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Abstract An involution is a permutation that is the inverse of itself. Involu-
tions have attracted plenty attentions in cryptographic community due to their
advantage regarding hardware implementations. In this paper, we reconsider
constructing pseudorandom involutions. We demonstrate two constructions.

(i) First, the 4-round Feistel network using the same random function (Feistel-
SF) in every round is a pseudorandom involution. This shows the Feistel-SF
construction still provides non-trivial cryptographic strength. To comple-
ment, we also show insecurity of 3-round Feistel-SF by exhibiting an attack.

(ii) Second, a “mirrored” variant of the Naor-Reingold construction with com-
ponent reusing yields a pseudorandom involution.
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1 Introduction

This paper addresses two closely related questions:

(i) Question 1: how to construct pseudorandom involutions (PRIs).
(ii) Question 2: cryptographic strength of Feistel networks built upon a single

round function (Feistel-SF).

Below we elaborate on the two issues in detail.

Constructing PRIs. An involution is a permutation that is the inverse of itself.
Cryptographic involutions are efficient in terms of hardware areas, and have
been adopted in a plenty of blockcipher designs [15,43,12,4,22].

Following the definitions of pseudorandom functions (PRFs) and pseudo-
random permutations (PRPs), a pseudorandom involution (PRI) is a keyed
involution I : K × {0, 1}n → {0, 1}n that is indistinguishable from a random
involution PRI : {0, 1}n → {0, 1}n when instantiated with a secret random key

K
$← K.
Note that while a PRI provides a somewhat random output y = I(K,x)

for the input x, it cannot be straightforwardly used as a blockcipher or en-
ciphering scheme, since the enciphering oracle can be leveraged to decipher
any sensitive ciphertext. In fact, a secure blockcipher or enciphering scheme
is typically expected to be a (strong) pseudorandom permutation ((S)PRP)
rather than a PRIs. On the other hand, this does not preclude PRIs from
useful tools: the “somewhat” randomness may already suffice in (PRI-based)
constructions, while the involutory property saves the cost of implementing
I−1. Due to these, several papers have proposed to consider using PRIs to
replaced SPRPs in cryptographic constructions, including Feistel variants [24]
and Misty network [35,21].1 By these, PRIs actually deserve their own place
alongside PRFs and (S)PRPs, and transformations among the three concepts
are important in theory.

Aside from this, constructing PRIs is also of practical value. For example,
Nandi [26] proved that enhancing a PRI with a pre-whitening key yields an
SPRP, whose inverse has virtually no cost. As will be elaborated in detail later
in Sect. 1.2, this could be quite appealing in side-channel and fault protected
settings [8] as well as low-latency scenarios [9].

Regarding building PRIs, Naor and Reingold [31] has showed that the
composition P−1 ◦ σ ◦ P is a PRI when P is a PRP and σ is an (efficient)
involution. Namely, P provides cryptographic strength while σ ensures the
desired functionality. In theory this provides a PRP-to-PRI transformation,
as shown in Fig. 1. However, this has two shortcomings. First, it has to in-
vokes both P and its inverse P−1, and this contradicts using PRIs to reduce

1 Public truly random involutions have also been considered [20].
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Fig. 1: Relations between PRFs, (S)PRPs and PRIs.

implementation costs. Second, its cost roughly doubles the cost of P , whereas
we certainly expect PRI to be as efficient as PRPs. Nandi provided another
construction named Hash-Counter Involution, which still invokes both E and
its inverse E−1 for the underlying blockcipher E. It is thus natural to ask if
there are inverse-free constructions for PRIs (which could also bridge the gap
of PRF-to-PRI transformations).

Feistel-SF. A Feistel permutation ΨF
Ki

(A∥B) := B∥(A ⊕ FKi(B)) applies a
keyed function F : K × {0, 1}n → {0, 1}n with a subkey Ki to a half of the
input, and then swap the two halves. It captures the underlying structure of a
large proposition of blockciphers [1] including the DES [41]. A t-round Feistel
ΨF
t [K1,K2, ...,Kt](L∥R) := ΨF

Kt
◦ ... ◦ ΨF

K2
◦ ΨF

K1
(L∥R) is the t-composition of

Feistel permutations. Let swap(A∥B) := B∥A be the swap, then we further de-

note Ψ
F

t [K1,K2, ...,Kt] := swap ◦ΨF
t [K1,K2, ...,Kt] the variant of Ψ

F
t without

swap in the final round, as shown in Fig. 2 (left).

Under the condition that F is a PRF, the seminal result of Luby and Rack-
off [23] stated that ΨF

3 [K1,K2,K3] instantiates a PRP and ΨF
4 [K1,K2,K3,K4]

instantiates an SPRP. It is then natural to simplify this construction w.r.t. the
number of keys. In this respect, the minimal Feistel variant Ψ t[F, ..., F ], i.e.,
Feistel network using the Same random Function (Feistel-SF), was originally
proposed by Schnorr [40] as a PRP candidate. But this expectation was soon
broken by Rueppel [36] and further extended by Nandi [28]. Though, this at-
tack did not distinguish Feistel-SF from random involutions—actually, they
used the fact that Feistel-SF is involutory to distinguish it from random per-
mutations. The negative result was later generalized to break PRP security
of Ψ3[F

i1 , F i2 , F i3 ] using compositions of F as round function [44] and SPRP
security of some Feistel variants with round function reusing [38]. Meanwhile,
a number of positive (S)PRP security result were later proven for various
(strengthened) variants of Feistel-SF [34,32,37,29].

While Feistel-SF does not yield (S)PRPs, it still enjoys some cryptographic
strength, and being involutory seems to be the “mere” weakness. In particular,
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Fig. 2: (Left) The 4-round Feistel Ψ
F

4 [K,K,K,K] built upon a single random
function and without the final swap. (Right) The “mirror” Naor-Reingold
construction NRF [KP ,K,K,KP ].

it is a natural candidate for the aforementioned PRF-to-PRI transformation
or inverse-free PRI constructions.

1.1 Our Results

By the above discussion, to seek for PRF-to-PRI transformations or inverse-
free PRI constructions and to understand the security of weaker Feistel vari-
ants, we analyze the PRI security of the Feistel-SF construction, as well as
another weaker variant of the popular Naor-Reingold construction.

1.1.1 Our first construction: Feistel-SF without final swap

We first show that the 4-round Ψ
F

4 [K,K,K,K], as shown in Fig. 2 (left), is
a PRI as long as F : K × {0, 1}n → {0, 1}n is a PRF. Security is ensured
up to the birthday 2n/2 adversarial queries. To complement, we also exhibit

an attack against 3-round Ψ
F

3 [K,K,K]. This attack simply follows the well-

known CCA idea on 3-round Ψ
F

3 [K1,K2,K3], and our novelty is to provide a
rigorous analysis of the attack advantage in the setting of PRIs.

