
Faster Proofs and VRFs from Isogenies

Shai Levin1 and Robi Pedersen2,3

1 University of Auckland, New Zealand
shai.levin@auckland.ac.nz

2 COSIC KU Leuven, Belgium
3 Technical University of Denmark
robi.pedersen@protonmail.com

Abstract. We improve recent generic proof systems for isogeny knowl-
edge by Cong, Lai, Levin [26] based on circuit satisfiability, by using
radical isogeny descriptions [19, 20] to prove a path in the underlying
isogeny graph. We then present a new generic construction for a verifiable
random function (VRF) based on a one-more type hardness assumption
and zero-knowledge proofs. We argue that isogenies fit the constraints
of our construction and instantiate the VRF with a CGL walk [22] and
our new proofs. As a different contribution, we also propose a new VRF
in the effective group action description of isogenies from [1]. Our pro-
tocol takes a novel approach based on the polynomial-in-the-exponent
technique first described in [37], but without the need of a trusted setup
or heavy preprocessing. We compare our protocols to the current state-
of-the-art isogeny VRFs by Leroux [54] and Lai [53], with a particular
emphasis on computational efficiency.

Keywords: Isogeny-based cryptography · Verifiable Random Function · Cryp-
tographic Protocols · Zero-Knowledge Proofs

1 Introduction

Proofs of isogeny knowledge. Isogenies are homomorphisms between elliptic
curves. Given two elliptic curves it is assumed to be hard to find an isogeny
connecting them, even for quantum computers. Proving knowledge of an isogeny
connecting two given elliptic curves has been an active field of study since the
inception of isogeny-based cryptography, as it allows to realize important con-
structions, such as ID protocols and signatures [6, 13, 28, 31, 33–35]. Proofs of
isogeny knowledge also allow parties to prove that isogenies have been computed
in a given, predetermined way. For instance, proving that one has indeed walked
starting from a given elliptic curve, allows the distributed computation of elliptic
curves of unknown endomorphism rings [8,56], while showing that one has used
a previously determined seed to construct an isogeny allows the realization of
efficient distributed key generation schemes [4, 5]. The latter proofs can be ex-
tended to showing that two isogenies are parallel, which allows the construction
of oblivious pseudo-random functions [7, 15]. A recent work by Cong, Lai and

https://orcid.org/0000-0003-4632-9488
https://orcid.org/0000-0001-5120-5709

Levin [26] is the first to have explored building proofs of isogeny knowledge from
circuit satisfiability conditions. In particular, the authors encode isogeny walks
in a graph using rank-one constraint system (R1CS) and achieve particularly
fast proofs of isogeny knowledge, when compared to previous techniques, such
as [8, 31].

Verifiable random functions. Verifiable Random Functions (VRFs) are a
cryptographic primitive which allows an evaluator of a pseudorandom function
to prove the correctness of their output. A VRF is instantiated with a public-
private key pair (pk, sk), and on the input of a message m and private key
sk, outputs a pseudorandom value h and proof π. A verifier may then take
(pk,m, h, π) and accept or reject. VRFs must satisfy residual pseudorandomness
(a related but distinct notion compared to the pseudorandomness of a PRF)
which states that for a new message m, the output h is indistinguishable from
random, even if an adversary has already seen evaluations and proofs for arbi-
trary, distinct messages. VRFs also satisfy unique provability, which means that
two distinct evaluations of the VRF under the same message and secret key
cannot both have accepting proofs. First introduced in [55], VRFs have found
applications in blockchain consensus, such as in Algorand [23], where a VRF is
used after each block in a lottery to determine who forms the next block; dis-
tributed randomness beacons [25,62], where publicly generated randomness can
be generated in a distributed, trustless computation; and DNSSEC [47].

Post-quantum VRFs. Until recently, VRF constructions have been based
exclusively on classical assumptions which require the hardness of computing
discrete-logarithms or integer factoring, and thus are not post-quantum secure.
Hence, it is of interest to propose candidates for post-quantum VRFs. Post-
quantum secure VRFs have been proposed from lattice [41,42] and hash [18,40]
assumptions. We note that the constructions in [40, 41] are short-term VRFs,
which trade off long-term usability for higher efficiency. Another short-term VRF
has been proposed in [18], but was broken in [14]. More recently, the first post-
quantum VRFs from isogenies have been proposed by Lai [53] and Leroux [54].
Lai’s construction is based on a Naor-Reingold type PRF [57] in the effective
group action setting [1] and introduces new proof systems to realize verifiability.
In contrast, Leroux’s VRF evaluations are large prime degree isogenies computed
via the Deuring correspondence and proven correct by providing a higher dimen-
sional representation of that isogeny. The latter results in the smallest proof sizes
in the post-quantum setting (cf. [54, Table 1]).

Contributions

In this work, we optimise R1CS circuits in order to prove isogeny walks using
generic proof-systems. We further expand the description to allow proofs of more
complex statements. We then present a verifiable random function from isoge-
nies, one using a CGL-type walk [22] in the isogeny graph and our new proof
systems. In addition, we present a second novel VRF in the group action setting

2

of isogenies. We start this paper in Section 2 with some background on isogenies
in both the generic and the group action setting, then introduce zero-knowledge
proof systems, including zkSNARKs and verifiable random functions. Our main
contributions can be summarized as follows.

Optimised generic proof descriptions. In Section 3, we introduce new de-
scriptions for generic proof systems from isogenies using R1CS. This line of
research was initiated by [26], which built a circuit description using modular
polynomials that could be plugged into post-quantum zkSNARKs, such as Au-
rora [11] and Ligero [2], and result in very fast proofs of isogeny knowledge. We
improve upon their work by designing a different isogeny description using the
radical isogeny formulae from [19, 20]. Rather than having quadratic and cubic
terms, the radical isogeny formulas are linear and allow a much more compact
description in the R1CS setting when compared to [26], effectively reducing the
number of constraints in a non-backtracking walk of length n in the 2-isogeny
graph from 12n+ 3 down to 7n constraints over Fp × Fp.

We extend these circuit descriptions to also allow the proof of a specific CGL
walk given a predetermined (secret) input bitstring, as well as to show that two
given isogeny walks have been performed using the same input seed. In order for
the R1CS circuit to distinguish square roots, and thus force canonical directions
of each step of the walk, we require that our R1CS circuit be evaluated via Fp-
arithmetic where p ≡ 3 (mod 4). We note that many post-quantum SNARKs are
based on the low degree test FRI [10] (or its many variants), which require oper-
ations over a highly 2-adic field. Fortunately, there have been recent advances in
post-quantum field-agnostic SNARKs, such as Brakedown [49], Orion [65] and
BaseFold [66] on which we can base our new proof system.

CGL-based VRF. We start Section 4 by introducing unpredictable functions,
which are functions that satisfy a given one-more type hardness assumption that
we describe in Problem 4. We prove that these functions, together with the typ-
ical properties of non-interactive zero-knowledge proof systems, are enough to
build a secure VRF. We go on by instantiating unpredictable functions with
walks in isogeny graphs. In particular, we present a VRF construction from a
CGL-type walk in the 2-isogeny graph. Using the proof system from Section 3,
that two isogeny walks have been computed using the same seed, we can add ver-
ifiability to our scheme. The result is a very fast protocol in terms of evaluation
and verification cost. A recent VRF from isogenies has also been proposed by
Leroux [54], which uses the interplay of the Deuring correspondence with higher
dimensional isogenies to prove and verify the correct output. The suggested pro-
tocol is based on a new one-more type assumption and leads to particularly
small proof sizes. In contrast, using Brakedown [49] as the underlying proof
system, our VRF evaluation time is expected to be much faster than the one
in [54], while the verification time is comparable. Furthermore, our protocol en-
joys very small public key sizes. On the downside, our proof size is considerably
larger, but strongly depends on the SNARK used. While Brakedown has quite

3

large proof sizes (about 2 MB for our parameter set), many SNARKs achieve
much more compact descriptions. We expect to gain about a factor 10 by deploy-
ing BaseFold [66] and further improvements from future research into compact
SNARKs.

Group action based VRF. In Section 5, we also present a new isogeny-based
VRF in the effective group action setting. Inspired by the recent group action
based OPRF [37], we construct a VRF with output [f(m)]E0, where f(X) is
a secret polynomial held by the server and m the client’s input message. We
design new NIZKs to prove, that a given evaluation of the VRF indeed encodes
a polynomial of the correct degree that also defines the server’s public key. Our
approach for both the VRF construction and the proof are novel, and outperform
the previous state of the art constructions by Lai [53] by up to one to two orders
of magnitude in terms of proof size, proof cost and public key size (see Table 2).

Performance comparison to existing works. Our result from Section 4
achieves NIST-level 1 security and we compare it with the current state-of-the-
art constructions of post-quantum (long-term) VRFs in Table 1 below. Our VRF
construction has particularly low public key sizes, and fast proof and verification
times. Although the benchmarks have not been computed using the same hard-
ware, we get an idea of the relative costs of the different VRFs. In particular, we
can see that our evaluation time is much lower than SL-VRF or DeuringVRF.
We note that the lattice-based LaV construction from [42] doesn’t provide an
estimate of their runtimes, which makes a direct comparison hard. For the verifi-
cation, we find a factor 10 improvement with regards to SL-VRF, but are about
a factor 2 slower compared to DeuringVRF. We note, however, that a part of
our verification can be computed offline, i.e. by using only the knowledge of the
input value. The actual online verification time is closer to 27 ms, thus poten-
tially competitive with the results from [54], depending on the details of the
implementation.

In Table 2, we further compare our new group action based VRF with the
current state-of-the-art constructions Capybara and Tsubaki [53]. These con-
structions are instantiated with the effective group action from [13] and achieve
128-bit classical security, but fall short of NIST-level 1 [16, 59]. In the table, it
is clearly visible that our construction outperforms [53] in terms of computation
and communication cost. Furthermore, it also relies on the computational as-
sumption from Problem 5, rather than on the (square) decisional Diffie-Hellman.

4

TKeyGen TEval TVerif |PK| |Output| Assumption

SL-VRF [18] 0.3 ms 765 ms 475 ms 48 B 40 kB Hash (LowMC)
LaV [42] ? ? ? 9 kB 10 kB Lattice (MSIS/MLWR)
DeuringVRF [54] 185 ms 346 ms 20 ms 192 B 256 B Isogeny (OMIP)
This work (Sec. 4) 18 ms 59 ms 45 ms 54 B (2 MB)∗ Isogeny (Problem 4)

Table 1: Comparison of our CGL-based VRF from Section 4 with other post-
quantum VRFs. We compare times for key generation, evaluation and verifica-
tion of the VRFs, as well as public key and total output size. ∗: We note that
the large output sizes are a direct consequence of instantiating the proof system
using Brakedown [49]. We emphasize that better alternatives exist and discuss
this further in the text and in Section 4.2.

T 40ms
Keygen T 25ms

Keygen T 40ms
Eval T 25ms

Eval |PK| |Output| Assumption

Capybara [53] 5.2 s 3.3 s 72 min 45 min 8.3 kB 39 kB DDH
Tsubaki [53] 3.3 s 2.1 s 45 min 28 min 5.3 kB 34 kB SDDH

deg f = 1 40 ms 25 ms 6.5 s 4.1 s 128 B 5.3 kB
deg f = 2 80 ms 50 ms 9.8 s 6.1 s 160 B 7.9 kB Problem 5
deg f = 3 80 ms 50 ms 9.8 s 6.1 s 192 B 10.5 kB

Table 2: Comparison of our group action VRF from Section 5 with the previous
state-of-the-art by Lai [53]. Our VRF takes the degree of a polynomial f(X) as
input and different degrees imply different security guarantees as discussed in
Section 5. For the timings of group action computations, we take the 40 ms as
proposed in [53], but also give runtimes for 25 ms, which is much more realistic
using recent results in efficiency improvement [36]. We note that verification
times are only one group action less than evaluation times and are therefore
omitted.

