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Abstract. A hybrid cryptosystem combines two systems that fulfill the
same cryptographic functionality, and its security enjoys the security of
the harder one. There are many proposals for hybrid public-key encryp-
tion (hybrid PKE), hybrid signature (hybrid SIG) and hybrid authen-
ticated key exchange (hybrid AKE). In this paper, we fill the blank of
Hybrid Password Authentication Key Exchange (hybrid PAKE).

For constructing hybrid PAKE, we first define an important class of
PAKE – full DH-type PAKE, from which we abstract sufficient proper-
ties to achieve UC security. Our full DH-type PAKE framework unifies
lots of PAKE schemes like SPAKE2, TBPEKE, (Crs)X-GA-PAKE, and
summarizes their common features for UC security.

Stepping from full DH-type PAKE, we propose two generic approaches
to hybrid PAKE, parallel composition and serial composition.
– We propose a generic construction of hybrid PAKE via parallel com-

position and prove that the hybrid PAKE by composing DH-type
PAKEs in parallel is a full DH-type PAKE and hence achieves UC
security, as long as one underlying DH-type PAKE is a full DH-type.

– We propose a generic construction of hybrid PAKE via serial com-
position, and prove that the hybrid PAKE by composing a DH-type
PAKE and another PAKE in serial achieves UC security, if either
the DH-type PAKE is a full DH-type or the other PAKE has UC
security and the DH-type PAKE only has some statistical properties.

Our generic constructions of hybrid PAKE result in a variety of hybrid
PAKE schemes enjoying different nice features, like round-optimal, high
efficiency, or UC security in quantum random oracle model (QROM).

1 Introduction

Password-based cryptosystems are widely deployed in our life, providing au-
thentication and session keys to facilitate secure communications. The task of
establishing session keys between two parties in the password only setting is ac-
complished by Password Authenticated Key Exchange (PAKE) protocols. Since
its introduction by Bellovin and Meritt [14], many efforts have been devoted to
the design and security of PAKE [13,18,7,28,24,34,3,11].
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UC Security of PAKE. There are two primary security notions for PAKE,
the game-based security in the Indistinguishability model (IND security) [13] and
the simulation-based security under the Universally Composable framework (UC
security) [18]. In contrast to the IND model which assumes uniformly distributed
passwords, the UC framework permits arbitrary correlations and distributions
for passwords and guarantees security amidst composition with arbitrary proto-
cols. Moreover, UC security, even in a relaxed form, can imply IND security as
shown in [3]. In practice, PAKE usually serves as a sub-protocol to provide ses-
sion keys for upper-level protocols, so it always works with other sub-protocols
to support flexible cryptographic functionalities. Thanks to UC security of sub-
protocols, the whole protocol composed by these sub-protocols still enjoys secu-
rity in the UC framework. Therefore, UC security is a preferred security notion
for PAKE and received lots of concerns.

UC-Secure PAKE from Traditional Assumptions. Numerous efficient UC-
secure PAKE protocols have been proposed from traditional number-theoretic
assumptions, especially over cyclic groups. Examples include SPEKE [26], SPAKE2
[7], KC-SPAKE2 [34], TBPEKE [32], and CPace [24,5], etc. These protocols fol-
low Diffie-Hellman style and can be viewed as password-aided Diffie-Hellman key
exchange protocol. Notably, most of these protocols are round-optimal [26,7,32,5],
i.e., they can be executed in a single simultaneous round, mirroring the round ef-
ficiency of Diffie-Hellman protocols. Due to its efficiency and UC security, CPace
has been chosen as one of the recommended PAKE protocols by IETF [6].

UC-Secure PAKE from Post-Quantum Assumptions. Up to now, there
are two approaches to UC-secure PAKE from post-quantum assumptions. One
approach resorts to Encrypted Key Exchange (EKE)[14], which takes passwords
as the symmetric key and encrypts the transcripts generated by KEM algorithms
or None Interactive Key Exchange (NIKE). The UC security is proved by mod-
eling the symmetric encryption/decryption as Ideal Cipher, and hence based on
the Ideal Cipher Model (ICM). In fact, the two-round PAKE schemes [33,12,9]
and the round-optimal PAKE scheme [11] from lattices all follow the EKE ap-
proach. However, the EKE approach does not apply to isogenies since there are
no instantiations of ideal cipher applying to supersingular elliptic curves yet.

Another approach [30] combines lossy public key encryption (LPKE) and key
encapsulation mechanism (KEM), and the resulting PAKE achieves UC security
in the Random Oracle model (ROM). If the underlying LPKE is upgraded to
extractable LPKE, then the UC security of the PAKE scheme can be proved
in Quantum Random Oracle model (QROM). This approach yields three-round
PAKE schemes from lattices and three-round PAKE schemes from isogenies.

The EKE approach is more efficient, but the LPKE approach is more general
and covers both lattice and isogeny-based instantiations.

We note that the PAKE scheme from lattices in [11] is round-optimal. There
do exist round-optimal PAKE schemes [4,25] from isogenies, but their securities
were only proved in IND security model, rather than in UC framework. Hence
round-optimal PAKE with UC security from isogenies is still unknown, which is
highlighted in [27]. Naturally, we have the following question:



3

Q1: Can we find a round-optimal PAKE achieving UC security from isogenies?

Hybrid PAKE from Traditional and Post-Quantum Ones. The standard-
ization efforts by NIST are pushing industries to migrate traditional cryptosys-
tems to post-quantum ones. However, the current quantum-resistant hard prob-
lems are young and not as well-understood as the traditional number-theoretic
hard problems, like factoring, RSA, CDH, DDH etc. Moreover, an imperfect
deployment of post-quantum algorithms may compromise the security of the
system. So we need more choices for quantum-resistant hard problems and cor-
responding algorithms to improve robustness. On the other hand, the practical
realization of quantum computers remains distant due to challenges like qubit
decoherence resulting from the current building materials. So the traditional
cryptosystems may retain their vitality for a considerable time. Based on the
above observations, many national agencies, like the German BSI [2] and the
French ANSSI [1], called for hybrid cryptosystems which combine both tradi-
tional and post-quantum ones: the security of hybrid cryptosystems relies on
either the traditional one or the post-quantum one. Meanwhile, hybrid cryp-
tosystems can also work in other ways: it combines two or several traditional
ones, or it combines two or several post-quantum ones. The resulting hybrid
scheme enjoys the security of the harder of the two or more, improving security
robustness.

There have already been lots of works on this topic. Hybrid KEM schemes
are proposed in [23,10], hybrid digital signature schemes in [17,15], and hybrid
authenticated key exchange (AKE) in [21]. However, up to now hybrid PAKE is
still missing. In fact, Katz and Rosenberg [27] pointed out: “there is no known
hybrid PAKE (in UC framework), let alone a generic method for creating one”
and listed the following question as future work:

Q2: Can we find a generic approach to Hybrid PAKE to achieve UC security?

It is not easy to solve Q2. For example, we cannot use EKE-based PAKE
schemes [33,12,9] from lattices directly in the hybrid PAKE. The reason is as
follows. Suppose that the LWE assumption does not hold anymore. Then the
encrypted transcript c = IC.Enc(pw,As+ e) in the EKE-based PAKE can help
the adversary implement offline dictionary attacks: A tries every possible choice
of password to recover v = IC.Dec(pw, c), and A checks whether (A,v) is an
LWE tuple. If yes, then A obtains the correct password pw. If this EKE-PAKE
is employed by a hybrid PAKE, the hybrid PAKE has already lost its security
even if its other PAKE components are UC-secure. This example suggests that
hybrid PAKE needs careful and delicate designs.
Our Contribution. We answer the above questions with a full DH-type PAKE
Framework and two generic constructions of hybrid PAKE (HPAKE), namely
parallel composition and serial composition. See Fig. 1.

(1) Full DH-Type PAKE Framework. We define full DH-type PAKE with
sufficient properties, which help prove that any full DH-type PAKE has UC
security. We unify many existing PAKE schemes in our full DH-type PAKE
framework, including SPAKE2 [7], TBPEKE [32], and (Crs)X-GA-PAKE
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[4,25]. Our framework captures the underlying principles of these schemes
and explains why they can achieve UC security.

(2) Hybrid PAKE via Parallel Composition. We show how to compose
two (or more) PAKEs in parallel to obtain HPAKE. We prove that parallel
composition of two (or many) DH-type PAKE yields a full DH-type HPAKE
as long as one of the underlying PAKE components is full DH-type. Ac-
cording to (1), the resulting full DH-type HPAKE also achieves UC security
which can rely on the security of a single underlying PAKE component.

(3) Hybrid PAKE via Serial Composition. We show how to compose two
PAKEs in serial to obtain Hybrid PAKE. We prove that the Hybid PAKE
achieves UC security, if either the first PAKE is a full DH-type one or the
second PAKE has UC security (and the DH-type only has some statistical
properties). Moreover, if the second PAKE has UC security in QROM, then
the resulting Hybid PAKE also enjoys UC security in QROM.

Our result (1) suggests that the (Crs)X-GA-PAKE schemes [4,25] are round-
optimal UC-secure PAKEs from isogenies, and hence solves the aforementioned
question Q1. Our results (2) and (3) solve the aforementioned question Q2.

According to Fig. 1, our result implies abundant hybrid PAKE schemes.
Below we list a few.

– Round-optimal Hybrid PAKE. Parallel composition of SPAKE2[7] and
(Crs)X-GA-PAKE[4,25] or parallel composition of SPAKE2, (Crs)X-GA-
PAKE and TBPEKE[32] yields a round-optimal hybrid PAKE scheme rely-
ing on either the traditional assumptions or post-quantum assumption from
isogenies in ROM.

– Efficient Hybrid PAKE. Serial composition of SPAKE2 and the recent
EKE-based PAKE CHIC[9] yields an efficient hybrid PAKE scheme rely-
ing on either the traditional assumptions or post-quantum assumption from
lattices in ROM. Recall that EKE-based PAKEs are the most efficient ones
among the existing UC-secure PAKEs from post-quantum assumptions. This
hybrid PAKE is efficient since it inherits efficiency from SPAKE2 and CHIC.

– Hybrid PAKE in QROM. Serial composition of SPAKE2 and PAKEQRO[30]
yields a hybrid PAKE scheme whose UC-security is achieved in QROM as
long as PAKEQRO has UC security in QROM.

Technique Overview. UC security considers the indistinguishability between
the real world and the ideal world for an environment Z. In the real world, Z
initiates passwords for the parties, sees the interactions between parties and the
adversary A, and obtains the session key output by parties. In the ideal world,
the simulator Sim simulates the view of Z without pw by accessing an ideal
functionality F for PAKE. For UC security, we have to design PAKE and a
corresponding simulator Sim to accomplish the following tasks:

Task I. Sim can simulate all the interaction transcripts for both passive attacks
and active attacks without passwords.
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DH-type PAKE DH-type PAKE DH-type PAKE

SPAKE2[7] (Crs)X-GA-PAKE[4,25] TBPEKE[32]

Hybrid DH-type PAKE
FbPAKELE

Thm. 1 + Thm. 2

Hybrid DH-type PAKE
FPAKELE

[11]

PAKE

EKE[33,12,9] PAKEQRO[30]

Serial Composition

Lem. 3

FPAKE

Hybrid PAKE
F leaky

PAKELE/FPAKE

Lem. 2 Lem. 4

Thm. 3(RO)

Thm. 4(QRO)
Flexiable Parallel Composition

Fig. 1: Schematic overview of constructing hybrid PAKEs via parallel composi-
tion and serial composition. Here “flexible parallel composition” means that the
DH-type PAKE components can be flexibly chosen: one, two or many. “ ”
denotes instantiations. A → B→ C denotes that A is used for C via B.

Task II. PAKE has pseudo-random session keys in case of passive attacks and
unsuccessful active attacks (i.e., attacks with wrong passwords), so Sim can
sample random keys for simulation, which is done by invoking F .

Task III. Sim can extract password in case of active attacks, and keep the
consistency of session keys between Z and A for successful active attacks
(i.e., attacks with correct passwords) with the help of access to Testpw (one
access per protocol instance) provided by F .

Next we give a high-level description of our full DH-type PAKE framework and
explain why it can achieve UC security. Then we show how to combine DH-type
PAKEs via parallel composition and how to combine a DH-type PAKE with
another PAKE via serial composition to construct hybrid PAKEs.

Full DH-Type PAKE Framework. The starting point is a DH-type PAKE
(see Fig. 6). The two parties can invoke algorithms DHInit(pw) and DHResp(pw)
to generate round messages m1 and m2 (and their state st1 and st2), and com-
pute their DH-key w by Compi(pw, st1,m1,m2) and Compr(pw, st2,m1,m2), re-
spectively. The session key is a hash value Key = H(pw,m1,m2, w). To sup-
port UC security, we equip DH-type PAKE with simulation algorithms SimInit,
SimResp, SimCompi, and SimCompr satisfying the following properties to help
construct a simulator Sim. Here we require SimCompi and SimCompr are deter-
ministic algorithms.

Perfect simulation of round messages. SimInit and SimResp should simu-
late messages m1 and m2 perfectly without any password, and hence Sim
can invoke them to accomplish task I.

One-wayness of the DH-Key in case of passive attacks. It is hard for A
to compute w given (m1,m2), so session key Key = H(pw,m1,m2, w) is
uniform in the real world due to the one-wayness of w and random oracle H.
So Sim can sample a random key to simulate Key. This accomplishes task II.

Unique password extraction in case of active attacks. To support this,
we have the following two requirements.
– Perfect simulation of DH-key. ForA’s active attack with m̃1, the DH-

key w := SimCompi(td, pw, st1,m1,m2), has identical distribution as the
output of Compi. A similar requirement applies to SimCompr as well.
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– Unique password for initiator/responder. It is hard forA to present
two pairs (pw,w) and (pw′, w′) with pw ̸= pw′ such that w = SimCompi(td,
pw, st1, m̃1,m2) and w′ = SimCompi(td, pw

′, st1, m̃1,m2). A similar re-
quirement applies to SimCompr as well.

For an active attack, Sim can extract at most one pair (pw,w) s.t. w =
SimCompi(td, pw, st1, m̃1,m2) (or w = SimCompr(td, pw, st2,m1, m̃2)) from
A’s hash queries H(pw,m1,m2, w). Testpw(pw) helps Sim to determine whether
pw is correct or not. Therefore, in case of unsuccessful active attacks (pw
is not correct), A did not query H(pw∗,m1,m2, w) with the correct pass-
word pw∗ due to the unique password property, so the session key sKey :=
H(pw∗,m1,m2, w) is uniform in the real world, which accomplishes task II.
For successful active attacks, Sim can extract the correct password and hon-
estly set the session key as sKey := H(pw∗,m1,m2, w) to keep consistency,
which accomplishes task III.

We call the DH-type PAKE satisfying the above properties a full DH-type
PAKE. The above analysis shows that full DH-type PAKE has UC security3

and enjoys the round-optimal property4. Actually, SPAKE2 [7], TBPEKE [32],
and (Crs)X-GA-PAKE [4,25] all fall into our full DH-type PAKE framework.

The full DH-type PAKE does not end with UC security. In fact, the good
property of “perfect simulation of round messages and DH-keys” implies that
the round messages contain no information about the password at all, and the
DH-key in the real world can be simulated perfectly in case of successful active
attacks. Therefore, DH-type PAKEs with this property can serve as vital compo-
nents in constructing hybrid PAKE no matter via parallel or serial compositions.
Hybrid PAKE via Parallel Composition. Given two PAKE schemes PAKE1

and PAKE2, hybrid PAKE via parallel composition means that two parties
Pi and Pj run PAKE1 and PAKE2 with password pw in parallel to obtain
their session keys k1 and k2 respectively, and compute the session key sKey :=
Hash(pw, k1, k2, trans). See the left part of Fig. 2.

If PAKE1 and PAKE2 are both DH-type PAKE, then the hybrid PAKE sets its
DH-key as w := (w(1), w(2)) and its session key as sKey := H(pw,w(1), w(2), trans),
where w(1)(resp. w(2)) is the DH-key of PAKE1(resp. PAKE2).

If one PAKE scheme, say PAKE1, is a full DH-type PAKE, and the other
PAKE scheme, say PAKE2, is DH-type PAKE with the aforementioned good
property, then we show that the hybrid PAKE via parallel composition is a
full DH-type PAKE. The simulation algorithms of hybrid PAKE are parallel
invocations of the underlying simulation algorithms of PAKE1 and PAKE2. For
example, SimCompi := (SimCompi

(1),SimCompi
(2)), where SimCompi

(1) belongs
to PAKE1 and SimCompi

(2) belongs to PAKE2.
3 Note that the adversary can make the hash query after session key generation. Ac-

cordingly, Sim extracts the password after session key generation. This UC security
is reflected by lazy-extraction of the ideal functionality FPAKELE (see Fig. 4).

4 Due to the independence of the two round messages, full DH-type PAKE is actually
a bare PAKE [11], which can emulate FbPAKELE , better than FPAKELE . See section 3.2
for details.
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– The good property of perfect simulation of round messages and DH-key for
hybrid PAKE inherits from PAKE1 and PAKE2.

– The one-wayness of w = (w(1), w(2)) follows from that of w(1).
– PAKE1’s property of unique password for initiator implies there exists at most

one (pw,w(1)) s.t. w(1) = SimCompi
(1)(td(1), pw, st

(1)
1 ,m

(1)
1 ,m

(1)
2 ). Mean-

while, the unique pw determines the unique w(2) := SimCompi
(2)(td(2), pw, st

(2)
1 ,

m
(2)
1 ,m

(2)
2 ). Consequently, there exists at most one (pw,w = (w(1), w(2)))

satisfying the above two equations, and hybrid PAKE also has the property
of unique password for initiator. A similar argument applies to the responder.