1.1.2 Our second construction: “mirrored” Naor-Reingold

By the above positive result, using the Feistel-SF scheme, it is sufficient and
necessary to use 4 PRF-calls per input. To further reduce the number of calls,
it is natural to consider the Naor-Reingold construction [30], which is the most
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efficient known approach to build a secure SPRP. In detail, the Naor-Reingold
construction

NRF [KP,1,K1,K2,KP,2](X) := P
(
KP,2, Ψ

F

2 [K1,K2]
(
P (KP,1, X)

))
(1)

is built by sandwiching two universal permutations PKP,1
, PKP,2

: {0, 1}2n →
{0, 1}2n (we refer to Sect. 4 for its definition) with a 2-round Feistel network

Ψ
F

2 [K1,K2]. This may be viewed as a generalization of the Feistel network.
Naor and Reingold [30] proved CCA security for NRF [KP,1,K1,K2,KP,2]

using independent keys KP,1,KP,2
$← KP and K1,K2

$← K, and Soni and Tes-
saro [42] strengthens the result by partially revealing secretsKP,1,KP,2,K1,K2

to the adversary. To have an involution, we consider a “mirrored” variant of
the Naor-Reingold defined as

NRF [KP ,K,K,KP ](X) := P−1
(
KP , Ψ

F

2 [K,K]
(
P (KP , X)

))
. (2)

I.e., it uses the same key in the two Feistel permutations and the same universal
permutation P (and its inverse) at the beginning and end. See Fig. 2 (right)
for illustration. We show that NRF [KP ,K,K,KP ] instantiates a PRI up to
2n/2 adversarial queries (when P is good enough), yielding a PRI construction
with complexity comparable with the best known SPRP constructions.

1.2 Discussion

Our constructions Ψ
F

4 [K,K,K,K] and NRF [KP ,K,K,KP ] provide inverse-
free constructions for PRIs (which are the first, to our knowledge). For this,
note that the right-universal permutation P can be instantiated using a Feistel
round and a universal hash function H : KP × {0, 1}n → {0, 1}n. Namely,
setting P (KP , X) = leftn(X)∥

(
rightn(X) ⊕H(KP , leftn(X))

)
suffices. In this

case, P itself is an involution, and NRF [KP ,K,K,KP ] remains inverse-free
despite invoking P−1.

In addition, the round complexity of Ψ
F

4 [K,K,K,K] matches the rounds
needed for a normal Feistel to be SPRP secure. In this sense, it means the
complexity of PRIs may be comparable with SPRPs.

PRIs could find several applications. For example, to improve side-channel
security of blockcipher-based authenticated encryption modes, Berti et al. [8]
proposed a variant of the Hash-then-SPRP MAC scheme t = EK(H(m)) that
invokes the blockcipher inverse E−1 in verification to avoid leaking critical
information. Unfortunately, this inverse E−1 is typically an inefficient side-
channel (and fault) protected module in such designs [8,6,5,7,39]. Meanwhile,
this use of inverse E−1 seems unavoidable under certain assumptions [5], and
it thus seems crucial to reduce the cost of implementing the protected E−1.

PRIs could be helpful in this setting. Though, it is insufficient to simply
replace the SPRP with a PRI: the plain Hash-then-PRI t = IK(H(m)) is
insecure. The adversary picks distinct messages m,m′ and computes h ←
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H(m). It then queries LVrfy(m′, h) to obtain I−1K (h) = u from the leakage.
Since I is an involution, this also means IK(h) = u, and the adversary outputs
(m,u) as a valid forgery.

In this respect, Nandi [27] has proved that masking a PRI with another
key, i.e., EK1,K2

(x) = IK2
(K1⊕x), yields an SPRP. Thus, the leakage-resilient

MAC can be instantiated with t = EK1,K2(H(m)). In this case, the construc-
tion EK1,K2(x) = IK2(K1 ⊕ x) needs additional side-channel protections to
avoid leaking K1 and K1 ⊕ x. Though, since the XOR is linear, the added
computations are minor.

Another potential application is to construct low-latency SPRPs (i.e., block-
ciphers or enciphering schemes). Concretely, low-latency scenarios such as disk
and memory encryption may enforce using (very heavy) fully unrolled hard-
ware implementations of the SPRP [9,2,10,3]. It is highly desirable to “recy-
cle” the enciphering circuit for deciphering. To this end, new structures admit-
ting special properties such as the α-reflection [9] have been introduced. The
masked PRI construction of Nandi [27] provides another potential approach.

1.3 Organization

Sect. 2 provides notations and definitions. Then, Sect. 3 discusses insecurity

of 3-round Ψ
F

3 [K,K,K] and PRI security of 4-round Ψ
F

4 [K,K,K,K], while
Sect. 4 proves PRI security of the “mirrored” Naor-Reingold construction
NRF [P,K,K, P−1]. We finally conclude in Sect. 5.

2 Preliminaries

Notation. In all the following, we fix an integer n ≥ 1, and denote by F(n, n)
the set of all functions from {0, 1}n to {0, 1}n. For any positive integer m, we
denote by P(m) the set of all permutations on {0, 1}m. For integers 1 ≤ ℓ ≤ m,
we write (m)ℓ = m(m− ℓ) · · · (m− ℓ+ 1) and (m)0 = 1 by convention. When
two sets A and B are disjoint, we denote A⊔B their (disjoint) union. Given an
m-bit string x and a ≤ n, denote by lefta(x) (resp., righta(x)) the a leftmost
(resp., rightmost) a bits of x.

Involution. The identity map on {0, 1}m will be denoted ι. An involution σ ∈
P(m) is a permutation such that σ ◦ σ = ι. Let I(m) denote the set of all
involutions in P(m) and let I0(m) denote the set of involutions without any
fixed point. Also, let T0(2

m) = |I0(m)| and T (2m) = |I(m)|. If an involution
on {0, 1}m has no fixed point, then we would have a perfect matching on
{0, 1}m. The number of all possible perfect matchings on {0, 1}m is

T0(2
m) =

1

2
2m

2

(
2m

2m

2

)(
2m

2

)
!, (3)
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and hence

T0(2
m − 2)

T0(2m)
=

1

2m − 1
. (4)

For T (2m), we will use the following recursion formula [13].

1√
2m + 1

≤ T (2m − 1)

T (2m)
≤ 1√

2m
. (5)

We need to study the interaction between a distinguisherDI and an involu-
tion oracle I ∈ I(m) (that instantiates either a PRI construction or a random
involution). Following [20], the transcript of the already issued queries and
responses should be QI =

(
{X1, Y1}, {X2, Y2}, ...

)
, where the Xi’s are pair-

wise distinct m-bit strings and the Yi’s are pairwise distinct m-bit strings, and
where {X,Y } ∈ QI implies I(X) = Y or equivalently I(Y ) = X. Given such a
transcript QI and an involution I ∈ I(m), we say that I extends QI , denoted
I ⊢ QI , if I(X) = Y for all {X,Y } ∈ QI .

With the above, we can prove a lemma about the distribution of the “next”
response of a random involution I. The proof is somewhat straightforward, but
it may be of value to make this lemma explicit.