2 Background

2.1 Elliptic curves and isogenies

The j-invariant of a short Weierstrass elliptic curve E : y2 = x3 + ax + b is

expressed as j(E) := 1728 · 4a3

4a3+27b2 [63]. Two elliptic curves E,E′ defined over
a field F, are isomorphic if and only if j(E) = j(E′). An isogeny is a surjective
map between elliptic curves of finite kernel, which acts as a group homomorphism
between their group of points over a field. An isogeny ϕ is separable if it is
determined solely by its kernel, denoted kerϕ. The degree of a separable isogeny
is given by its degree as a rational map and the size of its kernel. An isogeny is
cyclic if its kernel is a cyclic group. For every isogeny ϕ : E → E′, there exists a
unique dual isogeny ϕ̂ : E′ → E such that ϕ̂ ◦ϕ = [deg ϕ], where [m] denotes the
multiplication-by-m map of a curve. Given there exists an isogeny ϕ : E → E′

of degree N , we say that E and E′ are N -isogenous, and that ϕ is an N -isogeny.

5

In this work, we assume all isogenies are separable and cyclic (unless otherwise
stated).

Over a finite field Fp2 , the endomorphism ring of elliptic curves either form
(i) an imaginary quadratic field, in which case we say the curve is ordinary,
or (ii) a maximal order in a quaternion algebra, in which we say the curve is
supersingular. The ℓ-supersingular isogeny graph over Fp2 , is a graph constructed
by taking the vertices to be the set of supersingular elliptic curves over Fp2 up
to isomorphism (often labeled by their j-invariant), and the edges to be all ℓ-
isogenies between curves. It is a well known fact that the graph is connected
and ℓ + 1-regular for all primes ℓ. First introduced by Pizer [61], these graphs
are Ramanujan, which means that the distribution of random walks taken on
the graph quickly approaches the uniform distribution on the vertex set. The
conventional isogeny-based hardness assumption is defined below.

Problem 1 (ℓn-isogeny path problem). Given two supersingular elliptic curves
E,E′ over Fp2 , find a cyclic isogeny ϕ : E → E′ of degree deg ϕ = ℓn.

The hardness of the problem above allows the constructions of one way functions,
given a way to map inputs to unique isogenies, such as the CGL hash function
and subsequent works [22,38].

The CGL hash function. The first isogeny-based protocol was the CGL hash
function, introduced by Charles, Goren and Lauter in [22]. The function, given a
public supersingular starting curve E over Fp2 , takes a non-backtracking walk in
the supersingular ℓ-isogeny graph, dictated by some input k. This can be done
by parsing the input string in base ℓ, e.g. k = k0k1 . . . kn with ki ∈ {0, . . . , ℓ−1}
and ordering the outgoing (non-backtracking) edges from every vertex Ei in some
canonical way, then choosing the path that corresponds to the digit ki. After n
steps, one arrives at the output curve En. The CGL hash function is provably
preimage resistant given the hardness of Problem 1, and collision resistant pro-
vided either the endomorphism ring of the starting curve is unknown, or the
input length is fixed and small enough to prevent endomorphism ring attacks.
A convenient way of instantiating the CGL hash function is by using the super-
singular 2-isogeny graph, which is 3-regular. Thus, by preventing backtracking,
the direction of each step of the walk is determined by a single bit of the input.

2.2 Effective group actions

When working with elliptic curves and isogenies over a prime field Fp, isogeny
computations can be abstracted using the group action framework. For an in-
troduction into group actions from isogenies, we point the interested reader to
the original paper by Couveignes [27] as well as to the CSIDH paper [21] for its
instantiation in the supersingular case. For more details, we also recommend the
introductory notes by De Feo [30]. In this section, we satisfy ourselves with in-
troducing the group action framework abstractly. In particular, throughout this
work, we will only consider effective group actions (EGAs) as introduced in [1].

6

Definition 1 (Effective group action [1]). A group (G,+) is said to act on
a set E, if there exists a map [] : G × E → E, which satisfies the following two
properties:

– Identity: if 0 is the identity element of G, then for any E ∈ E, we have
[0]E = E.

– Compatibility: For any a, b ∈ G and any E ∈ E, we have [a+b]E = [a]([b]E).

A group action is said to be effective, if

– The group G is finite and there exist efficient algorithms for sampling, mem-
bership testing, equality testing and inversion of group elements, as well as
for performing the group operation between group elements.

– The set E is finite and there exist efficient algorithms for membership testing.
In addition, every element E ∈ E has a unique representation.

– The group action computation is efficient.
– There exists a distinguished element E0 of known representation, called the

origin.

An example of an EGA from isogenies between supersingular elliptic curves
has first been computed in [13] and can also be realized using the approaches
from [24, 32] or from [58]. It is important to note that in general, the group G
is isomorphic to ZN := Z/NZ, where N is a composite number.4 EGAs from
isogenies generally enjoy the following property via the twisting operation.

Definition 2 (Symmetric EGA [6]). An effective group action is called sym-
metric around the distinguished element E0 if there exists an efficient algorithm
(called twisting), that given E = [a]E0 computes Et = [−a]E0 without any extra
information.

We also note that effective group actions from isogenies are both commutative
and regular. For completeness, we define the latter below.

Definition 3 (Regularity [1]). A (effective) group action is called regular if
it satisfies the following two properties.

– Free: no non-trivial element of G fixes an element of E, i.e. if [a]E = E for
some E ∈ E, then a = 0.

– Transitive: for every E,E′ ∈ E, there exists some a ∈ G, s.t. E′ = [a]E.

We note that regularity immediately implies that |G| = |E|, since for any
E ∈ E , the map a 7→ [a]E defines a bijection between G and E .

Cryptographic group actions generally come with some computational hard-
ness assumptions. Two of the most important problems, that we will assume to
be hard throughout this work, are the following.

4 We would like to note that G describes the exponent group of a generator g (i.e. [a]E
denotes the isogeny of kernel {P ∈ E | α(P) = O for all α ∈ ga}.) of the ideal-class
group of orders in quadratic imaginary fields, cl(O), which we assume to be cyclic
(or working in a cyclic subgroup). Class groups of this type generally have non-prime
order N = #cl(O).

7

Problem 2 (Key recovery). Given E,E′ ∈ E , find a ∈ G, such that E′ = [a]E.

Problem 3 (Computational Diffie-Hellman). Given E,E′, F ∈ E , where E′ =
[a]E, compute F ′ such that F ′ = [a]F .

2.3 Verifiable random functions

Verifiable random functions have first been formalized by Micali, Rabin and
Vadhan [55]. The authors define a verifiable random function (VRF) as a tu-
ple of polynomial time algorithms V RF = (SetUp,KeyGen,Eval,Verif) with the
properties below. Let K be the secret key space,M the input/message space.

– SetUp(1λ) takes as input a security parameter λ and returns public param-
eters pp.

– KeyGen(pp) takes as input public parameters pp and returns a secret-public
key pair (sk, pk).

– Evalsk(m) takes as input a secret key sk and an input string m ∈ M, then
returns an output value h and a proof π of the correctness of h.

– Verifypk(m,h, π) takes as input the public key pk, the output h and proof π,
as well as the input m and returns either 1 or 0, indicating that it accepts
or rejects the proof.

The security of VRFs is formalized through three security properties. Prov-
ability states that any correct evaluation of the VRF should result in an output
pair that passes the verification algorithm. Unique provability further implies
that this output pair is unique, i.e. that for a given input and public key, there
do not exist distinct outputs that correctly verify. Finally, any adversary inter-
acting with the VRF-functionality should not be able to find an input-output
pair that passes verification. This is formalized in the residual pseudorandomness
property.

Definition 4 (Provability). For any input m ∈M, a correctly generated eval-
uation will result in an accepting proof with overwhelming probability. Formally,
the following holds:

Pr

Verifypk(m,h, π) = 1
pp← SetUp(1λ)

(sk, pk)← KeyGen(pp)
(h, π)← Evalsk(m)

 ≥ 1− negl(λ) .

Definition 5 (Unique Provability). For any public key pk and any input m,
there does not exist two distinct evaluations which both have accepting proofs,
except with negligible probability. Formally, for all adversaries A, which may be
computationally unbounded (with at most polynomially many public coin queries),

Pr

[
Verifypk(m,h1, π1) = 1 ∧

Verifypk(m,h2, π2) = 1 ∧ h1 ̸= h2

pp← SetUp(1λ)
(pk,m, h1, π1, h2, π2)← A(1λ, pp)

]
is negligible in the security parameter λ.

8

Definition 6 (Residual Pseudorandomness). Let A = (A1,A2) be a PPT
adversary and H be a random oracle in the following game:

1. pp← SetUp(1λ)
2. (sk, pk)← KeyGen(pp)

3. (m∗, st)← AEvalsk(·),H(·)
1 (pk)

4. (h0, π0)← Evalsk(m
∗)

5. h1 ← {0, 1}2λ
6. b← {0, 1}
7. b′ ← AEvalsk(·),H(·)

2 (pk, hb, st)

A wins, if b = b′ and if it hasn’t queried Evalsk(m
∗). A VRF satisfies the residual

pseudorandomness property, if Pr [A wins] ≤ negl(λ).

In this work, we also consider the following new relaxed notion of unique
provability, which we call weak unique provability. In some cases it is impractical
to ensure that the underlying key generation function in a VRF is injective.
If this is not the case, an unbounded adversary for Definition 5 can search for
a collision sk, sk′ such that Verifypk(Evalsk(m)) = Verifypk(Evalsk′(m)), where in
general it is not the case that Evalsk(m) = Evalsk′(m). This relaxed definition
means there is not a unique secret key corresponding to each public key. Rather,
that it guarantees that such cases are computationally hard to find.

Definition 7 (Weak Unique Provability). It is computationally infeasible
to construct a public key pk and input m such that there exists two distinct
evaluations which both have accepting proofs. Formally, for all PPT adversaries
A, the probability

Pr

[
Verifypk(m,h1, π1) = 1 ∧

Verifypk(m,h2, π2) = 1 ∧ h1 ̸= h2

pp← SetUp(1λ)
(pk,m, h1, π1, h2, π2)← A(1λ, pp)

]
is negligible in the security parameter λ.

2.4 Zero-knowledge proof systems

LetR : X×W → {0, 1} be a relation with input setX and witness setW defining
the NP-language L = {x ∈ X : ∃w ∈W s.t. (x,w) ∈ R}. Zero-knowledge proofs
are protocols between two parties, where a prover P tries to convince a verifier
V that, given some x ∈ X, that x ∈ L, i.e. that there exists (or it knows) a
witness w ∈W such that (x,w) ∈ R [48].

Zero-knowledge proofs may be interactive protocols, but can generally be
made non-interactive in the Random Oracle Model [9]. We are primarily inter-
ested in non-interactive zero-knowledge proofs of knowledge in this work and
will, on occasion, abbreviate them as either NIZK or NIZKPoK. We further
write H for the random oracle. We outline the formal definitions of the security
properties of a NIZKPoK below.

9

Definition 8 (Completeness). For every (x,w) ∈ R, honest prover P and
honest verifier V , it holds that

Pr[V H(x, π) = 1 | π ← PH(x,w)] = 1

Definition 9 (Soundness). For any x /∈ L, PPT prover P and honest verifier
V , it holds that

Pr[V H(x, π) = 1 | π ← PH(x)] ≤ negl(λ)

Definition 10 (Knowledge Soundness). We say that a protocol is knowledge
sound, with knowledge error κ, if there exists a PPT extractor E such that, for
every x, PPT P̃ , λ ∈ N,

Pr[(x,w) ∈ R | w ← EP̃ (x, 1λ)] ≥ Pr[V H(x, π) = 1 | π ← P̃H]− κ(x, λ).

Where the extractor E may program the responses to random oracle queries of
P̃ , and either get a response of the next query or output π, at which point P̃ goes
to the start of its computation with the same randomness and auxiliary input.

Definition 11 (Zero Knowledge). A non-interactive protocol (P, V) is (com-
putational/statistical/perfect) zero-knowledge (with negligible function z) in the
random oracle model, if there exists a PPT simulator S, such that for every
(x,w) ∈ R, the following distributions:

{π ← SH(x)}, and {π ← PH(x,w)},

are (computationally/statistically/perfectly) indistinguishable, where the distri-
butions are taken over the uniformly random instantiation of H and the ran-
domness of P .

In this work, we construct a NIZKPoK by means of a sigma-protocols, which
is a 3-round public coin interactive proof performed in the following phases on
common input x:

Commitment: A prover sends a message comm to the verifier.
Challenge: On receiving comm sends a random chall ←$ C from a challenge

space C.
Response: on receiving chall, sends a response resp.
Verification: After interaction, on input (x, comm, chall, resp) the verifier out-

puts either 1 (accept) or 0 (reject).

which satisfy completeness, t-special soundness, and honest verifier zero knowl-
edge.

