
Lollipops of pairing-friendly elliptic curves
for composition of proof systems

Craig Costello1 and Gaurish Korpal2

1 Microsoft Research, Redmond, USA
craigco@microsoft.com

2 University of Arizona, Tucson, USA
gkorpal@arizona.edu

Abstract. We construct lollipops of pairing-friendly elliptic curves, which combine pairing-
friendly chains with pairing-friendly cycles. The cycles inside these lollipops allow for un-
bounded levels of recursive pairing-based proof system composition, while the chains leading
into these cycles alleviate a significant drawback of using cycles on their own: the only known
cycles of pairing-friendly elliptic curves force the initial part of the circuit to be arithmetised
on suboptimal (much larger) finite fields. Lollipops allow this arithmetisation to instead be
performed over finite fields of an optimal size, while preserving the unbounded recursion
afforded by the cycle.
The notion of pairing-friendly lollipops itself is not novel. In 2019 the Coda + Dekrypt
“SNARK challenge” offered a $20k USD prize for the best lollipop construction, but to
our knowledge no lollipops were submitted to the challenge or have since emerged in the
literature. This paper therefore gives the first construction of such lollipops.
The main technical ingredient we use is a new way of instantiating pairing-friendly cycles
over supersingular curves whose characteristics correspond to those in MNT cycles. The
vast majority of MNT cycles that exist are unable to be instantiated in practice, because
the corresponding CM discriminant is too large to construct the MNT curves explicitly. Our
method can be viewed as a workaround that allows cycles to be instantiated regardless of
the CM discriminant of the MNT curves.

Keywords: Proof systems · Composition · Pairing-friendly cycles · MNT curves

1 Introduction

Numerous constructions of 2-cycles of elliptic curves are now deployed as the foundation of succinct
non-interactive arguments of knowledge (SNARKs) – see [1] for an extensive survey. Such 2-cycles
involve two elliptic curves, E/Fp and Ê/Fq, with p ≈ q such that p = #Ê(Fq) and q = #E(Fp),
and fall into one of three categories:

(i) Both E and Ê are pairing-friendly. These cycles were first proposed for use in scalable pairing-
based SNARKs by Ben-Sasson, Chiesa, Tromer and Virza [5] and use instances of the only
known cycle of ordinary pairing-friendly curves coming from the Miyaji-Nakabayashi-Takano
(MNT) construction [33,29]. For example, the Mina protocol [20] is built on top of a cycle of
MNT curves.

(ii) One of E and Ê is pairing-friendly. These hybrid cycles can be readily constructed by taking
any pairing-friendly curve E/Fp of prime order q, e.g. a Barreto-Naehrig (BN) curve [2], and

partnering it with the non-pairing-friendly3 curve Ê/Fq of prime order p, which is not only
guaranteed to exist, but necessarily has the same CM discriminant as E (c.f. [38]). Examples
of hybrid cycles found in the wild are Hopwood’s Pluto/Eris cycle [28], Meckler’s BN382
cycle [32], and Williamson’s BN254/Grumpkin cycle [46].

3 The only known exception here is when E is a particular instance of an MNT curve, in which case Ê
can also be pairing-friendly and the cycle would then fall into category (i).

(iii) Neither E nor Ê are pairing-friendly. Proof systems that avoid the use of pairings altogether
can still exploit the recursive composition afforded by a cycle; the Bulletproofs [11] system
is one such popular example. Non-pairing-friendly cycles found in the wild include Poelstra’s
secp/secq cycle [34], Bowe, Grigg and Hopwood’s Tweedledee/Tweedledum cycle [9], and Hop-
wood’s Pasta cycle [27].

The 2-cycles in cases (ii) and (iii) (where at least one of the curves is not pairing-friendly)
are much easier to find and construct than the 2-cycles in case (i). The instantiations falling
into cases (ii) and (iii) that are cited above involve curves whose underlying field sizes are either
optimally small, or else very close to it. On the other hand, the extra restrictions imposed by
insisting that both E and Ê are pairing-friendly make constructing the cycles in case (i) notoriously
difficult; beyond the MNT construction, there remain no known methods of constructing cycles of
ordinary pairing-friendly elliptic curves [12,3]. The two curves in the MNT cycle have embedding
degrees that are too small to balance the elliptic curve discrete logarithm problem (ECDLP) and
the finite field discrete logarithm problem (DLP) at moderate levels of security. Thus, instantiating
these cycles forces E/Fp and Ê/Fq to be defined over finite fields whose sizes are much larger than
the sizes of fields that non-pairing-friendly curves could be defined over. For example, the Mina
protocol uses the MNT753 curves E/Fp and Ê/Fq with p ≈ q ≈ 2753 in order to target the 112-bit

security level. This is because E and Ê have embedding degrees 4 and 6, meaning that both of
the ECDLP’s in E(Fp) and Ê(Fq) and both of the DLP’s in F×

p4 and F×
q6 need to be secure. In

this instance, the size of F×
p4 is around 23072, which is just enough to meet the 112-bit security

level. If, however, neither E/Fp nor Ê/Fq are required to be pairing-friendly, then we could work
with p ≈ q ≈ 2224 to achieve 112-bit ECDLP security. It follows that group operations like (multi-
)scalar multiplications would be much more efficient on these smaller curves than on the MNT753
cycle. In addition, all of the circuit arithmetisation that occurs inside SNARKs takes place over
Fp and/or Fq, so pairing-friendly cycles decrease the performance of the field arithmetic necessary
to work with the circuit as well.

The reason many SNARK instantiations still opt for cycles where one or both of E and Ê
are pairing-friendly is that pairing-based proof systems offer a number of advantages over non-
pairing-based proof systems. Groth’s SNARK [23], often dubbed Groth16, is perhaps the most
ubiquitous pairing-based proof system in both the academic literature and in practical SNARK
implementations. The reason is that the proof sizes in Groth’s construction are constant, i.e. are
independent of the size of the witness/statement they are proving. On the other hand, pairing-
free proof systems like Bulletproofs [11] are currently (at best) logarithmic in the size of the
witness. Depending on the target application, the resulting proof sizes in these protocols might be
acceptable, but in terms of the succinctness property that is fundamental to the real-world appeal
of SNARKs, Groth16 and its pairing-based variants remain unrivalled by their non-pairing-based
counterparts.

The absence of optimal pairing-friendly cycles has led many SNARK designers to instead opt
for chains of pairing-friendly curves [15,17,1]. Such chains allow for composition of pairing-based
proofs, but the number of times proofs can be composed recursively is strictly less than the number
of curves in the chain. For example, most chains found in the literature are 2-chains [16,17], which
only allow for one round of proof composition. Again, 2-chains may suffice for specific target
applications, but such applications are a far cry from the sorts of scalable pairing-based proof
systems that unbounded recursive composition would support [5].

In this paper we give constructions of pairing-friendly (2, 2)-lollipops4, which are 2-chains that
are connected to 2-cycles. In Figure 1 we depict the differences between these three possibilities: a
‘•’ represents a pairing-friendly curve, and (here and throughout the paper) an arrow → pointing
from A to B means B is pairing-friendly with respect to the (characteristic of the) field of definition
of A.

4 In general, an (m,n)-lollipop would have m curves in the “stick” and n curves in the cycle (one curve
is common to both the stick and the cycle), but we will focus on (2, 2)-lollipops in this paper.

2

•

•
(a) 2-cycle

•

•
(b) 2-chain

•

•

•
(c) (2, 2)-lollipop

Fig. 1. A 2-cycle, a 2-chain, and their combination: a (2, 2)-lollipop. Further explanation in text.

Pairing-friendly lollipops and the SNARK Challenge. The idea of constructing lollipops of
pairing-friendly curves is not novel. In 2019, as part of the “Coda+Dekrypt SNARK challenge” [13],
the founders of the Coda protocol [6] (now called the Mina protocol5) offered a cash prize of $20,000
USD for the highest quality submission of pairing-friendly lollipops. In defining the challenge and
submission requirements, Meckler [31] started with the fact that the Coda Protocol is built on
top of the pairing-friendly cycle of oversized MNT753 curves discussed above with p ≈ q ≈ 2753,
before pointing out that their “inefficiency affects not only the SNARK prover, but leaks into the
rest of the application as well. The reason is that our SNARK needs to certify all cryptographic
computations in Coda (signatures, hashes, etc.) and so those primitives need to be efficiently
described using Fr arithmetic (where r is the order of one of the curves in our cycle). But r is
large (about 753 bits), which means outside of the SNARK, our cryptographic operations are a lot
slower than they could be.” In order to address this inefficiency, Meckler envisioned being able to
construct a chain of pairing-friendly curves that eventually leads into the MNT753 cycle, but one
for which the prime order subgroup size of the first pairing-friendly curve in the chain is much
closer to optimal, e.g. r ≈ 2256. The Coda+Dekrypt SNARK challenge has since expired, but to
the best of our knowledge the call for lollipops went unanswered. Subsequently, the Mina protocol
still suffers from the same inefficiencies described above.

This work. We construct lollipops of pairing-friendly curves that allow unbounded recursive
pairing-based proof composition and simultaneously allow the initial SNARK circuit arithmetic to
be performed over a field whose size is either optimal with respect to a given security level, or much
closer to it. We illustrate the idea below by comparing the MNT298 cycle from the original work
proposing the use of pairing-friendly cycles [5] to Example 1 of our construction: lollipop-305-158.

The MNT298 instance targets the 80-bit security level by working with a cycle of ordinary
MNT curves defined over the 298-bit primes p and q. The corresponding DLP instances lie in
F×
p4 and F×

q6 , which lie in the fields of size 1192 and 1788 bits, respectively. The main reason this
MNT298 cycle is suboptimal at the 80-bit security level is that the primes p and q are almost
twice as large as the sizes of primes that non-pairing-friendly curves could be defined over at this
security level.

As an alternative, consider lollipop-305-158. It contains a 2-cycle of supersingular curves,
Ê2
305/Fp and E3

305/Fq, where p and q are two 305-bit primes. Just like the MNT construction
above, pairings map ECDLP instances to instances of the DLP in F×

p4 and F×
q6 , which are fields of

size 1220 and 1830 bits, respectively. In this case, however, there is a third curve, E305/Fp, which
is ordinary; it is pairing-friendly with respect to a 158-bit prime r, and the order-r Weil pairing
on E305 maps into the same multiplicative group (i.e. F×

p4) as the order-q Weil pairing on Ê2
305.

