this intuition, and consider the
efficiency of CKKS for computations on small integers, including bits.

Recently, Drucker et al [DMPS24] used CKKS to perform computations on
vectors of bits, obtaining impressive performance in terms of throughput: thanks
to the SIMD nature of CKKS, when the computations to be performed are suf-
ficiently large, the amortized cost of homomorphically evaluating a binary gate
becomes very small. The main idea of [DMPS24] is to view the bit b ∈ {0, 1} as
a real/complex number and map a vector of such bits to a CKKS plaintext. The
latter encoding adds a small noise to the bits. By interpreting binary gates as
bivariate polynomials, one can then evaluate binary circuits with CKKS. To han-
dle the noise increase, the authors of [DMPS24] propose to use a noise-cleaning
polynomial, which implements the identity function on {0, 1} with a vanishing
derivative on those points. The vanishing derivatives allow to square the noise,
i.e., to double the accuracy. We stress that with CKKS, it is possible to reduce the
encryption noise without bootstrapping, since the noise is part of the message.
In [ADE+23], following a suggestion from [DMPS24], the authors proposed to use
such noise cleaning only after every few gates rather than after every gate, leading
to improved throughput. This was used to homomorphically evaluate AES mul-
tiple times in parallel. The throughput was further lowered in [BCKS24], which
introduced variants of the CKKS bootstrapping algorithm [CHK+18] specifically
designed for binary data. Borrowing the figures from [BCKS24, Table 2], evalu-
ating a binary gate with CKKS has an amortized cost of 17.6µs in single-thread
CPU (where amortization is over slots and the multiple sequential gates that can
be applied between two consecutive bootstraps). For sufficiently large compu-
tations, this compares favorably to [DM15,CGGI16a], which typically consumes
around 10ms per binary gate [CGGI16b]. Interestingly, the bootstrapping algo-
rithms from [BCKS24] are compatible with DM/CGGI ciphertexts. By relying on
fast ring packing [BCK+23], one then obtains a CKKS-based DM/CGGI boot-
strapping algorithm for multiple ciphertexts which outperforms other DM/CGGI
bootstrapping when the number of ciphertexts to be bootstrapped is around 200.

Drucker et al [DMPS24] also considered viewing small bit-length integers as
real/complex numbers and using CKKS to perform SIMD homomorphic compu-
tations on integers. The cost increases fast with the bit-length, notably because
of the considered noise-cleaning strategy. The integer is homomorphically de-
composed in base 2 by repeatedly computing the most significant bit. The latter
is quite costly as this discontinuous function is implemented using a precise poly-
nomial approximation of a step function. The bits are then cleaned individually
before being recombined in a cleaned integer. In [CKKL24], Chung et al con-
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sidered a different path for enabling small bit-length integer computations with
CKKS. Instead of embedding an integer m ∈ [0, t) for some small t into C using
the identity function, they exploit t-th roots of unity and send m to exp(2iπm/t).
By restricting the CKKS plaintext space to small balls around these t points,
discrete computations can be performed via numerically stable polynomial in-
terpolations. Indeed, Lagrange’s interpolation on equispaced points of the real
line suffers from huge oscillations, which is known as Runge’s phenomenon. On
the contrary, roots of unity make the interpolating polynomial nicely converge
to the target function (assuming it is sufficiently smooth). Similarly to binary
circuits [DMPS24], the noise grows with homomorphic operations and the data
points progressively become less separated. This is also handled with a noise-
cleaning polynomial evaluation.

The works above on small integers use CKKS bootstrapping in a black-
box manner. This raises the following questions: As in the case of bits, can
CKKS bootstrapping be adapted for small bit-length integers? Can we obtain a
CKKS-based batch-bootstrapping algorithm for multiple DM/CGGI ciphertexts
for small integers? Similarly to DM/CGGI functional/programmable bootstrap-
ping [CJP21,KS22], can we bootstrap and evaluate a function simultaneously?

Contributions. We introduce two new CKKS bootstrapping algorithms for
plaintexts respectively encoding small bit-length integers and bits.

The first algorithm, SI-BTS (for small integer bootstrapping), bootstraps ci-
phertexts whose plaintexts are integers of small bit-sizes (e.g., 8 bits). It can
be combined with an arbitrary table look-up, at no extra cost, providing a
CKKS analogue to functional bootstrapping [CJP21,KS22] in the context of
the DM/CGGI fully homomorphic encryption scheme. Like in [CIM19], several
functions of the same plaintexts can be evaluated for a cost that is significantly
less than that of applying the functional bootstrap multiple times. Finally, as
the inputs and outputs of SI-BTS are compatible with DM/CGGI ciphertexts,
SI-BTS can be used to perform functional bootstraps on multiple DM/CGGI ci-
phertexts at once, rather than running the DM/CGGI functional bootstrapping
algorithm in parallel on the multiple ciphertexts.

The second algorithm, BB-BTS (for batch-bits bootstrapping), bootstraps in
one go multiple CKKS ciphertexts for bits. For a single ciphertext, it essentially
corresponds to the BinBoot algorithm from [BCKS24]. As its cost grows slowly
with the number of batched ciphertexts (up to some integer bit-length), when
several ciphertexts are considered, it leads to a large throughput improvement
compared to [BCKS24].

Implementation. We implemented SI-BTS and BB-BTS in the C++ HEaaN
library [Cry22]. For Int-BTS, we designed parameter sets optimizing latency,
primarily focusing on obtaining an efficient algorithm for batch functional boot-
strapping of DM/CGGI ciphertexts. As showed by its multiple uses (see, e.g.,
[CJP21,CHMS22,TCBS23]) the importance of functional bootstrapping cannot
be overstated. For BB-BTS, we designed parameter sets optimizing throughput.

Table 1 illustrates the performance of CKKS-based functional bootstrapping
for integers of various bit-sizes. We compare the performance to the functional
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bootstrapping algorithm of DM/CGGI [KS22] and to the BFV/BGV-based func-
tional bootstrapping algorithms of [LW23]. The DM/CGGI figures are retrieved
from the tfhe-rs benchmarks page, and correspond to a similar computing envi-
ronment (single-thread CPU).4

Number of input
LWE ciphertexts

Number of
input/output bits Total time Amortized time

[Zam24] 1

2 6.4ms 6.4ms
4 12.9ms 12.9ms
6 104ms 104ms
8 489ms 489ms

[KS22] 1 8 21s 21s
[LW23] 215 9 220s 6.7ms

This work 212

2 3.20s 0.78ms
4 6.41s 1.57ms
6 11.0s 2.67ms
8 15.4s 3.75ms
10 50.3s 12.3ms

Table 1. Comparison for look-up table evaluations for various input bit-sizes. The
figures for [KS22] only provide 100-bit security, while all others aim at 128-bit security.

Table 2 focuses on throughput for binary gate evaluations. The run-time
figures for [LMSS23] and [LW24] are borrowed from the corresponding papers.
The figures for [BCKS24] and [DMPS24] are borrowed from [BCKS24], and we
included only the ‘improved version’ figures for [DMPS24]. All the experiments
were on similar computing environments (single-thread CPU). Our batch bits
bootstrapping (BB-BTS) that bootstraps 5 ciphertexts in parallel gives 2.38x
faster amortized gate evaluation time than the state-of-the-art [BCKS24]. In this
figure, we considered k = 5 batched ciphertexts in parallel because it shows the
best performance, as illustrated in Table 7. As we increase the batch number k,
the amortized bootstrapping time decreases at first but it starts to increase at
some point. This is because the cost of BB-BTS depends on k and the benefit of
simultaneously computing several bootstrappings is offset by the increased cost.
For a more detailed analysis on the effect of k, we refer to Section 6.2.

1.1 Technical Overview

Modulus consumption in bootstrapping. To explain our contributions, we
first highlight what makes conventional bootstrapping costly and how this is
4 Choosing the number of input LWE ciphertexts to be as large as 212 is somewhat

necessary to reduce the amortized bootstrapping time. If one uses a smaller number
of input LWE ciphertexts instead, one may consider CKKS bootstrapping for fewer
slots (i.e., thin bootstrapping). However, as the overall bootstrapping time scales
sublinearly with the number of slots, using fewer slots is less efficient in terms of
amortized bootstrapping time.
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Number of
plaintext slots

Amortized bootstrapping
time per gate

[LMSS23] 1 6.49ms
[LW24]

216
1.5ms

[DMPS24] 27.7µs
[BCKS24] 17.6µs
This work 5 · 216 7.39µs

Table 2. Throughput comparison for BB-BTS. Here number of plaintext slots refers to
the number of bits being bootstrapped per single (batched) bootstrapping. All figures
correspond to parameters aiming at 128-bit security.

handled with the bootstrapping algorithm from [BCKS24] for bits. CKKS per-
forms plaintext operations on CN/2 by manipulating ciphertexts belonging in R2

q

where Rq = Z[X]/(XN + 1) for some power-of-two integer N . The modulus q
may vary but, for any given N , it is bounded from above as else the underly-
ing hard problem, a variant of Ring-LWE [SSTX09,LPR10], does not provide
sufficient security. The primary homomorphic operations are component-wise
addition, multiplication and complex conjugation, as well as cyclic rotations of
the vector coefficients. While many additions, conjugations and rotations can
be performed without significant difficulties, repeated multiplications are more
difficult to support. They involve a rescaling operation that decreases the modu-
lus q of the ciphertext by a number of bits that grows linearly with the precision
of the plaintexts considered in the computations. Therefore, the current modulus
directly limits the number of sequential multiplications that can be subsequently
performed, if one is restricted to the primary operations mentioned above. The
CKKS bootstrapping procedure [CHK+18] takes as input a low-modulus cipher-
text and outputs a high-modulus ciphertext that decrypts to the same message,
up to some noise. Homomorphic computations can then be run endlessly. Despite
many improvements [CCS19,HK20,LLL+21,BTPH22,KPK+22,LLK+22] (among
others), CKKS bootstrapping still suffers from two main drawbacks: first, its run-
time is high; second, it itself requires significant multiplicative depth and hence
consumes a large amount of modulus. Modulus consumption in bootstrapping is
a main factor in the efficiency of CKKS: a lower modulus consumption in boot-
strapping provides more room for useful computations, helping for throughput;
it may also allow to choose a smaller N , which helps for latency.

