
An extended abstract [CRT24] of this article appears in the proceedings of the 31st ACM Conference on
Computer and Communications Security (ACM CCS 2024). This is the full version.

On the Tight Security of the Double Ratchet

Daniel Collins1,2, Doreen Riepel3, Si An Oliver Tran4

1 Purdue University
2 Georgia Institute of Technology

3 UC San Diego
4 ETH Zurich

danielpatcollins@gmail.com, doreen.riepel@gmail.com, sitran@student.ethz.ch

Abstract. The Signal Protocol is a two-party secure messaging protocol used in applications
such as Signal, WhatsApp, Google Messages and Facebook Messenger and is used by billions
daily. It consists of two core components, one of which is the Double Ratchet protocol that
has been the subject of a line of work that aims to understand and formalise exactly what
security it provides. Existing models capture strong guarantees including resilience to state
exposure in both forward security (protecting past secrets) and post-compromise security
(restoring security), adaptive state corruptions, message injections and out-of-order message
delivery. Due to this complexity, prior work has failed to provide security guarantees that
do not degrade in the number of interactions, even in the single-session setting.
Given the ubiquity of the Double Ratchet in practice, we explore tight security bounds for
the Double Ratchet in the multi-session setting. To this end, we revisit the modelling of
Alwen, Coretti and Dodis (EUROCRYPT 2019) who decompose the protocol into modular,
abstract components, notably continuous key agreement (CKA) and forward-secure AEAD
(FS-AEAD). To enable a tight security proof, we propose a CKA security model that provides
one-way security under key checking attacks. We show that multi-session security of the
Double Ratchet can be tightly reduced to the multi-session security of CKA and FS-AEAD,
capturing the same strong security guarantees as Alwen et al.
Our result improves upon the bounds of Alwen et al. in the random oracle model. Even so,
we are unable to provide a completely tight proof for the Double Ratchet based on standard
Diffie-Hellman assumptions, and we conjecture it is not possible. We thus go a step further
and analyse CKA based on key encapsulation mechanisms (KEMs). In contrast to previous
works, our new analysis allows for tight constructions based on the DDH and post-quantum
assumptions.

1 Introduction

The Signal Protocol is the de-facto standard two-party end-to-end encrypted messaging proto-
col [EM19] used in applications like Signal [Mar16], WhatsApp [Wha23], Google Messages [Goo22]
and Facebook Messenger [Met17]. It consists of two core components, namely (1) the Extended
Triple Diffie-Hellman (X3DH) key exchange protocol to bootstrap conversations,5 after which keys
are continually updated during message exchange via (2) the Double Ratchet protocol. The Dou-
ble Ratchet, the focus of this work, provides strong guarantees under state exposure, in particular
forward security (protecting past secrets) and post-compromise security (restoring security given
a passive adversary). Its security has been extensively studied in the literature, starting from
the work of Cohn-Gordon et al. [CCD+20] that analyses its key schedule, followed by a line of
work that model the Double Ratchet as a messaging protocol in both game-based [ACD19] and
simulation-based models [BFG+22,CJSV22].

Secure Messaging as a Cryptographic Primitive. Alwen, Coretti and Dodis [ACD19], in the fol-
lowing denoted by ACD19, provide a formal definition of a secure messaging (SM) scheme that
captures the security properties that the Double Ratchet provides. In ACD19, this is captured in a
monolithic, game-based model. Here, the adversary is given significant power, including the power

5 Recently, Signal deployed their transitional PQXDH key exchange protocol that additionally provides
post-quantum confidentiality [KS23].

https://www.sigsac.org/ccs/CCS2024/

to adaptively corrupt protocol participants, inject and drop messages and manipulate parties’
randomness. Security covers three main properties, namely correctness, privacy and authenticity,
where the latter two guarantees are provided insofar as state exposure does not trivially violate
them.

Due to the high complexity of the security model, ACD19 modularise a Double Ratchet-like
protocol and provide abstractions and (simpler) security definitions for each building block. Firstly,
a continuous key agreement (CKA) scheme, which captures the asymmetric ratchet of the Double
Ratchet and generalises its continuous Diffie-Hellman key exchange, each iteration marking a dif-
ferent epoch in the Double Ratchet. Secondly, a forward-secure authenticated encryption scheme
with associated data (FS-AEAD), capturing the symmetric ratchet associated with each epoch,
which provides confidentiality, privacy and forward security. Finally, a two-input hash function
(PRF-PRNG) which is fed the output of the CKA as it iterates each epoch and seeds the initial-
isation for each instance of FS-AEAD. Overall, this modularity makes the task of modifying the
protocol easier, for example for post-quantum security.

Taking a closer look at the concrete security bounds of the ACD19 (and similar) proofs, we
observe that the security reductions are non-tight. As an example, consider an adversary that
breaks the Double Ratchet protocol with advantage ϵA, then the proof constructs an adversary
that breaks security of the underlying CKA scheme with advantage ϵB = ϵA/(q

2
e), where qe is the

number of epochs. This means security (in the single-session setting) already degrades by a factor
q2e . When generically extending the proof to the multi-session setting via a hybrid argument, we
get an additional loss that is linear in the number of sessions.

Why Multi-Session Security Matters. For traditional key exchange, multi-session security was
considered already in the first formal security models [BR94,BR95], capturing that in practice
these protocols are executed by billions of users. While we observe non-tightness there as well,
it has motivated the study of tight security for real-world protocols like SIGMA and TLS 1.3
[DJ21,DG21,DDGJ22] to justify how these protocols are implemented and used in practice.

With secure messaging being a very active research field for the past few years, the focus has
been on modelling and achieving very strong security rather than tight security proofs. However,
just like TLS, we use the Signal protocol daily. To estimate the number of sessions in practice,
consider that WhatsApp has almost 3 billion (≈ 231) monthly active users alone.6 In addition to
that, it is the case that in practice several instances of the Double Ratchet may be spun up in the
lifetime of a conversation by the higher level session management module [CJN23]. The Double
Ratchet is also used in the Sender Keys group messaging protocol used by WhatsApp and Signal to
exchange and update keying material, where all pairs of users keep a Double Ratchet session alive
to send updated keying material [BCG23], so users can often have hundreds or more active sessions
from group chats alone. These applications indicate that the security loss is in fact significant and it
suggests to adapt system parameters to take it into account. In Figure 1 we provide some estimates
for the Double Ratchet protocols as well as variants we consider in this paper.

With the above in mind, we aim to address the following two questions, namely (1) whether
the security loss in previous statements is merely a matter of proof techniques and (2) what are the
requirements to actually achieve tight security? To investigate the first question, we briefly outline
the overall approach of ACD19’s security proof. (In fact, other game-based security proofs for SM
schemes, such as [CZ24], follow a similar approach). The main difficulty is, as mentioned above,
that security models are highly complex and previous proofs simplify these models by considering
correctness, privacy and authenticity as separate goals. This way, they are able to show that strong
SM security can be achieved by combining comparably weak security definitions for each of them.
While this simplifies the analysis of each property, this approach comes at a cost, namely that
independent of how the scheme is instantiated, one will always inherit the security loss, even if a
tighter proof may exist.

1.1 Contributions

Our starting point is the security model of ACD19. First, we extend ACD19’s definitions to capture
the more realistic multi-session setting. Then, we turn to the building blocks of secure messaging

6 https://www.statista.com/statistics/1306022/whatsapp-global-unique-users/

2

https://www.statista.com/statistics/1306022/whatsapp-global-unique-users/

small medium large

2−64

2−128

2−196

A
d
va
n
ta
ge

DR [ACD19] TR [BFG+22] DR SMEG SMCS

Fig. 1: Advantage bounds for Diffie-Hellman based messaging schemes for three different levels
of (adversarial) resources when instantiated over a 256-bit elliptic curve. DR stands for Double
Ratchet and TR for Triple Ratchet. SMEG and SMCS are messaging schemes based on ElGamal
and Cramer-Shoup respectively. Bars with references refer to the bounds in the respective paper,
whereas the others are from our analysis. A more detailed description (including bounds for a
384-bit curve) can be found in Section 6.

schemes, namely CKA and FS-AEAD, and revisit their security definitions. Our goal is to give
security definitions which are strong enough yet as weak as possible such that their composition
allows for a tight security proof. Finally, we (re)prove security of Signal’s Double Ratchet scheme.
Since, unfortunately, our security bounds are still non-tight (except in the generic group model),
the reasons for which we discuss in the main body of the paper, we propose and analyse new
schemes. Our results and a comparison to related works, mainly that of ACD19 and BFGMR22
[BFG+22], are given in Figure 2. We now detail our contributions, additionally providing insights
about technical hurdles and an interpretation of our results.

New Definitions Enabling Tight Composition. The extension of the SM security model of ACD19
to the multi-session setting is natural and straightforward. We allow the adversary to run multi-
ple sessions in parallel and for each of them adaptively corrupt protocol participants, control the
message flows and manipulate parties’ randomness. The main technical difficulty lies in defining
security for the main building blocks such that tightness is preserved and we can still find effi-
cient instantiations. Due to the adaptive nature of the model, this is however non-trivial. It is
not initially known whether an adversary decides to corrupt a party’s secret state or whether it
will ask for a challenge. This gives rise to the so-called commitment problem [Nie02]. Namely, a
security reduction must be able to provide consistent answers to all of the adversary’s queries, or
it will incur a tightness loss. In other words, it must commit to which secret values it knows and
where it will embed the instance of a computational problem. In order to resolve the commitment
problem, we draw from observations made in the context of tight security for the authenticated
key exchange protocols. Most interesting for our goal are those works studying tightness of Diffie-
Hellman key exchange [CCG+19] and generic constructions from key encapsulation mechanisms
(KEMs) [JKRS21,PWZ23a].

In order to construct SM schemes, we first turn to the underlying continuous key agreement
scheme. We define a one-way security game, where the adversary has to recover the CKA key. This
definition, as opposed to the “standard” indistinguishability based security definition, allows us to
avoid the commitment problem by additionally relying on the random oracle model.

Equipped with our CKA security notion, we then extend the FS-AEAD security model of
ACD19 to the multi-instance setting. Using CKA and FS-AEAD, we then show tight security of
ACD19’s generic scheme in a multi-session setting.

Our Results for the Double Ratchet. The good news is that we can improve upon the ACD19
bound for Signal’s Double Ratchet instantiation. ACD19 proves security with a loss of q2e based
on the Decisional Diffie-Hellman (DDH) assumption, where qe is the number of epochs. In an n-
session setting, this becomes a loss of nq2e . Our result “only” incurs a tightness loss of nqe and
is based on the strong Computational Diffie-Hellman (StCDH) assumption. A similar bound was

3

Scheme ∆SM
Comm.
(asym)

Security
Notion

Multi-
User

Security
Loss

Assumption
(asym)

Model

DR [ACD19] 3 |G| SM O(nq2e) DDH Standard
DR [BFG+22] 3 |G| FDR O(nqe) StSqCDH ROM, ICM
TR [BFG+22] 2 |G| FTR O(nqe) StCDH ROM, ICM
DR (this work) 3 |G| n-SM ✓ O(nqe) StCDH ROM

DR (this work) 3 |G| n-SM ✓ O(1)
nqe-A-StCDH-Corr

ROM

SMEG [ACD19] 2 2|G| SM O(nq2e) DDH Standard
SMEG (this work) 2 2|G| n-SM ✓ O(qC) StCDH ROM
SMCS (this work) 2 3|G| n-SM ✓ O(1) DDH ROM

SMKEM [ACD19] 2 |pk|+|ct| SM O(nq2e) CPA Standard
SMKEM (this work) 2 |pk|+|ct| n-SM ✓ O(qE) OW-PCA ROM
SMKEM (this work) 2 |pk|+|ct| n-SM ✓ O(1) qE-OW-PCA-Corr ROM

eSM [CZ24] 2
|pk|+|vk|+
6|ct|+2|σ| eSM O(nq3eqm) CCA+SUF Standard

Fig. 2: Comparison of our results with previous work. ∆SM refers to how fast parties recover from
state compromise. Column “Comm.” lists the communication complexity of asymmetric primitives.
SM is the security model of ACD19, where n-SM is its generalization to the multi-session setting.
eSM is an extension of SM with more fine-grained security and FDR/FTR refer to the ideal func-
tionalities from [BFG+22]. Since previous proofs are all in the single-session setting, the column
“Security Loss” adds an additional factor n (the number of sessions) to the original bounds. qe
is the number of epochs per session, qE ≤ nqe is the total number of epochs across all sessions,
qC ≤ qE is the total number of corruptions, and qm is the number of pre-keys in the eSM model.
The security loss refers to asymmetric primitives only. For simplicity, we assume multi-user security
for symmetric primitives.

already achieved by BFGMR22 who prove security in the UC model. However, their proof relies on
the strong Square Diffie-Hellman assumption (StSqCDH), which is stronger than StCDH and only
non-tightly implies StCDH (cf. [MW96]).

The question remains whether our bound is indeed optimal. Unfortunately, while our results are
a strong indication towards that, there are technical hurdles towards a formal impossibility result.
More specifically, it appears that current techniques, such as those from [BJLS16,CCG+19], do not
allow to prove such a result. On a positive note, when restricting to generic attacks (i. e., those
that only exploit the group structure and in particular not the representation), our new modular
approach directly gives us information-theoretic lower bounds in that setting, using a recent result
from [KPRR23].