Moreover, the complexity of the best attack against the ECDLP in E305(Fp)[r] closely matches
the 80 bits of security offered by the corresponding DLP’s in F×

p4 . On average, Pollard’s rho [35]

algorithm solves the ECDLP in E305(Fp)[r] in
√

π·r
4 ≈ 279 elliptic curve group operations.

In Figure 2 we illustrate the difference between the original MNT298 cycle and lollipop-305-158.
Here and throughout the paper, the notations E and E correspond to supersingular and ordinary

5 Mina [20] uses recursive composition of pairing-based proofs so that “Users only need to check a singular,
recursive ‘Proof of Everything’”.

3

pairing-friendly curves, respectively; the notation E corresponds to a non-pairing-friendly curve.
Subscripts denote the bitlength of the characteristic of the field of definition. Numeric superscripts
denote the degree of the extension in the field of definition, if greater than 1. The superscripts
‘W’ and ‘Ed’ denote prime order Weierstrass and composite order (twisted) Edwards curves,
respectively.

E298

E298

(a)

Ê2
305

E3
305

E305

EW
158

(b)

Ê2
305

E3
305

E305

EEd
158

(c)

Ê2
305

E3
305

E305

E158 Ê158

(d)

Fig. 2. MNT298 vs. (the three incarnations of) lollipop-305-158. Further explanation in text.

For every lollipop presented in this paper, we construct three options of non-pairing-friendly
curves to define over Fr and attach to the stick. This is the reason there are three incarnations
of lollipop-305-158 in Figure 2; all have the same pairing-friendly-lollipop but differ only in the
definition of the non-pairing-friendly curve E at the bottom. One goal of this paper is to present
lollipops that are ready to use out-of-the-box, so we mimicked some of the constructions that
have appeared in the literature, in particular for the scalar field of Bowe’s BLS12-381 curve [8].
The curve EW

158 is a short Weierstrass curve of the form y2 = x3 − 3x + b, where b = 7032 is
minimal such that EW

158 and its quadratic twist have prime order. The curve EEd
158 is a twisted

Edwards curve of the form −x2 + y2 = 1 + dx2y2, where d = 7821 is minimal such that the
cofactors of the EEd

158 and its quadratic twist are optimally small, i.e. 8 and 4, respectively; this
construction is analogous to Bowe and Hopwood’s Jubjub curve6 defined over the BLS-381 scalar
field. Finally, the curves E158 and Ê158 are a non-pairing-friendly cycle of curves. They both have
complex multiplication (CM) discriminantD = −3, and can be written asE158/Fr : y

2 = x3+2 and

Ê158/Fr̂ : y
2 = x3+2, where r̂ is also a 158-bit prime such that #E158(Fr) = r̂ and #Ê158(Fr̂) = r.

Both of these curves come equipped with an efficient endomorphism that can accelerate (multi-
)scalar multiplications, analogous to the secp/secq [34] and Pasta [27] cycles. Non-pairing-based

SNARKs like Bulletproofs [11] could be instantiated using the E158 and Ê158 cycle, similar to
their instantiations on the secp/secq and Pasta cycles, but the key difference is that the lollipop

of pairing-friendly curves connected to E158 and Ê158 allows the succinct Groth16-style proofs to
combine, compose and check the proofs on the non-pairing-friendly cycle.

The main technical ingredient we use to construct the lollipops in this paper is a new way of
computing pairings over parameters corresponding to those MNT cycles for which the discriminant
is too large to construct the MNT curves explicitly. The MNT cycle works with the primes p =
x2 − x + 1 and q = x2 + 1 for some x ∈ Z, but the MNT curves E/Fp and Ê/Fq can only be
constructed if the CM discriminant D, the squarefree part of 3x2−2x+3, is small enough (say, less
than 1017). Of all the x values that correspond to p and q being prime, those that also correspond
to a small discriminant D are rather rare. As x grows large, the probability that 3x2 − 2x + 3
happens to be divisible be a square that is large enough to make D < 1017 becomes exponentially
small. This is why MNT curves are constructed using special values of x, those which are found
as the solutions of Pell equations. Every candidate value for D gives rise to a new Pell equation,
the solution of which can be used as a candidate x value; if such an x also corresponds to p and
q being prime, then the CM method can construct the MNT curves E/Fp and Ê/Fq. The main

6 See https://github.com/zkcrypto/jubjub

4

https://github.com/zkcrypto/jubjub

problem, however, is that the solutions to Pell equations are extremely large in general. The chance
of finding a solution x that also happens to be the right size at a target security level is unlikely.

In Section 3 we show how cycles can be instantiated for all x ∈ Z that give p = x2 − x + 1
and q = x2 + 1 as primes. Rather than constructing the MNT cycle of ordinary curves E and Ê
over Fp and Fq, we construct a cycle of supersingular curves E and Ê over extension fields that

are smaller than Fp4 and Fq6 , e.g. the curves Ê2
305/Fp and E3

305/Fq defined over Fp2 and Fq3 in
Figure 2. Elements of the pairing groups G1 and G2 are now defined over extension fields, so group
and pairing arithmetic will both be significantly slower than in the ordinary case (more on this in
a moment). However, the target groups GT in both cases remain unchanged (i.e. are still F×

p4 and

F×
q6), so the pairings themselves will not be too much slower in our supersingular instantiation.

The reason it is crucial to untether cycles of curves from their CM discriminants is because the
curves in the cycle and the curves we attach to them (in the stick of the lollipop) necessarily
have different CM discriminants. As we show in Section 4, if we want to use the CM method to
construct the ordinary MNT curves in a cycle, we will not be able to construct the curves in the
stick, and vice versa. If we instead instantiate the cycle using supersingular curves as above, then
this allows us to focus on finding parametrisations where the ordinary pairing-friendly curve(s) in
the stick of the lollipop correspond to a CM discriminant that is small enough to be constructed
explicitly.

The reward for slower operations in the supersingular cycle is the introduction of the smaller
finite field Fr, which means the initial circuit arithmetisation and/or the non-pairing-friendly proof
system will now be much more efficient. This trade-off will be favourable in scenarios like the one
Meckler described, where we can “perform the bulk of the computation in our proofs in Fr [. . .],
and then just use the big curves in the cycle for composition and combining proofs. That is, just
use the cycle for the relatively small computation of checking other verifiers.”

In Section 5 we present the 18 lollipops we found using the method we describe in Section 4.
These lollipops offer between 80 and 128 bits of security and, just like lollipop-305-158 above,
all come with three options for the non-pairing-friendly curves defined over Fr; a twist-secure
prime order Weierstrass curve, a twist-secure composite order (twisted) Edwards curve, and a low
discriminant cycle of ordinary elliptic curves.

Limitations and drawbacks. There are three main downsides of the construction proposed in
this paper: finding instances beyond the 128-bit security level, finding instances where r has large
2-adicity, and the drawbacks that arise within the cycle.

High-security levels. All of the lollipops we present in this paper are labelled as lollipop-X-Y,
where X is the bitlength of the primes p and q in the cycle and Y is the bitlength of r, the
characteristic of the smaller finite field where the arithmetisation takes place. The method we
used to construct these lollipops in Section 4 involves factoring many numbers of around X bits
until one of them contains a Y-bit prime factor with Y ≈ 2λ, where λ is the target security level.
For example, lollipop-305-158 described above was found by factoring many numbers of around
300 bits until one of them contained a factor close to 160 bits, in order to target the 80-bit security
level.

The size of X becomes larger at higher security levels, meaning that larger factorisations are
required. For example, recall that the MNT753 cycle used in Mina has p ≈ q ≈ 2753 in order
to target 112-bit security. Finding an optimal lollipop at this level would mean factoring X-bit
numbers, where X ≈ 753, until one happens to contain a Y-bit prime factor, where Y ≈ 224. Given
that the current integer factorisation record is for an 829-bit RSA modulus, the computation time
for which was roughly 2700 core years7, factoring many numbers whose sizes are close to this record
becomes the main obstacle in the way of finding better lollipop parameters. On the one hand, the
numbers we are trying to factor are not RSA moduli, i.e. are not necessarily the product of two

7 This record is due to Boudot, Gaudry, Guillevic, Heninger, Thome and Zimmerman – see https://
listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;dc42ccd1.2002.

5

https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;dc42ccd1.2002
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;dc42ccd1.2002

similarly sized primes, meaning we can sometimes get lucky and find full factorisations in a matter
of minutes or hours. On the other hand, many of the candidate X-bit numbers with X > 700 had
to be abandoned due to the factorisations not terminating over several days. Between the 80- and
112-bit security levels, i.e. with 296 < X < 753, we had enough candidate X-bit numbers to get
lucky with faster-than-expected factorisations that resulted in Y-bit prime factors whose sizes were
close to optimal. At the 128-bit security level, however, the only meaningful example we found had
X = 956 and Y = 451; unfortunately, this is still much larger than the optimal size of Y ≈ 256. At
the 192- and 256-bit security levels, the numbers we would be required to factor are thousands of
bits long (see Section 4), so finding lollipops using our approach becomes prohibitively expensive.

Large 2-adicity. In the context of SNARKs, arithmetic in the field Fr is more efficient if r − 1 is
divisible by a large power of 2 [4] (see also [5, Appendix C.2]); this power of 2 is often referred
to as the 2-adicity of the curve E/Fr. While some curves can be constructed to have very large
2-adicity, cycles of MNT curves are found via the solution of Pell equations, and such solutions
cannot be tailored to have large 2-adicity. As was pointed out in the original work proposing MNT
cycles for SNARKs, large 2-adicity becomes a rather restrictive property “because it requires seeing
enough curves until, by sheer statistics, one finds [an instance] with a high-enough [2-adicity]” [5,
§3.2]. In the case of the lollipops in this paper, we are juggling even more restrictions, and these
greatly reduce the number of instances we can hope to sift through in the search for one with high
2-adicity. It turns out that none of the 18 lollipops we found were lucky enough to come equipped
with an appreciably large 2-adicity.