Therefore, the hybrid PAKE via parallel composition falls into the full DH-
type PAKE framework and hence achieves UC security as long as one component
is a full DH-type one and the other has the good property of “perfect simula-
tion of round messages and DH-keys”. This result can be extended to parallel
composition of multiple DH-type PAKEs.

PAKE2

Hash(k2, k3, trans)

PAKE1

Hash(k2, k3, trans)

pw pw

Key = (k1, k2) Key = (k1, k2)

k2 k1

k3

k1

k3

k2

session key session key

PAKE2

Hash(pw, k1, k2, trans)

PAKE1

Hash(pw, k1, k2, trans)

pw pw

session key session key

k1 k1 k2 k2

Pi Pj Pi Pj

Fig. 2: Parallel composition (left) & serial composition (right) for hybrid PAKE.

Hybrid PAKE via Serial Composition. Given two PAKE schemes PAKE1

and PAKE2, we propose how to construct hybrid PAKE via serial composition.
Two parties Pi and Pj first run PAKE1 with password pw to share PAKE1’s ses-
sion key Key = (k1, k2), then run PAKE2 with password k1 to share PAKE2’s
session key k3. Finally they set the hybrid PAKE’s session key as sKey :=
Hash(k2, k3, trans). See the right part of Fig. 2.

To show UC security of this hybrid PAKE, we will justify the following two
statements.
1. If PAKE1 is a full DH-type PAKE, then we show that the hybrid PAKE via

serial composition has UC security.
2. If PAKE2 scheme has UC security in (Q)ROM and PAKE1 is a DH-type

PAKE with the good property of “perfect simulation of round messages and
DH-keys”, then we show that the hybrid PAKE via serial composition has
UC security in (Q)ROM.

If PAKE1 scheme is a full DH-type PAKE, then it is UC-secure and associated
with a simulator Sim1. Next we prove the validity of statement 1.
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- Thanks to the UC security of PAKE1, Sim1 can help Sim simulate the PAKE1’s
transcript and its session key Key = (k1, k2). Then Sim can invoke PAKE2

with password k1 to generate PAKE2’s transcript and its session key k3.
Lastly, Sim simulates hybrid PAKE’s session key with sKey := Hash(k2, k3, trans).
Clearly, the transcript simulation is perfect, and hence task I is accomplished.

- In case of passive attacks or unsuccessful active attacks (with wrong pw),
Key = (k1, k2) of PAKE1 is uniform according to UC security of PAKE1.
Consequently, sKey = Hash(k2, k3, trans) is uniform as well due to the uni-
formity of k2, and hence task II is accomplished.

- In case of successful active attacks (with correct pw), Sim1 can help Sim to
extract the correct password, and keep the consistency of Key = (k1, k2),
thanks to PAKE1’s UC security again. Since k3 is derived from PAKE2 with
password k1, the input (k2, k3, trans) are consistent, so the session key
sKey = Hash(k2, k3, trans) keeps consistency to Z and A, and hence task III
is accomplished. Note that Sim1 can help Sim to extract pw in case of active
attacks, so Sim can tell the correctness of pw with the help of Testpw(pw).

For statement 2, we suppose that PAKE2 has UC security in (Q)ROM and is
associated with a simulator Sim2, and we also suppose that PAKE1 is a DH-
type PAKE with the good property of “perfect simulation of round messages
and DH-keys” with the four simulation algorithms SimInit, SimResp, SimCompi,
SimCompr. Now we construct simulator Sim for hybrid PAKE as follows.

– Sim invokes SimInit and SimResp to generate transcript of PAKE1, and in-
vokes Sim2 to generate transcript and session key k3 of PAKE2. Due to the
good property of PAKE1 and the UC security of PAKE2, Sim gives an indis-
tinguishable transcript of hybrid PAKE, and hence task I is accomplished.

– In case of passive attacks, the UC security of PAKE2 guarantees the unifor-
mity of k3, which further implies the uniformity of sKey = Hash(k2, k3, trans),
and hence task II for passive attacks is accomplished.

– Upon an active attack, due to the UC security of PAKE2, Sim2 can ex-
tract the unique password guessing k1 of PAKE2. Then Sim searches the
hash list to find (pw,m1,m2, w) s.t. (k1, k2) = H(pw,m1,m2, w), where
(m1,m2) is the transcript of PAKE1 and w is the DH-key of PAKE1 (i.e.,
w = SimCompi(td, pw, st1,m1,m2) or w = SimCompr(td, pw, st2,m1,m2)).
In this way, Sim extracts a unique guessing password pw from A’s attacks.
Then Sim resorts to Testpw(pw) to check the correctness of the password.
• In case of unsuccessful active attacks (pw is not correct), adversary A

guesses a wrong password, which leads to a wrong k1 for PAKE2. This
implies an unsuccessful active attack for PAKE2. In this case, the UC
security of PAKE2 guarantees the uniformity of k3, which further im-
plies the uniformity of sKey = Hash(k2, k3, trans). Therefore, task II for
unsuccessful active attacks is accomplished.

• In case of successful active attacks (pw is correct and hence Key = (k1, k2)
can be correctly derived from pw by Sim), Sim2 can keep the consistency
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of PAKE2’s session key k3 due to PAKE2’s UC security. Consequently, Sim
can set session key as sKey := Hash(k2, k3, trans) to keep consistency
between A and Z, and hence task III is accomplished.

Note that Sim needs to extract password pw from k1, and this extraction is real-
ized by formalizing H as a random oracle. By resorting to the online-extractable
technique [22], the extraction can also be realized in QROM where H is formal-
ized as a quantum random oracle. If PAKE2 has UC security in QROM, then the
resulting hybrid PAKE has UC security in QROM as well.

We only give a high-level description of our generic construction of hybrid
PAKE and their analysis for UC security. In fact, there are many subtleties to
deal with in the formal constructions and security proofs. We refer to sections 3
and 4 for details.

2 Preliminary

If x is defined by y or y is assigned to x, we write x := y. For µ ∈ N, define
[µ] := {1, 2, . . . , µ}. Denote by x ←$ X the procedure of sampling x from set
X uniformly at random. All algorithms y ← A(x) are probabilistic take the
security parameter 1λ as implicit input unless stated otherwise. X ≡ Y denotes
that X and Y are independent identically distributed. [a ?= b] checks whether
a = b or not, and it returns 1 if a = b and returns 0 otherwise. Retrieving records
([a], b, [c], d) means records are retrieved according to b and d. ROM and QROM
are discussed in Appendix A.1.

2.1 Password-Based Authenticated Key Exchange

A (two-round) PAKE scheme consists of four algorithms:

- Setup : It outputs a public parameter pp. All the remaining algorithms take
pp as input, and we omit it for simplicity.

- Init(pw) : It takes as input a password pw, and outputs a first-round message
m1 and a round state st.

- Resp(pw,m1) : It takes as input a password pw and the first-round message
m1, and outputs a second-round message m2 and a session key Key.

- Deri(pw, st,m2) : It takes as input a password pw, a round state st and the
second-round message m2, and outputs a session key Key.

2.2 The Universal Composable Framework

We present a concise overview of the UC framework. Fig. 3 shows the picture of
the “real world” execution of a protocol Π and the “ideal world” execution with a
simulator Sim. The environment Z represents higher-level protocols invoking Π
as a sub-protocol. The adversary A models a completely insecure network and
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continuously interacts with Z. Each party instance sends and receives messages
via A, and A can do dropping, injecting, and modifying messages at will.

In the real world, parties execute protocol instances as described in Π. They
receive their inputs (e.g. passwords, session identifier, role) from Z and send
their outputs (e.g. session key, sub-session identifier) to Z.

In the ideal world, parties become “dummy” entities, passing inputs directly
from Z to an ideal functionality F , and outputs directly from F to Z. The sim-
ulator Sim interacts with Z and F . Sim must indistinguishably simulate network
transcripts as in the real world and provide appropriate inputs to F to generate
outputs indistinguishable from those produced by real-world instances.

In a nutshell, we say protocol Π securely emulates ideal functionality F if
for any efficient adversary A, there exists an efficient simulator Sim such that no
efficient environment Z can distinguish between the actual protocol executions
in the real world and the hypothetical executions simulated in the ideal world.

If protocol Π is constructed from some subprotocol Π ′, which securely emu-
lates an ideal functionality G, then the description of Π and its UC security may
be proven in the G-hybrid model. In the G-hybrid model, Π ′ is replaced by G,
and parties and the adversary interact with G according to its specification. As
for the UC security, Sim must additionally simulate the ideal functionality of G.

Z

P1 P2 · · ·P3 Pn

A

G

Z

P1 P2 · · ·P3 Pn Sim

F

G

Fig. 3: Left: the real world RealZ,A (without dashed lines and dashbox), and the
real world RealGZ,A in G-hybrid model (with dashed lines and dashbox). Right:
the ideal world IdealZ,Sim (without dashbox) and the ideal world IdealZ,Sim[G]
in G-hybrid model (with dashbox).

2.3 PAKE in UC Framework

The original ideal functionality for PAKE was presented in [18]. Later it was
extended to a multi-session version FPAKE in [19] and a lazy-extraction version
FPAKELE in [3]. The two extended versions are shown in Fig. 4.

Unlike the single-session PAKE functionality in [18], the multi-session exten-
sion FPAKE mandates that each individual protocol instance possesses a globally
unique sub-session identifier ssid. The session identifier sid becomes a global
parameter which all parties in the protocol can rely on. See Fig. 4.

The lazy-extraction version FPAKELE was proposed by Abdalla et al. [3], and
it permits adversary A to guess a party’s password pw (at most once) even
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after the session key is generated. If the guess is correct, A acquires the party’s
session key. Otherwise, A obtains only a random key. In comparison, in the
original definition of FPAKE in [18], FPAKE does not reply A at all when A issues
a late password guess after the session key generation. Notably, in the definition
of FPAKELE in [3], the adversary is not explicitly informed whether its password
guess is correct. In this paper we also introduce a leaky variant of FPAKELE that
notifies the adversary of the password guess’s outcome. UC security with FPAKELE

and its leaky variant may be not as strong as that with FPAKE, but leaking bits of
success or failure and late test after session key generation do reflect the features
of the real world. Hence ideal functionality of FPAKELE is a reasonable one and
adopted in many works [3,5,29,11]. See Fig. 4.

Session Initialization
Upon receiving a query (NewSession, sid, P, ssid, CP, pw, role) from P:

Send (NewSession, sid, P, ssid, CP, role) to A
If this is the first NewSession query on ssid,
or this is the second NewSession query on ssid and record (CP, ssid,P, pw′) exists:

Record (P, ssid, CP, pw) and mark it fresh
Active Session Attacks

Upon receiving a query (Testpw, sid,P, ssid, pw′) from A:
If there is a fresh record (P, ssid, [CP, pw]):

If pw′ = pw: mark the record compromised and reply with “correct guess”
If pw′ ̸= pw: mark the record interrupted and reply with “wrong guess”

Lazy Password Extraction

Upon receiving a query (RegisterTest, sid,P, ssid) from A:

If there is a fresh record (P, ssid, [CP, pw]):
mark the record interrupted and add a “tested” flag.

Upon receiving a query (LateTestPwd, sid,P, ssid, pw′) from A:

If there is a completed record (P, ssid, [CP, pw]) with flag tested :

retrieve the record (P, ssid, CP, pw,Key), remove the flag tested

If pw = pw′: return Key and “correct guess” to A

Else: sample a random Key′ ←$ K, return Key′ and “wrong guess” to A
Key Generation

Upon receiving a query (NewKey, sid,P, ssid,Key∗) from A:
If there is a record (P, ssid, [CP, pw]) not marked completed:

If the record is compromised: set Key := Key∗

If the record is fresh, and there exists a completed record (CP, ssid,P, pw) which was fresh
when CP output (sid, ssid,Key′): set Key := Key′

In all other cases, sample a random Key
Finally, mark the record (P, ssid, CP, pw) completed and store (P, ssid, CP, pw,Key)

Fig. 4: The ideal functionality FPAKE for PAKE. Adding the gray part to but
deleting the part from FPAKE defines a lazy extraction version called FPAKELE .

Adding both gray and part to FPAKE defines a leaky version named F leaky
PAKELE .

Very recently, Barbosa et al. proposed the so-called Bare PAKE functionality
FbPAKE and its lazy-extraction variant FbPAKELE in [11]. We recall FbPAKE and
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FbPAKELE in Fig. 5. FbPAKE (and FbPAKELE) mainly offers two advantages over the
original PAKE functionality FPAKE.

- FbPAKE eliminates the need for pre-shared sub-session identifiers ssid and the
unique peer identifiers cid indicating counter party CP. Each party’s input to
FbPAKE includes the global parameter sid, a locally unique instance identifier
i, the party’s identifier id, and a password pw. The sub-session identifier
and peer identifier are generated as outputs of FbPAKE. This simplification
enhances practicality and reduces implementation hurdles.

- FbPAKE enables parties to reuse their session states. An instance can utilize its
existing session state to communicate with multiple other instances. FbPAKE

guarantees that reusing a single instance’s state is equivalent to running
multiple independent PAKE instances with the same password.

In FbPAKE (see Fig. 5), PassiveNewKey captures A’s passive attacks of match-
ing instances and corresponds to the NewKey query to FPAKE with a passive at-
tack. ActiveNewKey captures A’s active attacks and corresponds to the combina-
tion of Testpw and NewKey queries to FPAKE. For example, to attack an instance
(sid,P, i),A can query FbPAKE with (ActiveNewKey, sid,P, i, pw′,Key′, ssid, cpid).
If pw′ = pw, then FbPAKE sets the session key as Key′ and sets the peer identifier
of instance (sid,P, i) as cid. Otherwise, choose Key ←$ K as the session key.

3 Full DH-Type PAKE: Definition, UC security, and
Parallel Composition

We introduce the concept of full DH-type PAKE in Subsec. 3.1, and then we
prove that any full DH-type PAKE scheme achieves the bare PAKE functionality
FbPAKELE in the UC framework in Subsec. 3.2. Finally, we show how to construct
hybrid DH-type PAKE schemes by combining multiple DH-type PAKE protocols
in parallel in Subsec. 3.3.

3.1 Definition of Full DH-Type PAKE

A Diffie-Hellman type (DH-type) PAKE protocol is a two-round PAKE and
captured by five algorithms: DHSetup sets up the system; An initiator uses
DHInit(pw) to generate the first-round message; A responder uses DHResp(pw)
to generate the second-round message; The initiator uses Compi to generate the
DH-key w; The responder uses Compr to generate the DH-key w; Finally, both
the initiator and responder take the password pw, the DH-key w, and the tran-
script of the protocol as the input of a hash function to derive the session key
Key from the hash function. The DH-type is featured by the fact that the gen-
eration of second-round message does not rely on the first-round message (and
hence DH-type PAKE can be executed in a single simultaneous round). See Fig.
6 for details.
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The functionality is parameterized by a set S (initialized to be empty) and a session key space K.
Session Initialization

Upon receiving a query (NewSession, sid, i, pw, id, role ∈ {Initiator,Responder}) from P:
Send (NewSession, sid, P, i, id, role) to A
If there is no record (P, i, [pw, id]): record (P, i, [pw, id])

Key Generation
Upon receiving a query (ActiveNewKey, sid,P, i, pw′,Key′, ssid, cpid) from A:

If there is a record (P, i, [pw, id]):
If there is a record (sesact,P, i, ssid, cpid, [Key]): output (sid, i,Key, ssid, cpid) to P
Else, if ssid /∈ S :

Add ssid to S
If pw′ = pw: set Key := Key′; Else set Key ←$ K
If pw′ = ⊥: record (latetest,P, ssid, pw,Key ←$ K)
Record (sesact,P, i, ssid, cpid,Key)
Output (sid, i,Key, ssid, cpid) to P

Upon receiving a query (PassiveNewKey, sid,P, i, CP, i′, ssid) from A:
If there is a record (P, i, [pw, id]):

If there is a record (seshbc,P, i, [CP, i′], ssid, [cpid,Key]): output (sid, i,Key, ssid, cpid) to P
If there is a record (CP, i′, [pw′, id′]): set cpid := id′ and do:

If ssid /∈ S :
Add ssid to S
Key ←$ K, record (seshbc,P, i, CP, i′, ssid, cpid,Key)
Output (sid, i,Key, ssid, cpid) to P

Else if there is a record (seshbc, CP, i′,P, i, ssid, id, [Key′]):
If pw′ = pw: set Key := Key′; Else Key ←$ K
Save (seshbc,P, i,⊥,⊥, ssid, cpid,Key)
Output (sid, i,Key, ssid, cpid) to P

Late Password Test Attack
Upon receiving a query (LateTestPwd, sid,P, i, ssid, pw′) from A:

If there is a record (latetest,P, ssid, [pw,Key]):
Delete the record
If pw = pw′ then set Key′ := Key; else sample Key′ ←$ K
Output Key′ to A

Fig. 5: The ideal functionality FbPAKE for bare PAKE. Adding gray part to
FbPAKE defines a lazy extraction version of PAKE called FbPAKELE .
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Definition 1. A DH-type PAKE protocol is a two-round protocol with the fol-
lowing five algorithms.

– DHSetup: It outputs a public parameter pp and a trapdoor td. All the re-
maining algorithms take pp as input, and we omit it for simplicity.

– DHInit(pw): It takes as input a password pw, and outputs a message m1 and
a secret state st1.

– DHResp(pw): It takes as input a password pw, and outputs a message m2

and a secret state st2.
– Compi(pw, st1,m1,m2): It is a deterministic algorithm, which takes as input

a password pw, a secret state st1, and two messages m1, m2, and outputs a
DH-key w.

– Compr(pw, st2,m1,m2): It is a deterministic algorithm, which takes as input
a password pw, a secret state st2, and two messages m1, m2, and outputs a
DH-key w.