New SM Constructions with Tight Security. In light of a potential impossibility result, we leverage
our analysis to find alternative constructions that do achieve tight security. To this end, we look at
generic CKA constructions from KEMs. We use multi-user one-way secure KEMs in the presence of
adaptive corruptions and a key checking oracle. A similar definition was used by Pan, Wagner and
Zeng [PWZ23a] to construct tightly-secure key exchange from lattice assumptions. Our definition
is strictly weaker than theirs and potentially allows for more efficient constructions. As their key
exchange, our final construction also relies on the random oracle model.

1.2 Related Work

Comparison with Related Models. The Double Ratchet was first fully examined formally by Cohn-
Gordon et al. [CCD+20], who analyse its key schedule. As mentioned, ACD19 takes a game-based
approach. [BFG+22] and [CJSV22] concurrently considered simulation-based security guarantees
for the Double Ratchet; the model of [BFG+22] is generally stronger than that of ACD19, whereas
[CJSV22] does not allow randomness manipulation and so at least in that regard is weaker. ACD19
describe and sketch, but do not prove secure, a protocol that provides additional fine-grained

4

security guarantees by additionally using public-key encryption and signatures even in the “sym-
metric” ratchet. Recently, Cremers and Zhao [CZ24] formalised and extended this protocol; their
formalism extends that of ACD19 and additionally captures properties like deniability and the
existence of long-term keys within messaging sessions. We discuss [BFG+22] and [CZ24] further
in Sections 7.2 and 7.3, respectively. [DG19] and [DH23] study continuous key agreement (CKA),
the former proposing an efficient code-based CKA and a CKA combiner, and the latter for active
attack detection on the CKA layer. ASMesh [BRT23] is a mesh messaging protocol with a particu-
lar focus on anonymity, while maintaining confidentiality and strong post-compromise and forward
secrecy. Their underlying CKA builds upon ACD19, while the final model is simulation-based. In
[Ste24], Stebila analyzes Apple’s iMessage PQ3 protocol in a multi-stage key exchange security
model. The protocol adds a post-quantum secure key encapsulation mechanism to both the initial
key exchange and the asymmetric ratchet. Both ASMesh and PQ3 have comparably loose bounds
as the eSM scheme in Figure 2.

Additional Related Work. For two-party messaging more generally, a line of work initiated by
Bellare et al. [BSJ+17] examines the theoretical security of a messaging protocol and provide
trade-offs between performance and security, sometimes inherently relying on strong, HIBE-like
primitives [JS18,PR18,BRV20] or being weaker and therefore more efficient than Double Ratchet.
A comparable line of work under the umbrella of continuous group key agreement (CGKA), the
core component in the recent IETF MLS messaging standard [ACDT21], that studies similar
questions [ACDT20,ACJM20,BDG+22]. On multi-session security in messaging, [CHK21] considers
the effects on security between instances, and [AAB+21] on improving performance. To the best of
our knowledge, however, tightness has not been considered as a first-class goal in the literature on
modern secure messaging, and many proofs are very non-tight, like that of [ACDT21] which incurs
at least q4 tightness loss in the number of queries q the adversary makes, even for a single group.
In the context of traditional authenticated key exchange protocols, recent works aimed at giving
tight(er) proofs for TLS 1.3 [DJ21,DG21], whereas other works focused on efficient constructions
in the random oracle model [GJ18,CCG+19,JKRS21,PWZ23a] as well as in the standard model
[BHJ+15,HLG21,HJK+21].

2 Preliminaries

Notation. For integers n, m > n, we denote [n,m] = {n, . . . ,m}. For [1, n] we simply write [n]. For
s, t we denote s←− t the assignment of t to s. Similarly, s1, . . . , sn ←− t stands for the assignment of
t to s1, . . . , sn and (s1, . . . , sn)←− (t1, . . . , tn) denotes the element-wise assignment. Sometimes we
set a variable ti to ∗ when the assignment is syntactically required but the value is not important.
Also we sometimes use return s ←− t to first assign t to s and then returning s. For an integer i,
the notation i++ means i ←− i + 1. For a finite set X, we write x ←$ X as sampling a uniformly

random element from X. We write X
+←− x and X

−←− x for X ←− X ∪ {x} and X ←− X\{x},
respectively. ⊥ and λ denote two types of “empty” value; λ is used for assignment exclusively
and ⊥, which can also be used in an assignment, is used as return value of algorithms. If A is a
(probabilistic) algorithm, then y ←$ A(x) denotes running A on x and assigning the output to
y. Sometimes we will make the random coins explicit and write y ←− A(x; r). An adversary is a
probabilistic algorithm and we write AO to indicate that A has oracle access to O.

Let D be a dictionary. For ease of notation, we use an array-notation. It is important to note
they are to be implemented by a data structure whose size grows (linearly) with the number of
elements in the dictionary (unlike arrays). We write D[·] ←− λ to initialise D as empty dictionary.
The operation D[i] ←− v stores v/overwrites the value at entry i; if v = λ, then this amounts to
deleting the stored element. The operation D[i] returns the value at entry i; the returned value
can also be the empty value λ.

Throughout the paper we use code-based games, where Pr[G⇒ 1] denotes the probability that
the final output of game G is 1. We use special keywords that simplify oracle specifications (for the
reader) and enhance readability. The instruction req [condition] checks if condition is satisfied and
if this is not the case, then the oracle/algorithm exits and all actions performed by it are undone.
If at some point during the game the flag wine for event e is set to true, then the execution stops

5

Game MU-OT-CCAA
AE,n

00 for i ∈ [n] do
01 Ki ←$ KAE

02 c∗i ←− λ
03 b←$ {0, 1}
04 b′ ←$AEnc,Dec

05 return Jb = b′K

Oracle Enc(i, a,m)
06 if c∗i ̸= λ then return ⊥
07 if b = 0 then
08 return c∗i ← Enc(Ki, a,m)
09 return c∗i ←$ {0, 1}cl(|m|)

Oracle Dec(i, a, c)
10 if c = c∗i ∨ b = 1 then return ⊥
11 return Dec(Ki, a, c)

Fig. 3: Multi-instance game MU-OT-CCA for an authenticated encryption scheme AE.

and attacker wins the game immediately. For a Boolean statement B, the notation JBK refers to a
bit that is 1 if the statement is true and 0 otherwise.

Groups. Throughout the paper, let G = (G, p, g) be the description of a cyclic group of prime order
p with generator g.

Definition 1 (StCDH). The strong computational Diffie-Hellman (StCDH) problem is defined
relative to a group G = (G, p, g). We define the advantage of an adversary A against StCDH as

AdvStCDH
G (A) := Pr[ADDH(G, gx, gy)⇒ gxy] ,

where x, y ←$ Zp and DDH(a, ·, ·) for a ∈ {x, y} is an oracle that on input (Y, Z) returns a Boolean
whether Z = Y a.

Authenticated Encryption. An AEAD scheme defines a key space KAE and a tuple of algorithms
AE = (Enc,Dec) with the following syntax:

– Enc takes a key K ∈ KAE, associated data a and a message m as input, and produces a
ciphertext c← Enc(K, a,m).

– Dec takes a key K ∈ KAE, associated data a and a ciphertext c as input, and produces a
plaintext m← Dec(K, a, c) or a failure symbol ⊥.

Note that we assume all randomness stems from the key K. We do not need additional randomness
or nonces because we will only rely on one-time security (see below). We say an AEAD scheme is
correct if for all K, a,m it holds that Dec(K, a,Enc(K, a,m)) = m.

Security. We consider one-time CCA security for AE in the multi-user setting. For this, we let
cl(|m|) be the ciphertext length function. The challenge oracle in the security game takes as input
a message (and associated data) and will either output the encryption of that message or a random
ciphertext of the same length.

Definition 2. Consider game MU-OT-CCA in Figure 3 for an AEAD scheme AE, positive integer
n and an adversary A. We define the advantage of A in this game as

Advn-OT-CCA
AE (A) := 2 ·

∣∣∣Pr[MU-OT-CCAA
AE,n ⇒ 1]− 1/2

∣∣∣ .

We will also provide an instantiation from KEMs and the DDH assumption, for which we define
appropriate definitions below.

Definition 3 (DDH). The decisional Diffie-Hellman (DDH) problem is defined for a group G =
(G, p, g). We define the advantage of an adversary A against DDH as

AdvDDH
G (A) := |Pr[A(G, gx, gy, gxy)⇒ 1]

−Pr[A(G, gx, gy, gz)⇒ 1]| ,

where x, y, z ←$ Zp.

6

Game MU-OW-PCA-CorrAKEM,n

00 winow ← false
01 corr← ∅
02 for i ∈ [n] do
03 (pki, ski)←$ Gen
04 (ci,Ki)←$ Encaps(pki)
05 ACheck,Corr((pk1, c1), . . . , (pkn, cn))
06 return 0

Oracle Corr(i)

07 corr
+←− i

08 return ski

Oracle Check(i, c,K)
09 if (c,K) = (ci,Ki)
∧i /∈ corr then

10 return winow ← true
11 return JK = Decaps(ski, c)K

Fig. 4: Multi-instance game MU-OW-PCA-Corr for KEM.

Key Encapsulation Mechanisms (KEMs) A KEM scheme KEM = (Gen,Encaps,Decaps) specifies a
key space KKEM and consists of the following three algorithms

– Gen outputs a pair of public key pk and secret key sk.
– Encaps(pk) takes as input a public key pk and returns a ciphertext c and a key K ∈ KKEM,

where c is an encapsulation of K.
– Decaps(sk, c) takes as input a secret key sk and a ciphertext c and outputs a key K ∈ KKEM or

a special failure symbol ⊥.

Correctness. A KEM scheme KEM is (perfectly) correct if for all (pk, sk) ← Gen, (c,K) ←
Encaps(pk), we have Decaps(sk, c) = K.

Security. In Figure 4 we define multi-user one-way security under key checking attacks and cor-
ruptions. In this game, the adversary gets as input n public keys and a challenge ciphertext for
each of them. It may corrupt users adaptively and its task is to compute the KEM key for an
uncorrupted user. It may also check whether a key belongs to a ciphertext using a Check oracle.
This is captured in the following definition.

Definition 4. Consider game MU-OW-PCA-Corr in Figure 3 for a KEM scheme KEM, positive
integer n and an adversary A. We define the advantage of A in this game as

Advn-OW-PCA-Corr
KEM (A) := Pr[MU-OW-PCA-CorrAKEM,n ⇒ 1] .

Further, we let OW-PCA be the single-user variant of the game and the advantage be defined
analogously.

Remark 1. A stronger variant of this notion has been introduced in [PWZ23a], where there are
multiple challenges for each public key and the adversary additionally has access to a decryption
oracle. Thus, their notion tightly implies the above.

3 Multi-Instance Continuous Key Agreement

Continuous key agreement (CKA) is an abstraction that captures the asymmetric ratchet of the
Double Ratchet, i.e., generalises its continuous Diffie-Hellman key exchange. In CKA, parties it-
eratively establish new keys in a ping-pong fashion, alternating between theirs role as senders and
receivers, each notion. These keys are then used by the symmetric ratchet of the protocol, cap-
tured in the next section on FS-AEAD. CKA is expected to provide resilience to state exposure
due intuitively to the injection of new randomness into the protocol session that an attacker does
not have access to.

Syntax. A continuous key agreement scheme CKA defines an initialisation key space Kinit
CKA, a CKA

key space KCKA and a quadruple of algorithms CKA = (CKA-Init-A,CKA-Init-B,CKA-S,CKA-R),
with the following syntax:

7

– CKA-Init-A (resp. CKA-Init-B) takes as input an initialisation key kAB ∈ Kinit
CKA, and produces

an initial state γA (resp. γB).
– CKA-S takes a state γ as input, and produces a new state, a message, and a key (γ′,m, k)←$

CKA-S(γ).
– CKA-R takes a state γ and a message m as input, and produces a new state and a key (γ′, k)←−

CKA-R(γ,m).

Correctness. A CKA scheme CKA is (perfectly) correct7 if for all kAB ∈ Kinit
CKA:

Pr

 ke = k′e
∧ ke+1 = k′e+1

∣∣∣∣∣∣∣∣
(γA

e ,me, ke)←$ CKA-S(γA
e−1)

(γB
e , k

′
e)←− CKA-R(γB

e−1,me)
(γB

e+1,me+1, ke+1)←$ CKA-S(γB
e)

(γA
e+1, k

′
e+1)←− CKA-R(γA

e ,me+1)

 = 1 ,

where γA
0 ←$ CKA-Init-A(kAB), γB

0 ←$ CKA-Init-B(kAB) and we iterate over e ∈ {1, 3, . . .} using the
assignment of the previous iteration in the next one.

3.1 Multi-Instance Security Game

The multi-instance CKA security game presented below, adapted from the single-instance CKA
security notion from ACD19, is parameterised by ∆, the minimum number of epochs that need to
pass after which the state cannot be used to trivially decrypt the challenge.

We give the security game in Figure 5. Similarly to ACD19, we require the attacker to be
passive. However, we will use a one-way security definition. That is, conditioned on the transcript
messages m1,m2, . . . , a CKA scheme must ensure that the keys k1, k2, . . . cannot be computed
by an attacker. This is in contrast to indistinguishability, which requires that keys look uniformly
random. However, the adversary may control the random coins r used by the sender or leak the
current state of a user in a given instance. Keys ki generated under such conditions are not required
to satisfy the above property. In addition to that, our game provides a key checking oracle, which
allows the adversary to test whether a key belongs to a specified epoch.

Since we consider n instances which are initialised at the beginning of the game, each oracle
takes an additional index i to specify the targeted instance.

Definition 5. Consider game MI-OW-CKA in Figure 5 for a CKA scheme CKA, non-negative
integer ∆, positive integer n and adversary A. We define the advantage of A in this game as the
probability that flag winow is set to true, i. e.,

Advn-OW-CKA
CKA,∆ (A) := Pr[winow] .