When it comes to modulus consumption, the two main components of boot-
strapping are a linear evaluation phase called CtS (for coefficients to slots), and
a non-linear evaluation phase called EvalMod (for evaluation of modular reduc-
tion). The other linear phase called StC consumes less modulus, and the remain-
ing bootstrapping component, ModRaise, creates modulus. The input of CtS is
a ciphertext whose underlying plaintext is V · (x + I), where V is a matrix
that is closely related to the discrete Fourier transform, x is a vector containing
the message and satisfying ∥x∥∞ < 1/2, and I is a vector whose coordinates
are bounded integers. The main task of bootstrapping is to remove I. CtS is a
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homomorphic multiplication by V−1: its output is a ciphertext that decrypts
to ≈ x+ I. EvalMod evaluates, on all coordinates in parallel, a polynomial that
approximates the function x + I 7→ x on a relevant domain. The modulus con-
sumption is driven by two aspects. First, all computations are performed in some
precision that is larger than the bit-size of the manipulated data, i.e., x+ I with
an accuracy that provides enough meaningful bits of the message encoded in x.
Second, this per-level modulus consumption is multiplied by the multiplicative
depth of CtS and EvalMod.

The first aspect above explains why the BinBoot bootstrapping algorithm
from [BCKS24] consumes little modulus and could even be implemented with
ring degree as low as N = 214. BinBoot was designed for bootstrapping plaintexts
corresponding to bits, encoded into reals as proposed in [DMPS24]. A bit b ∈
{0, 1} is represented by a real b + ε for some ε satisfying |ε| ≪ 1. An essential
aspect of BinBoot is that the bit b is encoded into x as x ≈ b/2. This is in sharp
contrast to using an x that satisfies |x| ≪ 1 as is the case in most other CKKS
bootstrapping algorithms. As a result, a small precision suffices for bootstrapping
computations: one only needs to handle I and a few more bits to capture a good
estimate of b. Further, the multiplicative depth of EvalMod is itself limited as
the manipulated data has low bit-size.

As a minor contribution, we note that the cleaning strategy from [BCKS24]
can be modified to lower bootstrapping modulus consumption. Error cleaning
increases the precision of the bit b, i.e., reduces the magnitude of ε in b + ε.
In [BCKS24], cleaning is performed before bootstrapping, and the plaintext is
represented on sufficiently many bits to capture this accuracy. Instead, one can
perform bootstrapping with a lower precision and clean the error after bootstrap-
ping. Consistently, the accuracy of the plaintext can be decreased. This saves
only a few bits of modulus per multiplication level, but this saving is multiplied
by the multiplicative depth of bootstrapping.

Bootstrapping integers with low modulus consumption. To minimize
modulus consumption in bootstrapping, we would like that the pre-CtS plain-
text V · (x + I) is such that x contains m in its most significant bits, as
in [BCKS24]. We have two embeddings of integers m ∈ [0, t) into complex num-
bers at hand: either encode m as m ∈ C (up to some noise) or as exp(2iπm/t) ∈ C
(up to some noise). CtS works with both encodings. Oppositely, the subsequent
bootstrapping step should remove I using a polynomial evaluation, which can
be more or less difficult depending on the choice of encoding and scaling. Let us
examine the four possibilities at hand:

• map m/t+ I to m/t (for all m ∈ Z ∩ [0, t) and all integer I in some range);
• map m/t+ I to exp(2iπm/t);
• map exp(2iπm/t) + I to m/t (for all m ∈ Z ∩ [0, t) and all Gaussian integer
I = I1 + iI2 with I1 and I2 in some range);

• map exp(2iπm/t) + I to exp(2iπm/t).

In principle, any of these can be handled by using a polynomial approximation
around the distinguished points (interpolation may not suffice, as the distin-
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guished points are noisy). For a growing value of t, the first interpolation task
converges to finding a polynomial approximation of the y 7→ y mod 1 function.
For the remaining three, let us only consider the real part, to simplify: the sec-
ond function is y 7→ cos y, the third is y 7→ arccos(y mod 1) and the fourth
is y 7→ arccos(cos y). Out of these, only the second one is differentiable, making
it more suitable for polynomial interpolation. We hence choose the second map-
ping. Conveniently, the usual EvalMod phase of CKKS bootstrapping is typically
implemented by a polynomial approximation to a trigonometric function, so that
it can be readily replaced by an “EvalExp” that sends m/t+ I to

exp
(
2iπ

(m
t
+ I

))
= exp

(
2iπ

m

t

)
.

Indeed, the complex exponential can be computed with a cosine evaluation for
the real part and a sine evaluation for the complex part. Further, these can
be evaluated efficiently by relying on the double-angle formula. Overall, the
resulting bootstrapping, which we refer to as IntRootBoot, sends a ciphertext that
contains the integer m embedded as m/t ∈ C to a root of unity exp(2iπm/t) ∈ C.

Interestingly, using EvalExp to bootstrap integers stored in the most signifi-
cant bits has already been considered in [BGGJ20], in the context of converting
DM/CGGI ciphertexts to CKKS ciphertexts. Also, by taking t = 2 and consid-
ering only the real part, one recovers the BinBoot algorithm from [BCKS24].

An improved tool-box for roots of unity. To obtain good efficiency, we first
extend the toolbox for homomorphically manipulating t-th roots of unity. First,
we revisit the analysis of the IntRootBoot algorithm from [BGGJ20]. We focus
on modulus consumption. By using the sparse-secret encapsulation technique
from [BTPH22], one can ensure that |I| ≤ 15 with probability extremely close
to 1, so that 5+log t bits of precision suffice to represent I+m/t. A few extra bits
are needed to separate the data points, and a little over (logN)/2 bits should be
added to handle the inherent inaccuracy of CKKS homomorphic computations.
For moderate values of t and N = 216, this adds up to as low as ≈ 30 bits of
precision for the elementary CKKS operations, whereas other CKKS bootstrap-
ping algorithms often consider up to 45 or 50 bits of precision. Recall that this
modulus gain is multiplied by the multiplicative depth of bootstrapping, which
is typically over 10.

We also propose improvements for interpolation from complex roots of unity,
which was studied in [CKKL24]. Note that such an interpolation seems neces-
sary for FHE based on IntRootBoot. Indeed, the input complex-plane embed-
ding is m 7→ m whereas the output embedding is m 7→ exp(2iπm/t). One then
needs to convert roots of unity back to integers at some stage, to be able to
use IntRootBoot again. As a first remark, we observe that any monomial xi

for 0 ≤ i < t can be replaced by xt−i, as we are only interested in t-th roots of
unity. As homomorphic conjugation does not consume modulus, this provides a
total degree reduction by a factor 2 and hence allows to save one multiplicative
depth. Second, we consider the noise-cleaning functionality. A cleaning function
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of degree t + 1 was proposed in [CKKL24]. Instead, we investigate combined
interpolation and cleaning. This may be achieved using Hermite interpolation
(which extends Lagrange interpolation by imposing that the derivatives of the
polynomial vanish at all interpolation points). For t-th roots of unity, we expect
Hermite interpolation to provide polynomials of degree 2t. This would already be
interesting compared to [CKKL24], as evaluation and cleaning could be achieved
in depth 1 + log t instead of 1 + 2 log t. We decrease depth consumption further
than this by designing bivariate polynomials in x and x of degree t−1 that prop-
erly interpolate and clean (note that replacing xi by xt−i for large values of i in
the Hermite interpolation indeed decreases the degree but does not preserve the
cleaning functionality). This also saves one multiplication depth, down to log t.

New bootstrapping algorithms. The design rationale of our first bootstrap-
ping algorithm, SI-BTS, starts from the observation that BinBoot is wasteful.
For a single bit of interest, a multiplication consumes more than 20 bits of mod-
ulus. For this consumption, we may as well consider small integers rather than
bits: the required CKKS precision is about the same, but much more data is
handled. SI-BTS hence considers an input ciphertext whose underlying plain-
text is a vector m ∈ ZN/2 with each coefficient in [0, t) for some integer t.
It then calls IntRootBoot, to obtain a high-modulus ciphertext that decrypts
to exp(2iπm/t). If t remains small, the multiplicative depth of the approxi-
mate complex exponential evaluation does not grow, as we rely on good poly-
nomial approximations to the sine and cosine functions on a whole interval con-
taining 2 · 15 = 30 periods, even for t = 2. Once we have exp(2iπm/t), we
could keep this format and perform computations on roots of unity as described
in [CKKL24]. However, at some stage, we should switch back to integers to ap-
ply SI-BTS again. This is achieved by a polynomial interpolation on the roots
of unity. Further, we propose to combine the first interpolation after the ex-
ponential evaluation with cleaning: this consumes only one extra multiplicative
depth compared to a simple interpolation but allows to lower the precision in-
side bootstrapping (as the output ciphertext is subsequently cleaned). As the
approach allows any interpolation from complex roots of unity to integers, we
can simultaneously evaluate an arbitrary function from [0, t) to [0, t) at no extra
cost. Finally, we note that the input format of SI-BTS closely matches that of
DM/CGGI ciphertexts and use it to provide a CKKS-based batch functional
bootstrapping algorithm for DM/CGGI.

