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Abstract

Cryptographic group actions are a leading contender for post-quantum cryptography, and have also
been used in the development of quantum cryptographic protocols. In this work, we explore quantum
state group actions, which consist of a group acting on a set of quantum states. We show the following
results:

• In certain settings, statistical (even query bounded) security is impossible, analogously to post-
quantum classical group actions.

• We construct quantum state group actions and prove that many computational problems that have
been proposed by cryptographers hold it. Depending on the construction, our proofs are either
unconditional, rely on LWE, or rely on the quantum random oracle model. While our analysis does
not directly apply to classical group actions, we argue it gives at least a sanity check that there are
no obvious flaws in the post-quantum assumptions made by cryptographers.

• Our quantum state group action allows for unifying two existing quantum money schemes: those
based on group actions, and those based on non-collapsing hashes. We also explain how they can
unify classical and quantum key distribution.
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1 Introduction

Abelian groups have been a fundamental tool in cryptography for almost 50 years, dating back to the
pioneering work of Diffie and Hellman [DH76], and have been used for numerous practical and theoretical
results. Unfortunately, Shors quantum algorithm for computing discrete logarithms in abelian groups [Sho94]
breaks all of these cryptosystems. Therefore, the looming threat of quantum computers necessitates designing
new replacement protocols.

One promising potential replacement is that of abelian group actions, originally proposed by [BY91].
A group action consists of a group G acting on a set X by a binary operation ∗ : G × X → X satisfying
(g + h) ∗ x = g ∗ (h ∗ x). At a minimum, a cryptographically-useful group action will satisfy the discrete log
assumption: that it is hard to compute g from x and g ∗ x.

Group actions are less-structured versions of groups. Indeed, any abelian group G can be thought of as a
group action, where X = G and G = Z|G|, using the action a ∗ g := ga. In this case, the traditional discrete
log problem corresponds exactly to the group action discrete log problem. The key difference with group
actions is that two set elements cannot be combined in a meaningful way, giving them less structure than
plain groups where two elements can be multiplied. Fortunately, this reduced structure prevents applying
Shor’s algorithm, leading to presumed post-quantum security. Moreover, the conceptual similarity to groups
means they can sometimes be used as a drop-in post-quantum replacement, such as for the Diffie-Hellman key
agreement protocol. In other cases, a group-based protocol may need adaptation to work with group actions
(see for example [ADMP20] and references therein), or it may be impossible and/or come with inherent costs
relative to the classical protocol (e.g. [BGZ23]).

Cryptographic group actions remain far less studied than their plain group counterparts. For example,
isogenies over certain elliptic curves are currently the only family of candidates for post-quantum abelian
group actions. Worse, even for “ideal” group actions, we do not know if discrete logarithms are hard. The
case becomes even less clear for more complicated problems like the linear hidden shift (LHS) assumption
proposed in [ADMP20]. It may be for these assumptions there is a generic quantum attack that simply
breaks them on all possible group actions. Contrast to the classical plain group setting, where we know
that almost all of the community’s favorite problems on groups are at a minimum classically hard for
ideal groups [BBG05], meaning no generic attacks are possible. This leaves the use of group actions for
cryptography somewhat precarious.

1.1 Our Work.

In this work, we explore the notion of a quantum state group action, which roughly is a group action where
the set X of classical set elements is replaced with a set of quantum states. Our aim is two-fold:

• We position quantum state group actions as a useful concept for exploring quantum protocols built
from group actions, with potential advantages over classical group actions.

• In the setting of quantum attacks on classical cryptosystems, quantum state group actions are not
directly relevant as they cannot be implemented in a classical protocol. However, we make the case
that understanding the security of quantum state group actions helps improve our understanding of
the classical counterpart, which is currently lacking.

We now discuss our contributions in slightly more detail.

Definitions. The notion of quantum state group action was briefly discussed in [Zha24] in the context
of quantum money. We give a formal and precise treatment, identifying certain desirable properties of a
quantum state that were implicitly assumed in [Zha24].
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A Hash-based Construction. We propose a construction of a quantum state group action from hash
functions. The set of states are, up to normalization, simply

|ψg⟩ =
∑
x

ω
H(x).g
N |x⟩

The additive group ZN acts on these by

h ∗ |ψg⟩ =
∑
x

ω
H(x).g
N (ω

H(x).h
N |x⟩) = |ψg+h⟩ (1)

We prove that a wide class of cryptographic assumptions – including variants of Decisional Diffie-Hellman
(DDH) and the Linear Hidden Shift (LHS) assumption [ADMP20] – hold on our group action, for an
appropriate choice of hash and for appropriate parameterizations of these assumptions. In some regimes we
can even show unconditional hardness when using a k-wise independent hash. In other regimes, we prove
security in either the quantum random oracle or based on lossy functions (without a trapdoor).

These results show that quantum state group actions can, at least in some regimes, be thought of as
a Minicrypt primitive which can be built from simple low-structure objects. Contrast to classical group
actions which are considered Cryptomania primitives since they imply public key encryption and require the
hardness of highly structured objects from number-theory. Thus, in the setting of quantum cryptographic
protocols, quantum group actions may offer a path toward achieving cryptography from milder assumptions.

We also explain in Section 1.2 below how the hardness of our quantum state group actions helps improve
our confidence in the security of classical group actions against quantum attacks, which has remained a
challenging open question.

An “attack” in the many-copy regime. Our security proofs only hold when the adversary gets a
bounded number of copies of each element. We complement this with a query-efficient but computationally
inefficient quantum attack on discrete logarithms – and hence any reasonable assumption. This attack applies
to any quantum state group action meeting certain natural requirements. See Section 4. This shows that
our results likely cannot extend to the case where many copies of each element are given out.

Unifying quantum money. Recently, [Zha24] shows how to construct public key quantum money [Aar09]
from classical abelian group actions, and this construction readily translates to quantum state group actions.
We can then attempt to instantiate with our hash-based construction. Unfortunately, there is one feature
of group actions that [Zha24] needs which our provably-secure hash-based constructions do not have: the
ability to recognize set elements.

It turns out that the resulting construction is identical to an earlier quantum money construction
of [Zha19] using something called a non-collapsing hash function. Non-collapsing hashes can be seen as
exactly giving the ability to recognize set elements in our hash-based quantum group action. Thus, quantum
group actions unifty these two very different looking quantum money schemes.

Unifying key distribution. The original Diffie-Hellman protocol [DH76] solves the key distribution prob-
lem using the computational intractability of certain problems. Quantum key distribution solves the same
task, but using entirely different principles, namely the rules of quantum information. We show a protocol
based on group actions and inspired by Diffie-Hellman which recovers both classical and quantum key distri-
bution, depending on whether the group action is classical and computationally secure, or is quantum and
has statistical security. This protocol does not seen to offer any benefits over existing protocols. But we still
find it interesting that (quantum) group actions allow for unifying these two very different concepts.

1.2 Motivation and Additional Discussion

Justifying Computational Assumptions. We now explain how our results, while not directly applicable
to the classical group actions used in post-quantum cryptography, nevertheless help justify their use in post-
quantum protocols.
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Group actions can be thought of as similar to groups, except with less structure. Importantly, this
lack of structure means that Shor’s algorithm does not work on group actions. Fortunately, there is still
enough structure for to implement come cryptographic protocols, such as Diffie-Hellman key agreement.
This combination of presumed quantum resistance and cryptographic utility has may group actions one of
the leading potential tools for a post-quantum world, with numerous works exploring how to use group
actions in the design of cryptosystems resistant to quantum attack. On the other hand, group actions also
may be used to achieve novel quantum protocols for tasks that are impossible classically, such as proofs of
quantumness [AMR22] and quantum money [Zha24].

Unfortunately, our understanding of the security of group actions is far less developed than that of
classical groups. In the classical group and classical attack, a popular formula for justifying the security of
cryptoststems is the following: first, prove the security of the cryptosystem under the assumed hardness of
some computaitonal problem on the group. There are a vast number of such hard problems, but common
examples include discrete logarithm problem or (decisional) Diffie-Hellman. The second step is then to
attempt to justify the hardness of this problem. This cannot be accomplished unconditionally, since the
current state of complexity theory does not allow for such unconditional lower-bounds. However, we can
show for most assumptions of interest that they hold generically : that is, that there is no attack that works
by only making black box use of the group. This model of adversaries is called the Generic Group Model
(GGM) [Nec94,Sho97,Mau05]. Here, the adversary only interacts by making queries to the group. We can
then give query complexity lower-bounds for any algorithm solving the hard problem; these query complexity
lower bounds then lower bound the overall running time of generic algorithms. Such a generic lower bound
is not a full proof of security. But it serves as a sanity check that at least there is not some simple attack
which breaks the assumption/scheme.

When moving to group actions and quantum attacks, the first part of this recipe – proving security
from some computational assumption – is still standard practice. However, the second part – justifying
the generic hardness of the assumption – is problematic. It is straightforward to define a Generic Group
Action Model (GGAM), as has been done in several recent works [MZ22, BGZ23,OZ23,DHK+23, Zha24].
However, the crucial problem is that even in the GGAM, unconditional lower-bounds are not possible. This
is because there exist algorithms with polynomial query complexity (though super-polylnomial run-time)
that break any of the standard cryptographic assumptions on group actions [EH00, EHK04]. Given that
even unconditional lower-bounds are not possible, how can we reason about new hardness assumptions? For
example, given a new hardness assumption, perhaps it is actually hard, or perhaps it’s actually easy. And in
the case that it is easy, perhaps there is even a simple attack that just performs a sequence of simple group
action operations.

A minimal first step would be to prove the generic hardness of the assumption against classical attacks,
which is feasible in the GGAM for all of the assumptions on group actions appearing in the literature. How-
ever, this is unsatisfying as such hardness proofs also apply for plain groups, which we know are quantumly
easy.

We therefore propose a different route, which is to prove unconditional generic hardness for the analogous
assumption on quantum state group actions. Our hardness results for quantum state group actions in the
random oracle model show that, for quantum state group actions, unconditional query complexity lower-
bounds are possible. Moreover, our hardness result covers many of the assumptions cryptographers are
interested in, such as DDH or LHS. Our hardness result shows that there is no trivial quantum algorithm
for these assumptions. We note that our results still do not fully justify these assumptions on classical group
actions, since for example Kuperberg’s algorithm applies to classical group actions but not quantum state
group actions in the single-copy setting. Nevertheless, it is at least a more convincing justification than what
was previously known – which in the quantum setting was very little.

Remark 1.1. The discrete logarithm problem on abelian group actions is closely related to the Dihedral
Hidden Subgroup Problem (DHSP), and abelian group action discrete logs reduce to DHSP. DHSP is widely
studied and is plausibly hard. However, the relationship is only known in one direction, and it is plausible
that group action discrete logarithms could be easy even if DHSP is hard.
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Quantum Cryptography From Mild Assumptions. Most cryptographic tasks only achieve computa-
tional security, meaning security only holds against a bounded adversary. As a consequence, all such schemes
rely on un-proven computational assumptions. A common distinction is made between symmetric key prim-
itives (aka Minicrypt) and public key primitives (aka Cryptomania) [Imp95]. Symmetric key primitives can
be based on mild assumptions such as a one-way function, whereas public key primitives typically require
stronger assumptions.

Quantum cryptography offers the possibility of improving the situation, sometimes eliminating the need
for computational security at all, such as in quantum key distribution. But for most tasks, even quantum
protocols require computaitonal security, yet a recent line of work has shown that the underlying assumptions
can often be much milder (e.g. [GLSV21,BCKM21,BCQ23,KMNY24]).

Our work shows that quantum state group actions may be a useful tool in this push for milder assump-
tions. Whereas classical group actions give public key encryption and are therefore considered strong tools,
in some parameter regimes quantum state group actions require no assumptions at all. In other regimes we
base security on random oracles or trapdoor-less lossy functions. These are symmetric key primitives that
do not appear to need public key cryptography.

Exponential Security. Our hash-based scheme in the random oracle model achieves exponential security.
This is in contrast to classical group actions, which can only achieve at best sub-exponential security due
to Kuperberg’s algorithm [Kup05]. This shows in particular that any generic attack on quantum state
group actions must take exponential time, and means that standard-model quantum state group actions can
potentially achieve exponential security. This stronger security would be advantageous, and may be worth
the cost of using quantum communication in certain settings, say if the protocol is quantum anyway.

1.3 Concurrent And Independent Work

In a concurrent and independent work, [MX24] also study quantum state group actions, though their notion
is somewhat different than ours: instead of being able to act by arbitrary group elements, they only ask for
the ability to evaluate the action of randomly selected elements from some distribution over the the unitary
group. Thus, the version of quantum state group action considered in [MX24] has a lot less structure than
ours. On one hand, this makes their notion potentially easier to instantiate, and they give several candidate
instantiations that would not satisfy our stronger requirements. On the other hand, their notion seems to
significantly depart from the classical group action abstraction, which allows for acting by arbitrary group
elements.

The main result of [MX24] is to show that quantum state group actions give a quantum analog of a
pseudorandom function called a pseudorandom function-like state generator; in contrast our main result is
to use quantum group actions as a conceptual tool to argue about post-quantum group action assumptions
and to unify existing concepts. [MX24] also several candidates from very weak tools (namely, tools that do
not seem to imply one-way functions), where as we give a construction from mild-but-not-as-mild tools with
provable security. Finally, [MX24] focus on the more general non-abelian case, whereas we consider mainly
the abelian case (though our results on coset sampling apply in both cases).

1.4 Technical Overview

Defining quantum state group actions (Section 3). Zhandry [Zha24] briefly define quantum state
group actions in the context of quantum money. Here, we identify two important properties of a quantum
state group action that were implicitly assumed in [Zha24]:

• Junk-free. Suppose the procedure for computing g ∗ |ψ⟩ from g and |ψ⟩ additionally produced some
“junk” state |τg⟩. This would be problematic for any algorithm which computes the group action
in super-position over group elements, since the junk states would become entangled with the group
elements and de-cohere the resulting state. We therefore expect a group action to be “junk-free”, and
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the only output of the procedure is g ∗ |ψ⟩. Junk-free group actions are necessary, for example, to
generalize the group-action quantum money scheme of [Zha24] to quantum state group actions.

• Orthogonal. The next property we consider is orthogonality, which states that the set of quantum
states is orthogonal. [Zha24] insists on perfect orthogonality, but we observe that orthogonality may or
may not be necessary for applications. We also relax perfect orthogonality to an approximate version,
which requires some care. Note that the analysis in [Zha24] requires (approximately) orthogonal group
actions, as otherwise some states in the analysis would not be normalized and may even have norm 0.

