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Abstract. We present two new arithmetization oriented hash functions based on
RPO [Ashur, kindi, Meier, Szepieniec, Threadbare; ePrint 2022/1577] and XHash-12
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1 Introduction
A Zero Knowledge Proof (ZKP) system is a common method in cryptography for a party
(i.e., the prover) to convince another party (i.e., the verifier) in the correctness of a certain
statement without revealing any secret information. One common application seen in recent
years is blockchain technology, in which proof systems are used to improve a blockchain’s
scalability. One type of ZKP commonly used in this context are ZK-STARKs, first
introduced in [BBHR18]. As a hardness assumption, ZK-STARKs employ cryptographic
hash function.

The efficiency of a ZK-protocol is directly related to the algebraic complexity of the
circuit it is implementing. Therefore, traditional hash functions such as SHA-2 and
SHA-3 are not suitable candidates to be implemented in ZKP due to their algebraic
complexity. Consequently, a new approach in symmetric-key cryptography is focused on
building hash functions that are efficient in this context; such hash functions are said to be
arithmetization oriented (AO). For this, the authors in [AAB+20] described the Marvellous
design strategy for building secure and efficient hash function for ZKP applications.
Later, different hash functions were built specifically for large prime fields; a few of
them are: Rescue-Prime [SAD20], RPO [AKM+22], Griffin [GHR+23], Anemoi [BBC+23],
Poseidon [GKR+21], and XHash [ABK+23].

Traditional STARKs [BSBHR18] require a cyclic group of smooth order in the field.
This allows efficient interpolation of points using the Fast Fourier Transform (FFT)
algorithm and writing constraints that involve neighboring rows. Elliptic Curve Fast
Fourier Transform (ECFFT) [BCKL21, BCKL22] introduced a way to make efficient
STARKs for any large finite field (e.g., Goldilocks prime p = 264 − 232 + 1), by using a
cyclic group of an EC.

However, small prime fields such as Mersenne prime M31 (p = 231 − 1) is preferable in
terms of efficiency both in arithmetic operations and field implementation. In [HLP24],
the authors provided a new STARK construction for the complex extension of the M31
over the circle curve x2 + y2 = 1, which is as efficient as traditional STARKs and ECFFT.
This calls for designing AO hash functions optimized for this field in a similar manner to
what was done for Goldilocks. We pick up this challenge and adapt RPO and XHash12 to
this setting, resulting in the hash functions RPO-M31 and XHash-M31, respectively.
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The rest of the paper is organized as follows. Section 2 is based on preliminary
information necessary for this work. The specifications and designs of both new hash
functions are explained in Section 3, and finally, Section 4 is about the security rationale.

2 Background and Preliminaries
This section is based on some basic definitions and specifications of both RPO and XHash12,
which play a crucial role for the sake of better understanding.

2.1 Notation

In this paper, we construct two hash functions optimized for circle STARKs. Circle
STARKs have been introduced in [HLP24] with respect to a Mersenne field of size 31,
i.e., Fp, where p = 231 − 1. Throughout the paper, we sometimes use field extensions. In
particular, for p = 231 − 1, we define the cubic extension field Fp3 similar to [ABK+23].

2.2 Finite field algebra

Let Fp be a prime finite field with p elements. An extension field is a quotient ring i.e.,
Fpn = Zp[x]/⟨f(x)⟩ where f(x) =

∑n
i=0 aix

i ∈ F [x] with ai ∈ Fp, n ≥ 1 is an n-degree
irreducible polynomial.

We say that α ∈ Fp is a primitive element (or a generator) of Fp when all elements in
the field can be written in the form (0, α, α2, . . . , αp−1). The order of any nonzero element
β ∈ Fp is the smallest positive integer k such that βk = 1. We denote the order of an
element by |β| = k.

2.3 Roots of Unity

We say that a complex number γ ∈ C is an nth root of unity if γn = 1. We denote by Un

the set of all nth roots of unity and use Euler’s formula to find it; i.e.,

Un = {e
2kπι

n |k ∈ {1, . . . , n}} .

In the sequel, we will use a generator αUn
∈ C of Un to construct an m × m MDS

matrix in Fp. To do so, we need to find the quadratic residue of different elements in Fp

corresponding to αUn .
Let x, y ∈ Fp, we say that y is a quadratic residue of x if and only if x2 = y. For the

convenience of readers, we give an example for the calculation of 16th root of unity and
quadratic residues in Subsection A.1.

2.4 The Marvellous Design Strategy

The Marvellous design strategy provides a framework to design secure and efficient hash
functions for advanced cryptographic protocols. Vision and Rescue are two families
introduced in [AAB+20]. Vision is specifically designed for binary fields, whereas Rescue
is specifically designed for large prime fields. Both families are sponge-based; take an
m-element input and iterate over N rounds to obtain the digest. Figure 1 depicts a single
round of Rescue. The interested reader is referred to [AAB+20] for a full description.
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Figure 1: One round of Rescue consists of two steps (B and F).

2.4.1 Rescue Prime Optimized (RPO)

RPO [AKM+22] is an instance of Rescue, optimized for the Goldilocks prime p = 264 −
232 + 1. It is a sponge function employing the RPO permutation. For a security level of
128-bit, the permutation is defined over a state of 12 field elements and consists of seven
rounds. Each round of RPO is further split into two steps, applying the x7 power map in
the even steps and the x

1
7 power map in the odd steps, together with a specially crafted

MDS matrix and round constants. Figure 2a depicts a single round of RPO. A complete
description of RPO can be found in [AKM+22].

