
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

Efficient Key-Switching for Word-Type FHE and GPU Acceleration

Shutong Jin, Zhen Gu, Guangyan Li, Donglong Chen, Çetin Kaya Koç, Ray C. C. Cheung and Wangchen Dai

Abstract—Speed efficiency, memory optimization, and quan-
tum resistance are essential for safeguarding the performance and
security of cloud computing environments. Fully Homomorphic
Encryption (FHE) addresses this need by enabling computa-
tions on encrypted data without requiring decryption, thereby
maintaining data privacy. Additionally, lattice-based FHE is
quantum secure, providing defense against potential quantum
computer attacks. However, the performance of current FHE
schemes remains unsatisfactory, largely because of the length
of the operands and the computational expense associated with
several resource-intensive operations. Among these operations,
key-switching is one of the most demanding processes because
it involves complex arithmetic operations necessary to conduct
computations in a larger cyclotomic ring.

In this research, we introduce a novel algorithm that achieves
linear complexity in the Number Theoretic Transform (NTT) for
key-switching. This algorithm offers efficiency comparable to the
state-of-the-art while being significantly simpler and consumes
less GPU memory. Notably, it reduces space consumption by
up to 95%, making it highly friendly for GPU memory. By
optimizing GPU performance, our implementation achieves up
to a 2.0× speedup compared to both the baseline approach and
the current state-of-the-art methods. This algorithm effectively
balances simplicity and performance, thereby enhancing crypto-
graphic computations on modern hardware platforms and paving
the way to more practical and efficient FHE implementations in
cloud computing environments.

Index Terms—Key-Switching, FHE, GPU implementation,
BFV, BGV, CKKS

I. INTRODUCTION

Fully-Homomorphic Encryption (FHE) is a cryptographic
system that enables computations on encrypted data without
needing to decrypt it first. This capability is essential for
preserving data privacy across a wide range of applications,
as it enables secure data processing without exposing sensitive
information. FHE is particularly important and promising, as
it naturally addresses the need for privacy-preserving solutions
in cloud computing environments. Its ability to perform secure
computations on encrypted data makes it an ideal candidate
for applications where data privacy is paramount. On the other
hand, FHE is grounded in lattice cryptography. Specifically,
the security of contemporary FHE schemes is based on the
hardness of lattice-based problems, such as the Learning With
Errors (LWE) problem. This reliance provides a robust defense
against quantum computer attacks, as these problems are
believed to be resistant to quantum algorithms like Shor’s
algorithm, which threatens traditional cryptographic systems
such as RSA and ECC. Consequently, lattice-based FHE
schemes offer a promising pathway for maintaining security
in the advent of quantum computing.

The initial application of FHE to Privacy-Preserving Ma-
chine Learning (PPML) was effectively demonstrated through
its use in securing decision tree models, as illustrated by the

work of Khedr et al., 2015 [28]. This foundational trial paved
the way for further extensions of FHE to more complex ma-
chine learning models, including neural networks. Subsequent
research by Aslett et al. (2015) [8], Chabanne et al. (2017)
[13], and others [6, 7, 15, 15, 27] expanded the application of
FHE to neural networks, showcasing its potential in privacy-
preserving machine learning. These advancements underscore
the transformative impact of FHE in enabling secure and pri-
vate data processing in modern computational environments.
The promising future of FHE lies in its ability to secure
data in multi-party and sensitive scenarios, such as finance
and medical applications, where data privacy and integrity are
crucial.

Key-switching is a fundamental operation in FHE that en-
ables the transformation of ciphertexts between different keys
or moduli, which is essential for maintaining the correctness of
computations as the noise level increases. It is a computation-
ally intensive arithmetic operation in FHE. However, it is also
integral to several critical processes, such as bootstrapping,
ciphertext rotation, and relinearization. The computational
expense of key-switching arises from the need to perform
inner product computations on a different cyclotomic ring.
To prevent further noise introduction after switching keys,
the inner product must be computed in a larger modulus
space, denoted QℓP, with a newly introduced Residue Num-
ber System (RNS) base P that is specifically used in key-
switching. This requirement necessitates expensive arithmetic
operations, including base conversion and (Inverse) Number
Theoretic Transforms (NTTs). Consequently, improvements
in key-switching can lead to substantial improvements in the
overall efficiency of FHE schemes. Therefore, key-switching
becomes one of the main bottlenecks in terms of computational
complexity and efficiency of the overall FHE schemes.

In our research, we are particularly focused on enhancing
key-switching because the efficiency of current FHE schemes
is limited by this process. Each instance of ciphertext mul-
tiplication requires a key-switching operation from s2 to s.
Similarly, every instance of ciphertext rotation requires an
appropriate adjustment of the secret key. Furthermore, efficient
key-switching is crucial for enabling more complex operations,
such as bootstrapping, which is essential for refreshing cipher-
texts and managing noise growth. This is particularly important
in applications that involve deep computational circuits, where
noise accumulation can otherwise render ciphertexts undeci-
pherable.

Given the widespread necessity of key-switching in FHE,
optimizing this process can significantly reduce the overhead
associated with these transformations, thereby enhancing the
overall performance of the encryption scheme. By focusing
on improving key-switching, we aim to address one of the
primary bottlenecks in FHE, ultimately making these schemes

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

more practical and efficient for real-world applications.

A. Related Works
a) Development of FHE schemes: The foundational

work, Gentry (2009) [20] established the theoretical frame-
work for FHE, marking a significant milestone in the field of
cryptography. Since then, lattice-based methods have emerged
as the preferred approach for constructing homomorphic en-
cryption schemes, because of their efficiency and robust secu-
rity properties. Among these, schemes based on the LWE prob-
lem [9][11][12][22] and its ring variant (RLWE) [10][33][21]
have gained significant traction, often referred to as word-
type FHE schemes. These LWE/RLWE-based schemes are
particularly favored for their ability to support Single In-
struction, Multiple Data (SIMD) operations and batching.
This capability is crucial because it allows multiple plaintexts
to be processed simultaneously, significantly improving the
throughput of homomorphic computations. This is especially
important given that the speed of FHE implementations has
historically been a limiting factor in their practical use.

b) Research in Key-switching: The Gentry, Halevi, and
Smart (GHS) key-switching method [21] requires only a linear
number of NTTs and is recognized for its efficiency. However,
the GHS technique requires either doubling the dimension N
or halving the size of the modulus Q to maintain security,
which can be a limitation in certain scenarios. In contrast, the
Brakerski and Vaikuntanathan (BV) key-switching technique
[10], although more straightforward in its application, involves
a quadratic number of NTTs. Hybrid key-switching [26]
effectively combines the digit decomposition technique from
BV and the larger modulus approach from GHS to achieve
an optimal balance between noise growth and computational
efficiency. Subsequent research has focused on refining these
techniques to further enhance efficiency. For example, the
work in [30] addresses the challenge of selecting an optimal
decomposition strategy for hybrid key-switching. Furthermore,
[31] introduces the concept of double decomposition to im-
prove efficiency. This approach can be considered the current
state-of-the-art, as it significantly reduces the computational
burden associated with NTTs.

c) GPU Accelerated FHE: Given the support for SIMD
operations in word-type FHE schemes, it is logical to consider
using the computational power of GPUs for acceleration.
GPUs are ideally suited for this task due to their capability
for multithreaded computing. Previous research in this domain
[2, 4, 5, 18, 23, 34, 35] has shown that exploiting the parallel
processing power of GPUs can substantially accelerate FHE
operations. Badawi et. al. (2020) [3] showed that multi-GPU
could also be used to accelerate FHE schemes. The parallel
processing capabilities of GPUs enable the simultaneous ex-
ecution of numerous threads, which makes them particularly
beneficial for handling repetitive and resource-intensive tasks
inherent in FHE.

The open source community for Fully Homomorphic En-
cryption (FHE) features prominently popular libraries such as
SEAL [14], HElib [25], and OpenFHE [1]. However, support
for GPU acceleration within these libraries is not as well de-
veloped. The works [18], [36], and [29] are the representative

GPU libraries available in the community. Our development is
built upon Phantom [36], a high-performance GPU-accelerated
library for FHE. Phantom specifically implements second-
generation FHE schemes, including the RNS variants of BGV,
BFV, and CKKS, which are designed to optimize computa-
tional efficiency and memory usage. Phantom provides robust
support for batch processing and SIMD operations with easy-
to-use API and utility tools. The arithmetic implementations
reach the state-of-the-art for FHE-GPU.