Correctness. For all pw and (pp, td)← DHSetup, it holds that

Pr

[
(m1, st1)← DHInit(pw)
(m2, st2)← DHResp(pw)

: Compi(pw, st1,m1,m2) = Compr(pw, st2,m1,m2)

]
= 1.

Setup:
Choose a hash function: H : {0, 1}∗ → {0, 1}λ, (pp, td)← DHSetup. Output crs = (pp, H).

Party P: Party CP:
(NewSession, sid, i, pw, id, Initiator): (NewSession, sid, j, pw, id′,Responder):

(m1, st1)← DHInit(pw)

w := Compi(pw, st1,m1,m2)
ssid := m1|m2|id|id′
Key := H(pw,m1,m2, id, id

′, w)
Output (Key, id′, ssid)

m1, id−−−−−−−−−−−→

m2, id
′

←−−−−−−−−−−−

(m2, st2)← DHResp(pw)
w := Compr(pw, st2,m1,m2)
ssid := m1|m2|id|id′
Key := H(pw,m1,m2, id, id

′, w)
Output (Key, id, ssid)

Fig. 6: DH-type PAKE protocol.

Definition 2 (Full DH-type PAKE). A two-round PAKE protocol is a full
DH-type PAKE, if it is a DH-type one (DHSetup,DHInit,DHResp, Compi,Compr)
associated with simulation algorithms (SimInit,SimResp,SimCompi,SimCompr)
and satisfies five properties. The simulation algorithms are defined as follows.

- SimInit(pp) : It takes as input a public parameter pp, and outputs a message
m1 and a secret state st1.

- SimResp(pp) : It takes as input a public parameter pp, and outputs a message
m2 and a secret state st2.
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- SimCompi(td, pw, st1,m1,m2) : It is a deterministic algorithm, which takes
as input a trapdoor td, a password pw, a state st1, and two messages m1,m2

and outputs a key w.
- SimCompr(td, pw, st2,m1,m2) : It is a deterministic algorithm, which takes

as input a trapdoor td, a password pw, a state st2, and two messages m1,m2

and outputs a key w.

There are five properties defined for full DH-type PAKE protocols.

1 One-Wayness of the DH-Key: The advantage function Advowkey(A) is
negligible for all PPT adversary A access to oracles O1(m

∗
1, st

∗
1, ·, ·, ·) and

O2(m
∗
2, st

∗
2, ·, ·, ·), where Advowkey(A) :=

Pr


(pp, td)← DHSetup, pw ← A(pp)

(m∗
1, st

∗
1)← DHInit(pw)

(m∗
2, st

∗
2)← DHResp(pw)

w ← AO1(m
∗
1 ,st

∗
1 ,·,·,·),O2(m

∗
2 ,st

∗
2 ,·,·,·)(pp, pw,m∗

1,m
∗
2)

: w = Compi(pw, st∗1,m
∗
1,m

∗
2)

,
O1(m

∗
1, st

∗
1, pw

′,m′
2, w

′) := [w′ ?= Compi(pw
′, st∗1,m

∗
1,m

′
2)] andO2(m

∗
2, st

∗
2, pw

′,
m′

1, w
′) := [w′ ?= Compr(pw

′, st∗2,m
′
1,m

∗
2)].

2 Perfect Simulation for Initiator: For all (pp, td) ← DHSetup, all pw,
and all m2, it holds that

(m1,m2, w) ≡ (m′
1,m2, w

′),

where (m1, st1) ← DHInit(pw), w := Compi(pw, st1,m1,m2), (m′
1, st

′
1) ←

SimInit(pp), w′ := SimCompi(td, pw, st
′
1,m

′
1,m2).

3 Perfect Simulation for Responder: For all (pp, td)← DHSetup, all pw
and all m1, it holds that

(m1,m2, w) ≡ (m1,m
′
2, w

′),

where (m2, st2) ← DHResp(pw), w := Compr(pw, st2,m1,m2), (m′
2, st

′
2) ←

SimResp(pp), and w′ := SimCompr(td, pw, st
′
2,m1,m

′
2).

4 Unique Password for Initiator: The advantage function AdvInitUnipw(A) is
negligible for all PPT adversaryA with oracle access toO1(td

∗, · · · ),O2(td
∗, · · · )

and O∗
1(td

∗, st∗1,m
∗
1, · · · ), where AdvInitUnipw(A) :=

Pr

 (pp∗, td∗)← DHSetup
(m∗

1, st
∗
1)← SimInit(pp∗)

(pw, pw′,m2, w, w′)← AO1,O2,O∗
1 (pp∗,m∗

1)

:
pw ̸= pw′

w = SimCompi(td
∗, pw, st∗1,m

∗
1,m2)

w′ = SimCompi(td
∗, pw′, st∗1,m

∗
1,m2)

,
O1(td

∗, pw, st1,m1,m2, w) := [w ?= SimCompi(td
∗, pw, st1,m1,m2))],O2(td

∗,
pw, st2,m1,m2, w) := [w ?= SimCompr(td

∗, pw, st2,m1,m2)] andO∗
1(td

∗, st∗1,m
∗
1,

pw,m2, w) := [w ?= SimCompi(td
∗, pw, st∗1,m

∗
1,m2)].

5 Unique Password for Responder: The following advantage function
is negligible for any PPT adversary A with oracle access to O1(td

∗, · · · ),
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O2(td
∗, · · · ), and O∗

2(td
∗, st∗2,m

∗
2, · · · ), where AdvRespUnipw(A) :=

Pr


(pp∗, td∗)← DHSetup

(m1, st1)← AO1,O2,O∗
2 (pp∗),

(m∗
2, st

∗
2)← SimResp(pp∗)

(pw, pw′, w, w′)← AO1,O2,O∗
2 (st1, pp

∗,m1)

:
pw ̸= pw′

w = SimCompr(td
∗, pw, st∗2,m1,m

∗
2)

w′ = SimCompr(td
∗, pw′, st∗2,m1,m

∗
2)

,
O1(td

∗, pw, st1,m1,m2, w) := [w ?= SimCompi(td
∗, pw, st1,m1,m2)], O2(td

∗,
pw, st2, m1,m2, w) := [w ?= SimCompr(td

∗, pw, st2,m1,m2)], andO∗
2(td

∗, st∗2,
m∗

2, pw, m1, w) := [w ?= SimCompr(td
∗, pw, st∗2,m1,m

∗
2)].

Note that A ≡ B in 2 and 3 can be relaxed to statistical closeness between A
and B.

3.2 UC Security of Full DH-Type PAKE

We will prove that any full DH-type PAKE has UC security in Theorem 1.

Theorem 1. Any full DH-type PAKE per Def. 2, can securely emulate FbPAKELE

and hence achieve UC security in the random oracle model.

According to Corollary 1 in [11], one can easily transform a PAKE protocol
that securely emulates FbPAKELE into a PAKE protocol that securely emulates
FPAKELE by setting pw′ := P|CP|sid|ssid|pw, where pw is the password used in
FbPAKELE and pw′ is used in FPAKELE . By applying this result to Theorem 1, we
have the following corollary.

Corollary 1. Any full DH-type PAKE can securely emulate FPAKELE when the
underlying password is replaced by pw′ := P|CP|sid|ssid|pw.

Moreover, according to [3], by adding mutual explicit authentication to the
PAKE protocol, its ideal functionality FPAKELE can be further strengthened to a
slightly relaxed FPAKE

5, and any PAKE emulating relaxed FPAKE implies perfect
forward security in the IND model.
Proof of Theorem 1. Our goal is to construct Sim and show that |Pr [RealZ,A ⇒ 1]
−Pr [IdealZ,Sim ⇒ 1]| is negligible by employing a sequence of games, denoted as
Game G0-G8. In this sequence, G0 corresponds to RealZ,A, while G8 corresponds
to IdealZ,Sim. We aim to show that these adjacent games are indistinguishable
from the view of Z.
Game G0(real world). This is the real experiment RealZ,A. In this experi-
ment, Z initializes a password for each party, sees the interactions among clients,
servers and adversary A, and also obtains the corresponding session keys of pro-
tocol instances. Here A may implement attacks like view, modify, insert, or drop
messages over the network. We have Pr [RealZ,A ⇒ 1] = Pr [G0 ⇒ 1].

5 In relaxed FPAKE, the adversary can try a late password test on an actively attacked
session (at most once), but such sessions are guaranteed to terminate with an abort.
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Game G1(simulations for parties with pw). In this game, we introduce a
simulator Sim who additionally knows passwords of all parties. Sim generates
crs := (pp, H) with (pp, td) ← DHSetup and keeps td. Then it simulates the
parties to generate transcripts for instances of the PAKE protocol, just like G0.
With the knowledge of passwords, the simulations of the behaviors of all parties
are perfect.

Moreover, Sim also simulates the random oracle H by maintaining a list LH .
For a query x on H(·), if (x, y) ∈ LH , then Sim will return y as the reply.
Otherwise, Sim will choose a random element y, record (x, y) in LH , and return
y as the reply. By the ideal functionality of random oracles, Sim’s simulation for
H is also perfect. So we have Pr [G1 ⇒ 1] = Pr [G0 ⇒ 1].

Game G2(simulations of Key without pw in case of passive attacks). G2

is the same as G1, except for Sim’s simulation of generating Key in case of passive
attacks.

– When Sim simulates the session key Key := H(pw,m1,m2, id, id
′, w), it

checks the followings. If both m1 and m2 are generated by Sim via (m1, st1)←
DHInit(pw) for instance (P, i) and (m2, st2)← DHResp(pw,m1) for instance
(CP, j) and w = Compi(pw, st1,m1,m2), then Sim samples Key ←$ K rather
than Key := H(pw,m1,m2, id, id

′, w). If (P, i) has identity id and (CP, j)
has identity id′, then Sim sets the random Key as the session key for both
(P, i) and (CP, j).

Accordingly, in G2, the generation of session keys does not need pw anymore in
case of passive attacks.

G2 is the same as G1, except there exists a pair of instance (P, i) and (CP, j)
s.t. event Badi,j happens.

Badi,j: A has issued hash query (pw,m1,m2, id, id
′, w) on oracle H satisfying

w = Compi(pw, st1,m1,m2), where (m1, st1) ← DHInit(pw) is generated by
Sim for (P, i), and (m2, st2)← DHResp(pw) is generated by Sim for (CP, j).

Define event Bad := ∨
i,j

Badi,j . We have

|Pr [G2 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Pr [Bad] ≤ ℓ2 · Pr [Badi,j ],

where ℓ is the maximal number of protocol instances. Next we show Pr [Badi,j ] ≤
Advowkey(Bow) with a security reduction: If Badij happens, we construct algorithm
Bow breaking “ 1 one-wayness of the DH-key” of the DH-type PAKE.
Bow has public parameter pp, two messages m∗

1,m
∗
2, and two oracles O1(m

∗
1,

st∗1, · · · ), O2(m
∗
2, st

∗
2, · · · ). Bow sets crs := (pp, H), (m∗

1, id) and (m∗
2, id

′) as the
output messages of (P, i) and (CP, j) respectively.

– If an initiator instance (P, i) with password pw receives a message (m′
2, îd),

Bow will search in the hash query list LH to see whether there exists (pw,m∗
1,

m′
2, id, îd, [w, k]) ∈ LH s.t. O(m∗

1, st
∗
1, pw,m

′
2, w) = 1. If yes, then Bow sets

Key := k. Otherwise, Bow randomly samples Key ←$ K and will reprogram
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H(pw,m∗
1,m

′
2, id, îd, w) := Key if A later issues hash query (pw,m∗

1,m
′
2, id,

îd, w) such that O(m∗
1, st

∗
1, pw,m

′
2, w) = 1.

– If an responder instance (CP, j) receives a message (m′
1, id), Bow uses a

similar strategy like initiator instance(P, i) to generate Key with help oracle
O2 and pw. Bow always keeps the initiator and the responder sharing the
same session key in case of passive attacks.

Bow can simulate round messages and session keys for other instances per-
fectly with help of passwords. It is easy to see Bow simulates G2 perfectly for Z.
Finally, Bow can search in LH to find a hash query record (pw,m∗

1,m
∗
2, [id, id

′, w, k])
such that O(m∗

1, st
∗
1, pw,m

∗
2, w) = 1. If such a record exists, then Badi,j happens

since O(m∗
1, st

∗
1, pw,m

∗
2, w) = 1 is equivalent to w = Compi(pw, st

∗
1,m

∗
1,m

∗
2).

Then Bow submits w as its own answer. Clearly Bow wins if Badi,j happens.
So Pr [Badi,j ] ≤ Advowkey(Bow), and we have |Pr [G2 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ ℓ2 ·
Advowkey(Bow).
Game G3(simulation of m1 without pw). G3 is the same as G2, except for
Sim’s simulation of generating m1 and w.

– Sim generates m1 by (m1, st1)← SimInit(pp) rather than (m1, st1)← DHInit(pw).
Correspondingly, Sim computes w := SimCompi(td, pw, st1,m1,m2) rather
than w := Compi(pw, st1,m1,m2) in case of active attacks (recall that in
case of passive attacks, Key is randomly chosen due to G′

2, so pw or w are
not needed at all).

By the “ 2 Perfect Simulation for Initiator” property of the full DH-type
PAKE protocol, G3 is the same as G2. So we have Pr [G3 ⇒ 1] = Pr [G2 ⇒ 1].

Game G4(simulation of m2 without pw). G4 is the same as G3, except for
the simulation of generating m2 and w.

– Sim generates m2 by (m2, st2) ← SimResp(pp) rather than (m2, st2) ←
DHResp(pw). Correspondingly, Sim computes w := SimCompr(td2, pw, st2,m1,
m2) rather than w := Compr(pw, st2,m1,m2) in case of active attacks (recall
that in case of passive attacks, Key is randomly chosen due to G2, so pw or
w are not needed at all).

By the “ 3 Perfect Simulation for Responder” property of the DH-type PAKE
protocol, G4 is the same as G3. So we have Pr [G4 ⇒ 1] = Pr [G3 ⇒ 1].

Up to now, Sim does not use pw to generate round messages m1,m2 no
matter in case of passive attacks or active attacks. Meanwhile, it does not use
pw to generate DH-keys w in case of passive attacks, but still uses pw to compute
DH-keys w in case of active attacks.
Game G5(abort if there exist multiple password guesses for initiator).
G5 is the same as G4, except Sim will abort if the following event BadI happens.

BadI: There exist an instance (P, i) and two hash queries ([pw],m1,m2, [id, id
′,

w, k]) ∈ LH and ([pw′],m1,m2, [id, id
′, w′, k′]) ∈ LH s.t. pw ̸= pw′, w =

SimCompi(td, pw, st1,m1,m2) and w′ = SimCompi(td, pw
′, st1,m1,m2), where

m1 is generated by Sim invoking (m1, st1)← SimInit(pp) for (P, i).
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We further define event BadIj as the event that BadI happens for the j-th protocol

instance. Then BadI =
ℓ
∨

j=1
BadIj . If BadI does not happen, then G5 is identical

to G4. So |Pr [G5 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ Pr [BadI] ≤
∑ℓ

j=1 Pr [BadIj ].

Now we show if BadIj happens, then we can construct a reduction algorithm
Binit breaking the “ 4 Unique Password for Initiator” property of the DH-type
PAKE protocol.
Binit obtains pp∗ and m∗

1 from its own challenger, and has access three oracles
O1(td

∗, · · · ), O2(td
∗, · · · ) and O∗

1(td
∗, st∗1,m

∗
1, · · · ), where pp∗ is generated by

DHSetup and m∗
1 is generated by (m∗

1, st
∗
1)← SimInit(pp∗). The goal of Binit is to

find two valid password guesses for initiator, i.e., to find (pw, pw′,m2, w, w
′) s.t.

w = SimCompi(td
∗, pw, st∗1,m

∗
1,m2) and w′ = SimCompi (td

∗, pw′, st∗1,m
∗
1,m2)

but pw ̸= pw′. To this end, Binit simulates G5 to Z as follows.
Binit first sets crs := (pp∗, H). For all but j protocol instances, Binit can sim-

ply generate m1 by (m1, st1)← SimInit(pp) for initiators and m2 by (m2, st2)←
SimResp(pp) for responders, just like Sim does in G5. It can also simulate the
generation of session key Key with the help of passwords and oracles O1(td

∗, · · · ),
O2(td

∗, · · · ). Let us take a responder instance (CP, i) as an example. Let pw be
the password used by (CP, i). Upon receiving a message (m1, id), Binit simulates
Key for (CP, i) as follow. It first invokes (m2, st2) ← SimResp(pp) and outputs
(m2, id

′). If there exists (pw,m1,m2, [id, id
′, w, k]) ∈ LH s.t. O2(td

∗, pw, st2,m1,
m2, w) = 1, then set Key := k. Otherwise, it randomly samples Key ←$ K. If later
A issues a hash query (pw,m1, m2, id, id

′, w) such thatO2(td
∗, pw, st2,m1,m2, w)

= 1, then Binit reprograms H(pw,m1,m2, id, id
′, w) := Key and stores (pw,m1,m2,

id, id′, w,Key) in LH . For initiator instance (not the j-th instance), Binit has a
similar simulation of Key but with the help of O1(td

∗, · · · ).
As for the j-th protocol instance, say (P∗, i∗), if P∗ is not an initiator, then

BadIj does not happen and Binit aborts. Otherwise, Binit sets m∗
1 and the iden-

tity id of (P∗, i∗) as the round message output of (P∗, i∗). Let pw∗ be the
password used by (P∗, i∗). Upon receiving (m2, id

′), Binit simulates the gen-
eration of session key as follows. If there exists (pw∗,m∗

1,m2, id, id
′, [w, k]) ∈ LH

s.t. O∗
1(td

∗, st∗1,m
∗
1, pw

∗,m2, w) = 1, then set Key := k. Otherwise, it randomly
samples Key ←$ K. If later A issues hash query (pw∗,m∗

1,m2, id, id
′, w) such that

O∗
1(td

∗, st∗2,m
∗
1, pw

∗,m2, w) = 1, then Binit reprograms H(pw∗,m∗
1,m2, id, id

′, w)
:= Key and stores (pw∗,m∗

1,m2, id, id
′, w,Key) in LH .