Nevertheless, we point out that the much smaller sizes of Fr afforded by lollipops is likely
to give rise to faster circuit arithmetisation than large 2-adicities would afford in the overblown
fields Fp and Fq. Moreover, as we discuss briefly in Remark 1, the workaround that we describe in
Section 3 can be used independently of lollipop constructions. This allows one to take any large
primes p = x2 − x + 1 and q = x2 + 1 and define a useful supersingular cycle over fields of those
characteristics. In particular, one can take values of x where 2ℓ | x and (so long as p and q are
prime) immediately get a highly 2-adic pairing-friendly cycle for which 2ℓ | p− 1 and 22ℓ | q − 1.

The cycle vs. stick trade-off. As mentioned above, our construction of lollipops trades much faster
circuit arithmetisation in the field Fr with inefficiencies in the cycle. The pairing groups corre-
sponding to the two curves in the cycle are now defined over extension fields of Fp and Fq, which
will not only slow down the group operations, but will also affect the sizes of any proofs computed
in the cycle. For example, proofs in the Groth16 system are two elements of G1 and one element
of G2 for asymmetric pairings, or three elements of G for symmetric pairings [23, Table 2]. Now,
Proposition 1 replaces E/Fp with E/Fp2 and Ê/Fq with Ê/Fq3 ; in both cases the size of the larger
G2 elements will remain unchanged, but the size of the smaller G1 elements increases by a factor
of 2 and 3, respectively. Thus, proofs that were computed on E/Fp will be a factor 1.5x larger on

E/Fp2 , and proofs that were computed on Ê/Fq will be a factor 1.8x larger on Ê/Fq3 .

In terms of efficiency, we reiterate that the pairings themselves will not be too much (i.e.
orders of magnitude) worse in the supersingular scenario; the size of the target group dominates
the complexity and the target groups are identical in the asymmetric and symmetric cases – see
Figure 3. Since this work is solely constructive, we do not attempt to quantify these trade-offs any
further, but instead leave the computational aspects of the supersingular cycle for future work.

Organisation. In Section 2 we give a brief background on pairing-friendly curves and the CM
method. In Section 3 we show how to define a cycle of supersingular curves over fields of charac-
teristic p = x2 − x + 1 and q = x2 + 1, which lays the foundation for the lollipop construction
we present in Section 4. In Section 5 we present the 18 lollipop examples we found using this
construction. We conclude the paper in Section 6.

6

2 Preliminaries

For n ∈ Z>0, the n-th cyclotomic polynomial Φn(x) is given by

Φn(x) =
xn − 1∏
d|n
d<n

Φd(x)
.

Throughout this paper we will commonly make use of the following lemma.

Lemma 1 ([44, Lemma 2.9]). Let p be a prime and n, a ∈ Z>0 such that p ∤ na. Then ordp(a) =
n iff p | Φn(a).

Pairing-friendly elliptic curves. For an extensive survey on pairing-friendly curves, we refer
to [21]. Let E/Fq be an elliptic curve and r be a large prime such that r | #E(Fq). Then E is said
to have embedding degree k (with respect to r) if ordr(q) = k. Since r ≫ k, we can use Lemma 1
to deduce that E has embedding degree k iff r | Φk(q). If k is small enough, e.g. k ≤ 50, then E
is said to be pairing-friendly. All pairing-friendly curves in this paper have k ≤ 6.

The CM method. Hasse’s theorem [26] states that the number of points on an elliptic curve
E/Fq is #E(Fq) = q + 1 − t, where the trace of Frobenius t is bounded by |t| ≤ 2

√
q. On input

of a given t within the Hasse interval, the way we construct a curve (i.e. compute its coefficients)
with q + 1− t rational points is via the complex multiplication (CM) method [19, §4]. Write

DV 2 = 4q − t2, (1)

where D,V ∈ Z, and where D is squarefree. The CM method finds E by computing the Hilbert
class polynomial HD(X) ∈ Fq[X], the roots of which correspond to j-invariants of elliptic curves
whose CM discriminant is D. If j ∈ Fq is such that HD(j) = 0, then we can write E as (a quadratic
twist of) E : y2 = x3 + ax − a, where a = −27j/(4(j − 1728)); the only exceptions are j = 0, in
which case we take E as (a quartic twist of) E : y2 = x3 + 1, and j = 1728, in which case we take
E as (a sextic twist of) E : y2 = x3 + x. For details concerning twists, see [37, Proposition X.5.4].

When q is a prime, elliptic curves exist for all t with |t| ≤ 2
√
q. When q = pn for a prime p,

there are fewer than n values of t that do not correspond to an elliptic curve [36, Theorem 4.2].
Either way, when q is of cryptographic size, only a tiny fraction of these t values correspond to
curves that can actually be constructed via the CM method. This is because the computation
of the Hilbert class polynomial becomes infeasible if D is large. The time complexity of the best
known algorithm for computing HD(X) is in Õ(|D|) [41], and current record CM computations8

have |D| < 1017. For q of cryptographic size, most traces t in the Hasse interval will correspond to
a discriminant D in (1) that far exceeds those in these record computations. In the next subsection
we will show how Pell equations can be used to find the special values of t that do correspond to
sizes of D’s that make the CM method feasible.

Finding MNT cycles with small CM discriminants. Recall from Section 1 that 2-cycles of
MNT curves are defined by taking large primes

p = ϕ6(x) = x2 − x+ 1 and q = ϕ4(x) = x2 + 1 (2)

for some x ∈ Z. The MNT curve E/Fp has trace tE = −x+1, which gives #E(Fp) = p+1− tE =

x2 + 1 = q, while the MNT curve Ê/Fq has trace tÊ = x+ 1, which gives #Ê(Fq) = q + 1− tÊ =
x2 − x+ 1 = p. It follows from (2) that ordq(p) = 4 and ordp(q) = 6, so E has embedding degree

4 and Ê has embedding degree 6. In both cases, substitution into (1) yields

DV 2 = 3x2 − 2x+ 3. (3)

8 See https://math.mit.edu/∼drew/CMRecords.html.

7

https://math.mit.edu/~drew/CMRecords.html

Over all instances of x ∈ Z that correspond to p and q in (2) being prime, we expect that the vast
majority give rise to D ≈ p ≈ q. Put another way, if x is chosen at random from a large interval,
we cannot expect the value of 3x2 − 2x+ 3 from (3) to contain a large square factor V , and thus
D = O(x2) in most cases.

The way MNT curves are constructed is to instead compute the few values of x that correspond
to small values of D. Putting U = 3x− 1 into (3) yields the generalised Pell equation

U2 − 3DV 2 = −8. (4)

Solving (4) for a small, fixed value of D yields the pair (U, V) ∈ Z2. If U ∈ 2 + 3Z, then we can
take x = (U + 1)/3 and proceed by checking if p = x2 − x + 1 and q = x2 + 1 are prime. If they
are, then we can use the CM method to construct the MNT curves E/Fp and Ê/Fq.

The reason we must solve many (e.g. millions of) Pell equations to find suitable MNT parame-
ters is that the solutions (U, V) to (4) are unlikely to be the size we want at a given security level.
Even in the cases where the solutions are of the right size, it is unlikely that both U ∈ 2+ 3Z and
the corresponding values of p and q are both prime.

In the next section we show that cycles can still be constructed over fields of characteristic p
and q regardless of the CM discriminant D.

3 Instantiating supersingular cycles when the CM method for ordinary
MNT curves is infeasible

Recall from (2) that the MNT cycle has

p = x2 − x+ 1 and q = x2 + 1,

and is such that

ordq(p) = 6 and ordp(q) = 4. (5)

The ordinary curves E/Fp and Ê/Fq are such that #E(Fp) = q and #Ê(Fq) = p; they
can only be constructed by the CM method for those values of x which give rise to a small
enough D in (3). In this section we show an alternative cycle construction over F̄p and F̄q that
uses supersingular curves. These supersingular curves have j-invariants in Fp and Fq, but the
disadvantage of invoking the supersingular construction is that the respective q- and p-torsion
points (that define the cycle) only become rational over extension fields. The crucial advantage,
however, is that this construction works for all values of x that give rise to p and q as primes. As
we show in the next section, this means rather than solving Pell equations to ensure the MNT
curves in the cycle have low discriminant, we can instead solve the Pell equations that ensure the
curve in the stick of the lollipop has a low enough discriminant for the CM method.

Cycles of supersingular elliptic curves were recently given in [14], but the cycles we introduce
here have an important difference. Those in [14] set q ≡ 1 mod p so that any curve defined over
Fq is forced to have embedding degree 1 with respect to p. Furthermore, the construction in [14]
also forced the bitlength of q to always be (at least) twice the bitlength of p. In what follows we
instead exploit the relationship between the special p and q in the MNT construction to avoid
these impositions; our supersingular cycles have p ≈ q and allow for both curves to have embedding
degrees greater than 1, as we see in Proposition 1.

We start by specialising the definition of a pairing-friendly n-cycle (see Section 4) to the case
of n = 2.

Definition 1 (Pairing-friendly 2-cycle). We say that two elliptic curves E/Fpu and Ê/Fqv are
a pairing-friendly 2-cycle, denoted

E ⇌ Ê ,

if

8

(i) p | #Ê(Fqv);
(ii) q | #E(Fpu);
(iii) E is pairing-friendly with respect to q; and
(iv) Ê is pairing-friendly with respect to p.

In Figure 3 giving we give a depiction of the constructions that follow in Proposition 1 and
Proposition 2. The only difference in the two constructions is the field of definition of the curve
E , which is Fp2 in Proposition 1 and Fp4 in Proposition 2. This difference arises based on the
values of p mod 3 and/or p mod 4, because Waterhouse’s theorem [45, Theorem 4.1] gives precise
conditions on the (non-)existence of various supersingular curves that depends on these values.
With p = x2 − x + 1 and q = x2 + 1, it turns out that (for all x ̸= 2) there are only 4 classes
of x ∈ Z/12Z that can give both p and q prime; odd x gives even q and x ∈ {2 + 12Z, 8 + 12Z}
gives p a multiple of 3.9 This is why both of the propositions below start with the statement of
the classes of x ∈ Z/12Z.