Definition 12 (Honest Verifier Zero-Knowledge (HVZK)). There exists
a PPT simulator S such that on input (x, chall), outputs valid transcripts

(comm, resp)← S(x, chall)

in a distribution that is (computationally/statistically/perfectly) indistinguish-
able from the distribution of real transcript from an honest prover with input
(x,w) and challenge chall.

10

Definition 13 (t-special soundness). There exists a PPT algorithm E called
the extractor, which given instance x, and t valid distinct transcripts

[(commi, challi, respi)i∈[t]]

where commi = commj (with a common first message), challi ̸= challj for all
1 ≤ i < j ≤ t, E outputs w such that (x,w) ∈ R.

When the Fiat-Shamir [43] transform is applied to a Sigma-protocol which
is complete, t-special sound, and honest verifier zero-knowledge, the resulting
protocol is a NIZKPoK with zero-knowledge, and knowledge error t−1

c where c
is the size of the verifier’s challenge space.

Finally a zero-knowledge succinct non-interactive argument of knowledge (zk-
SNARK) is a NIZKPoK, which in addition to satisfying completeness, knowledge
soundness and zero-knowledge, also satisfies succinctness, which is that proofs
scale polylogarithmically in the size of the witness. A core idea underlying current
zk-SNARK constructions is to encode the proof into a circuit with particular
constraints reflecting the constraints of the statement, and then to show that
indeed the circuit is satisfied by the statement of the prover. There are many
different ways to encode such circuits. In this work, we will focus on Rank-1
Constraint Systems (R1CS), which we recall here.

Let Fq be a finite field and let m,n ∈ N be parameters. R1CS aims to encode
statements into the form

Az ◦Bz = Cz ,

where A,B,C ∈ Fm×n
q are matrices, z ∈ Fn

q a vector and ◦ is the Hadamard
product. Conceptually, the matrices A,B,C encode constraints on the variables
in z := (1, v, w), where v is part of the input and contains auxiliary public input,
while w contains both the secret input of the prover and intermediate variables
in a computation. The types of relations of R1CS proof systems are to show are
therefore statements of the type (A,B,C, v) ∈ L using the witness w, i.e.

((A,B,C, v), w) ∈ RR1CS .

3 Faster proofs of isogeny walks

In this section, we develop new R1CS descriptions for proofs of isogeny knowl-
edge in the 2-isogeny graph. We provide both an optimised R1CS description for
proving knowledge of a 2n-isogeny for any n as in [26], and a 2-isogeny walk pre-
determined by a directional bitstring, essentially that a CGL instance has been
computed correctly. We extend the latter to allow the proof that two different
paths have been computed using the same string as an input.

We start this section with a radical isogeny version of CGL, which is inter-
esting in its own right. We then move on to building a proof system of correct
CGL evaluation, and finally simplify/extend this to the above-mentioned proofs.

11

3.1 Radical isogeny CGL

In the 2-isogeny graph, every vertex has three outgoing isogenies, so at every step
except the first, without backtracking, we have exactly two options to continue
our path. In the original CGL construction, the 2-torsion is ordered in some
deterministic fashion and the input k, read as bits, determines whether to go
“left” (ki = 0) or “right” (ki = 1) at every bifurcation.

We modify this construction by using the radical isogeny formulas from [20]
(we note that the formula for ℓ = 2 have actually already been proposed in [19]).
In their work, the authors introduce a faster way to compute 2-isogenies, which
removes the need to generate the 2-torsion in the first place, thus speeding up
the computation. The dominant part of the isogeny computation then becomes
taking a square-root. An isogeny of degree 2 connecting two curves Ei and Ei+1

can then be expressed as

Ei : y
2 = x3 +Aix

2 + Cix −→ Ei+1 : y2 = x3 +Ai+1x
2 + Ci+1x ,

where the coefficients are connected via the following simple formulas

Ai+1 = 6
√
Ci +Ai , Ci+1 = 4

√
CiAi + 8Ci .

Clearly, there are two choices for
√
Ci. In fact, in the 2-isogeny graph, this choice

corresponds to going left or right in a non-backtracking walk, in a similar way
as CGL does. There are many ways to distinguish these two roots, but since we
plan to later distinguish them algebraically as part of our R1CS constraints, we
use the following method.

First, let us describe Fp2 = Fp(j) with j2 = d a quadratic non-residue. For an
element a+bj ∈ Fp(j), we write Re(a+bj) = a and Im(a+bj) = b. Now, let ±αi

be the square roots of Ci. By working over p ≡ 3 (mod 4), we can distinguish
±αi via the residuosity of their real (or imaginary) part: since Re(αi) ∈ Fp, we
find that if Re(αi) is a quadratic residue and Re(−αi) is not and vice versa.

From here, we define αi as the square root of Ci for which Re(αi) is itself
a square. We reinterpret the bits of an input k as ki ∈ {−1, 1}. If ki = 1, we
walk the path in our bifurcation that is determined by +αi, and if ki = −1,
we walk the path determined by −αi. We can rewrite the relation between the
curve coefficients as

Ai+1 = 6kiαi +Ai , Ci+1 = 4kiαiAi + 8Ci .

Similarly to CGL, this allows us to feed in an input k = k0k1 . . . kn−1, that
results in a deterministic path from a starting curve E0 to some output En. We
note that the choice of parameters of the starting curve immediately excludes
one possible path using the formulas mentioned above, which correspond to the
isogeny generated by the kernel point (0, 0), so we do not need to take extra
care at this first step. Furthermore, backtracking is excluded by the nature of
the formulas themselves. We summarize our algorithm in Figure 1 below.

12

Input: Supersingular elliptic curve E0, n-bit input k = k0k1 . . . kn−1 ∈M.
Output: Supersingular elliptic curve En.

1. Let E0 : y2 = x3 +A0x
2 + C0x. For i = 0, . . . , n− 1, do the following

(a) Let αi be the square root of Ci, such that Re(αi) is a square.
(b) Compute Ai+1 = 6kiαi +Ai and Ci+1 = 4kiαiAi + 8Ci.

2. Return En.

Fig. 1: Radical isogeny CGL

3.2 The proof system

We are now building a proof system for the following relation

RCGL = {(E0, En), k : En = CGL(E0, k)} ,

where we denote CGL(E0, k) as the correct output of the algorithm in Figure 1
with input some starting curve E0 and a secret input k = k0k1 . . . kn ∈ {−1, 1}n.
The proof system needs to show that steps 1(a) and 1(b) have been computed
correctly, using the correct ki at every step.

We describe our proof system as a Rank-1 Constraint System (R1CS). The
easiest way to prove that Re(αi) is indeed a square is to again provide the
square root, which we will denote as βi, an element of Fp. For βi, we do not
need to distinguish which root we are talking about, only that Re(αi) has a
root. Together with the equations from 1(b), we find the following system of
equations

β2
i = Re(αi) (1)

α2
i = Ci (2)

Ai+1 −Ai = 6kiαi (3)

Ci+1 − 8Ci = 4kiαiAi . (4)

By plugging in (3) into (4) and scaling, we can reduce the triple term in (4) to
a simple multiplication

3Ci+1 − 24Ci = 2Ai(Ai+1 −Ai) ,

which is much more convenient for R1CS, as it results in less constraints.
Since we want to distinguish square roots via their residuosity, we need to

reinterpret Fp2 = Fp(j) as Fp × Fp. We can write the square equation (2) over
Fp2 as two constraints over Fp×Fp, while the multiplication in equation (4) can
be written as three constraints, using an auxiliary value (see e.g. [26, Section
3.5]). Note that the multiplication in (3) is a multiplication of a scalar with an
element from Fp×Fp, thus also resulting in two constraints. Finally, we have to
ensure is that all elements ki are indeed in {−1, 1}, which can be done by showing

13

that k2i = 1. We defer the full constraints including input-output description and
matrices to Appendix A. We note here that for a path of length n, the constraint
system amounts to

9n+ 4 variables and 9n constraints.

3.2.1 Proof of isogeny knowledge. In case we simply want to prove knowl-
edge of an isogeny path of length n in the 2-isogeny graph (without caring about
the input value k), i.e. an instance of the relation

R2n-iso = {(E0, En), ϕ : ϕ : E0 → En with deg ϕ = 2n} ,

we can simplify our R1CS description introduced in the previous section. We
can do this by simply dropping the constraint expressed by equation (1), as we
don’t need to prove anything about the residuosity of Re(αi), only that indeed
α2
i = Ci at every step. This also simplifies equations (3) and (4) to

Ai+1 −Ai = 6αi and Ci+1 − 8Ci = 4αiAi .

Finally, we don’t need to prove that k2i = 1, so that in the end, over Fp×Fp, we
are left with

7n+ 5 variables and 7n constraints.

At this point, we would like to compare our description to [26], in which
the authors first introduced R1CS as a tool to prove knowledge of an isogeny.
Rather than using radical isogeny formulas, the authors based their proof system
on expressions using modular polynomials, which include quadratic and cubic
terms in the j-invariants of elliptic curves. For a path of length n, the authors
express the constraint system over Fp × Fp using

12n+ 4 variables and 12n+ 3 constraints,

including the non-backtracking condition from their Appendix A (which we get
for free using radical isogeny formulas). It is easy to see that our results outper-
form theirs at no extra cost. We note however that our proof system works only
for p ≡ 3 (mod 4) (which is standard for isogeny-based cryptography), while the
results from [26] do not have this restriction.

3.2.2 Proof of same input. For some applications (hinting towards Sec-
tion 4), one might want to prove that two paths in the 2-isogeny graph have
been computed using the same input k, starting from different elliptic curves.
Let for example (E1, E2) and (F1, F2) be two tuples of elliptic curves, then we
can define the corresponding relation as

RCGL// = {(E1, E2), (F1, F2), k : E2 = CGL(E1, k) ∧ F2 = CGL(F1, k)} . (5)

14

This implies that we need a constraint system that realizes equations (1)-(4)
twice in parallel, with the same k as input, and show again that k2i = 1 at every
step. In total, this simple modification results in a proof system with

17n+ 8 variables and 17n constraints

over Fp×Fp. We denote running this proof as π ← NIZK//.P (k, (E1, E2, F1, F2)),

while verifying it as 0/1← NIZK//.V (π, (E1, E2, F1, F2)).

4 A new verifiable random function from isogeny walks

In this section we present a new construction for a verifiable random function
(VRF). In order to stay general, we start with a construction from what we
will call unpredictable functions, a related notion to the functions introduced in
the original work of [55]; together with general non-interactive zero knowledge
arguments, and prove its security. We show later that CGL walks along with
our proof systems from the previous section are a plausible instantiation of this
VRF construction, but we also believe that instantiations from other paradigms
might be possible, and leave this open for further research.

4.1 A generic VRF construction

We will use the following syntax throughout this section.

Definition 14 (Unpredictable function). Let E and K be sets, and let

W : E × K → E

be a deterministic function. We further define SetUpUF(1λ) as a function which
on input a security parameter λ outputs an unpredictable function (W, E ,K)
together with an element E0 ∈ E called the starting element. We call (W, E ,K)
unpredictable, if the one-more evaluation problem on W is hard.

Problem 4 (One-more evaluation problem). Let Ok(·) be an evaluation oracle,
which for given public parameters pp and on inputm ∈ K returns E ←W(W(E0,m), k).
Finally, let A be a PPT adversary for which we define the following game. On
input λ:

1. pp← SetUpWF(1λ). Parse pp as (W, E ,K, E0).

2. k ←$ K
3. Ek ←W(E0, k)

4. (m∗, E∗)← AOk(·)(Ek, pp)

5. A wins if E∗ = W(W(E0,m
∗), k) and m∗ has not been queried to Ok(·)

before, and loses otherwise.

15

Note that the assumption that Problem 4 is hard implies that unpredictable func-
tionsW are collision-resistant, since findingm,m∗ whereW(E0,m) =W(E0,m

∗)
would obviously break Problem 4. Furthermore, we have thatW is non-commutative
in the following sense

W(W(E0,m), k) ̸=W(W(E0, k),m) .

Otherwise, one could trivially break the assumption by sampling m∗ and com-
puting W(Ek,m

∗).