In detail, consider the interaction between DI and a random involution I,
and let QI =

(
{X1, Y1}, {X2, Y2}, ..., {Xℓ−1, Yℓ−1}

)
be the transcript of the

already issued queries and their responses. Then, the probability to obtain
Yℓ for the next query I(Xℓ), Xℓ /∈ {X1, ..., Xℓ−1, Y1, ..., Yℓ−1}, equals Pr

[
I

$←
I(m) : I(Xℓ) = Yℓ | I ⊢ QI

]
. We have bounds as follows.

Lemma 1 For any transcript QI =
(
{X1, Y1}, {X2, Y2}, ..., {Xℓ−1, Yℓ−1}

)
of

an involution and any Xℓ ∈ {0, 1}m\{X1, ..., Xℓ−1, Y1, ..., Yℓ−1}, we have con-
clusions as follows.

(i) If I
$← I(m) is sampled from all m-bit involutions, then

1√
2m − (ℓ− 1) + 1

≤ Pr
[
I

$← I(m) : I(Xℓ) = Xℓ | I ⊢ QI

]
≤

1√
2m − (2ℓ− 2)

, and

1√
2m − (ℓ− 1) + 1

×
1

√
2m − ℓ+ 1

≤ Pr
[
I

$← I(m) : I(Xℓ) = Yℓ | I ⊢ QI

]
≤

1√
2m − (2ℓ− 2)

×
1√

2m − (2ℓ− 1)
(6)

for any Yℓ /∈ {X1, ..., Xℓ−1, Xℓ, Y1, ..., Yℓ−1}.
(ii) If I

$← I0(m) is sampled from all m-bit involutions without fixed points,
then

Pr
[
I

$← I0(m) : I(Xℓ) = Yℓ | I ⊢ QI

]
=

1

2m − (2ℓ− 1)
(7)

for any Yℓ /∈ {X1, ..., Xℓ−1, Xℓ, Y1, ..., Yℓ−1}.

Proof We address the two cases in turn.
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The case of I
$← I(m). Let N1 be the number of involutions I ∈ I(m) with

I ⊢ QI and N2 be the number of I ∈ I(m) with I ⊢ QI ∪
{
{Xℓ, Yℓ}

}
. It then

holds

Pr
[
I

$← I(m) : I(Xℓ) = Yℓ | I ⊢ QI

]
=

PrI
[
I ⊢ QI ∪

{
{Xℓ, Yℓ}

}]
PrI
[
I ⊢ QI

] =

N2

|I(m)|
N1

|I(m)|

=
N2

N1
.

To calculate N1, we assume that the number of “fixed points” in QI , i.e.,
{X,Y } ∈ QI with X = Y , is ω. This means {X1, Y1, X2, Y2, ..., Xℓ−1, Yℓ−1}
has 2(ℓ− 1)− ω distinct elements. It then holds

N1 = T (2m − (2ℓ− 2− ω)).

On the other hand, N2 depends on the value of Yℓ. When Yℓ = Xℓ, we have

N2 = T (2m − (2ℓ− 1− ω)),

PrI
[
I(Xℓ) = Xℓ | I ⊢ QI

]
=

T (2m − (2ℓ− 1− ω))

T (2m − (2ℓ− 2− ω))
.

Using Eq. (5) and 0 ≤ ω ≤ ℓ− 1, we reach

1√
2m − (ℓ− 1) + 1

≤ PrI
[
I(Xℓ) = Xℓ | I ⊢ QI

]
≤ 1√

2m − (2ℓ− 2)
.

On the other hand, for any Yℓ /∈ {X1, ..., Xℓ−1, Xℓ, Y1, ..., Yℓ−1} we have
N2 = T (2m − (2ℓ− ω)), and further

PrI
[
I(Xℓ) = Yℓ | I ⊢ QI

]
=

T (2m − (2ℓ− ω))

T (2m − (2ℓ− 2− ω))

=
T (2m − (2ℓ− 1− ω))

T (2m − (2ℓ− 2− ω))
× T (2m − (2ℓ− ω))

T (2m − (2ℓ− 1− ω))
.

Using Eq. (5) and 0 ≤ ω ≤ ℓ− 1, we reach

PrI
[
I(Xℓ) = Yℓ | I ⊢ QI

]
≤ 1√

2m − (2ℓ− 2)
× 1√

2m − (2ℓ− 1)
,

PrI
[
I(Xℓ) = Yℓ | I ⊢ QI

]
≥ 1√

2m − (ℓ− 1) + 1
× 1√

2m − ℓ+ 1
.
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The case of I
$← I0(m). Let N3 be the number of involutions I ∈ I0(m) with

I ⊢ QI and N4 be the number of I ∈ I0(m) with I ⊢ QI ∪
{
{Xℓ, Yℓ}

}
. It then

holds

Pr
[
I

$← I0(m) : I(Xℓ) = Yℓ | I ⊢ QI

]
=

N4

|I0(m)|
N3

|I0(m)|
=

N4

N3
.

In this case, QI cannot contain fixed points. Therefore, N3 = T (2m− (2ℓ−
2)), and N4 = T (2m − 2ℓ) for any Yℓ /∈ {X1, ..., Xℓ−1, Xℓ, Y1, ..., Yℓ−1}. Using
Eq. (5), we reach

Pr
[
I

$← I0(m) : I(Xℓ) = Yℓ | I ⊢ QI

]
=

T (2m − 2ℓ)

T (2m − (2ℓ− 2))
=

1

2m − (2ℓ− 1)
.

These complete the proofs. ⊓⊔

Pseudorandom functions (PRFs) and involutions (PRIs). Consider a keyed
function F : K × {0, 1}n → {0, 1}n, and denote FK(X) for F (K,X). A (q, t)-
adversary against F is an algorithm D with oracle access to a function from
{0, 1}n → {0, 1}n, making at most q oracle queries, running in time at most t,
and outputting a single bit. The advantage of D in breaking the PRF-security
of F is defined as

AdvPRF
F (D) =

∣∣Pr [K ←$ K : DFK = 1
]
− Pr

[
F←$ F(n, n) : DF = 1

]∣∣
For simplicity, define

AdvPRF
F (q, t) := max

D
AdvPRF

F (D),

where the maximum is taken over all (q, t)-adversary D.