Our second algorithm, BB-BTS, takes as input many ciphertexts for bits and
bootstraps them in a batch. More concretely, assume we have k input CKKS
ciphertexts, each of which encrypts a vector bj ∈ {0, 1}N/2. We could exe-
cute Binboot k times in parallel. Alternatively, we pack the data into a single
ciphertext by homomorphically performing a linear combination

∑
0≤j<k 2

jbj ,
resulting into a vector whose coefficients are integers in [0, 2k). We then use
IntRootBoot to obtain a high-modulus ciphertext that decrypts to the vector of
roots of unity exp(2iπ(

∑
j 2

j−kbj)) (for each slot). To recover individual high-
modulus ciphertexts that encrypt the bj ’s, we perform k polynomial interpola-
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tions exp(2iπ(
∑

j 2
j−kbj)) 7→ bj . Due to the recursive structure of roots of unity

of power-of-two orders, these interpolations are far from arbitrary, allowing for
an efficient implementation even for moderate k. Finally, we clean the error terms
of the individual bits in parallel. This is far thriftier than cleaning the roots of
unity and then converting to integers.

2 Background on CKKS

For a power-of-two N ≥ 1 and q ≥ 2, we define the rings R = Z[X]/(XN + 1)
and Rq = R/qR. We let i denote the complex imaginary unit. We let x denote
the complex conjugate of x ∈ C. Vectors are denoted in bold lower-case. The
notation log refers to base-2 logarithm.

2.1 Encodings

We define the Discrete Fourier Transform (DFT) DFT : R → CN/2 as

DFT(p(X)) = (p(ζj))0≤j<N/2 ,

where ζj = ζ5
j

for a complex 2N -th root of unity ζ ∈ C. Its inverse iDFT :
CN/2 → R is the inverse Discrete Fourier Transform (iDFT). In the CKKS
scheme, messages are elements of CN/2, up to some accuracy quantified by a
scaling factor ∆ > 0. To encode a message z ∈ CN/2 into a plaintext pt ∈ R
with a scaling factor ∆, one uses the encoding map Ecd : CN/2 → R defined as

Ecd(z) = ⌊∆ · iDFT(z)⌉ .

The decoding map is defined as Dcd(m) = DFT(m)/∆.
As put forward in [DMPS24], one may focus on a subset of C to handle

discrete data. For example, a bit b ∈ {0, 1} can be viewed as a complex num-
ber b ∈ C. Bits encoding maps a vector b ∈ {0, 1}N/2 to Ecd(b) ∈ CN/2. For
integers in [0, t) for some arbitrary t > 0, one may extend the latter encoding of
bits by using the inclusion Z ∩ [0, t) ⊂ C: an integer vector v ∈ ZN/2 is encoded
to a plaintext Ecd(v) ∈ CN/2. We will refer to the latter as integers encoding.
Another way to embed small integers in the complex plane is to use complex
roots of unity. As showed in [CKKL24], such an encoding is advantageous in the
context of evaluating look-up tables in CKKS, from the perspective of numerical
stability. Let ϕt : Zt → C denote the map m 7→ e2πi·m/t. The roots-of-unity
encoding of a vector v ∈ ZN/2

t is Enc ◦ ϕN/2
t , where ϕ

N/2
t is the evaluation of ϕt

on all coefficients of v in parallel.
CKKS computations induce error growth. If we start with good approxima-

tions to encodings as above (for bits, integers or roots-of-unity), computations
may lead to less precise approximations. In order to keep the plaintexts close to
the expected encodings, it was suggested in [DMPS24] to use cleaning functions
to reduce the error. For instance, for bits encoding, one may consider the poly-
nomial h1(x) = 3x2−2x3 initially introduced in [CKK20]: it has minimal degree
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such that h1(0) = 0, h1(1) = 1 and h′
1(0) = h′

1(1) = 0. In particular, it satisfies
the following cleaning property.

Lemma 1. For all b ∈ {0, 1} and ε ∈ [−1, 1], we have:

|h1(b+ ε)− b| ≤ 3|ε|2 + 2|ε|3 .

Note that 3|ε|2 + 2|ε|3 is much smaller than |ε|, if |ε| is sufficiently small.
In [DMPS24], the authors suggested to clean small integers by extracting

bits (with a homomorphic evaluation of binary decomposition), cleaning bits
using h1 and then recombining the cleaned bits. For roots of unity, the authors
of [CKKL24] considered the polynomial ((t+ 1)x− xt+1)/t.

2.2 Ciphertexts and Elementary Operations

A CKKS ciphertext for a message z ∈ CN/2 for a secret key s ∈ R is a
pair (a, b) ∈ Rq such that a · s + b ≈ Ecd(z). In that case, we say that the
ciphertext encrypts z in its slots. Sometimes, we have a · s+ b ≈ ∆ · z′ for some
scaling factor ∆ and where z′ starts with the real parts of the coefficients of z
and continues with the imaginary parts. In this case, we say that z is encrypted
in the coefficients.

The homomorphic addition algorithm add takes as input two ciphertexts
modulo q and outputs a ciphertext that decrypts to the sum of the plaintexts
underlying the input ciphertexts (for encryption with respect to both slots and
coefficients). The homomorphic conjugation algorithm conj takes as input a ci-
phertext modulo q and outputs a ciphertext that decrypts to the coefficient-wise
complex conjugate of the plaintext underlying the input ciphertext (for slots-
encryption). We will not explicitly need homomorphic rotation in this work.
Note that these algorithms preserve the ciphertext modulus q.

The homomorphic multiplication algorithm mult takes as input two cipher-
texts for a common modulus q and a common scaling factor ∆. It outputs a
ciphertext whose underlying plaintext is close to the coefficient-wise product
of the plaintexts underlying the input ciphertexts (for slots-encryption). The
modulus of the output ciphertext is q′ ≈ q/∆.

Note that for a given ring degree N , the ciphertext modulus q cannot ex-
ceed some value if one wants to maintain sufficient security. As multiplications
decrease the ciphertext modulus, the number of multiplications that one can
perform sequentially while only relying on the operations mentioned so far is
bounded. For this reason, the CKKS literature always considers a chain of mod-
uli q0 < q1 < . . . corresponding to multiplication levels. The integer q0 is called
the base modulus.

2.3 Bootstrapping

Bootstrapping allows one to regain modulus: it takes as input a ciphertext with a
small modulus and outputs a ciphertext with higher modulus, whose underlying
plaintext is close to the plaintext underlying the input ciphertext. Bootstrapping
consists of the following four components.
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• Slots-to-Coefficients (StC). Given a ciphertext that encrypts a complex
vector z ∈ RN/2 in its slots, we convert it to a ciphertext that encrypts z in
its coefficients. This can be realized via homomorphic evaluation of DFT.

• Modulus Raising (ModRaise). Given a ciphertext ct at the base modulus q0
encrypting a plaintext m ∈ R, we regard it as a ciphertext encrypting m+
q0I ∈ R without modulus. This increases the ciphertext modulus, while
adding a small multiple of the base modulus.

• Coefficients-to-Slots (CtS). To prepare the removal of the q0I term in-
troduced in the coefficients by ModRaise, we convert the ciphertext to the
slot-encoded format. This is realized with homomorphic evaluation of iDFT.

• Homomorphic Modular Reduction (EvalMod). We remove the q0I term
by homomorphically evaluating the “modulo-q0” function (in a SIMD man-
ner). Since modular reduction is discontinuous, one may set parameters in
a way that ensures that there is a gap between m and q0, so that it suffices
to approximate the “modulo-q0” function only on small intervals around in-
teger multiples of q0. This is achieved by a polynomial approximation to the
x 7→ (q0/2π) · sin(2πx/q0) function.

In this work, we consider StC-first bootstrapping, which executes EvalMod ◦
CtS ◦ ModRaise ◦ StC. This requires to start the process at a modulus larger
than q0 so that StC is completed at the base modulus q0.

Real bootstrapping is restricted to ciphertexts whose underlying plaintexts
are in RN/2 (in slots). Complex bootstrapping works for plaintexts in CN/2. The
main difference lies in the EvalMod function, whose correctness holds if its input
ciphertext decrypts to a real vector. If the vector is complex, one extracts the
real and imaginary parts using homomorphic conjugation just before EvalMod,
runs EvalMod twice in parallel, and finally recombines the outputs into a single
ciphertext that encodes the desired complex vector.

In [BCKS24], the EvalMod function was adapted to handle binary data ci-
phertexts (i.e., with z ∈ {0, 1}N/2). At the bottom modulus, i.e., just before
ModRaise, the ciphertexts encode z in their most significant bits, and a prop-
erly scaled version of the sine function is used to bootstrap (other variants are
considered in [BCKS24], such as evaluating a binary gate and bootstrap at once).

3 Improving the Roots-of-Unity Toolbox

In this section, we consider the efficiency of some homomorphic computations
involving roots-of-unity encodings.

We first revisit the conversion algorithm from [BGGJ20], from DM/CGGI
ciphertexts to a CKKS ciphertext. We observe that the main step of this algo-
rithm bootstraps a ciphertext for integers into a ciphertext for roots of unity.
We provide a depth-consumption analysis, based on the observation that the
data of interest is encrypted in the most significant bits. We then consider the
task of evaluating look-up-tables using roots-of-unity encodings, and decrease
the required depth compared to [CKKL24]. Finally, we introduce an extension
of interpolation that also decreases the error of a roots-of-unity encoding, for a
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multiplicative depth that is twice lower than the depth required to interpolate
and clean, based on the tools from [CKKL24].