In this work, we focus exclusively on junk-free quantum state group actions, but we consider both orthogonal
and non-orthogonal group actions.

We define a family of matrix assumptions parameterized by a matrix M ∈ Zn×m
N . The assumption

considers two distributions: the first outputs |ψg1⟩|ψg2⟩ · · · |ψgn⟩ where g = (g1, · · · , gn) is sampled as M · s
for a random “secret vector” s ∈ Zm

N . The second distribution samples g as a uniform random vector. The
assumption insists that the two distributions are indistinguishable, given M but not s or g. We call this the
Generalized Matrix Problem (GMP).

This definition encompasses essentially any assumption in the cryptographic group action literature.
For example, the decisional Diffie-Hellman (DDH) assumption, when specialized to quantum state group
actions, assumption insists on |ψg1⟩|ψg2⟩|ψg1+g2⟩ is indistinguishable from a tuple of random elements. This

is a special case of our assumption with M =

 1 0
0 1
1 1

. By generalizing our assumption to non-uniform

distributions over secrets s, we also obtain the Linear Hidden Shift (LHS) assumption [ADMP20], where
M is a uniformly random matrix and s is a random 0/1 vector. We can also obtain the extended LHS
assumption of [AMR22] by setting M to be a structured matrix. See Definition 3.6 and Section 3.1 for a
formal definition and more detail on the examples.

Coset sampling attacks (Section 4). Classical group actions are subject to quantum coset sam-
pling attacks. For example, given x0 and x1 = g ∗ x0, the attacker prepares a uniform superposition∑

b∈{0,1},h∈G |b, h⟩, and then applies the group action in superposition to compute∑
b∈{0,1},g∈G

|b, h, h ∗ xb⟩ (2)

Then the attacker measures the final register, obtaining y ∗ x0 for a random unknown y. The remaining
superposition then collapses to

|ϕu⟩ = |0, y⟩+ |1, y − g⟩

It is shown in [EH00,EHK04] that a polynomial number of samples of |ψy⟩ contain enough information about
g to (inefficiently) recover g.

We show how to generalize this attack to orthogonal group actions. Roughly, we hope to be able to use
the quantum states |ψ0⟩ and |ψ1⟩ = g ∗ |ψ0⟩ to create an analog of Eq 2 where h∗xb is replaced with h∗ |ψb⟩:∑

b∈{0,1},h∈G

|b, h⟩(h ∗ |ψb⟩) (3)

Suppose we can construct such a state. Suppose we measure the third register in the basis containing all
of the states h ∗ |ψ0⟩. The result is that we obtain y ∗ |ψ0⟩ for an unknown random y, and the remaining
registers collapse exactly to |ϕy⟩.

Now, in general we cannot efficiently measure in the basis containing the states h ∗ |ψ0⟩. However, we
actually do not need to, since we do not actually need the measurement outcome, just the state collapse.
Simply discarding the final register has the same effect, giving a sample of |ψu⟩. We can repeat several times
(using fresh copies of |ψ0⟩, |ψ1⟩ each time) to get several samples.

7



We return to constructing the state in Eq 3, and see that there is a problem. If we have a few copies of
|ψ0⟩ and |ψ1⟩, we have to use up a copy to construct the state in Eq 3, and which state we use is determined
by b. If done naively, our remaining local copies will therefore determine b – simply look at which of |ψ0⟩, |ψ1⟩
has fewer copies left – meaning the local copies are entangled with our desired state. This breaks the attack.
We fix the attack by preparing the state∑

b∈{0,1},h∈G

|b, h0, h1, ⟩(h0 ∗ |ψb⟩)(h1 ∗ |ψb⟩) (4)

This uses up exactly one copy of each of |ψ0⟩, |ψ1⟩. Now measure the final two registers (or really, just
discard them). The result is y0 ∗|ψ0⟩ and y1 ∗|ψ1⟩. A simple analysis then shows that the remaining registers
collapse to the state |0, y0, y1⟩ + |1, y0 − g, y1 + g⟩. This has exactly the form of |ϕ(y0,y1)⟩ for an unknown
discrete log (g,−g) ∈ G2. By applying [EH00,EHK04] to this larger group, we obtain (g,−g) and hence g.

Our Hash-Based Construction (Section 5). Next, we turn to our hash-based construction described
in Equation 1. It is easy to see that the construction is junk-free. We also give a technical lemma, showing
that if H is pairwise independent and sufficiently compressing, then it is orthogonal.

Proving the security of our hash-based construction (Sections 6 and 7). We now turn to proving
the security of our hash-based construction, with the aim of justifying the hardness of the GMP problem.
We prove, under certain assumptions about M and the distribution over s, that the above assumption is
indeed true for our hash-based quantum state group action. In this overview, we will focus on the case of
DDH.

Recall that the elements in this group action have the form

|ψg⟩ =
∑
x

ω
H(x).g
N |x⟩

Now look at the state |ψg1⟩|ψg2⟩|ψg1+g2⟩, which for our hash-based construction gives∑
x1,x2,x3

ω
H(x1).g1+H(x2).g2+H(x3)·(g1+g2)
N |x1, x2, x3⟩ =

∑
x1,x2,x3

ω
f(x1,x2,x3)·(g1,g2)
N |x1, x2, x3⟩

where we have defined f(x1, x2, x3) = (H(x1) +H(x3), H(x2) +H(x3)). Above, g1, g2 are random elements
in ZN . We can therefore look at the density matrix where we average over g1, g2. The result is the mixed
state

ρ =
∑

x1,x2,x3

x′
1,x

′
2,x

′
3

∑
g1,g2

ω

(
f(x1,x2,x3)−f(x′

1,x
′
2,x

′
3)
)
·(g1,g2)

N |x1, x2, x3⟩⟨x′1, x′2, x′3|

We can now perform the sum over g1, g2. This has the effect of zeroing out everywhere that f(x1, x2, x3)−
f(x′1, x

′
2, x
′
3) ̸= 0, leaving only terms with f(x1, x2, x3) = f(x′1, x

′
2, x
′
3).

It turns out that this is equivalent to the density matrix obtained by starting with the uniform super-
position over |x1, x2, x3⟩, and measuring f(x1, x2, x3). Suppose then that the function f is injective. Then
measuring the output of f is equivalent to measuring the input to f , or in particular measuring x1, x2, x3.
By performing a similar analysis to the state |ψg1⟩|ψg2⟩|ψg3⟩ for uniform independent g1, g2, g3, we obtain
that as long as f ′(x1, x2, x3) = (H(x1), H(x2), H(x3)) is injective, then the state is equivalent to measuring
x1, x2, x3. Thus, if we can prove that H satisfies this strong pair of injectivity requirements, we will have
shown that the two distributions are indistinguishable.

First, injective f ′ is equivalent to injective H, and a pair-wise independent sufficiently-expanding function
will be injective. We show that f is also “almost” injective, supposing H is sufficiently expanding and k-wise
independent for sufficiently large k. This injectivity does not hold for all points, since f(x1, x1, x2) collides
with f(x2, x2, x1). But we show that these edge cases only incur a small statistical error. Thus, we obtain
an H for which DDH unconditionally holds.
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When H is injective, however, the group action is not orthogonal, since an expanding hash function
means the dimension of the elements |ψg⟩ is smaller than the size of G. We are also interested in constructing
orthogonal quantum-state group actions, and give two such solutions. One uses lossy functions. Basically,
in the injective mode, we can make H pairwise independent so the group action will in fact be orthogonal
via our technical lemma. For security, we switch to the lossy mode where H behaves as if it is expanding,
allowing the above analysis to go through. We also show that H can be set to be a random oracle.

We extend the above security proof to work for any M for which the rows are distinct; see Section 6. Our
analysis puts an upper bound on how tall M can be in terms of the size N of the group, which is inherent
for statistical security in the expanding H case. We also generalize to some cases of non-uniform s. Here,
summing over all of the (now weighted) gi does not exactly zero-out entries of the density matrix ρ. We give
conditions under which we can prove security. Specifically, if M has linearly independent columns and s has
sufficiently high min-entropy, security holds.

We show that as long as M has linearly independent rows, and the min-entropy of s is high enough, that
security holds. In particular, we require the min-entropy to grow with the number of rows. This encompasses
a variant of the (extended) LHS assumption where s has high min-entropy instead of being a random 0/1
vector. We also show that, in the specific case that M is random and short and wide, that we can take s to
be random 0/1 vector. This encompasses the LHS assumption in the small-sample regime; see Section 7.

Quantum Money (Section 9). Zhandry [Zha24] gives a quantum money scheme from classical abelian

group actions. The banknote for serial number h is |$h⟩ :=
∑

g ω
gh
N |g ∗ x⟩. In [Zha24], it is shown how to

efficiently mint |$h⟩ for a random h (but importantly, not a chosen h), as well as how to learn h from |$h⟩.
Let us now see what happens when we plug in our hash-based quantum-state group action. Then

|$h⟩ =
∑
g

ωgh
N |ψg⟩ =

∑
g,x

ω
gh+gH(x)
N |x⟩

We can then carry out the sum over g, which zero’s out every term with h+H(x) ̸= 0. The result is exactly
the state

|$h⟩ =
∑

x:H(x)=−h

|x⟩

While minting |$h⟩ on general group actions requires some work, minting |$h⟩ on our hash-based group
action is very easy: simply create the uniform superposition over x, an measure H(x) to get −h; the state
then collapses to |$h⟩.

This kind of money state actually has already appeared previously in [Zha19]. Interestingly, for typical
hash functions, we expect that cloning |$h⟩ is easy: one can just measure the state to get a classical x
that is a pre-image of −h, and copy x at will. The only way to block this attack is to have a method of
distinguishing a classical x from the superposition over pre-images |$h⟩. Such a hash function is called non-
collapsing [Unr16], and [Zha19] shows that, indeed, non-collapsing hashes are sufficient for secure quantum
money. Unfortunately, little is known about how to construct such hashes. Likewise, there is an ingredient
in [Zha24] that we omitted above: namely the ability to recognize set elements. Under our correspondence
using our hash-based quantum group action, the ability to recognize set elements is exactly the ability to
distinguish classical x from superpositions. Due to lack of space, we defer the details to Appendix 9.

Key Distribution (Section 10). As an additional application of quantum group actions, we also present
a key distribution protocol from abelian group actions. When instantiated with an information theoretically
secure quantum group action, our protocol is an information theoretically secure protocol for quantum key
distribution.
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2 Preliminaries

Definition 2.1 (Minimum Entropy). The min entropy of a random variable X is

H∞(X) = min
u∈U
− log(Pr[X = u]) = − log(max

u∈U
Pr[X = u]).

Definition 2.2 (Strong Extractor). Let the seed Ud be uniformly distributed on {0, 1}d. We say that a
function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ϵ) strong extractor if, for all random variables X on
{0, 1}n independent of Ud with H∞(X) ≥ k,

dTV ((Ext(X,Ud), Ud), (Um, Ud)) ≤ ϵ

where Um is uniformly distributed over {0, 1}m independent of X and Ud.

Definition 2.3 (Leftover Hash Lemma). Let X be a random variable with universe U and H∞(X) ≥ k.
Fix ϵ > 0. Let H be a universal hash family of size 2d with output length m = k − 2 log(1/ϵ). Define
Ext(x, h) = h(x). Then Ext is a strong (k, ϵ/2) extractor with seed length d and output length m.

3 Defining Quantum State Group Actions

Classical Group Actions. A group action consists of a (multiplicative) group G that acts on a set X via
an action ∗. The requirements of a group action are:

• Identity: if e is the identity in G, then e ∗ x = x for all x ∈ X .

• Compatibility: For any g, h ∈ G and x ∈ X , g ∗ (h ∗ x) = (gh) ∗ x.

Quantum Group Action. Here we define quantum group actions. A quantum group action will consist
of:

• A family of classical group actions ( (Gλ,Xλ, ∗λ) )λ for λ ∈ Z+, where |Gλ|, |Xλ| ≤ 2O(λ). We will
usually drop the subscript λ from ∗, and just write g ∗ x for g ∈ Gλ, x ∈ Xλ. When λ is clear from
context, we will also abuse notation and often omit the subscript λ on Gλ,Xλ, and ∗λ.

• A family Ψ = (Ψλ)λ for λ ∈ Z+, where Ψλ = (|ψx⟩)x∈Xλ
is a collection of states indexed by Xλ. The

states |ψx⟩ lie in a Hilbert space Hλ.

• A distinguished starting element xλ ∈ Xλ

• A polynomial-time quantum procedure Start(1λ) which outputs a (potentially mixed) state ρ.

• A polynomial-time quantum procedure Act(g ∈ Gλ, |ψ⟩ ∈ Hλ), which outputs a (potentially mixed)
state ρ over Hλ.

We now discuss the desired properties of a quantum group action.

Definition 3.1 (Correctness). A quantum group action as described above is correct if there exists a negli-
gible function negl(λ) such that:

T ( |ψxλ
⟩⟨ψxλ

| , Start(1λ) ) ≤ negl(λ)

T ( |ψg∗x⟩⟨ψg∗x| , Act(g, |ψx⟩⟨ψx|) ) ≤ negl(λ), ∀x ∈ Xλ, g ∈ Gλ

If negl(λ) = 0, then we say the group action is perfectly correct.
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In other words, Start (approximately) produces |ψxλ
⟩, and Act (approximately) implements the group

action ∗ over the states |ψx⟩.
The next definition considers how Act behaves in terms of side information, or junk, produced. Note

that, because the inputs and outputs of Act are quantum, there is no generic mechanism for uncomputing
workspace qubits or for leaving a copy of the input intact while computing the output. We here define the
notion of “junk-free” quantum group actions, which roughly states that the input is consumed in producing
the output, and no workspace qubits are produced.

Definition 3.2 (Junk-Free). A quantum group action as described above is junk-free if Act(g, |ψ⟩) works as
follows:

• Based on g ∈ Gλ, Act computes a description of a polynomial-sized quantum circuit Ug. Ug acts on
Hλ ×Hwork,λ, where Hwork,λ are workspace qubits.

• Act then applies Ug|ψ⟩|0⟩.

• Act then measures Hwork,λ; if the result is not equal to 0, then Act outputs a special symbol ⊥ and
aborts.

• If Act does not abort, then it outputs the state in Hλ.