Similarly, consider a keyed involution I : K × {0, 1}m → {0, 1}m, and
consider a (q, t)-adversary D with oracle access to a involution I : {0, 1}m →
{0, 1}m. Since I−1K ≡ IK , access to the “forward” oracle I is equivalent with
access to both I and I−1. This also means it does not make sense to build
“CPA secure” pseudorandom involutions. The advantage of D in breaking the
PRI-security of I is defined as

AdvPRI
I (D) =

∣∣Pr [K ←$ K : DIK = 1
]
− Pr

[
I←$ I(m) : DI = 1

]∣∣
We also define

AdvPRI
I (q, t) := max

D
AdvPRI

I (D)

for simplicity, where the maximum is taken over all (q, t)-adversary D.
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The H-coefficient technique. We use Patarin’s H-coefficient technique [33] to
prove our results. We provide a quick overview of its main ingredients here.
Our presentation borrows heavily from that of [11]. Fix a distinguisher D that
makes at most q queries to its oracles. As in the security definition presented
above, D’s aim is to distinguish between two worlds: a “real world” and an
“ideal world”. Assume w.l.o.g. that D is deterministic. The execution of D
defines a transcript that includes the sequence of queries and answers received
from its oracles; D’s output is a deterministic function of its transcript. Thus,
if Tre, Tid denote the probability distributions on transcripts induced by the
real and ideal worlds, respectively, then D’s distinguishing advantage is upper
bounded by the statistical distance

∆(Tre, Tid) :=
1

2

∑
Q

∣∣∣Pr[Tre = Q]− Pr[Tid = Q]
∣∣∣, (8)

where the sum is taken over all possible transcripts Q.
Let T denote the set of all attainable transcripts, i.e., Pr[Tid = Q] > 0 for

all Q ∈ T . We look for a partition of T into two sets Tgood and Tbad of “good”
and “bad” transcripts, respectively, along with a constant ϵ1 ∈ [0, 1) such that

Q ∈ Tgood =⇒
Pr
[
Tre = Q

]
Pr
[
Tid = Q

] ≥ 1− ϵ1. (9)

It is then possible to show (see [11] for details) that

∆(Tre, Tid) ≤ ϵ1 + Pr
[
Tid ∈ Tbad

]
(10)

is an upper bound on the distinguisher’s advantage.

3 Pseudorandom Involution from Feistel-SF

Recall from the Introduction that the Feistel-SF (without final swap) is defined
as

Ψ
F

t [K,K, ...,K](L∥R) := swap ◦ ΨF
K ◦ ... ◦ ΨF

K ◦ ΨF
K︸ ︷︷ ︸

t compositions

(L∥R), (11)

where F : K × {0, 1}n → {0, 1}n is a keyed function, ΨF
Ki

(A∥B) := B∥(A ⊕
FKi

(B)) is the (1-round) Feistel permutation and swap(A∥B) := B∥A is the
swap. We refer to Fig. 2 (left) for a 4-round version. Our proof will also rely
on an idealized Feistel-SF construction, which has

Ψt[F,F, ...,F](L∥R) := swap ◦ ΨF ◦ ... ◦ ΨF ◦ ΨF︸ ︷︷ ︸
t compositions

(L∥R), (12)

for a truly random function F : {0, 1}n → {0, 1}n and an idealized Feistel
permutation ΨF(A∥B) := B∥(A⊕ F(B)).

We first describe the attack breaking the PRI security of 3 rounds in Sect.
3.1. Then, in Sect. 3.2, we show that the 4-round scheme ΨF

4 [K,K,K,K] is a
PRI up to 2n/2 adversarial queries.
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R

L

L′

X

X′

S

S′

T

T ′

T ′′ = T ′ ⊕ L⊕ L′
R′′

L′′

1

1 3

Fig. 3: Chains of values involved in our attack against 3-round Feistel-SF. The
numbers 1 and 3 indicate if the chain appears in step 1 or 3.

3.1 3 Rounds do not yield PRIs

Instead of considering the 3-round Feistel-SF Ψ
F

3 [K,K,K], we consider its
random function-based variant. In addition, we consider Ψ3[F1,F2,F1]: if this
can be distinguished then Ψ3[F,F,F] can be distinguished as well.

It is well known that 3-round Feistel Ψ3[F1,F2,F3] suffers from CCA
attacks: see e.g. [25, Sect. 2.5.3]. Since the forward and inverse oracle of
Ψ3[F1,F2,F1] are identical, the CCA attack on Ψ3[F1,F2,F3] can be trans-
formed to a CPA attack on Ψ3[F1,F2,F1]. In detail, consider a distinguisher
DI interacting with a 2n-bit involution I that is either Ψ3[F1,F2,F1] or a
random involution I. DI proceeds as follows.

1. DI chooses L,L′, R ∈ {0, 1}n with L ̸= L′, and queries I(L∥R)→ T∥S and
I(L′∥R)→ T ′∥S′;

2. If S′ = S or S′ = R then DI outputs 1.2 Otherwise, DI proceeds into Step
3.

3. DI sets T ′′ ← T ′ ⊕ L⊕ L′ and queries I(T ′′∥S′)→ L′′∥R′′;
4. DI outputs 1 if and only if R′′ = S′ ⊕ S ⊕R.

We refer to Fig. 3 for the chains of values involved in the attack.
We first show that DI always outputs 1 when I is Ψ3[F1,F2,F1]. For this,

let X = L ⊕ F1(R) and X ′ = L′ ⊕ F1(R). It then holds F2(X) = R ⊕ S and
F2(X

′) = R ⊕ S′. Meanwhile, it holds X ⊕ X ′ = L ⊕ L′. Then, let X ′′ =
T ′′⊕F1(S

′). It then holds X ′′ = T ′′⊕F1(S
′) = (T ′⊕L⊕L′)⊕ (X ′⊕T ′) = X

(as shown in Fig. 3), which further implies R′′ = S′⊕F2(X
′′) = S′⊕F2(X) =

S′ ⊕R⊕ S. This means when I is Ψ3[F1,F2,F1], D
I always outputs 1 at step

2 or 4.
On the other hand, when I is a random involution I

$← I(2n), we identify
two events in the interaction:

– Event (B-1) occurs, if D finds S′ = S or S′ = R at step 2;
– Event (B-2) occurs, if D finds R′′ = S′ ⊕ S ⊕R at step 4.

Clearly,

Pr
[
DI outputs 1

]
≤ Pr

[
(B-1)

]
+ Pr

[
(B-2) | ¬(B-1)

]
2 The condition of S′ = R may not be necessary, but it simplifies the analysis of attack

advantage by excluding the possibilities of L∥R or L′∥R being fixed points of I.
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We now consider their probabilities. For (B-1), define

S1 :=
{
Y ∈ {0, 1}2n : rightn(Y ) = S or rightn(Y ) = R

}
.

Clearly, |S1| ≤ 2× 2n. By this and using Eq. (6), we reach

Pr
[
I

$← I(2n) : (B-1)
]

≤ Pr
[
I

$← I(2n) : I(L′R) ∈ S1 | I ⊢
(
{LR, TS}

)]
≤ Pr

[
I

$← I(2n) : I(L′R) = L′R | I ⊢
(
{LR, TS}

)]
+ Pr

[
I

$← I(2n) : I(L′R) ∈ S1\{L′R} | I ⊢
(
{LR, TS}

)]
≤ 1√

22n − 2
+

2n+1 − 1√
22n − 2×

√
22n − 3

≤ 3√
22n − 2

.

The last inequality follows from 2n+1 − 1 ≤
√
22n − 3 as long as n ≥ 2.

The analysis for (B-3) is similar: define

S2 := {X ∈ {0, 1}2n : rightn(X) = S′ ⊕ S ⊕R}.