2.4.2 XHash12

XHash12 [ABK+23] is a variant of Rescue where the RPO rounds are interleaved with
extension field operations. Similar to RPO, it is a sponge function, employing a permutation
of 12 field elements in the Goldilocks field. The permutation consists of six rounds, where
three are standard RPO rounds with minor modifications in the order of the internal
operations, and the other three rounds are power maps over a cubic extension field. After
six rounds, an additional step applies once more the MDS matrix and adds round constants.
Figure 2b depicts two consecutive rounds of XHash12, and the full description can be
found in [ABK+23].

(a) One round of RPO (b) Two consecutive rounds of XHash 12

Figure 2: Round function of RPO and XHash 12
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3 RPO-M31 and XHash-M31
In this work, we extend RPO and XHash12 to Circle STARKs [HLP24]. Circle STARKs
are built over the 31st Mersenne prime, i.e., 231 − 1. We refer to the new functions as
RPO-M31 and XHash-M31, respectively.

State (m). Whereas RPO and XHash both operate on a 12-element state, owing to the
smaller field, their M31 counterparts operate on a 24-element state. We utilize the sponge
construction and designate the top 16 elements as rate (r) and the remaining 8 elements
as capacity (c).

MDS. To find a corresponding MDS, we employ the methods suggested in [Hab24]. We
start by constructing a circulant MDS matrix with 32 elements. Then, we unroll this
matrix to its full 32 × 32 form and truncate the last eight columns and the last eight rows.
The complete procedure can be found in Subsection A.3, where we also provide a first row
of the circulant matrix.

S-box. For the S-boxes, we note that GCD(231 − 2, 5) = 1, allowing to define the two
S-boxes:

Ωβ : Fp → Fp

Ωβ(x) = x5 , (1)

and

Ω 1
β

: Fp → Fp

Ω 1
β

(x) = x
1
5 . (2)

For XHash-M31, we also recognize that GCD((231 − 1)3 − 1, 5) = 1 allowing to define an
S-box over a cubic extension field:

Ω3
β : Fp3 → Fp3

Ω3
β(X) = X5. (3)

Security level (s). In Section 4 we show that the two permutations are indistinguishable
from uniformly sampled ones up to at least 2128 primitive calls. Then, setting the state to
24 elements with c = 8, the generic security of the sponge becomes the bottleneck and the
hash function provides 8 · log2(231 − 1) = 124 bits of security.

Round Constants. Based on the methodology for RPO [ABK+23] constants, we employ
a deterministic way to produce round constants for both RPO-M31 and XHash-M31. First,
a string corresponding to the four parameters (p, m, c, N) in ASCII decimal format is
created. After formatting the string, it is passed into the SHAKE256 hash function, which
generates pseudo-random bytes worth (5 · 3 · N · m). The resultant byte stream is split
into 5-byte chunks, where the least significant byte appears first and each chunk is read
as a base-256 integer. Next, we reduce these integers modulo p. Finally, the reduced
integers make up the round constants. This method ensures that constants are generated
transparently and reliably, thereby avoiding arbitrary or hidden selections. The code for
generating the constants can be found in [ST24] and the round constant are given in
Subsection A.2.
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Number of Rounds (N). In [AAB+20, page 18], the authors explained how a safe
number of rounds for a Marvellous design should be selected. According to this, the
number of rounds should follow 2 · ⌈max(l0, l1, 5)⌉, where l0 is the maximal number of
rounds that can be attacked by any statistical and algebraic attacks except the Gröbner
basis (GB) attack, l1 is the maximal number of rounds that can be attacked by a GB
attack, and 5 is a sanity factor. The safety margin was later relaxed in [SAD20] to be
1.5 · ⌈max(l0, l1, 5)⌉, and, seeing that no attacks were suggested over a couple of years, the
number for RPO [AKM+22] was set to 7 i.e., 1.5 · ⌊max(l0, l1, 5)⌋).

Table 1 in [AAB+20, page 20] shows different formulas to calculate the secure number
of rounds against Differential Cryptanalysis (DC) and the interpolation attack. In addition,
for the GB attack, a formula is given on [AAB+20, page 30]. Consequently and in
line with [AKM+22, ABK+23] we decided on 7 rounds for RPO-M31 and 3 rounds for
XHash-M31.

Padding. Similar to [ABK+23] we use the padding scheme suggested in [AB24]; that is,
if the length of the last block is smaller than r = 16 field elements, a sufficient amount
of [0] elements are appended to complete it. In addition, the input space is partitioned
into 16 input domains: all messages whose last block is of length 16 are designated to the
0-domain; all messages whose last block is of length 15 are designated to the 1-domain,
etc. To enforce this domain separation, the 17th state element (i.e., the first element of
the inner part) is initialized to the domain identifier.

3.1 Specifications
We provide specifications for RPO-M31 and Xhash-M31 in Subsubsection 3.1.1 and Subsub-
section 3.1.2, respectively. The polynomial representation of Ω3

β is given in Subsection A.4.

3.1.1 RPO-M31

A round of RPO-M31 is defined in terms of two steps: a forward step (FM ) and a backward
step (BM ). Each step starts by multiplying the state by the MDS matrix, followed by the
addition of step constants, ending with applying Ωβ in the even steps and Ω 1

β
in the odd

steps. The round is depicted in Figure 3, and the procedure outlined in Section 3 will be
used to determine the round constants. After applying seven rounds (14 steps), i.e.,

(FM BM )(FM BM )(FM BM )(FM BM )(FM BM )(FM BM )(FM BM )

the state passes through the last step in which it is multiplied once more with the MDS
matrix, and an additional set of round constants is injected. The state is then truncated
to its topmost 16 elements, which are returned as the hash function’s digest.