Proof system. We let π ← NIZK.P (k, (E1, E2, F1, F2); pp) designate a non-
interactive zero-knowledge proof, which for a given input value k and tuples
(E1, E2) and (F1, F2), outputs a proof π for the following relation.

R =
{
(E1, E2), (F1, F2), k : E2 =W(E1, k) ∧ F2 =W(F1, k)

}
. (6)

A verifier can then run 0/1← NIZK.V (π, (E1, E2, F1, F2); pp).V in order to verify
a proof π with regards to two tuples (E1, E2) and (F1, F2). The verifier outputs
0, if it rejects the proof, and 1 otherwise.

4.1.1 Constructing VRFs from unpredictable functions. In Figure 2,
we present our construction for a VRF based on an unpredictable functionW and
the proof system NIZK. The VRF evaluation simply consists of two consecutive
evalutions of W, first with input m, then with input k, and a proof that the
second path was computed correctly, i.e. using the secret key k that defines the
public key Ek.

E0 Em =W(E0,m) E =W(Em, k)

and, E0 Ek =W(E0, k)

m k

k

(7)

At the end, the output, together with the input and the public key, are hashed
using a random oracle H : {0, 1}∗ → {0, 1}2λ. This allows to base our underlying
hardness assumption on the computational hardness of Problem 4, rather than
a decisional one. We prove security of our construction in Appendix B.1, and
state the overall result in the following theorem:

Theorem 1. Let NIZK be NIZKPoK for the relation 6 and let W be an injec-
tive unpredictable function. Then Figure 2 is a verifiable pseudorandom function
(VRF) in the random oracle model. If W is not injective (but still collision resis-
tant), then the protocol is a verifiable pseudorandom function (VRF) with weak
unique provability.

Remark 1. We note that lifting to a VRF via unpredictable functions is consid-
ered folklore in the literature, but its security was not given formal treatment (in

16

SetUp(1λ):
1. Return pp = (W, E ,K, E0)← SetUpUF(1λ).

KeyGen(pp):
1. Sample k ← K.
2. Compute Ek =W(E0, k).
3. Return (sk, pk) = (k,Ek)

Evalk(m; pp):
1. Verify that m ∈M.
2. Compute Em =W(E0,m)
3. Compute E =W(Em, k)
4. Run π1 ← NIZK.P (k, (E0, Ek, Em, E); pp).
5. Return the output h = H(Ek,m,E) and the proof π = (π1, E).

Verifypk(h, (π1, E),m; pp):
1. Compute Em =W(E0,m).

2. Return h
?
= H(Ek,m,E) ∧ NIZK.V (π1, (E0, Ek, Em, E); pp).

Fig. 2: Verifiable pseudorandom function from unpredictable function W and
zero-knowledge proof NIZK.

the random oracle model in particular) until recently. During the writing of this
work, a concurrent result [46] also proved the security of this construction in the
random oracle model, using a closely related notion of Verifiable Unpredictable
Functions (VUFs). VUFs are unpredictable functions with the verifiability con-
straint included in their definition. Given that unpredictable functions equipped
with an NIZKPoK for relation (6) satisfy the property of VUF, their result im-
plies that our resulting VRF construction, following the compiler from [46, Fig.
9], also satisfies the stronger security notion of unbiasability. This property re-
quired to guarantee fairness in VRF-based leader election, as required in VRF-
based proof-of-stake protocols. We refer the reader to [46] for more details.

4.2 Instantiating our VRF via the CGL Hash

In this section, we discuss why isogenies are well-suited candidates to instan-
tiate our VRF construction from Figure 2. In particular, we instantiate the
unpredictable function W using the radical isogeny protocol CGL from Figure 1
over supersingular elliptic curves. Formally, we define SetUpUF(1λ) as returning
(CGL, E ,K, E0), where

– CGL is the function described in Figure 1,
– E defines the set of supersingular elliptic curves over a finite field Fp2 with

parameter size defined with respect to the security parameter λ (we discuss
actual parameters in 4.2.1),

– E0 ∈ E is a starting curve, and

17

– K is the set of input strings {−1, 1}∗.

We can then interpret the VRF input m ∈ {−1, 1}n as a fixed-length, binary
string which defines a walk from the starting curve E0 to some curve Em, from
which we then start another walk, this time defined by the server’s secret key
k ∈ {−1, 1}e towards the final curve E. For the proof system, we use the proof

of same input NIZK// described in Section 3.2.2. The idea is for the server to
show that it used its secret key k, which connects E0 to the public key Ek =
CGL(E0, k), also as an input to evaluate the VRF. We get the picture below

E0 Em = CGL(E0,m) E = CGL(Em, k)

and, E0 Ek = CGL(E0, k) ,

m k

k

(8)

where the NIZK// proves that indeed the pairs (Em, E) and (E0, Ek) are con-
nected by the same k, according to relation (5). In the next section, we discuss
the suitability of CGL as an unpredictable function and motivate the security of
our instantiation.

4.2.1 Security considerations. We first discuss considerations which need
to be taken into account when implementing the CGL hash function in order
to guarantee collision and pre-image resistance, which are necessary to achieve
unpredictability. We then motivate the hardness of the one-more evaluation prob-
lem and discuss secure parameter sizes and efficiency of our protocol.

Non-backtracking walks. We first note that the walks on the isogeny graph must
be non-backtracking, otherwise pre-image and collision resistance can be trivially
broken. By using the radical isogeny formulas, this is automatically avoided, as
these are non-backtracking by design [20]. Each iteration only allows for two
choices of outgoing isogenies, never the dual of the prior step.

Pre-image resistance. Given that the walks are non-backtracking, for a curve Em

and a valid output curve Ek, computing a pre-image k such that Ek =W(Em, k)
corresponds to computing a cyclic 2e-isogeny from Em to Ek in the isogeny
graph, which is Problem 1. The best known attacks on this problem run in
time O(2e/2) via claw-finding attacks [34] and Õ(

√
p) via the volcano-finding

algorithm of [45]. Hence, we require e ≥ 2λ and log p ≥ 2λ.

Collision resistance and endomorphism ring attacks. In case the attacker has
knowledge of the endomorphism ring of the starting curve, they can compute
collisions as described in the attacks of [60, Section 4.2], by using the KLPT
algorithm [52]. In particular, in order to compute collisions, the attacker com-
putes cycles in the 2-isogeny graph from the starting curve. This attack can be
prevented in two ways, either (1) by using a starting curve E0 with unknown
endomorphism ring, requiring trusted setup via techniques described in [8], or

18

(2) by limiting the message space to be short enough such that finding endomor-
phisms of length 22e or 22n (or less) is infeasible. Concerning the latter, a cycle
of length 22e would admit a collision in the function W(E0, ·) violating weak
unique provability, and a cycle of length 22n would allow an adversary to find
distinct m,m′ such that W(E0,m) =W(E0,m

′), breaking unpredictability.

Non-injectivity. The function W(E0, ·) defined over a fixed input length e is
not in general injective. We assume the heuristic that the output of W(E0, ·) is
uniform in the graph. Let ω(a, b) be the probability of a collision given a uniform
samples in a set of size b. Given that the graph has approximately p

12 vertices and
2n possible walks, the birthday-attack gives us the probability ω(x, y), which is
the probability of no collisions given x uniform samples in a set of size y, given
by the formula [51, Lemma A.15]:

ω(x, y) ≤ e−x(x−1)(2y)−1

Hence, the probability of no collision in the function W(E0, ·) is at most:

ω(2n;
p

12
) ≈ e−3p−122n+1

Setting the length of the path to be n ≈ 2λ, for the probability of the non-
existence of collisions to be sufficiently small, we find that primes must be log p =
4λ+ c for some constant c. Since generic proofs scale unfavorable with the size
of the underlying field of operation, we opt for log p ≈ 2λ, in the security model
where collisions can exist, but must be computationally hard to find.

Conjectured hardness of the one-more evaluation problem. Given that the func-
tion W(E0, ·) is pre-image and collision resistant, there are no trivial ways to
break the one-more evaluation problem via either recovering the secret key from
the public key, or finding collisions in the message evaluation. We further justify
why the functions outputs are unpredictable, that is, why for possibly related
messages m,m′, the outputs W(W(E0,m), k) and W(W(E0,m

′), k) appear un-
correlated.

Although the VRF evaluator reuses the same key directing walks on the
supersingular isogeny graph, starting at different curves Em, Em′ , there is no real
algebraic connection between different evaluations of the VRF. At the (i+1)th-
step of the secret walk, given that the i-th curve is Ei : y

2 = x3 + Aix
2 + Cix,

the direction of the walk dictated by the bits of k is determined by which root of
Re(
√
Ci) is a quadratic residue modulo p. This is a completely arbitrary choice

of ordering, and depends on the underlying curve at every step. This makes it
difficult to correlate different evaluations of the VRF under the same key.

Furthermore, one can quickly convince oneself that W(W(E0,m), k) =
W(E0,m ∥ k), if m and k are written with the least significant bit first. Consider
the tree of walks starting at the curve E0 dictated by m ∥ k for all m ∈ {−1, 1}n,
k ∈ {−1, 1}e. Such a tree, rooted at E0, may be viewed as a depth n+ e subtree
(with a missing branch) of covering graph of the 2-supersingular isogeny graph:

19

the 2-adic Bruhat-Tits tree (see [3] for details of this correspondence). Observe
that if a single bit of a message is different, then the walk dictated by the re-
maining string is in a completely different branch of the tree. The covering map
from ℓ-adic Bruhat-Tits trees to the ℓ-supersingular isogeny graph, which allows
one to efficiently translate between vertices in the tree and graph, is believed to
be hard to compute when the endomorphism ring of E0 is unknown.

Secure parameters. Given the preceding discussion, we conclude with the fol-
lowing choices. For simplicity, we opt to set the lengths of the message and key
walks to be equal and long enough to ensure hardness of the isogeny problem
(n ≈ 2λ), working over a prime modulus with log p ≈ 2λ for the same reason.
For collision resistance, we assume the existence of a curve E0 of unknown en-
domorphism ring obtained via trusted setup, as this results in more practical
proof performance than when working with log p ≥ 4λ.

Given these considerations, we state our security assumption below.

Conjecture 1 (CGL one-more evaluation problem). The one-more evaluation prob-
lem from Definition 4 is hard, when (W, E ,K, E0) ← SetUp(1λ) is instantiated
as follows.

– W is the radical CGL hash function CGL from Figure 1,
– E is the set of supersingular elliptic curves defined over the finite field Fp2 ,

where log p ≈ 2λ,
– K is the set of binary strings {−1, 1}n of fixed length n ≥ 2λ, and
– E0 ∈ E is a starting elliptic curve of unknown endomorphism ring.

4.2.2 Parameter selection. Due to the restrictions of our proof system from
Section 3, we want to work with fields of characteristic p ≡ 3 (mod 4) such as,
for example, quasi-Mersenne primes of the form p = c2e − 1. For NIST-level 1,
we may choose p = 3 · 2216 − 1.

We require post-quantum generic proof systems for R1CS that support Fp-
arithmetic with p ≡ 3 (mod 4). Brakedown [49], Orion [65] and BaseFold [66]
fit our constraints and are viable candidates to instantiate our NIZK. Unfor-
tunately, none of these sources have made a working implementation available
which both allows for arbitrary primes and zero-knowledge; so we must rely on
the benchmarked costs of Brakedown [49, Section 8] for a 256-bit field to achieve
an estimate for the order of magnitude of our protocol’s costs. Orion [65, Section
5] and BaseFold [66, Section 6] only provide benchmarks for 64-bit primes. Note
that Brakedown’s implementations are not zero-knowledge. It appears there are
two solutions to achieving zero-knowledge: (1) apply a recursive proof compo-
sition technique with a zero-knowledge argument, which are not field agnostic,
and thus not suitable for our application; or (2) apply the techniques of [17],
which appear to be appropriate for Brakedown’s setting. We cannot provide a
concrete estimate, but these measures are unlikely to cause substantial overhead.

Note that Brakedown has two instantiations dubbed SNARK and 1
2 -SNARK.

We opt for the latter, as it is faster and results in shorter proof sizes. The

20

downside of the latter is that the verification cost does not scale sub-linearly in
the size of the statement, a requirement which is unnecessary in the context of
VRFs. For path lengths of n = 216, we end up with 3672 constraints, and find
the costs outlined in Table 1.