Clearly, |S2| ≤ 2n. Conditioned on that (B-1) did not occur, the query I(T ′′∥S′)
in step 3 is new. By these and using Eq. (6), we reach

Pr
[
I

$← I(2n) : (B-2)
]

≤ Pr
[
I

$← I(2n) : I(T ′′∥S′) ∈ S2 | I ⊢
(
{LR, TS}, {L′R, T ′S′}

)]
≤ Pr

[
I

$← I(2n) : I(T ′′∥S′) = T ′′∥S′ | I ⊢
(
{LR, TS}, {L′R, T ′S′}

)]
+ Pr

[
I

$← I(2n) : I(T ′′∥S′) ∈ S1\{T ′′∥S′} | I ⊢
(
{LR, TS}, {L′R, T ′S′}

)]
≤ 1√

22n − 4
+

2n − 1√
22n − 4×

√
22n − 5

≤ 3√
22n − 4

.

The last inequality follows from 2n−1 ≤
√
22n − 5 as long as n ≥ 2. Therefore,

Pr
[
DI outputs 1

]
≤ 3√

22n − 2
+

3√
22n − 4

≤ 6√
22n − 4

,

and the distinguishing advantage of D is at least 1− 6/
√
22n − 4 ≈ 1.

3.2 PRI from 4 Rounds

The positive result is formally stated as follows.

Theorem 1 (PRI from Ψ4) The following holds for the 4-round Feistel-SF

scheme Ψ
F

4 [K,K,K,K]:

AdvPRI

Ψ
F
4 [K,K,K,K]

(q, t) ≤ AdvPRF
F

(
4q, t+O(q)

)
+

6q2 + 2
√
2q3/2

2n
. (13)
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We devote to prove Theorem 1 in the remaining of this subsection. As the

first step, we modify the construction Ψ
F

4 [K,K,K,K] and replace the PRF
FK with a true random function F : {0, 1}n → {0, 1}n. This yields a random
function-based construction Ψ4[F,F,F,F]. By a standard hybrid argument, it
holds

AdvSPRI

Ψ
F
4 [K,K,K,K]

(q, t) ≤ AdvSPRI
Ψ4[F,F,F,F]

(q) +AdvPRF
F

(
4q, t+O(q)

)
(14)

Our main analysis, which uses the H-coefficient method, focuses on the ide-
alized construction Ψ4[F,F,F,F]. For this, we follow Sect. 2 (or [20]) and write
QI =

(
{L1R1, T1S1}, {L2R2, T2S2}, ..., {LqRq, TqSq}

)
for the transcript of ad-

versarial queries and responses, where {LR, TS} ∈ QI implies I(LR) = TS or
equivalently I(TS) = LR. This means any two distinct records {LiRi, TiSi},
{LjRj , TjSj} ∈ QI have both LiRi ̸= LjRj and LiRi ̸= TjSj . W.l.o.g. we
assume that D never asks such “redundant” queries, which yields |QI | = q.
We also assume that the number of “fixed points” in QI , i.e., {LR, TS} ∈ QI

with LR = TS, is ω.
For Ψ4[F,F,F,F], we will not use bad transcripts. Instead, we simply fix

an arbitrary attainable transcriptQI . SinceQI contains exactly ω fixed points,
the ideal world probability is

Pr
[
Tid = QI

]
= Pr

[
I

$← I(2n) : I ⊢ QI

]
=

T (22n − 2q + ω)

T (22n)
. (15)

We now lower bound the probability

Pr
[
Tre = QI

]
= Pr

[
Ψ4[F,F,F,F] ⊢ QI

]
.

To this end, we follow [14] and define a “bad” predicate Bad(F) on F, such
that the event Ψ4[F,F,F,F] ⊢ QI is equivalent with the round function F
satisfying 2q − ω distinct equations, as long as Bad(F) is not fulfilled. The
probability to have these equations is 1/2(2q−ω)n which is sufficiently close to
T (22n− 2q+ω)/T (22n). Meanwhile, using the randomness of F, upper bound
of the probability PrF

[
Bad(F)

]
could be derived. These enable lower bounding

Pr
[
Tre = QI

]
/Pr
[
Tid = QI

]
.

3.2.1 Bad predicate Bad(F)

For any F ∈ F(n, n), the predicate Bad(F) holds, if one of the following
conditions is fulfilled:

– (B-1) There exist distinct records {LiRi, TiSi}, {LjRj , TjSj} ∈ QI such
that:
– (B-11) Li ⊕ F(Ri) = Lj ⊕ F(Rj), or
– (B-12) Ti ⊕ F(Si) = Tj ⊕ F(Sj), or
– (B-13) Li ⊕ F(Ri) = Tj ⊕ F(Sj), or
– (B-14) Lj ⊕ F(Rj) = Ti ⊕ F(Si).
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– (B-2) There exists {LiRi, TiSi} ∈ QI such that LiRi ̸= TiSi, though Li ⊕
F(Ri) = Ti ⊕ F(Si);

– (B-3) There exist records {LiRi, TiSi}, {LjRj , TjSj} ∈ QI (which are not
necessarily distinct) such that either Li⊕F(Ri) ∈ {Rj , Sj} or Ti⊕F(Si) ∈
{Rj , Sj}.

First, consider any distinct records {LiRi, TiSi}, {LjRj , TjSj} ∈ QI . As
remarked in Sect. 2, it holds both LiRi ̸= LjRj and LiRi ̸= TjSj : otherwise
the two records are not distinct. Therefore,

- if Ri = Rj then Li ̸= Lj and Li ⊕ F(Ri) ̸= Lj ⊕ F(Rj);
- Otherwise, since F(Ri) and F(Rj) are uniform and independent, the prob-
ability to have Li ⊕ F(Ri) = Lj ⊕ F(Rj) is

1
2n .

Thus, the probability to have Li ⊕ F(Ri) = Lj ⊕ F(Rj) is at most 1/2n.
Similarly, the probability to have Ti ⊕ F(Si) = Tj ⊕ F(Sj) is at most 1/2n.

Regarding Li ⊕ F(Ri) versus Tj ⊕ F(Sj), if Ri = Sj then again Li ̸= Tj

since LiRi ̸= TjSj , and Li⊕F(Ri) ̸= Tj⊕F(Sj). Otherwise, F(Ri) and F(Sj)
become uniform and independent again. The probability to have Li⊕F(Ri) =
Tj ⊕ F(Sj) is thus at most 1/2n as well. Similarly, the probability to have
Lj ⊕ F(Rj) = Ti ⊕ F(Si) is at most 1/2n. Summing over the subconditions
and the

(
q
2

)
pairs of distinct records yields

Pr
[
(B-1)

]
≤ 4

2n
×
(
q

2

)
≤ 2q(q − 1)

2n
. (16)

The analysis of (B-2) is similar: for every {LiRi, TiSi} ∈ QI with LiRi ̸=
TiSi, (i) if Ri = Si then again Li ̸= Ti and Li ⊕ F(Ri) ̸= Ti ⊕ F(Si); (ii)
otherwise, F(Ri) and F(Si) are uniform and independent, and the probability
to have Li⊕F(Ri) = Ti⊕F(Si) is 1/2

n. Summing over the at most q records
yields Pr

[
(B-2)

]
≤ q/2n.