E(Fp)

E(Fp2)

F×
p4

Ê(Fq)

Ê(Fq3)

F×
q6

E(Fp)

E(Fp4)F×
p4

Ê(Fq)

Ê(Fq3)

F×
q6

Fig. 3. Ordinary MNT cycle vs. supersingular cycles: Proposition 1 (left) and Proposition 2 (right). E
and Ê are the ordinary MNT curves, while E and Ê are the supersingular curves. The target groups F×

p4

and F×
q6

are the same for both constructions. E and Ê have embedding degrees 4 and 6. Ê has embedding

degree 2 with respect to p. E either has embedding degree 2 (left) or 1 (right) with respect to q.

Waterhouse’s theorem [45, Theorem 4.1] says there is precisely one isogeny class of supersin-
gular curves over a given odd degree extension of Fq, i.e. the class with trace t = 0; it follows
that this class necessarily contains the lifts of those curves in the unique isogeny class with t = 0
defined over Fq. In the statements of Propositions 1 and 2, the curve Ê is written as Ê/Fq3 , even
though we can actually write it as a curve that is defined over Fq. The reason we write it this way
in the propositions is to align with Definition 1 and to make it clear that we only obtain a cycle
when considering the group of rational points in Fq3 , which is where we find p-torsion.

Proposition 1. Let x ∈ {6+12Z, 10+12Z} be such that p = x2−x+1 and q = x2+1 are prime.
Then there exist two supersingular curves

E/Fp2 and Ê/Fq3

such that
E ⇌ Ê .

9 Note that when x = 2 we still get a cycle with p = 3 and q = 5. There is a supersingular curve E/F32

with j(E) = 1728 and #E(F32) = 2q, and a curve Ê/Fq with j(Ê) = 0 and #Ê(F5) = 2p. Both curves
have embedding degree 2.

9

Moreover, E has embedding degree 2 with respect to q, and Ê has embedding degree 2 with respect
to p.

Proof. We prove each of the requirements in Definition 1. For (i), there is precisely one isogeny class
of supersingular curves over Fq3 , all of which have q3 + 1 rational points [45, Theorem 4.1(5)(i)].

It follows that #Ê(Fq3) = q3 + 1 = (q + 1)Φ6(q); together with (5) and Lemma 1, this gives

p | #Ê(Fq3). For (ii), taking x ∈ {6 + 12Z, 10 + 12Z} gives p ≡ 3 (mod 4) and p ≡ 1 (mod 3),
which combined with [45, Theorem 4.1(5)(ii)] says there exists a supersingular curve E/Fp2 with
#E(Fp2) = p2 + 1. Since p2 + 1 = Φ4(p), we again use (5) and Lemma 1 to give q | #E(Fp2). The
embedding degrees follow directly from [22, Theorem IX.20], which also proves (iii) and (iv). ⊓⊔

Proposition 2. Let x ∈ {12Z, 4 + 12Z} be such that p = x2 − x + 1 and q = x2 + 1 are prime.
Then there exist two supersingular curves

E/Fp4 and Ê/Fq3

such that
E ⇌ Ê .

Moreover, E has embedding degree 1 with respect to q, and Ê has embedding degree 2 with respect
to p.

Proof. We again prove each of the requirements in Definition 1. The proof of (i) is identical to
that of Proposition 1. For (ii), taking x ∈ {4+12Z, 12Z} gives p ≡ 1 (mod 4) and p ≡ 1 (mod 3),
which combined with [45, Theorem 4.1(2)] says there exists a supersingular curve E/Fp4 with trace

t = −2p2, i.e. with #E(Fp4) = p4+2p2+1. Since p4+2p2+1 = (Φ4(p))
2
, we use (5) and Lemma 1

to give q | #E(Fp4). The embedding degrees again follow directly from [22, Theorem IX.20], which
also proves (iii) and (iv). ⊓⊔

Security. We point out that there is no known difference in the security picture of our supersingu-
lar cycles and the underlying MNT cycles. Both cycles can use pairings to map ECDLP instances
to the same order-p subgroup of F×

q6 and/or the same order-q subgroup of F×
p4 , so the finite field

DLP’s are identical in both cases. Due to the large fields in the supersingular scenario, there may
be a small concrete difference in solving the ECDLP’s directly via Pollard’s rho algorithm, but a
real-world attack would never target the ECDLP’s; the small embedding degrees always ensure
that the finite field DLPs are the weak point of the cycle itself. The whole point of this paper is to
find another pairing-friendly curve, E, whose defining field and embedding degree (and thus DLP
complexity) is the same as one of the curves in the cycle, but for which the complexity of solving
the ECDLP in E[r] is much closer to the complexity of solving the DLP in F×

p4 .

Bröker’s algorithm. Over a field Fpu , the algorithm that constructs supersingular curves of a
given trace (i.e. group order) is due to Bröker [10]. It starts by constructing a supersingular curve
over the ground field, E/Fp, and then outputs E ′/Fpu as an Fpu -twist of E . Since twists have the
same j-invariant, it follows that the supersingular curves output by Bröker’s algorithm10 always
have j(E ′) ∈ Fp, regardless of the field of definition of E ′ – see Table 1. Bröker’s algorithm also
constructs E/Fp by finding a root j0 of the Hilbert class polynomial HD(X) ∈ Fp[X], but in the
supersingular case the value of D that is used is the first prime D ≡ 3 (mod 4) where −D is not
a quadratic residue in Fp.

Remark 1 (High-security, highly 2-adic cycles). One of the drawbacks of the MNT cycle is that it
is difficult to construct instances with large 2-adicity, particularly at high-security levels [5,24]. If
we momentarily forget about lollipops, then we point out that the constructions in this section can

10 In general, most supersingular curves have j ̸∈ Fp, but they always come from the same isogeny class
as a curve with j ∈ Fp, which is what Bröker’s algorithm outputs.

10

be used to instantiate a standalone cycle with very large 2-adicity at any security level. We can
simply search for values of x where 2ℓ | x such that p = x2 − x+ 1 and q = x2 + 1 are prime, and
we immediately get a cycle where 2ℓ | p−1 and 22ℓ | q−1. We ran a quick search for the largest ℓ’s
corresponding to 8 values of x with ⌈log2 x⌉ ∈ {128, 192, 256, 384, 512, 768, 1024, 2024}, and found
the following values that give p and q primes: x = 2113 · 32123, x = 2176 · 40335, x = 2239 · 108445,
x = 2370 · 10431, x = 2493 · 354617, x = 2748 · 885549, x = 21006 · 226419, and x = 22027 · 1526763.
Of course, whatever is gained by the high 2-adicity of the cycle is to be traded off with the “cycle
vs. stick” drawbacks of the supersingular construction that we discussed in Section 1.

4 Constructing lollipops

In this section we describe the construction that we used to find the 18 example lollipops in the
next section. We start by defining chains and cycles of pairing-friendly curves, pulling together
definitions from El Housni and Guillevic [17, §2.3] and Chiesa, Chua and Weidner [12, Definition
7.1].

Definition 2 (Pairing-friendly chain). An m-chain of pairing-friendly elliptic curves is a list
of distinct curves E1/Fp

d1
1
, . . . , Em/Fpdm

m
with each pi a large prime, such that pi | #Ei+1 and

Ei+1 is pairing-friendly with respect to pi for i = 1 . . .m− 1.

Definition 3 (Pairing-friendly cycle). An n-cycle of pairing-friendly elliptic curves is a list
of distinct curves E1/Fq

e1
1
, . . . , En/Fqenn with each qi a large prime, such that qi | #Ei+1 and

Ei+1 is pairing-friendly with respect to qi for i = 1 . . . n − 1, and such that qn | #E1 and E1 is
pairing-friendly with respect to qn.

We can now define lollipops by combining Definition 2 and Definition 3.

Definition 4 (Pairing-friendly lollipop). An (m,n)-lollipop of pairing-friendly curves is an
m-chain

E1 → · · · → Em

of pairing-friendly curves, together with an n-cycle

E1

E2

. . .

En

of pairing-friendly curves, such that {E1, . . . Em} ∩ {E1, . . . , En} = Em.

Recall from Section 1 that in this paper we will restrict to the case of m = n = 2 and present
(2, 2)-lollipops.

Following Definition 4, and with the cycles we have defined in Section 3, our task is to find
another pairing-friendly curve defined over Fp with p = x2 − x+1 or Fq with q = x2 +1. The key
to our construction is to observe that

Φ4(p) = (x2 + 1)︸ ︷︷ ︸
q

· (x2 − 2x+ 2)︸ ︷︷ ︸
Nq

(6)

and

Φ6(q) = (x2 − x+ 1)︸ ︷︷ ︸
p

· (x2 + x+ 1)︸ ︷︷ ︸
Np

. (7)

Ideally, we want to find an ordinary curve E/Fp with #E(Fp) = Nq, so E immediately has
embedding degree 4 with respect to any large prime factor r of Nq. Alternatively, we can also look
for a curve E/Fq with #E(Fq) = Np, so that E has embedding degree 6 with respect to any large
prime factor r of Np. As we discussed in Section 2, the feasibility of constructing these curves is
related to the corresponding CM equations. We therefore examine the two cases separately.

11

Case 1: r divides #E(Fp) = Nq. If #E(Fp) = Nq, then we must have that tE = x, and hence
the CM equation becomes

DV 2 = 4p− t2,

= 4(x2 − x+ 1)− x2,

= 3x2 − 4x+ 4. (8)

Case 2: r divides #E(Fq) = Np. If #E(Fq) = Np, then we must have that tE = −x+ 1, and
hence the CM equation becomes

DV 2 = 4q − t2,

= 4(x2 + 1)− (−x+ 1)2,

= 3x2 + 2x+ 3. (9)

The next step is to make substitutions that transform these CM equations into generalised
Pell equations. Taking U = 3x− 2 in (8) or taking U = 3x+ 1 in (9), we get the generalised Pell
equation

U2 − 3DV 2 = −8,

which is the same as (4).
We first observe that any solution U, V ∈ Z to this generalised Pell equation must have U ̸∈ 3Z.