5 A verifiable random function from CSIDH

In this section, we introduce a new construction based on the group action
description from CSIDH [21]. In particular, we work in the effective group action
(EGA) setting introduced in Section 2.2.

We note that two VRFs in the EGA setting have recently been proposed by
Lai [53]. Lai’s constructions rely on translations of the Naor-Reingold PRF [57]
to the group action setting. The downside of this type of construction is that
the public key size, proof (and verification) runtime and proof size all scale
quadratically in the security parameter λ.

Instead, our approach is inspired by the OPRF construction from [37], which
considerably improves upon the Naor-Reingold based OPRF from [50] by using
a completely different approach of polynomial evaluation in the exponent. The
latter means to evaluate the function

[f(m)]E0 (9)

jointly between the client with input m ∈ ZN and the server with input f(X) ∈
ZN [X], where N = #cl(O). The result is a two-round protocol, rather than λ
rounds, with a reduction by a factor λ in both the computational cost and public
key size, when compared to [50]. Due to the regularity of the group action, any
collision-resistant polynomial f with output distribution indistinguishable from
uniform is enough to guarantee security of the OPRF. The caveat, however, is
that the protocol either relies on a trusted or a computationally heavy setup
phase that has to be run once for each client-server pair.

We use an approach inspired by [37], where our VRF output is exactly the
same as in equation (9) for a given input m ∈ ZN . However, since we do not
need to mask the message as in an OPRF, our proof of correct evaluation by the
server takes a very different approach, in particular, one which doesn’t need any
initial (trusted) setup phase. Our construction relies on the following hardness
assumption, introduced in [37].

Problem 5 (One-more unpredictability). It is hard for an adversary with oracle
access to [f(m)]E0 ← VRFf (m) to find a pair (m∗, [f(m∗)]E0), where m∗ has
not been queried to VRFf before.

The security of this assumption is discussed in [37]. In fact, due to the group
action being regular, the only properties we need from f are uniformly random
output (or at least indistinghuishability from uniform) and collision-resistance.
As discussed in [37], permutation polynomials are perfect candidates. Further-
more, choosing an f of low degree is also beneficial from a complexity point of

21

view. We note, however, that if f has degree d = 1, our construction is secure
only if the queries to the VRFf -oracle are classical. In case where quantum su-
perposition queries to VRFf are allowed, the degree needs to be d ≥ 2. Linear
polynomials are insecure in this case, since the attacker can use the quantum
reduction of computational Diffie-Hellman to key recovery introduced in [44] to
recover the secret polynomial. Going to d = 2, we note that permutation polyno-
mials only exist over characteristic 2, but 2-to-1 polynomials are still heuristically
secure [37]. For d = 3, all of these issues are solved, but we go for slightly higher
computational and communication complexity.

Remark 2. We point out that due to N being composite, a malicious client
could potentially query an input m dividing N and effectively lets f(X) act in a
subgroup of ZN , which might reveal information about f(X). In [37], since the
input by the client is masked, this is solved by working in prime order subgroups
of ZN , where this attack is no longer an issue. In our VRF construction below,
this can be mitigated in a much simpler way, as messages are not masked. On
input m, the server simply checks whether m divides N , and rejects in case it
does.

5.1 Our construction

The idea behind our VRF is that the server samples and commits to a polynomial
f(X) ∈ ZN [X] of degree d = deg f as their public key, and then later proves
that it used the same polynomial f(X) in the evaluation of the client’s input m.
To this end, we define the public key to have the form

pk = ([f(0)]E0, [f(1)]E0, f(2), . . . , f(d)) .

We note that we can safely disclose f(2), . . . , f(d), since knowledge of less than
d+1 shares information-theoretically hides the secret polynomial f(X). In the-
ory, we could further disclose f(1), yet we will show in Section 5.1.1 below
that doing so would violate the one-more unpredictability of our construction.
The reason why we reveal f(2), . . . , f(d) in the first place and not e.g. have
[f(2)]E0, . . . , [f(d)]E0 in our public key is simply that this results in a faster
proof system.

First of all, we note that the d + 1 evaluations in the public key uniquely
define a polynomial of degree d. In the case of [f(0)]E0 and [f(1)]E0, this is
guaranteed by the regularity of the group action. Now, proving correct evaluation
Em = [f(m)]E0 of an inputm can be done using a proof for the following relation

∃f(X) ∈ ZN [X] with deg f ≤ d :

pk = ([f(0)]E0, [f(1)]E0, f(2), . . . , f(d)) ∧ Em = [f(m)]E0 . (10)

We note that this relation is quite similar to the statement of the piecewise
verifiable proofs (PVPs) introduced in [12], which for a statement (x0, . . . , xn),
where n ≥ d, tries to prove relations of the type

∃f(X) ∈ ZN [X] with deg f ≤ d :

22

x0 = [f(0)]E0 ∧ x1 = C(f(1), y1) ∧ · · · ∧ xn = C(f(n), yn) ,

where C are commitment functions and y1, . . . , yn are randomizers. Thus our
proof system that we present in Figure 3 below is somewhat inspired by the
PVP constructions, but differs in a few points. The most important differ-
ences are that we have three polynomial evaluations applied to elliptic curves,
[f(0)]E0, [f(1)]E0 and [f(m)]E0 rather than just one, and that we do not need
commitment schemes to hide the evaluations of f(2), . . . , f(d). In Figure 3,
H : {0, 1}∗ → {0, 1}λ denotes a random oracle. Using this proof system, we can
then make the server’s evaluation verifiable. We present our VRF in Figure 4,
for which we further define the random oracle H : {0, 1}∗ → {0, 1}2λ.

CNIZK.Psk(pk,m,Em):
1. Parse pk = (P0 = [f(0)]E0,P1 = [f(1)]E1, f(2), . . . , f(d))
2. For j = 1, . . . , λ:

(a) Sample bj(X)← ZN [X] of degree d
(b) Compute Sj = ([bj(0)]E0, [bj(1)]E0, bj(2), . . . , bj(d), [bj(m)]E0)

3. c1 . . . cλ ← H(S1, . . . , Sλ)
4. For j = 1, . . . , λ, compute rj(X) = bj(X)− cjf(X)
5. Return (c1, . . . , cλ), (r1(X), . . . , rλ(X))

CNIZK.V(pk,m,Em, π):
1. Parse pk = (P0,P1, f(2), . . . , f(d))

and π = ((c1, . . . , cλ), (r1(X), . . . , rλ(X)))
2. For j = 1, . . . , λ:

if cj = 0: compute Ŝj = ([rj(0)]E0, [rj(1)]E0, rj(2), . . . , rj(d), [rj(m)]E0)
if cj = 1: compute
Ŝj = ([rj(0)]P0, [rj(1)]P1, rj(2) + f(2), . . . , rj(d) + f(d), [rj(m)]Em)

3. Return c1 . . . cλ
?
= H(Ŝ1, . . . , Ŝλ)

Fig. 3: Proof system for our CSIDH-based VRF.

We prove the following theorems in Appendix B.1

Theorem 2. The CNIZK proof system from Figure 3 is a non-interactive zero-
knowledge proof of knowledge in the QROM.

Theorem 3. Let CNIZK be a NIZKPoK for relation 10, then Figure 4 is a
verifiable pseudorandom function (VRF) in the random oracle model.

5.1.1 Interpolation attack. In this section, we argue why we can’t reveal
f(1) as part of the public key, but only [f(1)]E0, even though this increases the
cost of the CNIZK protocol. The short answer is that disclosing f(1) actually re-
veals enough information to an attacker A to break residual pseudorandomness.

23

Setup(1λ):
1. Return an EGA (ZN , E , E0) with E the set of supersingular elliptic curves

over Fp with origin E0, and where p is defined by the security parameter λ.

KeyGend(pp):
1. Sample sk = f(X)← ZN [X] of degree d with non-zero coefficients.
2. Compute pk = ([f(0)]E0, [f(1)]E0, f(2), . . . , f(d)).
3. Return (sk, pk)

Evalf (m, pk; pp):
1. Verify that m ∤ N .
2. Compute Em = [f(m)]E0

3. Run π ← CNIZK.Psk(pk,m,Em).
4. Return h = H(pk,m,Em) and the proof (Em, π).

Verifypk(m,h, (Em, π); pp):

1. Return h
?
= H(pk,m,Em) ∧ CNIZK.V (pk,m,Em, π)

Fig. 4: Verifiable pseudorandom function from polynomial evaluation in the ex-
ponent.

To see this, assume we already know the evaluation of Evalf (m), which
includes the curve [f(m)]E0 in its proof. In theory, using Lagrange interpolation,
any evaluation [f(m′)]E0 could now be computed as[∑

i∈S

ℓSi (m
′)f(i)

]
E0 =

[∑
i∈S\{m}

ℓSi (m
′)f(i)

][
ℓSm(m′)f(m)

]
E0 ,

where S = {1, . . . , d,m} and where the Lagrange basis polynomials are defined
as

ℓSi (X) =
∏

j∈S\{i}

X − j

i− j
.

While we can’t simply turn [f(m)]E0 into [ℓSm(m′)f(m)]E0, we can however
look at the cases, where ℓSm(m′) = 1, since we could then readily apply the
interpolation formula on [f(m)]E0 and get a new evaluation [f(m′)]E0 in this
way. Since the Lagrange basis polynomials ℓSi (X) have degree |S| − 1 = d,
we will in general find d solutions for possible evaluations [f(m′)]E0, only one
of which is m′ = m and up to d − 1 allowing us to generate a new evaluation
H(m′, [f(m′)]E0) that has not been queried toEvalf before. The attack proceeds
as follows.

1. First, A queries Evalf (m) for some message m to learn Em = [f(m)]E0.

2. Now, let {ℓSi (X)}i∈S be the Lagrange basis polynomials with respect to the
set S = {1, . . . , d,m}.

3. A chooses one of the solutions X = m′ to ℓSm(X) = 1 distinct from m.

24

4. Finally, A computes

[f(m′)]E0 =
[∑
i∈S\{m}

ℓSi (m
′)f(i)

]
[f(m)]E0

and returns H(m′, [f(m′)]E0).

This attack can be thwarted simply by disclosing at most d− 1 shares of f(X)
in the public key, which is why we chose the form defined above. In this case,
the largest interpolation set S we could use would have size |S| = d, which is
not enough information to correctly interpolate.

Example 1 (Attacking d = 2). Assume the public key is pk = ([f(0)]E0, f(1), f(2))
and we have queried m and received the element [f(m)]E0. Solving

ℓ{1,2,m}
m (m′) =

m′ − 1

m− 1

m′ − 2

m− 2
= 1

gives us (m′ − 1)(m′ − 2) = (m′ − 1)(m′ − 2), which has solutions m′ = m and
m′ = −m+ 3. By choosing the latter, the attacker could compute[

ℓ
{1,2,m}
1 (m′)f(1) + ℓ

{1,2,m}
2 (m′)f(2)

][
f(m)

]
E0 = [f(m′)]E0 ,

which allows to compute a correct evaluation (m′, H(pk,m′, [f(m′)]E0)) form
′ =

−3m+ 1 for each m previously queried.

Interestingly, for d = 1, this is not a problem, as the Lagrange basis polynomials
are linear and thus ℓSi (X) = 1 would only have a single solution, which ism′ = m.
We discuss how this impacts our protocol for d = 1 below. We note that we do
have to take care that all polynomial coefficients are non-zero in this case, since
for f(X) = f0 + f1X, if f0 = 0, then twisting allows to compute an evaluation
for −m after querying m. If f1 = 0, then the VRF is trivial.

5.1.2 The simplified case for d = 1. The discussion from the previous
section allows us to simplify public keys in the linear case to

pk = ([f(0)]E0, f(1)) .

With this modification, we also get a simpler relation

∃f(X) ∈ ZN [x] with deg f = 1 : pk = ([f(0)]E0, f(1)) ∧ Em = [f(m)]E0

and a simpler proof system. The modification of Figure 3 to this end is straight-
forward. We note that this impacts the runtimes of the CNIZK proof in a bene-
ficial way, i.e. the computations of Sj and Ŝj are now performed with only two
group actions instead of three. We discuss costs later in Section 5.2, as we have
another optimization up our sleeve.