Verification. In addition to the procedural description of RPO-M31 given above, we
provide a polynomial description. This is useful, e.g., for ZK verification. The state after
step i : 1 ≤ i ≤ r is denoted by Si, and its verification polynomial is:

(M · Si−1 + CFMi
)5 − M−1(S5

i − CBMi
) = 0 . (4)

Let Sr be the output after all rounds and SL be the output of the linear layer. The final
linear layer is verified by:

M · Sr + CLs − SL = 0 . (5)
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Figure 3: One round of RPO-M31 with a last step.

3.1.2 XHash-M31

A round in XHash-M31 is defined in terms of three steps: a forward step (FM ), a backward
step (BM ), and an extension field (P3M ) step. The (FM ) and the (BM ) steps start with
multiplying the state by the MDS matrix, followed by the addition of step constants,
ending with applying Ωβ in the (FM ) step and Ω 1

β
in the (BM ) step. The (P3M ) step

starts by adding the set of constants and then applying Ω3
β . The round function is depicted

in Figure 4 and the procedure outlined in Section 3 will be used to determine the round
constants. After applying three rounds (9 steps), i.e.,

(FM BM P3M )(FM BM P3M )(FM BM P3M )

the state is multiplied once with an MDS matrix and a set of round constants is injected.
The state is then truncated to its topmost 16 elements, which are returned as the hash
function’s digest.

Verification. A single round of XHash-M31 requires two types of polynomials. One type
is for the (FM BM ) steps and another for the (P3M ) step.

Let Si−1 be the round input and SBi
the state after the (BM ) step, then for 1 ≤ i ≤ r

the following polynomial verifies the (FM BM ) steps:

(M · Si−1 + CFMi
)5 − M−1(S5

Bi
− CBMi

) = 0 . (6)

The three polynomials given in Equation 8 verify the (P3M ) step, depending on the
position of the element in the state vector. The Modeling of the (P 3M ) step is described in
Subsection A.4. Let Si be the state at the end of round 1 ≤ i ≤ r and let SBi

+CP 3Mi
= νi.

For j ∈ {0, 3, 6, 9, 12, 15, 18, 22}, the Ω3
β S-box is described in the extension field as

ν5
i[j],[j+1],[j+2]

= (νi[j] + νi[j+1]X + νi[j+2]X
2)5 . (7)

Viewed in the base field, for 0 ≤ j ≤ 23, each coordinate in the extension field is described
as
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Figure 4: One round of XHash-M31 with a last step.



ν5
i[j]

− 60 · ν3
i[j]

· νi[j+1] · νi[j+2] − 20 · ν2
i[j]

· ν3
i[j+1]

+40 · ν2
i[j]

· ν3
i[j+2]

+ 120 · νi[j] · ν2
i[j+1]

· ν2
i[j+2]

+20 · ν4
i[j+1]

· νi[j+2] − 40 · νi[j+1] · ν4
i[j+2]

− Si[j] = 0 if j ≡ 0 (mod 3)

5 · ν4
i[j−1]

· νi[j] − 20 · ν3
i[j−1]

· ν2
i[j+1]

− 60 · ν2
i[j−1]

· ν2
i[j]

· νi[j+1]

−10 · νi[j−1] · ν4
i[j]

+ 40 · νi[j−1] · νi[j] · ν3
i[j+1]

+40 · ν3
i[j]

· ν2
i[j+1]

− 8 · ν5
i[j+1]

− Si[j] = 0 if j ≡ 1 (mod 3)

5 · ν4
i[j−2]

· νi[j] + 10 · ν3
i[j−2]

· ν2
i[j−1]

− 60 · ν2
i[j−2]

· νi[j−1] · ν2
i[j]

−60 · νi[j−2] · ν3
i[j−1]

· ν3
i[j]

+ 20 · νi[j−2] · ν4
i[j]

−2 · ν5
i[j−1]

+ 40 · ν2
i[j−1]

· ν3
i[j]

− Si[j] = 0 if j ≡ 2 (mod 3)

(8)

Let Sr be the output after all rounds and SL be the output of the linear layer. The final
linear layer is verified by:

M · Sr + CLs − SL = 0 . (9)

4 Security Rationale

We provide a security argument showing resistance against known attacks. We start in
Subsection 4.1 with resistance against algebraic attacks, followed by arguments for the
resistance against statistical attacks, in Subsection 4.2.
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4.1 Resistance to Algebraic Attacks
In this section, we argue the resistance of our new designs against algebraic attacks. We
investigate two properties of the polynomial modelling: (1) polynomial degree; and (2)
density. These two properties are known to be linked to the efficiency of algebraic attacks.
In Subsubsection 4.1.1 - Subsubsection 4.1.2 we show that RPO-M31 and XHash-M31,
have sufficiently high degrees and densities to thwart all known algebraic attacks against
symmetric-key primitives.

In Subsubsection 4.1.3 we give special treatment to resistance against GB attacks. We
show that the complexity of finding a GB is prohibitively high. This is done in two forms.
Following [AKM+22] we experiment with toy variants to show that the complexity of
finding a GB in degrevlex order is too high. In addition, following [BBL+24], we show
that finding a GB in a special weighted order is also infeasible (i.e., there are no free
lunches).