B. Our Contribution

In this work, we introduce a novel key-switching method.
We show that this simple, yet effective, key-switching ap-
proach achieves performance comparable to the best results re-
ported by [31], while significantly enhancing space efficiency.
Furthermore, by substantially reducing space consumption,
this method becomes highly suitable for GPU implementation.
Our contributions are detailed as follows.

• Linear-Keyswitching Method: We introduce a novel
method termed linear-keyswitching, which addresses the
substantial complexity associated with performing inner
products in large modulus spaces. Our analysis reveals
that this method reduces the complexity of unit NTT
operations from O(ℓ2) to O(ℓ). Compared to the cur-
rent state-of-the-art, it offers superior time and space
efficiency while alleviating concerns related to choosing
parameters.

• GPU Implementation and Optimization: We have
implemented our algorithms within a GPU library with
CUDA support. Due to the simplicity of our approach, we
incorporated kernel-fusing and enhancements in the base-
conversion process, resulting in significant speed perfor-
mance improvements on the target device. This method
streamlines data handling and arithmetic operations, en-
abling more efficient execution on GPU architectures. It
also highlights the potential for further optimization based
on hardware capabilities and parameter selection.

• Review and Analysis of Current State-of-the-Art on
GPU: By implementing the complete version of the
double decomposition approach from [31], we identified
several challenges in adapting this method for GPU
development, including complex parameter selection and
high GPU memory demands, which complicate its re-
alization. Our analysis underscores the difficulties and
limitations of adapting [31] for GPU implementation,
offering valuable insights for future research.

• Comprehensive Benchmarking: To validate the effi-
ciency of our method, we conducted extensive compar-
isons among the GPU implementation of our method,
the double decomposition, and the baseline approach,
covering all word-type schemes and a set of public
parameters. The results demonstrate that our method
achieves efficiency in a GPU context that is comparable
to, if not superior to, existing solutions. Remarkably,
while maintaining runtime efficiency, our method reduces
memory requirements by over 95%. This optimization
results in a more developer-friendly and memory-efficient

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

TABLE I: List of Symbols

Symbol Description
α Number of special modulus
ℓ Current level of modulus chain
β Number of relinKeys involved in key-switching

= ⌈ℓ/α⌉
P Mod-up RNS Base p0 · . . . pα
Qℓ RNS Base q0 · . . . qℓ
QℓP RNS Base q0 · . . . qℓ · p0 · . . . pα
Q Full mdulus chain q0 · . . . qℓmax
m0 ·m1 RNS base of two primes m0 and m1

|Qℓ| number of primes in Qℓ

|QℓP| number of primes in QℓP
|Q| number of primes in Q
|P| number of primes in P

implementation, facilitating easier integration and deploy-
ment in practical applications.

Our contributions significantly advance the research on
GPU-accelerated FHE, offering new methodologies and in-
sights that enhance both theoretical understanding and practi-
cal application.

II. PRELIMINARIES

The Learning With Errors (LWE) problem is based on the
difficulty of solving noisy linear equations over finite fields.
Given an integer n and the modulus q, LWE involves finding
a secret vector s ∈ Zn

q from sample (a, b) ∈ Zn+1
q , where a

is uniformly sampled and b is computed as b = ⟨a, s⟩ + e
(mod q). e is introduced as a small error from a distribution
like a discrete Gaussian.

The Ring Learning With Errors (RLWE) problem extends
LWE to polynomial rings. Defined over Rq = Zq[x]/(f(x)),
RLWE involves finding a secret polynomial s(x) ∈ Rq from
samples (a(x), b(x)) ∈ R2

q , where a(x) is uniformly sampled
and b(x) = a(x) · s(x) + e(x) (mod q), with e(x) having
small error coefficients.

Consider R = Z[X]/(XN + 1) be a ring of polynomials
with integer coefficients modulo XN + 1, where N is a
power of two. A plaintext µ is encrypted as a ciphertext
c = [c0, c1].The description holds c0 + c1 · s = m + e,
where s is the secret key, e is the error term, and m is the
plaintext.

A. Word-Type FHE Schemes

The word-type FHE Schemes represents a significant evo-
lution from Gentry’s initial 2009 blueprint [20], which was
based on the Closest Vector Problem (CVP) on ideal lattices.
Instead, these newer schemes shift focus to the LWE and Ring
Learning With Errors RLWE problems, which are not required
to be on ideal lattices.

Significantly, the Brakerski-Vaikuntanathan (BV) scheme in
2014 [11] can be seen to be the foundation of the word-type
schemes. The initial proposal was based on the LWE problem,
which is NP-hard. Meanwhile, this scheme introduced the
concept of relinearization, a technique designed to address the
complexity issues inherent in Gentry’s original scheme [20]
by reducing the dimensionality of ciphertexts. Relineariza-
tion effectively transforms quadratic terms into linear terms,

thereby mitigating the dimension explosion that occurs during
homomorphic multiplications.

The Brakerski-Fan-Vercauteren (BFV) [19] scheme (2012)
represents a simplified adaptation of the BV scheme, transi-
tioning from the LWE setting to the RLWE basis. This adap-
tation makes the scheme more practical for implementation
while retaining the core advantages of its predecessors.

Building on the BV scheme, Gentry, Brakerski, and Vaikun-
tanathan developed the BGV scheme in 2014 [9]. This scheme
further refined the concept of relinearization by incorporating
key-switching, which facilitates various forms of complexity
reduction.

The Cheon-Kim-Kim-Song (CKKS) scheme [17], also
based on the BV scheme and RLWE, introduces a novel
approach utilizing the complex plane. This allows for the rep-
resentation of floating-point numbers and the use of scientific
notation, which is particularly beneficial in applications involv-
ing neural networks where precise floating-point computations
are essential. The CKKS scheme’s support for floating-point
arithmetic enhances its applicability in modern computational
tasks.

Below, we provide a comprehensive description of the
functionalities of the three major schemes of the word-type
FHE: BGV, BFV, and CKKS.

• Setup: For a given security parameter λ, select appro-
priate public parameters pp = (N, t,Q, P, χkey, χerr),
including a a ring dimension N , a plaintext modulus |T|,
a ciphertext modulus Q, and distributions χkey and χerr.

• Key Generation: Generate a secret key sk and a public
key pk. Sample s ← χkey and set sk = s. Sample a
random element a ∈ RQ and an error term e← χerr. Set
pk = (a,−as + e. Generate relinearization keys pkrelin
and automorphism keys pkauto.

• Encryption: Encrypt a plaintext m using the pub-
lic key pk = (a,−as+ e) = (a,b). Sample r ←
χ and e0, e1 ← χerr. Calculate Encpk(0) =
[r · (a,b) + t · (e0, e1)]Q. Output a ciphertext ct =
(c0, c1) = [Encpk(0) + (m∗, 0)]Q.

– BFV: m∗ = ⌊Qt ⌉ · [m]t
– BGV: m∗ = [µm]t, µ is the correction factor

varying with the level
– CKKS: m∗ = m

• Decryption: Decrypt a ciphertext using the secret key.
– BFV: m = ⌊ t

Q · [c0 + c1 · s]Q⌋
– BGV: m = [µ−1[c0 + c1 · s]Q].
– CKKS: m = [c0 + c1 · s]Q

• Homomorphic Operations: Perform operations on ci-
phertexts.