25

5.1.3 Optimization using twists. When we work with symmetric EGAs
from Definition 2, we can increase the challenge space of CNIZK from 2 to 3 per
round using the twist trick first proposed in [33]. In order to see this, note that
we can extend the public keys to include

[−f(0)]E0, [−f(1)]E0,−f(2), . . . ,−f(d) ,

simply by using the twisting operation on the elliptic curves or simple negation
on the polynomial evaluations. We can do the same to also compute [−f(m)]E0.
Thus, instead of sampling the challenges from {0, 1}, we can now sample them
from {−1, 0, 1}, forcing the prover to reveal r(X) = b(X) + f(X) when c =
−1 and letting the verifier check whether this connects the commitments to
the “negative part” of the public key. This effectively decreases the soundness
error per round from 1/2 to 1/3 and consequently the number of rounds from λ
repetitions to κ = ⌈λ/ log2 3⌉.

The protocol in Figure 3 is easily modified to account for this. Simply replace
λ by κ and the hash function by H : {0, 1}∗ → {−1, 0, 1}κ. Note that the
responses stay the same.

5.2 Cost overview

We express the computational cost of our VRF designs by counting the number
of group actions, as other costs are negligible in comparison. The dominating
factor in both computational and communication costs are the proofs. We find
that CNIZK has output size κ + (d + 1)κ logN bits, where κ ∈ {λ, ⌈λ/ log2 3⌉},
depending on whether we can apply the twist trick or not. The number of group
actions to compute is 3κ group actions for d ≥ 2 to both prove and verify, and
2κ for d = 1.

Using these numbers, we express the full output size (in bits) and computa-
tional cost (in number of group actions) of Eval and Verif in the table below.
We also add the computational cost of computing KeyGen as well as the result-
ing public key size. The secret key has (d+ 1) logN bits, which can be reduced
to a seed of λ bits, as is done e.g. in [13].

KeyGen Eval Verif
Output size (d = 1) log p+ logN

κ+(d+1)κ logN+log p+2λ
—

Output size (d ≥ 2) 2 log p+ (d− 1) logN —
Group actions (d = 1) 1 2κ+ 1 2κ
Group actions (d ≥ 2) 2 3κ+ 1 3κ

We instantiate our results using the EGA from [13] in Table 2 and compare
our results to the previous state of the art Capybara and Tsubaki from [53]. We
note that for the latter, the computational cost scales with λ2.

26

Acknowledgements. This work was supported in part by the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement ISOCRYPT - No. 101020788), by Cy-
berSecurity Research Flanders with reference number VR20192203 and by the
research grant VIL53029 from VILLUM FONDEN. This work was also sup-
ported by a grant from the Ministry of Business, Innovation and Employment,
New Zealand.

The authors would like to thank Wouter Castryck, Steven Galbraith and
Frederik Vercauteren for helpful discussions regarding this work.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II.
LNCS, vol. 12492, pp. 411–439. Springer, Cham (Dec 2020). https://doi.org/10.
1007/978-3-030-64834-3_14

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM Press (Oct / Nov
2017). https://doi.org/10.1145/3133956.3134104

3. Amorós, L., Iezzi, A., Lauter, K., Martindale, C., Sotáková, J.: Explicit Con-
nections Between Supersingular Isogeny Graphs and Bruhat–Tits Trees, pp. 39–
73. Springer International Publishing, Cham (2021). https://doi.org/10.1007/
978-3-030-77700-5_2, https://doi.org/10.1007/978-3-030-77700-5_2

4. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: Practical robust DKG proto-
cols for CSIDH. In: Tibouchi, M., Wang, X. (eds.) ACNS 23International Con-
ference on Applied Cryptography and Network Security, Part II. LNCS, vol.
13906, pp. 219–247. Springer, Cham (Jun 2023). https://doi.org/10.1007/

978-3-031-33491-7_9

5. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: VSS from distributed ZK proofs
and applications. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part I. LNCS,
vol. 14438, pp. 405–440. Springer, Singapore (Dec 2023). https://doi.org/10.
1007/978-981-99-8721-4_13

6. Baghery, K., Cozzo, D., Pedersen, R.: An isogeny-based ID protocol using struc-
tured public keys. In: Paterson, M.B. (ed.) 18th IMA International Conference on
Cryptography and Coding. LNCS, vol. 13129, pp. 179–197. Springer, Cham (Dec
2021). https://doi.org/10.1007/978-3-030-92641-0_9

7. Basso, A.: A post-quantum round-optimal oblivious PRF from isogenies. In: Carlet,
C., Mandal, K., Rijmen, V. (eds.) SAC 2023. LNCS, vol. 14201, pp. 147–168.
Springer, Cham (Aug 2024). https://doi.org/10.1007/978-3-031-53368-6_8

8. Basso, A., Codogni, G., Connolly, D., De Feo, L., Fouotsa, T.B., Lido, G.M., Mor-
rison, T., Panny, L., Patranabis, S., Wesolowski, B.: Supersingular curves you
can trust. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part II. LNCS,
vol. 14005, pp. 405–437. Springer, Cham (Apr 2023). https://doi.org/10.1007/
978-3-031-30617-4_14

9. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.
1145/168588.168596

27

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-77700-5_2
https://doi.org/10.1007/978-3-030-77700-5_2
https://doi.org/10.1007/978-3-030-77700-5_2
https://doi.org/10.1007/978-3-031-33491-7_9
https://doi.org/10.1007/978-3-031-33491-7_9
https://doi.org/10.1007/978-981-99-8721-4_13
https://doi.org/10.1007/978-981-99-8721-4_13
https://doi.org/10.1007/978-3-030-92641-0_9
https://doi.org/10.1007/978-3-031-53368-6_8
https://doi.org/10.1007/978-3-031-30617-4_14
https://doi.org/10.1007/978-3-031-30617-4_14
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interac-
tive oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D.,
Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 14:1–14:17. Schloss Dagstuhl
(Jul 2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.14

11. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham (May
2019). https://doi.org/10.1007/978-3-030-17653-2_4

12. Beullens, W., Disson, L., Pedersen, R., Vercauteren, F.: CSI-RAShi: Distributed
key generation for CSIDH. In: Cheon, J.H., Tillich, J.P. (eds.) Post-Quantum Cryp-
tography - 12th International Workshop, PQCrypto 2021. pp. 257–276. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_14

13. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: Efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 227–247. Springer, Cham (Dec
2019). https://doi.org/10.1007/978-3-030-34578-5_9

14. Bodaghi, O., Safavi-Naini, R.: Short Paper: Breaking X-VRF, a Post-Quantum
Verifiable Random Function. In: Financial Crypto 2024 (March 2024), available at
https://fc24.ifca.ai/preproceedings/213.pdf

15. Boneh, D., Kogan, D., Woo, K.: Oblivious pseudorandom functions from isoge-
nies. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol.
12492, pp. 520–550. Springer, Cham (Dec 2020). https://doi.org/10.1007/

978-3-030-64834-3_18

16. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol.
12106, pp. 493–522. Springer, Cham (May 2020). https://doi.org/10.1007/

978-3-030-45724-2_17

17. Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.:
Linear-time zero-knowledge proofs for arithmetic circuit satisfiability. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 336–365.
Springer, Cham (Dec 2017). https://doi.org/10.1007/978-3-319-70700-6_12

18. Buser, M., Dowsley, R., Esgin, M.F., Kasra Kermanshahi, S., Kuchta, V., Liu,
J.K., Phan, R.C.W., Zhang, Z.: Post-quantum verifiable random function from
symmetric primitives in PoS blockchain. In: Atluri, V., Di Pietro, R., Jensen, C.D.,
Meng, W. (eds.) ESORICS 2022, Part I. LNCS, vol. 13554, pp. 25–45. Springer,
Cham (Sep 2022). https://doi.org/10.1007/978-3-031-17140-6_2

19. Castryck, W., Decru, T.: CSIDH on the surface. In: Ding, J., Tillich,
J.P. (eds.) Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020. pp. 111–129. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-44223-1_7

20. Castryck, W., Decru, T., Vercauteren, F.: Radical isogenies. In: Moriai, S., Wang,
H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 493–519. Springer,
Cham (Dec 2020). https://doi.org/10.1007/978-3-030-64834-3_17

21. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Cham (Dec
2018). https://doi.org/10.1007/978-3-030-03332-3_15

22. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from ex-
pander graphs. Journal of Cryptology 22(1), 93–113 (Jan 2009). https://doi.
org/10.1007/s00145-007-9002-x

28

https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-81293-5_14
https://doi.org/10.1007/978-3-030-34578-5_9
https://fc24.ifca.ai/preproceedings/213.pdf
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-031-17140-6_2
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-44223-1_7
https://doi.org/10.1007/978-3-030-64834-3_17
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x

23. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019). https://doi.org/10.1016/J.TCS.2019.02.
001

24. Chen, M., Leroux, A., Panny, L.: SCALLOP-HD: Group action from 2-dimensional
isogenies. In: Tang, Q., Teague, V. (eds.) PKC 2024, Part II. LNCS, vol.
14603, pp. 190–216. Springer, Cham (Apr 2024). https://doi.org/10.1007/

978-3-031-57725-3_7

25. Choi, K., Manoj, A., Bonneau, J.: SoK: Distributed randomness beacons. In: 2023
IEEE Symposium on Security and Privacy. pp. 75–92. IEEE Computer Society
Press (May 2023). https://doi.org/10.1109/SP46215.2023.10179419

26. Cong, K., Lai, Y.F., Levin, S.: Efficient isogeny proofs using generic techniques. In:
Tibouchi, M., Wang, X. (eds.) ACNS 23International Conference on Applied Cryp-
tography and Network Security, Part II. LNCS, vol. 13906, pp. 248–275. Springer,
Cham (Jun 2023). https://doi.org/10.1007/978-3-031-33491-7_10

27. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

28. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQIsignHD: New dimensions
in cryptography. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part I.
LNCS, vol. 14651, pp. 3–32. Springer, Cham (May 2024). https://doi.org/10.
1007/978-3-031-58716-0_1

29. Dartois, P., Maino, L., Pope, G., Robert, D.: An algorithmic approach to (2, 2)-
isogenies in the theta model and applications to isogeny-based cryptography.
Cryptology ePrint Archive, Report 2023/1747 (2023), https://eprint.iacr.org/
2023/1747

30. De Feo, L.: Mathematics of isogeny based cryptography. arXiv (2017), http://
arxiv.org/abs/1711.04062

31. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowl-
edge. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol.
13792, pp. 310–339. Springer, Cham (Dec 2022). https://doi.org/10.1007/

978-3-031-22966-4_11

32. De Feo, L., Fouotsa, T.B., Kutas, P., Leroux, A., Merz, S.P., Panny, L., Wesolowski,
B.: SCALLOP: Scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov, V. (eds.)
PKC 2023, Part I. LNCS, vol. 13940, pp. 345–375. Springer, Cham (May 2023).
https://doi.org/10.1007/978-3-031-31368-4_13

33. De Feo, L., Galbraith, S.D.: SeaSign: Compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS,
vol. 11478, pp. 759–789. Springer, Cham (May 2019). https://doi.org/10.1007/
978-3-030-17659-4_26

34. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014).
https://doi.org/10.1515/jmc-2012-0015

35. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: Compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 64–93. Springer, Cham
(Dec 2020). https://doi.org/10.1007/978-3-030-64837-4_3

36. Decru, T.: Radical N
√
élu isogeny formulae. In: Reyzin, L., Stebila, D. (eds.)

CRYPTO 2024, Part V. LNCS, vol. 14924, pp. 107–128. Springer, Cham (Aug
2024). https://doi.org/10.1007/978-3-031-68388-6_5

37. Delpech de Saint Guilhem, C., Pedersen, R.: New proof systems and an OPRF
from CSIDH. In: Tang, Q., Teague, V. (eds.) PKC 2024, Part II. LNCS, vol.