We next give the definitions of orthogonality and regularity :

Definition 3.3 (Orthogonal). A quantum group action is orthogonal if, for all x, y ∈ Xλ such that x ̸= y,
⟨ψx|ψy⟩ = 0.

Definition 3.4 (Regular). A group action G,X , ∗ is regular if the map (g, x) 7→ (g, g ∗ x) is a bijection.
A quantum group action as described above is regular if each of the underlying group actions in the group
action family is regular.

Notations and conventions. We always assume a correct, junk-free, and regular quantum group action.
Note that a quantum group action will be specified by G = (Gλ)λ, Start and Act, with the other terms
being implicitly derived from them. For any given (Start,Act), there may be several possible realizations of
the underlying classical group actions and sets Ψ. When we say that a group actions satisfies a particular
property, we mean that there is some realization under which the action satisfies that property.

We write g ∗ |ψx⟩ to denote Act(g, |ψx⟩). By correctness, this approximately gives |ψg∗x⟩. We will abuse
notation and write |ψg∗x⟩ = g ∗ |ψx⟩. We will typically treat |ψxλ

⟩ and the output of Start(1λ) as equal, as
well as |ψg∗x⟩ and g ∗ |ψx⟩.

For a regular group action, the set Xλ is in bijection with the group Gλ. Wetherefore take Xλ to be
exactly Gλ, and xλ to be eλ, the identity in Gλ.

A classical group action is a group action where the states |ψx⟩ are the elements |x⟩ in the computational
basis. Such a classical group action is automatically orthogonal. It can also be made junk free: since the
inputs and outputs to Act are classical, any workspace can be un-computed via standard techniques.

3.1 Cryptographic Quantum Group Actions

Discrete Logarithms. For cryptographic purposes, there needs to be a hard problem associated with the
group action, which is always at least the hardness of computing discrete logarithms: computing g given
|ψg∗xλ

⟩. In the quantum setting, the element |ψg∗xλ
⟩ is not necessarily clonable, so we parameterize the

problem based on how many copies of |ψg∗xλ
⟩ are given.

Definition 3.5 (Discrete Logarithm Problem). For a function ℓ = ℓ(λ), the ℓ-discrete logarithm (DLog)
problem is hard in a quantum group action if, for every quantum polynomial-time adversary A, there exists
a negligible function negl such that:

Pr

[
g ∗ xλ = g′ ∗ xλ :

g ← Gλ

g′ ← A
(
|ψg∗xλ

⟩⊗ℓ(λ)
) ] ≤ negl(λ).
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The DLog problem is hard (without parameterization by ℓ) if DLog is ℓ-hard for all polynomials ℓ. Note that
for regular (quantum) group actions, the condition on the left simply becomes g = g′.

Generalized Matrix Assumption. Other assumptions have also been made on classical group actions.
A basic example is that of Decisional Diffie Hellman (DDH), which asks that g ∗ x, h ∗ x, (gh) ∗ x is indis-
tinguishable from three random set elements. The DDH assumption is the group-action analog of DDH on
plain groups, and is sufficient for key agreement.

A more complex assumption is the Linear Hidden Shift (LHS) assumption [ADMP20]. The LHS as-
sumption, very roughly, gives out many samples of the form (g1, · · · , gk, (

∏
i g

si
i ) ∗ x), where the gi are fresh

random elements in each sample, while the si are random bits shared between all the samples.
Here, we define a generalization of DDH, which we call the Generalized Matrix Problem (GMP). This

assumption encompasses DDH, LHS, and potentially many more assumptions on group actions. We also
describe the assumption on quantum state group actions.

We first given some notation. For a matrix M = (Mi,j)i,j ∈ Gm×n and vector v = (vj)j ∈ Zn, define
M · v to be the vector in Gm whose ith entry is

∏
j M

vj
i,j . Likewise, if M ∈ Zm×n and vector v ∈ Gn, then

M·v is the vector in Gm whose ith entry is
∏

j v
Mi,j

j . For a vector v = (vi)i ∈ Gm, let v∗|ψx⟩m = (vi∗|ψx⟩)i.
For a matrix M = (Mi,j)i,j , we let Mi denote the ith row of M, namely Mi = (Mi,j)j . For two

matrices M(0),M(1) of the same height, we say that they have the same row equality pattern if, for each

i, i′, M
(0)
i =M

(0)
i′ if and only if M

(1)
i =M

(1)
i′ . Note that we can think of vectors as column matrices with a

single column. In this way, it makes sense to talk about a matrix and vector having the same row equality
pattern.

Definition 3.6 (Generalized Matrix Problem). Let m,n be polynomials in λ. Let M = (Mλ)λ be a
distribution over Gm×n (resp. over Zm×n) and let S = (Sλ)λ be a distribution over Zn (resp. Gn). Then
the (M,S)-Generalized Matrix (GM) Problem is hard in a quantum group action if, for every quantum
polynomial-time adversary A, there exists a negligible function negl such that:

Pr

b
′ = b :

b ← {0, 1}
M ←Mλ

s ← Sλ
v(0) ←M · s
v(1) ← EqPatM(Gm)
b′ ← A(M,v(b) ∗ |ψxλ

⟩m)

 ≤ 1/2 + negl(λ).

Above, EqPatM(Gm) means the subset of Gm having the same row equality pattern as M.

Remark 3.7. We can also generalize Definition 3.6 to M and s each contain both elements of G and elements
of Z, as long as the entries are positioned so that in the matrix-vector product, we only ever multiply a group
element by an element in Z.

Remark 3.8. We can also extend GM problem to the case where ℓ copies of each group element are given
out. However, this is equivalent to simply replacing M with M′, which consists of ℓ copies of M stacked on
top of each other.

Remark 3.9. If M has column rank less than m, then the DLog problem is intuitively at least as hard as
GMP. This is because we can use the DLog attack to recover v(b), and then check if v(b) is in the column-span
of M. This reduction requires the DLog adversary to have success probability close to 1, which is why this
relationship is not formal. Note that given many copies of each state, we use the random self-reducibility of
DLog to boost the probability to be close to 1.

3.2 GMP Examples

Here, we discuss how the GMP assumption encompasses many group action assumptions used in the litera-
ture.
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DDH. The DDH assumption on group actions states that (a ∗ x, b ∗ x, (a + b) ∗ x) is computationally
indistinguishable from three random set elements. This can be framed as an instance of GMP by setting

M =

 1 0
0 1
1 1

 , s =

(
a
b

)

LHS. The Linear Hidden Shift (LHS) assumption [ADMP20] hands out polynomially-many sample, which
either have the form (xi,vi, (vi ·s)∗xi) or (xi,vi, ui), where ui is a random set element, s is a random vector
in {0, 1}n, and vi is a random vector in Gn. The goal is to distinguish these two cases.

If the xi are actually all the same, and if the number of samples is a priori bounded by m, the LHS
assumption is a instance of the GMP assumption using

M =

 vT
1
...

vT
m


We can also handle the case where the xi are chosen independently (as in [ADMP20]). For example,

using the generalization of GMP to M, s containing both group elements and integers (see Remark 3.7), we
can set

M′ =

(
0 Im
M Im

)
, s′ =

(
s
t

)
where Im is the m×m identity matrix, and t is a random vector of random group elements. Then the output
of the GMP assumption is 2m set elements, and we let xi be the ith element, ui be the (i+m)th element.

Extended LHS. In [AMR22], a generalization of LHS is considered, called the extended LHS assumption.
This assumption gives out several samples of the form (M,m,x0,x1,y0,y1), where: M ∈ Gm×m is random,
m ∈ Gm is random, x0,y0 are independent vector ofm random set elements, and finally either x1 = (M·s)∗x0

and y1 = (M · s+m⊙ s) ∗ y0, or x1,y1 are random.
If we let Diag(m) denote the diagonal matrix whose elements are m, then we can obtain the 1-sample

extended LHS assumption by setting:

M′ =


0 Im 0
0 0 Im
M Im 0

M+ Diag(m) 0 Im

 , s′ =

 s
t0
t1


Above, t0, t1 are vectors of random group elements. We can also obtain the extended LHS assumption for
a bounded number of samples analogously.

4 Coset Sampling on Quantum Group Actions

Here we explore how to adapt coset sampling attacks that apply in the case of classical group actions to the
quantum state group action setting. Our main theorem is the following, which shows that coset sampling
attacks apply when the group action is orthogonal.

Theorem 4.1. For any orthogonal and junk-free quantum group action, there exists a polynomial ℓ and an
exponential-time quantum algorithm A that solves the ℓ-DLog problem with probability 1 − negl(λ). A only
makes O(ℓ) calls each to Start and Act.
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Proof. In the classical group action setting, the analogous result follows from algorithms for the hidden
sub-group problem in non-abeliang groups. Specifically, [EH00,EHK04] show an exponential time algorithm
for the hidden subgroup problem, which in turn can be used to solve the discrete logarithm problem in
abelian groups. Our observation is that these algorithms can be made to work, with a bit of extra work, on
orthogonal junk-free quantum group actions as well.

Let G be a group and H an unknown subgroup of G. For a group element g ∈ G, Define |gH⟩ =
1√
|H|

∑
h∈H |gh⟩. The states |gH⟩ are called coset states. We will use the following lemma, implicit in [EHK04]:

Lemma 4.2. There exists a quantum algorithm A which takes as input ℓ coset states |g1H⟩, · · · |gℓH⟩ for
arbitrary gi ∈ G, and with probability 1−O(1/|G|), outputs a set of generators for H. Here, ℓ = O(log(|G|)4),
and the running time of A is poly(|G|).

We now give our algorithm for solving DLog in quantum state group actions. We show the case of
regular group actions, but the algorithm readily extends to irregular group actions as well with a more
tedious analysis. Let e be the identity in G. Recall our convention that for regular quantum group actions,
the states of the group action are labelled by the group elements themselves, with Start producing |ψe⟩, and
g ∗ |ψh⟩ = |ψgh⟩.

We are given ℓ copies of |ψ(1)⟩ = g ∗ |ψe⟩, for an ℓ to be determined below. Using Start, we also have ℓ
copies of |ψ(0)⟩ := |ψe⟩. To compute g,

1. Repeat the following ℓ times:

(a) Create the uniform superposition 1√
2|G|

∑
h0,h1∈G,b∈{0,1} |b, h0, h1⟩. Append one copy each of the

states |ψ(0)⟩ and |ψ(1)⟩. Then the state is

|τa⟩ =
1√
2|G|

∑
h0,h1∈G,b∈{0,1}

|b, h0, h1⟩|ψ(0)⟩|ψ(1)⟩

(b) Conditioned on b = 1, swap the final two registers, obtaining

|τb⟩ =
1√
2|G|

∑
h0,h1∈G,b∈{0,1}

|b, h0, h1⟩|ψ(b)⟩|ψ(1−b)⟩

(c) Apply the group action in superposition to obtain

|τc⟩ =
1√
2|G|

∑
h0,h1∈G,b∈{0,1}

|b, h0, h1⟩(h0 ∗ |ψ(b)⟩)(h1 ∗ |ψ(1−b)⟩)⟩

=
1√
2|G|

∑
h0,h1∈G,b∈{0,1}

|b, h0, h1⟩|ψh0gb⟩|ψh1g1−b⟩

=
1√
2|G|

∑
y0,y1∈G,b∈{0,1}

|b, y0g−b, y1gb⟩|ψy0
⟩|ψy1g⟩

where in the last line we used the substitution h0 = y0g
−b and h1 = y1g

b.

(d) Discard the last two registers. Since the terms |ψy⟩ for different y are orthogonal, discarding
these registers is equivalent to measuring y0 and y1g (though the results of the measurement are
hidden). This means the first three registers collapse to the state

|ϕy0,y1
⟩ := 1√

2

(
|0, y0, y1⟩+ |1, y0g−1, y1g⟩

)
for a random sample of y0, y1.
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2. Define a group G′ = G2 ⋊ Z2 where and ⋊ denotes the semi-direct product. In other words, G′
comprises tuples (b, g0, g1) ∈ {0, 1} × G × G, where the group operation is (b, g0, g1) · (c, h0, h1) =

(b⊕ c, g0h(−1)
b

0 , g1h
(−1)b
1 ). Then let H be the subgroup generated by the element (1, g−1, g), which has

order 2. Thus, we see that |ϕy0,y1⟩ = |(0, y0, y1)H⟩, a coset state of H.

3. We then feed these ℓ coset states into the algorithm from Lemma 4.2. The result is the genera-
tor (1, g, g−1) for H, which reveals g. In order to run Lemma 4.2, we choose ℓ = O(log(|G′|)4) =
O(log(|G|)4).

4.1 Other Coset Sampling Attacks

Kuperberg’s algorithm. Kuperberg [Kup05], solves the dihedral hidden subgroup problem in sub-
exponential time. This algorithm is readily adapted to give solve discrete logs for abelian group actions.

We can extend the algorithm to the case of quantum state group actions. One issue is that the algorithm
requires a sub-exponential number of coset samples, which translates to needing a sub-exponential number
of discrete log samples. In turn, since the correctness of a quantum state group acitons allows sample
to incur a negligible error, the overall error of the sub-exponentially-many samples may be too high to
ensure correctness. But the algorithm can be made to work by restricting to perfectly correct schemes. A
straightforward adaptation of the techniques in Theorem 4.1 to Kuperberg’s algorithm gives the following:

Theorem 4.3 (Adaptation of [Kup05]). For any orthogonal, junk-free, and perfectly correct abelian quan-

tum state group action, there exists a quantum algorithm A running in time 2O(
√

log |G|) that breaks the

2O(
√

log |G|)-DLog problem with probability 1− negl(λ).

Simon’s Algorithm. Simon’s algorithm[Sim97] can be applied to group actions where the group is G = Zn
2

to solve discrete logarithms in polynomial time. In particular, given a set element y = g ∗ x, one can define
f(0, h) = h∗x and f(1, h) = h∗y. Then f(b, h) has a period (1, g), since f((b, h)+(1, g)) = f(b, h). Applying
Simon’s algorithm to f then recovers g. By adapting the techniques from above to Simon’s algorithm gives
the following:

Theorem 4.4 (Adaptation of [Sim97]). For any orthogonal, junk-free quantum state group action with group
G = Zn

2 , there exists a polynomial ℓ and a quantum algorithm A running in polynomial time such that A
breaks the ℓ-DLog problem with probability 1− negl(λ).