Comparison to [ACD19]. The (single-instance) CKA security game of ACD19 requires the adver-
sary to announce the challenge epoch using an oracle Init. This, together with conditions when
state exposure is possible, allows the inference about possible other epochs in which the corrup-
tion oracles can be queried. While this simplifies their CKA proof (and, in fact, makes it tight),
the tightness loss is deferred to the proof of the secure messaging scheme. Thus, using their main
theorem, a tight bound cannot be achieved even in the single-session model and independent of
the CKA construction. Our definition is weaker in the sense that it is a one-way notion, however,
it is also stronger in that it considers multiple instances.

Further Comparison. The CKA security game presented in [BFG+22] is a more fine-grained version
of that in ACD19, where the predicates differentiate between corruptions and adversarially chosen
randomness. We discuss it in more detail in Section 7.2. They use this to prove security of the
Double Ratchet (and their Triple Ratchet) protocol in the UC model. A similar approach is taken
in [BRT23]. In terms of tight security, the overall proof strategies are however similar to that of
ACD19 and the tightness loss occurs in the transformation from CKA to secure messaging. We
thus leave a formal study of achieving tight security in the UC model for future work.

7 Following ACD19, we will consider perfect correctness. Note that capturing non-perfect correctness can
be defined by including a correctness condition in the security experiment (as we do for the secure
messaging primitive (cf. Figure 12), or to quantify over all messages (modelling worst-case correctness).

8

Game MI-OW-CKAA
CKA,∆,n

00 winow ← false
01 for i ∈ [n] do
02 kAB

i ←$ Kinit
CKA

03 γA
i ←$ CKA-Init-A(kAB

i)
04 γB

i ←$ CKA-Init-B(kAB
i)

05 tAi , t
B
i ←− 0

06 corri ←− ∅
07 AO

08 return winow

Oracle CorrA(i)

09 corri
+←− tAi

10 return γA
i

Oracle Check(i, t, k)
11 b← Jk = ki,tK
12 if b = 1 ∧ [t− 1, t+∆] ∩ corri ̸= ∅
13 winow ← true
14 return b

Oracle SendA(i)

15 req tAi mod 2 = tBi mod 2 = 0
16 tAi ++
17 (γA

i ,mi,tAi
, ki,tAi

)←$ CKA-S(γA
i)

18 return mi,tAi

Oracle SendRA(i, r)

19 req tAi mod 2 = tBi mod 2 = 0
20 tAi ++

21 corri
+←− tAi

22 (γA
i ,mi,tAi

, ki,tAi
)←$ CKA-S(γA

i ; r)
23 return mi,tAi

Oracle ReceiveA(i)

24 req tAi mod 2 ̸= tBi mod 2 = 0
25 tAi ++
26 (γA

i , ∗)←− CKA-R(γA
i ,mi,tAi

)

Fig. 5: Multi-instance checkable one-way security game MI-OW-CKA for a CKA scheme, where A
has access to oracles O = {SendP,SendRP,CorrP,ReceiveP,Check}P∈{A,B}. The oracles and
helper procedures for role B are similarly defined, with reversed roles and counter requirements.

CKA-Init-A(kAB)

00 (x0, h0)←− kAB

01 return γA ←− h0

CKA-Init-B(kAB)

02 (x0, h0)←− kAB

03 return γB ←− x0

CKA-S(γ)
04 h←− γ
05 x←$ Zp

06 (γ,m, k)← (x, gx, hx)
07 return (γ,m, k)

CKA-R(γ,m)
08 x←− γ
09 h←− m
10 (γ, k)← (h, hx)
11 return (γ, k)

Fig. 6: CKA scheme CKADH. The initialisation key space is Kinit
CKA = {(x, h) | x ∈ Zp, h = gx}.

3.2 Signal’s CKA Scheme

We want to revisit the scheme analyzed in ACD19 which is based on the current implementation
of Signal’s Double Ratchet [Sig24] and the recommendation from Signal’s technical documenta-
tion [Mar16].8 The CKA scheme used in the actual protocol flow is based on the Diffie-Hellman key
exchange instantiated over a cyclic group G of prime order p with generator g ∈ G. We will denote
the scheme by CKADH and provide a description in Figure 6. The initial shared state k = (x0, h0)
consists of a random value x0 ←$ Zp and the corresponding group element h0 = gx0 . The party in
role A who holds h runs the CKA-S algorithm: It picks a random element x1, computes hx1 , stores
x1 as its new state and sends h1 = gx1 . The party in role B runs the CKA-R algorithm: It gets h1,
computes hx0

1 and stores h1 as its new state. Now this party will become the sender. It is easy to
see that CKADH satisfies correctness.

We will prove the security of CKADH in the multi-instance setting. To simplify the analysis, we
introduce a multi-instance variant of DDH that supports corruptions which we will introduce in
the next paragraph. In particular, this assumption allows a tight reduction.

Multi-User CDH with Corruptions. The assumption that we use is a multi-user variant of the
strong Diffie-Hellman assumption, denoted MU-A-StCDH-Corr, and is given in Figure 7, where

8 As mentioned in [BFG+22], the specification suggests that the scheme should achieve a (slightly) stronger
security notion but that this is not the case (refer Section 1.4 of [BFG+22]). The authors thus propose
a protocol called the Triple Ratchet and stronger models (both for CKA and the ideal functionality for
the protocol itself). We leave a study of tight bounds in their model for future work, but provide some
intuition in Section 7.2.

9

A stands for “adjacent”. A similar (but strictly stronger) assumption was given in [KPRR23] to
analyze authenticated key exchange protocols. Ours mimics the CKA scheme in that the adversary
has to compute the Diffie-Hellman secret for one pair of adjacent (consecutive) group elements.
For concreteness, we only allow queries to the DDH oracle for such pairs, hence one index is
enough. Further, we also allow the adversary to corrupt exponents which will be necessary to
answer corruptions in the CKA experiment. We define our assumption and also show its relation
to the standard StCDH assumption.

Definition 6. Consider game MU-A-StCDH-Corr in Figure 7 for G, integer n and adversary A.
We define the advantage of A in this game as

Advn-A-StCDH-Corr
G (A) := Pr[MU-A-StCDH-CorrAG,n ⇒ 1] .

In order to give a non-tight bound for CKADH from a standard (single-user) assumption, we first
reduce the security of MU-A-StCDH-Corr to the more standard StCDH assumption. This relation
is known in the literature for stronger multi-user variants and we only repeat it for completeness.
Then we can directly apply it to Theorem 1 which is given below.

Lemma 1. Let n be a positive integer. For any adversary A in game MU-A-StCDH-Corr for G,
there exists an adversary B against StCDH for G such that

Advn-A-StCDH-Corr
G (A) ≤ n ·AdvStCDH

G (B) ,

and the running time of B is about that of A.

Proof (Sketch). The proof goes via a simple guessing argument. Reduction B gets as input a
challenge (gx, gy), chooses a random index i ∈ [n] and sets hi−1, hi to be the challenge. It samples
all remaining elements itself. DDH queries can then either be simulated locally or using B’s own
oracles. When A terminates with output (i∗, Z) and i∗ = i, then B outputs Z. Otherwise, it aborts.
Note that the probability that B guessed correctly is 1/n. If B did not abort, it wins whenever A
wins. ⊓⊔

Remark 2. One can show that this non-tight bound is optimal (for simple adversaries and black-box
reductions) using the meta-reduction proof technique from [BJLS16].

Security of CKADH. We now establish the security of the CKADH scheme based on our new as-
sumption. Corollary 1 also states the corresponding non-tight bounds.

Theorem 1 (Security of CKADH). Let n be the number of instances and qe be an upper bound
on the number of epochs. For any adversary A in game MI-OW-CKA for CKADH and ∆ = 1 that
makes q queries to Check, there exists an adversary B in game MU-A-StCDH-Corr for G such that

Advn-OW-CKA
CKADH,∆

(A) ≤ Advn′-A-StCDH-Corr
G (B) ,

where n′ = n(qe + 1) and B makes q queries to DDH. The running time of B is about that of A.

Proof. We construct a reduction B as follows: It gets as input nqe group elements, which we denote
by {mi,0, . . . ,mi,qe}i∈[n], and has access to oracles DDH and Corr. It maintains a counter for each
instance to keep track of how many epochs have passed. It will use the first qe group elements for
the first instance (initialising the state with m1,0), the following qe group elements for the second
instance (initialising the state with m2,0), and so on. Then, it simulates the output to A’s queries
as follows:

– Queries to SendP(i) are simulated by outputting the next element mi,t from B’s input as the
CKA message. In this case, the CKA key as well as next state are not known to the reduction.

– Queries to SendRP(i) can be simulated directly. Using the randomness, parsed as x ∈ Zp,
provided by A, it computes the next message gx and stores the key ki,t = mx

i,t and the new
state x.

– Queries to ReceiveP are simulated by only updating the state.

10

Game MU-A-StCDH-CorrAG,n

00 corr← ∅
01 for i ∈ [0, n] do
02 ai ←$ Zp

03 hi ← gai

04 (i, Z)←$ADDH,Corr(h0, h1, . . . , hn)
05 if i /∈ [n] then return 0
06 if {i− 1, i} ∩ corr ̸= ∅ then return 0
07 return JZ = gai−1aiK

Oracle DDH(i, Z) �i ∈ [n]
08 return JZ = gai−1aiK

Oracle Corr(i) �i ∈ [0, n]
09 corr← corr ∪ {i}
10 return ai

Fig. 7: Multi-user CDH game MU-A-StCDH-Corr for a cyclic group G = (G, g, p).

– When CorrP is queried, B outputs the current state. If the state is unknown, it reveals the
respective exponent by querying Corr.

– When Check is queried on (i, t, k), B checks whether it knows the corresponding CKA key
ki,t. In this case, it just does the comparison itself. If B does not know the CKA key, it queries
DDH for the respective index i′ (derived from i and t), mi,t−1 and k. If the result is 1 and A
has not previously corrupted either exponent, then B stops with solution (i′, k).

The theorem follows by observing that B perfectly simulates the game and that whenever A wins,
B also wins. ⊓⊔

Using the above lemma, we can also derive non-tight bounds for the CKA scheme.

Corollary 1. Let n be the number of instances of CKA and qe be an upper bound on the number
of epochs. For any adversary A in game MI-OW-CKA for CKADH and ∆ = 1, there exists an
adversary B in game MU-A-StCDH-Corr for G such that

Advn-OW-CKA
CKADH,∆

(A) ≤ n(qe + 1) ·AdvStCDH
G (B) ,

and the running time of B is about that of A.

3.3 Interpretation of the Results

The resulting non-tight bound (cf. Corollary 1) improves the one given by [ACD19] for the overall
messaging scheme by a factor of qe and it matches the bound of [BFG+22] (refer also Figure 2).
Unfortunately, the bounds from is still non-tight. In this section, we want to briefly discuss why a
tight bound seems impossible, but that our analysis still enables valuable statements beyond those
of previous work.

Towards an Impossibility Result. One might quickly come to the conclusion that proving tight
security of CKADH based on a standard assumption is impossible. In fact, the security game we use
in the proof is very close to what has been studied in impossibility results such as [BJLS16]. Their
result implies that the tightness loss in Lemma 1 is optimal (for simple adversaries and black-box
reductions, and in the standard model). Intuitively, this is because the reduction (against single-
instance StCDH) has to commit on which exponents it knows and where it embeds a challenge.

However, we also want to stress that this is not enough for a formal tightness impossibility
result for CKADH. The assumption we chose as an intermediate step could simply be stronger
than necessary. This is indeed the case because the n-A-StCDH-Corr challenger generates all group
elements at the beginning of the game, while the CKA security game produces messages one-by-
one. While we conjecture that the bound should still be optimal, the meta-reduction of [BJLS16]
does not seem to be directly applicable to this adaptive setting, so we leave the exact study as an
interesting open question.

11

CKA-Init-A(k)
00 (pk0, sk0)←− k
01 return γA ←− pk0

CKA-Init-B(k)
02 (pk0, sk0)←− k
03 return γB ←− sk0

CKA-S(γ)
04 pk←− γ
05 (c,K)←$ Encaps(pk)
06 (pk, sk)←$ Gen
07 (γ,m, k)← (sk, (c, pk),K)
08 return (γ,m, k)

CKA-R(γ,m)
09 sk←− γ
10 (c, pk)←− m
11 K ← Decaps(sk, c)
12 (γ, k)← (pk,K)
13 return (γ, k)

Fig. 8: CKA scheme CKAKEM. The shared key space is the support of Gen.

Tight Bounds in the Generic Group Model. Since the security loss in previous work is introduced
when proving security for the entire secure messaging scheme, using CKA as one building block,
it is not possible to achieve tight security even if all building blocks have tight proofs to standard
assumptions. Pushing the security loss as much into the building blocks as possible allows us to
also take a different view on the security of the Double Ratchet, focusing on the CKA scheme
only. Namely, we can easily provide information-theoretic lower bounds on the hardness of the
n-A-StCDH-Corr assumption in the generic group model (GGM) [Sho97,Mau05]. One can show
that, when restricting to generic attackers, the bounds of CKADH match those of the discrete
logarithm problem and are thus optimal for this class of adversaries. This follows from the analysis
in [KPRR23, Corollary 1] which proves GGM bounds for a stronger variant of the assumption.