4.1.1 Polynomial Degree

We investigate two consecutive (FM )(BM ) steps. In the first step, each element of the
state is raised to the 5th power. Then, in the second step, an MDS matrix is applied to
the state. As a result, each input to the Ω 1

β
S-box is a linear combination of degree-5

monomials. Each such element is raised to the power x
1
5 = x

2p−1
5 = x1717986917, and since

it consists of a linear combination as shown in Equation 12, we expect that in general,
already after one round, the output would be a polynomial of maximal degree or close to
that.

(M · S0 + CF )5 = µ, (10)

(M · µ + CB) 1
5 = S1, (11)

(M · (M · S0 + CF )5 + CB)1717986917 = S1. (12)
Observing that both RPO-M31 and XHash-M31 start with such consecutive (FM )(BM )
steps, we conclude that their polynomial representation is of maximal degree.

4.1.2 Density

The density for RPO-M31 and XHash-M31 is calculated in two ways: (1) procedural-; and
(2) non-procedural modeling.

A procedural execution is one that executes operations sequentially, i.e., the output
state is obtained by passing the input state sequentially through all the components
that are involved in a round. Conversely, a non-procedural execution consists of a set of
constraints that all must be satisfied simultaneously.

The procedural case for (FM )(BM ) steps. It follows from Equation 10 that the
(FM ) step results in 98280 monomials in 24 variables due to the Multinomial Theorem.
Similarly, Equation 11 describes the output after the (BM ) step, and here, we have an
extremely large number of monomials again in 24 variables; i.e., applying the Multinomial
Theorem to the large exponent to find the number of multinomial coefficients results in(

n+m−1
m−1

)
=

(1717986917+24−1
24−1

)
=

(1717986940
23

)
monomials after each S-box.

Bringing these two observations together, we see in Equation 12 that following a pair
of (FM )(BM ) steps there are 24 polynomials, all in the same 24 variables, each consisting
of a finitely large number of monomials. This indicates that RPO-M31’s polynomials
are highly dense under procedural modeling. Similarly, the same holds for XHash-M31
except that in addition to this innate density, the (P3M ) step further mixes triplets of
polynomials in a non-linear way.
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The non-procedural case after (FM )(BM ) steps. In considering a non-procedural
model for RPO-M31, we use the folding outlined in Figure 3. A resulting polynomial
has the form depicted in Equation 13. It follows from Equation 10 that the M · S0 term
induces 98280 monomials in 24 variables, whereas the S1 term adds another variable to
each polynomial, or 24 variables in total. At this point, we have 24 polynomials, each
consisting of 98280 + 1 = 98281 monomials in 25 variables.

M · (M · S0 + CF )5 + CB = (S1)5 =⇒
M · (M · S0 + CF )5 + CB − (S1)5 = 0.

(13)

Concluding, we see that in the non-procedural case, RPO-M31’s polynomials are dense.
Again, we observe that in addition to the (FM )(BM ) steps that are common to both

algorithms, in XHash-M31, the (P3M ) step adds another layer of non-linear mixing. Let
S1 be the entire state following the (FM )(BM ) steps. The (P3M ) step splits the state
into triplet. Without loss of generality, let (ν0,1,2) be one of these triplets residing in
Fp3 . Then, the output of Ω3

β when applied to (ν0,1,2) is a polynomial with 21 monomials
in three variables. When viewed in the base field, each application of the S-box adds
three polynomials, each consisting of seven monomials in three variables. The (P3M )
step consists of 8 S-box applications, and therefore, it adds an overall of 8 × 3 × 7 = 168
monomials in 25 variables to the polynomial system. We provide a full derivation of these
polynomials in Subsection A.4.

4.1.3 Resistance to Gröbner Basis Attacks

The GB attack is an algebraic attack. The attack garners more attention when it is
applied to AO primitives. Following [SS21], we view the attack as consisting of four steps:
polynomial modeling, GB computation, term order change, and solution readout.

Polynomial Modeling. In the polynomial modeling step, the cryptosystem is modeled as
a multivariate low-degree polynomial system. Mostly, intermediate variables are introduced
to describe nonlinear operations. Different cryptosystems admit different modelings, and in
fact, the same cryptosystem can be modeled in more than one way. In turn, the resulting
model affects the complexity of subsequent steps. Consequently, polynomial modeling
is somewhat of an art, and no general method for finding the “right” model has been
developed yet.

GB Computation. The second step is concerned with finding a GB for the polynomial
system devised in the previous step. Many algorithms to do this have been suggested in
the literature. Early research focused on the complexity of this step to argue the security
of new primitives. Motivation for this approach was provided in [AAB+20, section 6].

Term Order Change. Usually, the output of the second step is not an elimination order,
which is needed for the fourth step. So, after the GB computation step, a term reordering
algorithm is applied to convert the GB into an elimination order. Recent works showed
low-complexity methods for finding non-elimination GB and suggested that arguing the
security of new primitives should be done through the complexity of the term order change
step. For an elaborate discussion on this, we refer the reader to [BBL+24].

Solution Readout. Once an elimination order GB is found, the last step eliminates
variables iteratively to determine the variety of the polynomial system. This is done using
general methods, and in general the complexity of this step is negligible compared to other
steps.

Resistance Against GB Computation As we mentioned above, some previous work
argued the security of new primitives via the complexity of the second step, whereas other
works used the complexity of the third step. Considering that both approaches have merit,
in this work we argue the security of our new designs from both perspectives such that
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even if future work improves the complexity of either step, the designs would remain safe
to use.

As RPO-M31 is an instance of Rescue, we can use the formula provided in [AAB+20]
to calculate a secure number of rounds.

l1 = ⌈ s + 3
5.5 · m

⌉.