5 A Hash-based Quantum State Group Action

Construction 5.1. Let R = (Rλ)λ be a set. Let N = N(λ) be an integer function, H = (Hλ)λ be a family
of efficiently computable functions Hλ : Rλ → ZN(λ), and (|ϕλ⟩)λ be a family of efficiently constructible
states where |ϕλ⟩ are superpositions over elements in Rλ. Let (Start,Act) be the following:

• Start(1λ) : create the state |ϕλ⟩

• Act(g, |ψ⟩): g is assumed to be an element in ZN(λ). Let Pg be the unitary gate which maps |r⟩ to
ei2πHλ(r)·g|r⟩. Then output Pg|ψ⟩.

The underlying classical group action can be taken as Gλ = Xλ = ZN(λ), with g ∗ x = g + x. The
states |ψx⟩ are taken to be Px|ϕλ⟩. The distinguished starting element is |ψ⟩. The construction is correct
since PgPh = Pg+h (where we have used additive notation for the group operation). It is also junk-free and
regular.
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Conditions for Orthogonality. Since there are N(λ) set elements, and the dimension of the space is at
most |Rλ|, orthogonality requires at a minimum that H is not compressing. This is not enough, and whether
or not Construction 5.1 is orthogonal will depend on the particulars of H and also the state |ϕλ⟩. We now
give a sufficient condition:

Lemma 5.2. Consider the distribution Dλ obtained by measuring |ϕλ⟩ in the computational basis and then
applying Hλ. If there is a negligible function negl(λ) bounding the statistical distance between Dλ and uniform
in ZN(λ), then the quantum state group action given in Construction 5.1 is orthogonal.

Proof. Define

|ψg⟩ =
∑
j

αjω
H(j)·g
N |j⟩ =

N−1∑
i=0

 ∑
j:H(j)=i

αjω
i·g
N |j⟩



Then |ψ0⟩ = |ϕλ⟩. Then let pi =
∑

h:H(j)=i |αi|2. We see that pi = Pr[i← Dλ].

For the moment, suppose that pi = 1/N for all i, indicating that Dλ is uniform and hence negl(λ) = 0.
In this case, for g ̸= g′,

⟨ψg|ψ′g⟩ =

∑
j

|αj |2ωH(j)·(g′−g)
N


=
∑
i

 ∑
j:H(j)=i

|αj |2
ω

i·(g′−g)
N

=
1

N

∑
i

ω
i·(g′−g)
N = 0

Thus, in this case the |ψg⟩ are exactly orhogonal.
Now consider a state |ψg⟩ such that the pi are not uniform. We are still given that Dλ is statistically

close to uniform, meaning
∑

i |pi − 1/N | ≤ negl(λ) for some negligible function negl. In other words,

1

2

∑
i∈ZN

∣∣∣∣∣∣
∑

j:H(j)=i

|αj |2 −
1

N(λ)

∣∣∣∣∣∣ ≤ negl(λ)

Let |ψ′g⟩ =
∑

i

(
1√
Npi

∑
i:H(j)=i αjω

i·g
N |j⟩

)
. We will show that the || |ψg⟩ − |ψ′g⟩ ||2 is negligible.

|| |ψg⟩ − |ψ′g⟩ ||22 =
∑
i

 ∑
j:H(j)=i

|αj |2
(
1−

√
1

Npi

)2


=
∑
i

(
√
pi −

√
1

N

)2

=
∑
i

(√
1

N
+ ti −

√
1

N

)2

where ti := pi − 1
N . Observe that

∑
i |ti| = negl(λ).
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If ti ≥ 0, then
√

1
N + ti ≤

√
1
N+
√
ti, and if ti < 0, then

√
1
N =

√
1
N+
√
−ti−

√
−ti ≤

√
1
N − (−ti)+

√
−ti.

Thus,

N−1∑
i=0

(√
1

N
+ ti −

√
1

N

)2

=
∑

i:ti≥0

(√
1

N
+ ti −

√
1

N

)2

+
∑

i:ti<0

(√
1

N
−
√

1

N
− (−ti)

)2

≤
∑

i:ti≥0

(√
ti
)2

+
∑

i:ti<0

(√
(−ti)

)2
=

N−1∑
i=0

ti = negl(λ)

Thus, we use the states |ψ′g⟩ as the underlying states in our group action, which are orthogonal. We then
have that Start and Act produce the states |ψg⟩, which are negligibly-close to |ψ′g⟩, giving correctness.

Lemma 5.3. Let H = (Hλ)λ be a family of k ≥ 2-wise independent compressing hash functions Hλ :
Rλ → ZN(λ) such that Hλ∞(Rλ) ≥ c logN , where c > 2 . Then, the quantum state group action given in
Construction 5.1 instantiated with Hλ is orthogonal.

Proof. The function H : Rλ → ZN(λ) is a k wise independent hash function. From now on, we will drop the
subscript λ from N(λ).
Let X denote the distribution of the domain of the function H, with the guarantee that H∞(X ) ≥ 4 logN .
Let H be the random variable distributed according to H and let its instantiation be H. The leftover hash

lemma states that, dTV((H,H(X )), (H,UZN )) ≤ ϵ, where ϵ =
√
N

24 log N . More precisely,

1

2

∑
z∈ZN ,H∈{0,1}d

∣∣∣Pr[H(X) = z,H = H]− Pr[UN = z, U2d = H]
∣∣∣

=
1

2

∑
z∈ZN ,H∈{0,1}d

∣∣∣Pr[H(X) = z|H = H] Pr[H = H]− Pr[UN = z] · Pr[U2d = H]
∣∣∣

=
1

2

∑
H∈{0,1}d

Pr[H = H]
∣∣∣Pr[H(X) = z|H = H]− Pr[UN = z]

∣∣∣
=

1

2

∑
H∈{0,1}d

Pr[H = H]
∣∣∣Pr[H(X) = z]− Pr[UN = z]

∣∣∣
Observe that, at least 1−

√
ϵ fraction of hash functions drawn from H must be such that,∣∣∣Pr[H(X) = z]− Pr[UN = z]

∣∣∣ ≤ √ϵ
≤ N1/4

22 logN

=
N3/4

22 logN
· 1√

N

=
20.75 logN

22 logN
· 1√

N

= negl(λ) · 1√
N

This is because, if more than an ϵ fraction of hash functions drawn from H are such that
∣∣∣Pr[H(X) =

z]− Pr[UN = z]
∣∣∣ > ϵ, then dTV((H,H(X )), (H, UZN

)) = 1
2

∑
H∈{0,1}d Pr[H = H]

∣∣∣Pr[H(X) = z]− Pr[UN =

17



z]
∣∣∣ > √ϵ√ϵ = ϵ, a contradiction.

Therefore, for at least 1−
√
ϵ fraction of hash functions H in the support of H,

∣∣∣Pr[H(x) = z]− 1
N

∣∣∣ ≤ √ϵ.
So the group action in Construction 6.2 is orthogonal with probability at least 1− N1/4

22 log N over the choice of
H.

6 Generalized Matrix Assumption

In this section, we will prove that the generalized matrix problem is hard in each of the following cases:

• H is a 2n wise independent expanding function. Here n denotes the number of rows of the matrix.

• H is the composition of a 2n wise independent hash function with a function sampled from the injective
mode of a lossy function family.

• H is the random oracle.

Before we prove the main theorem, we state and prove the following lemma:

Lemma 6.1. Fix a security parameter λ and an instance (M,v(b) ∗ |ψxλ
⟩n) of the (M,S)−Generalized

Matrix Problem in a hash based quantum state group action from Construction 5.1 instantiated with the hash
function Hλ : Rλ → ZN(λ). Let j be the number of distinct rows in M. For all i ∈ [j], let Si be the set of

all row indices equal to the ith distinct row. Let M′ ∈ Zj×m
N be the same matrix as M but without repeated

rows. Then,

1. If b = 0: The resulting mixed state is equivalent to the density matrix obtained by the following
procedure:

• Initialize quantum registers X1, . . . Xn and Y1, . . . Yj to states ⊗n
i=1 |0⟩Xi

⊗j
i=1 |0⟩Yi

.

• Prepare the state 1√
|Rλ|n

∑
x1,...xn∈Rn

λ
|x1⟩X1

. . . |xn⟩Xn
⊗j

i=1 |0⟩Yi
.

• Apply in superposition the map (⊗k∈Si
|xk⟩Xk

) |0⟩Yi
→ (⊗k∈Si

|xk⟩Xk
) |
∑

k∈Si
Hλ(xk)⟩Yi

, yielding

the state 1√
|Rλ|n

∑
x1,...xn

⊗n
i=1 |xi⟩Xi

⊗i∈[j] |
∑

k∈Si
Hλ(xk)⟩Yi

.

• Measure the registers Y1, Y2, . . . Yj, giving (y1, . . . yj), collapsing the state on registers X1, . . . Xn

to
∑

x1,...xn:
∀i∈[j]:

∑
k∈Si

H(xk)=yi

⊗n
i=1 |xi⟩Xi

.

2. If b = 1: Then the resulting mixed state is equivalent to the density matrix obtained by the following
procedure:

• Initialize quantum registers X1, . . . Xn and Y1, . . . Yj to states ⊗n
i=1 |0⟩Xi

⊗j
i=1 |0⟩Yi

.

• Prepare the state 1√
|Rλ|n

∑
x1,...xn∈Rn

λ
|x1⟩X1

. . . |xn⟩Xn
⊗j

i=1 |0⟩Yi
.

• Apply in superposition the map (⊗k∈Si
|xk⟩Xk

) |0⟩Yi
→ (⊗k∈Si

|xk⟩Xk
) |
∑

k∈Si
Hλ(xk)⟩Yi

, yielding

the state 1√
|Rλ|n

∑
x1,...xn

⊗n
i=1 |xi⟩Xi

⊗i∈[j] |
∑

k∈Si
Hλ(xk)⟩Yi

.

• Measure the state on M′T ·(
∑

k∈S1
H(xk), . . . ,

∑
k∈Sj

H(xk)), giving (y1, . . . yj) and collapsing the
state to∑

x1,...xn:

M′T ·(
∑

k∈S1
H(xk),...,

∑
k∈Sj

H(xk))=(y1,...yj)
⊗n

i=1 |xi⟩Xi
.
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Proof. First, some notation: let x denote x1, . . . xn, and let x′1 denote x′1, . . . x
′
n.

We will analyse the case when b = 0. In this case, A receives {|ψ⟩
v
(0)
1
, |ψ⟩

v
(0)
2
, . . . , |ψ⟩

v
(0)
n
}, where v(0)i is the

ith coordinate of v(0). Let |EqPatM(Zn
N )| = S. The density matrix representing the corresponding mixed

state is:

1

S

∑
v
(0)
1 ,...v

(0)
n

|ψ⟩
v
(0)
1
⟨ψ|

v
(0)
1
⊗ · · · ⊗ |ψ⟩

v
(0)
n
⟨ψ|

v
(0)
n

=
1

S2kn

∑
v
(0)
1 ,...v(0)

n ,

x1,x
′
1,...xn,x

′
n

ω
H(x1)−H(x′

1)·v
(0)
1

N |x1⟩ ⟨x′1| ⊗ · · · ⊗ ω
H(xn)−H(x′

n)·v
(0)
n

N |xn⟩ ⟨x′n|

=
1

S2kn

∑
x1,x′

1

∑
v
(0)
1

ω
H(x1)−H(x′

1)·v
(0)
1

N |x1⟩ ⟨x′1| ⊗ · · · ⊗
∑
xn,x′

n

∑
v
(0)
n

ω
H(xn)−H(x′

n)·v
(0)
n

N |xn⟩ ⟨x′n|

Let j ≤ n be the number of distinct elements in v(0), and WLOG, let these j elements be v
(0)
S1
, . . . v

(0)
Sj

.

Now, observe that we can partition the coordinates of v(0) into sets Si : i ∈ {1, . . . , j}, where the set

Si = {k ∈ {1, . . . n} : v(0)k = v
(0)
Si
}. Using this partition, we can further simplify the last expression as follows:

1

S2kn

∑
x1,x′

1

∑
v
(0)
1

ω
H(x1)−H(x′

1)·v
(0)
1

N |x1⟩ ⟨x′1| ⊗ · · · ⊗
∑
xn,x′

n

∑
v
(0)
n

ω
H(xn)−H(x′

n)·v
(0)
n

N |xn⟩ ⟨x′n|

=
1

S2kn

∑
x,x′

∑
v
(0)
S1

ω
v
(0)
S1

∑
i∈S1

H(xi)−H(x′
i)

N · · ·
∑
v
(0)
Sj

ω
v
(0)
Sj

∑
i∈Sj

H(xi)−H(x′
i)

N |x1⟩ ⟨x′1| . . . |xn⟩ ⟨x′n|

=
1

2kn

∑
x,x′ s.t. ∀k∈{1,...j}:

∑
i∈Sk

H(xi)−H(x′
i)=0

|x1⟩ ⟨x′1| . . . |xn⟩ ⟨x′n|

where ωN = e2πi/N , and the second equality follows because
∑

g∈G ω
g·i = 0 whenever i ̸= 0.

Next, we will analyse the case when b = 1. In this case, A receives {|ψ⟩
v
(1)
1
, |ψ⟩

v
(1)
2
, . . . , |ψ⟩

v
(1)
n
}, where

v
(1)
i = (M · s)i. The density matrix representing the corresponding mixed state is:

∑
s

Pr[s](M · s)1 ∗ |ψ⟩0 ⟨ψ|0 ⊗ (M · s)2 ∗ |ψ⟩0 ⟨ψ|0 · · · ⊗ (M · s)n ∗ |ψ⟩0 ⟨ψ|0

=
1

2kn

∑
s,x1,x′

1...xn,x′
n

Pr[s]ω
(H(x1)−H(x′

1))·⟨M1,s⟩
N |x1⟩ ⟨x′1| ⊗ · · · ⊗ ω

(H(xn)−H(x′
n))·⟨Mn,s⟩

N |xn⟩ ⟨x′n|

Let j ≤ n be the number of distinct rows in M. Now, observe that we can partition the rows of M
into sets Si : i ∈ {1, . . . , j}, where the set Si contains all rows that are equal to the ith distinct row. Let
M′ ∈ Zj×m

N be the same matrix as M but without any colliding rows.