3.4 CKA from KEM

We want to investigate the concrete security of CKA instantiated from a key encapsulation mech-
anism (KEM). We recall the construction of [ACD19] in Figure 8. The initialisation key consists
of a key pair, where the party in role A obtains the public key pk0 and the party in role B obtains
the secret key sk0. A starts by computing an encapsulation c0 of a key K0 to public key pk0. It also
generates a new key pair (pk1, sk1), stores sk1 as the new state and sends (c0, pk1) to B. In order
to compute the same CKA key K0, B decapsulates c0 using sk0. It then stores pk1 as its new state
and becomes the sender.

We prove security of CKAKEM with a similar approach that we took for CKADH, namely we rely
on a multi-user definition of the KEM. More specifically, we use multi-user one-way security with
a key checking oracle and corruptions (MU-OW-PCA-Corr, cf. Definition 4). The scheme achieves
security for ∆ = 0 because each component is only used to derive one CKA key. For this reason
we can also slightly improve the number of instances that the assumption requires. Whereas for
CKADH we needed to bound the maximal number of epochs per instance, the theorem below relies
on the total number of epochs qE ≤ nqe, which is likely to be much smaller. We establish the
following theorem.

Theorem 2 (Security of CKAKEM). Let n be the number of instances and let qE be the total
number of epochs across all instances. For any adversary A in game MI-OW-CKA for CKAKEM and
∆ = 0, there exists an adversary B in game MU-OW-PCA-Corr for KEM such that

Advn-OW-CKA
CKAKEM,∆ (A) ≤ AdvqE-OW-PCA-Corr

KEM (B) ,

and the running time of B is about that of A. Further, if A issues qck queries to its checking oracle,
then B issues at most qck queries to its own checking oracle.

Proof (Theorem 2). We construct a reduction B as follows: It gets as input qE public keys pki and
KEM keys Ki has access to oracles Check and Corr. It maintains a counter for each instance
to keep track of how many epochs have passed, as well as a counter to record the number of total
epochs. It will use the first n public keys to initialise all instances. Then, it simulates the output
to A’s queries as follows:
– Queries to SendP are simulated by using the ciphertext for the public key in the current state.

The reduction outputs the ciphertext along with the next unused public key from its input,
according to the counter value, as the CKA message. The CKA will be the KEM key which is
not known to the reduction. The next state is also not known to the reduction since it is the
corresponding secret key.

12

– Queries to SendRP can be simulated directly using the randomness provided by A. It is used
to encapsulate a key as well as generating a new key pair. The new state is then the secret key
of that key pair.

– Queries to ReceiveP are simulated by only updating the state.
– When CorrP is queried, B outputs the current state. If the state is unknown, it reveals the

corresponding secret key by querying Corr.
– When Check is queried on (i, t, I), B checks whether it knows the corresponding CKA key Ii,t

which is the KEM key for the index i′ derived from i and t. If it knows the key, it just does
the comparison itself. Otherwise, it will query Check(i′, c′, I) for the respective ciphertext c′.
If the result is 1 and A has not previously corrupted the secret key, then A as well as B have
won their game.

The theorem follows by observing that B perfectly simulates the game and that whenever A wins,
B also wins. ⊓⊔

Using a straightforward guessing argument as for Lemma 1, we can give the following corollary.

Corollary 2. Let n be the number of instances and let qE be the total number of epochs across
all instances. For any adversary A in game MI-OW-CKA for CKAKEM and ∆ = 0, there exists an
adversary B in game OW-PCA for KEM such that

Advn-OW-CKA
CKAKEM,∆ (A) ≤ qE ·AdvOW-PCA

KEM (B) ,

and the running time of B is about that of A.

This means we directly get a non-tight CKA scheme from any KEM scheme that achieves the weak
notion of OW-PCA security. Note that such a KEM can be generically constructed from a CPA
secure PKE using the (first part of the) modular Fujisaki-Okamoto transform [HHK17]. Looking
ahead, this improves the bound from [ACD19] for the overall secure messaging scheme from nq2e
to qE ≤ nqe (cf. Corollary 6).

Counting Corruptions. We can hope for even better improvements if we move to a more fine-
grained setting. In particular, we observe that the bound relies on the fact that technically all
session states except one can be corrupted. This is highly unlikely to happen in practice. For this
reason, [BRTZ24] studies a setting where the number of corruptions is viewed as an additional
parameter. Here, denoting the total number of corruptions by qC , we have qC ≤ qE . Thus, when
applying the ideas to our setting, we can further bring down the security loss to the number of
corruptions for schemes like the ElGamal-based CKA. This is captured in the following corollary,
observing that ElGamal is tightly secure in a multi-user setting without corruptions.

Corollary 3 (Theorem 2 and [BRTZ24]). Let n be the number of instances and let qE be
the total number of epochs across all instances. For any adversary A in game MI-OW-CKA for
CKAKEM and ∆ = 0, there exists an adversary B in game q′E-OW-PCA for KEM such that

Advn-OW-CKA
CKAKEM,∆ (A) ≤ e · (qC + 1) ·Adv

q′E-OW-PCA
KEM (B) ,

where e ≈ 2.718 is Euler’s number, qC is the total number of corruptions A makes and q′E =
⌊(n− 1)/(qE + 1)⌋ Further, the running time of B is about that of A.

The corollary follows from applying Theorem 5.3 in the full version of [BRTZ24] to Theorem 2.
The above result also captures the ElGamal based construction of ACD19. Interestingly, since

each message is only used to derive one CKA key (in contrast to CKADH), the bound in Corollary 2
only depends on the total number of epochs (or corruptions), whereas the CKADH bound depends
on the number of epochs per session. This is because an analysis in the multi-instance setting
allows to avoid “over-counting” (which is not possible when using a standard hybrid argument),
thus enabling tightness improvements. When evaluating security bounds, the bounds for CKADH

thus depend on an upper bound for the number of epochs. The security proof for CKAKEM on the
other hand only require to bound the total number of epochs. We further compare KEM-based
and Diffie-Hellman based constructions in Section 6.

13

Gen
00 x1, x2 ←$ Zp

01 pk← gx1hx2

02 sk← (x1, x2)
03 return (pk, sk)

Encaps(pk)
04 r ←$ Zp

05 c← (gr, hr)
06 K ← pkr

07 return (c,K)

Decaps(sk, c)
08 (x1, x2)← sk
09 (c1, c2)← c
10 K ← cx1

1 cx2
2

11 return K

Fig. 9: KEM scheme KEMCS for an efficient tightly-secure CKA scheme.

On the Non-Tightness. Unfortunately, the above bound is still non-tight. Thus, we may again
ask whether there exists a proof showing that this bound is optimal for schemes with unique (or
rerandomizable) keys (cf. [BJLS16]), e. g., the ElGamal KEM. To show this, we run into the same
argument as for CKADH. Indeed, one would have to show the impossibility result for an interactive
version of the assumption, where the adversary is provided by a public key and a ciphertext and
then directly has to decide whether it wants to solve the challenge or whether it wants to receive
the secret key. Then, moving to the next public key means essentially giving up on the previous
challenge. For this experiment, the proof strategy of [BJLS16] does not seem to work.

Tightly-Secure Construction from DDH. For the remainder of this section, we want to look at
constructions from which we know that they are not covered by a potential impossibility result
and give us tight security from standard assumptions. We construct a KEM scheme that achieves
tight MU-OW-PCA-Corr security based on DDH and thus yields a tightly-secure CKA scheme. The
scheme is based on the lite version of the Cramer-Shoup cryptosystem [CS98], hence the name
KEMCS (and CKACS, respectively), and is given in Figure 9.9

Theorem 3. Let CKACS be the CKA scheme from Figure 8 instantiated with KEMCS. Let n be
the number of instances. For any adversary A in game MI-OW-CKA for CKACS and ∆ = 0, there
exists an adversary B against DDH such that

Advn-OW-CKA
CKACS,∆

(A) ≤ AdvDDH
KEM(B) +

1

p− 1
+

qck
p

,

where qck is the number of queries that A issues to its checking oracle. Further, the running time
of B is about that of A.

We note that tight multi-user single-challenge security of Cramer-Shoup has already been studied
in [BBM00]. For completeness, we repeat the proof and explain why answering corruption queries
comes for free.

Proof. We use a multi-user variant of DDH (without corruptions), where the adversary is given a
group element h and qE tuples (gri , hsi) for ri ←$ Zp and either si = ri or si ←$ Zp. We denote
this assumption by qE-DDH. By random self-reducibility, this assumption is tightly implied by the
standard DDH assumption [EHK+13, Lemma 1] up to a term 1/(p− 1). We now proceed with the
actual proof of Theorem 2 using this assumption.

We construct an adversary B that simulates the MU-OW-PCA-Corr game for qE users. It gets as
input h and qE tuples (c1,i, c2,i). It picks random values x1,i, x2,i ←$ Zp as the secret keys and com-
putes pki = gx1,ihx2,i for all i ∈ {1, . . . , qE}. It runs A on ((pk1, c1,1, c2,1), . . . , (pkqE , c1,qE , c2,qE))
and simulates the oracles Check and Corr as follows. Since B knows all the secret keys, it
can easily answer corruptions queries. If A queries Check for index (i, c1, c2,K), B will com-
pute K ′ = c

x1,i

1 c
x2,i

2 and compare the result to K. If the ciphertext was that user’s challenge and
K ′ = K, then A has won and B stops with output 0 (“real”). If at the end of the execution, B has
not already stopped, it outputs 1 (“random”).

The analysis of B follows the argument of Cramer-Shoup. If B’s input consists of real DDH tu-
ples, then it perfectly simulates game qE-OW-PCA-Corr. Otherwise, if B’s input consists of random
tuples, then the key is information-theoretically hidden. If A nevertheless computes the correct
key, which happens with qck/p, B’s guess is not correct, which introduces the additional term into
the bound. ⊓⊔
9 The construction may easily be generalised to universal hash proof systems with a multi-fold subset
membership problem, cf. e. g. [JKRS21].

14

Tightly-Secure Construction from Lattices. In [PWZ23a], Pan, Wagner and Zeng use a similar
(but stronger) security notion for KEMs to construct tightly-secure authenticated key exchange.
Since their notion trivially implies ours, we get a tightly-secure CKA scheme based on the LWE
assumption.

4 Multi-Instance FS-AEAD

Forward-secure authenticated encryption with associated data (FS-AEAD) is an abstraction that
captures the desired interface and properties of one instance of the symmetric ratchet of the Double
Ratchet protocol. As its name suggests, it provides authentication and confidentiality (AEAD), as
well as forward security under state compromise (FS) (and is thus stateful), and supports out-of-
order message delivery. As in the Double Ratchet, we assume one party is the designated sender
(A), and the other the receiver (B). In the following, we recall the definition from ACD19.

Syntax. An FS-AEAD scheme defines an initialisation key space KFS and a quadruple of algorithms
FS-AEAD = (FS-Init-A,FS-Init-B,FS-Send,FS-Rcv), where

– FS-Init-A (resp. FS-Init-B) takes a key kAB ∈ KFS as input and produces an initial state vA

(resp. vB).

– FS-Send takes a state v, associated data a and a message msg as input and produces a new
state and a ciphertext (v′, c)←− FS-Send(v,msg, a)

– FS-Rcv takes a state v, associated data a and a ciphertext c as input and produces a new state,
an index and a message (v′, i,msg)←− FS-Rcv(v, c, a)

We capture correctness and security (privacy and authenticity) for FS-AEAD schemes in the
following definition. The pseudocode and a description for the game are given below.

Definition 7. Consider game MI-FS in Figure 10 for FS-AEAD, integer n and adversary A. We
define the advantage of A in this game as

Advn-FS
FS-AEAD(A) := max

{
2 ·

∣∣∣Pr[MI-FSAFS-AEAD,n ⇒ 1]− 1/2
∣∣∣ ,Pr[winauth], Pr[wincorr]

}
.

The game provides authenticity and confidentiality guarantees for each instance of FS-AEAD
and so corresponds to an IND-CCA-style AEAD definition in the absence of state exposure. In
addition, under state exposure, messages contained in ciphertexts that cannot be trivially derived
by the adversary due to correctness should remain secure, and the adversary should not be able
to forge ciphertexts for the corresponding indices.

The adversary can win in three ways. Firstly, by violating correctness, i.e., if, given ciphertexts
and associated data are faithfully transmitted, modulo out-of-order delivery, that for each message
m sent by A sent with index i, B outputs a different (m′, i′) ̸= (m, i) when decrypting A’s ciphertext.
Secondly, if the adversary is able to successfully forge a ciphertext unless the adversary can trivially
do so due to state exposure. Finally, by correctly guessing a bit uniformly sampled by the challenger
(that is the same across all instances), given access to a challenge oracle ChallA(ℓ, a,mo,m1) that
the adversary can query several times; as in the second case, the adversary cannot call ChallA
if he can trivially decrypt the output ciphertext. Note in the game that, by contrast to ACD19’s
security notion, due to the fact that we consider a multi-instance setting, the game does not end
when CorrB is queried.

Comparison to [BFG+22,ACD19]. Our definition is a multi-instance variant of ACD19. The single-
instance security from BFGMR22 is formulated such that their secure messaging scheme achieves
security in the UC model. For this reason they need a notion of “explanability” and their proof
inherently relies on the (programmable) random oracle model (whereas we use the ROM below for
tightness).