Setting s = 128 and m = 24 we get that ℓ1 = ⌈ 128+3
5.5·24 ⌉ = 1; i.e., the GB attack is thwarted

after a single round.
Observing that RPO-M31’s first round is a subset of XHash-M31’s we conclude that the

latter is safe after the first two steps. In support of this claim, we refer to the experiments
performed in [ABK+23] on toy versions of the cipher. We conclude that for both RPO-M31
and XHASH-M31, the complexity of the GB computation step (i.e., the second step of
the attack) is high.

Resistance Against Term Order Change In [BBL+24] the authors argue that resistance
to GB should be based on the complexity of the Term Order Change (i.e., the third step
in the attack). They motivate this approach by showing that in some cases, a FreeLunch
system can be devised, i.e., that the complexity of the second step is negligible.

To argue the security of both RPO-M31 and XHash-M31, we first observe that neither
RPO nor XHash-12 was susceptible to FreeLunch modeling. This alone should be enough
to revert to the second step as the bottleneck.

Nevertheless, following the same argumentation of [BBL+24], we see that the complexity
of the third step is (524)2 · log(52) ≈ 2112 already after the first pair of (FM )(BM ) steps.
We conclude that the complexity of term order change for RPO-M31 and XHash-M31 is
too high to mount an attack following the prescribed number of rounds.

4.2 Statistical Attacks
Statistical attacks (e.g., DC) have been a source of trouble in the design of traditional
symmetric algorithms (i.e., non-AO algorithms). Early work in the area of AO primitives
observed that in this setting even a small number of rounds is enough to thwart them.
Nevertheless, for completeness, we provide arguments based on the wide-trail strategy.

4.2.1 Differential Cryptanalysis

We recall the Two-Round Propagation Theorem given in [DR02]. In essence, this theorem
derives an upper bound for the probability of the best differential characteristic. This
is done by finding an upper bound on the differential transition probability and a lower
bound for the number of active S-boxes. Then, the former is raised to the power of the
latter to complete the argument.

Theorem 1 ( [ABK+23]). Let Fq be a finite field of order q = pn and characteristic p.
Let F (x) = xλ be a power map defined over Fq, then F is differentially (λ − 1)-uniform.

In [ABK+23, Thm. 6.1], the authors proved this theorem. According to this, all power
maps use in this work are differentially 4-uniform.

Analysis of the (FM )(BM ) steps against DC. In the (FM )(BM ) steps, we have two
S-boxes Ωβ and Ω 1

β
that are defined on the same domain and range and a 24 × 24 MDS.

Further, considering the structure of the sponge construction, the adversary can access rate
(i.e., 16) elements. Moreover, the adversary can change the domain separation identifier,
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which is the 17th element. Therefore, according to the Two-Round Propagation Theorem,
25 S-boxes should be activated after both steps. 1

In [AAB+20, equation 5], the authors provided a formula to calculate the upper bound
probability for differential characteristics. In this case, the upper bound probability is
2−29. Therefore, for the 128-bit security level, the probability of the optimal differential
transition is upper bound by 225·(−29) = 2−725 after just two steps. This shows that these
two steps are enough already to resist the differential attack.

Analysis of the (FM )(BM )(P 3M ) steps against DC. In the (FM )(BM )(P 3M ) steps, S-
boxes are defined on base field and extension field. Therefore, the Two-Round Propagation
Theorem is not directly applicable. In a similar way, we did our analysis to find the number
of active S-boxes after each layer in a round shown in Table 1.

Table 1: Active S-boxes at each stage of a round in both cases RPO-M31 and XHash-M31
Input MFM

Ωβ MBM
Ω 1

β
Ω3

β

1 24 24 1 1 1
2 23 23 2 2 ≥ 1
3 22 22 3 3 ≥ 1
4 21 21 4 4 ≥ 1
5 20 20 5 5 ≥ 1
6 19 19 6 6 ≥ 1
7 18 18 7 7 ≥ 1
8 17 17 8 8 ≥ 1
9 16 16 9 9 ≥ 2
10 15 15 10 10 ≥ 2
11 14 14 11 11 ≥ 2
12 13 13 12 12 ≥ 2
13 12 12 13 13 ≥ 2
14 11 11 14 14 ≥ 2
15 10 10 15 15 ≥ 2
16 9 9 16 16 ≥ 2
17 8 8 17 17 ≥ 3

We see that already after two steps, i.e., the (FM )(BM ), at least 25 S-boxes are
activated, and now at least one extension-field S-box (i.e., Ω3

β) is activated after the (P 3M )
step. In this case, the upper bound probability for differential characteristics is 2−29 for
the (FM )(BM ) and 2−91 for the (P3M ).

Therefore, for the 128-bit security level, the probability of the optimal differential
transition across a triplet (FM )(BM )(P3M ) is upper bound by 225·(−29) · 21·(−91) =
2−725−91 = 2−816.
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A Appendix
A.1 Example – Deriving The 16th Primitive Root Of Unity In M31
As an instructive example, we calculate the 16th primitive root of unity in the M31 field.

e
2π
16 ι = cos(2π

16 ) + ιsin(2π

16 )

= cos(π

8 ) + ιsin(π

8 )

=
√

1 + cos( π
4 )

2 + ι

√
1 − cos( π

4 )
2

=

√
1 + 1√

2
2 + ι

√
1 − 1√

2
2

=

√
1 +

√
2

2
2 + ι

√
1 −

√
2

2
2

=
√

2 +
√

2
2 + ι

√
2 −

√
2

2
= 1181536708

2 + ι
190298901

2

Where the penultimate transition uses the fact that the quadratic residue of 2 in
M31 is 65536 (i.e., (65536)2 mod (231 − 1) = 2). In the last transition, the quadratic
residues of 65538 and −65534 are 1181536708 and 190298901, respectively. Therefore,
after simplification, the 16th primitive root of unity in M31 is:

e
2π
16 ι = 590768354 + ι(1168891274).