19



Using this partition, we can further simplify the last expression as follows:

1

2kn

∑
s,x,x′

Pr[s]ω
(H(x1)−H(x′

1))⟨M1,s⟩
N |x1⟩ ⟨x′1| ⊗ · · · ⊗ ω

(H(xn)−H(x′
n))⟨Mn,s⟩

N |xn⟩ ⟨x′n|

=
1

2kn

∑
x,x′

∑
s

Pr[s]ω
⟨M′

1,s⟩
∑

i∈S1
(H(xi)−H(x′

i))

N . . . ω
⟨M′

j ,s⟩
∑

i∈Sj
(H(xi)−H(x′

i))

N |x1⟩ ⟨x′1| . . . |xn⟩ ⟨x′n|

For simplicity of notation, let ρ = (
∑

i∈S1
H(xi), · · ·

∑
i∈Sj

H(xi)) and let ρ′ = (
∑

i∈S1
H(x′i), · · ·

∑
i∈Sj

H(x′i)).
Then,

1

2kn

∑
x,x′

∑
s

Pr[s]ω
⟨M′

1,s⟩·(ρ−ρ)1
N . . . ω

⟨M′
j ,s⟩(ρ−ρ)j

N |x1⟩ ⟨x′1| . . . |xn⟩ ⟨x′n|

=
1

2kn

∑
x,x′

∑
s

Pr[s]ω
⟨(ρ−ρ)1·M′

1,s⟩
N . . . ω

⟨(ρ−ρ)j ·M′
j ,s⟩

N |x1⟩ ⟨x′1| . . . |xn⟩ ⟨x′n|

=
1

2kn

∑
x,x′

∑
s

Pr[s]ω
⟨M′T

1 ·(ρ−ρ)1,s⟩
N . . . ω

⟨M′T
j ·(ρ−ρ)j ,s⟩

N |x1⟩ ⟨x′1| . . . |xn⟩ ⟨x′n|

=
1

2kn

∑
x,x′

∑
s1

...sm

Pr[s]ω
s1

∑j
i=1 M′

i1(ρ−ρ
′)i

N . . . ω
sm

∑j
i=1 M′

im(ρ−ρ′)i
N |x1⟩ ⟨x′1| . . . |xn⟩ ⟨x′n|

For t ∈ [m], observe that if
∑j

i=1 M
′
it(ρ− ρ′)i ̸= 0, then∑

st
ω
st

∑j
i=1 M′

it(ρ−ρ
′)i

N = 0.

So we can rewrite the final state as follows:

1

2kn

∑
x1,x

′
1,...,xn,x

′
n:

ρ·M′=ρ′·M′

|x1⟩ ⟨x′1| . . . |xn⟩ ⟨x′n|

Now, for an adversary A with access to H consider the following security game:

ExptA(1λ, b)

1. The challenger creates the state

1√
|Rλ|n

∑
x1,...xn

⊗n
i=1 |xi⟩Xi

⊗i∈[j] |
∑
k∈Si

Hλ(xk)⟩
Yi

.

2. If b = 0, the challenger measure the state on ρ = (
∑

k∈S1
H(xk), · · ·

∑
k∈Sj

H(xk)), and sends the

resulting state to A. If b = 1, it measures the state on ρ ·M ′, and sends the resulting state to A.

3. A returns a bit b′.

From now on, we will denote the above security game by G. We say that G is secure if the following holds
for all µ ∈ {0, 1} ∣∣∣Pr[µ← ExptA(1λ, 0)]− Pr[µ← ExptA(1λ, 1)]

∣∣∣ ≤ negl(λ)

In the following sections, we will present constructions of hash functions such that G is secure. Observe
that from Lemma 6.1, this proves that the generalized matrix problem is hard in hash based quantum group
actions instantiated with hash functions from these constructions.
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6.1 Expanding 2n-wise independent H

Consider a family of hash functions H = {Hλ}λ with the following construction:

Construction 6.2. Let k, n,N be polynomials in λ and let N be a prime such that n, k ≤
√
logN
2 . Let {0, 1}k

be the domain of Hλ. Set Hλ to be sampled from a uniform and 2n wise independent function distribution

Hλ : {0, 1}k → ZN . Since 2k

|ZN | ≤
2k

24k
= negl(λ), Hλ is injective with overwhelming probability on any 2n

wise independent function distribution.

Remark 6.3. Since Hλ is expanding, H∞(X ) ≤ k ≤
√
logN
2 . This implies that a quantum group action

instantiated with Hλ won’t be orthogonal. However, this is to be expected because, as we will show later in
this section, the generalized matrix problem instantiated with 2n wise independent and expanding hash based
group actions is hard even against computationally unbounded adversaries.

Now, we will prove the following lemma:

Lemma 6.4. Let j,m, n be polynomials in λ such that j ≤ m. Let M ∈ Zj×m
N be such that, ∀r ̸= s ∈

[j],Mr ̸= Ms, and ∀i ∈ [j] : Mi ̸= 0. Let x = (x1, . . . xn) and x′ = (x′1, . . . , x
′
n) be disjointly paritioned into

sets S1, . . . Sj. Then, with probability at least 1− negl(λ) over the choice of Hλ,
MT ·(

∑
i∈S1

Hλ(xi),
∑

i∈S2
Hλ(xi), · · ·

∑
i∈Sj

Hλ(xi)) is injective on (x1, . . . xn), upto reordering xk ∈ Si,∀i ∈
[j].

Proof. Let x = (x1, · · · , xn) and x′ = (x′1, · · · , x′n). We denote∑
i∈S1

H(xi), · · ·
∑
i∈Sj

H(xi)

 by y, and

∑
i∈S1

H(x′i) · · ·
∑
i∈Sj

H(x′i)

 by y′.

We let Hλ be H. We denote the set of distinct n tuples by dist({0, 1}k, n).
We will first prove that, for all x ∈ dist({0, 1}k, n),MT · y is injective on x. Then, we will prove that the
weight of tuples /∈ dist({0, 1}k, n) is negligible.
First, consider the tuples x, x′ ∈ dist({0, 1}k, n}). We will evaluate the probability that MT · y′ = MT · y.
Let E be the event that MT · y′ = MT · y.
We have the following cases:

1. Case 1: There exists x′i ̸= xi such that ∀j ∈ [n] : xi ̸= x′j , x
′
i ̸= xj .

2. Case 2: There exists xi ̸= x′i such that ∀j ∈ [n] : xi ̸= x′j or ∀j ∈ [n] : x′i ̸= xj .

Claim 6.5. Every pair of tuples x ̸= x′ ∈ dist({0, 1}k, n) is either in Case 1 or 2.

Proof. First, observe that since x ̸= x′, there must exist i ∈ [n] such that xi ̸= x′i. Now, let’s assume for
contradiction that for all pairs xi ̸= x′i, ∃j ∈ [n] : xi = x′j and ∃k ∈ [n] : x′i ̸= xk. This implies that, for all

x ̸= x′ :
∑

i(H(xi)−H(x′i)) = 0. Thus, for all x ̸= x′ there exists a permutation π1 such that

MT · y = MT · (
∑
i∈S1

H(π(xi)),
∑
i∈S2

H(π(xi)), · · ·
∑
i∈Sj

H(π(xi)))

= π(MT ) · y

where π permutes the columns of MT . However, this implies that the corresponding columns of MT are
identical, a contradiction.

1When x = x′, the permutation is simply the identity.
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If MT ·y′ =MT ·y, then MT · (y−y′) = 0. Since every element in the vectors (x1, . . . xn) and (x′1, . . . x
′
n)

is distinct, we can conclude that in Case 1, xi and x′i can be chosen independently of all other elements.
Also, ∀a ∈ ZN ,PrH [H(xi) = a] = 1

N from the 2n wise independence of H. Without loss of generality, let
xi, x

′
i ∈ Sd. Since all rows of M are non-zero, there must exist a non-zero element in Md. Now, because∑

i∈Sd
(H(xi) − H(x′i)) is uniformly and independently distributed over ZN , in this case we can conclude

that PrH [MT · (y − y′) = 0] ≤ 1
N .

In case 2, one of the elements xi or x
′
i is equal to another element xj or x

′
k But in this case as well, since H(xi)

(or H(x′i)) is uniform and H(xi) (or H(x′i)) is independent of all other elements,
∑

i∈Sd
(H(xi)−H(x′i)) is

uniformly distributed over ZN . So PrH [MT · (y − y′) = 0] ≤ 1
N .

So from the union bound,

Pr
H
[∃x ̸= x′ ∈ dist({0, 1}k, n) :MT · (y − y′) = 0]

≤ 22kn Pr
H
[MT · (y − y′) = 0]

= 22kn
1

N
≤ 2log(N)/2

N
= negl(λ)

Pr[E] ≤ Pr[E|x, x′ ∈ dist({0, 1}k, n)] · Pr[dist({0, 1}k, n)]+
Pr[E|x, x′ /∈ dist({0, 1}k, n)] · Pr[x, x′ /∈ dist({0, 1}k, n)]

≤ Pr[E|x, x′ ∈ dist({0, 1}k, n)] + Pr[x, x′ /∈ dist({0, 1}k, n)]

≤ 2log(N)/2

N
+ (max

xi

Wxi
)n

where Wxi denotes probability of xi being sampled from the domain distribution. As long as maxxi Wxi is
negligible, the probability of the event E would be negligible and the statement of the lemma holds.

We will now prove that the generalized matrix problem is secure.

Theorem 6.6. Fix a security parameter λ, and let Hλ : {0, 1}k → ZN be a hash function from Construction

6.2. Let m,n be polynomials in λ, and let N be a prime such that k, n ≤
√
logN
2 . LetMλ be a distribution over

Zn×m
N and let Sλ be a distribution over Zm

N . Then, for all quantum adversaries A, the (M,S)-Generalized
Matrix (GM) Problem is hard in a quantum group action instantiated with Hλ.

Proof. From Lemma 6.1, it suffices to prove that the security game G is secure. Formally, we will prove the
following lemma:

Lemma 6.7. Fix a security parameter λ. For any Adversary A with oracle access to Hλ in G, , there exists
a negligible function negl such that

Pr[1← ExptA(1λ, 1)]− Pr[1← ExptA(1λ, 0)] ≤ negl(λ)

Proof. We introduce the following sequence of hybrids:
Hybrid 0: This is the same as ExptA(1λ, 1).
Hybrid 1: This is the same asHybrid 0 except the state in ExptA(1λ, 1) is measured on (

∑
g∈S1

xg, . . . ,
∑

g∈Sj
xg).

Claim 6.8. For any adversary A, there exists a negligible function λ such that∣∣∣Pr[A(H0) = 1]− Pr[A(H1) = 1]
∣∣∣ ≤ negl(λ)
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Proof. Let X be the distribution over the domain of the function H. Because X is uniform, maxxi Wxi =
1
2k
.

Then, ∣∣∣Pr[A(H0) = 1]− Pr[A(H1) = 1]
∣∣∣ ≤ negl(λ) ≤ 1

2nk
+

1√
N

This follows directly from Lemma 6.4.

Hybrid 2: This is the same as Hybrid 1 except the state

1

2kn/2

∑
x1,...xn

|x1⟩ |H(x1)⟩ . . . |xn⟩ |H(xn)⟩

is measured on (
∑

g∈S1
H(xg), . . . ,

∑
g∈Sj

H(xg)).

Claim 6.9. For any adversary A, there exists a negligible function λ such that∣∣∣Pr[A(Hybrid 2) = 1]− Pr[A(Hybrid 1) = 1]
∣∣∣ ≤ negl(λ)

Proof. Let x = x1, . . . xn, x
′ = x′1, . . . x

′
n, ρ =

∑
g∈S1

H(xg), . . . ,
∑

g∈Sj
H(xg), ρ

′ =
∑

g∈S1
H(x′g), . . . ,

∑
g∈Sj

H(x′g).

We prove that, for ∀i ∈ [j], ρi, with high probability over H, ρi is injective on (x1, . . . , x|Si|) up to reordering.

Pr[∃(x′g)g∈Si
̸= (xg)g∈Si

: ρi = ρ′i] ≤ 22ki · Pr

∑
g∈Si

H(x′g)−
∑
g∈Si

H(xg) = 0


=

22ki

N
≤ 22nk

N
=

2logN/2

N
=

1√
N

From the union bound,

Pr[∃x ̸= x′ : ρ = ρ′] ≤ j Pr[∃x′1, . . . x′i ̸= x1, . . . xi : ρi = ρ′i] ≤
n√
N

Thus, we have proven that, for any QPT adversary A, G is secure. Now Theorem 6.6 follows directly
from Lemma 6.1.

6.2 GMP with Lossy H

Note that Construction 6.2 is not orthogonal. In this section, we show how to use lossy functions to obtain an
orthogonal quantum state group action for which the GMP assumption holds with computational security.

Before we state the construction of {Hλ}λ, we will formally define lossy functions.

Definition 6.10 (Lossy Functions). A r lossy function is a keyed family of hash functions with two ways to
sample the key q ← InjSamp(1λ) and q ← LossySamp(1λ). Each key q defines hash function fq : {0, 1}k →
{0, 1}ℓ, and has the following properties:

1. With overwhelming probability over q ← InjSamp(1λ), fq is injective, meaning that |{y : ∃x s.t. f(x) =
y}| = 2k.

2. With overwhelming probability over q ← LossySamp(1λ), fk is r lossy, meaning that |{y : ∃x s.t. f(x) =
y}| ≤ 2k−r.
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3. For any QPT adversary {Aλ}λ,∣∣∣ Pr
q←InjSamp(1λ)

[Aλ(q)→ 1]− Pr
q←LossySamp(1λ)

[Aλ(q)→ 1]
∣∣∣ ≤ negl(λ)

Such lossy functions can be constructed from LWE [PW08], and we can take k−r to be a fixed polynomial
in λ [WZ24]. We will prove the generalized matrix assumption in the case when H has the following
construction:

Construction 6.11. Let k, n, r be polynomials in λ. Let N be a prime such that k ≥ 8 logN , and 2n(k−r) ≤
logN

4 . Hλ : {0, 1}k → ZN = h ◦ fq where h : {0, 1}ℓ → ZN is a 2n wise independent hash function and
q ← InjSamp(1λ).

Lemma 6.12. The family of functions {Hλ}λ in Construction 6.11 yields an orthogonal group action.

Proof. We will first prove that, with overwhelming probability over the choice of fq, the function H = h ◦ fq
in Construction 6.11 is 2n wise independent. For any 2n distinct elements x1, x2, . . . x2n ∈ {0, 1}k, with
overwhelming probability over fq, we have that:

Pr
H
[H(x1) = y1 ∧ · · · ∧H(x2n) = y2n]

= Pr
h,fq

[h(fq(x1)) = y1 ∧ · · · ∧ h(fq(x2n)) = y2n]

= Pr
h,z1 ̸=z2,...̸=z2n

[h(z1) = y1 ∧ · · · ∧ h(z2n) = y2n]

=
1

N2n

where the second equality follows because fq is an injective function with overwhelming probability.
Also observe that H∞(X ) = k ≥ 8 logN . Now the proof follows directly from Lemma 5.3.