15

Game MI-FSA
FS-AEAD,n

00 wincorr,winauth ← false
01 for ℓ ∈ [n] do
02 kAB

ℓ ←$ KFS

03 vAℓ ←− FS-Init-A(kAB
ℓ)

04 vBℓ ←− FS-Init-B(kAB
ℓ)

05 iAℓ ←− 0
06 corrAℓ , corr

B
ℓ ←− false

07 transℓ ←− ∅
08 challℓ ←− ∅
09 compℓ ←− ∅
10 b←$ {0, 1}
11 b′ ←$AO

12 return Jb = b′K

Oracle TransmitA(ℓ, a,msg)

13 req ¬corrBℓ
14 iAℓ ++
15 (vAℓ , e)←− FS-Send(vAℓ , a,msg)
16 record(ℓ, good, a,msg, e)
17 return e

Oracle ChallA(ℓ, a,msg0,msg1)

18 req ¬corrAℓ ∧ ¬corrBℓ
19 req |msg0| = |msg1|
20 iAℓ ++
21 (vAℓ , e)←− FS-Send(vAℓ , a,msgb)
22 record(ℓ, ch, a,msgb, e)
23 return e

Oracle CorrA(ℓ)

24 corrAℓ ←− true
25 return vAℓ

Oracle CorrEnd(ℓ)
26 req challℓ = ∅
27 corrBℓ ←− true
28 return (vAℓ , v

B
ℓ)

Oracle DeliverB(ℓ, a, e)

29 req ¬corrBℓ
30 req (i, a,msg, e) ∈ transℓ

for some i,msg
31 (vBℓ , i

′,msg′)←− FS-Rcv(vBℓ , a, e)
32 if (i′,msg′) ̸= (i,msg) then
33 wincorr ← true
34 if (i, ∗,msg, ∗) ∈ challℓ then
35 msg′ ←− ⊥
36 delete(ℓ, i)
37 return (i′,msg′)

Oracle InjectB(ℓ, a, e)

38 req ¬corrBℓ
39 req (∗, a, ∗, e) ̸∈ transℓ
40 (vBℓ , i

′,msg′)←− FS-Rcv(vBℓ , a, e)
41 if msg′ ̸= ⊥∧(i′, ∗, ∗, ∗) ̸∈ compℓ then
42 winauth ← true
43 delete(i′)
44 return (i′,msg′)

Helper record(ℓ, flag, a,msg, e)

45 r ←− (iAℓ , a,msg, e)

46 transℓ
+←− r

47 if corrAℓ then

48 compℓ
+←− r

49 if flag = ch then

50 challℓ
+←− r

Helper delete(ℓ, i)
51 r ←− (i, a,msg, e) for some msg, a, e

s. t. (i, a,msg, e) ∈ transℓ

52 transℓ, challℓ, compℓ
−←− r

Fig. 10: Multi-instance gameMI-FS for FS-AEAD, whereA has access to oraclesO = {TransmitA,
ChallA,CorrA,CorrEnd,DeliverB, InjectB}. Helper functions record and delete are for
book-keeping so that winning conditions can be evaluated and trivial wins can be avoided.

Instantiation. We use the instantiation proposed [ACD19], where we replace the PRF-PRNG with
a random oracle G of appropriate domain and range. More specifically, we construct an FS-AEAD
scheme FS-AEAD with key space KFS from an AEAD scheme AE = (Enc,Dec) with key space KAE

and a random oracle G : KFS −→ KFS × KAE. Following ACD19, the final secure messaging scheme
will also use helper functions FS-Stop and FS-Max to terminate an individual instance, which we
explain in more detail in Section 5. These are, however, not relevant on this level of abstraction.
The scheme is described in Figure 11.

Theorem 4. Let n be the number of instances. For any adversary A in game MI-FS for FS-AEAD
that issues at most qM queries to TransmitA and ChallA combined across all instances and at
most qRO queries to random oracle G, there exists an adversary B in game MU-OT-CCA for AE
such that

Advn-FS
FS-AEAD(A) ≤ AdvqM -OT-CCA

AE (B) + (n+ qRO)
2

|KFS|
,

and the running time of B is about that of A.

16

FS-Init-A(kAB)

00 w ←− kAB

01 iA ←− 0
02 return vA ←− (w, iA)

FS-Init-B(kAB)

03 w ←− kAB

04 iB ←− 0
05 D[·]←− λ
06 return vB ←− (w, iB,D)

FS-Send(vA, a,msg)

07 (w, iA)← vA

08 iA++
09 (w,K)←− G(w)
10 h←− (iA, a)
11 e←− Enc(K,h,msg)
12 vA ←− (w, iA)
13 return (vA, (iA, e))

FS-Rcv(vB, a, c)

14 (w, iB,D)← vB

15 (i, e)←− c
16 K ←− try-skipped(i)
17 if K = ⊥ then
18 skip(i)
19 (w,K)←− G(w)
20 iB ←− i
21 h←− (i, a)
22 msg←− Dec(K,h, e)
23 vB ←− (w, iB,D)
24 if msg = ⊥ then
25 return ⊥
26 return (vB, i,msg)

try-skipped(i)
27 K ←− D[i]
28 D[i]←− λ
29 return K

skip(u)

30 while iB < u− 1 do
31 iB++
32 (w,K)←− G(w)
33 D[u]←− K

Fig. 11: FS-AEAD scheme FS-AEAD based on AE and G.

Intuitively, the additional statistical term captures that the FS-AEAD keys which are fed
into the random oracle to obtain an AE key come from a sufficiently large key space to yield
unpredictable and independent outputs.

We directly prove the above theorem in the random oracle model which allows us to get tight
bounds “for free”. We further discuss the necessity of idealized models for tight security and a
possible alternative modularisation in Section 7.1.

Proof (Theorem 4). Let A be an adversary in game MI-FS for FS-AEAD. We prove this theorem
by describing a sequence of games G0-G3 and proceed by game hopping. We let Si be the event
that the final output in game Gi is 1.

Game G0. This is the MI-FS security game with respect to A, where G is modeled as a random
oracle. Thus,

Advn-FS
FS-AEAD(A) = |Pr[S0]− 1/2| .

Game G1. This game is identical to game G0, except the winning condition inDeliverB is removed.
By perfect correctness of FS-AEAD, we have Pr[S0] = Pr[S1].

Game G2. This game is identical to game G1, except that the initial keys wℓ are chosen such that
they are all mutually distinct. Further, the output values (w,K) of the random oracle G are chosen
in a way such that the value w never repeats and does not collide with any initial key. Birthday
collision bound yields

|Pr[S1]− Pr[S2]| ≤
(n+ qRO)

2

|KFS|
.

Game G3. This game is identical to game G3, except that all AEAD ciphertexts that are created
in TransmitA such that the current state was not compromised and all ciphertexts created in
ChallA are replaced by random ciphertexts from {0, 1}cl(|m|). For queries to DeliverB, the game
simply returns the message that was provided to TransmitA. Further, the winning condition in
InjectB is removed and injections for which the state was not compromised are always rejected.

17

We construct an adversary B against MU-OT-CCA of AE such that

|Pr[S2]− Pr[S3]| ≤ AdvqM -OT-CCA
AE (B) ,

where qM is the total number of messages. B maintains a counter to record how many messages A
has sent via TransmitA and ChallA. For the i-th query such that A has not corrupted the state,
B queries Enc for the i-th AEAD key. If B is in the AE game with real encryptions, it perfectly
simulates G2. Otherwise, it gets randomly chosen ciphertexts and it perfectly simulates G3. Finally,
observe that Pr[S4] = 1/2. Thus, the theorem follows from collecting the probabilities. ⊓⊔

5 Multi-Session Secure Messaging

This section presents the formal syntax of secure messaging schemes and their security, based on
the definitions from ACD19.

Syntax. A secure messaging scheme SM specifies an initialisation key space KSM and and the four
algorithms SM = (SM-Init-A,SM-Init-B,SM-Send,SM-Rcv), where

– SM-Init-A (resp. SM-Init-B) takes a (shared) key kAB ∈ KSM as input and outputs an initial
state sA (resp. sB).

– SM-Send takes a tuple takes a state s and a message msg as input, and outputs a new state
and a ciphertext (s′, c)←$ SM-Send(s,msg).

– SM-Rcv takes a state s, and a ciphertext c as input, and outputs a new state, an epoch number,
an index, and a message (s′, t, i,msg)←− SM-Rcv(s, c).

Let A be the (first) sending user and B be the (first) receiving user. Formally, an SM scheme
consists of an initialisation algorithm, that takes as input a shared key, which sets up the state for
A to communicate with B securely and bidirectionally, a sending and a receiving algorithm, both
that keep state across invocations. In order to determine the order of messages the sending user
sent, the receiving algorithm outputs an epoch number and an index, defined below, as well to
determine the transmission order of the messages.

Our goal is to extend the SM security model of ACD19 to the multi-session setting. Before that,
we recall several properties of SM schemes, as given by ACD19.

Epochs. An SM scheme proceeds in so-called epochs, which roughly correspond to the ”back-and-
forth” between two parties A and B. By convention, odd epoch numbers t are associated with A
sending and B receiving, and the other way around for even epochs.

Note, however, that SM schemes are completely asynchronous, and, hence, epochs overlap to a
certain extent. W.l.o.g, consider two epoch counters tA and tB for A and B, respectively, satisfying
the following properties:

– The two counters are never more than one epoch apart, i. e., |tA − tB| ≤ 1 at all times.
– When A receives an epoch-t message from B for t = tA + 1, it sets tA ←− t (even). The next

time A sends a message, tA is incremented again (to an odd value).
– Similarly, when B receives an epoch-t message from A for t = tB +1, it sets tB ←− t (even). The

next time B sends a message, tB is incremented again (to an even value).

Message Index. Within an epoch, messages are identified by a simple counter. To capture the
property of immediate decryption, i. e., out-of-order message delivery and support for dropped
messages, the receive algorithm of an SM scheme is required to output the correct epoch number
and index immediately upon reception of a ciphertext, even when messages arrive out of order.

Corruptions and their Consequences. Since SM schemes are required to be forward-secure and to
recover from state compromise, any SM security game must allow the attacker to learn the state of
either party at any given time. Moreover, to capture authenticity and privacy, the attacker should
be given the power to inject malicious ciphertexts and to call a (say) left-or-right challenge oracle,
respectively. These requirements, however, interfere as follows:

18

– When either party is in a compromised state, the attacker cannot invoke the challenge oracle
since this would allow him to trivially distinguish.

– When either party is in a compromised state, the attacker can trivially forge ciphertexts and
must therefore be barred from calling the inject oracle.

– When the receiver of messages in transmission is compromised, these messages lose all security,
i. e., the attacker learns their content and can replace them by a valid forgery. Consequently,
while any challenge ciphertext is in transmission, the recipient may not be corrupted. Similarly,
an SM scheme must be able to deal with forgeries of compromised messages (once the parties
have healed).

Natural SM Scheme. Similarly to Definition 7 of ACD19, we define natural SM schemes and assume
for simplicity that SM schemes in this work are natural SM schemes.

Definition 8. An SM scheme SM = (SM-Init-A,SM-Init-B,SM-Send,SM-Rcv) is natural if the
following criteria are satisfied:

A) Whenever SM-Rcv(s, c), for some ciphertext c, outputs msg = ⊥, the state remains unaltered.
B) Any given ciphertext c corresponds to an epoch t and an index i, i. e., the values t and i output

by SM-Rcv(s, c) are an (efficiently computable) function of c.
C) SM-Rcv(s, c), for some ciphertext c, never accepts two messages corresponding to the same pair

(t, i).
D) A party always rejects ciphertexts corresponding to an epoch in which it does not act as receiver.
E) If a party P ∈ {A,B} accepts a ciphertext corresponding to an epoch t, then tP ≥ t− 1.

Remark 3. Property C) may also be viewed as an integrity property, but, following ACD19, we
include this property in the definition of a natural scheme. While it is implied by forward security,
it can be guaranteed unconditionally by storing received epochs or indices.

5.1 Multi-Session Security Game

We now extend the model of ACD19 to the multi-session setting. The game is initialised by creating
n pairs of sender and receiver states. As in the CKA game, each oracle now takes as an additional
input an index ℓ that refers to which instance is used for sending/receiving.

Note the multi-session secure-messaging security game presented in Figure 12 is parameterised
by ∆. Occasionally, we will refer to a particular record (or a set thereof) by specifying only some
elements of it, e. g., the expression (P, ∗, ∗, ∗, ∗, ∗) ̸∈ challℓ is abbreviated with P ̸∈ challℓ.

Definition 9. Consider game MS-SM in Figure 12 for an SM scheme SM, non-negative integer
∆, positive integer n and adversary A. We define the advantage of A in this game as

Advn-SM
SM,∆(A) := max

{
2 ·

∣∣∣Pr[MS-SMA
SM,∆,n ⇒ 1]− 1/2

∣∣∣ ,Pr[winauth], Pr[wincorr]
}

.

5.2 Instantiation

We recall the Signal-based Secure Messaging scheme from ACD19, replacing the PRF-PRNG by
a random oracle as done in BFGMR22. The SM scheme is given in Figure 13. It is constructed
from an FS-AEAD scheme FS-AEAD with initialisation key space KFS, a CKA scheme CKA with
initialisation key space Kinit

CKA, CKA key space KCKA and randomness space RCKA and a random
oracle H : Σroot× (KCKA ∪{ε}) −→ Σroot×KFS, where Σroot is the root key space and ε is the empty
string.

State. The SM scheme keeps internal states s for a session between two parties A and B. W.l.o.g.
A, that initialises communication with B, invokes SM-Init-A on input k to initialise state s, which
will be updated by SM-Send and SM-Rcv. It consists of:

– an ID field id ∈ {A,B},
– the state σroot,
– the states v[0], v[1], v[2], . . . of the FS-AEAD instances,
– the state γ of the CKA scheme,
– the current CKA message mcur,
– the epoch counter tcur, and
– the number of messages ℓprev sent in the previous epoch.