– Addition: Given two ciphertexts ct and ct′, output
ctadd = ct+ ct′ for all schemes

– Multiplication: Given two ciphertexts ct and ct′ and
a relinearization key pkrelin, compute the product and
relinearize to output ctmult for all schemes

– Automorphism: Apply an automorphism to a ci-
phertext using the automorphism key. Given a ci-
phertext ct and an automorphism key pkauto, output
the transformed ciphertext ctauto

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

B. Key-Switching

A switching key is a special public key designed to convert
ciphertext encrypted under key sA to ciphertext encrypted
under a different key sB, while preserving the same plaintext
segment. The definition of a switching key pksA→sB

follows:

pksA→sB
= ([sA + a · sB + te]Q,−a) ∈ R2

Q

where a is a polynomial that is sampled uniformly in R2
Q,

and e← χerr.
a) Relinearization: Following each ciphertext

multiplication, the resulting ciphertext c = [c0, c1, c2]
is encrypted under the basis (1, s, s2). The process of
relinearization then transforms this ciphertext to find the
corresponding components encrypted under the reduced basis
(1, s). The key-switching keys used for relinearization are
denoted as pkrelin.

b) External Product: involves the computation of a
linear combination of elements from a gadget vector u =
(ui)0≤i<d ∈ Rd

Q with coefficients derived from the decom-
position b = (bi)0≤i<d of an element a ∈ RQ. Formally, the
external product can be expressed as:

ExtProd(a, u) =
d−1∑
i=0

bi · ui (mod Q)

where bi are small elements obtained from the gadget
decomposition of a, such that a =

∑d−1
i=0 bi ·gi (mod Q), with

(gi)0≤i<d being a fixed gadget basis over RQ. This operation
is crucial in key-switching techniques.

In our study, we define α as the number of co-primes in
the mod-up base P, and β as the number pk involved in the
key-switching process. In works such as [26] and [21], the
introduced base P may have multiple small moduli. For the
purpose of simplifying our discussion, we focus primarily on
the scenario where α = 1, which implies that β = ℓ, the level
of the ciphertext.

In our implementation, we have simplified the key-switching
process to accommodate both relinearization and other op-
erations by utilizing c2 as the third term input to the key-
switching module. This approach is particularly useful for
unifying the treatment of different operations within the en-
cryption scheme. Specifically, for scenarios that do not involve
relinearization and require only two ciphertexts, we represent
the inputs as [c∗0,0, c

∗
1]. In this context, c2 effectively cor-

responds to the term c∗1, thus the second parameter serving
as a placeholder to maintain consistency in the key-switching
framework.

C. Modulus Switching

Modulus switching is a technique used to transition a
ciphertext encrypted under a larger modulus Q to a smaller
modulus Q′, thus maintaining the noise level within acceptable
limits and ensuring the correctness of decryption. This process
is essential in homomorphic encryption schemes to manage
noise growth during computations.

Mathematically, modulus switching is based on the concept
of scaling. For a given ciphertext ct = (c0, c1) encrypted
under modulus Q, the objective is to transform it into a new
ciphertext ct′ = (c′0, c

′
1) under modulus Q′ while preserv-

ing the underlying plaintext. This transformation is typically
achieved by scaling the ciphertext coefficients by the factor
Q′/Q, followed by rounding to ensure that they fit within the
new modulus Q′.

In our context, the term level and the symbol ℓ are used to
denote the number of small moduli qi currently in the modulus
chain. The primes used for the ciphertext ring are expressed as
Q = q0 · · · qℓmax . It is important to note that, unlike BGV and
CKKS, the message in the BFV scheme is encrypted using
the Most Significant Digits. Consequently, BFV is free from
the need for modulus switching.

D. RNS Variants

Residue Number System (RNS) allows for the representa-
tion of large integers as tuples of smaller integers, particularly
useful in computational contexts where parallel processing and
modular arithmetic.

Consider a set of pairwise coprime integers q0, q1, . . . , qℓ−1.
An integer a can be uniquely represented in RNS as a tuple
(a0,a1, . . . ,aℓ−1), where ai = a mod qi. This representation
is derived from the Chinese Remainder Theorem (CRT), which
establishes an isomorphism between the ring RQ = ZQ and
the product of smaller rings Rq0 ×Rq1 × · · · ×Rqℓ−1

, where
Q = q0 · q1 · · · qℓ−1.

The RNS variant of the word-type scheme was initially
proposed by Cheon et al. (2018) [16] and further improved by
Halevi et al. (2018) [24], providing significant advancements
in the efficiency of homomorphic encryption schemes by
leveraging the parallelism inherent in RNS.

Base conversion is used in relinearization and involves
converting a polynomial from a high-precision base to a lower-
precision base. We define the operation of converting the base
of a polynomial x from an input base to an output base
as bconvQ→P(x). At the implementation level, this work
utilizes the HPS variant of base conversion, as described in
[24]. In this context, the input base Q is expressed as the
product Q =

∏k
i=0 qi, where each q∗i is calculated as Q/qi,

and q̃i is defined as [q∗−1
i]qi . The output base P =

∏k′

j=0 rj .
The base conversion function is given by:

bconvQ→P(x) =

[
k∑

i=0

[xi · q̃i]qi · q∗i − vQ

]
rj

k

j=0

,

v =

⌊
k∑

i=0

[xi · q̃i/qi]

⌉

E. GPU Programming

The GPU is designed as a multi-core processor with ex-
ceptional capabilities for parallel processing. This is achieved
through the Compute Unified Device Architecture (CUDA),
which provides a framework for efficiently utilizing GPU
resources. In this architecture, the CPU initiates a kernel,

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

which is executed simultaneously by numerous CUDA threads,
allowing for massive parallelism.

The execution logic of a kernel can be effectively pro-
grammed using CUDA-like functions, which enable the con-
current execution of multiple kernels, thereby facilitating par-
allelism. Unlike traditional CPU programming, initiating a
kernel on a GPU involves host-device communication, which
introduces some latency. To mitigate this, an optimal approach
for Single Instruction, Multiple Data (SIMD) operations is
kernel fusion. By combining kernels from different modules,
the overhead associated with kernel initialization is minimized,
enhancing overall efficiency.

The parallel processing capability of GPU cards is signifi-
cantly influenced by the number of CUDA cores they possess.
For instance, the NVIDIA A100 demonstrates superior per-
formance in executing arithmetic operations for polynomials
of size 216 due to its extensive parallel processing power.
However, for smaller polynomial sizes, the grid may not
be fully utilized, making the kernel initialization overhead
more pronounced. Consequently, maximizing parallelism is
desirable, especially when the target device specifications are
not predetermined, as it allows for better resource utilization
and performance optimization across various hardware config-
urations.

III. LINEAR-KEYSWITCHING

For simplicity, all the algorithms discussed in this section
are configured under the CKKS scheme, with parameters α =
1 and P = 1, meaning there is only one introduced prime pin
the mod-up ring RQℓP.

A. Previous Approach

The previous key-switching algorithm, adapted from [26],
encounters significant limitations when α > 1, as the multi-
plication depth becomes highly restricted. For simplicity, this
article primarily focuses on the case where α = 1, which is
illustrated in Algorithm 1, serving as the baseline approach for
our study. Popular open-source libraries such as SEAL [14]
incorporate similar algorithms. We have developed a GPU-
accelerated version of this implementation, applicable to all
word-type schemes, which we use as the baseline to assess
the performance improvements and optimizations achieved by
our new approach.

We observed that the primary issue with this approach lies
in the mod-up module, specifically during the transformation
of the input cipher from RQℓ

to RQℓP (line 6 to line
7. This process involves a computationally intensive O(ℓ2)
times NTT for the ciphertext polynomial, which significantly
contributes to the overall complexity. Moreover, the procedure
involves Q(ℓ) times of base conversion from Qℓ to QℓP. The
complexity of computation increases significantly as the level
ℓ rises due to the quadratic growth in the number of NTT
operations and base conversions. This complexity motivates
us to address through the proposed method detailed in the
following section.