Finally, for (B-3), consider any two records {LiRi, TiSi}, {LjRj , TjSj} ∈
QI (which may be the same). Since both F(Ri) and F(Si) are uniform, the
probability to have Li ⊕ F(Ri) ∈ {Rj , Sj} or Ti ⊕ F(Si) ∈ {Rj , Sj} is clearly
4/2n. Summing over the q2 pairs of records yields Pr

[
(B-3)

]
≤ 4q2/2n. Thus,

Pr
[
F

$←− F(n, n) : Bad(F)
]
≤ 2q(q − 1)

2n
+

q

2n
+

4q2

2n
≤ 6q2

2n
. (17)

3.2.2 Further expanding

For any F ∈ F(n, n), we define an “extended transcript” as

Qout(F) =
{(

R,F(R)
)
,
(
S,F(S)

)}
{LR,TS}∈QI

.

We further define T out as the set of all such extended transcripts, i.e.,

T out =
{
Qout(F)

}
F∈F(n,n)

,
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and a set of “good” extended transcripts based on functions that do not fulfill
the bad predicate Bad(F), i.e.,

T out
good =

{
Qout(F)

}
F∈F(n,n), ¬Bad(F)

.

With these, it holds

Pr
[
Tre = QI

]
= Pr

[
F

$← F(n, n) : Ψ4[F,F,F,F] ⊢ QI

]
=

∑
Qout∈T out

PrF
[
F ⊢ Qout ∧ Ψ4[F,F,F,F] ⊢ QI

]
≥

∑
Qout∈T out

good

PrF
[
F ⊢ Qout ∧ Ψ4[F,F,F,F] ⊢ QI

]
. (18)

We will prove

PrF
[
Ψ4[F,F,F,F] ⊢ QI | F ⊢ Qout

]
=

1

2(2q−ω)n
(19)

for any “good” extended transcript Qout, with which Eq. (18) further implies

Pr
[
Tre = QI

]
≥

∑
Qout∈T out

good

PrF
[
F ⊢ Qout ∧ Ψ4[F,F,F,F] ⊢ QI

]
≥

∑
Qout∈T out

good

1

2(2q−ω)n
× PrF

[
F ⊢ Qout

]
=

1

2(2q−ω)n
× PrF

[
¬Bad(F)

]
≥

1

2(2q−ω)n
×

(
1− PrF

[
Bad(F)

])
. (20)

Probability for good functions. We now prove that any “good” extended tran-
script Qout ∈ T out

good has

PrF
[
Ψ4[F,F,F,F] ⊢ QI | F ⊢ Qout

]
=

1

2(2q−ω)n
. (21)

For this, we list the records in QI as

{L1R1, T1S1}, ..., {LqRq, TqSq}, (22)

such that LiRi = TiSi (to wit, being a “fixed point”) if and only if 1 ≤ i ≤ ω.
Given F ⊢ Qout in arbitrary, let Xi = Li ⊕ F(Ri) and Yi = Ti ⊕ F(Si) for

all {LiRi, TiSi} ∈ QI . Actually, the values X1, Y1, ..., Xq, Yq are fixed by the
records in Qout. Since Qout ∈ T out

good, X1, Y1, ..., Xq, Yq satisfy certain properties
that will be elaborated.

It can be seen that for each {LiRi, TiSi} ∈ QI with LiRi = TiSi, it holds
Xi = Yi, and

Pr
[
Ψ4[F,F,F,F](LiRi) = TiSi

]
= Pr

[
F(Xi) = Ri ⊕ Yi ∧ F(Yi) = Xi ⊕ Si

]
= Pr

[
F(Xi) = Ri ⊕Xi

]
.
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On the other hand, for each {LiRi, TiSi} ∈ QI with LiRi ̸= TiSi, it holds
Xi ̸= Yi: otherwise, the condition (B-2) is fulfilled and Qout cannot be in
T out
good. Thus

Pr
[
Ψ4[F,F,F,F](LiRi) = TiSi

]
= Pr

[
F(Xi) = Ri ⊕ Yi ∧ F(Yi) = Xi ⊕ Si

]
.

By these and following the order fixed in Eq. (22), we reach

Pr
[
F

$← F(n, n) : Ψ4[F,F,F,F] ⊢ QI | F ⊢ Qout
]

=

( ∏
i=1,...,ω

PrF
[
F(Xi) = Ri ⊕Xi | F ⊢ Qout ∧ F(Xj) = Rj ⊕Xj , j = 1, ..., i− 1

])

×
( ∏

i=ω+1,...,q

PrF
[
F(Xi) = Ri ⊕ Yi ∧ F(Yi) = Xi ⊕ Si

| F ⊢ Qout ∧ F(Xj) = Rj ⊕Xj , j = 1, ..., ω

∧ F(Xj) = Rj ⊕ Yj ∧ F(Yj) = Xj ⊕ Sj , j = ω + 1, ..., i− 1
])

. (23)

Conditioned on the event F ⊢ Qout for Qout ∈ T out
good, the 2q − ω induced

F-inputs X1, ..., Xω, Xω+1, Yω+1, ..., Xq, Yq appeared in Eq. (23) are distinct:

(i) X1, ..., Xq are distinct, otherwise (B-11) happens and Qout cannot be in
T out
good;

(ii) Yω+1, ..., Yq are distinct, otherwise (B-12) happens and Qout cannot be in
T out
good;

(iii) For any i ∈ {1, ..., q} and j ∈ {ω + 1, q}, i ̸= j, Xi and Yj are distinct,
otherwise either (B-13) happens or (B-14) happens;

(iv) For any i ∈ {ω + 1, ..., q}, Xi and Yi are distinct, otherwise (B-2) happens
(since LiRi ̸= TiSi for all i ∈ {ω + 1, ..., q}.

Conditioned on F ⊢ Qout, the 2q−ω entries F(X1), ...,F(Xq),F(Yω+1), ...,F(Yq)
remains fresh and uniformly distributed, since the condition F ⊢ Qout only
fixes the entries F(R1),F(S1), ...,F(Rq),F(Sq) which do not overlap with F(X1), ...,F(Yq)
by ¬(B-3). Therefore, we have Eq. (23)= 1/2(2q−ω)n.

3.2.3 Concluding

Gathering Eqs. (15), (17) and (18) yields

Pr
[
Tre = Q

]
Pr
[
Tid = Q

] ≥ (
1− 6q2

2n

)
×
(

1

2n

)2q−ω/
T (22n − 2q + ω)

T (22n)

=

(
1− 6q2

2n

)
×

(
2q−ω−1∏

ℓ=0

T (22n − ℓ)

2n × T (22n − ℓ− 1)

)

≥
(
1− 6q2

2n

)
×

(
2q−1∏
ℓ=0

√
22n − ℓ

2n

)

≥
(
1− 6q2

2n

)
×

(
2q−1∏
ℓ=0

√
22n − 2q

2n

)
.
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When ℓ ≤ 2q ≤ 22n, it can be proven√
22n − 2q ≥ 2n −

√
2q,

which yields

Pr
[
Tre = Q

]
Pr
[
Tid = Q

] ≥ (
1− 6q2

2n

)
×

(
2q−1∏
ℓ=0

2n −
√
2q

2n

)

≥
(
1− 6q2

2n

)
×
(
1− 2q

√
2q

2n

)
≥ 1− 6q2 + 2

√
2q3/2

2n
.