Finally, Binit checks whether BadIj happens: it goes through all records
([pw],m∗

1, [m2, id, id
′, w]) ∈ LH and resorts to O∗

1(td
∗, st∗1,m

∗
1, pw,m2, w) to de-

termine [w ?= SimCompi(td
∗, pw, st∗1,m

∗
1,m2)]. If there are two records (pw,m∗

1,m2,
id, id′, w, k) and (pw′,m∗

1, m2, id, id
′, w′, k′) such that pw ̸= pw′ and O∗

1(td
∗, st∗1,

m∗
1, pw,m2, w)=O∗

1(td
∗, st∗1,m

∗
1, pw

′,m2, w
′) = 1, then BadIj happens. In this

case, Binit submits (pw, pw′,m2, w, w
′) as its answer to its challenger.

Note that Binit perfectly simulates G4 for Z, just like Sim. If BadIj happens,
then Binit breaks the “ 4 Unique Password for Initiator” property. So we have
Pr [BadIj ] ≤ AdvInitUnipw(Binit) and
|Pr [G5 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ Pr [BadI] ≤

∑ℓ
j=1 Pr [BadIj ] ≤ ℓ · AdvInitUnipw(Binit).
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Game G6(abort if there exist multiple password guesses for responder).
G6 is the same as G5, except Sim will abort if the following event BadR happens.

BadR: There exist an instance (P, i) and two hash queries ([pw],m1,m2, [id, id
′, w, k])

∈ LH and ([pw′],m1,m2, [id, id
′, w′, k′]) ∈ LH s.t. pw ̸= pw′, w = SimCompr(

td, pw, st2,m1,m2) and w′ = SimCompr(td, pw
′, st2,m1,m2), where (m2, id

′)
is generated by Sim invoking (m2, st2)← SimResp(pp) for (P, i).

We further define event BadRj as the event that BadR happens for the j-th
protocol instances. With a similar argument as G5, we have
|Pr [G6 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ Pr [BadR] ≤

∑ℓ
j=1 Pr [BadRj ] ≤ ℓ·AdvRespUnipw(Bresp).

Game G7 (simulations of Key without pw in case of active attacks). G7

is the same as G6, except for the simulation of Key in case of active attacks.

– For an initiator instance (P, i), suppose that (m1, id) is the message gener-
ated by Sim for (P, i), and (m2, id

′) is a message received from A. We assume
that (m2, id

′) is not generated by Sim, and hence (m2, id
′) results from A’s

active attack. In this case, Sim searches in the hash list LH . If there exists
([pw],m1,m2, id, id

′, [w, k]) ∈ LH s.t. w = SimCompi(td, pw, st1,m1,m2) (at
most one due to G6), then Sim checks whether pw is the password used
by (P, i). if yes, then A must have implemented a successful active at-
tack on (P, i), so Sim sets Key := k. If there exists no such record (i.e.,
A’s active attack fails), Sim randomly samples Key ←$ K and reprograms
H(pw,m1,m2, id, id

′, w) := Key forA’s later hash query (pw,m1,m2, id, id
′, w)

s.t. w = SimCompi(td, pw, st1,m1,m2).
– For a responder instance (CP, j), suppose that (m2, id

′) is the message gen-
erated by Sim for (CP, j), and (m1, id) is the message received from A. We
assume that (m1, id) is not generated by Sim, and hence (m1, id) results from
A’s active attack. In this case, Sim searches in the hash list LH . If there exists
([pw],m1,m2, id, id

′, [w, k]) ∈ LH s.t. w = SimCompr(td, pw, st2,m1,m2) (at
most one due to G6), then Sim checks whether pw is the password used by
(CP, j). If yes, then Sim sets Key := k. If there exists no such record, Sim ran-
domly samples Key ←$ K and reprograms H(pw,m1,m2, id, id

′, w) := Key
forA’s later hash query (pw,m1,m2, id, id

′, w) s.t. w = SimCompr(td, pw, st2,
m1,m2).

According to the ideal functionality of random oracle and the reprogramming
technique, we know the changes are conceptual. So Pr [G7 ⇒ 1] = Pr [G6 ⇒ 1].

Note that Sim almost gets rid of using pw when dealing with A’s active at-
tacks, except that Sim still uses the party’s password pw to check the correctness
of pw′ in record (pw′, . . .) of LH so as to identify A’s successful active attacks
during the session key generation.
Game G8(integration of Sim with FbPAKELE). In the final game G8, Sim
completely gets rid of pw. More precisely, Sim accesses FbPAKELE via interfaces
PassiveNewKey, ActiveNewKey and LateTestPwd to check the correctness of pass-
words and assigns session keys for party instances. The full description of Sim is
shown in Fig. 11 in Appendix B.1.
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We consider the following two cases, covering both passive and active attacks.

Passive Attacks: In this case, Sim generates session keys via the PassiveNewKey
interface from FbPAKELE .

– For an instance (P, i) that receives a message (m1, id) or (m2, id
′) where

(m1, id) or (m2, id
′) is generated by Sim for some instance (CP, j), Sim

sets ssid := m1|m2|id|id′ and sends (PassiveNewKey, sid,P, i, CP, j, ssid)
to FbPAKELE .

According to its ideal functionality, FbPAKELE assigns a uniform session key
to instance (P, i) and keeps the session keys of (P, i) and (CP, j) consistent.
Therefore, G8 and G7 are the same in this case.

Active Attacks: In this case, Sim generates session keys via ActiveNewKey in-
terface and may reprogram the random oracle H with help of the LateTestPwd
interface.

– For an initiator instance (P, i), suppose that (m1, id) is generated by
Sim invoking (m1, st1)← SimInit(pp) for (P, i). Upon receiving message
(m2, id

′) that is generated by A, Sim resorts to FbPAKELE to generate ses-
sion key for (P, i). Sim searches in LH to find ([pw],m1,m2, id, id

′, [w,K])∈
LH s.t. w = SimCompi(td, pw, st1,m1,m2). If there exists such a record
(at most one), then Sim sends (ActiveNewKey, sid,P, i, pw,K, ssid, id′)
to FbPAKELE . If there exists no such record, then Sim sends (ActiveNewKey,
sid,P, i,⊥,⊥, ssid, id′). Later, if A issues a hash query on ([pw],m1,m2,
id, id′, [w]) for H s.t. w = SimCompi(td, pw, st1,m1,m2), then Sim sends
(LateTestPwd, sid,P, i, ssid, pw) to FbPAKELE and obtains Key′. Then Sim
programs H(pw,m1,m2, id, id

′, w) := Key′.

- For a responder instance (CP, j), suppose that (m2, id
′) is generated

by Sim invoking (m2, st2) ← SimResp(pp) for (CP, j). Upon receiving
message (m1, id) that is generated by A, Sim uses ActiveNewKey and
LateTestPwd to generate session key Key in a similar way as above.

According to the specification of ActiveNewKey, if pw in the record is the
correct password, then FbPAKELE sets Key := H(pw,m1,m2, id, id

′, w). Oth-
erwise FbPAKELE randomly samples Key ←$ K. Furthermore, Sim can repro-
gram H(pw,m1,m2, id, id

′, w) with help of LateTestPwd to keep consistence.
In this case, G8 and G7 are the same.

So we have Pr [G8 ⇒ 1] = Pr [G7 ⇒ 1].

Now that Sim completely gets rid of pw in the simulation, G8 is exactly
IdealZ,Sim. Therefore, Pr [IdealZ,Sim ⇒ 1] = Pr [G8].

Finally, by combining all the statements across G0-G8, we know that

|Pr [RealZ,A ⇒ 1]− Pr [IdealZ,Sim ⇒ 1]| ≤ ℓ·(ℓ·Advowkey(Bow)+AdvInitUnipw(Binit)+AdvRespUnipw(Bresp)).

⊓⊔
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Setup:
Choose a hash function: H : {0, 1}∗ → {0, 1}λ. For j ∈ [n]: (pp(j), td(j))← DHSetupj .
td := (td(1), . . . , td(n)). Output crs = (pp = (pp(1), . . . , pp(n)), H).

Party P: Party CP:
(NewSession, sid, i, pw, id, Initiator): (NewSession, sid, j, pw, id′,Responder):

For j ∈ [n]

(m
(j)
1 , st

(j)
1 )← DHInitj(pw)

m1 := (m
(1)
1 , . . . ,m

(n)
1 )

Parse m2 = (m
(1)
2 , . . . ,m

(n)
2 )

For j ∈ [n]

w(j) := Compij(pw, st
(j)
1 ,m

(j)
1 ,m

(j)
2 )

w := (w
(1)
1 , . . . , w

(n)
1 )

ssid := m1|m2|id|id′
Key := H(pw,m1,m2, id, id

′, w)
Output (Key, id′, ssid)

m1 = (m
(1)
1 , . . . ,m

(n)
1 ), id

−−−−−−−−−−−−−−−−−−−−−−−−−−→

m2 = (m
(1)
2 , . . . ,m

(n)
2 ), id′

←−−−−−−−−−−−−−−−−−−−−−−−−−−

For j ∈ [n]

(m
(j)
2 , st

(j)
2 )← DHRespj(pw)

m2 := (m
(1)
2 , . . . ,m

(n)
2 )

Parse m1 = (m
(1)
1 , . . . ,m

(n)
1 )

For j ∈ [n]

w(j) := Comprj(pw, st
(j)
2 ,m

(j)
1 ,m

(j)
2 )

w := (w
(1)
1 , . . . , w

(n)
1 )

ssid := m1|m2|id|id′
Key := H(pw,m1,m2, id, id

′, w)
Output (Key, id, ssid)

Fig. 7: Hybrid DH-type PAKE HPAKEDH constructed via parallel composition of
PAKE1, . . . ,PAKEn, where PAKEj = (DHSetupj , DHInitj , DHRespj , Compij , Comprj)
for j ∈ [n] are DH-type PAKEs.

3.3 Hybrid DH-type PAKE via Parallel Composition

Suppose PAKE1, . . . ,PAKEn are DH-type PAKE schemes with PAKEj = (DHSetupj ,
DHInitj , DHRespj , Compij , Comprj) for j ∈ [n]. Then we can compose PAKE1, . . . ,
PAKEn in parallel to obtain a new Hybrid DH-type PAKE scheme HPAKEDH.
The full description of scheme HPAKEDH is given in Fig. 7.

Theorem 2. The hybrid PAKE scheme HPAKEDH in Fig. 7, constructed via
parallel composition of PAKE1, . . . ,PAKEn, is a full DH-type PAKE, as long as
one component PAKEj is a full DH-type PAKE and the others {PAKEi}i∈[n]\{j}
are DH-type PAKE (not necessarily full) with statistical properties of 2 , 3 .

Proof. Clearly HPAKEDH is a DH-type one as long as PAKE1, . . . ,PAKEn are
DH-type ones. And its correctness follows from the correctness of PAKE1, . . .,
and PAKEn.

Define SimCompi and SimCompr for HPAKEDH as follows.

w ← SimCompi(td, pw, st1,m1,m2) w ← SimCompr(td, pw, st2,m1,m2)

Parse td := (td(1), . . . , td(n)) Parse td := (td(1), . . . , td(n))

Parse st1 := (st
(1)
1 , . . . , st

(n)
1 ) Parse st2 := (st

(1)
2 , . . . , st

(n)
2 )

Parse m1 = (m
(1)
1 , . . . ,m

(n)
1 ) Parse m1 = (m

(1)
1 , . . . ,m

(n)
1 )

Parse m2 := (m
(1)
2 , . . . ,m

(n)
2 ) Parse m2 := (m

(1)
2 , . . . ,m

(n)
2 )

w(j) = SimCompij(td
(j), pw, st

(j)
1 ,m

(j)
1 ,m

(j)
2 ) w(j) = SimComprj(td

(j), pw, st
(j)
2 ,m

(j)
1 ,m

(j)
2 )

Return w = (w(1), . . . , w(n)) Return w = (w(1), . . . , w(n))
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Now we prove that HPAKEDH is a full DH-type one by showing that HPAKEDH

has properties of 1 - 5 .
Given the statistical properties 2 3 of {PAKEj}j∈[n], hybrid arguments across

n components guarantee that HPAKEDH has the properties of 2 and 3 .
Suppose a single component, say PAKEj , has the properties of 1 , 4 and

5 . Then property “ 1 One-wayness of DH-Key” of PAKEj implies that w(j)

is hard to compute, which further implies that w := (w
(1)
1 , . . . , w

(n)
1 ) is hard to

compute for PPT adversaries as well. Therefore HPAKEDH has the property of 1 .
Property “ 4 unique password for Initiator” of PAKEj implies there exists at most
one pair (pw,w(j)) satisfying w(j) = SimCompij(td

(j)∗, pw, st
(j)∗
1 ,m

(j)∗
1 ,m

(j)
2 ).

Note that each w(i) is determined by pw when m
(i)
1 and m

(i)
2 are fixed. This

implies that there exists at most one pair (pw,w = (w(1), . . . , w(n)) such that
w(i) = SimCompij(td

(i)∗, pw, st
(i)∗
1 ,m

(i)∗
1 ,m

(i)
2 ) holds for all i ∈ [n]. Therefore,

HPAKEDH has the property of 4 . With a similar argument, HPAKEDH has the
property of 5 .

By Theorem 1 and Corollary 1, the hybrid PAKE scheme HPAKEDH in Fig.
7 is a full DH-type PAKE and can securely emulates both FbPAKELE and FPAKELE .

4 Hybrid PAKE via Serial Composition of DH-Type
PAKE and Other PAKE

Given a DH-type PAKE scheme PAKE1 = (DHSetup,DHInit,DHResp,Compi,Compr)
and a (two-round) PAKE scheme PAKE2 = (Setup, Init,Resp,Deri), we show how
to use them to construct a Hybrid PAKE scheme HPAKE via serial composition
of PAKE1 and PAKE2. In the serial composition, PAKE1 will obtain its session
key k1|k2, and then the first part k1 is used as the password of PAKE2. Next,
PAKE2 will obtain its session key k3. Finally, the session key of HPAKE is com-
puted by the hash value of the second part k2 of PAKE1’s session key, PAKE2’s
the session key, and the transcript of HPAKE, as shown in Fig. 8.

Let FPAKE1LE be the (lazy extraction version of) ideal functionality of PAKE1

providing interfaces NewSession1, Testpw1, RegisterTest1, LateTestPwd1 and NewKey1.
Let FPAKE2 be the ideal functionality of PAKE2 providing interfaces NewSession2,
Testpw2, RegisterTest2, LateTestPwd2 and NewKey2.

Let F leaky
PAKELE denote the leaky and lazy extraction version of ideal functionality

of HPAKE providing interfaces NewSession, Testpw, RegisterTest, LateTestPwd,
and NewKey, and FPAKE denote the normal ideal functionality of HPAKE, pro-
viding interfaces NewSession, Testpw, and NewKey.

In the following theorems, we prove the UC security of HPAKE can rely on
either the UC security of PAKE1 or the UC security of PAKE2.

Theorem 3. The PAKE scheme HPAKE in Fig.8 securely emulates F leaky
PAKELE if

the underlying PAKE1 = (Setup,DHInit,DHResp,Compi,Compr) securely emu-
lates FPAKE1LE , and hash function G works as random oracles.
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Setup:
Choose two hash functions H : {0, 1}∗ → {0, 1}2λ, G : {0, 1}∗ → {0, 1}λ
(pp, td)← DHSetup, pp′ ← Setup, crs := (pp, pp′, H,G)

Party Pi: Party Pj :
(NewSession, sid,Pi, ssid,Pj , pw, Initiator): (NewSession, sid,Pj , ssid,Pi, pw,Responder):

(m1, st1)← DHInit(pw)

w := Compi(pw, st1,m1,m2)

k1|k2 := H(pw,m1,m2, w) ∈ {0, 1}2λ
(m′

2, k3)← Resp(k1,m
′
1)

trans := (m1,m2,m
′
1,m

′
2)

Key := G(k2, k3, trans)

m1−−−−−−−−→

m2,m
′
1←−−−−−−−−−−−

m′
2−−−−−−−−→

(m2, st2)← DHResp(pw)
w := Compr(pw, st2,m1,m2)

k1|k2 := H(pw,m1,m2, w) ∈ {0, 1}2λ
(m′

1, st
′)← Init(k1)

k3 := Deri(k1, st
′,m′

1,m
′
2)

trans := (m1,m2,m
′
1,m

′
2)

Key := G(k2, k3, trans)

Fig. 8: Our Hybrid PAKE scheme HPAKE constructed via serial composition of
a DH-type PAKE1 and another PAKE2. Here we use a two-round PAKE2 for
simplicity, but any (multi-round) PAKE2 works as well.

Theorem 4. The PAKE scheme HPAKE in Fig.8 securely emulates FPAKE if the
underlying PAKE2 = (Setup, Init,Resp,Deri) securely emulates FPAKE, PAKE1 =
(Setup,DHInit,DHResp,Compi,Compr) is a DH-type PAKE satisfying statistical
properties 2 3 as per Def. 2, and hash functions H,G are (quantum-accessible)
random oracles.

Proof of Theorem 3. The proof sketch has shown in technique overview in section
1. So we move the full proof in Appendix C to save space.