Algorithm 1: Previous Approach: Key-Switching
Data: c2 on RQℓ

Result: c′2[c0|c1] on RQℓ

1 c′ ←Inv-NTT(c2, Qℓ);
2 for i← 0 to ℓ− 1 do
3 ibase ← [qi];
4 obase ← QℓP ;
5 c′i ← part c′ on [qα·i, qα·i+α];
6 bi ←BaseConversion(c′i, ibase, obase);
7 bi ←NTT(bi,QℓP);
8 end
9 for ← 0 to ℓ do

10 [cxi]QℓP+ = bi · [pk]i;
11 end
12 for i← 0 to ℓ+ 1 do
13 cxj ← Inv-NTT(cxj ,QℓP);
14 end
15 ∆[c0]← [cx[c0]]p;
16 ∆[c1]← [cx[c1]]p;
17 for i← 0 to ℓ− 1 do
18 ∆[c0]←[∆[c0]]Qℓ

;
19 ∆[c1]←[∆[c1]]Qℓ

;
20 end
21 for i← 0 to ℓ do
22 c′2[c0|c1]←

ModDownKernel(cx[c0|c1],∆[c0|c1]) ;
23 c′2[c0|c1]← NTT(c′2[c0|c1],Qℓ) ;
24 end

B. Our Method with Linear NTT Complexity

Recall that the ultimate objective is to com-
pute the external product of c2 on RQℓ

with
pk0[c0|c1],pk1[c0|c1], . . . ,pkβ−1[c0|c1] on R2

QℓP
.

Traditionally, this process involved converting the base
from Qℓ to QℓP and performing the inner product in the
NTT space of QℓP. This approach can be computationally
intensive due to the potentially large size of the RNS base,
particularly when ℓ is substantial.

To address this complexity, we propose a novel method that
circumvents the need for full base conversion from qi to the
entire RNS base of QℓP. Instead, we explore the possibility
of treating the polynomial of [c2]qi as on R and manipulate
the values itself for polynomial multiplication, where qi ∈ Qℓ.

Consider an element a ∈ R, and two co-prime integers form
a new RNS base [m0,m1]. The relationship is expressed by
the following equation:

x = [a ·m−1
1]m0

·m1 + [a ·m−1
0]m1

·m0

This equation can be used to demonstrate that

[a]m0m1
= x

provided that x < m0 · m1. This result is straightforward
to prove due to the properties of the Chinese Remainder
Theorem.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

Fig. 1: Overview of our proposed algorithm

TABLE II: Time complexity analysis of our approach

(Inv) NTT Hadamard Product

[26]
BGV: ℓ2 + 7ℓ+ 2

2ℓ · (ℓ+ 1)CKKS: ℓ · (ℓ+ 1) + 5ℓ
BFV: (ℓ+ 2) · (ℓ+ 1)

Ours BGV/CKKS: 8ℓ+ 4
4ℓ · (ℓ+ 1)BFV: 6ℓ+ 4

Given the constraint that x is bounded, during polynomial
multiplication, the sum of coefficients must not exceed m0·m1.
This requirement ensures that the intermediate modulus can
accommodate numbers of size max(qi)2 × N . Typically, qi
is less than 60 bits, leading to a maximum product width
of 60 + 60 + 16 bits. This width slightly exceeds 128 bits,
making it impractical to use a single 128-bit modulus directly.
Consequently, we have opted to utilize two 64-bit moduli
for intermediate modulus operations. This choice is motivated
by the fact that, although direct computation with a 128-
bit modulus might be straightforward, employing two 64-
bit moduli offers advantages in resource management and
hardware implementation efficiency.

Algorithm 2 outlines the preprocessing steps for generating
the key-switch key, while Algorithm 3 provides the pseudo-
code for the online calculations of the proposed method within
a CKKS framework. For details of the implementation of
algorithms related to other schemes, refer to Section V.

The new methodology significantly the unit NTT operations
complexity to O(ℓ), as demonstrated in Table II.

Algorithm 2: Linear-Keyswitching: pkrelin Processing
Data: pk0[c0|c1],pk1[c0|c1], ...,pkℓ−1[c0|c1] on

Rℓ×2
QℓP

Result: v0,0[c0|c1],v0,1[c0|c1], ...,vℓ−1,ℓ[c0|c1] on
Rℓ×(ℓ+1)×2

m0·m1

1 for i← 0 to ℓ− 1 do
2 for j ← 0 to ℓ do
3 [vi,j]m0

← [pkj]qi ;
4 [vi,j]m1

← [pkj]qi ;
5 vi,j ←NTT(vi,j, [m0,m1]);
6 end
7 end

Algorithm 3: Linear-Keyswitching: Key-Switching
Data: c2 on RQℓ

Result: c′2[c0|c1] on RQℓP

1 c′ ←Inv-NTT(c2, Qℓ);
2 for i← 0 to ℓ− 1 do
3 [bi]m0

← [c′]qi ;
4 [bi]m1

← [c′]qi ;
5 bi ←NTT(bi, [m0,m1]);
6 for j ← 0 to ℓ do
7 [cxj]m0

+ = [bi]m0
· [vi,j]m0 ;

8 [cxj]m1
+ = [bi]m1

· [vi,j]m1 ;
9 end

10 end
11 for j ← 0 to ℓ do
12 cxj ← Inv-NTT(cxj , [m0,m1]);
13 [cx]qj ← BaseConversion(cxj , [m0,m1], qj);
14 end
15 ∆[c0]← [cx[c0]]p;
16 ∆[c1]← [cx[c1]]p;
17 for i← 0 to ℓ− 1 do
18 ∆[c0]←[∆[c0]]Qℓ

;
19 ∆[c1]←[∆[c1]]Qℓ

;
20 end
21 for i← 0 to ℓ do
22 c′2[c0|c1]←

ModDownKernel(cx[c0|c1],∆[c0|c1]) ;
23 c′2[c0|c1]← NTT(c′2[c0|c1],Qℓ) ;
24 end

IV. THE DOUBLE DECOMPOSITION APPROACH

The methodology proposed by Kim et al. (2023) [31] in
Asiacrypt represents the current state-of-the-art for addressing
the complexity of the NTT in key-switching operations. The
main concept of this approach is to handle the decompo-
sition of public keys (pk) more efficiently by leveraging a
double decomposition strategy. Instead of decomposing the
public keys directly and computing the inner product in a
traditional manner, the method introduces a novel way of
managing these operations in a double-decomposed form.
This technique reduces the computational burden associated
with NTT operations. By breaking down the problem into
smaller, more manageable components, the method allows

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

TABLE III: List of symbols specified for double decomposi-
tion

Symbol Description
r Word width of key-decomposition
d Number of key-decomposition

= ⌈QℓP/r⌉
T Extended RNS Base for inner product
|T| Number of modulus in T

TABLE IV: Corrected time complexity analysis of [31]

(Inv) NTT Hadamard Product
BGV/CKKS: ℓ · |T|+ 2 · d · |T|+ 3ℓ

2ℓ · d · |T|BFV:ℓ · |T|+ 2 · d · |T|

for a more efficient computation process that minimizes the
overhead typically encountered with large moduli. The double
decomposition method effectively decouples the complexity
of the NTT from the size of the modulus, enabling a linear
reduction in computational complexity from O(ℓ2) to O(ℓ).

More specifically, the parameters for the second decomposi-
tion, as described in Table III, play a critical role in influencing
the complexity of the NTT and Hadamard product operations
within the algorithm. The time complexity analysis is shown
in Table IV.

Although the article introduces promising advancements in
key-switching, there are some inaccuracies and ambiguities
in the original paper. For example, [32] highlighted a mis-
calculation in the complexity of the NTT and the Hadamard
product, as well as a lack of consideration of the differ-
ences between various schemes. Table IV presents the revised
complexity analysis, addressing these issues. In our work,
we have validated the findings of [32] and implemented the
corrected methodology in all relevant schemes. Furthermore,
we provide a comprehensive step-by-step algorithm in the
appendix, Algorithm 4-7. This ensures clarity and accuracy
in the application of the method, allowing for more reliable
and efficient implementation.

A. Performance Limitations and Challenges

a) Difficulty in Determining Optimal Values for r and
d: The time complexity of the key-switching operation is
a complex, non-linear equation involving both the NTT and
Hadamard product computations. This complexity makes it
challenging to use a deterministic method to find the op-
timal values r and d. In our implementation, we observed
that the value of r which offers the best NTT complexity
does not necessarily guarantee the best overall performance.
This discrepancy arises because the computational cost is
not solely dependent on NTT complexity but also on the
interplay with Hadamard product operations and other factors.
Meanwhile, base conversion involves floating-point arithmetic,
which introduces further complexity that is not accounted
for in the asymptotic complexity of NTT and Hadamard
operations. Additionally, the number of kernel initializations
can significantly affect performance. Frequent initializations
can lead to increased overhead, thereby affecting the overall
performance of the system.