By this and by Eq. (9) and (10), we have AdvPRI
Ψ4[F,F,F,F]

(q) ≤ 6q2+2
√
2q3/2

2n ,

which plus Eq. (14) yield Eq. (13).

4 Pseudorandom Involution from Naor-Reingold

This section proves PRI security for NRF [KP ,K,K,KP ], the “mirrored” vari-
ant of the Naor-Reingold construction [30]. Recall from the Introduction that
this variant is defined as

NRF [KP ,K,K,KP ](X) := P−1
(
KP , Ψ

F

2 [K,K]
(
P (KP , X)

))
,

where F : K×{0, 1}n → {0, 1}n is a PRF and P : KP ×{0, 1}2n → {0, 1}2n is
a ε-right-universal permutation family on the 2n-bit strings (this notion was
due to [42]), meaning that

Pr
KP

$←KP

[
rightn

(
P (KP , X)

)
= rightn

(
P (KP , X

′)
)]
≤ ε

for all distinctX,X ′ ∈ {0, 1}2n. Candidates for P include pairwise-independent
permutations and 1-round Feistel built upon a pairwise independent hash func-
tion H : KP × {0, 1}n → {0, 1}n, i.e., P

(
KP , (L,R)

)
=
(
R,H(KP , R)⊕ L

)
.

Our second result focuses on the “mirrored” variant NRF [KP ,K,K,KP ].

Theorem 2 (PRI from NR) Let P be a ε-right-universal permutation family
and F : K × {0, 1}n → {0, 1}n be a PRF. Then, for the “mirrored” Naor-
Reingold NRF [KP ,K,K,KP ], it holds

AdvPRI
NRF [KP ,K,K,KP ](q, t) ≤ AdvPRF

F

(
2q, t+O(q)

)
+ 2εq2 +

2
√
2q3/2

2n
. (24)

Proof We also begin by replacing the PRF FK with a random function F :
{0, 1}n → {0, 1}n to yield the idealized Naor-Reingold NR[KP ,F,F,KP ]. It
also holds

AdvPRI
NRF [KP ,K,K,KP ](q, t) ≤ AdvPRF

F

(
2q, t+O(q)

)
+AdvPRI

NR[KP ,F,F,KP ](q). (25)
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We thus focus on the idealized NR[KP ,F,F,KP ] and use the H-coefficient
method. For this, we follow Sect. 2 and write QI =

(
{X1, Y1}, ..., {Xq, Yq}

)
for the transcript of adversarial queries and responses. We also assume that D
never asks such “redundant” queries, i.e., |QI | = q. Meanwhile, the number of
fixed points in QI , i.e., {X,Y } ∈ QI with X = Y , is ω.

We follow [11] and provide the distinguisherD, at the end of its interaction,
with the actual right-universal permutation key KP when it is interacting
with NR[KP ,F,F,KP ], or with a dummy key KP selected uniformly from KP

when it is interacting with I
$← I(2n). This is without loss of generality since

the distinguisher is free to ignore this additional information. Therefore, the
transcript is Q = (QI ,KP ).

Bad transcripts. An attainable transcript Q = (QI ,KP ) is bad, if one of the
following conditions is fulfilled:

– (C-1) There exist distinct records {Xi, Yi}, {Xj , Yj} ∈ QI such that:
– (C-11) rightn

(
P (KP , Xi)

)
= rightn

(
P (KP , Xj)

)
, or

– (C-12) rightn
(
P (KP , Yi)

)
= rightn

(
P (KP , Yj)

)
, or

– (C-13) rightn
(
P (KP , Xi)

)
= rightn

(
P (KP , Yj)

)
, or

– (C-14) rightn
(
P (KP , Yi)

)
= rightn

(
P (KP , Xj)

)
.

– (C-2) There exists {Xi, Yi} ∈ QI with Xi ̸= Yi, but rightn
(
P (KP , Xi)

)
=

rightn
(
P (KP , Yi)

)
.

First, consider any two distinct records {Xi, Yi}, {Xj , Yj} ∈ QI . As per
our convention, it holds both Xi ̸= Xj and Xi ̸= Yj . Therefore, due to the
ε-right-universality of P , the probability to have one of the following four
equalities

– rightn
(
P (KP , Xi)

)
= rightn

(
P (KP , Xj)

)
,

– rightn
(
P (KP , Yi)

)
= rightn

(
P (KP , Yj)

)
,

– rightn
(
P (KP , Xi)

)
= rightn

(
P (KP , Yj)

)
, and

– rightn
(
P (KP , Yi)

)
= rightn

(
P (KP , Xj)

)
is at most 4ε. Summing over the subconditions and the

(
q
2

)
pairs of distinct

records yields

Pr
[
(C-1)

]
≤ 4ε×

(
q

2

)
≤ 2εq(q − 1). (26)

Regarding (C-2), for every {Xi, Yi} ∈ QI with Xi ̸= Yi, the probability to
have rightn

(
P (KP , Xi)

)
= rightn

(
P (KP , Yi)

)
is ε. Thus Pr

[
(C-2)

]
≤ εq. Thus,

Pr
[
Tid ∈ Tbad

]
≤ 2εq(q − 1) + εq ≤ 2εq2. (27)

Probabilities of good transcripts. Fix a good transcript Q = (QI ,KP ). Since
QI contains ω fixed points, the ideal world probability is bounded by

Pr
[
Tid = Q

]
= Pr

[
K ′P

$← KP : K ′P = KP

]
× Pr

[
I

$← I(2n) : I ⊢ QI

]
. (28)
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We now lower bound the probability

Pr
[
Tre = Q

]
= Pr

[
K ′P

$← KP : K ′P = KP

]
× Pr

[
F

$← F(n, n) : NR[KP ,F,F,KP ] ⊢ QI

]
.

Let’s list the records in QI as

{X1, Y1}, ..., {Xq, Yq}, (29)

such that Xi = Yi if and only if 1 ≤ i ≤ ω.
Given F ∈ F(n, n) in arbitrary, let Li∥Ri = P (KP , Xi) and Ti∥Si =

P (KP , Yi) for all {Xi, Yi} ∈ QI . It can be seen that for each {Xi, Yi} ∈ QI

with Xi = Yi, it holds Ri = Si and Li = Ti, and

Pr
[
NR[KP ,F,F,KP ](Xi) = Yi

]
= Pr

[
F(Ri) = Li ⊕ Si ∧ F(Si) = Ri ⊕ Ti

]
= Pr

[
F(Ri) = Li ⊕ Si

]
.