The substitutions U = 3x−2 and U = 3x+1 that gave rise to (8) and (9) reveal that the solutions
we are interested in are those with U ∈ 1 + 3Z. For any such solution, the integer x = (U − 1)/3
will satisfy (8) and the integer x = (U + 2)/3 will satisfy (9). Given that we need x to be even
for q = x2 + 1 to be prime, however, we see that only one of these two (consecutive) integers can
be used as a candidate x-value for our lollipop construction. Nevertheless, it is convenient that
we only need to write and launch one generalised Pell equation solver to search for solutions to
both (8) and (9).

Before giving details of the full lollipop search we implemented, we first modify some results
from [29] in order to streamline the discriminants D that we search over.

Lemma 2. Let D be as in (8) for x ∈ 2Z. Then 3D ≡ 9 (mod 24).

Lemma 3. Let D be as in (9) for x ∈ 2Z Then 3D ≡ 3, 6, 18, 27 (mod 48).

In what follows we set D′ = 3D. The above lemmas show we only need to search over 1/8 of
the D′ values.

The high-level algorithm. We summarise the above discussion by presenting the full lollipop
algorithm as follows. On input of a small D′ (i.e. D′ < 1017) as in Lemma 2 or Lemma 3, do the
following:

1. Solve the generalised Pell equation U2 −D′V 2 = −8.

(a) If D′ ≡ 9 (mod 24) and if U ≡ 1 (mod 3), then set x = (U − 1)/3 and set N = Nq =
x2 − 2x+ 2 from (6). Otherwise, pick a new D′ and start again.

(b) If D′ ≡ 3, 6, 18, 27 (mod 48) and if U ≡ 1 (mod 3), then set x = (U + 2)/3 and set
N = Np = x2 + x+ 1 from (7). Otherwise, pick a new D′ and start again.

2. If p = x2 − x+ 1 and q = x2 + 1 are both prime, proceed to Step 3, otherwise pick a new D′

and start again.

12

3. Factor N , and let r be a prime divisor of N that is large enough to meet the requisite security
level (e.g. r ≥ 22λ for λ-bit security). If no such r exists, pick a new D′ and start again.

4. If N = Nq, then compute the Hilbert class polynomial HD(X) ∈ Fp[X], otherwise if N = Np

then compute the Hilbert class polynomial HD(X) ∈ Fq[X].

5. Compute a root j0 of HD(X) in Fp[X] (resp. Fq[X]) and then construct the elliptic curve E
such that j(E) = j0 (see Section 2).

6. Output the lollipop as

E → E ⇋ Ê ,

where E/Fp2 and Ê/Fq3 are the curves from Proposition 1 if x ∈ {6 + 12Z, 10 + 12Z}, or else
are the curves E/Fp4 and Ê/Fq3 from Proposition 2.

We immediately discuss some practical adjustments that can be made in the first four steps.

Step 1. Methods for solving the generalised Pell equation typically use variants of the continued
fractions method, which allows us to bound the size of the solutions we want and abort if the
solutions grow larger than this bound. We set a very large bound in an effort to try and find high-
security instances, but any search for lollipops of a specific size would be accelerated significantly
if the bound is lowered to reflect this.

Step 2. For the sake of efficiency, primality testing should be probabilistic within the full search
algorithm and probable primes should be confirmed after the lollipops are output.

Step 3. For the sizes of lollipops we are searching for, this step is by far the most cumbersome.
Here we are looking for one prime factor r of a certain size, so full factorisations are not necessary,
and in many cases it is wise to abort factorisations that do not terminate after a nominal amount
of time (see below).

Step 4. For larger sizes of D′, there are other invariants analogous to the j-invariant for which
the class polynomials are more efficient to compute and more compact to store, e.g. the Weber
f -invariant. These alternative invariants also impose restrictions on D′, but are much preferred if
they are compatible with those restrictions in Lemma 2 and Lemma 3. More details can be found
in Sutherland’s classpoly package.11

Details of our search. We now give the more fine-grained details of the search we ran using the
algorithm above that produced the lollipops in the next section. We break down the discussion
according to the six steps of the search algorithm.

– Step 1. We used the parallel GP interface of PARI/GP [42] running on AMD Ryzen Thread-
ripper PRO 3995WX with 128 GB memory to solve the generalised Pell equation U2−D′V 2 =
−8 using [29, Algorithm 1] and bounding U at 2500 bits, for the following instances:

(i) Equation (8) with D′ ∈ {48ℓ+3, 48ℓ+6, 48ℓ+18, 48ℓ+27} as per Lemma 3. The equation
was solved for ℓ = 0 to ℓ = 1, 295, 124, 911, and solutions less than 2500 bits were obtained
for 76, 656, 763 of them.

(ii) Equation (9) with D′ ∈ 24ℓ + 9 as per Lemma 2. The equation was solved for ℓ = 0 to
ℓ = 5, 082, 799, 955, and solutions less than 2500 bits were obtained for 63, 146, 643 of them.

– Step 2. We used the parallel GP interface of PARI/GP running on AMD Ryzen Threadripper
PRO 3995WX with 128 GB memory to perform the following searches:

11 See https://math.mit.edu/∼drew/classpoly.html.

13

https://math.mit.edu/~drew/classpoly.html

(i) For the solutions of (8) with U ≡ 1 (mod 3), we set x = (U−1)/3 and tested the primality
of p = x2 − x+ 1 and q = x2 + 1, finding 3,912 pairs of primes (p, q).

(ii) For the solutions of (9) with U ≡ 1 (mod 3), we set x = (U+2)/3 and tested the primality
of p = x2 − x+ 1 and q = x2 + 1, finding 4,281 pairs of primes (p, q)

– Step 3. We again used the parallel GP interface of PARI/GP running on AMD Ryzen Thread-
ripper PRO 3995WX with 128 GB memory to perform the following factorisations (using
PARI/GP’s internal factoring algorithms):
(i) Of the 3,912 pairs of primes (p, q) corresponding to (8), 337 candidates had both p and q

at least 298 bits long.12 Of these, we were able to successfully factor 203 of them.
(ii) Of the 4,281 pairs of primes (p, q) corresponding to (9), 350 candidates had both p and q

at least 298 bits long. Of these, we were able to successfully factor 186 of them.

– Step 4. The following computations were run on an Intel Core i7-12800HX with 16 GB mem-
ory. Let r be the biggest factor of N ∈ {Np, Nq} and recall that Np ≈ Nq ≈ p ≈ q. For all prime
pairs where (p, q) had r > 2150 and where N ≫ r (we used a rough rule that log(N) ≥ 2log(r),
but made some exceptions), we computed the Hilbert class polynomial13 in Fp[x] or Fq[x]
using sutherland’s classpoly package [40,18].

– Step 5. To find the roots of the polynomial hD(X) output from Step 4, and then to construct
the curve E accordingly, we used Magma [7] running on Intel Core i7-12800HX with 16 GB
memory.

– Step 6. We found a total of 18 lollipops E → E ⇋ Ê , 14 of which had the curve E defined over
Fp with embedding degree 4, and the other 4 of which had E defined over Fq with embedding
degree 6. These are all described in detail in the next section.

5 Examples

We now present the 18 example of lollipops that were found in the search described in the previous
section. We begin by recalling some notation from Section 1 and set some additional notation that
is used in Figure 4 and Table 1:

– The examples are labelled as lollipop-X-Y, where X denotes the bitlength of p and q, i.e. the
characteristics of the fields of definition of the pairing-friendly curves in the lollipop, and Y
denotes the bitlength of r, the characteristic of the non-pairing-friendly curve(s) attached to
it. We also use X and Y as subscripts of curves to indicate the size of the underlying field
characteristic.

– An arrow A → B indicates that the curve B is pairing-friendly with respect to the character-
istic of the field of definition of the curve A.

– EX and ÊX are the supersingular (and thus pairing-friendly) curves in the cycle; EX is defined
over Fp2 or Fp4 , while ÊX is defined14 over Fq3 .

– The curve EX, which is such that #EX = h · r, with r a Y-bit prime. The curve EX is pairing-
friendly with respect to r; it has embedding degree 4 if it is defined over Fp and embedding
degree 6 if it is defined over Fq.

12 We wanted a minimum of 80 bits of security, so chose the original MNT298 size from [5] as the lower
bound on the sizes of p and q.

13 This is computed using classpoly d 0 q where d = −D if −D ≡ 1 (mod 4) or d = −4D if −D ≡ 2, 3
(mod 4).

14 Recall from Section 3 that the curve ÊX can be defined over Fq; however, we do not find rational p-torsion
(and thus a cycle) until we consider the points in ÊX(Fq3).

14

– A bold E denotes a non-pairing-friendly curve that is attached to the lollipop. Each example
lollipop comes with three non-pairing-friendly incarnations: a cycle of two curves EY/Fr and

ÊY/Fr̂ with r = #ÊY and r̂ = #EY, a twist-secure short Weierstrass curve EW
Y /Fr, and a

twist-secure (twisted) Edwards curve EEd
Y /Fr.

Figure 4 depicts the four types of lollipops that can arise under our construction. These types
depend on the field of definition of the curve EX and the field of definition of the curve EX. Types
(a) and (b) have EX defined over Fp, while types (c) and (d) have EX defined over Fq. Types (a)
and (c) have EX defined over Fp2 as in Proposition 1, while types (b) and (d) have EX defined over
Fp4 as in Proposition 2.

EX/Fp2

ÊX/Fq3

EX/Fp

EY/Fr

(a)

EX/Fp4

ÊX/Fq3

EX/Fp

EY/Fr

(b)

ÊX/Fq3

EX/Fp2

EX/Fq

EY/Fr

(c)

ÊX/Fq3

EX/Fp4

EX/Fq

EY/Fr

(d)

Fig. 4. The four types of lollipop-X-Y instances. Further explanation in text.

Table 1 summarises the 18 lollipops that follow it. We do not recommend that readers trudge
through the details of all 18 of the example lollipops, but rather to cherry-pick one or two examples
of interest after viewing Table 1. We wanted to include all of the lollipops for which there was an
appreciable difference between X and Y, and for which the ECDLP and DLP securities were in the
same ballpark. The only exception here is lollipop-956-451, whose ECDLP security is far greater
than its DLP security; we included this because its the only example of practical interest that we
found at the 128-bit security level.

Readers wishing to verify or experiment with any of the lollipops can refer to the Magma or
Pari/GP code that is found at

https://github.com/microsoft/lollipops.