A.2 Round Constants
[175084324, 307267372, 926126032, 968091831, 685157891, 2105385954, 1172337223,
442111374, 619202169, 1608687569, 401276325, 388976039, 747174524, 900395791,
455481706, 590173634, 460285180, 1470272960, 1563942345, 1398899312, 1846418244,
36836460, 1811927922, 167064228, 1142000631, 1434982414, 252489916, 1557799233,
44644995, 571347645, 2114100107, 1615612652, 1413066402, 1869125653, 860912024,
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1777495020, 508781706, 1428126799, 416376872, 1627243238, 497670979, 623439811,
142579728, 1866460309, 1828857899, 943424486, 1308979384, 766782025, 715146265,
1305338204, 51159015, 1587489391, 1181321653, 450830656, 1557015574, 1309301546,
1364577641, 1865151097, 1321152955, 1856328988, 1256788027, 2070028866, 142189526,
997525660, 562303485, 1508364161, 546634038, 1855151308, 414030721, 204461777,
2076592910, 2081781835, 1924095286, 696694645, 1016992245, 329457036, 1746153094,
731129352, 1492879802, 109518645, 1506440475, 100640273, 348659820, 1975620907,
434979487, 1607949717, 477749360, 2108279807, 1872602192, 202188144, 1436324583,
352322420, 1267287222, 1759870960, 1698893287, 1409042830, 745465753, 830790775,
1303358776, 199137519, 379646508, 1448243080, 1839615190, 2001025364, 653435503,
1716903235, 1900980930, 127210052, 390073071, 1658571691, 918791597, 215732434,
1641205084, 64509353, 717938853, 1752985684, 549192987, 1277187607, 67103433,
1017165561, 1676100448, 873408598, 846744900, 590232860, 1007269234, 818506088,
397365975, 1627556280, 581304394, 1271111567, 1283713593, 1322890807, 1217915758,
52786324, 1589034864, 868215969, 1806826068, 1096088086, 1008187268, 991073257,
363192403, 156626590, 1864304269, 1797233804, 1592167597, 1870691635, 2116736597,
849359517, 146393037, 1368837761, 1242565219, 703324792, 1936640162, 314274059,
1938208790, 1311570627, 408019024, 488941726, 901158511, 975722452, 245478744,
1081502805, 346944102, 2071265418, 1734880865, 2040503850, 1001865044, 1112077629,
2127315813, 333970284, 576756426, 1421324759, 1034309564, 744510717, 961397525,
754415630, 1300959581, 581645912, 2106918608, 2110129877, 621267186, 1695312995,
609661509, 1913309112, 524300388, 1422632796, 1563605034, 1108753047, 25572393,
1300775045, 523497505, 835791762, 1768040971, 544480237, 388157441, 402171746,
794892581, 1182705154, 49930297, 129243944, 898441973, 429535588, 832127270, 546908747,
756292413, 686066810, 1544391099, 507384091, 625744584, 1233142395, 319177062,
1456409083, 1253953699, 818812123, 1094995825, 1400859865, 777162622, 1879784377,
714561023, 241470607, 1150358400, 868674491, 175364440, 1327652105, 580586163,
612569861, 956760481, 1756883627, 1101943429, 1895088739, 1933031694, 96732478,
224374088, 1381921877, 1325469080, 1889000316, 240001382, 1593956508, 1823462840,
141557806, 530616713, 1907165223, 62079523, 1848686076, 1295897728, 2114545896,
1693023412, 1742672882, 850732884, 196076552, 1821815249, 1719176962, 1889769026,
1061219948, 2025865748, 1939508721, 310849717, 457781360, 517901710, 65968871,
2142772976, 44714611, 101341948, 1253176252, 1930140759, 1799155961, 556217344,
2014050480, 1100303935, 465058938, 511760837, 919812381, 534265201, 908812575,
1963467299, 1628330602, 792487704, 1521690338, 417067392, 1577632259, 1903162100,
1543112201, 1593989960, 2130901602, 2065951024, 2100295115, 1076992712, 1775119720,
221638, 376032096, 1163943790, 1873812351, 375537131, 1957308375, 1069952773,
614213758, 1605486744, 826369864, 1502009496, 659760721, 548669432, 1335550272,
356452350, 675054034, 1993131373, 531587486, 789573063, 1293440420, 1846683787,
1973045453, 768581688, 2002516043, 176434293, 35489330, 821062873, 2030650085,
415910390, 1579605726, 908199138, 1233034527, 1269179452, 80243926, 840306158,
745618431, 209711912, 1828092214, 1665839141, 2134136721, 322680959, 423515746,
47676516, 584020357, 696915461, 1661795164, 2078707993, 584661952, 819846299,
178937197, 1077415206, 1242466361, 1672876753, 1473607717, 1726777726, 644234821,
1262513151, 899912102, 101933161, 1586394069, 727328391, 374984230, 1329273882,
1147628599, 408096360, 1131592455, 1676005029, 1755004107, 1185832027, 1350545055,
234313183, 355535981, 238746508, 813087134, 1623705969, 191472601, 1778703463,
1975849135, 868764694, 366997281, 292403184, 128442573, 1236216701, 666390358,
171867585, 699865044, 1892219207, 349907584, 178565821, 1631281908, 1869158961,
1167585085, 1751361316, 1810451152, 1722258621, 607370421, 1385259181, 852241363,
241792223, 1915594678, 747912505, 1061992187, 678259751, 883281053, 2077909673,
1171481040, 1259386471, 330158658, 899226172, 1120707192, 1291422605, 449005100,
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407642177, 1598934822, 472095767, 238981193, 754266611, 724775445, 561137592,
592730614, 510534042, 1435373010, 287991094, 2130283411, 340860454, 1585669652,
179260010, 954133253, 652560445, 1406248378, 539102991, 534552243, 1189488938,
521087116, 611770989, 1646782070, 1539056906, 7599192, 1699865995, 649906382,
1682111335, 1156311902, 225372763, 1906892131, 1665305577, 761480569, 149073325,
1236756677, 293122269, 1540522128, 913784661, 683283264, 1349827183, 302210927,
499701005, 752368547, 1117252871, 1642552701, 1240405350, 1711703709, 1345225300,
36959573, 753313677, 2140985386, 933254780, 587810324, 1096977153, 695098010,
1119833811, 1167568020, 203344362, 1933501599, 525914421, 423784548, 1493400934,
1250606839, 1640607559, 878417286, 2100328023, 1685128921, 495027371, 114619005,
137126815, 1022247997, 369347858, 1069621656, 561463310, 233344007, 2079249531,
233542204, 2020769996, 373955554, 1407923718, 310196918, 308842651, 1757125438,
811364578, 1504528972, 1244302447, 1512031330, 1902963598, 1508403531, 356407202,
171711516, 1246960371, 1119845703, 867812005, 2024394375, 1233055993, 1048805681,
305973465, 575344339, 1306988127, 579259204, 1448192336, 291836854]