Theorem 6.13. Fix a security parameter λ, and let Hλ : {0, 1}k → ZN be a hash function from Construction
6.11. Let m,n be polynomials in λ, and let N be a prime such that 2n(k−r) ≤ logN

4 . LetMλ be a distribution

over Zm×n
N and let Sλ be a distribution over Zm

N . Then, for all QPT adversaries A the (M,S)-Generalized
Matrix (GM) Problem is hard in a quantum group action instantiated with Hλ.

Proof. From Lemma 6.1, it suffices to prove that the security game G is secure. Formally, we will prove the
following lemma:

Lemma 6.14. Fix a security parameter λ. For any QPT Adversary A with oracle access to Hλ in G, ,
there exists a negligible function negl such that

Pr[1← ExptA(1λ, 1)]− Pr[1← ExptA(1λ, 0)] ≤ negl(λ)

Proof. We introduce the following sequence of hybrids:
Hybrid 0: This is the same as ExptA(1λ, 1).
Hybrid 1: Same as hybrid 0 except q ← LossySamp(1λ), and Hλ = h ◦ fq.

Claim 6.15. For any QPT adversary A, there exists a negligible function λ such that∣∣∣Pr[A(H0) = 1]− Pr[A(H1) = 1]
∣∣∣ ≤ negl(λ)
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Proof. This follows directly because for any QPT adversary Aλ,∣∣∣ Pr
q←InjSamp(1λ)

[Aλ(q)→ 1]− Pr
q←LossySamp(1λ)

[Aλ(q)→ 1]
∣∣∣ ≤ negl(λ)

Hybrid 2: Same as hybrid 1 except the state 1
2kn/2

∑
x1,...xn

|x1⟩ |H(x1)⟩ . . . |xn⟩ |H(xn)⟩ is measured on
(
∑

k∈S1
f(xk), . . . ,

∑
k∈Sj

f(xk)).

Claim 6.16. For any QPT adversary A, there exists a negligible function λ such that∣∣∣Pr[A(H2) = 1]− Pr[A(H1) = 1]
∣∣∣ ≤ negl(λ)

Proof. First, some notation: we denote∑
i∈S1

fq(xi),
∑
i∈S2

fq(xi), · · ·
∑
i∈Sj

xi


by x, ∑

i∈S1

fq(x
′
i),
∑
i∈S2

fq(x
′
i), · · ·

∑
i∈Sj

fq(x
′
i)


by x′, ∑

i∈S1

h(f(xi)),
∑
i∈S2

h(f(xi)), · · ·
∑
i∈Sj

h(f(xi))


by y, and ∑

i∈S1

h(f(x′i)),
∑
i∈S2

h(f(x′i)), · · ·
∑
i∈Sj

h(f(x′i))


by y′. We let Hλ be H. Following the proof of Lemma 6.4, we have that, ∀x ̸= x′ : Prh[M

T (y−y′) = 0] = 1
N .

So from the union bound,

Pr
H
[∃x ̸= x′ ∈ dist({0, 1}k−r, n) :MT · (y − y′) = 0]

≤ 22n(k−r) Pr
H
[MT · (y − y′) = 0]

= 22n(k−r)
1

N

≤ 2log(N)/2

N

≤ 1√
N

Pr[E] ≤ Pr[E|x, x′ ∈ dist({0, 1}k−r, n})] · Pr[dist({0, 1}k−r, n})]+
Pr[E|x, x′ /∈ dist({0, 1}k−r, n})] · Pr[x, x′ /∈ dist({0, 1}k−r, n})]
≤ Pr[E|x, x′ ∈ dist({0, 1}k−r, n})] + Pr[x, x′ /∈ dist({0, 1}k−r, n})]

≤ 1√
N

+ (max
xi

Wxi)
n
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where Wxi denotes probability of xi being sampled from the domain distribution. Now, observe that, with
overwhelming probability over the choice of q, ∀s ∈ Im(fq), Prx[fq(x) = s] must be negl(λ), because
otherwise there is a trivial distinguisher between q ← LossySamp(1λ) and q ← InjSamp(1λ) (Given q ←
LossySamp ∪ InjSamp, the distinguisher can simply evaluate fq on randomly chosen points, output lossy if
it sees repeated outputs, and injective otherwise). This implies that, the weight of every input point h is
evaluated on is still negl(λ).

Hybrid 3: Same as hybrid 2 except the state
∑

x1,...xn
|x1⟩ |H(x1)⟩ . . . |xn⟩ |H(xn)⟩ is measured on (

∑
g∈S1

h(f(xg)), . . . ,
∑

g∈Sj
h(f(xg))).

Claim 6.17. For any QPT adversary A, there exists a negligible function λ such that, with overwhelming
probability over Hλ, ∣∣∣Pr[A(H2) = 1]− Pr[A(H3) = 1]

∣∣∣ ≤ negl(λ)

Proof. Let z = z1, . . . zn, z
′ = z′1, . . . z

′
n, ρ =

∑
g∈S1

h(zg), . . . ,
∑

g∈Sj
h(zg), ρ

′ =
∑

g∈S1
h(z′g), . . . ,

∑
g∈Sj

h(z′g).

We will prove that, for i ∈ [j], h(f(x1)) + . . . h(f(x|Si|)) is injective on (f(x1), . . . , f(x|Si|)) upto reordering.
For ease of notation, let |Si| = i and let zi = f(xi).

Pr[∃z′1, . . . z′i ̸= z1, . . . zi ∈ Im(f) : h(z′1) + · · ·+ h(z′i) = h(z1) + · · ·+ h(zi)]

≤ 22(k−r)i · Pr[
i∑

g=1

h(z′g)−
i∑

g=1

h(zg) = 0]

=
22(k−r)i

N

≤ 22n(k−r)

N
≤ negl(λ)

where the last inequality follows because 2n(k − r) ≤ 1
4 logN . From the union bound,

Pr[∃(z ̸= z′ : ρ = ρ′) (5)

≤ j22n(k−r)

N
(6)

≤ n22n(k−r)

N
(7)

≤ negl(λ) (8)

Hybrid 4: Same as hybrid 3 except except q ← InjSamp(1λ), and Hλ = h ◦ fq.

Claim 6.18. For any QPT adversary A, there exists a negligible function λ such that∣∣∣Pr[A(H3) = 1]− Pr[A(H4) = 1]
∣∣∣ ≤ negl(λ)

Proof. This follows directly because for any QPT adversary Aλ,∣∣∣ Pr
q←InjSamp(1λ)

[Aλ(q)→ 1]− Pr
q←LossySamp(1λ)

[Aλ(q)→ 1]
∣∣∣ ≤ negl(λ)
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Thus, we have proven that, for any QPT adversary A, G is secure. Theorem 6.13 follows directly from
Lemma 6.1.

6.3 GMP in the Random Oracle Model

In this section, we show that the GMP assumption holds for a compressing random oracle, unconditionally
with query-bounded security. This construction is also orthogonal. First, some notation: Given 2 sets X
and Y, define YX as the set of functions f : X → Y. Given a distribution D on the set Y, and another set
X , define DX as the distribution on YX where the output for each distribution is chosen according to D.
The distance between 2 distributions D1 and D2 over a set T is∣∣∣D1 −D2

∣∣∣ =∑
t∈T

∣∣∣D1(t)−D2(t)
∣∣∣

If
∣∣∣D1 −D2

∣∣∣ ≤ ϵ, then we say D1 and D2 are ϵ close.

Let SRDr = g ◦ f , where f is a random function from X to [r], and g is another random function from [r] to
Y such that r << Y.
Now, we will recall the following result from [Zha12]:

Lemma 6.19. The output distributions of a quantum algorithm making q quantum queries to an oracle

either drawn from SRDr or DX are ℓ(q)/r-close in total variation distance, where ℓ(q) = π2(2q)3

3 < 27q3.

With this lemma in hand, we are ready to prove that the generalized matrix problem is hard in the
random oracle model.

Lemma 6.20. The quantum group action in Construction 5.1 instantiated with the random oracle Hλ :
{0, 1}k → ZN(λ) yields an orthogonal group action.

Proof. Since Pr[H(x) = y] = 1
N when H is modelled as a random oracle, we can conclude that the group

action instantiated with H is orthogonal directly from Lemma 5.2.

Theorem 6.21. Fix a security parameter λ, and let Hλ : {0, 1}k → ZN(λ)
2 be the random oracle . Let m,n

be polynomials in λ, and let N be a prime such that n ≤
√
logN
4 . Let Mλ be a distribution over Zn×m

N and
let Sλ be a distribution over Zm

N . Then, for all QPT adversaries A the (M,S)-Generalized Matrix (GM)
Problem is hard in a quantum group action in the random oracle model.

Proof. From Lemma 6.1, it suffices to prove that the security game G is secure. Formally, we will prove the
following lemma:

Lemma 6.22. Fix a security parameter λ. For any QPT Adversary A with oracle access to the random
oracle H in G, there exists a negligible function negl such that

Pr[1← ExptA(1λ, 1)]− Pr[1← ExptA(1λ, 0)] ≤ negl(λ)

Proof. We will introduce the following sequence of hybrids:
Hybrid 0: This is the same as ExptA(1λ, 1).
Hybrid 1: This is the same as Hybrid 0 except the function Hλ : {0, 1}k → ZN is replaced with f ◦ g,
where g is a random function from {0, 1}k to [r], f is a random function from [r] to ZN , and r2n ≤

√
N
4 .

2From now on, we will use N for N(λ), and H for H(λ)
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Claim 6.23. For any QPT adversary A making q queries to the oracle, there exists a negligible function λ
such that, ∣∣∣Pr[A(H0) = 1]− Pr[A(H1) = 1]

∣∣∣ ≤ π2(2q)3

3r
=

4π2(2q)3

3N1/4n
=

4π2(2q)3

3 · 24n

Proof. This directly follows from Lemma 6.19.

Hybrid 2: This is the same as Hybrid 1 except the state is measured on
(
∑

k∈S1
f(xk), . . . ,

∑
k∈Sj

f(xk)).

Claim 6.24. For any QPT adversary A, there exists a negligible function λ such that∣∣∣Pr[A(H1) = 1]− Pr[A(H2) = 1]
∣∣∣ ≤ negl(λ)

Proof. First, some notation: we denote∑
i∈S1

f(xi),
∑
i∈S2

f(xi), · · ·
∑
i∈Sj

f(xi)


by x, ∑

i∈S1

f(x′i),
∑
i∈S2

f(x′i), · · ·
∑
i∈Sj

f(x′i)


by x′, ∑

i∈S1

g(f(xi)),
∑
i∈S2

g(f(xi)), · · ·
∑
i∈Sj

g(f(xi))


by y, and ∑

i∈S1

g(f(x′i)),
∑
i∈S2

g(f(x′i)), · · ·
∑
i∈Sj

g(f(x′i))


by y′. Following the proof of Lemma 6.4, we have that, ∀x ̸= x′ : Prh[M

T (y − y′) = 0] = 1
Nm . So from the

union bound,

Pr
H
[∃x ̸= x′ ∈ dist([r], n) :MT · (y − y′) = 0]

≤ r2n Pr
H
[MT · (y − y′) = 0]

= r2n
1

N

≤ 1

4
√
N

Pr[E] ≤ Pr[E|x, x′ ∈ dist([r], n})] · Pr[dist([r], n})]+
Pr[E|x, x′ /∈ dist([r], n})] · Pr[x, x′ /∈ dist([r], n})]
≤ Pr[E|x, x′ ∈ dist([r], n})] + Pr[x, x′ /∈ dist([r], n})]

≤ 1

4
√
N

+ (max
xi

Wxi)
n

where Wxi
denotes probability of xi being sampled from the domain distribution. Since Wxi

= 1
r = 4

N1/4n ≤
4

24n for all xi ∈ [r], the final quantity is negl(λ).
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Hybrid 3: This is the same as Hybrid 2 except the state is measured on
(
∑

k∈S1
H(xk), . . . ,

∑
k∈Sj

H(xk)).

Claim 6.25. For any adversary A, there exists a negligible function λ such that∣∣∣Pr[A(H2) = 1]− Pr[A(H3) = 1]
∣∣∣ ≤ negl(λ)

Proof. Let x = x1, . . . xn, x
′ = x′1, . . . x

′
n,

ρ =
( ∑

g∈S1

H(xg), . . . ,
∑
g∈Sj

H(xg)
)
,

ρ′ =
( ∑

g∈S1

H(x′g), . . . ,
∑
g∈Sj

H(x′g)
)
,

We will prove that with high probability over the choice of H, ∀i ∈ [j], ρi is injective on (x1, . . . , x|Si|) upto
reordering. For ease of notation, let |Si| = i.

Pr
H
[∃x′1, . . . x′i ̸= x1, . . . xi : ρi = ρ′i]

= Pr
f,g

[∃x′1, . . . x′i ̸= x1, . . . xi :

i∑
u=1

f(g(x′i)) =

i∑
u=1

f(g(xi))]

= Pr
f
[∃z′1, . . . z′i ̸= z1, . . . zi :

i∑
u=1

f(zi) =

i∑
u=1

f(z′i)]

≤ ri · Pr[
i∑

k=1

f(z′k)−
i∑

k=1

f(zk) = 0]

≤ rn · Pr[
i∑

k=1

f(z′k)−
i∑

k=1

f(zk) = 0]

=
rn

N

From the union bound,

Pr[∃x ̸= x′ : ρ = ρ′] (9)

≤ jr2n

N
≤ nr2n

N
= negl(λ) (10)

where the last equality follows because r2n =
√
N
4 .

Hybrid 4: This is the same as Hybrid 3 except the function f ◦ g is replaced by H : X → Y, which is
the random oracle.

Claim 6.26. For any QPT adversary A making q queries to the oracle, there exists a negligible function λ
such that, ∣∣∣Pr[A(H4) = 1]− Pr[A(H3) = 1]

∣∣∣ ≤ π2(2q)3

3r
=

4π2(2q)3

3N1/4n
=

4π2(2q)3

3 · 24n

Proof. This directly follows from Lemma 6.19.
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7 Structured GMP

In this section, we will present and prove security of a more structured version of the Generalized Matrix
Problem.