All of the lollipops have slightly different properties, the most practically relevant of which are
given in Table 1. The second column indicates the lollipop type, in reference to the four possibilities
in Figure 4. The next column gives D̂, the discriminant of the non-pairing-friendly cycle EY/Fr and

ÊY/Fr̂; these parameters were computed by tweaking the routine15 used to find Masson, Sanso and
Zhang’s Bandersnatch curve [30]. Observe that Examples 1 and 6 have D̂ = 3, which means that

both E and Ê can exploit efficient endomorphisms of the form ϕ : (x, y) → (ξx, y), similar to the
secp/secq [34] and Pasta [27] cycles. The only other examples which may have an endomorphism
that is efficient enough to use in practice are Example 3, which has D̂ = 67, and Example 5,
which has D̂ = 43; these correspond to endomorphisms of degree 17 and 11, respectively.16 The
next three columns are associated with the pairing-friendly curve, EY, in the stick of the lollipop.
The first gives the discriminant D of the generalised Pell equation in (4) that was solved to find
the lollipop, and the second gives the embedding degree, k, of EY (with respect to r). If k = 4,
then EY is defined over Fp and the CM equation is (8); if k = 6, then EY is defined over Fq

and the CM equation is (9). The next column gives the bit-security of EY[r] against Pollards rho

15 See https://github.com/asanso/Bandersnatch/blob/main/python-ref-impl/small-disc-curves.py.
16 If {1, β} is an integral basis for the ring of integers in Q(

√
D̂), then the degree of the endomorphism ϕ

is N(β)− 1; for all of the D̂ in Table 1, we get deg(ϕ) = (D̂ + 1)/4. Stark’s algorithm [39] can be used
to derive the explicit formulas to compute ϕ.

15

https://github.com/microsoft/lollipops
https://github.com/asanso/Bandersnatch/blob/main/python-ref-impl/small-disc-curves.py

algorithm [35], calculated as ⌊log2(
√

πr/4)⌋. The remaining columns summarise the curves in the
lollipop, starting with the field of definition of EX/Fpu , where u ∈ {2, 4} depending on whether the
lollipop corresponds to Proposition 1 or Proposition 2. We then give the j-invariants of EX ∈ Fp

and ÊX ∈ Fq, which are computed during Bröker’s algorithm (see Section 3). Finally, in the last
two columns we estimate the DLP security of the lollipop against the special tower number field
sieve (S-TNFS), which were obtained using the SageMath [43] program for TNFS simulation by
Guillevic and Singh [25]. All the simulations were run for 105 samples with deg h = 2 because the
prime p is given by a polynomial of degree 2 for our curves [17, Appendix B].

Example # Fig. the (ordinary) stick the (supersingular) lollipop

(lollipop-) 4 EY cycle friendly EY sec. EX/Fpu ÊX sec.

X-Y type D̂ D k EY[r] u j(EX) j(ÊX) F×
p4

F×
q6

1. 305-158 (a) 3 54105234 4 78 2 1728 0 77 88

2. 312-164 (b) 192547 6110889 4 81 4 -884736 0 78 89

3. 314-154 (c) 67 8162838387 6 76 2 1728 8000 79 89

4. 347-192 (b) 159307 118564569 4 95 4 -3375 0 82 95

5. 348-168 (b) 43 8310359121 4 83 4 -3375 0 83 95

6. 351-196 (a) 3 180658 4 97 2 1728 0 83 95

7. 354-182 (b) 18403 11984649 4 90 4 21 . . . 33 0 83 95

8. 360-262 (a) 101971 6515276374 4 130 2 1728 8000 84 95

9. 442-201 (a) 427 1121454146 4 100 2 1728 0 94 106

10. 447-234 (c) 6339 21781087203 6 116 2 1728 8000 95 106

11. 454-179 (c) 355 7643719763 6 89 2 1728 8000 96 106

12. 470-217 (b) 2003 6965939657 4 108 4 -32768 0 97 109

13. 489-201 (b) 547 372894729 4 100 4 -3375 0 98 111

14. 493-189 (b) 57891 9926408913 4 93 4 -3375 0 99 111

15. 538-235 (a) 22339 137671666 4 117 2 1728 8000 104 115

16. 574-261 (a) 3019 4381481154 4 129 2 1728 0 108 119

17. 585-216 (d) 3315 8780293827 6 107 4 -3375 11 . . . 85 109 121

18. 956-451 (a) TBD 120605958 4 225 2 1728 0 142 153

Table 1. A summary of the 18 lollipops in this section. Further explanation in text.

Example 1. (lollipop-305-158). Solving (8) with D = 54105234 finds x ≡ 10 mod 12 such that p
and q are prime 305-bit primes and gives a type-(a) lollipop in Fig. 4. The curves in the cycle are
Ê305/Fq : y

2 = x3 + 1 and E305 : y2 = x3 + (µ+ 1)x where Fp2 = Fp(µ) with µ2 + 1 = 0. The curve
in the stick is E305/Fp has embedding degree 4 with respect to a 158-bit prime r. The non-pairing-
friendly curves over Fr are EW

158 : y
2 = x3 − 3x+ b with b = 7032 and EEd

158 : −x2 + y2 = 1+ dx2y2

with d = 7821. Both curves in the cycle E158 and Ê158 have D̂ = 3 and are equipped with
endomorphisms of the form ϕ : (x, y) 7→ (ξx, y).

Example 2. (lollipop-312-164). Solving (8) with D = 6110889 finds x ≡ 4 mod 12 such that p and
q are prime 312-bit primes and gives a type-(b) lollipop in Fig. 4. Bröker’s algorithm terminates
with D = 19 and HD(X) = X + 884736 outputs a curve E312/Fp4 with j(E312) = −884736, where
Fp2 = Fp(µ) with µ2 + 13 = 0 and Fp4 = Fp2(ν) with ν2 = µ. The other curve in the cycle is

Ê312/Fq : y
2 = x3 +1. The curve in the stick is E312/Fp has embedding degree 4 with respect to a

164-bit prime r. The non-pairing-friendly curves over Fr are EW
164 : y

2 = x3 − 3x+ b with b = 6457
and EEd

164 : − x2 + y2 = 1 + dx2y2 with d = 2709. Both curves in the cycle E164 and Ê164 have
D̂ = 192547.

16

Example 3. (lollipop-314-154). Solving (9) with D = 8162838387 finds x ≡ 6 mod 12 such that p
and q are prime 314-bit primes and gives a type-(c) lollipop in Fig. 4. Over Fq, Bröker’s algorithm

terminates with D̂ = −8 and HD̂(X) = X−8000 and outputs Ê314 with j(Ê314) = 8000. The other
curve in the cycle is E314 : y2 = x3 + (1 + µ)x where Fp2 = Fp(µ) with µ2 + 1 = 0. The curve in
the stick is E314/Fq has embedding degree 6 with respect to a 154-bit prime r. The non-pairing-
friendly curves over Fr are EW

154 : y
2 = x3−3x+b with b = 17221 and EEd

154 : −x2+y2 = 1+dx2y2

with d = 4468. Both curves in the cycle E154 and Ê154 have D̂ = 67.

Example 4. (lollipop-347-192). Solving (8) withD = 118564569 finds x ≡ 4 mod 12 such that p and
q are prime 347-bit primes and gives a type-(b) lollipop in Fig. 4. Bröker’s algorithm terminates
with D = 7 and HD(X) = X + 3375 outputs a curve E347/Fp4 with j(E347) = −3375, where
Fp2 = Fp(µ) with µ2 + 2 = 0 and Fp4 = Fp2(ν) with ν2 = µ. The other curve in the cycle is

Ê347/Fq : y
2 = x3 +1. The curve in the stick is E347/Fp has embedding degree 4 with respect to a

192-bit prime r. The non-pairing-friendly curves over Fr are EW
192 : y

2 = x3−3x+b with b = 11566
and EEd

192 : − x2 + y2 = 1 + dx2y2 with d = 69127. Both curves in the cycle E192 and Ê192 have
D̂ = 159307.

Example 5. (lollipop-348-168). Solving (8) with D = 8310359121 finds x ≡ 4 mod 12 such that
p and q are prime 347-bit primes and gives a type-(b) lollipop in Fig. 4. Bröker’s algorithm
terminates with D = 7 and HD(X) = X + 3375 outputs a curve E348/Fp4 with j(E348) = −3375,
where Fp2 = Fp(µ) with µ2 + 7 = 0 and Fp4 = Fp2(ν) with ν2 = µ. The other curve in the cycle

is Ê347/Fq : y
2 = x3 + 1. The curve in the stick is E348/Fp has embedding degree 4 with respect

to a 168-bit prime r. The non-pairing-friendly curves over Fr are EW
168 : y

2 = x3 − 3x + b with
b = 26688 and EEd

168 : − x2 + y2 = 1 + dx2y2 with d = 78971. Both curves in the cycle E168 and
Ê168 have D̂ = 43.

Example 6. (lollipop-351-196). Solving (8) with D = 1625922 finds x ≡ 10 mod 12 such that p
and q are prime 351-bit primes and gives a type-(a) lollipop in Fig. 4. The curves in the cycle are
Ê351/Fq : y

2 = x3 + 1 and E351 : y2 = x3 + (µ+ 1)x where Fp2 = Fp(µ) with µ2 + 1 = 0. The curve
in the stick is E351/Fp has embedding degree 4 with respect to a 196-bit prime r. The non-pairing-
friendly curves over Fr are EW

196 : y
2 = x3 − 3x+ b with b = 7193 and EEd

196 : −x2 + y2 = 1+ dx2y2

with d = 128421.
An unlikely coincidence arose in this example. There were actually two prime order curves over

Fr with CM discriminant −3. The curve E196/Fr : y
2 = x3 − 5 has prime group order r̂, forming

a cycle with the curve Ê196/Fr̂ : y
2 = x3 − 5, while the curve E196′/Fr : y

2 = x3 + 28 has prime

group order r̂′, forming a cycle with the curve Ê′
196/Fr̂′ : y

2 = x3 +28. We depict this in Figure 5,
where we dropped the subscripts. All of these curves come equipped with endomorphisms of the
form ϕ : (x, y) 7→ (ξx, y).