19

Game MS-SMA
SM,∆,n

00 wincorr,winauth ← false
01 for ℓ ∈ [n] do
02 kAB

ℓ ←$ KSM

03 sAℓ ←− SM-Init-A(kAB
ℓ)

04 sBℓ ←− SM-Init-B(kAB
ℓ)

05 tAℓ , t
B
ℓ ←− 0

06 iAℓ , i
B
ℓ ←− 0

07 tLℓ ←− −∞
08 transℓ, challℓ, compℓ ←− ∅
09 b←$ {0, 1}
10 b′ ←$AO

11 return Jb = b′K

Oracle TransmitA(ℓ,msg, r)
12 (r, flag)←− sam-if-nec(r)
13 ep-mgmt(ℓ,A, flag)
14 iAℓ ++
15 (sAℓ , c)←− SM-Send(sAℓ ,msg; r)
16 record(ℓ,A, norm,msg, c)
17 return c

Oracle ChallA(ℓ,msg0, msg1, r)
18 (r, flag)←− sam-if-nec(r)
19 ep-mgmt(ℓ,A, flag)
20 req safe-chAℓ ∧ |msg0| = |msg1|
21 iAℓ ++
22 (sAℓ , c)←− SM-Send(sAℓ ,msgb; r)
23 record(ℓ,A, ch,msgb, c)
24 return c

Oracle DeliverA(ℓ, c)
25 req (B, t, i,msg, c) ∈ transℓ

for some t, i,msg
26 (sAℓ , t

′, i′,msg′)←− SM-Rcv(sAℓ , c)
27 if (t′, i′,msg′) ̸= (t, i,msg) then
28 wincorr ← true
29 if (t, i,msg) ∈ challℓ then
30 msg′ ←− ⊥
31 tAℓ ←− max (tAℓ , t)
32 delete(ℓ, t, i)
33 return (t, i,msg′)

Oracle InjectA(ℓ, c)
34 req (B, c) ̸∈ transℓ ∧ safe-injℓ
35 (sAℓ , t

′, i′,msg′)←− SM-Rcv(sAℓ , c)
36 if msg′ ̸= ⊥ ∧ (B, t′, i′) ̸∈ compℓ then
37 winauth ← true
38 tAℓ ←− max (tAℓ , t

′)
39 delete(ℓ, t′, i′)
40 return (t′, i′,msg′)

Oracle CorrA(ℓ)
41 req B ̸∈ challℓ

42 compℓ
+←− trans(B)

43 tLℓ ←− max (tAℓ , t
B
ℓ)

44 return sAℓ

Helper delete(ℓ, t, i)
45 r ←− (P, t, i,msg, c) for some P,msg, c

46 transℓ, challℓ, compℓ
−←− r

Helper ep-mgmt(ℓ,P, flag)

47 if (tPℓ even ∧ P = A) ∨ (tPℓ odd ∧ P = B) then
48 if flag = bad ∧ ¬safe-chPℓ then
49 tLℓ ←− tPℓ + 1
50 tPℓ ++
51 iPℓ ←− 0

Helper sam-if-nec(r)
52 flag←− bad

53 if r = ⊥ then
54 r ←$R
55 flag←− good

56 return (r, flag)

Helper record(ℓ,P, flag,m, c)

57 r ←− (P, tPℓ , i
P
ℓ ,msg, c)

58 transℓ
+←− r

59 if ¬safe-chPℓ then

60 compℓ
+←− r

61 if flag = ch

62 challℓ
+←− r

Predicate safe-chPℓ
63 return J(tPℓ ≥ tLℓ +∆)K

Predicate safe-injℓ
64 return Jmin (tAℓ , t

B
ℓ) ≥ tLℓ +∆K

Fig. 12: Multi-session game MS-SM for scheme SM, where A has access to oracles O =
{TransmitP,ChallP,CorrP,DeliverP, InjectP}P∈{A,B}. The oracles for the receiving parties
in role B are defined similarly.

Helper functions for FS-AEAD As in ACD19, we define the following two functions for memory
management:

– FS-Stop takes a state v[i] as input and outputs an integer ℓprev that indicates many messages
have been sent using that FS-AEAD instance v[i]. It then “erases” that instance from memory;

– FS-Max takes a state v[i] and an integer ℓ, “remembers” internally such that the instance
corresponding to v[i] is erased from memory as soon as ℓ messages have been received.

In the SM scheme, FS-Stop is called when a party initiates a new epoch, meaning that the previous
FS-AEAD instance it used for sending is no longer needed. The integer ℓprev lets the receiver know

20

SM-Init-A(kAB)
00 id←− A
01 (σroot, k

AB
CKA)←− kAB

02 (σroot, kFS)←− H(σroot, ε)
03 v[·]←− λ
04 v[0]←− FS-Init-B(kFS)
05 γ ←− CKA-Init-A(kAB

CKA)
06 mcur ←− λ
07 ℓprev ←− 0
08 tcur ←− 0
09 sA ← (id, σroot, v, γ ,mcur, tcur, ℓprev)
10 return sA

SM-Send(s,msg)
11 (id, σroot, v, γ ,mcur, tcur, ℓprev)← s
12 if tcur is even then
13 ℓprev ← FS-Stop(v[tcur − 1])
14 tcur++
15 (γ,mcur, k)←$ CKA-S(γ)
16 (σroot, kFS)←− H(σroot, k)
17 v[tcur]←− FS-Init-A(kFS)
18 h←− (tcur,mcur, ℓprev)
19 (v[tcur], e)←− FS-Send(v[tcur], h,msg)
20 s ← (id, σroot, v, γ ,mcur, tcur, ℓprev)
21 return (s, (h, e))

SM-Rcv(s, c)
22 (id, σroot, v, γ ,mcur, tcur, ℓprev)← s
23 (h, e)←− c
24 (t,m, ℓ)←− h
25 req t even ∧ t ≤ tcur + 1
26 if t = tcur + 1 then
27 tcur++
28 FS-Max(v[t− 2], ℓ)
29 (γ, k)←− CKA-R(γ,m)
30 (σroot, kFS)←− H(σroot, k)
31 v[t]←− FS-Init-B(kFS)
32 (v[t], i,msg)←− FS-Rcv(v[t], h, e)
33 if msg = ⊥ then
34 return ⊥
35 s ← (id, σroot, v, γ ,mcur, tcur, ℓprev)
36 return (s, (t, i,msg))

Fig. 13: Secure-messaging scheme SM based on FS-AEAD, CKA and random oracle H. The initial-
ization algorithm SM-Init-B is defined analogously, with id set to B and initializing v[0] via FS-Init-A.
For simplicity, we specify SM-Send and SM-Rcv for A only. For B, “even” will be changed to “odd”.

whether it received all messages from that instance. That is, using FS-Max it records that number
and can decide whether the old instance can be deleted or how many messages it still expects.10

Security Proof. Unlike ACD19, that performs security reduction for the individual properties,
namely correctness, privacy and authenticity, thus incurring a quadratic loss in the number of
epochs (in the single-session setting), we will perform reductions directly to the building blocks.

Theorem 5. Let n be the number of sessions and let qE be the total number of epochs across all
sessions. Let FS-AEAD and CKA be perfectly correct. Let ∆ = ∆CKA + 2. For any adversary A in
game MS-SM for SM with root key space Σroot (as shown in Figure 13), there exists an adversary
B in game MI-OW-CKA for CKA and an adversary C in game MI-FS for FS-AEAD such that

Advn-SM
SM,∆(A) ≤ Advn-OW-CKA

CKA,∆CKA
(B) +AdvqE-FS

FS-AEAD(C) +
(qRO + n+ qE)

2 + qROqE
|Σroot|

,

where qRO is the number of queries to random oracle H and B makes qRO queries to oracle Check.
Further, the running times of B and C are about that of A.

Proof. Let A be an adversary in game MS-SM for secure messaging scheme SM (Figure 13). We
prove this theorem by describing a sequence of games G0-G3 and proceed by game hopping. We let
Si be the event that the final output in game Gi is 1.

Game G0. This is the MS-SM security game with respect to A and n sessions, where H is modeled
as a random oracle. Thus,

Advn-SM
SM (A) = |Pr[S0]− 1/2| .

10 Note that these functions can be generically defined for any FS-AEAD scheme and also that an adversary
can infer the values from the protocol messages which is why these functions are not explicit in the FS-
AEAD security game.

21

Game G1. This game is identical to game G0, except the winning condition in the DeliverP

oracles for P ∈ {A,B}, i.e., the lines “wincorr ← true”, are removed. By the correctness of CKA
and FS-AEAD, and construction of SM, we have Pr[S1] = Pr[S0].

Game G2. This game is identical to game G1, except we disallow any collision on the random
oracle H output σroot and the initial σroot values sampled for each session. It follows by a standard
birthday argument that:

Pr[S2]− Pr[S1] ≤
(qRO + n+ qE)

2

|Σroot|

since the adversary issues qRO queries and the challenger issues n+ qE queries.

Game G3. This game is identical to game G2, except that for those keys kABCKA output by CKA-S
and CKA-R that the adversary is not able to trivially derive, the game does not query the random
oracle directly, but directly samples random values (which it records for book-keeping and to keep
sender and receiver states consistent). In the following, we will also implicitly assume that for such
keys, the random oracle has not been queried on (σroot, ∗) before. (Otherwise, programming the
random oracle would fail.) Since we only replace keys, where the state has not been corrupted, σroot

is independent of the adversaries view and such a query can have happened only with probability
at most qROqE/|Σroot|. We then construct an adversary B against MI-OW-CKA security of CKA
such that

|Pr[S2]− Pr[S3]| ≤ Advn-OW-CKA
CKA,∆CKA

(B) + qROqE
|Σroot|

.

Recall B has access to oracles SendP(i), SendRP(i, r), CorrP(i), ReceiveP(i) and for P ∈
{A,B} as well as Check(i, t, k), plus has access to random oracle H for which queries are of the
form (σroot, kFS)←− H(σroot, k). B simulates as follows; we assume if not specified that for a call with
input ℓ that we are simulating only for that session, and that calls that fail due to req conditions
being false are handled directly:

– For each ℓ, B simulates lines (00)-(09) of Figure 12 (which are the same in G2 and G3) locally,
except that B does not simulate kABCKA, and simulates each call to CKA-Init-A and CKA-Init-B by
marking the CKA states γ as blank for now. In particular, B samples the same bit b∗ ←$ {0, 1}
for all ℓ to simulate with hereafter. B then initialises a map keys[·] ← λ (used across all
sessions).

– TransmitP(ℓ,msg, r): For A, if tcur is even (resp. odd for B), B simulates as follows. If r = ⊥,
B calls SendP(ℓ), which outputs message m. B stores keys[σroot] ← (ℓ, tcur), then simulates
(σroot, kFS)←− H(σroot, k) by marking k as blank (observe σroot was previously simulated either
in a SM-Send/ SM-Rcv call or at initialisation). B otherwise simulates locally. If r ̸= ⊥, B
instead simulates with SendRP(ℓ, r). Otherwise (tcur odd/even for A/B), B simulates locally.

– ChallP(ℓ,msg0,msg1, r): B simulates locally as in TransmitP(ℓ,msgb∗ , r) modulo differences
in the oracles in terms of local variables.

– CorrP(ℓ): Consider variable tcur associated with P in session ℓ. B calls its own oracle γ ←
CorrP(ℓ) and otherwise simulates locally. Before returning the state to A (and hereafter
implicitly), B derives here any keys k that can be trivially derived from knowledge of γ , and
for such calls, programs H(σroot, k) for the corresponding σroot.

– DeliverP(ℓ, c): B simulates locally except that it queries ReceiveP(ℓ) to simulate CKA-R if c
is associated with an epoch that P has not previously received a message for.

– InjectP(ℓ, c): Note c = (h, e), where h = (t,m, ℓ). If P has previously received a ciphertext
w.r.t. epoch t, B simulates locally, since B has simulated v[t] locally. Otherwise, this is P’s first
epoch t ciphertext (assume P = B; the other case is identical):

• If m was output by a previous call to SendA(ℓ) or SendRA(ℓ, r) in epoch t, then B calls
ReceiveB(ℓ) and otherwise simulates locally (in future calls to InjectB(ℓ, c

′) or DeliverB

(ℓ, c′) for the same m, do not re-call ReceiveB(ℓ)).
• Otherwise, m was not previously output by SendA(ℓ) or SendRA(ℓ, r) in epoch t. In this
case, note that we assumed that A has not previously called H(σroot, k

′) for any k′. Thus,
B simulates (σroot, kFS)←− H(σroot, k) simply by marking k as blank and simulates the rest
of the query; if the SM-Rcv call fails, roll back the changes made to H.

22

– H(σroot, k): If keys[σroot] = ⊥, B simulates by lazy sampling when needed. Else, let (i, t) =
keys[σroot]. B then calls Check(i, t, k): the simulation ends if this query is successful if the key
was honestly generated. Note by definition of G3 that no collision is possible on output σroot;
consequently, each value in keys[σroot] corresponds to a unique CKA message m. If Check
returns false or the input came from a trivial injection, B lazily samples the output of H as
needed. Note that in total B issues at most qRO queries to Check.

This concludes the description of B.
Finally, we bound the last game by constructing an adversary C for the MI-FS game such that

|Pr[S3]− 1/2| ≤ AdvqE-FS
FS-AEAD(C), where qE is the total number of epochs across all instances.

Since those keys kFS that the adversary cannot trivially compute are now uniform, we can now
simulate via MI-FS. To this end, let A be an adversary against the SM scheme in game G3. We
construct adversary C as follows:

– It does not pick a random bit b at the beginning of the game.
– When the CorrA oracle is queried, then C makes all necessary corruption queries. C integrates

the obtained FS-AEAD state into its current SM state, replacing the simulated FS-AEAD
state, and returns the full SM state to A.