On the other hand, for each {Xi, Yi} ∈ QI with Xi ̸= Yi, it holds Ri ̸= Si:
otherwise, the condition (C-2) is fulfilled and Q = (QI , P ) is not good. Thus

Pr
[
NR[KP ,F,F,KP ](Xi) = Yi

]
= Pr

[
F(Ri) = Li ⊕ Si ∧ F(Si) = Ri ⊕ Ti

]
.

By these and following the order fixed in Eq. (29), we reach

Pr
[
F

$← F(n, n) : NR[P,F,F, P−1] ⊢ QI

]
=

( ∏
i=1,...,ω

PrF
[
F(Ri) = Li ⊕Ri | F(Rj) = Lj ⊕Rj , j = 1, ..., i− 1

])

×
( ∏

i=ω+1,...,q

Pr
[
F(Ri) = Li ⊕ Si ∧ F(Si) = Ri ⊕ Ti

| F(Rj) = Lj ⊕Rj , j = 1, ..., ω

∧ F(Rj) = Lj ⊕ Sj ∧ F(Sj) = Rj ⊕ Tj , j = ω + 1, ..., i− 1
])

. (30)

Since Q = (QI ,KP ) is good, the induced 2q−ω F-inputs R1, ..., Rω, Rω+1,
Sω+1, ..., Rq, Sq appeared in Eq. (30) are distinct:

(i) R1, ..., Rq are distinct, otherwise (C-11) happens and Q is not good;
(ii) Sω+1, ..., Sq are distinct, otherwise (C-12) happens and Q is not good;
(iii) For any i ∈ {1, ..., q} and j ∈ {ω + 1, q}, i ̸= j, Ri and Sj are distinct,

otherwise either (C-13) happens or (C-14) happens;
(iv) For any i ∈ {ω + 1, q}, Ri and Si are distinct, otherwise (C-2) happens.

Therefore, we have Eq. (30)= 1/2(2q−ω)n, and further

Pr
[
Tre = Q

]
Pr
[
Tid = Q

] = Pr
[
F

$← F(n, n) : NR[KP ,F,F,KP ] ⊢ QI

]
Pr
[
I

$← I(2n) : I ⊢ QI

]
≥
(

1

2n

)2q−ω

× T (22n)

T (22n − 2q + ω)
≥ 1− 2q

√
2q

2n
, (31)

where the inequality has been proven in Sect. 3.2. Gathering Eqs. (25), (27)
and (31) and using Eq. (9) and (10) yield Eq. (24). ⊓⊔
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5 Conclusion

We prove pseudorandom involution (PRIs) security for two Feistel variants

with function reusing: the 4-round Feistel Ψ
F

4 [K,K,K,K] using a single key,
and the “mirrored” Naor-Reingold construction NRF [P,K,K, P−1]. To com-
plement, we also exhibit a simple attack breaking the PRIs security of 3-round
Feistel Ψ3. Besides characterizing cryptographic strength of the two Feistel
variants, this also exhibits the first PRF-to-PRI transformations.

An intriguing direction is to design pseudorandom involution “from the
scratch”, i.e., “involutory blockciphers”. Regarding provable security, it is nat-

ural to ask if the “mirrored” 5- and 6-round Feistel, i.e., Ψ
F

5 [K1,K2,K3,K2,K1],

Ψ
F

6 [K1,K2,K3,K3,K2,K1] and their further simplifications, yield PRIs with
beyond-birthday security. In addition, unlike a PRP, a PRI cannot instantiate
a PRF. It thus remains open to construct PRFs from PRIs directly, as shown
in Fig. 1. In particular, would XOR of PRIs and truncated PRIs yield PRFs?
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T.: PRINCE - A low-latency block cipher for pervasive computing applications - ex-
tended abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (Dec 2012)

10. Bozilov, D., Eichlseder, M., Knezevic, M., Lambin, B., Leander, G., Moos, T., Nikov, V.,
Rasoolzadeh, S., Todo, Y., Wiemer, F.: Princev2 - more security for (almost) no over-
head. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) Selected Areas in Cryptography
- SAC 2020 - 27th International Conference, Halifax, NS, Canada (Virtual Event), Oc-
tober 21-23, 2020, Revised Selected Papers. Lecture Notes in Computer Science, vol.
12804, pp. 483–511. Springer (2020), https://doi.org/10.1007/978-3-030-81652-0\
_19

11. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–350.
Springer, Heidelberg (May 2014)

12. Cheng, H., Heys, H.M., Wang, C.: PUFFIN: A novel compact block cipher targeted to
embedded digital systems. In: Fanucci, L. (ed.) 11th Euromicro Conference on Digital
System Design: Architectures, Methods and Tools, DSD 2008, Parma, Italy, September
3-5, 2008. pp. 383–390. IEEE Computer Society (2008), https://doi.org/10.1109/

DSD.2008.34

13. Chowla, S., Herstein, I., Moore, W.: On recursions connected with symmetric groups i.
Canadian Journal of Mathematics 3, 328–334 (1951)

14. Cogliati, B., Dodis, Y., Katz, J., Lee, J., Steinberger, J.P., Thiruvengadam, A., Zhang,
Z.: Provable security of (tweakable) block ciphers based on substitution-permutation
networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 722–753. Springer, Heidelberg (Aug 2018)

15. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: NOEKEON. In:
First open NESSIE workshop. pp. 213–230 (2000)

16. Dai, W., Hoang, V.T., Tessaro, S.: Information-theoretic indistinguishability via the
chi-squared method. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS,
vol. 10403, pp. 497–523. Springer, Heidelberg (Aug 2017)

17. Dutta, A., Nandi, M., Saha, A.: Proof of mirror theory for ξmax = 2. IEEE Trans. Inf.
Theory 68(9), 6218–6232 (2022), https://doi.org/10.1109/TIT.2022.3171178

18. Gilboa, S., Gueron, S., Morris, B.: How many queries are needed to distinguish a trun-
cated random permutation from a random function? Journal of Cryptology 31(1), 162–
171 (Jan 2018)

19. Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In: Krawczyk,
H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 370–389. Springer, Heidelberg (Aug 1998)

20. Lee, J.: Key alternating ciphers based on involutions. Des. Codes Cryptogr. 86(5), 955–
988 (2018), https://doi.org/10.1007/s10623-017-0371-3

21. Lee, J., Koo, B.: Security of the misty structure using involutions as round functions.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 93-A(9), 1612–1619 (2010),
https://doi.org/10.1587/transfun.E93.A.1612

22. Li, S., Sun, S., Li, C., Wei, Z., Hu, L.: Constructing low-latency involutory MDS matrices
with lightweight circuits. IACR Trans. Symm. Cryptol. 2019(1), 84–117 (2019)

23. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseudoran-
dom Functions. SIAM J. Comput. 17(2), 373–386 (1988)

24. Maurer, U.M., Oswald, Y.A., Pietrzak, K., Sjödin, J.: Luby-Rackoff ciphers from weak
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