Setup:
Choose two hash functions H : {0, 1}∗ → {0, 1}2λ, G : {0, 1}∗ → {0, 1}λ
(pp, td)← DHSetup, pp′ ← Setup, crs := (pp, pp′, H,G)

Party Pi: Party Pj :
(NewSession, sid,Pi, ssid,Pj , pw, Initiator): (NewSession, sid,Pj , ssid,Pi, pw,Responder):

(m1, st1)← DHInit(pw)

w := Compi(pw, st1,m1,m2)

k1|k2 := H(pw,m1,m2, w) ∈ {0, 1}2λ

m1−−−−−−−−→

m2←−−−−−−−−

(m2, st2)← DHResp(pw)
w := Compr(pw, st2,m1,m2)

k1|k2 := H(pw,m1,m2, w) ∈ {0, 1}2λ

(sid,Pi, ssid,Pj , k1,Responder) −→

k3 ←−
FPAKE2

←− (sid,Pj , ssid,Pi, k1, Initiator)

−→ k3

sKey := G(k2, k3, trans) sKey := G(k2, k3, trans)

Fig. 9: HPAKE in FPAKE2-hybrid model.

Proof of Theorem 4. We will prove it in the FPAKE2-hybrid model, where the un-
derlying PAKE2 protocol is replaced by FPAKE2, as shown in Fig. 9. Our goal is to
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construct a simulator Sim and show that
∣∣∣Pr [RealFPAKE2

Z,A ⇒ 1
]
− Pr

[
IdealZ,Sim[FPAKE2] ⇒ 1

]∣∣∣
is negligible by employing a series of games.
Game G0(real world). This is the RealFPAKE2

Z,A world where adversary A can
access ideal functionality FPAKE2 via interfaces like Testpw2 and NewKey2.
Game G1(simulating each party with password pw). In this game, we
introduce a simulator Sim who additionally knows passwords of all parties. Sim
generates crs := (pp, pp′, H,G) with (pp, td) ← DHSetup and pp′ ← Setup and
keeps td. Then with help of passwords, it simulates the parties to generate tran-
scripts (m1,m2) and session keys sKey for instances of the HPAKE protocol, just
like G0. Sim also simulates the underlying FPAKE2 by itself with passwords. With
the knowledge of passwords, Sim’s simulations of FPAKE2 and the behaviors of all
parties are perfect. We have Pr [G1 ⇒ 1] = Pr [G0 ⇒ 1].

Game G2(simulating transcripts m1,m2 without pw). G2 is the same as
G1, except for Sim’s simulation of m1 and m2.

– For an initiator instance (Pi, ssid), Sim generates m1 by (m1, st1)← SimInit(pp)
rather than (m1, st1) ← DHInit(pw). Correspondingly, when receiving the
second message m2, Sim computes w := SimCompi(td, pw, st1,m1,m2) rather
than w := Compi(pw, st1,m1,m2).

– For a responder instance (Pj , ssid), upon receiving a first-round message
m1, Sim generates m2 by (m2, st2)← SimResp(pp) rather than (m2, st2)←
DHResp(pw). Correspondingly, Sim computes w := SimCompr(td, pw, st2,m1,
m2) rather than w := Compr(pw, st2,m1,m2).

By the “ 2 Perfect Simulation for Initiator” and “ 3 Perfect Simulation for
Responder” properties of the DH-type PAKE1, G2 is identical to G1. So we have

Pr [G2 ⇒ 1] = Pr [G1 ⇒ 1].

Game G3(resorting to online-extractable QRO simulator S for H). In
G3, to simulate random oracle H, Sim invokes the random oracle simulator S =
(S.RO,S.E) as per Theorem 5 (See Appendix A.2) with respect to function
f : f(x, y1|y2) := y1, and it also extracts the hash query from the value k1.
More precisely, Sim invokes S.RO(x) to simulate the quantum random oracle
H. For each of A’s queries (Testpw2, sid,P, ssid, k1) to the simulated FPAKE2,
Sim invokes S.E(k1) to extract (p̂w, m̂1, m̂2, ŵ).

The only difference between G3 and G2 is the simulation of oracle H. We
define the function f(x, y1|y2) := y1 where y1|y2 ∈ {0, 1}2λ. It is easy to see
Γ (f) = 2λ and Γ ′(f) = 2λ (c.f. Def. 3 in Appendix A.2). The invocation of
S.E(k1) corresponds to Sim conducting measurements via S.E(k1) w.r.t. f .

Since Sim invokes S.E at most ℓ times (limited by the number of instances),
and A issues at most q quantum random oracle queries, Theorem 5(a) shows
that |Pr [G3 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ 8ℓ(q+ℓ)√

2λ−1
.

Game G4(answer Testpw2 with help of online-extractable QRO simula-
tor S). In G4, Testpw2 is answered by Sim with help of S = (S.RO,S.E).
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– Upon receiving the (Testpw2, sid,P, ssid, k′1) query from A to the under-
lying FPAKE2, Sim invokes S.E(k′1) to extract (p̂w, m̂1, m̂2, ŵ). If p̂w = pw,
(m̂1, m̂2) are transcripts sent and received by (P, ssid), and ŵ = SimCompi(td,
p̂w, st1, m̂1, m̂2) or ŵ = SimCompr(td, p̂w, st2, m̂1, m̂2), then Sim returns
“correct guess” to A. Otherwise, Sim returns “wrong guess” to A.

Recall that in G3, for a (Testpw2, sid,P, ssid, k′1) query, Sim computes w :=
SimInit(td, pw, st1,m1,m2) or w := SimResp(td, pw, st2,m1,m2), and k1|k2 :=
H(pw,m1,m2, w), where pw is the correct password of (P, ssid) and m1,m2 are
the messages sent and received by (P, ssid). If k′1 = k1, then Sim returns “correct
guess”. Otherwise, Sim returns “wrong guess”.

If (p̂w, m̂1, m̂2, ŵ) = (pw,m1,m2, w), G4 is the same as G3. Now we consider
the case of (p̂w, m̂1, m̂2, ŵ) ̸= (pw,m1,m2, w). Given k1|k2 := H(pw,m1,m2, w),
we further consider the following two cases.

Case I: (p̂w, m̂1, m̂2, ŵ) ̸= (pw,m1,m2, w) and k′1 = k1. This case is bounded
by Theorem 5(b).

Case II: (p̂w, m̂1, m̂2, ŵ) ̸= (pw,m1,m2, w) and k′1 ̸= k1. In this case, Sim in
G3 must return “wrong guess”. If Sim in G4 returns “correct guess”, it must
hold p̂w = pw and (m̂1, m̂2) = (m1,m2). Recall that SimCompi and SimCompr
are deterministic functions, so ŵ = w, which is contradictory to (p̂w, m̂1, m̂2,
ŵ) ̸= (pw,m1,m2, w). Therefore, G4 is the same as G3 in this case.

According to Theorem 5(b), we have

|Pr [G4 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ 8ℓ(q + 1)√
2λ−1

+
40e2(q + ℓ+ 1)3 + 2

2λ
.

Game G5(simulating session keys sKey). G5 is the same as G4, except for
the simulation of session keys sKey.

– Sim checks whether A ever issued a (Testpw2, sid,P, ssid, k′1) query to the
underlying FPAKE2 and obtained “correct guess”.
(1) If yes, then Sim computes sKey := G(k2, k3, trans) just like G4.
(2) If no and there exists a party CP with session key sKey′ that shares
the same m1,m2, k3, then Sim sets sKey := sKey′. Due to the correctness of
HPAKE, G5 and G4 are the same in this case.
(3) If no and no other instance shares m1,m2, k3 with (P, ssid), Sim ran-
domly samples sKey ←$ K.

Note that (1) means a successful active attack, (2) means a passive attack,
and (3) means a passive attack or an unsuccessful active attack.

Recall that in case (3), we have sKey := G(k2, k3, trans) in G4. So G5 and G4

are the same except case (3) happens. According to the specification of FPAKE2,
FPAKE2 will output a random k3 ←$ {0, 1}λ in case (3). Then Lemma 1 guarantees
that the function G(·, k3, ·) is a pseudo-random function in QROM, except with
probability 2q√

2λ
. Then different transcripts trans in different instances make sure
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that the outputs of quantum random oracle G(k2, k3, trans) are independent and
uniformly distributed in case (3). So |Pr [G5 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ 2q√

2λ
.

Game G6(Integration of Sim with FPAKE). Up to now only Sim’s simulation
of transcripts (m1,m2) does not use password. In G6, Sim will completely get
rid of passwords. It will use interfaces of FPAKE (in the ideal world for HPAKE)
to answer A’s Testpw2 and NewKey2 queries to FPAKE2 without using passwords.
As long as no password is needed for answering Testpw2 query to FPAKE2, Sim
does not need passwords for generating session key sKey either (see G5).

– For (NewSession, sid,P, ssid, CP, ·, role) from P, if this is the first NewSession
query on ssid, or this is the second NewSession query on ssid and (CP, ssid,P, ·)
exists, then Sim records (P, ssid, CP, ·) and marks it fresh.

– For A’s query (Testpw2, sid,P, ssid, k′1) to FPAKE2, if there is a fresh record
(P, ssid, [CP, ·]), Sim first invokes S.E(k′1) to extract (p̂w, m̂1, m̂2, ŵ). If
(m̂1, m̂2) are not transcripts sent and received by (P, ssid), or ŵ ̸= SimCompi(
td, p̂w, st1, m̂1, m̂2) and ŵ ̸= SimCompr(td, p̂w, st2, m̂1, m̂2), then Sim marks
the record interrupted and replies with “wrong guess” to A. Otherwise,
Sim issues query (Testpw, sid,P, ssid, p̂w) to FPAKE. If FPAKE returns “cor-
rect guess”, then Sim marks the record as compromised and replies with
“correct guess” to A. Otherwise, Sim marks the record as interrupted and
replies with “wrong guess” to A.

– ForA’s query (NewKey2, sid,P, ssid,Key∗) to FPAKE2, if record (P, ssid, [CP, ·])
is not marked completed, do the followings.
• If the record is compromised, Sim sets k3 := Key∗, computes sKey∗ =

G(k2, k3, trans).

• In all other cases, Sim sets sKey∗ = ⊥.
Sim issues (NewKey, sid,P, ssid, sKey∗) to FPAKE and marks the record (P,
ssid, CP, ·) completed.

According to the specification of FPAKE, for (Testpw, sid,P, ssid, p̂w) query,
FPAKE returns “correct guess” iff p̂w = pw. Therefore, Sim’s simulation of answer
to Testpw2 in G6 is the same as that in G5, but without pw. At the same time, if
A’s Testpw2 query results in “correct guess”, then the instance is compromised. In
G6, we have sKey∗ = G(k2, k3, trans) for compromised instance. Accordingly, for
(NewKey, sid,P, ssid, sKey∗) query, FPAKE will set the session key of (P, ssid)
with sKey := sKey∗ = G(k2, k3, trans). For uncorrupted (P, ssid), FPAKE will
either keep sKey consistent between partnered instances in case of passive attacks
or sample a random key as the session key sKey in other cases. Therefore, the
simulation of session keys sKey in G6 is also identical to G5. So Pr [G6 ⇒ 1] =
Pr [G5 ⇒ 1].

Now Sim can simulate the whole experiment only with access to the ideal
functionality FPAKE and does not need passwords anymore. The full description of
simulator Sim is shown in Fig. 13 in Appendix B.3. G6 is exactly IdealZ,Sim[FPAKE2].
Therefore, Pr

[
IdealZ,Sim[FPAKE2] ⇒ 1

]
= Pr [G6 ⇒ 1].
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Finally, by combining all the statements across G0-G6, we have∣∣∣Pr [RealFPAKE2

Z,A

]
− Pr

[
IdealZ,Sim[FPAKE2]

]∣∣∣ ≤ 16ℓ(q + ℓ)√
2λ−1

+
40e2(q + ℓ+ 1)3 + 2

2λ
+

2q√
2λ

.

5 Instantiations

We show that PAKE schemes SPAKE2[7], CrsX-GA-PAKE[4,25], and TBPEKE[32]
are all fall into the framework of full DH-type PAKE. Due to short of space, we
put the formal proofs in Appendix D. Recall that Abdalla et al. proved that
SPAKE2 and TBPEKE can securely emulate FPAKELE in [3]. In comparison, our
results are stronger since we prove that SPAKE2, TBPEKE, and CrsX-GA-
PAKE can securely emulate a better ideal functionality FbPAKELE . Moreover, we
give the first security proof for CrsX-GA-PAKE in the UC framework.

We also have lots of choices for PAKE schemes from post-quantum assump-
tion, like those in [33,12,9,30]. These PAKE schemes securely emulate FPAKE.

Different choices of full DH-type PAKEs and UC-secure PAKE via parallel
composition or serial composition result in different hybrid PAKE schemes re-
flecting different features. We list a few of them, whose UC security can either
rely on traditional assumptions or post-quantum assumptions.
•Round-Optimal Hybrid PAKE. Composing SPAKE2 and CrsX-GA-PAKE
in parallel results in a round-optimal hybrid PAKE based on assumptions over
groups or isogenies.
• Efficient Hybrid PAKE. Composing SPAKE2 and the recent EKE-based
PAKE scheme CHIC [9] in serial results in an efficient three-round hybrid PAKE
scheme based on assumptions over groups or lattices.
• Hybrid PAKE in QROM. Composing SPAKE2 and PAKEQRO[30] in serial
results in a four-round hybrid PAKE scheme, and it has UC security in QROM
as long as the underlying PAKEQRO is.
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Appendix

A More Preliminaries

A.1 ROM and QROM

In the Random Oracle Model (ROM), a cryptographic hash function H : X → Y
is idealized as a truly random function RF : X → Y. And any adversary needs
to query H on inputs x ∈ X to learn the hash values H(x).

In the quantum world, a quantum algorithm A can perform superposition
queries to the random oracle H, and then oracle H behaves as a unitary operation
|x⟩|y⟩ 7→ |x⟩|y⊕H(x)⟩. In this case, H becomes a quantum random oracle (QRO).
The QRO model supports classical queries x on H, and this can be formalized as
setting query register and output register to be |x⟩|0⟩, and measuring the output
register after the unitary operation |x⟩|0⟩ 7→ |x⟩|0⊕H(x)⟩.

A.2 Useful Lemmas in QROM

We recall the online-extractable technique [22] and a corollary [16] of O2H
Lemma.

Definition 3 ([22]). Let f : X ×{0, 1}n → C be an arbitrary fixed function. De-
fine Γ (f) := max

x,c
|{y|f(x, y) = c}| and Γ ′(f) := max

x ̸=x′,y′
|{y|f(x, y) = f(x′, y′)}|.

Theorem 5 (Summary of Corollary 4 in [22]). For any fixed deterministic
function f : X ×{0, 1}n → C and a random oracle RO, there exists an extractable
RO-simulator S = (S.RO,S.E) satisfying the following properties.

– S.RO simulates random oracle RO.
– S.E extracts element x̂ ∈ X from element t ∈ C.
– Let x = (x1, x2, ..., xℓ) be a randomized classical values, and W be a quantum

register with a state ρxW that depends on x. Let δ([x,W ]G,, [x,W ]G′) be the
trace distance of the respective density matrices in game G and in game
G′. For any quantum algorithm A that outputs t = (t1, ..., tℓ) in (possibly)
different rounds, and outputs x ∈ X ℓ and W at the end of the run, if A
makes q (quantum) queries in total, define RO(x) := (RO(x1), ...,RO(xℓ))
and S.RO(x) := (S.RO(x1), ...,S.RO(xℓ)) then
(a) δ([t,x,RO(x),W ]ExpROA , [t,x, S.RO(x),W ]ExpSA) ≤ 8ℓ(q + ℓ)

√
2Γ (f)/2n,

(b) Pr
[
∃i : xi ̸= x̂i ∧ f(xi,S.RO(xi)) = ti in ExpSA

]
≤ 8ℓ(q + 1)

√
2Γ/2n + 40e2(q+ℓ+1)3Γ ′(f)+2

2n ,

where ExpROA and ExpSA are described in Fig. 10.
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ExpROA :

(t, st)← ARO

(x,W )← ARO(st)
Output (t,x,W )

ExpSA
(t, st)← AS.RO

(x̂1, ..., x̂ℓ)← (S.E(t1), ...,S.E(tℓ))
(x,W )← AS.RO(st)
Output (t,x,W )

Fig. 10: The original experiment ExpROA executed by A equipped with RO, and
simulated experiment ExpSA executed by A equipped with S = (S.RO,S.E).

Lemma 1 (PRF from QROM, Corollary 1 from [16]). Let G : K×X → Y
be a quantum-accessible random oracle. The function f(k, x) := G(k|x) can be
used as a quantum-accessible PRF with a key k ←$ K. More precisely, for any
quantum algorithm A making at most q queries to G and any number of queries
to oracle f(k, ·) such that f(k, x∗) is never queried, its advantage satisfies

AdvpsPRF(A) :=
∣∣∣Pr [k ←$ K, x∗ ← Af(k,·); y := f(k, x∗) : Af(k,·)(x∗, y)⇒ 1

]
−Pr

[
k ←$ K, x∗ ← Af(k,·); y ←$ Y : Af(k,·)(x∗, y)⇒ 1

]∣∣∣ ≤ 2q√
|K|

.

A.3 Computational Assumptions

Definition 4 (Gap-CDH Assumption[31]). The Gap-CDH Assumption holds
over a group G of prime order q and generator g, if for any PPT adversary A,

AdvGap-CDH
G,g,q (A) := Pr

[
x, y ←$ Zq, Z ← ADDH(·,·,·,·)(gx, gy) : Z = gxy

]
= negl(λ),

where DDH(h, hx, hy, Z) := [Z ?= hxy].

Definition 5 (Gap-SDH Assumption[32]). The Gap Simultaneous Diffie-
Hellman (Gap-SDH) assumption holds over a group G of prime order q and
generator g, if for any PPT adversary A,

AdvGap-SDH
G,g,q (A) := Pr

[
X ←$ G, a, b ←$ Zq,

(Y ̸= 1, R, S)← ADDH(·,·,·,·)(X,Xa, Xb)
:
R = Y 1/a

S = Y 1/b

]
,

where DDH(h, hx, hy, Z) := [Z ?= hxy]

Cryptographic Group Actions. We will focus on group actions where G is
abelian and the action is regular. We recall the notion of restricted effective group
actions (REGA) as follows.