E/Fp

E/FrÊ/Fr̂ E′/Fr Ê′/Fr̂′

Fig. 5. A rare coincidence of two D = −3 non-pairing-friendly cycles possible over Fr.

Example 7. (lollipop-354-182). Solving (8) with D = 11984649 finds x ≡ 4 mod 12 such that p and
q are prime 354-bit primes and gives a type-(b) lollipop in Fig. 4. Bröker’s algorithm terminates
with D = 31 and HD(X) of degree 3, and outputs a curve E354/Fp4 with j(E354) = 21 . . . 33, where
Fp2 = Fp(µ) with µ2 + 2 = 0 and Fp4 = Fp2(ν) with ν2 = µ. The other curve in the cycle is

Ê354/Fq : y
2 = x3 +1. The curve in the stick is E354/Fp has embedding degree 4 with respect to a

182-bit prime r. The non-pairing-friendly curves over Fr are EW
182 : y

2 = x3 − 3x+ b with b = 7906

17

and EEd
182 : − x2 + y2 = 1 + dx2y2 with d = 2758. Both curves in the cycle E182 and Ê182 have

D̂ = 18403.

Example 8. (lollipop-360-262). Solving (8) with D = 6515276374 finds x ≡ 6 mod 12 such that p
and q are prime 360-bit primes and gives a type-(a) lollipop in Fig. 4. Over Fq, Bröker’s algorithm

terminates with D̂ = −8 and HD̂(X) = X−8000 and outputs Ê360 with j(Ê360) = 8000. The other
curve in the cycle is E360 : y2 = x3 + (2 + µ)x where Fp2 = Fp(µ) with µ2 + 1 = 0. The curve in
the stick is E360/Fp has embedding degree 4 with respect to a 262-bit prime r. The non-pairing-
friendly curves over Fr are EW

262 : y
2 = x3−3x+b with b = 43954 and EEd

262 : −x2+y2 = 1+dx2y2

with d = 119965. The curves in the cycle E262 and Ê262 have D̂ = 101971.

Example 9. (lollipop-442-201). Solving (8) with D = 1121454146 finds x ≡ 10 mod 12 such that p
and q are prime 442-bit primes and gives a type-(a) lollipop in Fig. 4. The curves in the cycle are
Ê442/Fq : y

2 = x3 + 1 and E442 : y2 = x3 + (µ+ 1)x where Fp2 = Fp(µ) with µ2 + 1 = 0. The curve
in the stick is E442/Fp has embedding degree 4 with respect to a 201-bit prime r. The non-pairing-
friendly curves over Fr are EW

201 : y
2 = x3 − 3x+ b with b = 1858 and EEd

201 : −x2 + y2 = 1+ dx2y2

with d = 80379. Both curves in the cycle E201 and Ê201 have D̂ = 18403.

Example 10. (lollipop-447-234). Solving (9) with D = 8162838387 finds x ≡ 6 mod 12 such that p
and q are prime 447-bit primes and gives a type-(c) lollipop in Fig. 4. Over Fq, Bröker’s algorithm

terminates with D̂ = −8 and HD̂(X) = X−8000 and outputs Ê447 with j(Ê447) = 8000. The other
curve in the cycle is E447 : y2 = x3 + (5 + µ)x where Fp2 = Fp(µ) with µ2 + 1 = 0. The curve in
the stick is E447/Fq has embedding degree 6 with respect to a 234-bit prime r. The non-pairing-
friendly curves over Fr are EW

234 : y
2 = x3 − 3x+ b with b = 10885 and EEd

234 : x
2 + y2 = 1+ dx2y2

with d = −54523. Both curves in the cycle E234 and Ê234 have D̂ = 6339.

Example 11. (lollipop-454-179). Solving (9) with D = 7643719763 finds x ≡ 6 mod 12 such that p
and q are prime 454-bit primes and gives a type-(c) lollipop in Fig. 4. Over Fq, Bröker’s algorithm

terminates with D̂ = −8 and HD̂(X) = X−8000 and outputs Ê454 with j(Ê454) = 8000. The other
curve in the cycle is E454 : y2 = x3 + (5 + µ)x where Fp2 = Fp(µ) with µ2 + 1 = 0. The curve in
the stick is E454/Fq has embedding degree 6 with respect to a 179-bit prime r. The non-pairing-
friendly curves over Fr are EW

179 : y
2 = x3 − 3x+ b with b = 10827 and EEd

179 : x
2 + y2 = 1+ dx2y2

with d = −68661. Both curves in the cycle E179 and Ê179 have D̂ = 355.

Example 12. (lollipop-470-217). Solving (8) with D = 6965939657 finds x ≡ 4 mod 12 such that p
and q are prime 470-bit primes and gives a type-(b) lollipop in Fig. 4. Bröker’s algorithm terminates
with D = 11 and HD(X) = X+32768 and outputs a curve E470/Fp4 with j(E470) = −32768, where
Fp2 = Fp(µ) with µ2 + 11 = 0 and Fp4 = Fp2(ν) with ν2 = µ. The other curve in the cycle is

Ê470/Fq : y
2 = x3 +1. The curve in the stick is E470/Fp has embedding degree 4 with respect to a

217-bit prime r. The non-pairing-friendly curves over Fr are EW
217 : y

2 = x3−3x+b with b = 72802
and EEd

217 : − x2 + y2 = 1 + dx2y2 with d = 70192. Both curves in the cycle E217 and Ê217 have
D̂ = 2003.

Example 13. (lollipop-489-201). Solving (8) with D = 372894729 finds x ≡ 4 mod 12 such that p
and q are prime 489-bit primes and gives a type-(b) lollipop in Fig. 4. Bröker’s algorithm terminates
with D = 7 and HD(X) = X + 3375 and outputs a curve E489/Fp4 with j(E489) = −3375, where
Fp2 = Fp(µ) with µ2 + 2 = 0 and Fp4 = Fp2(ν) with ν2 = µ. The other curve in the cycle is

Ê489/Fq : y
2 = x3 +1. The curve in the stick is E489/Fp has embedding degree 4 with respect to a

201-bit prime r. The non-pairing-friendly curves over Fr are EW
201 : y

2 = x3 − 3x+ b with b = 4438
and EEd

201 : − x2 + y2 = 1 + dx2y2 with d = 96027. Both curves in the cycle E201 and Ê201 have
D̂ = 547.

Example 14. (lollipop-493-189). Solving (8) with D = 9926408913 finds x ≡ 4 mod 12 such that p
and q are prime 493-bit primes and gives a type-(b) lollipop in Fig. 4. Bröker’s algorithm terminates
with D = 7 and HD(X) = X + 3375 and outputs a curve E493/Fp4 with j(E493) = −3375, where

18

Fp2 = Fp(µ) with µ2 + 2 = 0 and Fp4 = Fp2(ν) with ν2 = µ. The other curve in the cycle is

Ê493/Fq : y
2 = x3 +1. The curve in the stick is E493/Fp has embedding degree 4 with respect to a

189-bit prime r. The non-pairing-friendly curves over Fr are EW
189 : y

2 = x3−3x+b with b = 40288
and EEd

189 : − x2 + y2 = 1 + dx2y2 with d = 54091. Both curves in the cycle E189 and Ê189 have
D̂ = 57891.

Example 15. (lollipop-538-235). Solving (8) with D = 137671666 finds x ≡ 6 mod 12 such that p
and q are prime 538-bit primes and gives a type-(a) lollipop in Fig. 4. Over Fq, Bröker’s algorithm

terminates with D̂ = −8 and HD̂(X) = X−8000 and outputs Ê538 with j(Ê538) = 8000. The other
curve in the cycle is E538 : y2 = x3 + (1 + µ)x where Fp2 = Fp(µ) with µ2 + 1 = 0. The curve in
the stick is E538/Fp has embedding degree 4 with respect to a 235-bit prime r. The non-pairing-
friendly curves over Fr are EW

235 : y
2 = x3 − 3x+ b with b = 11095 and EEd

235 : x
2 + y2 = 1+ dx2y2

with d = 101828. The curves in the cycle E235 and Ê235 have D̂ = 22339.

Example 16. (lollipop-574-261). Solving (8) with D = 4381481154 finds x ≡ 10 mod 12 such that p
and q are prime 574-bit primes and gives a type-(a) lollipop in Fig. 4. The curves in the cycle are
Ê574/Fq : y

2 = x3 + 1 and E574 : y2 = x3 + (µ+ 1)x where Fp2 = Fp(µ) with µ2 + 1 = 0. The curve
in the stick is E574/Fp has embedding degree 4 with respect to a 261-bit prime r. The non-pairing-
friendly curves over Fr are EW

261 : y
2 = x3 − 3x+ b with b = 7182 and EEd

261 : −x2 + y2 = 1+ dx2y2

with d = 75745. Both curves in the cycle E261 and Ê261 have D̂ = 3019.

Example 17. (lollipop-585-216). Solving (9) with D = 8780293827 finds x ≡ 0 mod 12 such that p
and q are prime 585-bit primes and gives a type-(d) lollipop in Fig. 4. Bröker’s algorithm terminates
with D = 7 and HD(X) = X + 3375 and outputs a curve E585/Fp4 with j(E585) = −3375, where
Fp2 = Fp(µ) with µ2+2 = 0 and Fp4 = Fp2(ν) with ν2 = µ. Over Fq, Bröker’s algorithm terminates

with D̂ = 47 and HD̂(X) of degree 5, and outputs Ê585 with j(Ê585) = 11 . . . 85. The curve in the
stick is E585/Fq has embedding degree 6 with respect to a 216-bit prime r. The non-pairing-friendly
curves over Fr are EW

216 : y
2 = x3 − 3x + b with b = 8146 and EEd

216 : x
2 + y2 = 1 + dx2y2 with

d = −36607. Both curves in the cycle E216 and Ê216 have D̂ = 3315.