– When the TransmitA oracle is queried, C makes the corresponding query to its own transmit
oracle. The returned value from this query will be used to simulate record and returned to A.

– When ChallA is queried, C makes the corresponding query to its own challenge oracle. The
returned value from this query will be used to simulate record and returned to A.

– When the DeliverP oracle is queried, C makes the corresponding query to its own DeliverB

oracle. The returned value from this query will be used to simulate G4 function delete before
being returned to A.

– When the InjectP oracle is queried, C makes the corresponding query to its own InjectB

oracle. If at any point in time A issues a query such that winauth is set to true, then the same
is true for C’s oracle InjectB. Otherwise, the returned value from this query will be used to
simulate delete and returned to A.

Oracles for role B can be simulated analogously. Note that C requires at most qE instances. The
theorem now follows by collecting the bounds. ⊓⊔

6 Putting Everything Together

We now want to give an overview and interpretation of the results established in this work. We
will start with deriving the final bounds following from the previous sections.

Final Bounds. The following corollary states the multi-session security of the Double Ratchet
protocol by combining Theorems 4 and 5 and Corollary 1.

Corollary 4 (Security of DR). Let n be the number of sessions. Let qe be an upper bound on
the number of epochs per session and qM be the total number of messages sent across all sessions.
Let |KFS| = |Σroot| = 2κ and ∆ = 3. Let H and G be random oracles. Let DR be the Double
Ratchet scheme (i. e., the SM scheme from Figure 13 instantiated with CKADH from Figure 6 and
the FS-AEAD scheme from Figure 11). For any adversary A in game MS-SM for DR that issues
qRO random oracle queries, there exists an adversary B against StCDH and an adversary C against
AE such that

Advn-SM
DR,∆(A) ≤ Adv

n(qe+1)-A-StCDH-Corr
G (B) +AdvqM -OT-CCA

AE (C) + 3(n+ qE + qRO)
2

2κ
,

where B makes at most qRO queries to DDH. Further, the running times of B and C are about that
of A. Further,

Adv
n(qe+1)-A-StCDH-Corr
G (B) ≤ n(qe + 1) ·AdvStCDH

G (B′) .

23

The first bound is useful to argue about security of the Double Ratchet in the generic group model
(GGM), where this bound is actually tight (cf. [KPRR23]). The second bound (via Lemma 1)
is with respect to a more standard assumption and improves upon that of ACD19 which (after
applying a hybrid argument over the number of sessions) has a loss of nq2e with respect to the DDH
assumption. It matches that of BFGMR22 who, however, prove security based on the strong square
Diffie-Hellman assumption which implies StCDH only with a non-tight (cube-root) loss [MW96].
Another advantage of our analysis is that the security loss with respect to symmetric-key primitives
is expressed with respect to the multi-user variant of the AE scheme, which has been studied for
example for AES-GCM [BT16,BHT18,HTT18], and only “counts” the number of messages actually
sent, whereas previous proof strategies need to assume an upper bound on the number of messages
per epoch. An interesting open question remains whether this bound is indeed optimal.

Our CKA scheme CKACS gives rise to the first tightly-secure messaging scheme. We summarise
its security in the following corollary which follows from Theorems 3 to 5. The bounds for the
symmetric primitive are the same as in the previous statement.

Corollary 5 (Security of SMCS). Let n be the number of sessions. Let qM be the total number
of messages sent across all sessions. Let |KFS| = |Σroot| = 2κ and ∆ = 2. Let H and G be random
oracles. Let SMCS be the SM scheme from Figure 13 instantiated with KEMCS from Figure 9 and
the FS-AEAD scheme from Figure 11. For any adversary A in game MS-SM for SMCS that issues
qRO random oracle queries, there exists an adversary B against DDH and an adversary C against
AE such that

Advn-SM
SMCS,∆

(A) ≤ AdvDDH
G (B) +AdvqM -OT-CCA

AE (C) + 3(n+ qE + qRO)
2

2κ
+

qRO + 1

p− 1
,

and the running times of B and C are about that of A.

The scheme relies on the DDH assumption and the underlying CKA uses a key encapsulation
mechanism, which allows faster healing after compromise (therefore ∆ = 2). However, it is also
less efficient than the DR scheme. We will further elaborate on this below.

Our generic result for secure messaging schemes from KEMs follows from Theorems 2, 4 and 5
and Corollary 2. Here, we give two bounds.

Corollary 6 (Security of SMKEM). Let n be the number of sessions. Let qE, qM be the total
number of epochs and messages across all sessions, respectively. Let |KFS| = |Σroot| = 2κ and
∆ = 2. Let H and G be random oracles. Let SMKEM be the SM scheme from Figure 13 instantiated
with CKAKEM from Figure 8 and the FS-AEAD scheme from Figure 11. For any adversary A in
game MS-SM for SMKEM that issues at most qRO random oracle queries, there exists an adversary
B against KEM and an adversary C against AE such that

Advn-SM
SMKEM,∆(A) ≤ AdvqE-OW-PCA-Corr

KEM (B) +AdvqM -OT-CCA
AE (C) + 3(n+ qE + qRO)

2

2κ
,

where the running times of B and C are about that of A. Note that in general

AdvqE-OW-PCA-Corr
KEM (B) ≤ min

{
qE ·AdvOW-PCA

KEM (B′), e · (qC + 1) ·Adv
q′E-OW-PCA
KEM (B′′)

}
,

where e ≈ 2.718 is Euler’s number, qC is the total number of corruptions A makes and q′E =
⌊(n− 1)/(qE + 1)⌋ Further, the running time of B is about that of A.

The first bound is tight with respect to a multi-user one-way secure KEM under key checking
attacks and corruptions. Our result thus allows to construct tightly-secure messaging schemes from
other than group-based assumptions. In particular, the notion is achieved by the lattice-based
KEM from Pan, Wagner and Zeng [PWZ23a] which relies on the Learning with Errors (LWE)
assumption. Unfortunately, the security notion is still quite strong, therefore we give a simpler
(non-tight) bound as well, which only assumes either OW-PCA security of the KEM (first term) or
multi-user security without corruptions (second term). The latter statement follows from [BRTZ24]
and the bound (which depends on the number of corruptions) improves the fewer corruptions we
have. Note that ElGamal tightly achieves MU-OW-PCA security assuming StCDH, which yields an

24

Resources Advantage

p t nu ns qe qC
DR

[ACD19]
TR

[BFG+22]
DR SMEG SMCS

2256 260 230 210 215 215 2−126 2−141 2−141 2−180 2−196

2256 280 232 212 215 220 2−102 2−117 2−117 2−155 2−176

2256 2100 232 215 215 225 2−79 2−94 2−94 2−130 2−156

2384 260 230 210 215 215 2−254 2−269 2−269 2−308 2−324

2384 280 232 212 215 220 2−230 2−245 2−245 2−283 2−304

2384 2100 232 215 215 225 2−207 2−222 2−222 2−258 2−284

(a) Advantage bounds for different sizes of the group p, the adversary’s running time t, number of users
nu, maximum number of sessions per user ns (i.e., n = nu · ns), number of epochs per session qe, and
number of total corruptions qC (across sessions). We compute Loss · Adv/t and use Adv = t2/p for
(single-instance) DH problems.

Instantiation Cost

Scheme Curve Exp Time Size

DR/TR P-256 3 0.12 ms 32 bytes

SMEG P-256 4 0.16 ms 64 bytes

SMCS P-256 7 0.28 ms 96 bytes

DR/TR P-384 3 0.27 ms 48 bytes

SMEG P-384 4 0.36 ms 96 bytes

SMCS P-384 7 0.63 ms 144 bytes

(b) Number of exponentiations (Exp), computation complexity (Time) and communication complexity
(Size), focusing on public-key operations and messages (i.e., the underlying CKA scheme).

Table 1: Comparison of secure messaging schemes when instantiated over NIST curves P-256
and P-384: the Double Ratchet (DR), the Triple Ratchet, and secure messaging based on ElGamal
(SMEG) and Cramer-Shoup (SMCS). In the upper table, text highlighted in green/orange/red means
that the target security level (128 bit for P-256 and 192 bit security for P-384) is achieved/almost
achieved/not achieved. In the lower table, the colors indicate whether such an instantiation is
theoretically sound in a medium-scale scenario.

overall tightness loss of qC . We leave it open to determine how to apply the framework of [BRTZ24]
to the MU-A-StCDH-Corr assumption – due to game’s structure of only allowing challenges w.r.t.
adjacent keys, one cannot directly parse it as a multi-user game in the framework. Further, we note
that both single-user and multi-user notions for KEMs have also been analyzed in the (quantum)
random oracle model [HHK17,DHK+21].

6.1 Evaluation

Advantage Bounds. In Table 1a, we compute the advantage for different settings to see how the
bounds change when the adversary’s running time and the number of sessions increase. We compare
the schemes covered by the corollaries above with previous work: the Double Ratchet DR (both the
original ACD19 bound and the improved bound), the Triple Ratchet [BFG+22] (discussed further
in Section 7.2), the KEM-based scheme instantiated with ElGamal SMEG and the tightly secure
KEM-based scheme SMCS.

For increased precision, we split the number of sessions into the number of actual users nu and
the number of sessions per user ns. We note that this not only includes multiple conversations a user
has, but also captures groups and duplicate sessions due to session handling. Our choice of nu is

25

reasonable in light of the fact that the Double Ratchet is used by almost 3 billion unique monthly
active WhatsApp users alone.2 Our choice of ns assumes users have contact with (via groups
or two-party chats) some hundreds of users; very conservatively, one could even justify choosing
nu ≈ ns, although we do not do this. In our comparison, we expect that the number of epochs
per session stays around the same due to session handling and expiration. We also consider the
improved bounds of the ElGamal-based scheme that depends on the total number of corruptions
qC , for which we assume that a large number of users may be corrupted (but still less than nu).

We consider three settings: small-scale, medium-scale and large-scale (cf. also Figure 1), where
resources increase from small- to large-scale.11 We can see that for the original bound for DR from
[ACD19], 128 bits of security is not achieved in any of these settings when using a group of size
2256 (e.g., NIST curve P-256), while it is met in at least the small-scale setting with our improved
analysis. It is also worth noting that when considering security in the generic group model, the
same bound as for SMCS can be achieved, which meets the target in all settings. Further, when
using a larger curve (such as P-384), all schemes meet their target security level (192 bits).

Computational and Communication Complexity. In the following, we also want to compare the
efficiency of the different schemes when taking the tightness loss described above into account. We
will mainly focus on the public-key primitive, namely the underlying CKA scheme, since the loss
affects the efficiency of those more than for symmetric-key primitives. We evaluate the schemes in
terms of ciphertext size and computation speed.

We evaluate the computation complexity by counting exponentiations. To compare, we use the
numbers from running the command openssl speed ecdh on a MacBook Air 2022 (Apple M2, 16
GB of RAM and macOS Sonoma 14.5). In our evaluation, an exponentiation takes 0.04ms on P-256
and 0.09ms on P-384. We provide numbers for instantiations on both curves P-256 and P-384, but
highlight that a theoretically sound instantiation may require the latter curve. All numbers are
shown in Table 1b.

The CKADH scheme used in the Double Ratchet and its variant used in Triple Ratchet are the
most efficient schemes when counting the number of exponentiations and group elements. However,
in large-scale settings, the bounds suggest that they should be instantiated using a larger curve,
which makes computation and communication more expensive (e.g., 0.27ms vs. 0.12ms).

The ElGamal-based scheme CKAEG requires one exponentiation and one group element more,
whereas the Cramer-Shoup based scheme CKACS requires 7 exponentiations and 3 group elements
in total. Although CKACS requires more communication, it is comparable with CKADH in running
time, since due to its tight proof, it can be soundly instantiated on the smaller curve P-256.

For practical applications, a lower communication cost might nonetheless be desirable. There-
fore, the trade-off between tightness and communication/computation complexity requires careful
assessment. For example, a planetary-scale service like WhatsApp may consider a modest com-
munication cost increase to be too expensive. Our analysis further supports such a choice when
restricting to generic attacks (i.e., when assuming the GGM).

7 Discussion

In this section, we first examine the use of the random oracle model in our results, and then
explore to what extent tight security can be shown for variants and extensions of the Double
Ratchet protocol, namely the Triple Ratchet [BFG+22], the Extended Secure Messaging (eSM)
scheme [CZ24] and Signal’s sealed sender feature [jlu18].

7.1 On Idealized Models

Like previous work on the tight security of real-world protocols like TLS and SIGMA
[DG21,DJ21,DDGJ22], our analysis relies on the random oracle model. To give concrete bounds for
post-quantum secure constructions, our analysis is therefore limited, considering that the bounds

11 While 2100 in computation time may seem large, it is reasonable for large-scale adversaries. For
comparison, Bitcoin miners in 2023 alone executed more than 293 SHA-256 hash calls, cf. https:

//www.blockchain.com/explorer/charts/hash-rate.

26

https://www.blockchain.com/explorer/charts/hash-rate
https://www.blockchain.com/explorer/charts/hash-rate

of ACD19 hold in the standard model. We discuss below the challenges in adapting the ACD19
proof to match our bounds without relying on the ROM, as well as challenges to prove (tight)
security in the quantum random oracle model (QROM).

The Security Loss in ACD19. Our proof strategy relies on extracting the solution to a compu-
tationally hard problem (i.e., the security of the CKA) from random oracle queries, rather than
relying on an indistinguishability notion. The original security proof of ACD19 is in the standard
model and incurs a security loss of q2e in the single-session setting. We believe that a tighter proof
for ACD19’s SM notion seems difficult without different assumptions or to any standard indistin-
guishability notion. Namely, the reduction cannot commit to embedding a CKA challenge in the
SM game without knowing if a compromise will occur, therefore additionally guessing the “last
corruption epoch” before each challenge solves this, and we do not see how to avoid this without
the ROM.