3.1 Revising Chimera’s Conversion from DM/CGGI to CKKS

Below, we study an algorithm introduced in [BGGJ20, Section 4.1], in the context
of converting multiple DM/CGGI ciphertexts to a CKKS ciphertext. This con-
version algorithm handles three difficulties. The first one is of a packing nature:
a DM/CGGI ciphertext contains a single small integer as plaintext, whereas
a CKKS ciphertext can store up to N (when using coefficients-encoding, or
slots-encoding with real and imaginary parts). In this subsection, we do not
consider this aspect. The second difficulty is that a DM/CGGI ciphertext has
a small modulus, typically with magnitude similar to the base modulus q0 of
CKKS. The third difficulty is of a scaling nature: in DM/CGGI, the plaintext
lies in the most significant bits of the ciphertext (sometimes with some mar-
gin to allow for one homomorphic addition), whereas in a CKKS ciphertext,
the most significant bits are typically not used. Such a plaintext scaling pre-
vents the use of conventional CKKS bootstrapping, as it makes it very difficult
to approximate the discontinuous "modulo-q0” function (see Section 2.3). More
concretely, a coefficients-encoded CKKS ciphertext (a, b) ∈ R2

q with DM/CGGI
plaintext scaling would be such that a · s + b ≈ (q/t) · z, where s is the secret
key and z ∈ Rt is the plaintext. Oppositely, a typical CKKS ciphertext would
satisfy a · s+ b ≈ (∆/t) · z with ∆ ≪ q.

Putting aside the packing of multiple DM/CGGI ciphertexts, the algorithm
from [BGGJ20, Section 4.1] can be revisited as a transformation from a low-level
coefficients-encoding CKKS ciphertext for a plaintext in the most significant
bits into a high-level roots-of-unity-encoding CKKS ciphertext. We revisit it as
a CKKS bootstrapping algorithm from slots-encoded integers to slots-encoded
roots of unity for the same data.

We assume that the input ciphertext decrypts to a vector (in slots) that
corresponds to a vector m = z + ε in CN/2 where z is an integer vector with
coefficients in [0, t) and the error term ε satisfies ∥ε∥∞ ≪ 1. We choose the
scaling factor ∆0 at the base modulus q0 as ∆0 = q0/t, so that for cipher-
texts modulo q0, the message is coefficients-encoded in the most significant bits.
IntRootBoot, described in Algorithm 1, proceeds as follows.

• It runs StC to put the message in the coefficients. The message is then placed
in the most significant bits, by choice of ∆0.

• It runs ModRaise to increase the ciphertext modulus. The message can then
be described as (q0/t) ·m + q0 · I ∈ R for some I ∈ R. Note that it can be
rewritten as (q0/t)(m+ tI): the aim of the subsequent steps is to homomor-
phically reduce m+ tI modulo t to remove the tI term.

• It runs CtS to put the message in the slots. It uses homomorphic conjugation
to compute the real part.

• It runs EvalExp, which is the homomorphic evaluation of the function x 7→
e2πix/t. Note that after ModRaise, the message is interpreted as m + tI,
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and the exponential function can be implemented using homomorphic con-
jugation and the trigonometric functions x 7→ sin(2πx/t) and 7→ cos(2πx/t)
(using the identity eix = cos(x) + i sin(x)).

The above extends to a complex bootstrapping algorithm, i.e., for an input
plaintext m = z + ε in CN/2 where both the real and imaginary parts of z
are integer vectors with coefficients in [0, t). This is achieved by appropriately
adapting Steps 2 and 3 of Algorithm 1, as discussed in Section 2.3.

Algorithm 1: IntRootBoot
Setting: ∆0 = q0/t.
Input : ct = Encsk(z+ ε) ∈ R2

q with z ∈ {0, 1, . . . , t− 1}N/2 and ∥ε∥∞ ≪ 1.
Output: ctout ∈ R2

Q.
1 ct′ ← CtS ◦ModRaise ◦ StC(ct);
2 ct′′ ← (conj(ct′) + ct′)/2;
3 ctout ← EvalExp(ct′′);
4 return ctout.

Let ct = Encsk(z + ε) ∈ R2
q be an input ciphertext encoding an integer

vector z ∈ {0, 1, . . . , t − 1}N/2 with an error ε satisfying ∥ε∥∞ ≪ 1. Assume
that homomorphic operations StC, ModRaise, StC and conj and EvalExp give
sufficiently high precision. Then the output ctout of Algorithm 1 encrypts the
vector (e2πi(zj+εj)/t)0≤j<N/2, up to a tiny error. The latter is close to e2πizj/t.
Indeed, the difference can be bounded from above as follows, for all j:

|e2πi(zj+εj)/t − e2πizj/t| = |e2πizj/t| · |e2πiεj/t − 1|
= |e2πiεj/t − 1|
≤ | sin(2πεj)|+ | cos(2πεj)− 1|
= | sin(2πεj)|+ |2 sin2(πεj)|
≤ 2π∥ε∥∞ + 2π2∥ε∥2∞ .

Apart from EvalExp, all operations are as in CKKS bootstrapping. EvalExp
can be performed using the formula eix = cos(x) + i sin(x). Homomorphic eval-
uations of sin and cos have been extensively explored throughout the CKKS
literature (see, e.g., [CHK+18,LLL+21]), as it is a key ingredient of CKKS
bootstrapping algorithms. An approach is to perform EvalExp by homomor-
phically evaluating the sine function twice (once for sin(2πx) and once for
cos(2πx) = sin(π/4 − 2πx)). The cost is then roughly twice that of EvalMod.
As EvalMod and CtS have similar costs (the other bootstrapping steps being
less costly), the total cost of IntRootBoot is a little larger than the cost of the
conventional CKKS bootstrapping.

We now argue that IntRootBoot consumes relatively little modulus. Since
conventional CKKS bootstrapping and IntRootBoot both evaluate StC, CtS and
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EvalMod/EvalExp, the multiplicative depth consumption is the same. However, as
there is no gap between message and modulus at the base level (corresponding
to modulus q0), we may use relatively smaller scaling factors during CtS and
EvalMod, leading to a reduction of modulus consumption. For concreteness, let
us assume that we are interested in integers in [0, t), with an accuracy of γacc =
log ∥ε∥∞ bits, and an FHE computing noise of γnoise. The FHE noise is typically
slightly above (logN+log h)/2, where h is the Hamming weight of the secret key
(to fix the ideas, one may consider that γnoise = 12). For each level in CtS and
EvalExp, the scaling factor must have ≈ log(2Imax)+ log t+ γacc+ γnoise bits, to
represent the I term with coefficients in [−Imax, Imax], the integer vector z under
scope, the accuracy bits and the FHE computing noise. By using the sparse secret
encapsulation technique from [BTPH22], the integer I belongs to [−15, 15] with
probability extremely close to 1, leading to log(2Imax) = 5. In the StC levels,
there is no need for these first 5 bits, as the I term vanishes due to the use
of appropriate roots of unity. This gives the following rough approximation to
modulus consumption:

ModConsIntRootBoot ≈ (ℓCtS + ℓEvalExp) · (5 + log t+ γacc + γnoise)

+ℓStC · (log t+ γacc + γnoise) ,

where ℓCtS, ℓEvalExp and ℓStC respectively refer to the multiplicative depths of CtS,
EvalExp and StC.

By using conventional bootstrapping, one would need to consider a gap to
encode the integer to be bootstrapped, to make it small compared to the bottom
modulus, to enable a polynomial approximation to the “modulo-q0” function. In
practice, one often chooses a gap of γgap ≈ 10 bits. This gap is added to the mod-
ulus consumption of all levels of CtS and EvalExp. This implies that IntRootBoot
consumes ≈ (ℓCtS+ℓEvalExp) ·γgap fewer bits of modulus than conventional CKKS
bootstrapping. For bootstrapping techniques that are currently used, this most
often amounts to more than 100 bits.

3.2 Interpolation for Roots of Unity

We now consider the task of homomorphically evaluating a look-up table, from
the e2πij/t’s for some integer t ≥ 2 and j ∈ {0, 1, . . . , t − 1} to arbitrary com-
plex values (yj)0≤j<t. Concretely, we aim at finding a function f such that
f(e2πij/t) = yj for all 0 ≤ j < t, which can be homomorphically evaluated with
good efficiency and low modulus consumption. It was observed in [CKKL24]
that complex t-th roots of unity provide good numerical stability when it comes
to polynomial interpolation. We argue below that complex conjugation can help
performing look-up table evaluations on such points.

Suppose that f : x 7→ f0+ f1x+ . . .+ ft−1x
t−1 is the Lagrange interpolation

from the e2πij/t’s to the yj ’s. In full generality, evaluating f requires depth log t.
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Now, note that we may as well evaluate

g : x 7→
(
f0 + f1x+ . . .+ f⌊t/2⌋x

⌊t/2⌋
)

+
(
ft−1x+ ft−2x

2 + . . . f⌊t/2⌋+1x
t−(⌊t/2⌋+1)

)
.

Indeed, on the e2πij/t’s, the values xi and xt−i coincide. Note that g requires
a homomorphic conjugation. As homomorphic conjugation does not consume
depth and g has degree twice less than f , it can be evaluated with one less
multiplicative depth.