Example 18. (lollipop-956-451). Solving (8) with D = 120605958 finds x ≡ 10 mod 12 such that p
and q are prime 956-bit primes and gives a type-(a) lollipop in Fig. 4. The curves in the cycle are
Ê956/Fq : y

2 = x3 + 1 and E956 : y2 = x3 + (µ+ 1)x where Fp2 = Fp(µ) with µ2 + 1 = 0. The curve
in the stick is E956/Fp has embedding degree 4 with respect to a 451-bit prime r. The searches for
the non-pairing-friendly curves are still running. Given the discrepancy in the DLP and ECDLP
security for this lollipop (see Table 1), it is possible that a composite order curve E/Fr with a
prime order subgroup of closer to 256-bits is preferable. In this case it should be possible to find
such a curve that has a discriminant low enough to exploit endomorphisms, analogous to the
Bandersnatch curve [30] (but with a larger cofactor).

6 Conclusion

We gave the first construction of lollipops of pairing-friendly curves with a view towards efficient
recursive proof system composition. Along the way, we gave a new way of instantiating pairing-
friendly cycles using supersingular curves, which avoids some restrictions imposed by the MNT
construction and ultimately paved the way for the lollipop construction in Section 4.

We applied a moderate amount of computation to search for lollipops and found 18 examples
of practical interest between the 80- and 128-bit security levels. Our search did not venture higher
than D = 1012, while Sutherland’s CM records are for discriminants that are several orders of
magnitude larger than this. This means we only searched a fraction of the discriminants for which
the CM method is feasible. In reference to the practical adjustments that can be made to the
main search algorithm in Section 4, we therefore believe that better lollipop instances are merely
a matter of more computational investment.

19

Acknowledgments. Part of this work was done while Gaurish was an intern at Microsoft Research.

Thanks to Patrick Longa, Andrew Sutherland, and Allan Steel for their technical assistance. Thanks to

Michael Naehrig and Greg Zaverucha for several discussions during the preparation of this work.

References

1. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof systems. Designs,
Codes and Cryptography pp. 1–46 (2022)

2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: SAC 2005. LNCS,
vol. 3897, pp. 319–331. Springer (2005)

3. Bellés-Muñoz, M., Urroz, J.J., Silva, J.: Revisiting cycles of pairing-friendly elliptic curves. In:
CRYPTO. LNCS, vol. 14082, pp. 3–37. Springer (2023)

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Snarks for C: verifying program execu-
tions succinctly and in zero knowledge. In: CRYPTO. Lecture Notes in Computer Science, vol. 8043,
pp. 90–108. Springer (2013)

5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves.
In: CRYPTO. LNCS, vol. 8617, pp. 276–294. Springer (2014)

6. Bonneau, J., Meckler, I., Rao, V., E, S.: Coda: Decentralized cryptocurrency at scale. IACR Cryptol.
ePrint Arch. p. 352 (2020), https://eprint.iacr.org/2020/352

7. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. J. Symbolic Comput. 24(3-4),
235–265 (1997), computational algebra and number theory

8. Bowe, S.: BLS12-381: New zk-SNARK Elliptic Curve Construction. https://electriccoin.co/blog/
new-snark-curve/ (2017)

9. Bowe, S., Grigg, J., Hopwood, D.: Halo: Recursive proof composition without a trusted setup. IACR
Cryptol. ePrint Arch. p. 1021 (2019), https://eprint.iacr.org/2019/1021

10. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number Theory 1(3), 269–273 (2009)
11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for

confidential transactions and more. In: IEEE S&P. pp. 315–334. IEEE Computer Society (2018)
12. Chiesa, A., Chua, L., Weidner, M.: On cycles of pairing-friendly elliptic curves. SIAM Journal on

Applied Algebra and Geometry 3(2), 175–192 (2019)
13. Coda + Dekrypt SNARK Challenge, CoinList: Constructing optimal pairing-friendly curves (2019),

available from https://web.archive.org/web/20240620204445/https://coinlist.co/build/coda/pages/
theory

14. Corte-Real Santos, M., Costello, C., Naehrig, M.: On cycles of pairing-friendly abelian varieties. In:
CRYPTO. Lecture Notes in Computer Science, vol. 14928, pp. 221–253. Springer (2024)

15. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B., Zahur,
S.: Geppetto: Versatile verifiable computation. In: IEEE Symposium on Security and Privacy. pp.
253–270. IEEE Computer Society (2015)

16. El Housni, Y., Guillevic, A.: Optimized and secure pairing-friendly elliptic curves suitable for one
layer proof composition. In: CANS, LNCS, vol. 12579, pp. 259–279. Springer (2020)

17. El Housni, Y., Guillevic, A.: Families of SNARK-friendly 2-chains of elliptic curves. In: EUROCRYPT.
LNCS, vol. 13276, pp. 367–396. Springer (2022)

18. Enge, A., Sutherland, A.V.: Class invariants by the CRT method. In: Algorithmic number theory,
Lecture Notes in Comput. Sci., vol. 6197, pp. 142–156. Springer, Berlin (2010)

19. F. Morain, F.: Building cyclic elliptic curves modulo large primes. In: EUROCRYPT, Lecture Notes
in Comput. Sci., vol. 547, pp. 328–336. Springer, Berlin (1991)

20. Foundation, M.: The Mina Protocol. https://minaprotocol.com/
21. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. Journal of cryptology

23, 224–280 (2010)
22. Galbraith, S.: Pairings. In: Advances in elliptic curve cryptography, London Math. Soc. Lecture Note

Ser., vol. 317, pp. 183–213. Cambridge Univ. Press, Cambridge (2005)
23. Groth, J.: On the size of pairing-based non-interactive arguments. In: EUROCRYPT. LNCS, vol. 9666,

pp. 305–326. Springer (2016)
24. Guillevic, A.: Pairing-friendly curves. https://members.loria.fr/AGuillevic/pairing-friendly-curves/

(2021)
25. Guillevic, A., Singh, S.: On the alpha value of polynomials in the tower number field sieve algorithm.

Mathematical Cryptology 1(1), 1–39 (2021)

20

https://eprint.iacr.org/2020/352
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://eprint.iacr.org/2019/1021
https://web.archive.org/web/20240620204445/https://coinlist.co/build/coda/pages/theory
https://web.archive.org/web/20240620204445/https://coinlist.co/build/coda/pages/theory
https://minaprotocol.com/
https://members.loria.fr/AGuillevic/pairing-friendly-curves/

26. Hasse, H.: Zur theorie der abstrakten elliptischen funktionenkörper iii. die struktur des meromor-
phismenrings. die riemannsche vermutung. Journal für die reine und angewandte Mathematik 175,
193–208 (1936)

27. Hopwood, D.: The Pasta Curves for Halo 2 and Beyond. https://electriccoin.co/blog/
the-pasta-curves-for-halo-2-and-beyond/ and https://github.com/zcash/pasta (2020)

28. Hopwood, D.: Pluto/Eris supporting evidence. https://github.com/daira/pluto-eris (2021)
29. Karabina, K., Teske, E.: On prime-order elliptic curves with embedding degrees k = 3, 4, and 6. In:

ANTS-VIII. LNCS, vol. 5011, pp. 102–117. Springer (2008)
30. Masson, S., Sanso, A., Zhang, Z.: Bandersnatch: a fast elliptic curve built over the BLS12-381 scalar

field. IACR Cryptol. ePrint Arch. p. 1152 (2021), https://eprint.iacr.org/2021/1152
31. Meckler, I.: Constructing optimal pairing-friendly curves. https://github.com/MinaProtocol/

snark-challenge/blob/master/docs/theory.markdown (2019)
32. Meckler, I.: o(1) labs fork of zexe: implementation of bn382-plain. https://github.com/o1-labs/zexe/

tree/master/algebra/src/bn 382 (2020)
33. Miyaji, A., Nakabayashi, M., Takano, S.: Characterization of elliptic curve traces under FR-reduction.

In: ICISC 2000. LNCS, vol. 2015, pp. 90–108. Springer (2000)
34. Poelstra, A.: Curve with group order 2255−19. https://moderncrypto.org/mail-archive/curves/2018/

000992.html (2018)
35. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Mathematics of computation

32(143), 918–924 (1978)
36. Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Combin. Theory Ser. A 46(2), 183–211

(1987). https://doi.org/10.1016/0097-3165(87)90003-3
37. Silverman, J.H.: The arithmetic of elliptic curves, vol. 106. Springer (2009)
38. Silverman, J.H., Stange, K.E.: Amicable pairs and aliquot cycles for elliptic curves. Exp. Math. 20(3),

329–357 (2011)
39. Stark, H.M.: Class-numbers of complex quadratic fields. In: Modular Functions of One Variable I, pp.

153–174. Springer (1973)
40. Sutherland, A.V.: Computing Hilbert class polynomials with the Chinese remainder theorem. Math.

Comp. 80(273), 501–538 (2011)
41. Sutherland, A.V.: Accelerating the CM method. LMS J. Comput. Math. 15, 172–204 (2012)
42. The PARI Group, Univ. Bordeaux: PARI/GP version 2.15.5 (2024), available from http://pari.math.

u-bordeaux.fr/
43. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 10.3) (2024), https:

//www.sagemath.org
44. Washington, L.C.: Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83. Springer-

Verlag, New York, second edn. (1997)
45. Waterhouse, W.C.: Abelian varieties over finite fields. Annales scientifiques de l’École normale

supérieure 2(4), 521–560 (1969)
46. Williamson, Z.J.: Goblin Plonk: lazy recursive proof composition. https://hackmd.io/@aztec-network/

B19AA8812 (2023)

21

https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://github.com/zcash/pasta
https://github.com/daira/pluto-eris
https://eprint.iacr.org/2021/1152
https://github.com/MinaProtocol/snark-challenge/blob/master/docs/theory.markdown
https://github.com/MinaProtocol/snark-challenge/blob/master/docs/theory.markdown
https://github.com/o1-labs/zexe/tree/master/algebra/src/bn_382
https://github.com/o1-labs/zexe/tree/master/algebra/src/bn_382
https://moderncrypto.org/mail-archive/curves/2018/000992.html
https://moderncrypto.org/mail-archive/curves/2018/000992.html
https://doi.org/10.1016/0097-3165(87)90003-3
https://doi.org/10.1016/0097-3165(87)90003-3
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
https://www.sagemath.org
https://www.sagemath.org
https://hackmd.io/@aztec-network/B19AA8812
https://hackmd.io/@aztec-network/B19AA8812

	Lollipops of pairing-friendly elliptic curves