A.3 24 x 24 MDS matrix
We recall Theorem 2 from [Hab24]:

Theorem 2 ( [Hab24]). Let Fp be the Mersenne prime field with modulus p = 231 − 1,
choose message size N = 2n with 1 ≤ n ≤ 30, and any non-zero λ from Fp. Consider
the systematic code over the alphabet Fp with word size 2 × N and circulant systematic
encoding matrix A = (ai,j); 0 ≤ i, j ≤ (N − 1) defined by

ai,j = 1
N

·

[
λ −

[
Im(τ1+2(j−i)

1 − Re(τ1+2(j−i))

]]
(14)

where τ is the (2 × N)-th primitive root of unity in the complex extension C(Fp). Then,
independent of the choice of λ, the distance of the code is at least N . In addition, if λ is
such that ( 1+ι·λ

1−ι·λ )2·N ≠ 1, then the code has distance (N + 1) and thus is maximum distance
separable.

Generation of MDS matrix. According to Theorem 2, the first possible circulant matrix
for a 24-element state is of size 32 × 32. To find this matrix, we use the 64th primitive root
of unity in C(Fp), which is given in Equation 15. It can be calculated as in example A.1.

τ =

√
2 +

√
2 +

√
2 +

√
2

2 + ι

√
2 −

√
2 +

√
2 +

√
2

2 (15)

To represent Equation 15 in C(Fp), first we calculate the quadratic residue of each term.
After simplification, τ in C(Fp) is 456695729 + ι(1567857810). The first row of the 32 × 32
circulant matrix is given in Equation 16 which is generated by calculating Equation 14
using τ . However, to get 24 × 24 MDS matrix, we take a sub-matrix of the circulant matrix
having the first 24 rows and 24 columns.

185870542 2144994796 1696461115 215190769
930115258 766567118 2003379079 1770558586
1779722644 434368282 289154277 1979813463
1436360233 1342944808 63026005 903393155
1512525948 105409451 1072974295 979558870
436105640 2126764826 1981550821 636196459
645360517 412540024 1649351985 1485803845
53244687 719457988 270924307 82564914


(16)
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A.4 Polynomial Representation of Ω3
β

There are many irreducible polynomials in Fp3 allowing for different polynomial reductions.
Without loss of generality, we use X3 + 2. Let ν[j] ∈ Fp. The Ω3

β S-box in extension field
is described in Equation 7. The Multinomial Theorem

∑
a+b+c=5

( 5!
a!b!c! )(ν

a
[j] · (ν[j+1]X)b · (ν[j+2]X

2)c)

is used to expand Equation 7:
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ν5
[j],[j+1],[j+2] = (ν[j] + ν[j+1]X + ν[j+2]X

2)5

= ν5
[j] + (5 · ν4

[j] · ν[j+1])X + (5 · ν4
[j] · ν[j+2])X2 + (10 · ν3

[j] · ν2
[j+1])X2

+ (30 · ν3
[j] · ν[j+1] · ν[j+2])X3 + (10 · ν3

[j] · ν2
[j+2])X4 + (10 · ν2

j · ν3
[j+1])X3

+ (30 · ν2
[j] · ν2

[j+1] · ν[j+2])X4 + (30 · ν2
[j] · ν[j+1] · ν2

[j+2])X5

+ (10 · ν2
[j] · ν3

[j+2])X6 + (5 · ν[j] · ν4
[j+1])X4

+ (30 · ν[j] · ν3
[j+1] · ν[j+2])X5 + (30 · ν[j] · ν2

[j+1] · ν2
[j+2])X6

+ (10 · ν[j] · ν[j+1] · ν3
[j+2])X7 + (5 · ν[j] · ν4

[j+2])X8 + (ν5
[j+1])X5

+ (5 · ν4
[j+1] · ν[j+2])X6 + (10 · ν3

[j+1] · ν2
[j+2])X7

+ (10 · ν2
[j+1] · ν3

[j+2])X8 + (5 · ν[j+1] · ν4
[j+2])X9 + (ν5

[j+2])X10

= ν5
[j] + (5 · ν4

[j] · ν[j+1])X + (5 · ν4
[j] · ν[j+2])X2 + (10 · ν3

[j] · ν2
[j+1])X2

+ (30 · ν3
[j] · ν[j+1] · ν[j+2])(−2) + (10 · ν3

[j] · ν2
[j+2])(−2X)