3.3 Combined Interpolation and Cleaning for Roots of Unity

We now describe another interpolation strategy, which simultaneously interpo-
lates and increases the accuracy of the discrete data points. A first approach
would be to use Hermite interpolation, i.e., extending Lagrange interpolation
with the condition that the derivative of the polynomial cancels on the interpo-
lation points. The cancelling derivatives imply a decrease of the noise, similarly
to the h1 function from Section 2.1. As there are twice more conditions, this
polynomial has degree < 2t. Note that the complex conjugation approach of the
previous subsection does not apply. It would result in a bivariate polynomial
in x and x̄ which is not differentiable. It preserves the evaluations of the initial
polynomial, but there is no a priori reason for the noise-cleaning functionality to
be preserved. For example, the polynomial f(x) = 3x/2+x3/2 cleans for inputs
in {−1, 1}. However, the function g(x) = 3x/2 + x/2 is equal to f on {−1, 1}
but without any cleaning functionality since g(1 + e) = 1 + 3e/2 − e/2 has
non-vanishing linear terms in e and e.

We now explain how to exploit complex conjugation to obtain a combined
interpolation and noise-cleaning functionality. Let f be the Lagrange interpo-
lation polynomial, from the roots of unity to the desired yj ’s. We consider the
following function, which may be viewed as a bivariate polynomial in x and x:

h : x 7→f0 +

⌊t/2⌋∑
k=1

fk
t

(
kxt−k + (t− k)(k + 1)xk − k(t− k)xk+1x

)
+

t−1∑
k=⌊t/2⌋+1

fk
t

(
(t− k)xk + k(t− k + 1)xt−k − k(t− k)xt−k+1x

)
Observe that each fi is multiplied by a trinomial in x and x such that each
monomial xaxb satisfies a− b = k mod t. The trinomials are chosen so that the
evaluation of any of these in the t-th roots of unity is equal to 1, so that the
evaluation of h is exactly the same as that of f . Further, the trinomials are such
that when evaluated in x + ε and x + ε, the partial derivatives with respect
to ε and ε cancel in the t-th roots of unity. This property provides the cleaning
functionality. We stress that there is flexibility in the choice of the monomials
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appearing in the trinomials, and that we opted to have a pattern, as well as
some symmetry between the first half and the second half. The total degree of h
is max(t−1, 4), and h can be evaluated with multiplicative depth log t (when t ≥
4), i.e., one less than the polynomial obtained with Hermite interpolation.

Lemma 2. There exists a constant C > 0 such that the following holds. Let t ≥
2 and y0, . . . , yt−1 ∈ C. Let f be the univariate polynomial of degree < t such
that f(e2πij/t) = yj for all 0 ≤ j < t, and h be as above. Then, for all 0 ≤ j < t
and ε ∈ C with |ε| ≤ 1/(t− 1), we have:∣∣∣h(e2πij/t + ε)− yj

∣∣∣ ≤ C · t3 ·max
j

|fj | · |ε|2 .

Proof. Let ζ = e2πij/t for some arbitrary 0 ≤ j < t. Replacing x by ζ + ε in the
definition of h, we see that it can be expressed as a bivariate polynomial in ε
and ε. By using the relation ζ = ζ−1 and using the definition of f , we obtain
that the constant term of that bivariate polynomial is

h(ζ) = f0 + f1 · ζ + . . .+ ft−1ζ
t−1 = yj ,

where the second equality is by definition of f .
It may then be checked that the terms linear in ε and ε sum to 0. Therefore,

in order to bound |h(ζ+ε)−yj |, it suffices to consider the terms of total degree 2
or more in ε and ε. For this purpose, we will use the following inequality, which
holds for all integer n ≥ 2, all x ∈ C with |x| ≤ 1 and all u ∈ C with |u| ≤ 1/n:∣∣(x+ u)n − xn − nxn−1u

∣∣ ≤ n2|u|2 .

By using the facts that |ζ| = 1 and |ε| ≤ 1/(t − 1), the triangle inequality and
the above inequality, we have:

|h(ζ + ε)− yj | ≤ C · t3 ·max
j

|fj | · |ε|2 ,

for some (absolute) constant C. ⊓⊔

An interesting particular case is the interpolation for the identity function.
This provides a cleaning functionality. Taking f(x) = x in the above definition
of h, we obtain the function:

x 7→ 1

t

(
xt−1 + 2(t− 1)x− (t− 1)x2x

)
.

It has degree max(3, t − 1). It may be compared to the cleaning polynomial
x 7→ ((t+ 1)x− xt+1)/t considered in [CKKL24], of degree t+ 1. For t’s chosen
as powers of two, this provides a saving of one multiplicative depth.
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3.4 Polynomial Multi-Evaluation

We now consider the task of evaluating the bivariate polynomials of Sections 3.2
and 3.3, by viewing it as a variant of homomorphically evaluating several poly-
nomials on the same input.

Consider first the case of a single polynomial P = P0+P1x+. . .+Pd−1x
d−1. A

naive version of the Paterson-Stockmayer algorithm [PS73] proceeds as follows:

1. (Initialization) Compute 1, x, . . . , x
√
d−1 and x

√
d, x2

√
d, x22

√
d, . . .;

2. (Baby steps) Compute

π0 = P0 + P1x+ . . .+ P√
d−1x

√
d−1 ,

...
π√

d−1 = Pd−
√
d + Pd−

√
d+1x+ . . .+ Pd−1x

√
d−1 ;

3. (Giant steps) Compute π0 + . . .+ xd−
√
dπ√

d−1 with a binary recursion.

Homomorphically, this amounts to ≈ 2
√
d ciphertext-ciphertext multiplications,

half of them in the initialization and the other half in the giants steps. As
ciphertext-ciphertext multiplications are significantly more costly than plaintext-
ciphertext multiplications, this dominates the cost. Note further that the multi-
plicative depth is log d.

Now, consider a scenario in which we would like to homomorphically eval-
uate k polynomials P (0), . . . , P (k−1) on the same ciphertext. By applying the
above agorithm k times, one obtains a cost dominated by ≈ 2k

√
d ciphertext-

ciphertext multiplications. Now, observe that the initialization can be shared
across the polynomial evaluations, the number of ciphertext-ciphertext multi-
plications can be decreased to ≈ (k + 1)

√
d. This can be decreased further by

modifying the balance between the baby steps and giant steps, as follows.

1. (Initialization) Compute 1, x, . . . , x
√
kd−1 and x

√
kd, x2

√
kd, x22

√
kd, . . .;

2. (Baby steps) For all 0 ≤ i ≤
√

d/k and 0 ≤ j ≤ k, compute

π
(j)
i = P

(j)

i
√
kd

+ P
(j)

1+i
√
kd
x+ . . .+ P

(j)√
d−1+i

√
kd
x
√
kd−1 ;

3. (Giant steps) For all 0 ≤ j ≤ k, compute π(j)
0 +x

√
kdπ

(j)
1 +. . .+xd−

√
kdπ

(j)√
kd−1

using x
√
kd, x2

√
kd, x3

√
kd, . . . and a binary recursion.

The number of ciphertext-ciphertext multiplications then decreases to ≈ 2
√
kd.

At the same time, the multiplicative depth is preserved.
In Section 3.2, the function to be evaluated is the sum of a polynomial in x

and a polynomial in x. This may be handled similarly as above for k = 2, by
computing the baby step for x and applying homomorphic conjugation on its
output. Note that homomorphic conjugation adds a small cost that is indepen-
dent of the degree d.
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The function h in Section 3.3 can be handled similarly, with four polynomial
evaluations. Indeed, it can be expressed as:

h(x) = f0 + (Pf (x) + Pfr (x̄))− x̄x (Qf (x) +Qfr (x̄)) ,

where the polynomial fr is the reversal of f , i.e., with fr
k = ft−k for k ∈

{1, . . . , t− 1}, and:

Pf (x) =

t−1∑
k=1

αf,kx
k with αf,k =

{
fk
t (t− k)(k + 1) if k ≤ t/2
fk
t (t− k) otherwise

,

Qf (x) =

⌊t/2⌋∑
k=1

−fk
t
k(t− k)xk .

4 Bootstrapping Small Integers

We now present our bootstrapping algorithm for small integers, as well as its ex-
tension to multi-function functional bootstrapping and its application to batch-
bootstrapping multiple DM/CGGI ciphertexts for small integers.

4.1 SI-BTS

Assume that the plaintext underlying the input ciphertext is a vector m of
small integers, between 0 and t − 1 for some t ≥ 2, and one wants to obtain a
ciphertext whose plaintext is also a vector y of small integers, so that yj = f(mj)
for all 0 ≤ j < N/2. Here f is an arbitrary function from integers in [0, t) to
integers in [0, t). (We could consider different sets for inputs and outputs, but
keep them identical for the sake of simplicity.)

For this purpose, SI-BTS (given in Algorithm 2) first uses IntRootBoot, and
then interpolate from the t-th root of unity exp(2iπm/t) to the integer f(m) by
using the combined interpolation and cleaning from Section 3.3. If cleaning is
not necessary (for example, if it occurred soon earlier in the computations or is
to be performed soon after), then one may optionally rely on the interpolation
algorithm from Section 3.2. We however recall that it is interesting to clean to-
gether with a polynomial interpolation on the roots of unity, as it consumes only
one additional multiplicative level compared to only interpolating (compared to
≈ log t levels for a separate cleaning).

Converting from roots-of-unity embedding to integer embedding is impor-
tant to be able to run SI-BTS again. However, in some cases, it may be inter-
esting to postpone this conversion rather than performing it in bootstrapping,
and keep the roots-of-unity embedding for a while. For example, for evaluating
table look-ups, roots-of-unity embedding has been showed quite advantageous
(see [CKKL24]). In this case, one can replace the interpolation of Step 2 by the
one that sends exp(2iπx/t) 7→ exp(2iπf(x)/t) for all 0 ≤ x < t.

Correctness follows by inspection. We now adapt the modulus consumption
of the end of Section 3.1 to the SI-BTS algorithm. In Section 3.1, we already
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Algorithm 2: Small Integer (Functional) Bootstrapping (SI-BTS)
Input : A CKKS ciphertext decrypting to ≈m ∈ CN/2 in the slots,

where mj ∈ Z ∩ [0, t) for all 0 ≤ j < N/2;
a function f : Zt → Zt.