Fig. 2: Theoretical Complexity Approximation vs. Experiment
Runtime with the Double Decomposition Approach. Theoret-
ical Complexity Approx.: #. of unit operations in one key-
switching on polynomial level, approximated using Table IV

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

TABLE V: GPU Memory Consumption Estimation for [31].
Based on computing for a CKKS implementation with max
level 32. #: number of key decompositions pre-computed

Parameters Storage Requirement (GB)
logN # Offline Online Total

14 1 3.91 0.37 4.28
14 2 11.54 0.37 11.91
14 All 73.83 0.37 74.20
15 1 7.81 0.73 8.54
15 2 23.07 0.73 24.40
15 All 147.92 0.74 148.65
16 1 15.63 1.47 17.1
16 2 46.14 1.47 47.61
16 All 296.89 1.47 298.36

Figure 2 illustrates that approximating the runtime con-
sidering the complexity of the NTT as O(N logN) and
the complexity of the Hadamard product as O(N) does not
accurately reflect the experimental runtime.

b) Storage Requirement: Implementing the original dou-
ble decomposition method on a GPU presents significant
challenges, primarily due to its substantial demand for GPU
memory resources. As illustrated in Table V, the memory
consumption under typical parameter settings for various
schemes is considerable. Given that a single NVIDIA A100
GPU has a maximum of 80GB of memory, this limitation
becomes a critical constraint. Moreover, the time-consuming
nature of communication between the host and the device can
become a performance bottleneck, further complicating the
implementation process.

According to a previous discussion, determining the opti-
mal width of the word decomposition r using deterministic
methods is challenging. As a result, it becomes necessary
to compute multiple sets of public keys pk and the corre-
sponding base converters and twiddle factor tables offline.
If the GPU memory is insufficient to store all precomputed
resources, it necessitates the development of a highly efficient
communication channel between the GPU and the host. This
requirement extends beyond the scope of FHE implementation
itself, demanding innovative solutions to efficiently manage
data transfer and resource allocation.

V. IMPLEMENTATION

A. Implementation Design

In the implementation, we have systematically separated all
components that can be precalculated and stored in advance,
such as the public keys (pk) and the BaseConverters. This
precalculation strategy allows us to optimize the computational
process by minimizing the need for real-time calculations,
thereby enhancing efficiency. Elements not associated with
the polynomial, such as q∗i , q̃i, and Qibase/qi, as well as the
forward and backward NTT twiddle factor tables with bases
[m0,m1] and T, can be precomputed. These components are
inherently dependent on the polynomial’s characteristics and
thus require real-time computation.

B. Optimizing the GPU Performance

As discussed in Section II-E, the number of kernel ini-
tializations significantly impacts runtime, making it crucial to

Fig. 3: Unified Implementation of Linear Key-Switching
Method for BFV, BGV, and CKKS Schemes

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

TABLE VI: List of parameters used in the experiment

logN scheme ℓmax |Q| × size (bits) |P| × size (bits)

14
BGV 32 32× 40 1× 55

CKKS 32 1× 55, 31× 40 1× 55
BFV 8 7× 40 1× 55

15
BGV 32 32× 40 1× 55

CKKS 32 1× 55, 31× 40 1× 55
BFV 15 14× 40 1× 55

16
BGV 32 32× 40 1× 55

CKKS 32 1× 55, 31× 40 1× 55
BFV 34 33× 40 1× 55

minimize these initializations. In linear key-switching, where
many parameters are pre-determined, there is potential to
compress pre-processing tasks and perform kernel fusing. This
optimization is particularly beneficial because it reduces the
overhead associated with multiple kernel launches, which can
be a major performance bottleneck in GPU implementations.

For instance, consider a module in Algorithm 5 that invokes
the NTT kernels ℓ times. By predetermining values such as
[m0,m1], we can optimize the process by introducing a fused
kernel and moving this kernel call outside the loop, thus
reducing the number of kernel initializations to just one.

Such optimizations are crucial in maximizing the per-
formance of GPU-based cryptographic operations, as they
leverage the parallel processing capabilities of GPUs while
minimizing the latency associated with kernel management.
By focusing on pre-determined parameters and efficient kernel
management, we can achieve significant improvements in
computational efficiency.

VI. EXPERIMENT

A. Experiment Setup

The project was implemented and tested on a single
NVIDIA A100 GPU to assess the performance of the im-
plemented schemes. Comprehensive performance benchmarks
were conducted to evaluate the efficiency and scalability of
these schemes. The parameters used for thorough tests across
different schemes are detailed in Table VI, outlining the
specific configurations used in the evaluation process.

B. Evaluation

Speed: Table VIII offers a comprehensive comparison of the
runtime performance among baseline, the linear-keyswitching
approach and the double decomposition method.

• Speed Performance Improvement: Our approach con-
sistently demonstrates significant speed improvements
over both the best results from [31] and the baseline
implementation. For instance, in the BGV scheme at
logN = 14 of level ℓ = 32, our method achieves a
speed of 8.07 ms, representing a 1.5x improvement over
[31] and a 1.6x improvement over the baseline.

• Efficiency Across Schemes: The table highlights that
our approach is effective across different schemes. For
the CKKS scheme at logN = 14, our method shows a
2.0x speedup compared to the baseline for ℓ = 32. This
indicates robust performance enhancements regardless of
the encryption scheme used.

• Scalability with Parameters: As the parameter logN
increases, our approach maintains its efficiency. For ex-
ample, at logN = 16 in the BGV scheme, our method
achieves a speed of 33.12 ms for ℓ = 32, showing a 1.5x
improvement over the baseline.

• Consistent Gains: Across all configurations, our method
consistently outperforms the baseline and even the best
setting of [31], demonstrating its reliability and effective-
ness in optimizing key-switching operations. For the BFV
scheme at logN = 14, the speed improvement reaches
up to 2.0x compared to the best decomposition strategy of
[31]; For CKKS with logN = 14, our speed-up reaches
as high as 2.0x on level ℓ = 32.

Speed Performances by Level: For leveled schemes such
as BGV and CKKS, we examine the speed performance as the
level increases. Figure 4 illustrates that our approach achieves
significant runtime performance improvements, particularly for
N = 214 and N = 215. Although for N = 216 the advantage
of our method diminishes slightly, it remains closely aligned
with the optimal parameter choice of r, and continues to per-
form well as long as the level does not grow excessively large.
Specifically, our scheme demonstrates exceptionally stable and
fast performance in smaller parameter sets, such as N = 214,
where the benefits of the double decomposition approach are
less evident. This stability underscores the efficiency of our
method.

Operation Proportion Analysis: Figure 5 provides a
breakdown of time consumption during the key-switching
process. For the analysis of [31], the decompositions with
r = 11 and r = 7 are selected because they provide the
best and second-best performance, respectively, in terms of
overall runtime efficiency. It is evident that both the linear
and double decomposition approaches significantly reduce the
time required for the c2 modulus switch compared to previous
methods. A notable difference, however, is that the inner
product time consumption for linear key-switching can be up
to twice that of the original algorithm. This observation aligns
with the theoretical complexity analysis.

Space Consumption: Since our scheme introduces only an
additional RNS base [m0,m1], it is sufficient to precalculate
the public key pk to be approximately twice its original
size. This is in stark contrast to the increase required if one
were to pre-calculate all decomposition keys using the double
decomposition method. As shown in Table VII, our approach
can save around 95% of the space compared to the worst-case
of [31].

This strategy allows a single Tesla A100 GPU to effi-
ciently store all pre-computed keys and tables, even as the
computational level reaches 35 or higher. In contrast, during
our experiments with the double decomposition approach,
we found that the 80 GB memory was insufficient for our
requirements. For ℓ > 20, we were forced to conduct tests
layer-by-layer due to GPU memory constraints. This clearly
demonstrates the superior space efficiency of our method.