Theorem 7.1. Fix a security parameter λ. Let k, n be polynomials in λ, and let N be a prime such that
n ≤ (logN)1/4. Let (G,X , ∗) be a hash based quantum-state group action instantiated with the Hλ. Let
(Mλ) be a distribution over matrices M ∈ Zn×m

N and let (Sλ) be a distribution over vectors s ∈ {0, 1}m such
that for all ϵ ∈ [0, 1] at least 1−

√
ϵ fraction of matrices M satisfy the following:

For all x1, . . . xn, x
′
1, . . . x

′
n such that (Hλ(x1)−Hλ(x

′
1), . . . Hλ(xn)−Hλ(x

′
n)) ̸= 0,

1

2
(
∑
z∈ZN

∣∣∣Pr
s
[(Hλ(x1)−Hλ(x

′
1), . . . Hλ(xn)−Hλ(x

′
n)) ·M · s = z]− 1

N

∣∣∣) ≤ √ϵ
Then, with probability at least 1−

√
ϵ− 1

2kn over the choice of M,H, the Generalized Matrix Problem is hard

in the hash based quantum group action instantiated with the the function H : {0, 1}k → ZN which is either
the random oracle, or is a function from Construction 6.2 or 6.11.

Proof. When b = 1, A receives {|ψ⟩
v
(1)
1
, |ψ⟩

v
(1)
2
, . . . , |ψ⟩

v
(1)
n
}, where v(1)i = (M · s)i. The density matrix

representing the corresponding mixed state is:∑
s

Pr[s](M · s)1 ∗ |ψ⟩0 ⟨ψ|0 ∗ (M · s)1 ⊗ · · · ⊗ (M · s)n ∗ |ψ⟩0 ⟨ψ|0 ∗ (M · s)n

=
1

2kn

∑
s,x1,x′

1,...xn,x′
n

Pr[s]ω
H(x1)−H(x′

1)·(M·s)1
N |x1⟩ ⟨x′1| ⊗ · · · ⊗ ω

H(xn)−H(x′
n)·(M·s)n

N |xn⟩ ⟨x′n|

=
1

2kn

∑
s,x1,x′

1,...xn,x′
n

Pr[s]ω
(H(x1)−H(x′

1),...H(xn)−H(x′
n))·(M·s)

N |x1⟩ ⟨x′1| ⊗ · · · ⊗ |xn⟩ ⟨x′n|

For simplicity of notation, let x = x1, . . . , xn, x
′ = x′1, . . . , x

′
n ,µx = (H(x1), . . . H(xn))·M, µx′ = (H(x′1), . . . H(x′n))·

M, µx−x′ = (H(x′1)−H(x1), . . . H(xn)−H(x′n)) ·M. Now recall that we have already shown that,∣∣∣∣ 1

2kn
Pr[AH(

∑
x,x′:µx=µx′

|x⟩ ⟨x′|) = 1]

− 1

2kn
Pr[AH(

∑
x,x′:

(H(x1),...H(xn))=
(H(x′

1),...H(x′
n))

|x⟩ ⟨x′|) = 1]

∣∣∣∣ ≤ negl(λ)

when H is the random oracle or a function from Construction 6.2. In the case when H is a function
from Construction 6.11, we have shown that 1

2kn

∑
x,x′:µx=µx′ |x⟩ ⟨x

′| and 1
2kn

∑
x,x′:

(H(x1),...H(xn))=
(H(x′

1),...H(x′
n))

|x⟩ ⟨x′| are

computationally indistinguishable.
So, if we show that ρ′ = 1

2kn

∑
x,x′:µx=µx′ |x⟩ ⟨x|

′
and
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ρ = 1
2kn

∑
s,x,x′ Pr[s]ω

(H(x1)−H(x′
1),...,H(xn)−H(x′

n))·(M ·s)
N |x⟩ ⟨x′| are close in trace distance, we would be done.

ρ =
1

2kn

∑
s,x,x′

Pr[s]ω
⟨µx−x′ ,s⟩
N |x⟩ ⟨x′|

=
1

2kn

∑
s

Pr[s]
( ∑

x,x′:µx=µx′

ω
⟨µx−x′ ,s⟩
N |x⟩ ⟨x′|+

∑
x,x′:µx ̸=µx′

ω
⟨µx−x′ ,s⟩
N |x⟩ ⟨x′|

)
=

1

2kn

∑
s

Pr[s]
( ∑

x,x′:µx=µx′

|x⟩ ⟨x′|+
∑

x,x′:µx ̸=µx′

ω
⟨µx−x′ ,s⟩
N |x⟩ ⟨x′|

)
=

1

2kn

∑
x,x′:µx=µx′

|x⟩ ⟨x′|+ 1

2kn

∑
x,x′:µx ̸=µx′

|x⟩ ⟨x′|
∑
s

Pr[s]ω
⟨µx−x′ ,s⟩
N

= ρ′ +
1

2kn

∑
x,x′:µx ̸=µx′

|x⟩ ⟨x′|
∑
s

Pr[s]ω
⟨µx−x′ ,s⟩
N

Now, let M be
√
ϵ ”good” if, for all x1, . . . xn, x

′
1, . . . x

′
n such that (H(x1)−H(x′1), . . . H(xn)−H(x′n)) ̸= 0

1

2
(
∑
z∈ZN

∣∣∣Pr
s
[(H(x1)−H(x′1), . . . H(xn)−H(x′n)) ·M · s = z]− 1

N

∣∣∣) ≤ √ϵ,
and let (ρ− ρ′)x,x′ = 1

2kn

∑
s Pr[s]ω

(H(x1)−H(x′
1),...H(xn)−H(x′

n))·(M·s)
N .

Claim 7.2. For all
√
ϵ-good M, for all x, x′ such that (H(x1)−H(x′1), . . . H(xn)−H(x′n)) ̸= 0 : |(ρ−ρ′)x,x′ | ≤

2
√
ϵ

2nk

Proof. Fix a
√
ϵ-good M, and let x, x′ be such that (H(x1) − H(x′1), . . . ,H(xn) − H(x′n)) ̸= 0. Define

pz = Prs[⟨µx−x′ , s⟩ = z] and ϵz = pz − Pr[UN = z] = pz − 1/N . Recall that 1
2

∑
z∈[N ] |ϵz| ≤

√
ϵ.

Then ∣∣∣∣∣∑
s

Pr[s]ω
⟨s,µx−x∗ ⟩
N

∣∣∣∣∣ =
∣∣∣∣∣∑

z

pzω
z
N

∣∣∣∣∣ =
∣∣∣∣∣∑

z

1

N
ωz
N +

∑
z

ϵzω
z
N

∣∣∣∣∣ =
∣∣∣∣∣∑

z

ϵzω
z
N

∣∣∣∣∣
≤
∑
z

|ϵzωz
N | =

∑
z

|ϵz| ≤ 2
√
ϵ

Now recall that

ρ− ρ′ = 1

2kn

∑
x,x′:µx ̸=µx′

|x⟩ ⟨x′|
∑
s

Pr[s]ω
⟨µx−x∗ ,s⟩
N .

Thus |(ρ− ρ′)x,x′ | ≤ 2
√
ϵ

2kn .

Now we have that
||ρ− ρ′||td =

∑
λ: eigenvalues of ρ−ρ′

|λ|

Let σ be the vector of the singular values of ρ− ρ′, let M be a
√
ϵ good matrix, and let G denote the set of

all x, x′ such that
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(H(x1)−H(x′1), . . . ,H(xn)−H(x′n)) ̸= 0.

||ρ− ρ′||td = ||σ||1 ≤ 2nk/2||σ||2 ≤ 2nk/2||ρ− ρ′||F

≤ 2nk/2 ·
√∑

x̸=x′

|(ρ− ρ′)2x,x′ |

= 2nk/2 ·
(√ ∑

x ̸=x′∈G

|(ρ− ρ′)x,x′ |2 +
∑

x ̸=x′ /∈G

|(ρ− ρ′)x,x′ |2
)

≤ 2nk/2 ·
√
|G| 4ϵ

22kn
+ (22kn − |G|) 1

22kn

=
1

2nk/2

√
|G|4ϵ+ (22kn − |G|)

=
1

2nk/2

√
|G|(4ϵ− 1) + 22kn

Now, since H is 2n wise independent,

Pr[(H(x1)−H(x′1), . . . ,H(xn)−H(x′n)) = 0⃗] =

n∏
i=1

Pr[H(xi)−H(x′i) = 0]

=
1

Nn

By Markov’s inequality,

Pr[|x, x′ : (H(x1)−H(x′1), . . . H(xn)−H(x′n)) = 0⃗| ≥ 22kn · ϵ′]

≤ 22kn

Nn
· 1

22kn · ϵ′
≤ 1

24kn
· 1
ϵ′

Let ϵ′ = 1
22kn . Then, with probability at least 1− 1

26kn ,

||ρ− ρ′||td =
1

2nk/2

√
|G| · (4ϵ) + 22kn − |G|

=
1

2nk/2

√
22kn · 4ϵ = 2nk/2

√
ϵ

2

Remark 7.3. Observe that, in the case when H is a function from construction 6.11, since fq is injective, the
density matrix 1

2k

∑
x ω

H(x)·g |x⟩ ⟨x|, where g ∈ ZN , can be rewritten as 1
2k

∑
x ω

h(fq(x))·g |x⟩ ⟨x|. Switching

to q ← Lossysamp, this density matrix looks indistinguishable from 1
2k

∑
x ω

h(u)·g |x⟩ ⟨x|, where u = fq(x).
We can rewrite this matrix as

1

[Im(fq)]

∑
u∈[Im(fq)]

ωh(u)·g
∑

x:fq(x)=u

|x⟩ ⟨x|

Doing the same analysis on this density matrix, we can get a better bound on the trace distance of ρ − ρ′,
because the dimension of the density matrix now depends on |Im(fq)|, where q ← Lossysamp.

A similar analysis would work when switching from the random oracle to SRDr = g ◦ f .
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8 LHS Assumption

In this section, we show that the LHS assumption is a special case of the structured GMP assumption, and
also prove that it is hard in the quantum group action model, for a limited number of samples.

Theorem 8.1. Let k, n be polynomials in λ, and let N be a prime such that n ≤ (logN)1/4, and let ϵ ∈ (0, 1].
Let (G,X , ∗) be a hash based quantum-state group action. Let M = (Mλ)λ be a uniform distribution over
matrices M ∈ Zn×m

N , and let S = (Sλ)λ be a distribution over {0, 1}m such that H∞(S) = logN − 2 log ϵ.
Then, for all QPT adversaries AH, with probability at least 1 −

√
ϵ − 1

2kn over the choice of M,H, the
Generalized Matrix Problem is hard in the hash based quantum group action instantiated with the the function
H : {0, 1}k → ZN which is either the random oracle, or is a function from Construction 6.2 or 6.11.

Proof. From theorem 7.1, it suffices to prove the following:

Lemma 8.2. At least 1−
√
ϵ fraction of matrices M ∈ EqPatM(Zn×m

N ) satisfy the following:
For all x1, . . . xn, x

′
1, . . . x

′
n such that (H(x1)−H(x′1), . . . H(xn)−H(x′n)) ̸= 0,

1

2
(
∑
z∈ZN

∣∣∣Pr
s
[(H(x1)−H(x′1), . . . H(xn)−H(x′n)) ·M · s = z]− 1

N

∣∣∣) ≤ √ϵ
Proof. Recall that, for each of the constructions (Construction 6.2, Construction 6.11, R.O) of H, for fixed
x1, . . . xn, x

′
1, . . . x

′
n:

Pr
H
[(H(x1)−H(x′1), H(x2)−H(x′2), . . . H(xn)−H(xn)

′ = y1, . . . yn] =
1

Nn
.

This follows because H is 2n wise independent in each of the constructions. Now, for a randomly chosen M,
and for all x, x′ such that (H(x1)−H(x′1), . . . ,H(xn)−H(x′n)) ̸= 0, (H(x1)−H(x′1), . . . H(xn)−H(x′n)) ·M
is a uniformly random vector. From now on, we will denote (H(x1) −H(x′1), . . . H(xn) −H(x′n)) by zx,x′ .
Fix x, x′ such that zx,x′ ̸= 0, and let h∗M(s) = ⟨zx,x′ ·M, s⟩. Let H∗ denote the family of such hash functions.
Then from the leftover hash lemma, we can conclude that

dTV((H
∗(S),H∗), (UN ,H∗)) ≤ ϵ

where ϵ is such that 2 log( 1ϵ ) ≤ H∞(S) − logN = q − logN . This implies that ϵ =
√
N

2q/2
. Rewriting the

expression from the leftover hash lemma, we have the guarantee that

EH∗∼H∗ [∆(h∗(S),UN )] = EM∼M[∆(h∗M(S), UN )]

≤
√
N

2q/2

Now, let M be
√
ϵ ”good” if, for all x1, . . . xn, x

′
1, . . . x

′
n such that zx,x′ ̸= 0

1

2
(
∑
u∈ZN

∣∣∣Pr
s
[zx,x′ ·M · s = u]− 1

N

∣∣∣) ≤ √ϵ.
Let (ρ− ρ′)x,x′ = 1

2kn

∑
s Pr[s]ω

zx,x′ ·(M·s)
N .

Now, we are ready to prove that at least 1−
√
ϵ fraction of matrices M are

√
ϵ good. Let H∗ be the random
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variable distributed uniformly over the support of H∗. Since dTV((H
∗(S),H∗), (UN ,H∗)) ≤ ϵ,

1

2

∑
u∈ZN ,h∗

M

∣∣∣Pr[H∗(S) = u,H∗ = h∗M]− Pr[UN = u, U|H∗| = h∗M]
∣∣∣

=
1

2

∑
u∈ZN ,h∗

M

∣∣∣Pr[H∗(S) = u|H∗ = h∗M] Pr[H∗ = h∗M]− Pr[UN = u] · Pr[U|H∗| = h∗M]
∣∣∣

=
1

2

∑
h∗
M,u

Pr[H∗ = h∗M]
∣∣∣Pr[H∗(S) = u|H∗ = h∗M]− Pr[UN = u]

∣∣∣
=

1

2

∑
h∗
M,u

Pr[H∗ = h∗M]
∣∣∣Pr[h∗M(S) = u]− Pr[UN = u]

∣∣∣
If less than 1−

√
ϵ fraction of functions h∗M are such that

∣∣∣Pr[h∗M(S) = u]−Pr[UN = u]
∣∣∣ ≤ √ϵ, then at least

√
ϵ fraction of functions h∗M are such that

∣∣∣Pr[h∗M(S) = z] − Pr[UN = u]
∣∣∣ > √ϵ, and so

∑
h∗
M,u Pr[H

∗ =

h∗M]
∣∣∣Pr[H∗(S) = u]− Pr[UN = u]

∣∣∣ > ϵ, which is a contradiction.