29

https://doi.org/10.1016/J.TCS.2019.02.001
https://doi.org/10.1016/J.TCS.2019.02.001
https://doi.org/10.1007/978-3-031-57725-3_7
https://doi.org/10.1007/978-3-031-57725-3_7
https://doi.org/10.1109/SP46215.2023.10179419
https://doi.org/10.1007/978-3-031-33491-7_10
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-031-58716-0_1
https://doi.org/10.1007/978-3-031-58716-0_1
https://eprint.iacr.org/2023/1747
https://eprint.iacr.org/2023/1747
http://arxiv.org/abs/1711.04062
http://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1515/jmc-2012-0015
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-031-68388-6_5

14603, pp. 217–251. Springer, Cham (Apr 2024). https://doi.org/10.1007/

978-3-031-57725-3_8

38. Doliskani, J., Pereira, G.C.C.F., Barreto, P.S.L.M.: Faster cryptographic hash func-
tion from supersingular isogeny graphs. In: Smith, B., Wu, H. (eds.) SAC 2022.
LNCS, vol. 13742, pp. 399–415. Springer, Cham (Aug 2024). https://doi.org/
10.1007/978-3-031-58411-4_18

39. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 356–383. Springer, Cham
(Aug 2019). https://doi.org/10.1007/978-3-030-26951-7_13

40. Esgin, M.F., Ersoy, O., Kuchta, V., Loss, J., Sakzad, A., Steinfeld, R., Yang, X.,
Zhao, R.K.: A new look at blockchain leader election: Simple, efficient, sustainable
and post-quantum. In: Liu, J.K., Xiang, Y., Nepal, S., Tsudik, G. (eds.) Proceed-
ings of the 2023 ACM Asia Conference on Computer and Communications Security,
ASIA CCS 2023, Melbourne, VIC, Australia, July 10-14, 2023. pp. 623–637. ACM
(2023). https://doi.org/10.1145/3579856.3595792

41. Esgin, M.F., Kuchta, V., Sakzad, A., Steinfeld, R., Zhang, Z., Sun, S., Chu, S.:
Practical post-quantum few-time verifiable random function with applications to
algorand. In: Borisov, N., Dı́az, C. (eds.) FC 2021, Part II. LNCS, vol. 12675,
pp. 560–578. Springer, Berlin, Heidelberg (Mar 2021). https://doi.org/10.1007/
978-3-662-64331-0_29

42. Esgin, M.F., Steinfeld, R., Liu, D., Ruj, S.: Efficient hybrid exact/relaxed lattice
proofs and applications to rounding and VRFs. In: Handschuh, H., Lysyanskaya,
A. (eds.) CRYPTO 2023, Part V. LNCS, vol. 14085, pp. 484–517. Springer, Cham
(Aug 2023). https://doi.org/10.1007/978-3-031-38554-4_16

43. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263,
pp. 186–194. Springer, Berlin, Heidelberg (Aug 1987). https://doi.org/10.1007/
3-540-47721-7_12

44. Galbraith, S., Panny, L., Smith, B., Vercauteren, F.: Quantum Equivalence of the
DLP and CDHP for Group Actions. Mathematical Cryptology 1(1), 40–44 (2021)

45. Galbraith, S.D.: Constructing isogenies between elliptic curves over finite fields.
LMS Journal of Computation and Mathematics 2, 118–138 (1999)

46. Giunta, E., Stewart, A.: Unbiasable verifiable random functions. In: Joye, M., Le-
ander, G. (eds.) EUROCRYPT 2024, Part IV. LNCS, vol. 14654, pp. 142–167.
Springer, Cham (May 2024). https://doi.org/10.1007/978-3-031-58737-5_6

47. Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L., Vasant, S., Ziv, A.: NSEC5:
Provably preventing DNSSEC zone enumeration. In: NDSS 2015. The Internet
Society (Feb 2015). https://doi.org/10.14722/ndss.2015.23211

48. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

49. Golovnev, A., Lee, J., Setty, S.T.V., Thaler, J., Wahby, R.S.: Brakedown: Linear-
time and field-agnostic SNARKs for R1CS. In: Handschuh, H., Lysyanskaya, A.
(eds.) CRYPTO 2023, Part II. LNCS, vol. 14082, pp. 193–226. Springer, Cham
(Aug 2023). https://doi.org/10.1007/978-3-031-38545-2_7

50. Heimberger, L., Hennerbichler, T., Meisingseth, F., Ramacher, S., Rechberger, C.:
Oprfs from isogenies: Designs and analysis. In: Zhou, J., Quek, T.Q.S., Gao, D.,
Cárdenas, A.A. (eds.) Proceedings of the 19th ACM Asia Conference on Computer
and Communications Security, ASIA CCS 2024, Singapore, July 1-5, 2024. ACM
(2024). https://doi.org/10.1145/3634737.3645010

30

https://doi.org/10.1007/978-3-031-57725-3_8
https://doi.org/10.1007/978-3-031-57725-3_8
https://doi.org/10.1007/978-3-031-58411-4_18
https://doi.org/10.1007/978-3-031-58411-4_18
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1145/3579856.3595792
https://doi.org/10.1007/978-3-662-64331-0_29
https://doi.org/10.1007/978-3-662-64331-0_29
https://doi.org/10.1007/978-3-031-38554-4_16
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-031-58737-5_6
https://doi.org/10.14722/ndss.2015.23211
https://doi.org/10.1007/978-3-031-38545-2_7
https://doi.org/10.1145/3634737.3645010

51. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press (2007), http://www.cs.umd.edu/%7Ejkatz/imc.html

52. Kohel, D., Lauter, K.E., Petit, C., Tignol, J.: On the quaternion ℓ-isogeny path
problem. LMS Journal of Computation and Mathematics 17, 418–432 (2014)

53. Lai, Y.F.: CAPYBARA and TSUBAKI: Verifiable random functions from group
actions and isogenies. Cryptology ePrint Archive, Report 2023/182 (2023), https:
//eprint.iacr.org/2023/182

54. Leroux, A.: Verifiable random function from the deuring correspondence and
higher dimensional isogenies. Cryptology ePrint Archive, Report 2023/1251 (2023),
https://eprint.iacr.org/2023/1251

55. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS.
pp. 120–130. IEEE Computer Society Press (Oct 1999). https://doi.org/10.

1109/SFFCS.1999.814584
56. Mokrani, Y., Jao, D.: Generating supersingular elliptic curves over Fp with un-

known endomorphism ring. In: Chattopadhyay, A., Bhasin, S., Picek, S., Rebeiro,
C. (eds.) INDOCRYPT 2023, Part I. LNCS, vol. 14459, pp. 159–174. Springer,
Cham (Dec 2023). https://doi.org/10.1007/978-3-031-56232-7_8

57. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999).
https://doi.org/10.1006/JCSS.1998.1618

58. Page, A., Robert, D.: Introducing clapoti(s): Evaluating the isogeny class group
action in polynomial time. Cryptology ePrint Archive, Report 2023/1766 (2023),
https://eprint.iacr.org/2023/1766

59. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 463–492. Springer, Cham (May
2020). https://doi.org/10.1007/978-3-030-45724-2_16

60. Petit, C., Lauter, K.: Hard and easy problems for supersingular isogeny graphs.
Cryptology ePrint Archive, Report 2017/962 (2017), https://eprint.iacr.org/
2017/962

61. Pizer, A.K.: Ramanujan graphs and Hecke operators. Bulletin of the American
Mathematical Society 23(1), 127–137 (1990)

62. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2),
256–267 (1983). https://doi.org/10.1016/0022-0000(83)90042-9

63. Silverman, J.H.: The arithmetic of elliptic curves, Graduate texts in mathematics,
vol. 106. Springer, 2nd edn. (1986)

64. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 65–95. Springer, Cham (Dec
2017). https://doi.org/10.1007/978-3-319-70694-8_3

65. Xie, T., Zhang, Y., Song, D.: Orion: Zero knowledge proof with linear prover
time. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol.
13510, pp. 299–328. Springer, Cham (Aug 2022). https://doi.org/10.1007/

978-3-031-15985-5_11
66. Zeilberger, H., Chen, B., Fisch, B.: BaseFold: Efficient field-agnostic polynomial

commitment schemes from foldable codes. Cryptology ePrint Archive, Report
2023/1705 (2023), https://eprint.iacr.org/2023/1705

A Full R1CS description

Let E0 : y2 = x3+A0x
2+C0 be the starting curve and En : y2 = x3+Anx

2+Cnx
be the end curve of our CGL walk. We have the following witness, from which

31

http://www.cs.umd.edu/%7Ejkatz/imc.html
https://eprint.iacr.org/2023/182
https://eprint.iacr.org/2023/182
https://eprint.iacr.org/2023/1251
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1007/978-3-031-56232-7_8
https://doi.org/10.1006/JCSS.1998.1618
https://eprint.iacr.org/2023/1766
https://doi.org/10.1007/978-3-030-45724-2_16
https://eprint.iacr.org/2017/962
https://eprint.iacr.org/2017/962
https://doi.org/10.1016/0022-0000(83)90042-9
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-031-15985-5_11
https://eprint.iacr.org/2023/1705

we omit the Re() and Im() parts for compactness,

z = (1, k0, . . . , kn−1, β0, . . . , βn−1, α0, . . . , αn−1, A0, . . . , An, C0, . . . , Cn, u0, . . . , un−1) .

Since ki, βi, ui ∈ Fp and the αi, Ai, Ci ∈ Fp × Fp, this encodes a total of 9n+ 4
variables over Fp. At every step Ei → Ei+1, we find the following set constraints,
which immediately derive from equations (1)-(4).

β2
i = Re(αi)

2Re(αi)Im(αi) = Im(Ci)

2(Re(αi) + Im(αi))(Re(αi) + dIm(αi)) = 2Re(Ci) + (d+ 1)Im(Ci)

6kiRe(αi) = Re(Ai+1)− Re(Ai)

6kiIm(αi) = Im(Ai+1)− Im(Ai)

2Im(Ai)(Im(Ai+1)− Im(Ai)) = ui

2Re(Ai)(Re(Ai+1)− Re(Ai)) = 3Re(Ci+1)− 24Re(Ci)− dui

2(Re(Ai) + Im(Ai))(Re(Ai+1)− Re(Ai) + Im(Ai+1)− Im(Ai))

= 3Re(Ci+1)− 24Re(Ci) + 3Im(Ci+1)− 24Im(Ci) + (1− d)ui

Furthermore, we ensure that k2i = 1 at every step. In the end, there are a
total of 9n constraints for a path of length n.

We encode these constraints in the standard matrix description for R1CS.
Since we are repeating the same constraints at every step, we only write down
the submatrices for one step. Let

zi = (1, ki, βi,Re(αi), Im(αi),Re(Ai), Im(Ai),Re(Ci), Im(Ci),

Re(Ai+1), Im(Ai+1),Re(Ci+1), Im(Ci+1), ui)

be the subvector of z at step i, then the corresponding constraint equations are
the following.

0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 2 2 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 2 2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0

zi ◦

0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 d 0 0 0 0 0 0 0 0 0
0 0 0 6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 6 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 −1 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0

zi

32

=

0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 2 d+ 1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −24 0 0 0 3 0 −d
0 0 0 0 0 0 0 −24 −24 0 0 3 3 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0

zi

B Security Proofs

B.1 Security proofs for Section 4

We prove security of our VRF from Figure 2 below.

Theorem 4 (Provability). The protocol from Figure 2 is provable if the proof
system NIZK is correct and sound.

Proof. If KeyGen and Evalk are correctly executed, then indeed h = H(m,π2),
fulfilling the first verification condition. The second condition immediately fol-
lows from the correctness and soundness of NIZK.

Theorem 5 (Unique Provability). The protocol from Figure 2 is uniquely
provable if NIZK is sound and W(E0, ·) is injective, and weak uniquely provable
if W(E0, ·) is collision resistant.

Proof. Suppose an adversary’s two outputs (h, (π,E)) and (h′, (π′, E′)) are ac-
cepting for the same input m and public key pk. We will show that if NIZK is
sound and W(E0, ·) is injective (resp. collision resistant), then with overwhelm-
ing probability, h = h′. Let L be the language of relation R in (6).

Since the proofs are accepting and since NIZK is sound, it must be the case
that both

h = H(Ek,m,E) ∧ (E0, Ek, Em, E) ∈ L ,
h′ = H(Ek,m,E′) ∧ (E0, Ek, Em, E′) ∈ L ,

up to negligible probability. This implies that both

∃k : Ek =W(E0, k) ∧ E =W(Em, k) ,

∃k′ : Ek =W(E0, k
′) ∧ E′ =W(Em, k′) .

In the case where W(E0, ·) is injective then it cannot be that k ̸= k′. If W(E0, ·)
is collision resistant and k ̸= k′, then the adversary has found a collision which
occurs with most negligible probability. If k = k′, then E = E′ and finally h = h′.