Output: A CKKS ciphertext whose modulus is no smaller, and decrypting
to ≈ (f(mj))j ∈ CN/2 in the slots.

Keys : IntRootBoot bootstrapping, conjugation and relinearization keys.
1 Run IntRootBoot on ct;
2 Homomorphically evaluate, with cleaning, the function that maps exp(2iπx/t)

to f(x) for all 0 ≤ x < t; for this purpose, use Section 3.3; let ct be the
output ciphertext;

3 return ct.

estimated the modulus consumption of Step 1. As seen in Section 3.3, we may
interpolate and clean at Step 2, with log t multiplicative levels. At that stage,
we do not need to represent the integer I any more, so that a level corresponds
to the same amount of modulus as in StC.

ModConsSI-BTS ≈ (ℓCtS + ℓEvalExp) · (5 + log t+ γacc + γnoise) (1)
+(ℓStC + log t) · (log t+ γacc + γnoise) ,

where ℓCtS, ℓEvalExp and ℓStC respectively refer to the multiplicative depths of CtS,
EvalExp and StC. The quantity γnoise corresponds to the bit-size of the noise
induced by homomorphic operations and γacc corresponds to the accuracy of
the representations of the (log t)-bit integers. We insist that this estimate is
rough, and we refer the reader to Section 6 for concrete experimental data. We
note that γacc is not constant throughout the computation: it first decreases
because of homomorphic computations, and it is then replenished at Step 2.
We do not consider this variation in (1). Similarly, the quantity γnoise varies
depending on the type of homomorphic operations performed. It can be seen
in (1) that when t is small, the modulus consumption grows very slowly, as
the terms linear in log t are ‘somewhat hidden’ by γacc + γnoise, and, to a lesser
extent, by ℓCtS+ℓStC+ℓEvalExp. However, as t increases, the growth rate eventually
becomes quadratic in log t.

In terms of cost, the situation is similar. For small t, the cost will be domi-
nated by Step 1, but when t increases, the cost of Step 2 will eventually become
dominant.

4.2 Multi-Output SI-BTS

The SI-BTS algorithm can be extended to evaluate several functions fi for a
given input m. This may be viewed as a CKKS (and hence SIMD) analogue to
the DM/CGGI multi-output bootstrap algorithm from [CIM19].

Algorithm 2 is then modified as follows. Step 1 is run only once, while Step 2
can benefit from the multi-evaluation algorithm of Section 4.2. Overall, if K
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is the number of functions being evaluated in parallel, the cost of Step 1 is
independent of K, while the cost of Step 2 essentially grows with

√
K (the

ciphertext-ciphertext multiplications being the most expensive component of
polynomial evaluation). For a small K and a small t, the cost of Step 2 is limited
compared to the cost of Step 1, so that several functional bootstraps can be
performed for essentially the same cost as a single one. When t and K are
larger, Step 2 dominates and the cost increase is more visible.

4.3 Batch Functional Bootstrapping of DM/CGGI Ciphertexts

SI-BTS is particularly useful when one wishes to perform multiple DM/CGGI
functional bootstraps in parallel. This gives an extension of the batch DM/CGGI
bootstrapping from [BCKS24], which was restricted to evaluating a binary gate.

Recall that a CGGI/DM ciphertext can be viewed as an LWE version of
our coefficient-integer-encoded ciphertext, where the plaintext integer lies in the
most significant bits of the ciphertext. More concretely, a ciphertext ct ∈ Zn

q

for some integers n and q decrypts to an integer m ∈ [0, t) under a key sk ∈
{−1, 0, 1}n if:

⟨ct, sk⟩ = q

t
m+ e mod q ,

where |e| ≪ q/t. For efficiency purposes, the modulus q is typically very small
(e.g., it can have 12 bits).

Now, assume we are given ≤ N such ciphertexts (ctj)0≤j<N , decrypt-
ing to integers (mj)0≤j<N under a common key sk. These ciphertexts can be
packed into a single coefficients-encoded CKKS ciphertext, by relying on a ring-
packing procedure (see [CGGI17,BCK+23], among others). This provides a ci-
phertext (a, b) ∈ R2

q0 for the base CKKS modulus q0 and for a key s ∈ R such
that

a · s+ b ≈ q′

t

(
m0 +m1 ·X + . . .+mN−1X

N−1
)

.

Note that the base CKKS modulus q0 is typically larger than q. The change
of modulus from q to q0 is implemented by scaling and rounding. Ring pack-
ing requires a dedicated evaluation key (some form of CKKS encryption of sk
under s).

One then uses IntRootBoot (without StC) to bootstrap this CKKS ciphertext
and evaluate an arbitrary function by interpolation. Complex bootstrapping may
be used if there are > N/2 input ciphertexts ctj . Finally, we run StC to put the
message back in the coefficients, and by properly rearranging the coefficients of
the obtained RLWE ciphertext, we obtain the desired LWE-format DM/CGGI
ciphertexts.

5 Batch Bits Bootstrapping

In the previous section, we have seen how to bootstrap ciphertexts whose under-
lying plaintexts encode small integers, for a cost (mostly driven by bootstrapping
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modulus consumption) that is not significantly higher than that of bootstrap-
ping bits. It is hence tempting to use such an approach to batch-bootstrap bits,
by packing them into integers, to increase the throughput for binary circuits.

5.1 BB-BTS

Let us assume we aim at simultaneously bootstrapping k ≥ 1 CKKS ciphertexts
whose underlying plaintexts correspond to bits, encrypted into slots. The goal
is to bootstrap these ciphertexts together, for a cost that is significantly lower
than bootstrapping them individually using the algorithm from [BCKS24].

Our approach is as follows. We first pack the data into a single ciphertext.
More concretely, we create a single ciphertext such that for any j ≤ N/2, the j-th
slot contains a k-bit integer obtained by concatenating the bits in the j-th slots
of the input ciphertexts. Then we apply IntRootBoot with 2k-th roots of unity, to
obtain a roots-of-unity slots-encoded ciphertext. The next step is to extract the
individual bits from the roots-of-unity ciphertexts by running k interpolations
(one for each bit). Finally, we decrease the noise of the resulting slots-encoded
ciphertexts for bits, by using the h1 cleaning function (see Section 2). This
procedure is summarized in Algorithm 3.

Algorithm 3: Batch Bits Bootstrapping (BB-BTS)
Input : k ≥ 1 slots-encoded ciphertexts ct0, . . . , ctk−1 for vectors

in {0, 1}N/2.
Output: k ≥ 1 slots-encoded ciphertexts ct′0, . . . , ct

′
k−1 for the same vectors of

bits, at a higher modulus.
Keys : IntRootBoot bootstrapping, conjugation and relinearization keys.

1 Homomorphically evaluate m0, . . . ,mj 7→
∑

j 2
jmj on the input ciphertexts;

let ct be the output ciphertext;
2 ct← IntRootBoot(ct);
3 For all 0 ≤ j < k, set ct′j as the ciphertext obtained by homomorphically

interpolating from exp(2πi(
∑

0≤ℓ<k bℓ2
ℓ)/2k) to bj ;

4 For all 0 ≤ j < k, set ct′j as the ciphertext obtained by homomorphically
evaluating h1 on ct′j ;

5 return ct′0, . . . , ct
′
k−1.

Correctness follows from inspection. We now analyze modulus consumption,
by adapting the end of Section 3.1. Step 2 has been studied in Section 3.1.
As seen in Section 3.2, we may interpolate at Step 3 with k − 1 multiplicative
levels. At that stage, we do not need to represent the integer I any more, but we
still need to represent k-bit data points. Finally, evaluating the h1 polynomial
requires two multiplicative levels, and the data of interest has a single bit at that
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stage. Overall, the modulus consumption is as follows:

ModConsBB-BTS ≈ (ℓCtS + ℓEvalExp) · (5 + k + γacc + γnoise)

+(k − 1) · (k + γacc + γnoise) (2)
+(ℓStC + 2) · (1 + γacc + γnoise) ,

where the variables ℓCtS, ℓEvalExp, ℓStC, γacc and γnoise are as before. It may seem
that cleaning the ciphertexts may not be necessary, depending on how noisy they
currently are. Indeed, if their noise is limited, then one may first evaluate some
binary gates and postpone cleaning. However, cleaning at the end of bootstrap-
ping allows us to lower the bootstrapping modulus consumption, and we argue
that it should hence be viewed as a component of bootstrapping. Concretely,
the quantity γacc is smaller for Steps 2 and 3 than it is at Step 4. When k is
small, its impact is limited, because of the terms γacc + γnoise, for the preci-
sion, and ℓCtS+ ℓEvalExp+ ℓStC+2, for the multiplicative depth. However, when k
increases, the modulus consumption eventually grows quadratically in k.

For the cost, the situation is similar. For small k, one expects Step 2 to
dominate the cost. When k increases, the cost of Step 2 remains almost constant,
but those of Steps 3 and 4 grow. The highest throughput is achieved when the
cost and modulus consumption of these steps is correctly balanced with the cost
and modulus consumption of Step 2.

We note that using complex bootstrapping allows to improve throughput
further, as CtS and StC can then handle twice more data for the same cost.
However, EvalExp and Steps 2 and 3 of BB-BTS are then run twice in parallel.