+ (10 · ν2
[j] · ν3

[j+1])(−2) + (30 · ν2
[j] · ν2

[j+1] · ν[j+2])(−2X)
+ (30 · ν2

[j] · ν[j+1] · ν2
[j+2])(−2X2) + (10 · ν2

[j] · ν3
[j+2])(4)

+ (5 · ν[j] · ν4
[j+1])(−2X) + (30 · ν[j] · ν3

[j+1] · ν[j+2])(−2X2)
+ (30 · ν[j] · ν2

[j+1] · ν2
[j+2])(4) + (10 · ν[j] · ν[j+1] · ν3

[j+2])(4X)
+ (5 · ν[j] · ν4

[j+2])(4X2) + (ν5
[j+1])(−2X2) + (5 · ν4

[j+1] · ν[j+2])(4)
+ (10 · ν3

[j+1] · ν2
[j+2])(4X) + (10 · ν2

[j+1] · ν3
[j+2])(4X2)

+ (5 · ν[j+1] · ν4
[j+2])(−8) + (ν5

[j+2])(−8X)
= ν5

[j] + (5 · ν4
[j] · ν[j+1])X + (5 · ν4

[j] · ν[j+2])X2 + (10 · ν3
[j] · ν2

[j+1])X2

− (60 · ν3
[j] · ν[j+1] · ν[j+2]) − (20 · ν3

[j] · ν2
[j+2])X − (20 · ν2

[j] · νj+1[j + 1]3)
− (60 · ν2

[j] · ν2
[j+1] · ν[j+2])X − (60 · ν2

[j] · ν[j+1] · ν2
[j+2])X2

+ (40 · ν2
[j] · ν3

[j+2]) − (10 · ν[j] · ν4
[j+1])X − (60 · ν[j] · ν3

[j+1] · ν[j+2])X2

+ (120 · ν[j] · ν2
[j+1] · ν2

[j+2]) + (40 · ν[j] · ν[j+1] · ν3
[j+2])X

+ (20 · ν[j] · ν4
[j+2])X2 − (2 · ν5

[j+1])X2 + (20 · ν4
[j+1] · ν[j+2])

+ (40 · ν3
[j+1] · ν2

[j+2])X + (40 · ν2
[j+1] · ν3

[j+2])X2

− (40 · ν[j+1] · ν4
[j+2]) − (8 · ν5

[j+2])X
ν5

[j],[j+1],[j+2] = [ν5
[j] − 60 · ν3

[j] · ν[j+1] · ν[j+2] − 20 · ν2
[j] · ν3

[j+1] + 40 · ν2
[j] · ν3

[j+2]

+ 120 · ν[j] · ν2
[j+1] · ν2

[j+2] + 20 · ν4
[j+1] · ν[j+2] − 40 · ν[j+1] · ν4

[j+2]]
+ [(5 · ν4

[j] · ν[j+1])X − (20 · ν3
[j] · ν2

[j+2])X − (60 · ν2
[j] · ν2

[j+1] · ν[j+2])X
− (10 · ν[j] · ν4

[j+1])X + (40 · ν[j] · ν[j+1] · ν3
[j+2])X

+ (40 · ν3
[j+1] · ν2

[j+2])X − (8 · ν5
[j+2])X] + [(5 · ν4

[j] · ν[j+2])X2

+ (10 · ν3
[j] · ν2

[j+1])X2 − (60 · ν2
[j] · ν[j+1] · ν2

[j+2])X2

− (60 · ν[j] · ν3
[j+1] · ν[j+2])X2 + (20 · ν[j] · ν4

[j+2])X2 − (2 · ν5
[j+1])X2

+ (40 · ν2
[j+1] · ν3

[j+2])X2]

After simplification, a concise description of the first, second, and third elements of each
tuple is given in Equation (17)–(19), respectively.
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S[j] = ν5
[j] − 60 · ν3

[j] · ν[j+1] · ν[j+2] − 20 · ν2
[j] · ν3

[j+1] + 40 · ν2
[j] · ν3

[j+2] (17)
+ 120 · ν[j] · ν2

[j+1] · ν2
[j+2] + 20 · ν4

[j+1] · ν[j+2] − 40 · ν[j+1] · ν4
[j+2]

S[j] = 5 · ν4
[j−1] · ν[j] − 20 · ν3

[j−1] · ν2
[j+1] − 60 · ν2

[j−1] · ν2
[j] · ν[j+1] − 10 · ν[j−1] · ν4

[j] (18)
+ 40 · ν[j−1] · ν[j] · ν3

[j+1] + 40 · ν3
[j] · ν2

[j+1] − 8 · ν5
[j+1]

S[j] = 5 · ν4
[j−2] · ν[j] + 10 · ν3

[j−2] · ν2
[j−1] − 60 · ν2

[j−2] · ν[j−1] · ν2
[j] (19)

− 60 · ν[j−2] · ν3
[j−1] · ν3

[j] + 20 · ν[j−2] · ν4
[j] − 2 · ν5

[j−1] + 40 · ν2
[j−1] · ν3

[j]
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