Definition 6 (Restricted Effective Group Action [8]). A group action
(G,X , ⋆) is a restricted effective group action (REGA) if properties 1-5 are sat-
isfied.
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1. The group G is generated by a set {g1, . . . , gn}.
2. The group G is finite and n = poly(log |G|).
3. The set X is finite and there exist PPT algorithms for membership testing

and for computing unique representation of set element.
4. There exists a distinguished element x̃ ∈ X , called the origin, such that its

representation is known.
5. There exists an efficient algorithm that given gi in the generating set and

any x ∈ X , outputs gi ⋆ x and g−1
i ⋆ x where i ∈ [n].

With a REGA, we can use the generating set to approximate the random sam-
pling process of g ←$ G. The regularity of the (G,X , ⋆) enables an efficient algo-
rithm to sample x ←$ X uniformly. We can instantiate REGA with isogeny-based
group actions CSIDH [20].

Definition 7 (GA-GapCDH Assumption[4]). The Group Action Gap Com-
putation Diffie-Hellman (GA-GapCDH) holds over a REGA = (G,X , ⋆, x̃), if for
any PPT adversary A, AdvGA-GapCDH

REGA (A) = negl(λ), where

AdvGA-GapCDH
REGA (A) := Pr

[
(g, h) ←$ G, z ← AGA-DDH(·,·,·,·)(g ⋆ x̃, h ⋆ x̃) : z = (g · h) ⋆ x̃

]
,

and GA-DDH(x, u ⋆ x, s ⋆ x, z) := [z ?= (u · s) ⋆ x].

Definition 8 (DSim-GA-GapCDH Assumption[4]). The Double Simulta-
neous GA-GapCDH (DSim-GA-GapCDH) assumption holds over a REGA =
(G,X , ⋆, x̃), if for any PPT adversary A, AdvDSim-GA-GapCDH

REGA (A) = negl(λ), where

AdvDSim-GA-GapCDH
REGA (A) := Pr


(g0, g1, h0, h1)←$ G4

(x0, x1) := (g0 ⋆ x̃, g1 ⋆ x̃)
(y0, y1) := (h0 ⋆ x̃, h1 ⋆ x̃)

(z, z0, z1, z2, z3)← AGA-DDH(·,·,·,·)(x0, x1, y0, y1)

:

z0 = (g−1
0 h0) ⋆ z

z1 = (g−1
0 h1) ⋆ z

z2 = (g−1
1 h0) ⋆ z

z3 = (g−1
1 h1) ⋆ z

,
and GA-DDH(x, u ⋆ x, s ⋆ x,w) := [w ?= (u · s) ⋆ x].

Remark 1. In our paper, we use the gap-variants of computational assumptions,
which is slightly stronger than the assumptions used in [5,4,25].
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B Descriptions of Simulators.

B.1 Description of Simulator in Theorem 1

Initialization
Sim maintains lists LH , T , sent, recv (all initialized to be empty) in the simulation
• LH : store records to simulate random oracles H.
• T : store RO records to reprogram.
• sent : store messages sent by party instances
• recv : store messages received by party instances

Sim invokes (pp, td)← DHSetup
Sim outputs crs := (pp, H) and stores td
PAKE Sessions
on (NewSession, sid,P, i, id, role) from FbPAKELE :

If role = Initiator: (m, st)← SimInit(pp)
Else role = Responder: (m, st)← SimResp(pp)
sent := sent ∪ {(P, i,m, st, id, role)}, send (m, id) from P to A.

on (m′, id′) from A as a message from CP to (P, i):
Retrieve the record (P, i, [m, st, id, role]) ∈ sent, ignore message if no such record exists
If role = Initiator: set (m1, id1,m2, id2) := (m, id,m′, id′)
Else role = Responder: set (m1, id1,m2, id2) := (m′, id′,m, id)
Set ssid := m1|m2|id1|id2
If ∃([CP, j, ]m′, [st′], id′, role′ ̸= role) ∈ sent:

Send (PassiveNewKey, sid,P, i, CP, j, ssid) to FbPAKELE

Else If ∃([pw],m1,m2, id1, id2, [w, k]) ∈ LH :
If role = Initiator ∧ w = SimCompi(td, pw, st,m1,m2)
∨role = Responder ∧ w = SimCompr(td, pw, st,m1,m2):

Send (ActiveNewKey, sid,P, i, pw, k, ssid, id′) to FbPAKELE

Else:
Send (ActiveNewKey, sid,P, i,⊥,⊥, ssid, id′) to FbPAKELE

T := T ∪ {(P, i,m1,m2, id1, id2, st, role)}.
Random Oracle
on H(pw,m1,m2, id, id

′, w) from A:
If ∃(pw,m1,m2, id, id

′, w, [k]) ∈ LH : return k
If ([P, i],m1,m2, id, id

′, [st, role]) ∈ T :
If role = Initiator ∧ w = SimCompi(td, pw, st,m1,m2)
∨role = Responder ∧ w = SimCompr(td, pw, st,m1,m2):

Send (LateTestPwd, sid,P, i,m1|m2|id|id′, pw) to FbPAKELE and obtain a result k
LH := LH ∪ {(pw,m1,m2, id, id

′, w, k)}, return k
In other cases: k ←$ K, LH := LH ∪ {(pw,m1,m2, id, id

′, w, k)}, return k

Fig. 11: Simulator Sim for Theorem 1.
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B.2 Description of Simulator in Theorem 3

Initialization
Sim maintains a list LG to store records to simulate random oracle G
Sim invokes (pp, td)← DHSetup, pp′ ← Setup, outputs crs := (pp, pp′, H,G).
Ideal Functionality FPAKE1LE

on (NewSession1, sid,P, ssid, CP, role) from F leaky

PAKELE
:

Send (NewSession1, sid,P, ssid, CP, role) to A, store (P, ssid, CP, role) as a fresh record
on (Testpw1, sid,P, ssid, pw) from A:

Send (Testpw, sid,P, ssid, pw) to F leaky

PAKELE
and forward F leaky

PAKELE
’s answer to A

If F leaky

PAKELE
returns “correct guess”: mark (P, ssid, CP, role) compromised

on (RegisterTest1, sid,P, ssid) from A:
If (P, ssid, CP, role) is fresh: mark (P, ssid, CP, role) interrupted and add a “tested” flag

on (LateTestPwd1, sid,P, ssid, pw′) from A:
If there exists a completed (P, ssid, [CP, role]) record with flag tested:

Send (Testpw, sid,P, ssid, pw) to F leaky

PAKELE
, remove the tested flag

If F leaky

PAKELE
returns “correct guess”:

Mark (P, ssid, CP, role) compromised, retrieve the record (P, ssid, [Key, k3, trans]), return Key to A
Else: Key′ ←$ {0, 1}2λ, return Key′ to A

Else if there exists a completed (P, ssid, [CP, role]) record with flag latetest:
Send (LateTestPwd, sid,P, ssid, pw′) to F leaky

PAKELE
, remove the latetest flag

If F leaky

PAKELE
returns sKey and “correct guess”:

Retrieve the record (P, ssid, [Key = k1|k2, k3, trans]), LG := LG ∪ {(k2, k3, trans, sKey)}, return Key to A
Else: Key′ ←$ {0, 1}2λ, return Key′ to A

on (NewKey1, sid,P, ssid,Key∗) from A:
If there is a record (P, ssid, [CP, role]) not marked completed:

If the record is compromised: set Key := Key∗

If the record is fresh and there is a completed record (CP, ssid,P, role′ ̸= role)
which was fresh when (CP, ssid) outputs Key′: retrieve (CP, ssid, [Key′]), set Key := Key′

In all other cases: set Key ←$ {0, 1}2λ
Store (P, ssid,Key), mark (P, ssid, CP, role) completed, return Key to P

PAKE Sessions
on Key from Sim as a message from FPAKE1LE to (P, ssid):

Retrieve the record (P, ssid, [CP, role]), parse Key = k1|k2 ∈ {0, 1}2λ
(m′

1, st
′
1)← Init(k1), store (P, ssid, st′1), return m′

1 from P to A
on m′

1 from A as a message from CP to (P, ssid):
Retrieve the record (P, ssid, [CP, role]) and (P, ssid, [Key = k1|k2])
(m′

2, k3)← Resp(k1,m
′
1), return m′

2 from P to A
Store (P, ssid, [Key, k3, trans])
If Sim has queried Testpw to F leaky

PAKELE
and obtained “correct guess”: set sKey∗ := G(k2, k3, trans); Else: set sKey∗ := ⊥

Send (NewKey, sid,P, ssid, sKey∗) to F leaky

PAKELE

If the record (P, ssid, CP, role) with a tested flag: change the flag into latetest
on m′

2 from A as a message from CP to (P, ssid):
Retrieve the record (P, ssid, [CP, role]), (P, ssid, [Key = k1|k2]) and (P, ssid, st′1)
k3 ← Deri(k1, st

′
1,m

′
1,m

′
2)

Store (P, ssid, [Key, k3, trans])
If Sim has queried Testpw to F leaky

PAKELE
and obtained “correct guess”: set sKey∗ := G(k2, k3, trans); Else: set sKey∗ := ⊥

Send (NewKey, sid,P, ssid, sKey∗) to F leaky

PAKELE

If the record (P, ssid, CP, role) has a tested flag: change the flag into latetest
Random Oracle
on G(k2, k3, trans) from A:

If ∃(k2, k3, trans, sKey) ∈ LG: return sKey
sKey ←$ K, LG := LG ∪ {(k2, k3, trans, sKey)}, return sKey

Fig. 12: Simulator Sim for Theorem 3.
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B.3 Description of Simulator in Theorem 4

Initialization
Sim invokes (pp, td)← DHSetup, pp′ ← Setup, outputs crs := (pp, pp′, H,G) and stores td
PAKE Sessions
on (NewSession, sid,P, ssid, CP, role) from FPAKE:

If role = Initiator : (m, st)← SimInit(pp) Else: (m, st)← SimResp(pp)
Store the record (P, ssid, CP, role,m, st), and output m to A

on m′ from A as a message from CP to (P, ssid):
Retrieve the record (P, ssid, [CP, role,m, st])
Output (NewSession2, sid,P, ssid, CP, role) as a message from (the underlying) FPAKE2 to A
If role = Initiator : (m1,m2) := (m,m′) Else: (m1,m2) := (m′,m)
Create a fresh record (P, ssid, CP, role,m1,m2, st)

Ideal Functionality FPAKE2

on (Testpw2, sid,P, ssid, k1) from A:
Retrieve the record (P, ssid, [CP, role,m1,m2, st]) and ignore the query if the record is not fresh
Mark the record interrupted, (p̂w, m̂1, m̂2, ŵ)← S.E(k1)
Send (Testpw, sid,P, ssid, p̂w) to FPAKE

If FPAKE returns “wrong guess” to Sim: return “wrong guess” to A
If (m̂1, m̂2) ̸= (m1,m2): return “wrong guess” to A
If role = Initiator ∧ ŵ ̸= SimCompi(td, p̂w, st,m1,m2) : return “wrong guess” to A
If role = Responder ∧ ŵ ̸= SimCompr(td, p̂w, st,m1,m2) : return “wrong guess” to A
Mark the record as compromised, compute k1|k2 := S.RO(p̂w, m̂1, m̂2, ŵ), store a record (P, ssid, k1, k2)
Return “correct guess” to A

on (NewKey2, sid,P, ssid,Key∗) from A:
If there is a record (P, ssid, [CP, role,m, st]) not marked completed:

If the record is compromised:
Retrieve the record (P, ssid, [k1, k2]), send (NewKey, sid,P, ssid,G(k2, k3 = Key∗, trans)) to FPAKE

In all other cases, send (NewKey, sid,P, ssid,⊥) to FPAKE

Random Oracle
on H(m) from A:
|Y ⟩ ← S.RO(m), return |Y ⟩

Fig. 13: Simulator Sim for Theorem 4.

C Proof of Theorem 3

We will prove it in the FPAKE1LE -hybrid model, where the underlying PAKE1

protocol is replaced by FPAKE1LE , as shown in Fig. 14.

Game G0(real world). This is the real world experiment Real
F

PAKE1LE

Z,A . In this
game, Z initializes a password for each party instance, sees the interactions
among parties, ideal functionality FPAKE1LE and the adversary A.

Note that in G0, the adversary A can use Testpw1 and NewKey1 interfaces of
the underlying FPAKE1LE to implement active attacks.

We have
Pr [G0 ⇒ 1] = Pr

[
Real

F
PAKE1LE

Z,A ⇒ 1
]
.

Game G1(simulations for parties with pw). In this game, we introduce a
simulator Sim who additionally knows passwords of all parties. Sim generates
crs := (pp, pp′, H,G) with (pp, td) ← DHSetup and pp′ ← Setup and keeps
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Setup:
Choose two hash functions H : {0, 1}∗ → {0, 1}2λ, G : {0, 1}∗ → {0, 1}λ
(pp, td)← DHSetup, pp′ ← Setup, crs := (pp, pp′, H,G)

Party Pi: Party Pj :
(NewSession, sid,Pi, ssid,Pj , pw, Initiator): (NewSession, sid,Pj , ssid,Pi, pw,Responder):

(sid,Pi, ssid,Pj , pw, Initiator) −→

Key ←−
FPAKE1LE

←− (sid,Pj , ssid,Pi, pw,Responder)

−→ Key

Parse Key = k1|k2 ∈ {0, 1}2λ
(m′

2, k3)← Resp(k1,m
′
1)

sKey := G(k2, k3, trans)

m′
1←−−−−−−−−

m′
2−−−−−−−−→

Parse Key = k1|k2 ∈ {0, 1}2λ
(m′

1, st
′
1)← Init(k1)

k3 ← Deri(k1, st
′
1,m

′
1,m

′
2)

sKey := G(k2, k3, trans)

Fig. 14: HPAKE in FPAKE1LE -hybrid model.

td. Then it simulates the ideal functionality FPAKE1LE and parties to generate
PAKE1’s session key Key, transcript m′

1,m
′
2 and the session key sKey of HPAKE,

just like G0. With the knowledge of passwords, the simulations are perfect.
Moreover, Sim also simulates the random oracle G by maintaining a list

LG. By the ideal functionality of random oracles, Sim’s simulation for G is also
perfect. So we have

Pr [G1 ⇒ 1] = Pr [G0 ⇒ 1].

Note that given PAKE1’s session key Key = k1|k2, Sim can always invoke (m′
2, k3)←

Resp(k1,m
′
1) for initiator instance, and invoke (m′

1, st
′
1) ← Init(k1)) and k3 ←

Deri(k1, st
′
1,m

′
1,m

′
2) for responder instance. Therefore, k3, m′

1 and m′
2 can be

properly simulated as long as Key = k1|k2 is.
Game G2(simulating session key sKey in case of no successful active
attacks.) G2 is the same as G1, except for Sim’s generation of session keys.

- For an initiator instance (P, ssid), upon the generation of session key sKey,
if the underlying FPAKE1LE (simulated by Sim) did not ever return “cor-
rect guess” before, then Sim generates sKey via sKey ←$ K rather than
sKey := G(k2, k3, trans). If later A queries (LateTestPwd1, sid, ssid,P, pw)
with correct password pw, then Sim returns the simulated PAKE1’s session
key Key = k1|k2 to A, and reprograms G(k2, k3, trans) := sKey for consis-
tence, where k3 is generated by Sim with algorithm Resp for (P, ssid).

- For a responder instance (Pj , ssid), if there exists an initiator instance
([Pi], ssid) with session key sKey′ s.t. they share the same Key and tran-
scripts, then Sim assigns sKey := sKey′ rather than sKey := G(k2, k3, trans).
This change is conceptional due to the correctness of HPAKE. Otherwise,
(Pj , ssid) generates sKey just like the initiator instance shown before.

According to the specification of FPAKE1LE , FPAKE1LE did not ever reply “cor-
rect guess” implies that A did not ever issue Testpw1 query with the correct
password (i.e.,A’s active attack is not successful), then FPAKE1LE must have
sampled a uniform Key = k1|k2 which is independent of A’s view. Then the
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uniformity of k1|k2 leads to the uniformity of sKey := G(k2, k3, trans) un-
less A has already queried G(k2, k3, trans) before the generation of sKey. If
A later queries (LateTestPwd1, sid, ssid,P, pw) with a correct pw, A will obtain
Key = k1|k2 from FPAKE1LE (simulated by Sim). In this case, Sim will reprogram
G(k2, k3, trans) := sKey to keep consistency. Therefore, G2 is the same as G1 un-
less A has already queried G(k2, k3, trans) before the generation of sKey, which
happens with probability at most q · 2−λ. So we have

|Pr [G2 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ q

2λ
,

where q is the number of hash queries from A.
We stress that Sim still uses passwords to decide whether A’s active attack is

successful. If not, sKey is randomly chosen and consistency is kept between initia-
tor and responder as did in G2; If yes, Sim still computes sKey := G(k2, k3, trans)
as did in G1.
Game G3(Simulating FPAKE1LE and sKey with F leaky

PAKELE). Recall that in G2,
Sim still uses passwords to simulate FPAKE1LE . It also uses passwords to decide
whether A’s active attack is successful or not, so as to generate sKey in different
way. In G3, Sim invokes interfaces of F leaky

PAKELE (in its ideal world) to simulate
FPAKE1LE and the generation of session key sKey without passwords.

– ForA’s query (Testpw1, sid,P, ssid, pw′) to FPAKE1LE , Sim just forwards query
(Testpw, sid,P, ssid, pw′) to F leaky

PAKELE and returns the answer of F leaky
PAKELE to A.