33

Theorem 6 (Residual Pseudorandomness). Let ARPR be an adversary against
the residual pseudorandomness game from Definition 6. Let further BZK be an
adversary against the zero-knowledge property of NIZKL and BOME an adversary
against the one-more evaluation problem defined in Problem 4. If A is allowed
up to q queries to the random oracle H and n queries to the Evalsk oracle, then

Adv(ARPR) ≤ nAdv(BZK) + qAdv(BOME)

Proof. We prove the statement using four game hops. Let Game0 be the residual
pseudorandomness game from Definition 6 and let A be an adversary against
Game0 with advantage Adv(ARPR). We define an adversary BZK against the
zero-knowledge property of NIZKL and an adversary BOME against the one-
more evaluation problem defined in Problem 4. Let E0 be a publicly available
starting curve and let (sk, pk) = (k,Ek) be the parameters of the one-more
evaluation problem instance.

Game1: Let SNIZK be the zero-knowledge simulator of NIZKL, which on input
x simulates a proof that x ∈ L. We define Game1 similar to Game0, except
that whenever A queries Evalsk on some input m, the reduction proceeds as
follows.
1. Query (h0, (π0, E))← Evalsk(m),
2. compute Em =W(E0,m),
3. query π′

0 ← NIZKL(E0, Ek, Em, E),
4. return (h0, (π

′
0, E)) to A.

If A can distinguish Game1 from Game0, then clearly A can be used to break
the zero-knowledge property of NIZKL. Assuming the number of A’s queries
to Evalsk is bounded by a parameter n, then the advantage of adversary
BAZK against the zero-knowledge property of NIZKL,

Adv(BZK) ≥ 1

n

∣∣Pr(A wins Game1)− Pr(A wins Game0)
∣∣ .

Game2: In this game, whenever A queries Evalsk on some inputm, the adversary
BOME , proceeds as follows.
1. Query E ← Ok(m),
2. query h← H(Ek,m,E),
3. query π′

0 ← NIZKL(E0, Ek, Em, E),
4. return (h0, (π

′
0, E)) to A.

Since E = W(W(E0,m), k) by definition of the oracle Ok, the output
(h0, (π

′
0, E)) is equal to Game1 and therefore Game2 is perfectly indistin-

guishable from Game1.
Game3: This game proceeds exactly as Game2, except that BOME simulates the

random oracle, i.e. whenever A queries the random oracle H, instead BOME

samples h′
0 ← {0, 1}2λ and returns it to A. BOME keeps track of A’s queries

and returns the same output value for the same input value. Since B simulates
the random oracle perfectly, this game is perfectly indistinguishable from
Game2.

34

Game4: We define Game4 in the same way as Game3, with the exception that the
random oracle H returns ⊥ if it is queried on a previously defined critical
input x∗ = (Ek,m

∗, E∗), where E∗ = W(W(E0,m
∗), k).5 If H is never

queried on x∗, then Game3 and Game4 are perfectly indistinguishable and
have the same success probability for the A. Let X∗ denote the event that
H has been queried on x∗ and ¬X∗ the event that it hasn’t. We have

Pr(A wins Game3 | ¬X∗) = Pr(A wins Game4 | ¬X∗) . (11)

In particular, this allows us to bound the difference in probability to solve
either game as follows. Using the law of total probability, we find∣∣Pr(A wins Game3)− Pr(A wins Game4)

∣∣
=

∣∣(Pr(A wins Game3 | X∗)− Pr(A wins Game4 | X∗)
)
Pr(X∗)+(

Pr(A wins Game3 | ¬X∗)− Pr(A wins Game4 | ¬X∗)
)
Pr(¬X∗)

∣∣
Using (11), the second term vanishes and we can bound∣∣Pr(A wins Game3)− Pr(A wins Game4)

∣∣ ≤ Pr(X∗) .

In a game where A cannot make the critical query x∗ to the random oracle,
the only way it can win Game4 is by guessing the correct output, which
implies that Pr(A wins Game4) =

1
2 , thus∣∣Pr(A wins Game3)−

1

2

∣∣ ≤ Pr(X∗) .

The reduction. We now show how BOME can turn an adversary A against
Game4 into an adversary against the one-more evaluation problem, which
will we use to bound Pr(X∗). Using the reasoning from above, A must query
the random oracle on (Ek,m

∗, E∗) in order to successfully distinguish the
challenged strings h0 and h1. We therefore only need to consider the case
where A does indeed send (Ek,m

∗, E∗) as a query to the random oracle.
We argue that submitting this query allows the algorithm BOME to learn
E∗ = W(W(E0,m

∗), k) and therefore break the one-more evaluation prob-
lem. Let the number of random oracle queries by A be at most q. BOME

proceeds as follows. (For simplicity, set B = BOME and A = ARPR.)

1. B samples i∗ ← {1, . . . , q} and h0 ← {0, 1}2λ.
2. B gets as input the public key Ek =W(E0, k) and sends it to A.
3. Whenever A sends its i-th query xi to the random oracle,

– if i ̸= i∗ then B simulates the random oracle truthfully and keeps a
list of A’s queries and the related outputs,

– if i = i∗ and xi∗ has been queried before, then B aborts, otherwise
it sends h0 to A and adds (xi∗ , h0) to the random oracle list.

5 This last step follows along the lines of the proof of [54, Proposition 2].

35

4. Whenever A sends a query m to Evalk(·), B proceeds as follows:

(a) query E ← Ok(m),
(b) query h← H(Ek,m,E),
(c) use the zero-knowledge simulator S from NIZKL to build an accepting

proof π1 ← S((E0, Ek, Em, E)),
(d) send (h, (π1, E)) to A.

5. When A outputs m∗, B checks whether m∗ has already been sent by A
as a query to Evalk(·). In that case, B aborts and returns ⊥. Otherwise
B proceeds as follows:

(a) sample h1 ← {0, 1}2λ,
(b) sample b← {0, 1},
(c) send hb to A.

6. For any further query to H(·) or Evalk(·), B proceeds as in steps 3 and 4,
respectively.

7. At the end, A outputs b′.
8. Let xi∗ = (Ek,m

∗, E∗), then B returns (m∗, E∗).

Assuming that the query xi∗ was indeed (Ek,m
∗, E∗) implies that B outputs

a pair (m∗, E∗) that has not been submitted to Ok, thus breaking the one-
more evaluation problem. By randomly guessing one out of q queries by A
to the random oracle, we find that Adv(BOME) ≥ 1

qPr(X
∗).

Finally, we can compute the advantage of A against the original game Game0
using the triangle inequality

Adv(ARPR) =
∣∣Pr(A wins Game0)−

1

2

∣∣
=

∣∣Pr(A wins Game0)− Pr(A wins Game4)
∣∣

≤
∣∣Pr(A wins Game0)− Pr(A wins Game1)

∣∣
+

∣∣Pr(A wins Game3)− Pr(A wins Game4)
∣∣

≤ nAdv(BZK) + qAdv(BOME) .

B.2 Security proofs for Section 5

B.2.1 Proof of Theorem 2

Theorem 2. The CNIZK proof system from Figure 3 is a non-interactive zero-
knowledge proof of knowledge in the QROM.

Proof. We argue correctness, special soundness and honest-verifier zero-knowledge
of the underlying sigma protocol. Since the commitments are perfectly unpre-
dictable and the responses rj(X) are perfectly unique for a given f(X) and
bj(X) (for positions i = 0, 1,m, this is guaranteed by the regularity of the group
action), the results of the security of Fiat-Shamir in the QROM by [64] and [39]
directly imply the truth of the theorem.

36

Correctness for cj = 0 follows from rj(X) = bj(X), while for cj = 1 we have
rj(X) + f(X) = bj(X). For positions i ∈ {0, 1,m}, correctness follows from the
fact that [rj(i)][f(i)]E = [rj(i) + f(i)]E = [bj(i)]E.

Assume for the different challenges cj = 0 and cj = 1, we have the accepting
responses rj(X) and r′j(X). From the verification conditions, it follows that
for i = 1, 2,m, [rj(i)]E0 = [r′j(i)]Pi and therefore [rj(i) − r′j(i)]E0 = Pi (for
simplicity, let Pm = Em). Thus rj(i)− r′j(i) allow to recover valid witnesses f(i)
for i = 0, 1,m, which are witnesses for the key recovery problem (Problem 2).
Note that given the public evaluations f(2), . . . , f(d), one can further recover
the entire polynomial f(X), which is a witness for relation (10).

A simulator with input (pk,m,Em) can generate a transcript of the protocol
by sampling cj ← {0, 1} and rj(X) ← ZN [X] of degree d for j = 1, . . . , λ,
then setting Sj = ([rj(0)]E0, [rj(1)]E0, rj(2), . . . , rj(d), [rj(m)]E0) if cj = 0 and
Sj = ([rj(0)]P0, [rj(1)]P1, rj(2) + f(2), . . . , rj(d) + f(d), [rj(m)]Em) if cj = 1,
and reprogramming the random oracle to yield the desired result.

B.2.2 Proof of Theorem 3 We prove the following three theorems.

Theorem 7 (Provability). The protocol from Figure 4 is provable if CNIZK is
correct and sound.

Proof. If KeyGend(1
λ) and Evalf (m) are correctly evaluated, then indeed

Em = [f(m)]E0. Correctness and soundness of CNIZK imply that π is indeed
a proof of the statement in equation (10), except when the prover has cheated,
which only happens with negligible probability.

Theorem 8 (Unique Provability). The protocol from Figure 4 is uniquely
provable if CNIZK is correct and sound.

Proof. Assume we have two accepting outputs h = H(Ek,m,Em) and h′ =
H(Ek,m,E′

m). Since H is modeled as a random oracle, h ̸= h′ implies Em ̸= E′
m,

except for a collision, which occurs only with negligible probability. Since both
outputs are accepting, however, there must exist f(X), f ′(X) ∈ ZN [X] of degree
deg f, f ′ ≤ d such that Em = [f(m)]E0 and E′

m = [f ′(m)]E0. Since f(i) = f ′(i)
for i = 0, . . . , d in the public key, it must be that f(X) = f ′(X), which implies
Em = E′

m, and therefore h = h′.

Theorem 9 (Residual Pseudorandomness). Let ARPR be an adversary against
the residual pseudorandomness game from Definition 6. Let further BZK be an
adversary against the zero-knowledge property of CNIZK and BOMU an adver-
sary against the one-more unpredictability problem defined in Problem 4. If A
is allowed up to q queries to the random oracle H and n queries to the Evalsk
oracle, then

Adv(ARPR) ≤ nAdv(BZK) + qAdv(BOMU)

Proof. The proof works completely analogous to the proof of Theorem 6 by re-
placing Problem 4 with Problem 5 and NIZKL with CNIZK. We do the same game

37

hops as in the proof of Theorem 6, incrementally replacing the zero-knowledge
proofs with the CNIZK-simulator, then the Evalsk-oracle with VRFf (·) from
Problem 5 and simulated proofs and finally simulating the random oracle. We
have shown that a successful adversary must have queried the random oracle
on (pk,m∗, Em∗) at some point, except if it simply guessed Em∗ , which hap-
pens only with negligible probability. We can then define an adversary BOMU

against Problem 5 that runs A as a subroutine exactly in the same way as in
the proof of Theorem 6, but with respect to Figures 3 and 4. We have shown
in the proof of Theorem 6 that this can be done in a way that for A, this is
indistinguishable from the real execution of the protocol. If out of A’s q queries
to the random oracle, BOMU guessed the correct one, then it can output a tuple
(m∗, [f(m∗)]E0), which has not been queried to Evalf (·) before, thus breaking
Problem 5. Assuming up to n queries to the Evalf (·), we find the advantage
described in the theorem.

38

	Faster Proofs and VRFs from Isogenies
	Introduction
	Background
	Elliptic curves and isogenies
	Effective group actions
	Verifiable random functions
	Zero-knowledge proof systems

	Faster proofs of isogeny walks
	Radical isogeny CGL
	The proof system

	A new verifiable random function from isogeny walks
	A generic VRF construction
	Instantiating our VRF via the CGL Hash

	A verifiable random function from CSIDH
	Our construction
	Cost overview

	Full R1CS description
	Security Proofs
	Security proofs for Section 4
	Security proofs for Section 5