5.2 Extracting bits

It could be tempting to view Step 3 as a multi-evaluation and use the algorithm
described in Section 4.2. One could even avoid Step 4 by cleaning the noise in
Step 3, by using the approach given in Section 3.3, and save one multiplicative
depth. However, it seems preferable to exploit the fact that the interpolation
polynomials for extracting bits are not generic at all. For example, the least
significant bit b0 can be obtained from exp(2iπ(

∑
0≤ℓ<k bℓ2

ℓ)/2k) by raising it
to the 2k−1-th power to obtain (−1)b0 = −2b0 + 1 and then correct the result
to b0. As showed in the following lemma, the interpolation polynomials for the
subsequent bits are also very sparse.

Lemma 3. Let k ≥ 1 and 0 ≤ j < k. Define Pk,ℓ ∈ C[x] as the minimal de-
gree polynomial that maps exp(2iπ(

∑
0≤ℓ<k bℓ2

ℓ)/2k) to bj, for all b0, . . . , bk−1 ∈
{0, 1}. Then Pk,ℓ has at most 1 + 2ℓ non-zero coefficients, for monomials of de-
grees 0 and odd multiples of 2k−j−1 that are < 2k.

Proof. We prove the result by induction on k. It may be checked that it holds
for k = 1, and we now assume that k ≥ 2. We now consider two cases, depending
on the value of j. Assume first that j < k−1. Note that for any bits b0, . . . , bk−1,
raising the 2k-th root of unity exp(2iπ(

∑
0≤ℓ<k bℓ2

ℓ)/2k) to the power 2k−j−1
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gives the 2j+1-th root of unity exp(2iπ(
∑

0≤ℓ≤j bℓ2
ℓ)/2j+1). By unicity of inter-

polating polynomials of small degree, we then obtain that

Pk,j(x) = Pj+1,j(x
2k−j−1

) .

The induction hypothesis gives the result. We now consider the remaining case,
i.e., j = k − 1. Using the observation that

exp

2iπ

2k

2k−1 +
∑

0≤ℓ<k−1

bℓ2
ℓ

 = − exp

2iπ

2k

0 +
∑

0≤ℓ<k−1

bℓ2
ℓ

 ,

we observe that for any θ in the set of interpolating points, we have that −θ
belongs to the set of interpolating points and one is mapped to 0 = −1/2 +
1/2 whereas the other one is mapped to 1 = 1/2 + 1/2. This implies that the
shifted interpolation polynomial Pk,k−1 − 1/2 is odd. In particular, its non-zero
coefficients can only be for odd powers of x. ⊓⊔

As an illustration, we give the list of P4,ℓ’s below.

P4,0 =
1

2
− 1

2
x8 ,

P4,1 =
1

2
+ α4x

4 + α12x
12 ,

P4,2 =
1

2
+ α2x

2 + α6x
6 + α10x

10 + α14x
14 ,

P4,3 =
1

2
+ α1x+ α3x

3 + α5x
5 + α7x

7 + α9x
9 + α11x

11 + α13x
13 + α15x

15 ,

where:

[
α4

α12

]
=

[
−0.25 + 0.25i
−0.25 − 0.25i

]
,

 α2

α6

α10

α14

 ≈

−0.125 + 0.3018i
−0.125 + 0.0518i
−0.125 − 0.0518i
−0.125 − 0.3018i

 ,



α1

α3

α5

α7

α9

α11

α13

α15


≈



−0.0625 + 0.3142i
−0.0625 + 0.0935i
−0.0625 + 0.0418i
−0.0625 + 0.0124i
−0.0625 − 0.0124i
−0.0625 − 0.0418i
−0.0625 − 0.0935i
−0.0625 − 0.3142i


.

We now describe a multi-evaluation algorithm specifically designed for eval-
uating the Pk,ℓ’s for 0 ≤ ℓ < k. The shape of the polynomials to be evalu-
ated makes it suitable for an adapted version of the Paterson-Stockmeyer al-
gorithm [PS73]. It is possible to use the algorithm described in Section 4.2 to
evaluate these multiple polynomials, but such an approach wastes the potential
speed-ups stemming from the sparsity of the coefficients, as well as the fact
that αiX

i = α16−iX16−i for every i. We instead write the polynomial Pk,ℓ as

Pk,ℓ(X) =
1

2
+X2k−ℓ−1

Qk,ℓ(X
2k−ℓ

) +X2k−ℓ−1Qk,ℓ(X2k−ℓ) ,
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with deg(Qk,ℓ) ≤ 2ℓ−1. We then sequentially use the Paterson-Stockmeyer al-
gorithm evaluating a polynomial of degree d in 2

√
d non-scalar multiplications,

for each Qk,ℓ. The total number of non-scalar multiplications for evaluating
all polynomials follows a geometric sum of ratio 1/

√
2, since ⌊deg(Qk,ℓ)/2⌋ =

deg(Qk,ℓ−1). The resulting number of ciphertext-ciphertext multiplications is
≃ 3.4 · 2

√
2k−2.

To further optimize the algorithm for extracting bits, one can recycle the
setup basis to evaluate all polynomials Qk,ℓ’s. Assume that Qk,ℓ has degree 22u−1.
The baby-step phase of the Paterson-Stockmeyer algorithm computes 1, x, x2, . . .,
xu−1, xu, x2u, x4u, . . .. Since Qk,ℓ−1(X

2) = Qk,ℓ(X) mod (X2k −1) for 1 ≤ ℓ < k
with deg(Qk,ℓ−1) = ⌊deg(Qk,ℓ)/2⌋, half of the baby-step basis (the odd-indexed
elements) becomes useless. The other half is still sufficient to run the Paterson-
Stockmeyer algorithm. The baby-step phase is thus recycled across the polyno-
mial evaluations. However, the baby-step basis may be unbalanced compared to
the giant-step basis after too many recyclings. This strategy alone is suboptimal
to minimize the number of nonscalar multiplications. To handle this issue, we
extend the baby-steps basis, which results in twice less recursive calls for poly-
nomial evaluation. The halved baby-step basis 1, x2, . . . , xu−2 becomes extended
to 1, x2, . . . , xu−2, xu, . . . , x2u−2 and the giant-step basis starts now at x2u as
described in Algorithm 4.

Algorithm 4: BitExtract

Setting: Compute u← 2⌊log 2(
√
t)⌋, bs = {1, x2, x4, x6, . . . , xu−2} and

gs = {xu, x2u, x4u, x8u, . . . , x2v−1u}.
Input : x← Encsk(z+ ε) ∈ R2

q with z ∈ {e2iπ0/t, e2iπ1/t . . . , e2iπ(t−1)/t}N/2

and ∥ε∥∞ ≪ 1/t.
Output: ctout ∈ R2

Q.
1 tmpk−1 ← 1

4
+ x · PS(Qk,k−1, bs, u/2, gs, v);

2 ctk−1 ← tmpk−1 + tmpk−1;
3 bs′ ← {bs2i}i;
4 tmpk−2 ← 1

4
+ x2 · PS(Qk,k−2, bs

′, u/4, gs, v);
5 ctk−2 ← tmpk−2 + tmpk−2;
6 bs′′ ← {bs′2i}i;
7 bs′′′ =bs′′ ∪ {xu, xu+4, . . . , x2u−4};
8 gs′ = {gsi+1}i;
9 tmpk−3 ← 1

4
+ x4 · PS(Qk,k−3, bs

′′′, u/4, gs′, v − 1);
10 ctk−3 ← tmpk−3 + tmpk−3;
11 Repeat Steps 3-10 for the next bits starting from (u/4, v − 1);
12 return ctout.

BitExtract is setting the polynomials basis for the Paterson-Stockmeyer poly-
nomial evaluation of Qk,k−1. Since it is a polynomial in x2, only even exponent
monomials are computed. Step 1 calls the polynomial evaluation method, abbre-
viated as PS, taking as arguments the setup basis for baby-steps and giant-steps
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and their sizes u and v. Step 2 computes the value of Pk,k−1 with respect to
the formula above. The next polynomial Qk,k−2 is smaller. Step 3 is thus halv-
ing the bs polynomial basis as explained above. Similarly, Steps 4 and 5 com-
pute Pk,k−2 from Qk,k−2. Step 6 is again halving bs as the algorithm moves to
the evaluation of Qk,k−3. To balance it with the giant-steps, Step 7 extends the
baby-steps basis, which saves a recursive level in giant-steps at Step 8. Steps 9
and 10 evaluate Qk,k−3. The next bits are recovered by continually decreasing bs
and gs to evaluate Pk,ℓ with the formula until ℓ = 0.

6 Experiments

We now describe proof-of-concept implementations, based upon the C++ HEaaN
library [Cry22], and report experiment results based on them. These were run
on a single-threaded CPU (i.e., Intel Xeon Gold 6242 at 2.8GHz with 502GiB
of RAM) running Linux. In the experiments, the variable N denotes the ring
degree of the bootstrapping parameter, NLWE denotes the dimension of LWE
samples where NLWE < N , h and h̃ denote the Hamming weights of the dense
and sparse secret keys respectively (we rely on the sparse secret encapsulation
technique from [BTPH22]), log2(QP ) denotes the maximum switching key mod-
ulus, dnum denotes the gadget rank of the gadget decomposition, and depth
denotes the remaining multiplicative depths after IntRootBoot. All parameter
sets considered in this section reach 128-bit security, according to [APS15]. Note
that the security of our new bootstrapping can be analyzed exactly in the same as
for conventional CKKS, as we built our scheme upon CKKS without modifying
any aspect related to security.