C. Discussion
In previous sections, we demonstrated that our method

significantly outperforms than the baseline approach in terms

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Performance comparison of ours, double decomposition[31], and baseline implementations for the levelled schemes

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

TABLE VII: Space Consumption

logN scheme level single level memory usage (GB)
[31] ours space saving

14
BGV 32 11.38 0.55 95.15%

CKKS 32 11.87 0.55 95.34%
BFV 8 0.30 0.04 85.80%

15
BGV 32 22.76 1.10 95.15%

CKKS 32 23.85 1.10 95.37%
BFV 15 2.93 0.26 91.01%

16
BGV 32 45.64 2.21 95.16%

CKKS 32 47.70 2.21 95.37%
BFV 34 53.77 2.48 95.38%

Fig. 5: Breakdown of 1000 iter runtime for CKKS level 32,
N = 216. double7:[31] with r = 7; double11:[31] with r =
11. IP: Inner Product; bconv: Base Conversion

of speed ant NTT complexity. Compared with [31], although
the double decomposition approach theoretically offers better
complexity in terms of NTT, this advantage does not necessar-
ily translate to its GPU implementations. Several challenges
contribute to this discrepancy:

1) Parameter Selection: Achieving the best theoretical com-
plexity is often impractical because determining the
optimal parameters is challenging. The complexity of the
parameter space makes it difficult to consistently select
values that yield optimal performance

2) Storage and Memory Constraints: Even when optimal
parameters are identified, they impose stringent require-
ments on storage and memory management. The in-
creased demand for memory can exceed the capacity
of available hardware, such as GPUs, thereby limiting
the practical applicability of the approach

3) Algorithmic Complexity: The inherent complexity of
the double decomposition algorithm poses significant
challenges for developers in terms of GPU accelera-
tion. The intricate nature of the algorithm complicates
the implementation process, making it difficult to fully
leverage the parallel processing capabilities of GPUs.

In contrast, we achieved better performance in terms of both
speed and space efficiency. Our approach has the following
advantages:

1) Speed: Achieved through GPU acceleration and op-
timization, our method significantly reduces compu-
tational time compared to the double decomposition
approach.

2) Space Efficiency: Our approach is more accommodating
to the memory limitations of modern single GPU cards.
By optimizing memory usage and reducing the size of
pre-computed keys, we ensure that our implementation
fits within the constraints of available GPU memory.

Another noteworthy issue is the development burden asso-
ciated with implementing the double decomposition approach.
In our experience, the implementation of the method described
in [31] is significantly more time-consuming. Unlike CPU
development, CUDA coding and testing can be more challeng-
ing due to the GPU’s less transparent nature to developers.
Implementing the double decomposition requires designing
additional GPU kernels, which extends the development cycle
and complicates GPU optimization efforts. Moreover, kernel
fusing becomes difficult due to the need to maintain the
flexibility of the original algorithm. The presence of numerous
undetermined parameters adds to the testing burden, as FHE
schemes already involve a multitude of parameters that need to
be tested. This complexity makes it more challenging to find
an optimal combination of parameters that ensures efficient
performance.

Our approach effectively balances simplicity and gener-
ality, taking into account the constraints inherent in GPU
implementations. In real-world applications such as PPML
and cloud computing, obtaining detailed hardware information
from users and tuning parameters for the second decomposi-
tion can be challenging, raising additional privacy concerns.
On the other hand, to maintain flexibility, one might need to
precompute additional parameters, which can lead to increased
computational overhead and resource consumption.

Our method is optimized for most scenarios, allowing for
potential GPU acceleration optimizations without excessive
precomputation. For scenarios where hardware optimization
and ease of integration are crucial, the linear approach may
offer more advantages due to its straightforward nature and
lower resource demands. Conversely, applications requiring
extensive flexibility and adaptability might benefit from a more
generalized approach such as [31], though this comes with the
trade-off of increased complexity and resource requirements

For α > 1: Experimental results indicate that both the
linear-key switching method and the approach described in
[31] exhibit performance degradation when the parameter
α exceeds 1. However, our method demonstrates relative
advantages, as it handles smaller parameters more effectively.
In subsequent research, we aim to tackle this challenge by
integrating other techniques that have shown promise in sim-
ilar contexts. Through these efforts, we hope to develop more
robust solutions that maintain high performance even when α
exceeds 1.

VII. CONCLUSION

In conclusion, we have introduced a novel algorithm that
achieves linear NTT complexity for key-switching, demon-

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

TABLE VIII: Performance comparison of the implemented linear and double-decomposition approaches

Best of [31] Baseline Ours
logN scheme ℓ r |T| time (ms) time (ms) time (ms) speed (vs. [31]) speed (vs. baseline)

14

BGV

32 11 9 12.12 13.19 8.07 x1.5 x1.6
24 13 10 8.68 9.18 5.48 x1.6 x1.7
16 9 8 6.16 6.91 3.60 x1.7 x1.9
8 9 8 3.19 2.98 2.14 x1.5 x1.4

CKKS

32 11 9 11.78 15.45 7.82 x1.5 x2.0
24 13 10 8.55 10.00 5.32 x1.6 x1.9
16 9 8 6.05 6.68 3.45 x1.8 x1.9
8 9 8 3.13 2.84 1.99 x1.6 x1.4

BFV 8 5 5 2.86 2.33 1.45 x2.0 x1.6

15

BGV

32 5 5 18.51 27.41 16.43 x1.1 x1.7
24 7 6 12.46 17.34 10.44 x1.2 x1.7
16 7 6 8.19 9.25 6.01 x1.4 x1.5
8 5 5 4.23 4.31 3.12 x1.4 x1.4

CKKS

32 5 5 18.24 26.65 16.13 x1.1 x1.7
24 7 6 12.16 16.57 10.26 x1.2 x1.6
16 7 6 8.00 8.61 5.80 x1.4 x1.5
8 5 5 4.02 3.95 2.95 x1.4 x1.3

BFV 15 4 4 6.91 7.65 4.36 x1.6 x1.8

16

BGV

32 11 9 34.62 49.62 33.12 x1.0 x1.5
24 5 5 20.17 30.04 21.36 x0.9 x1.4
16 6 6 12.55 15.26 11.99 x1.0 x1.3
8 5 5 6.00 5.68 4.99 x1.2 x1.1

CKKS

32 11 9 29.53 47.94 32.89 x0.9 x1.5
24 13 10 20.96 28.53 21.15 x1.0 x1.3
16 6 6 13.81 14.34 11.75 x1.2 x1.2
8 5 5 5.88 5.06 4.80 x1.2 x1.1

BFV 34 5 5 36.07 54.62 32.96 x1.1 x1.7

strating significant potential for GPU and hardware optimiza-
tion. This advancement is particularly relevant in the context
of cryptographic operations, where efficiency and resource
management are critical. Our approach not only simplifies
the computational process but also enhances the feasibility of
implementing these operations on GPUs, thereby optimizing
hardware utilization.

Furthermore, we have completed a GPU implementation of
the methodology outlined in [31]. This implementation serves
as a practical demonstration of the algorithm’s capabilities,
allowing others to explore and build upon our work.

Our comprehensive experiments and comparisons under-
score the effectiveness of our approach. The results indicate
that the simplicity inherent in our method not only achieves
comparable improvements to existing techniques, but often
surpasses them. This is achieved through enhanced preprocess-
ing, which significantly reduces the computational overhead
and conserves GPU memory resources. By streamlining the
preprocessing phase, our algorithm minimizes the memory
footprint, thereby addressing one of the key challenges in
GPU-based implementations. In general, the proposed algo-
rithm represents a significant contribution to the field, offering
a balance between simplicity and performance that is crucial
to advance cryptographic computations on modern hardware
platforms.

ACKNOWLEDGEMENT

This research is supported in part by the Jiangsu Province
100 Foreign Experts Introduction Plan BX2022012. This re-
search is also supported in part by TÜBİTAK Projects 2232-
118C332 and 1001-121F348.

REFERENCES

[1] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi,
David Bruce Cousins, Saroja Erabelli, Nicholas Genise,
Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee,
et al. Openfhe: Open-source fully homomorphic encryp-
tion library. In proceedings of the 10th workshop on
encrypted computing & applied homomorphic cryptog-
raphy, pages 53–63, 2022.