Now, the proof goes through essentially unchanged from Theorem 7.1.

9 Quantum Money Scheme

Quantum money utilizes the un-clonability of quantum states to protect against couonterfeiting. An impor-
tant feature of quantum money is public verifiability, whereby anyone can verify banknotes, while only the
mint can create them.

Here, we discuss two constructions of quantum money, that of [Zha19] and that of [Zha24]. At first glance
these constructions look completely different. Ultimately, however, we will explain how quantum state group
actions allows us to connect the two.

9.1 Defining Quantum Money and Quantum Lightning

This section is taken almost verbatim from [Zha24]. Here we define quantum money and quantum lightning.
In the case of quantum money, we focus on mini-schemes [AC12], which are essentially the setting where
there is only ever a single valid banknote produced by the mint. As shown in [AC12], such mini-schemes can
be upgraded generically to full quantum money schemes using digital signatures.

Syntax. Both quantum money mini-schemes and quantum lightning share the same syntax:

• Gen(1λ) is a quantum polynomial-time (QPT) algorithm that takes as input the security parameter
(written in unary) which samples a classical serial number σ and quantum banknote $.

• Ver(σ, $) takes as input the serial number and a supposed banknote, and either accepts or rejects,
denoted by 1 and 0 respectively.

Correctness. Both quantum money mini-schemes and quantum lightning have the same correctness re-
quirement, namely that valid banknotes produced by Gen are accepted by Ver. Concretely, there exists a
negligible function negl(λ) such that

Pr[Ver(σ, $) = 1 : (σ, $)← Gen(1λ)] ≥ 1− negl(λ) .
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Security. We now discuss the security requirements, which differ between quantum money and quantum
lightning.

Definition 9.1. Consider a QPT adversary A, which takes as input a serial number σ and banknote $,
and outputs two potentially entangled states $1, $2, which it tries to pass off as two banknnotes. (Gen,Ver)
is a secure quantum money mini-scheme if, for all such A, there exists a negligible negl(λ) such that the
following holds:

Pr
[
Ver(σ, $1) = Ver(σ, $2) = 1 : (σ,$)←Gen(1λ)

($1,$2)←A(σ,$)

]
≤ negl(λ) .

Definition 9.2. Consider a QPT adversary B, which takes as input the security parameter λ, and outputs
a serial number σ and two potentially entangled states $1, $2, which it tries to pass off as two banknnotes.
(Gen,Ver) is a secure quantum lightning scheme if, for all such B, there exists a negligible negl(λ) such that
the following holds:

Pr
[
Ver(σ, $1) = Ver(σ, $2) = 1 : (σ, $1, $2)← B(1λ)

]
≤ negl(λ) .

Quantum lightning trivially implies quantum money: any quantum money adversary A can be converted
into a quantum lightning adversary B by having B run both Gen and A. But quantum lightning is potentially
stronger, as it means that even if the serial number is chosen adversarially, it remains hard to devise two
valid banknotes. This in particular means there is some security against the mint, which yields a number of
additional applications, as discussed by [Zha19].

9.2 Quantum Money from Non-collapsing Hashes

Here, we briefly recall a result of [Zha19], that a certain type of hash function implies quantum money.
For a quantum state |ϕ⟩, let r ← |ϕ⟩ denote the probabilistic process of measuring |ϕ⟩ in the computational

basis. For a classical function H, let (h, |τh⟩)
H← |ϕ⟩ denote the process of mapping |ϕ⟩ =

∑
r αr⟩ to∑

r αr|r,H(r)⟩, measuring H(r) to get h, and then outputting the state |ϕh⟩ that is the state remaining
after measurement, conditioned on the measurement outcome being h.

Definition 9.3. A family H = (Hλ)λ of hash functions is non-collapsing if there exists an efficiently
constructible family of states (|ϕλ)λ with support on Rλ, and a QPT algorithm Test, and negligible function
negl(λ) such that:

• Pr[Test(|r⟩) = 0 : r ← |ϕλ⟩] ≥ 1− negl(λ)

• Pr[Test(|τh⟩) = 1 : (y, |τh⟩)
Hλ← |ϕλ⟩] ≥ 1− negl(λ)

In other words, a non-collapsing hash function allows for distinguishing whether a state is fully measured,
or if only the the output of H is measured; in the latter case, the state is a superposition of many pre-images,
but looks as though it is just a single classical value.

Construction 9.4 ([Zha19]). Let H = (Hλ) be a family of hash functions that are assumed to be non-
collapsing. Consider the following quantum money scheme (Gen,Ver):

• Gen(1λ): sample (h, |τh⟩)
Hλ← |ϕλ⟩. Set σ = h and $ = |τh⟩.

• Ver(σ = h, $): Run (h′, |τ ′h′⟩) Hλ← $. If h′ ̸= h, immediately abort and output 0. Otherwise, assuming
h′ = h, run b← Test(|τ ′h′), and output b.

In [Zha19], it is shown that a collision-resistant non-collapsing H leads to Construction 9.4 being a secure
quantum lightning scheme. More generally, even if the Test algorithm for non-collapsing only has an inverse-
polynomial distinguishing probability, then Construction 9.4 can be adapted int oa secure quantum lightning
scheme.
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9.3 Quantum Money from Abelian Group Actions

Here, we now recall a more recent quantum money scheme due to [Zha24] using group actions. The scheme
is initially described using classical group actions.

Construction 9.5 ([Zha19]). Let ( (Gλ,Xλ, ∗λ) )λ. We will assume for simplicity that Gλ is a cyclic group
ZN(λ). We will also drop the subscript λ from ∗ to de-clutter the notation. Finally, we will assume the ability
to recognize elements in Xλ, distinguishing them from arbitrary strings.

• Gen(1λ): Initialize quantum registers S (for serial number) and M (for money) to states |0⟩S and
|0⟩M, respectively. Then do the following:

– Apply QFTN(λ) to S, yielding the joint state 1√
N(λ)

∑
g∈ZN(λ)

|g⟩S |0⟩M.

– Apply in superposition the map |g⟩S |y⟩M 7→ |g⟩S |y ⊕ (g ∗ xλ)⟩M. The joint state of the system
S ⊗M is then 1√

N(λ)

∑
g∈ZN(λ)

|g⟩S |g ∗ xλ⟩M.

– Apply QFTN(λ) to S again, yielding 1
N(λ)

∑
g,h∈ZN(λ)

ei2πgh/N(λ)|h⟩S |g ∗ xλ⟩M
– Measure S, giving the serial number σ := h. The M register then collapses to the banknote

$h := 1√
N(λ)

∑
g∈ZN(λ)

ei2πgh/N(λ)|g ∗ xλ⟩M. Output (h, $h).

• Ver(σ = h, $) : First verify that the support of $ is contained in Xλ, by applying the assumed algorithm
for recognizing Xλ in superposition. Then do the following:

– Initialize a new register H to 1√
N(λ)

∑
u∈ZN(λ)

|u⟩H

– Apply in superposition the map |u⟩H|y⟩M 7→ |u⟩H|(−u) ∗ y⟩M.

– Apply QFT−1N(λ) to H.

– Measure H, obtaining a group element h′. Accept if and only if h′ = h.

In [Zha24], it is shown that verification accepts exactly the state $h and all states orthogonal to $h are
rejected.

9.4 Generalization to Quantum State Group Actions

It is relatively straightforward to adapt Construction 9.5 to quantum state group actions. The result is that
the monst state $σ takes the form

$h =
1√
N(λ)

∑
g∈ZN(λ)

eiπgh/N(λ)|ψg∗xλ
⟩

Now consider implementing the quantum state group action with Construction 5.1, using a hash function
Hλ. One issue is that Construction 9.5 requires the ability to recognize set elements, but our Construction 5.1
does not give such an ability. We will return to this issue in a moment.

Recall that the elements |ψg∗xλ
⟩ in Construction 5.1 have the form

|ψg∗xλ
⟩ =

∑
r

αre
i2πgHλ(r)|r⟩

Above, |ϕλ⟩ =
∑

r αr|r⟩ is the starting state of the quantum state group action. Combining with our
expression for $h, we can sum over g, giving

$h =
√
N(λ)

∑
r:H(r)=h

αr|r⟩
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But these are exactly the states |τh⟩ used in the quantum money scheme from collapsing hashes in Construc-
tion 9.4.

Thus, we see that Gen in Construction 9.4 is equivalent to Gen in Construction 9.5 when instantiating
the group action using hashes as in Construction 5.1.

Now, recall that Ver in Construction 9.5 requires the ability to recognize set elements. Observe that
the states |τh⟩ are simply another basis for the span of set elements |ψg∗xλ

⟩. Thus, we see that H be-
ing non-collapsing corresponds exactly to the ability to recognize set elements. Thus, we see that Ver in
Construction 9.4 is also equivalent to Ver in Construction 9.5, using this view of Test as recognizing set
elements.

Thus, we see that the quantum money construction of [Zha19] (Construction 9.5) is simply an instance
of the construction of [Zha24] (Construction 9.5), when instantiated using our hash-based quantum state
group action from Construction 5.1.

10 Quantum State Group Actions and QKD

The original Diffie-Hellman protocol [DH76] solves the problem of key distribution: allowing Alice and Bob
to establish a secure key in the presence of an eavesdropper. It is assumed that Alice and Bob have a
classical authenticated channel at their disposal. It is classically known that such a channel cannot be
used to information-theoretically establish a shared key, and computational security and hence unproven
computational assumptions are required.

Quantum Key Distribution (QKD) [BB84] solves the same problem, but uses quantum communication in
addition to the classical authenticated channel. Now, it is possible to attain information-theoretic security,
which allows for unconditional security proofs.

Here, we give a toy protocol for key distribution from an abelian group action. If the group action is a
classical group action on which DDH holds, the resulting scheme is computationally secure. On the other
hand, if the group action is an information-theoretic quantum-state group action (such as our group action
from Section 5), then the resulting scheme is information-theoretically secure QKD. Thus, we can see how
(quantum state) group actions can also unify the concepts of classical key distribution and QKD.

Our construction is inspired by the group action version of the Diffie-Hellman protocol. One key challenge
is that if the group action is quantum, the shared key is now a quantum state, rather than a classical key. A
second challenge is that if the group action is quantum, sending the messages now requires an authenticated
quantum challenge. But as quantum authentication implies encryption, such a channel makes key distribution
unnecessary. So we need a mechanism to incorporate a classical authenticated channel even if the group
action is quantum.

We resolve both of these difficulties using standard techniques. The resulting protocol does not appear to
offer any advantages over classical or quantum key distribution protocols. But we include it as an interesting
conceptual contribution. We briefly give the intuition for security.

Construction 10.1. We assume a (possible classical) group action, with underlying states |ψg⟩ and group
G. The protocol works as follows.

1. Alice samples random group elements g1, · · · , gn, and constructs the states |ψg1⟩, · · · , |ψgn⟩, which she
sends to Bob.

2. Bob chooses a random subset S ⊆ [n] of size n/2, and sends S to Alice over the classical authenticated
channel.

3. Alice then sends (gi)i∈S to Bob over the classical authenticated channel.

4. For each i ∈ S, Bob computes |ψgi⟩ using gi and the group action. He then compares this to the |ψgi⟩
he received from Alice using the SWAP test. If any of the SWAP tests fail, Bob immediately aborts
and rejects.
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5. If Bob does not reject, he does the following for each i ∈ [n]\S. He samples a random hi and constructs
the state (|ψhi⟩)i∈S. He also samples a random bit bi. If bi = 0, Bob constructs |ψui⟩ where ui = gi+hi
by acting on Alice’s |ψgi⟩ using hi. If bi = 1, Bob constructs |ψui

⟩ for a random group element ui.

For each i ∈ [n] \ S, Bob sends |ψhi
⟩ and |ψui

⟩ to Alice. Bob outputs k = (bi)i∈[n]\S as his key.

6. For each i ∈ [n] \ S, Alice acts on |ψhi⟩ with gi to compute |ψu′
i
⟩ where u′i = gi + hi. Then Alice

performs the SWAP test between |ψu′
i
⟩ and |ψui⟩. If the SWAP test passes, she sets b′i = 0. If the

SWAP test fails, she sets b′i = 1.

Alice outputs k′ = (b′i)i∈[n]\S as her key.

At the end of the protocol Bob has a random key k, and Alice has a key k′. If the adversary did not
tamper with the un-authenticated communication, then k′ is 0 everywhere that k is 0, and k′ is a random
bit everywhere that k is 1. Thus k and k′ agree in roughly 3/4 of positions. Through standard information-
reconciliation techniques, Alice and Bob can securely establish a common shared key.

We now want to argue that Bob’s key k is unknown to an attacker that may eavesdrop on the classical
authenticated channel and arbitrarily tamper with the un-authenticated channel. First, notice that we do
not care about any tampering in Bob’s final message in Step 5: this will perturb Alice’s key k′ but will not
affect the adversary’s knowledge of k. If the adversary perturbs k′, this can be remedied through information
reconciliation.

If an adversary does not tamper Alice’s message in Step 1, then for each i ∈ [n] \ S, the adversary sees
|ψgi⟩, |ψhi

⟩, and |ψui
⟩ where ui = gi + hi or random, with bi indiciating which is the case. Thus, by the

DDH assumption, bi is hidden from the adversary. Note that in the case |ψgi⟩ is actually a quantum state,
technically the adversary will not even have |ψgi⟩ anymore since this was sent to Bob. But DDH still implies
security. In the case of quantum information, we can use quantum state group actions with information-
theoretic security for DDH (note that orthogonality is not needed for this protocol). In the case of classical
communication, we can use any classical group action with computational security for DDH.

If the adversary does tamper with Alice’s first message in Step 1, then she may have inserted her own
|ψg′

i
⟩ into a few of the positions, where the adversary knows g′i. In this case, assuming i /∈ S and Bob does

not reject during his check in Step 4, Alice will actually be able to decode the bit bi exactly as Alice would.
However, any such perturbation to Alice’s first message would cause a non-trivial probability that Alice
is caught in Bob’s check. A standard analysis shows that, conditioned on Bob’s check passing, Alice can
only learn a small fraction of the bi. Through standard privacy amplification techniques, Alice and Bob can
extract uniform keys hidden from the adversary.
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