6.1 Bypassing DM/CGGI

As described in Section 4.3, we combined the ring packing from [BCK+23] (i.e.,
HERMES), the IntRootBoot algorithm borrowed from [BGGJ20], and our adap-
tation of the roots-of-unity look-up table of [CKKL24], to bypass DM/CGGI
bootstrapping. We have implemented j-bits to j-bits look-up table for j ∈
{2, 4, 6, 8, 10}. As the precision for the look-up table interpolation depends on j,
we designed optimized parameters for each value of j, as shown in Table 3. Since
DM/CGGI is generally effective on processing one or a small number of inputs,
we mainly targeted the better latency on small number of inputs. When de-
signing the bootstrapping parameters, we minimized degrees/depths for look-up
table evaluations. We also used thin bootstrapping with complex slots, i.e., used
fewer slots than available in the ring, to obtain a further latency gain as well as
an accuracy improvement.

In Table 4, we batch-evaluated look-up tables for 212 LWE samples of di-
mension 212, in all experiments. The method can be generalized to look-up table
evaluations on 2ℓ LWE ciphertexts of dimension 2k. Note that k cannot be too
small as a function of the integer bit-length j, as one needs to increase the
modulus and dimension to encrypt more bits in a DM/CGGI ciphertext.
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N (h, h̃) log2(QP ) dnum depth

Param-LUT-2-to-2 214

(256, 32)

440 16 4
Param-LUT-4-to-4 215 786 4 6
Param-LUT-6-to-6 215 799 11 8
Param-LUT-8-to-8 215 869 12 10

Param-LUT-10-to-10 216 1378 5 12

log2(q) log2(p)Base StC Mult and Extract EvalExp CtS

Param-LUT-2-to-2 26 27 26× 4 26× 8 24× 2 27

Param-LUT-4-to-4 33 25× 2 33× 6 33× 8 29× 2 61× 3

Param-LUT-6-to-6 35 33× 2 35× 8 35× 8 33× 2 36× 2

Param-LUT-8-to-8 35 33× 2 35× 10 35× 8 33× 2 36× 2

Param-LUT-10-to-10 42 42× 3 42× 12 42× 8 42× 3 61× 4
Table 3. Parameters we used for the look-up table implementations. depth refers the
multiplicative depth after IntRootBoot. The log2(q) columns correspond to the primes
used for ciphertext modulus, with Base, StC, Mult, Extract, EvalExp and CtS referring to
bit-sizes and numbers of primes of the corresponding steps. The column log2(p) refers
to the bit-sizes and numbers of temporary primes for switching keys. Each parameter
set is designed to provide the exact depth required to evaluate an arbitrary look-up
table on the required number of bits.

More concretely, our method for batch-evaluating look-up tables on NLWE =
2k LWEs of dimension NLWE consists of the following steps:

1. (Ring pack) Map the input LWE ciphertexts into a single NLWE-dimensional
RLWE ciphertext. Embed the NLWE-dimensional RLWE ciphertext into an
N -dimensional RLWE ciphertext. We consider the N -dimensional RLWE
ciphertext as a sparsely packed RLWE ciphertext with NLWE/2 complex slots.

2. (IntRootBoot) Apply IntRootBoot for NLWE/2 out of N slots (i.e., using thin
bootstrapping) on the result of the previous step, to get an RLWE ciphertext.

3. (Interpolation) Perform a polynomial interpolation with cleaning function-
ality.

4. (StC and LWE extraction) Apply thinly-packed StC on the result of the
previous step. Decompose the N -dimensional RLWE ciphertext into NLWE-
dimensional ciphertexts and extract LWE ciphertexts.

To ensure compatibility with DM/CGGI parameters that have LWE dimen-
sions NLWE that are not 2k, one can perform pre-processing on the input and
post-processing on the output. For the pre-processing, we can simply embed the
given LWE ciphertexts into 2k-dimensional LWE ciphertexts by padding with ze-
ros. For the post-processing, we can switch from dimension 2k to dimension NLWE

LWE as done in CGGI bootstrapping [CGGI16a].
In Table 5, we report experiments for multi-function evaluation (see Sec-

tion 4.2) in the context of batch-bootstrapping DM/CGGI ciphertexts. We used
Identity,Square,Cube,Backwards : {0, · · · , 28 − 1} → {0, · · · , 28 − 1} for the
functions, which are defined as Identity(x) = x, Square(x) = x2 (mod 28),
Cube(x) = x3 (mod 28), and Backwards(x) = 28 − 1− x.
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Number of bits of the input/output 2 4 6 8 10
− log ∥e∥∞ 5.4 12.5 12.8 8.7 18.8

HERMES execution time (sec) 0.671 0.717 0.72 0.757 0.76

IntRootBoot execution time (sec) 2.36 4.84 8.09 9.3 18

Interpolation time (sec) 0.09 0.66 1.95 5.1 31.1

StC and LWE extraction time (sec) 0.077 0.19 0.196 0.194 0.39

Total time for look-up table evaluation (sec) 3.2 6.4 11 15.4 50.3

Amortized look-up-table evaluation time (ms) 0.78 1.57 2.67 3.75 12.26
Table 4. Performance evaluation for look-up-tables with various numbers of in-
put/output bits. The second row corresponds to the precision of the integers. The
amortized time is computed as total time divided by the number of input LWE cipher-
texts. Each reported timings is obtained by averaging over 10 experiments, whereas
the precision is maximized over all 10 experiments and all slots.

Number of look-up tables evaluated 1 2 3 4
− log ∥e∥∞ 8.7

HERMES execution time (sec) 0.757

IntRootBoot execution time (sec) 9.3

Hermite Interpolation time (sec) 5.1 7.1 9.5 10.6

StC and LWE extraction time (sec) 0.194 0.42 0.67 0.77

Total time for look-up table evaluation (sec) 15.4 17.6 20.2 21.4

Amortized look-up-table evaluation time (ms) 3.75 2.14 1.65 1.3
Table 5. Performance evaluation for multi-output look-up tables for various numbers
of look-up tables. The second row corresponds to the precision of the integers. We
used parameter Param-LUT-8-to-8 to evaluate several 8-bits to 8-bits look-up tables
at oncee on the same input. Each reported timings is obtained by averaging over 10
experiments, whereas the precision is maximized over all 10 experiments and all slots.

6.2 Batch Bits Bootstrapping

We instantiated the batch bits bootstrapping (BB-BTS) described in Section 5.
For bit extraction, we followed the strategy described in Section 3.3. Below, we
report efficiency measurements and provide a comparison to the bits bootstrap-
ping algorithm from [BCKS24]. For a fair comparison, we chose the same ring
degree N = 216 and measured the execution time in a similar computing en-
vironment. BB-BTS however requires a different CKKS parametrization, which
we describe in Table 6. The number of levels reserved for cleaning is estimated
as in [BCKS24] (once after 4 sequential gate evaluations).

BB-BTS allows to bootstrap many encrypted bits for the cost of a single
(heavier) bootstrapping. In order to quantify the throughput gain, we consider
the execution time of BB-BTS and the amount of computation that can be
done between two consecutive bootstraps. The amortized gate evaluation time
is defined as

TBB-BTS
n× ℓ× k

,
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N (h, h̃) log2(QP ) dnum depth

Param-BB-BTS 216 (256, 32) 1585 3 24

log2(q) log2(p)Base StC Mult and Extract EvalExp CtS

35 60× 1 30× 24 35× 7 35× 3 60× 7

Table 6. Parameter we used for batch bits bootstrapping. Here log2(q) denotes the
primes used for ciphertext modulus, with Base, StC, Mult, Extract, EvalExp and CtS
referring to bit-sizes and numbers of primes of the corresponding steps. log2(p) refers
to the bit-size and number of temporary primes for switching keys.

where TBB-BTS denotes the BB-BTS time, n denotes the number of slots for boot-
strapping, ℓ denotes the number of remaining levels after BB-BTS excluding the
levels reserved for cleaning, and k denotes the number of bits. This definition
is a generalization of the amortized gate evaluation time used in [BCKS24, Sec-
tion 5.2]. The detailed results are provided in Table 7. Note that our bit extrac-
tion method BitExtract consumes one more multiplicative level for each addi-
tional bit. If ℓ1 denotes the number of useful levels when k = 1, then ℓ ≈ ℓ1 − k,
and one sees that the term 1/(ℓ× k) decreases when k increases, until k reaches
approximately ℓ1/2. If k further increases, then the amortized cost increases as
well, as the number of useful levels becomes too low. This phenomenon lim-
its the speedup factor. For Param-BB-BTS, the speedup factor of BB-BTS on k
bits compared to BB-BTS on 1 bit (which is slightly slower than the method
in [BCKS24]) is thus bounded from above as ≈ 4.5 = (24 − 6)/4. This neglects
the fact that run-time also grows with k.

Number of ciphertexts (2 bits per slot) 1 2 3 4 5 6 7 8
Number of bits per slot 2 4 6 8 10 12 14 16

Number of levels after bit extraction 23 22 21 19 18 17 16 15

− log2(∥eBB-BTS∥∞) 12 11 10 9 8 7 6 5

Number of levels reserved for cleaning 6 6 5 5 5 5 5 4

IntRootBoot execution time (sec) 24.0 23.3 23.8 23.8 23.7 23.5 23.6 24.5

Bit extraction time (sec) 0.106 0.862 2.50 4.94 7.80 12.5 20.7 34.3

Amortized gate evaluation time (µs) 21.6 11.5 8.36 7.83 7.39 7.62 8.78 10.2

Table 7. Performance evaluation of BB-BTS for the parametrization in Table 6 (i.e.,
Param-BB-BTS). Here ∥eBB-BTS∥∞ denotes the maximum error of BB-BTS across all
the slots and ciphertexts.

Regarding the amortized gate evaluation time, the experimental optimum is
obtained when bootstrapping 10 bits (i.e., 5 ciphertexts) together. In that case,
we obtain an amortized gate evaluation time of 7.39µs. Recall that [BCKS24]
reached 17.6µs per binary gate, i.e., our BB-BTS reaches an amortized gate cost
that is 2.38x smaller.
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