[2] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Nan
Xiao, Matsumura Kazuaki, and Aung Khin Mi Mi. Multi-
gpu design and performance evaluation of homomorphic
encryption on gpu clusters. IEEE Transactions on Par-
allel and Distributed Systems, 32(2):379–391, 2020.

[3] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Nan
Xiao, Matsumura Kazuaki, and Aung Khin Mi Mi. Multi-
gpu design and performance evaluation of homomorphic
encryption on gpu clusters. IEEE Transactions on Par-
allel and Distributed Systems, 32(2):379–391, 2020.

[4] Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook
Mun, and Khin Mi Mi Aung. High-performance fv some-
what homomorphic encryption on gpus: An implemen-
tation using cuda. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 70–95, 2018.

[5] Pedro Geraldo MR Alves, Jheyne N Ortiz, and Diego F
Aranha. Faster homomorphic encryption over gpgpus
via hierarchical dgt. In International Conference on
Financial Cryptography and Data Security, pages 520–
540. Springer, 2021.

[6] Wei Ao and Vishnu Naresh Boddeti. AutoFHE: Auto-
mated adaption of CNNs for efficient evaluation over
FHE. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 2173–2190, Philadelphia, PA, August

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 13

2024. USENIX Association.
[7] Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacy-

preserving deep learning via additively homomorphic
encryption. ieee. transactions on information forensics
and, 13(5):1333–1345.

[8] L.J. Aslett, P.M. Esperança, and C.C. Holmes. En-
crypted statistical machine learning: new privacy preserv-
ing methods. arXiv preprint arXiv:1508.06845.

[9] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (leveled) fully homomorphic encryption with-
out bootstrapping. ACM Transactions on Computation
Theory (TOCT), 6(3):1–36, 2014.

[10] Zvika Brakerski and Vinod Vaikuntanathan. Fully homo-
morphic encryption from ring-lwe and security for key
dependent messages. In Annual cryptology conference,
pages 505–524. Springer, 2011.

[11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient
fully homomorphic encryption from (standard) lwe.
SIAM Journal on computing, 43(2):831–871, 2014.

[12] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-
based fhe as secure as pke. In Proceedings of the
5th conference on Innovations in theoretical computer
science, pages 1–12, 2014.

[13] H. Chabanne, A. Wargny, J. Milgram, C. Morel, and
E. Prouff. Privacy-preserving classification on deep
neural network. cryptology eprint archive.

[14] Hao Chen, Kim Laine, and Rachel Player. Simple
encrypted arithmetic library-seal v2. 1. In Financial
Cryptography and Data Security: FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA,
Sliema, Malta, April 7, 2017, Revised Selected Papers
21, pages 3–18. Springer, 2017.

[15] Huili Chen, Rosario Cammarota, Felipe Valencia,
Francesco Regazzoni, and Farinaz Koushanfar. Ahec:
End-to-end compiler framework for privacy-preserving
machine learning acceleration. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE,
2020.

[16] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran
Kim, and Yongsoo Song. A full RNS variant of ap-
proximate homomorphic encryption. Cryptology ePrint
Archive, Paper 2018/931, 2018.

[17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo
Song. Homomorphic encryption for arithmetic of approx-
imate numbers. In Advances in Cryptology–ASIACRYPT
2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings,
Part I 23, pages 409–437. Springer, 2017.

[18] W. Dai and B. Sunar. cuhe: A homomorphic encryption
accelerator library. Cryptography and Information Se-
curity in the Balkans: Second International Conference,
BalkanCryptSec 2015, 2 (pp:169–186.

[19] Junfeng Fan and Frederik Vercauteren. Somewhat prac-
tical fully homomorphic encryption. Cryptology ePrint
Archive, 2012.

[20] Craig Gentry. A fully homomorphic encryption scheme.
PhD thesis, Stanford, CA, USA, 2009. AAI3382729.

[21] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homo-
morphic evaluation of the AES circuit. Cryptology ePrint
Archive, Paper 2012/099, 2012. https://eprint.iacr.org/
2012/099.

[22] Craig Gentry, Amit Sahai, and Brent Waters. Homomor-
phic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In Ad-
vances in Cryptology–CRYPTO 2013: 33rd Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 18-
22, 2013. Proceedings, Part I, pages 75–92. Springer,
2013.

[23] Jia-Zheng Goey, Wai-Kong Lee, Bok-Min Goi, and Wun-
She Yap. Accelerating number theoretic transform in gpu
platform for fully homomorphic encryption. The Journal
of Supercomputing, 77:1455–1474, 2021.

[24] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An im-
proved RNS variant of the BFV homomorphic encryption
scheme. Cryptology ePrint Archive, Paper 2018/117,
2018. https://eprint.iacr.org/2018/117.

[25] Shai Halevi and Victor Shoup. Design and implementa-
tion of a homomorphic-encryption library. IBM Research
(Manuscript), 6(12-15):8–36, 2013.

[26] Kyoohyung Han and Dohyeong Ki. Better bootstrapping
for approximate homomorphic encryption. Cryptology
ePrint Archive, Paper 2019/688, 2019. https://eprint.iacr.
org/2019/688.

[27] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. GAZELLE: A low latency framework for
secure neural network inference. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), pages 1651–1669,
Baltimore, MD, August 2018. USENIX Association.

[28] A. Khedr, G. Gulak, and V. Vaikuntanathan. Shield: scal-
able homomorphic implementation of encrypted data-
classifiers. ieee. Transactions on, 65(9):2848–2858.

[29] Jongmin Kim, Wonseok Choi, and Jung Ho Ahn. Ched-
dar: A swift fully homomorphic encryption library for
cuda gpus. arXiv preprint arXiv:2407.13055, 2024.

[30] Miran Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo
Song. Accelerating he operations from key decompo-
sition technique. In Annual International Cryptology
Conference, pages 70–92. Springer, 2023.

[31] Miran Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo
Song. Accelerating HE operations from key decom-
position technique. Cryptology ePrint Archive, Paper
2023/413, 2023. https://eprint.iacr.org/2023/413.

[32] Johannes Mono and Tim Güneysu. A new perspective on
key switching for BGV-like schemes. Cryptology ePrint
Archive, Paper 2023/1642, 2023. https://eprint.iacr.org/
2023/1642.

[33] Michael Naehrig, Kristin Lauter, and Vinod Vaikun-
tanathan. Can homomorphic encryption be practical?
In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop, pages 113–124, 2011.

[34] Wei Wang, Zhilu Chen, and Xinming Huang. Acceler-
ating leveled fully homomorphic encryption using gpu.
In 2014 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 2800–2803. IEEE, 2014.

[35] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and

https://eprint.iacr.org/2012/099
https://eprint.iacr.org/2012/099
https://eprint.iacr.org/2018/117
https://eprint.iacr.org/2019/688
https://eprint.iacr.org/2019/688
https://eprint.iacr.org/2023/413
https://eprint.iacr.org/2023/1642
https://eprint.iacr.org/2023/1642

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 14

Berk Sunar. Accelerating fully homomorphic encryption
using gpu. In 2012 IEEE conference on high performance
extreme computing, pages 1–5. IEEE, 2012.

[36] Hao Yang, Shiyu Shen, Wangchen Dai, Lu Zhou, Zhe
Liu, and Yunlei Zhao. Phantom: a cuda-accelerated word-
wise homomorphic encryption library. IEEE Transac-
tions on Dependable and Secure Computing, 2024.

Shutong Jin received her B.Eng degree from De-
partment of Electrical Engineering, City University
ofHong Kong in 2020. She is now a Ph.D. candidate
supervised by Prof. Ray Cheung. Her research inter-
ests include privacy-preserving deep learning, GPU
acceleration and cryptography.

Zhen Gu is a Research Scientist in the DAMO
Academy of Alibaba Group. He earned his B.S.
degree in the Department of Microelectronics and
Nanoelectronics from Tsinghua University, Beijing,
China; and his Ph.D. degree in the School of In-
tegrated Circuits from Tsinghua University, Bei-
jing, China. His research interests are in privacy-
enhancing technologies (PETs) and hardware accel-
eration of secure computation. Dr. Gu has published
papers on both hardware acceleration and applica-
tion protocols in conferences like DAC, NDSS and

VLDB, etc.