– For A’s query (RegisterTest1, sid,P, ssid) to FPAKE1LE , if A did not ever ask
FPAKE1LE for (LateTestPwd1, sid,P, ssid, pw′) before the generation of sKey
for (P, ssid), Sim issues (RegisterTest, sid,P, ssid) to F leaky

PAKELE .
– For A’s query (NewKey1, sid, ssid,P,Key∗) to FPAKE1LE , if A has ever queried

(Testpw1, sid,P, ssid, pw′) to FPAKE1LE (simulated by Sim) and obtained “cor-
rect guess”, Sim returns Key := Key∗. If there exists an instance ([CP], ssid)
with Key′ and A has never queried Testpw1 or RegisterTest1 on both (P, ssid)
and (CP, ssid) to FPAKE1LE , Sim returns Key := Key′. In other cases, Sim re-
turns Key ←$ {0, 1}2λ.

– For A’s query (LateTestPwd1, sid, ssid,P, pw′) to FPAKE1LE , Sim considers
the following two cases.
1. The session key sKey is not generated for instance (P, ssid) yet. In

this case, Sim just issues (Testpw, sid,P, ssid, pw′) query to F leaky
PAKELE . If

F leaky
PAKELE returns “correct guess”, then Sim returns its simulated Key =

k1|k2 to A. Otherwise, Sim samples and returns Key′ ←$ {0, 1}2λ to A.
2. The session key sKey has been generated for instance (P, ssid). In this

case, Sim issues (LateTestPwd, sid, ssid,P, pw′) to F leaky
PAKELE . If F leaky

PAKELE

returns sKey and “correct guess”, then Sim returns its simulated Key =
k1|k2 to A and reprograms G(k2, k3, trans) := sKey. Otherwise, Sim
samples Key′ ←$ {0, 1}2λ and returns Key′ to A.
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– For the generation of session key sKey for instance (P, ssid), Sim issues query
(NewKey, sid,P, ssid, sKey∗) to F leaky

PAKELE , where sKey∗ := G(k2, k3, trans) if
Sim obtains “correct guess” from Testpw query, and sKey∗ = ⊥ otherwise.

According to the specification of F leaky
PAKELE , G3 is a concept change of G2, so

Pr [G3 ⇒ 1] = Pr [G2 ⇒ 1].

Now Sim has simulated FPAKE1LE and the generation of session keys Key, sKey
without password. Recall that m′

1,m
′
2 can be seen as a (randomized) func-

tion of Key = k1|k2. So the simulations of m′
1,m

′
2 do not need passwords as

well. Now that Sim completely gets rid of pw in the simulation, G3 is exactly
IdealZ,Sim[F

PAKE1LE
]. The full description of simulator Sim is shown in Fig. 12 in

Appendix B.2. Therefore,

Pr
[
IdealZ,Sim[F

PAKE1LE
] ⇒ 1

]
= Pr [G3 ⇒ 1].

Finally, by combining all the statements across G0-G3, we know that∣∣∣Pr [RealFPAKE1LE

Z,A ⇒ 1
]
− Pr

[
IdealZ,Sim[F

PAKE1LE
] ⇒ 1

]∣∣∣ ≤ q

2λ
.

⊓⊔

D Instantiations of Full DH-type PAKE

The required computational assumptions in this section are shown in Appendix
A.3.

D.1 DH-type PAKE: SPAKE2

SPAKE2 was proposed in [7]. We recall SPAKE2 in Fig. 15. The folllowing lemma
shows that it is a full DH-type PAKE.

Lemma 2. SPAKE2 is a full DH-type PAKE.

Proof. We prove that SPAKE2 has correctness and the corresponding properties.
The correctness follows by the fact that Compi(pp, pw, st1,m1,m2) = (Y/Bpw)u =

V u = guv = Uv = (X/Apw)u = Compr(pp, pw, st2,m1,m2).
1 One-Wayness of the DH-Key. We show that Advowkey(A) ≤ AdvGap-CDH

G,g,q (BCDH).
Suppose the reduction algorithm BCDH receives (U = gu, V = gv) and a

DDH oracle DDH(·, ·, ·, ·), and its goal is to compute guv. BCDH randomly samples
pp := (A,B)←$ G and pw ←$ PW, and computes m∗

1 := U ·Apw, m∗
2 := V ·Bpw.

Finally, BCDH sends (pp = (A,B), pw,m∗
1,m

∗
2) as the one-wayness challenge to

A. Besides, BCDH uses DDH(·, ·, ·, ·) oracle to simulate oracles O1(m
∗
1, u, ·, ·, ·)

and O2(m
∗
2, v, ·, ·, ·) for A. The oracle simulations are perfect since O(m∗

1, st
∗
1 =

u, pw′,m′
2, w

′) = [Compi(pw
′, st∗1 = u,m∗

1,m
′
2)

?= w′] = [w′ ?= (m′
2/B

pw′
)u] =
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Setup(1λ) :

a, b←$ Zq, A := ga, B := gb

Output (pp := (A,B), td = (a, b))

DHInit(pp, pw) :

u←$ Zq, U := gu

m1 := U ·Apw, st1 := u
Output (m1, st1)

DHResp(pp, pw):
v ←$ Zq, V := gv

m2 := V ·Bpw, st2 := v
Output (m2, st2)

Compi(pp, pw, st1,m1,m2) :

Parse st1 = u,m2 = Y
Output w := (Y/Bpw)u

Compr(pp, pw, st2,m1,m2) :

Parse st2 = v,m1 = X
Output w := (X/Apw)v

SimInit(pp) :

u←$ Zq, U := gu

m1 := U , st1 := u
Output (m1, st1)

SimResp(pp, pw):
v ←$ Zq, V := gv

m2 := V , st2 := v
Output (m2, st2)

SimCompi(pp, td, pw, st1,m1,m2) :

Parse st1 = u,m2 = Y, td = (a, b)
Output w := (Y/Bpw)u−a·pw

SimCompr(pp, td, pw, st2,m1,m2) :

Parse st2 = v,m1 = X, td = (a, b)
Output w := (X/Apw)v−b·pw

Fig. 15: The SPAKE2 protocol and the simulation algorithms.
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DDH(g, U,m′
2/B

pw′
, w′) and O(m∗

2, st
∗
2 = v, pw′,m′

1, w
′) = [Compr(pw

′, st∗2 =
v,m′

1,m
∗
2)

?= w′] = [w′ ?= (m′
1/A

pw′
)v] = DDH(g, V,m′

1/A
pw′

, w′). If A outputs
w, then BCDH submits w to its Gap-CDH challenger. Clearly, BCDH wins iff A
wins.
2 Perfect Simulation for Initiator. Recall that m1 = gu ·Apw for a uniform
u when (m1, st1)← DHInit(pp) and m′

1 = gu
′
for a uniform u′ when (m′

1, st
′
1)←

SimCompi(pp). Define u := u′ − a · pw, and then we have m′
1 = gu

′
= gu · Apw,

where the uniformity of u′ implies the uniformity of u. So the distributions of w
are the same when computed by u and u′−a ·pw. Recall that m2 is independent
of m1 (and m′

1) and w is determined by m1,m2 (resp. m′
1,m2). Therefore, we

have (m1,m2, w) ≡ (m′
1,m2, w).

3 Perfect Simulation for Responder: It is just a mirror symmetry of 2 ,
so we omit it.
4 Unique Password for Initiator: We prove it with a security reduction. If
there exists an adversary A breaking the “unique password for initiator” prop-
erty, then we construct a reduction algorithm Binit that breaks the Gap-CDH
assumption.
Binit receives (gb, gu) from the Gap-CDH challenger along with a DDH(·, ·, ·, ·)

oracle, and its goal is to compute gbu. Binit sets B := gb and samples a←$ Zq to
compute A := ga. Then Binit sends (pp∗ = (A,B),m∗

1 = gu) to A. Here Binit im-
plicitly sets td∗ = (a, b). Next, Binit simulates oraclesO1(td

∗, ·, ·, ·, ·, ·),O2(td
∗, ·, ·, ·)

and O∗
1(td

∗, st∗1,m
∗
1, ·, ·, ·) in the following way.

• O1(td
∗, pw, st1,m1,m2, w) = [w ?= (m2/B

pw)st1 ] = DDH(g,m1 = gst1 ,m2/B
pw, w);

• O2(td
∗, pw, st2,m1,m2, w) = [w ?= (m1/A

pw)st2 ] = DDH(g,m2 = gst2 ,m1/A
pw, w);

• O∗
1(td

∗, st∗1 = u,m∗
1 = gu, pw,m2, w) = [w ?= (m2/B

pw)u] = DDH(g,m∗
1,m2/B

pw, w).

Finally, if A outputs (pw, pw′,m2, w, w
′) and wins the game, then it holds

that pw ̸= pw′, w = (m2/B
pw)u and w′ = (m2/B

pw′
)u. Therefore, w/w′ =

(Bpw′−pw)u = (gbu)pw
′−pw, which means gbu = (w/w′)

1
pw′−pw . So Binit just

submits (w/w′)
1

pw′−pw to the Gap-CDH challenger and wins the game.
Therefore, AdvInitUnipw(A) ≤ AdvGap-CDH

G,g,q (Binit).
5 Unique Password for Responder: It is just a mirror symmetry of 4 , so
we omit it. ⊓⊔

D.2 DH-type PAKE: (Crs)X-GA-PAKE

The (Crs)X-GA-PAKE protocol was proposed in [4,25]. We review it in Fig. 16
and show that it is a full DH-type PAKE in the following lemma.

Lemma 3. The protocol CrsX-GA-PAKE is a full DH-type PAKE.

Proof. We prove that CrsX-GA-PAKE has correctness and the corresponding
properties.
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Setup(1λ) :

g0, g1 ←$ G, x0 := g0 ⋆ x̃, x1 := g1 ⋆ x̃
Output (pp := (x̃, x0, x1), td = (g0, g1))

DHInit(pp, pw) :

Parse pw = (b1, . . . , bℓ) ∈ {0, 1}ℓ
(u1, . . . , uℓ)←$ Gℓ, û0, û1 ←$ G2

x̂U
0 := û0 ⋆ x0, x̂U

1 := û1 ⋆ x1

For i ∈ [ℓ] : xU
i := ui ⋆ xbi

m1 := (xU
1 , . . . , x

U
ℓ , x̂

U
0 , x̂

U
1 )

st1 := (u1, . . . , uℓ, û0, û1)
Output (m1, st1)

DHResp(pp, pw):
Parse pw = (b1, . . . , bℓ) ∈ {0, 1}ℓ
(s1, . . . , sℓ)←$ Gℓ, ŝ0, ŝ1 ←$ G2

x̂S
0 := ŝ0 ⋆ x0, x̂S

1 := ŝ1 ⋆ x1

For i ∈ [ℓ] : xS
i := si ⋆ xbi

m2 := (xS
1, . . . , x

S
ℓ , x̂

S
0, x̂

S
1)

st2 := (s1, . . . , sℓ, ŝ0, ŝ1)
Output (m2, st2)

Compi(pp, pw, st1,m1,m2) :

Parse pw = (b1, . . . , bℓ) ∈ {0, 1}ℓ
Parse st1 = (u1, . . . , uℓ, û0, û1)
Parse m2 = (xS

1, . . . , x
S
ℓ , x̂

S
0, x̂

S
1)

For i ∈ [ℓ] :
wi := (ui ⋆ x

S
i , ûbi ⋆ x

S
i , ui ⋆ x̂

S
bi
)

Output w := (w1, . . . , wℓ)

Compr(pp, pw, st2,m1,m2) :

Parse pw = (b1, . . . , bℓ) ∈ {0, 1}ℓ
Parse st2 = (s1, . . . , sℓ, ŝ0, ŝ1)
Parse m1 = (xU

1 , . . . , x
U
ℓ , x̂

U
0 , x̂

U
1 )

For i ∈ [ℓ] :
wi := (si ⋆ x

U
i , si ⋆ x̂

U
bi
, ŝbi ⋆ x

U
i )

Output w := (w1, . . . , wℓ)

SimInit(pp) :

(u1, . . . , uℓ)←$ Gℓ, û0, û1 ←$ G2

x̂U
0 := û0 ⋆ x0, x̂U

1 := û1 ⋆ x1

For i ∈ [ℓ] : xU
i := ui ⋆ x̃

m1 := (xU
1 , . . . , x

U
ℓ , x̂

U
0 , x̂

U
1 )

st1 := (u1, . . . , uℓ, û0, û1)
Output (m1, st1)

SimResp(pp, pw):

(s1, . . . , sℓ)←$ Gℓ, ŝ0, ŝ1 ←$ G2

x̂S
0 := ŝ0 ⋆ x0, x̂S

1 := ŝ1 ⋆ x1

For i ∈ [ℓ] : xS
i := si ⋆ x̃

m2 := (xS
1, . . . , x

S
ℓ , x̂

S
0, x̂

S
1)

st2 := (s1, . . . , sℓ, ŝ0, ŝ1)
Output (m2, st2)

SimCompi(pp, td, pw, st1,m1,m2) :

Parse pw = (b1, . . . , bℓ) ∈ {0, 1}ℓ, td = (g0, g1)
Parse st1 = (u1, . . . , uℓ, û0, û1)
Parse m2 = (xS

1, . . . , x
S
ℓ , x̂

S
0, x̂

S
1)

For i ∈ [ℓ] :
wi := ((ui · g−1

bi
) ⋆ xS

i , ûbi ⋆ x
S
i , (ui · g−1

bi
) ⋆ x̂S

bi
)

Output w := (w1, . . . , wℓ)

SimCompr(pp, td, pw, st2,m1,m2) :

Parse pw = (b1, . . . , bℓ) ∈ {0, 1}ℓ, td = (g0, g1)
Parse st2 = (s1, . . . , sℓ, ŝ0, ŝ1)
Parse m1 = (xU

1 , . . . , x
U
ℓ , x̂

U
0 , x̂

U
1 )

For i ∈ [ℓ] :
wi := ((si · g−1

bi
) ⋆ xU

i , (si · g
−1
bi

) ⋆ x̂U
bi
, ŝbi ⋆ x

U
i )

Output w := (w1, . . . , wℓ)

Fig. 16: The (Crs)X-GA-PAKE protocol and the simulation algorithms.



44

The correctness follows by

Compi(pp, pw, st1,m1,m2) = {(ui ⋆ x
S
i , ûbi ⋆ x

S
i , ui ⋆ x̂

S
bi)}i∈[ℓ]

= {((uisi) ⋆ xbi , (ûbisi) ⋆ xbi , (uiŝbi) ⋆ xbi)}i∈[ℓ]

= {(si ⋆ (ui ⋆ xbi), si ⋆ (ûbi ⋆ xbi), ŝbi ⋆ (ui ⋆ xbi))}i∈[ℓ]

= {(si ⋆ xU
i , si ⋆ x̂

U
bi , ŝbi ⋆ x

U
i )}i∈[ℓ]

= Compr(pp, pw, st2,m1,m2).

1 One-Wayness of DH-Key: We show that Advowkey(A) ≤ AdvGA-GapCDH
REGA (BGA-GapCDH).

Suppose that the reduction algorithm BGA-GapCDH receives U = u⋆x̃, S = s⋆x̃
and an oracle GA-DDH(·, ·, ·, ·). Its goal is to compute Z = (us) ⋆ x̃ to break the
GA-GapCDH assumption.
BGA-GapCDH generates x0 := g0 ⋆ x̃, x1 := g1 ⋆ x̃ with g0, g1 ←$ G, and sets

pp := (x0, x1). Suppose A outputs pw = (b1, . . . , bℓ) after receiving pp. Next,
BGA-GapCDH generates m∗

1 = (xU
1 , . . . , x

U
ℓ , x̂

U
0 , x̂

U
1 ),m

∗
2 = (xS

1, . . . , x
S
ℓ , x̂

S
0, x̂

S
1) using

the same algorithms as DHInit and DHResp, except that it sets xU
1 := U and xS

1 :=
S. BGA-GapCDH sets st∗1 = (?, u2, . . . , uℓ, û0, û1) and st∗2 = (?, s2, . . . , sℓ, ŝ0, ŝ1),
where “?” in st∗1 is implicitly set as ug−1

b1
and “?” in st∗2 as sg−1

b1
. Then it sends

(pp, pw,m∗
1,m

∗
2) to A. For any query (pw′,m′

2, w
′) to oracle O1(m

∗
1, st

∗
1, ·, ·, ·), we

know that O1(m
∗
1, st

∗
1, pw

′,m′
2, w

′) = [Compi(pw
′, st∗1,m

∗
1,m

′
2)

?= w′]. Suppose
w′′ := (w′′

1 , . . . , w
′′
ℓ ) = Compi(pw

′, st∗1,m
∗
1,m

′
2). Parse pw′ = (b′1, . . . , b

′
ℓ), w

′ =
(w′

1, . . . , w
′
ℓ) and m′

2 = (xS
1, . . . , x

S
ℓ , x̂

S
0, x̂

S
1). Then xU

1 = U = u ⋆ x̃ = (ug−1
b′1

) ⋆ xb′1
,

xS
1 = S = s ⋆ x̃ = (sg−1

b′1
) ⋆ xb′1

are simulated perfectly due to the uniformity
of u and s. Further parse w′

1 = (w′
1,1, w

′
1,2, w

′
1,2) and w′′

1 = (w′′
1,1, w

′′
1,2, w

′′
1,2).

Then BGA-GapCDH can use st∗1 to compute w′′
1,2, w

′′
2 , . . . , w

′′
ℓ . Now B tests [w′ ?=

w′′]: it first checks that whether w′
1,2 = w′′

1,2, w
′
2 = w′′

2 , . . . , w
′
ℓ = w′′

ℓ . If yes
it will further checks whether w′

1,1 = w′′
1,1 and w′

1,3 = w′′
1,3 by resorting to

its own oracle GA-DDH(xb′1
, U, xS

1, w
′
1,1) and GA-DDH(xb′1

, U, x̂S
b′1
, w′

1,3). Recall
that U = (ug−1

b′1
) ⋆ xb′1

and w′′
1,1 = (ug−1

b′1
) ⋆ xS

1 and w′′
1,3 = (ug−1

b′1
) ⋆ x̂S

b′1
.