Guangyan Li received the B.Eng degree in 2020
from the Department of Electrical Engineering, City
University of Hong Kong. He is now pursuing the
PhD degree in the Department of Electrical Engi-
neering from City University of Hong Kong. His
research interests include reconfigurable computing
with FPGA, and post-quantum cryptography algo-
rithm design.

Donglong Chen received the PhD degree from the
Department of Electronic Engineering, City Univer-
sity of Hong Kong, in 2015. He was a visiting
research scholar of COSIC, KU Leuven, Belgium,
in 2013. After completing his PhD degree study, he
spent four years with the industry including Huawei
Technology Co., Ltd. and Tencent Technology Co.,
Ltd. He is currently an associate professor with the
Faculty of Science and Technology, BNU-HKBU
United International College (UIC), China. His re-
search interests include cryptographic engineering,

software/hardware co-design for AI algorithms, and privacy computing.

Çetin Kaya Koç received his Ph.D. in Electrical &
Computer Engineering from the University of Cali-
fornia Santa Barbara. His research interests include
cryptographic engineering, finite field arithmetic,
random number generators, homomorphic encryp-
tion and machine learning. Koç is the co-founder
of the Conference on Cryptographic Hardware and
Embedded Systems (1999) which is the second
largest cryptography conference in the world. Koç
also is the founding editor-in-chief of the Journal of
Cryptographic Engineering, published by Springer

since 2011, with focus on cryptographic hardware and software development.
Koç was elected as an IEEE Fellow in 2007 and IEEE Life Fellow in 2023
for his contributions to cryptographic engineering.

Ray C. C. Cheung received the Ph.D. degrees in
computing from Imperial College London, London,
U.K., in 2007. He conducted his postdoctoral re-
search work with UCLA and his visiting fellowship
with Princeton University. He is a Professor with
the Department of Electrical Engineering, and an
Associate Provost (Digi- tal Learning), CityUHK.
His current research interests include cryptographic
processor designs and embedded system designs.
He is now an Associate Editor of the Journal of
Cryptographic Engineering, Springer, and Frontiers

in High Performance Computing. He served as the Technical Chair of
FPT’02, the General Chair/Co-Chair of ARC’12, FPT’22, and ASAP’24. He
is currently the Chair of the IEEE Hong Kong Section.

Wangchen Dai received the Ph.D. degree in elec-
tronic engineering from the City University of Hong
Kong in 2018. After that, he had appointments at
Hardware Security Lab, Huawei Technologies Com-
pany Ltd., the Department of CSSE, Shenzhen Uni-
versity and Zhejiang Lab, Hangzhou, China. He is
currently an associate professor at Sun Yat-Sen Uni-
versity. His research interests include cryptographic
hardware and embedded systems, fully holomorphic
encryption, and reconfigurable computing.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 15

APPENDIX

This appendix provides the detailed implementation algo-
rithm for the method detailed in Section IV, serving as a
supplementary resource. Algorithms 4 through 7 present our
GPU implementations for all word-type schemes in a clear,
step-by-step manner. This detailed exposition aims to enhance
understanding and facilitate replication of implementation on
GPUs.

Algorithm 4: Double Decomposition: Key Decompo-
sition

Data: pk0[c0|c1],pk1[c0|c1], ...,pkβ−1[c0|c1] on
R2

QℓP

Result:

 v0,0 . . . v0,d−1

...
. . .

...
vβ−1,0 . . . vβ−1,d−1

 , vi,j = vi,j [c0|c1]

on R2
T

1 for i← 0 to β − 1 do
2 for j ← 0 to d− 1 do
3 ibase ← [q̃r·j , q̃r·j+r];
4 obase ← T ;
5 ui,j [c0]← part pki[c0] on [q̃r·j , q̃r·j+r];
6 ui,j [c1]← part pki[c1] on [q̃r·j , q̃r·j+r];
7 vi,j [c0]←BaseConversion(ui,j [c0],ibase,

obase);
8 vi,j [c1]←BaseConversion(ui,j [c1],ibase,

obase);
9 vi,j [c0]←NTT(vi,j [c0],T);

10 vi,j [c1]←NTT(vi,j [c1],T);
11 end
12 end

Algorithm 5: Double Decomposition: c2 mod-switch
Data: c2 on RQℓ

Result: b0,b1, ..,bβ−1 on RT

1 if scheme==ckks or scheme==bgv then
2 c′ ←Inv-NTT(c2, Qℓ);
3 else
4 c′ ←c2;
5 end
6 if α = 1 then
7 for i← 0 to ℓ− 1 do
8 bi ← [[c′]qi]T ;
9 bi ←NTT(bi,T);

10 end
11 else
12 for i← 0 to β − 1 do
13 ibase ← [qα·i, qα·i+α];
14 obase ← T ;
15 c′i ← part c′ on [qα·i, qα·i+α];
16 bi ←BaseConversion(c′i, ibase, obase);
17 bi ←NTT(bi,T);
18 end
19 end

Algorithm 6: Double Decomposition: Inner Product

Data: b0,b1, ..,bβ−1 on RT; v0,0 . . . v0,d−1

...
. . .

...
vβ−1,0 . . . vβ−1,d−1

 , vi,j = vi,j [c0|c1] on R2
T

Result: cx[c0|c1] on R2
QℓP

1 for j ← 0 to d− 1 do
2 cxj [c0|c1]← 0 on R2

T;
3 for i← 0 to β − 1 do
4 cxj [c0]← cxj [c0] + bi · vi,j [c0] ;
5 cxj [c1]← cxj [c0] + bi · vi,j [c1];
6 end
7 cxj [c0]← Inv-NTT(cxj [c0],T) ;
8 cxj [c1]← Inv-NTT(cxj [c1],T) ;
9 ibase ← T;

10 obase ← [q̃r·j , q̃r·j+r];
11 part cx[c0] on [q̃r·j , q̃r·j+r]←

BaseConversion(cxj [c0], ibase, obase);
12 part cx[c1] on [q̃r·j , q̃r·j+r]←

BaseConversion(cxj [c1], ibase, obase);
13 end

Algorithm 7: Double Decomposition: Mod-down

Data: cx[c0|c1] on R2
QℓP

Result: c′2[c0|c1] on R2
Qℓ

1 ∆[c0]← [cx[c0]]P;
2 ∆[c1]← [cx[c1]]P;
3 if α = 1 then
4 for i← 0 to ℓ− 1 do
5 bi ← [[c′]qi]T ;
6 ∆[c0]←[∆[c0]]Qℓ

;
7 ∆[c1]←[∆[c1]]Qℓ

;
8 end
9 else

10 for i← 0 to β − 1 do
11 ibase ← P;
12 obase ← Qℓ ;
13 ∆[c0]←BaseConversion(∆[c0], ibase,

obase) ;
14 ∆[c1]←BaseConversion(∆[c1], ibase,

obase) ;
15 end
16 end
17 if scheme==ckks then
18 c′2[c0|c1]←

ModDownKernel(cx[c0|c1],∆[c0|c1]) ;
19 c′2[c0|c1]← NTT(c′2[c0|c1],Qℓ) ;
20 else if scheme==bgv then
21 c′2[c0|c1]←

BGVModDownKernel(cx[c0|c1],∆[c0|c1]) ;
22 c′2[c0|c1]← NTT(c′2[c0|c1],Qℓ) ;
23 else if scheme==bfv then
24 c′2[c0|c1]←

ModDownKernel(cx[c0|c1],∆[c0|c1]) ;

	Introduction
	Related Works
	Our Contribution

	Preliminaries
	Word-Type FHE Schemes
	Key-Switching
	Modulus Switching
	RNS Variants
	GPU Programming

	Linear-KeySwitching
	Previous Approach
	Our Method with Linear NTT Complexity

	The Double Decomposition Approach
	Performance Limitations and Challenges

	Implementation
	Implementation Design
	Optimizing the GPU Performance

	Experiment
	Experiment Setup
	Evaluation
	Discussion

	Conclusion
	Biographies
	Shutong Jin
	Zhen Gu
	Guangyan Li
	Donglong Chen
	Çetin Kaya Koç
	Ray C. C. Cheung
	Wangchen Dai

	Appendix