Therefore, w′
1,1 = w′′

1,1 and w′
1,3 = w′′

1,3 iff both GA-DDH(xb′1
, U, xS

1, w
′
1,1) and

GA-DDH(xb′1
, U, x̂S

b′1
, w′

1,3) output 1. In this way, BGA-GapCDH perfectly simulates
oracle O1(m

∗
1, st

∗
1, ·, ·, ·). A similar argument can show that BGA-GapCDH perfectly

simulates oracleO2(m
∗
2, st

∗
2, ·, ·, ·). This yields Advowkey(A) ≤ AdvGA-GapCDH

REGA (BGA-GapCDH).
If A outputs w = (w1, . . . , wℓ) with w1 = (z1, z2, z3), then BGA-GapCDH returns

gb1 ⋆ z1 as its answer to the GA-GapCDH challenge. If A wins, then BGA-GapCDH

also wins, since z1 = (ug−1
b1

) ⋆ xS
1 = (ug−1

b1
) ⋆ (s ⋆ x̃) and gb1 ⋆ z1 = (us) ⋆ x̃.

2 Perfect Simulation for Initiator: Suppose pp = (x0 = g0 ⋆ x̃, x1 = g1 ⋆ x̃),
td = (g0, g1) and pw = (b1, . . . , bℓ) ∈ {0, 1}ℓ. For m1 = (xU

1 , . . . , x
U
ℓ , x̂

U
0 , x̂

U
1 ),

DHInit and SimInit have the same way of computing x̂U
0 , x̂

U
1 . As for xU

i , DHInit
computes xU

i := ui ⋆ xbi = (uigbi) ⋆ x̃ with ui ←$ G, while SimInit samples
u′
i ←$ G and computes xU

i := u′
i ⋆ x̃. The uniformity of ui and u′

i implies that xU
i

by DHInit is statistically identical to xU
i by SimInit. Moreover, Compi computes

wi := (ui ⋆ xS
i , ûbi ⋆ xS

i , ui ⋆ x̂S
bi
) while SimCompi computes wi := ((u′

i · g
−1
bi

) ⋆
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xS
i , ûbi ⋆x

S
i , (u

′
i ·g

−1
bi

)⋆ x̂S
bi
). If we define ui := (u′

i ·g
−1
bi

) for SimCompi, then ui has
the same distribution as u′

i, and the computation of wi by SimCompi is exactly
the same as that by Compi. Therefore, SimInit and SimCompi perfectly simulate
DHInit and Compi.
3 Perfect Simulation for Responder: The argument is similiar to 2 .
4 Unique Password for Initiator: We show that if there exists an adversary
A breaking the “unique password for initiator” property, then we can construct
an adversary Binit to break the DSim-GA-GapCDH assumption.
Binit receives four set elements (x0, x1, y0, y1) as its challenge, and has access

to a GA-DDH(·, ·, ·, ·) oracle. Suppose (x0, x1, y0, y1) = (g0 ⋆ x̃, g1 ⋆ x̃, h0 ⋆ x̃, h1 ⋆
x̃). Then the goal of Binit is to compute five set elements (z, z0, z1, z2, z3) s.t.
(z0, z1, z2, z3) = ((g−1

0 h0) ⋆ z, (g
−1
0 h1) ⋆ z, (g

−1
1 h0) ⋆ z, (g

−1
1 h1) ⋆ z). To this end,

Binit sets pp∗ := (x0, x1) and generates m∗
1 = (xU

1 , . . . , x
U
ℓ , x̂

U
0 , x̂

U
1 ) in the following

way. For each i ∈ [ℓ], Binit randomly samples u∗
i ←$ G and sets x∗U

i := u∗
i ⋆ y0.

It also samples û∗
0, û

∗
1 ←$ G and sets x̂∗U

0 := û∗
0 ⋆ y1 and x̂∗U

1 := û∗
1 ⋆ y1. Then

Binit sends (pp∗ = (x0, x1),m
∗
1 = (x∗U

1 , . . . , x∗U
ℓ , x̂∗U

0 , x̂∗U
1 )) to A. It holds that

x∗U
i = u∗

i ⋆y0 = (u∗
i h0)⋆x̃, x̂

∗U
0 = û∗

0⋆y1 = (û∗
0h1g

−1
0 )⋆x0, x̂

∗U
1 = û∗

1⋆y1 = (û∗
1h1g

−1
1 )⋆x1.

Hence Binit implicitly sets td∗ = (g0, g1) and st∗1 = (u∗
1h0, . . . , u

∗
ℓh0, û

∗
0h1g

−1
0 , û∗

1h1g
−1
1 ).

Binit can simulate oracles O1(td
∗, · · · ), O2(td

∗, · · · ), O∗
1(td

∗, st∗1,m
∗
1, · · · ) in the

following way.

• O1(td
∗, pw, st1,m1,m2, w) : Binit first parses pw = (b1, . . . , bℓ), st1 = (u1, . . . , uℓ, û0, û1),

m2 = (xS
1, . . . , x

S
ℓ , x̂

S
0, x̂

S
1), and w = ((w1,1, w1,2, w1,3), . . . , (wℓ,1, wℓ,2, wℓ,3)).

For each i ∈ [ℓ], Binit needs to check the following three conditions: [wi,1
?=

(ui · g−1
bi

) ⋆ xS
i ], [wi,2

?= ûbi ⋆ xS
i ] and [wi,3

?= (ui · g−1
bi

) ⋆ x̂S
bi
]. If all the

three conditions are satisfied for each i ∈ [ℓ], Binit returns 1; otherwise,
it returns 0. The second condition can be checked by ûbi and xS

i directly,
while the first and third conditions can be checked by Binit’s queries to
oracle GA-DDH(x̃, u−1

i ⋆ xbi , wi,1, x
S
i ) and GA-DDH(x̃, u−1

i ⋆ xbi , wi,3, x̂
S
bi
) re-

spectively. Clearly, the oracle simulation is perfect.
• O2(td

∗, pw, st2,m1,m2, w) : Binit first parses pw = (b1, . . . , bℓ), st2 = (s1, . . . , sℓ, ŝ0, ŝ1),
m1 = (xU

1 , . . . , x
U
ℓ , x̂

U
0 , x̂

U
1 ), and w = ((w1,1, w1,2, w1,3), . . . , (wℓ,1, wℓ,2, wℓ,3)).

For each i ∈ [ℓ], Binit needs to check the following three conditions: [wi,1
?=

(si · g−1
bi

) ⋆ xU
i ], [wi,2

?= (si · g−1
bi

) ⋆ x̂U
bi
] and [wi,3

?= ŝbi ⋆ xU
i ]. If all the

three conditions are satisfied for each i ∈ [ℓ], Binit returns 1; otherwise,
it returns 0. The third condition can be checked by ŝbi and xU

i directly,
while the first and second conditions can be checked by Binit’s queries to
oracle GA-DDH(x̃, s−1

i ⋆ xbi , wi,1, x
U
i ) and GA-DDH(x̃, s−1

i ⋆ xbi , wi,2, x̂
U
bi
) re-

spectively.
• O∗

1(td
∗, st∗1,m

∗
1, pw,m2, w) : Binit first parses m∗

1 = (x∗U
1 , . . . , x∗U

ℓ , x̂∗U
0 , x̂∗U

1 ) ,
pw = (b1, . . . , bℓ), m2 = (xS

1, . . . , x
S
ℓ , x̂

S
0, x̂

S
1), and w = ((w1,1, w1,2, w1,3), . . . ,

(wℓ,1, wℓ,2, wℓ,3)). Recall that x∗U
i = (u∗

i h0)⋆ x̃, x̂
∗U
0 = (û∗

0h1g
−1
bi

)⋆xbi , x̂
∗U
1 =

(û∗
1h1g

−1
bi

)⋆xbi . For each i ∈ [ℓ], Binit needs to check the following three con-
ditions: [wi,1

?= (u∗
i h0 · g−1

bi
) ⋆xS

i ], [wi,2
?= (û∗

bi
h1g

−1
bi

) ⋆xS
i ] and [wi,3

?= (u∗
i h0 ·
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g−1
bi

) ⋆ x̂S
bi
]. If all the three conditions are satisfied for each i ∈ [ℓ], Binit re-

turns 1; otherwise, it returns 0. The three conditions can be checked by Binit’s
queries to oracle GA-DDH(xbi , y0, x

S
i , u

∗−1
i ⋆wi,1), GA-DDH(xbi , y1, x

S
i , û

∗−1
bi

⋆

wi,2) and GA-DDH(xbi , y0, x̂
S
bi
, u∗−1

i ⋆ wi,3) respectively, since y0 = h0 ⋆ x̃ =

(h0g
−1
bi

gbi)⋆x̃ = (h0g
−1
bi

)⋆xbi and y1 = h1⋆x̃ = (h1g
−1
bi

gbi)⋆x̃ = (h1g
−1
bi

)⋆xbi .

Finally A outputs (pw, pw′,m2, w, w
′). Suppose that A breaks the “ 4 unique

password for initiator” property, i.e., A wins, then there must exist i ∈ [ℓ]
such that pw and pw′ are different in the i-th bit. W.l.o.g. we assume that
i-th bit of pw is 0 and i-th bit of pw′ is 1. Parse m2 = (xS

1, . . . , x
S
ℓ , x̂

S
0, x̂

S
1),

w = (w1 = (w1,1, w1,2, w1,3), . . . , wℓ = (wℓ,1, wℓ,2, wℓ,3)) and w′ = (w′
1 =

(w′
1,1, w

′
1,2, w

′
1,3), . . . , w

′
ℓ = (w′

ℓ,1, w
′
ℓ,2, w

′
ℓ,3)). A wins implies that wi,1 = (u∗

i h0 ·
g−1
0 ) ⋆ xS

i , wi,2 = (û∗
0h1g

−1
0 ) ⋆ xS

i , w′
i,1 = (u∗

i h0 · g−1
1 ) ⋆ xS

i , w′
i,2 = (û∗

1h1g
−1
1 ) ⋆ xS

i .
Then, Binit submits z := xS

i , z0 := u∗−1
i ⋆wi,1, z1 := û∗−1

0 ⋆wi,2, z2 := u∗−1
i ⋆w′

i,1,
z3 := û∗−1

1 ⋆ w′
i,2 as it answer to its challenge. Clearly, Binit breaks the DSim-

GA-GapCDH assumption as long as A wins. Thus we have AdvInitUnipw(A) ≤
AdvDSim-GA-GapCDH

REGA (Binit)
5 Unique Password for Responder: The argument is similiar to 4 . ⊓⊔

D.3 DH-type PAKE: TBPEKE

TBPEKE was proposed in [32]. We review it in Fig. 17 and show that it is a full
DH-type PAKE in the following lemma.

Lemma 4. TBPEKE is a full DH-type PAKE.

Proof. We prove that TBPEKE has correctness and the corresponding proper-
ties.

The correctness follows by the fact that Compi(pp, pw, st1,m1,m2) = (Y )x =
(gpw)

xy = (X)y = Compr(pp, pw, st2,m1,m2).
1 One-Wayness of the DH-Key. We show that Advowkey(A) ≤ AdvGap-CDH

G,g,q (BCDH).
Suppose the reduction algorithm BCDH receives (U = gu, V = gv) and a

DDH oracle DDH(·, ·, ·, ·), and its goal is to compute guv. BCDH randomly sam-
ples pp := (A = ga, B = gb)←$ G and pw ←$ PW. Define z := a + b · P(pw).
It holds that gpw = A · BP(pw) = gz. BCDH randomly samples α, β ←$ Zq and
computes m∗

1 := Uα·z = (gpw)
uα, m∗

2 := V β·z = (gpw)
vβ . Finally, BCDH sends

(pp = (A,B), pw,m∗
1,m

∗
2) as the one-wayness challenge to A. Besides, BCDH

uses DDH(·, ·, ·) oracle to simulate oracles O1(m
∗
1, uα, ·, ·, ·) and O2(m

∗
2, vβ, ·, ·, ·)

for A. The oracle simulations are perfect since O(m∗
1, st

∗
1 = uα, pw′,m′

2, w
′) =

[Compi(pw
′, st∗1 = uα,m∗

1,m
′
2)

?= w′] = [w′ ?= (m′
2)

uα] = DDH(g, Uα,m′
2, w

′)
and O(m∗

2, st
∗
2 = vβ, pw′,m′

1, w
′) = [Compr(pw

′, st∗2 = vβ,m′
1,m

∗
2)

?= w′] =
[w′ ?= (m′

1)
vβ ] = DDH(g, V β ,m′

1, w
′). IfA outputs w, then BCDH submits w1/(αβz)

to its Gap-CDH challenger. Clearly, BCDH wins iff A wins.
2 Perfect Simulation for Initiator. For (m1, st1) ← DHInit(pp), we have
m1 = (gpw)

x = g(a+P(pw)·b)x for a uniform x, and for (m′
1, st

′
1)← SimCompi(pp),
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Setup(1λ) :

a, b←$ Zq, A := ga, B := gb

Choose a hash function P : {0, 1}∗ 7→ Zq

Output (pp := (A,B,P), td = (a, b))

DHInit(pp, pw) :

gpw := A ·BP(pw), x←$ Zq

m1 := (gpw)
x, st1 := x

Output (m1, st1)

DHResp(pp, pw):
gpw := A ·BP(pw), y ←$ Zq

m2 := (gpw)
y, st2 := y

Output (m2, st2)

Compi(pp, pw, st1,m1,m2) :

Parse st1 = x,m2 = Y
Abort if Y = 1
Output w := Y x

Compr(pp, pw, st2,m1,m2) :

Parse st2 = y,m1 = X
Abort if X = 1
Output w := Xy

SimInit(pp) :

u←$ Zq, U := gu

m1 := U , st1 := u
Output (m1, st1)

SimResp(pp, pw):
v ←$ Zq, V := gv

m2 := V , st2 := v
Output (m2, st2)

SimCompi(pp, td, pw, st1,m1,m2) :

Parse st1 = u,m2 = Y, td = (a, b)
Abort if Y = 1
Output w := (Y )u/(a+P(pw)·b)

SimCompr(pp, td, pw, st2,m1,m2) :

Parse st2 = v,m1 = X, td = (a, b)
Abort if X = 1
Output w := (X)v/(a+P(pw)·b)

Fig. 17: The TBPEKE protocol and the simulation algorithms.
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we have m′
1 = gx

′
for a uniform x′. Define x := x′/(a+ P(pw) · b), and then we

have m′
1 = gx

′
= (gpw)

x, where the uniformity of x′ implies the uniformity of x.
So the distributions of w are the same when computed by x and x′/(a+P(pw)·b).
Recall that m2 is independent of m1 (and m′

1) and w is determined by m1,m2

(resp. m′
1,m2). Therefore, we have (m1,m2, w) ≡ (m′

1,m2, w).
3 Perfect Simulation for Responder: It is just a mirror symmetry of 2 ,
so we omit it.
4 Unique Password for Initiator: We prove it with a security reduction
in the random oracle model. Suppose the hash function P works as a random
oracle. If there exists an adversary A breaking the “unique password for initiator”
property, then we construct a reduction algorithm Binit that breaks the Gap-
SDH assumption.
Binit receives (X = gx, Xy1 , Xy2) from the Gap-SDH challenger along with

a DDH(·, ·, ·, ·) oracle, and its goal is to compute (Y ̸= 1, R = Y 1/y1 , S = Y 1/y2).
Binit randomly chooses i, j ∈ [q] and programs P(pwi) := p1 and P(pwj) := p2,
where pwi and pwj is i-th and j-th hash queries from A. Then Binit computes
B := (Xy1/Xy2)1/(p1−p2) = gb and A := Xy1/Bp1 = ga. Note that A·Bp1 = Xy1

and A·Bp2 = Xy2 . Binit sends (pp∗ = (A,B),m∗
1 = X) toA. Here Binit implicitly

sets td∗ = (a, b). Next, Binit simulates oracles O1(td
∗, ·, ·, ·, ·, ·),O2(td

∗, ·, ·, ·) and
O∗

1(td
∗, st∗1,m

∗
1, ·, ·, ·) in the following way.

• O1(td
∗, pw, st1,m1,m2, w) = [w ?= (m2)

st1
(a+P(pw)·b) ] = [wa+P(pw)·b ?= (m2)

st1 ]
= DDH(g,A ·BP(pw), w, (m2)

st1);

• O2(td
∗, pw, st2,m1,m2, w) = [w ?= (m1)

st2
(a+P(pw)·b) ] = DDH(g,A·BP(pw), w, (m1)

st2);

• O∗
1(td

∗, st∗1 = x,m∗
1 = X, pw,m2, w) = [w ?= (m2)

x
a+P(pw)·b ]

= [w
a+P(pw)·b

x
?= m2] = DDH(X,w,A ·BP(pw),m2).

Finally, A outputs (pw, pw′,m2, w, w
′), then Binit submits (m2, w, w

′) to the
Gap-SDH challenger.

If A wins the game and P(pw) = p1 and P(pw′) = p2, then w = (m2)
x

a+b·p1 =

(m2)
1/y1 and w′ = (m2)

x
a+b·p2 = (m2)

1/y2 , so B wins in this case. The probability
that pw is the i-th hash query and pw′ is the j-th hash query is 1/q2. Therefore,
B wins with probability 1/q2 as long as A wins. So we have AdvInitUnipw(A) ≤
q2 · AdvGap-SDH

G,g,q (Binit).
5 Unique Password for Responder: It is just a mirror symmetry of 4 , so
we omit it. ⊓⊔
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