Recall in Section 4 that we model the hash function responsible for the symmetric key schedule
inside of the FS-AEAD as a random oracle G. Instead of doing this, one could define a multi-
instance PRG assumption with corruptions that captures this key schedule directly and plausibly
obtain a tight reduction. Since in the symmetric ratchet the output of the PRG for a given index
has to be used as a PRG secret for the next index, it is unclear whether such a primitive can be
instantiated tightly without e.g. a related-key assumption, similar to the ad-hoc pseudorandomness
property from [YV20, Definition 5]. An advantage of this approach would be better modularity
which may allow for alternative instantiations or at least to defer the random oracle to such a
primitive.

Challenges in the QROM. Thanks to advanced technical tools introduced in recent years (e.g.,
[JZC+18,SXY18,AHU19]), security proofs in the quantum random oracle model (QROM) have
become tighter and simpler to write in many settings. Therefore, it is plausible that our composition
theorem can be lifted to the QROM using such techniques. However, a careful analysis will be
needed to determine the exact bounds and security assumptions required on the underlying building
blocks. In particular, adaptive state compromise might hinder us from giving an efficient and
completely tight construction from standard post-quantum assumptions at all. This is because no
such KEM that supports adaptive corruptions is known to date.12 Related works that study the
tight security of authenticated key exchange (AKE) in the QROM [PWZ23b,PRZ24] “accept” a
security loss linear in the number of users, while at least avoiding any square-root and session-
dependent loss. Translating the AKE setting (where users can be adaptively corrupted) to secure
messaging (where each epoch’s state can be revealed), we therefore generally expect at least a
security loss in the total number of epochs, similar to the current bounds for the Double Ratchet,
where the final bound will also depend on the concrete security of the KEM.

7.2 The Triple Ratchet

We first describe the Triple Ratchet scheme from BFGMR22 [BFG+22]. We believe that our proof
strategy can be extended to this setting, as we explain below. Since the main technical difference
between the Double Ratchet and the Triple Ratchet [BFG+22] lies in the CKA, the discussion
below focuses on the tightness of the CKA+ scheme rather than the full SM scheme.

The difference between the Triple Ratchet and the Double Ratchet is that CKA states are
computed differently. More specifically, in the Triple Ratchet, when the sender retrieves hi−1 from
its state and picks exponent xi to compute the CKA key k = hxi , it does not store xi for the next
epoch, but instead derives x′

i := xi · H′(k), where H′ is a random oracle. The receiver gets gxi and

sets his Diffie-Hellman share in the state to hi = gxi·H′(k).
One benefit of the scheme is that it achieves a slightly stronger notion. For this, the authors

of BFGMR22 strengthen the CKA notion (which they call CKA+) and the SM notion (which is
formulated in the UC framework) to capture the above observation. They further prove security
of the Triple Ratchet under the StCDH assumption and in the ROM and Ideal Cipher Model, the
latter being required to explain ciphertexts after state exposure [Nie02] for full UC security.

12 A KEM and signature scheme from LWE with almost tight security in the standard model were given
in [HLWG23]. These are, however, “not quite practical at the moment” [HLWG23].

27

The security notions for CKA and CKA+ in BFGMR22 are closer to ours than ACD19 in that
they are already one-way notions with a checking oracle, albeit in the single session setting, which
combined with our use of the ROM allows us to achieve tight security from a multi-session CKA
notion. Then for CKA+, their bounds w.r.t. StCDH are the same as ours for the Double Ratchet
in the single-session setting (whereas their bounds for CKA rely on the stronger StSqCDH as-
sumption). Nonetheless, a better reduction to StCDH does not seem possible. This is because the
strengthening of the model from CKA to CKA+ only differs in what is allowed after a challenge,
but the commitment problem arises when embedding the Diffie-Hellman challenge before the ad-
versary’s challenge in the SM game. More concretely, note that in the above we can write hi−1

as

hi−1 = gx
′
i−1 and x′

i−1 = xi−1 · H′(k′) ,

where k′ = gx
′
i−2xi−1 is used to derive the receiver’s previous state x′

i−1, and x′
i−2 is the sender’s

state before hi−1. Further, the CKA key for epoch i is

k = gx
′
i−1xi = gxi−1xi·H′(k′) .

Now assume the adversary wants to send a challenge that uses an AEAD key derived from k.
The only requirement is that the adversary has not revealed x′

i−1. Note that it cannot explicitly
reveal xi because it is never stored. (The only way to reveal it is by computing k and revealing
x′
i.) However, the adversary is allowed to reveal x′

i−2, from which it can compute H′(k′). This way,
the CKA key k is uniquely determined by gxi−1 and gxi .

The above gives an intuition why a tighter proof for the Triple Ratchet from standard as-
sumptions seems as hard as one for the Double Ratchet; we leave a formal study for future
work. At the same time, a reduction using the MU-A-StCDH-Corr problem seems possible (even
in the stronger model of BFGMR22). The idea would be to use the reduction’s input as the states
(gx0 , gx

′
1 , gx

′
2 , . . .) and send CKA messages mi = gx

′
i/ri for random ri ←$ Zp. Then the output of

H′(gx
′
i−1xi) = H′(gx

′
i−1x

′
i/ri) can be programmed to be ri if all previous states have been revealed

and the Diffie-Hellman secret can be computed by the adversary. However, to efficiently recognize
a solution to the MU-A-StCDH-Corr game (without requiring to check all i′), it might be necessary

to additionally include gx
′
i−1 or gxi into the hash.

7.3 Extensions with Public-Key Cryptography

Extended Secure Messaging. A Public-Key Secure Messaging (PKSM) scheme was already sug-
gested by ACD19, combining CKA, FS-AEAD and PRF-PRNG with a KEM and signature scheme.
However, they do not give a formal security proof. Recently, Cremers and Zhao [CZ24] define a
similar primitive which they call extended secure messaging (eSM). This primitive additionally
has long-term keys and pre-keys, offering strong resilience against fine-grained secret compromise.
Instead of using the abstract building blocks from ACD19, they construct an eSM scheme directly
from KEMs and signatures, as well as standard symmetric primitives. The latter consist of a one-
time CCA secure AEAD and five key derivation functions with different properties: apart from
standard PRFs and PRGs, they rely on a dual PRF [Bel06] and a triple PRF, where at least one
input acts as a key. Their proof incurs a security loss of nq3eqm, where n and qe are defined as
before and qm is the number of pre-keys (cf. also Figure 2).

An interesting question is whether tighter bounds are possible in the (Q)ROM. In the ROM,
it seems plausible that multi-user OW-PC(V)A security with corruptions for KEMs is sufficient.
(Applying a KDF that is modelled a random oracle allows one to relax security from IND-CCA to
OW-PCVA security.) At the same time, multi-user unforgeability with corruptions for signatures
will be required since a state corruption will leak the signing key. This notion is typically used to
give tight security bounds for AKE, e.g., [GJ18,DG21,DJ21]. It therefore remains to investigate the
exact trade-off between tightness and performance of the instantiated scheme, as well as bounds
in the QROM.

Sealed Sender. In practice, Signal supports sealed sender [jlu18], which aims at (but does not
fully succeed at [MKA+21]) hiding the identity of a sender from Signal’s servers. This has been

28

abstracted away in previous (and our) cryptographic analysis of the Double Ratchet. By default,
this feature is enabled between mutual contacts.

Essentially, every time Alice wants to message Bob, Alice encrypts her Double Ratchet cipher-
text with a key derived from a value gab, where ga is an ephemeral secret sampled every message by
Alice, and gb is a long-term identity key of Bob (the other details are less relevant for a tightness
analysis). This in fact provides additional security – for example, unless the adversary exposes
Bob’s identity key, it cannot decrypt messages sent to Bob, and is reminiscent of the approach
taken by Cremers and Zhao.

It is likely that tight security can be shown in a ‘reasonable’ model capturing this functionality,
plausibly under the k-A-StCDH-Corr assumption where the adversary makes q send oracles queries
and k = O(q). We leave a formal investigation to future work.

8 Conclusion

Due to the high relevance for practical applications, we expect an increasing interest in improving
the concrete security of secure messaging protocols in the future. Our analysis provides the first
step in this direction and provides concrete security bounds for the Double Ratchet scheme and
its KEM-based variant suggested by Alwen, Coretti and Dodis [ACD19]. While our bounds for
the Double Ratchet are not tight under standard assumptions, our analysis extracts the “core” of
this family of schemes by giving appropriate multi-user assumptions. Interesting future directions
include proving the optimality of these bounds and extending the analysis to protocols like the
Triple Ratchet and the group setting. Further, Apple recently released the hybrid PQ3 messaging
protocol [DH23] based on the Double Ratchet, and it is expected that other services will eventually
transition to a hybrid approach using KEMs now that CRYSTALS-Kyber [BDK+18] has been
selected for standardisation by the NIST.13 Therefore, an analysis focusing on optimal tightness
in the QROM and for schemes with stronger or more fine-grained security guarantees will be
interesting in that regard.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback. Part of this work was done during
Oliver Tran’s semester project at EPFL. Daniel Collins was supported in part by AnalytiXIN and
by Sunday Group, Inc., and completed most of this work while working at EPFL. Doreen Riepel
was supported in part by Mihir Bellare’s KACST grant.

References

AAB+21. Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Karen Klein, Guillermo
Pascual-Perez, Krzysztof Pietrzak, and Michael Walter. Grafting key trees: Efficient key man-
agement for overlapping groups. In Kobbi Nissim and Brent Waters, editors, TCC 2021,
Part III, volume 13044 of LNCS, pages 222–253. Springer, Cham, November 2021.

ACD19. Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs,
and modularization for the Signal protocol. In Yuval Ishai and Vincent Rijmen, editors, EU-
ROCRYPT 2019, Part I, volume 11476 of LNCS, pages 129–158. Springer, Cham, May 2019.

ACDT20. Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Security analysis and
improvements for the IETF MLS standard for group messaging. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 248–277.
Springer, Cham, August 2020.

ACDT21. Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis. Modular design of secure
group messaging protocols and the security of MLS. In Giovanni Vigna and Elaine Shi, editors,
ACM CCS 2021, pages 1463–1483. ACM Press, November 2021.

ACJM20. Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous group key agree-
ment with active security. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II,
volume 12551 of LNCS, pages 261–290. Springer, Cham, November 2020.

13 https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

29

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

AHU19. Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-
classical oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 269–295. Springer, Cham, August 2019.

BBM00. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 259–274. Springer, Berlin, Heidelberg, May 2000.

BCG23. David Balbás, Daniel Collins, and Phillip Gajland. WhatsUpp with sender keys? Analysis,
improvements and security proofs. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023,
Part V, volume 14442 of LNCS, pages 307–341. Springer, Singapore, December 2023.

BDG+22. Alexander Bienstock, Yevgeniy Dodis, Sanjam Garg, Garrison Grogan, Mohammad Hajiabadi,
and Paul Rösler. On the worst-case inefficiency of CGKA. In Eike Kiltz and Vinod Vaikun-
tanathan, editors, TCC 2022, Part II, volume 13748 of LNCS, pages 213–243. Springer, Cham,
November 2022.

BDK+18. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M Schanck,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-kyber: a cca-secure module-lattice-
based kem. In EuroS&P. IEEE, 2018.

Bel06. Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 602–619. Springer, Berlin,
Heidelberg, August 2006.

BFG+22. Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, and Srinivasan Raghu-
raman. A more complete analysis of the Signal double ratchet algorithm. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 784–813.
Springer, Cham, August 2022.

BHJ+15. Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. Tightly-secure au-
thenticated key exchange. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part I, volume 9014 of LNCS, pages 629–658. Springer, Berlin, Heidelberg, March 2015.

BHT18. Priyanka Bose, Viet Tung Hoang, and Stefano Tessaro. Revisiting AES-GCM-SIV: Multi-user
security, faster key derivation, and better bounds. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 468–499. Springer, Cham,
April / May 2018.

BJLS16. Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the impossibility of tight crypto-
graphic reductions. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 273–304. Springer, Berlin, Heidelberg, May 2016.

BR94. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Berlin, Heidelberg,
August 1994.

BR95. Mihir Bellare and Phillip Rogaway. Provably secure session key distribution: The three party
case. In 27th ACM STOC, pages 57–66. ACM Press, May / June 1995.

BRT23. Alexander Bienstock, Paul Rösler, and Yi Tang. ASMesh: Anonymous and secure messaging in
mesh networks using stronger, anonymous double ratchet. In Weizhi Meng, Christian Dams-
gaard Jensen, Cas Cremers, and Engin Kirda, editors, ACM CCS 2023, pages 1–15. ACM Press,
November 2023.

BRTZ24. Mihir Bellare, Doreen Riepel, Stefano Tessaro, and Yizhao Zhang. Count corruptions, not users:
Improved tightness for signatures, encryption and authenticated key exchange. In ASIACRYPT
2024, LNCS, December 2024.

BRV20. Fatih Balli, Paul Rösler, and Serge Vaudenay. Determining the core primitive for optimally
secure ratcheting. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III,
volume 12493 of LNCS, pages 621–650. Springer, Cham, December 2020.

BSJ+17. Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs.
Ratcheted encryption and key exchange: The security of messaging. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 619–650.
Springer, Cham, August 2017.

BT16. Mihir Bellare and Björn Tackmann. The multi-user security of authenticated encryption: AES-
GCM in TLS 1.3. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I,
volume 9814 of LNCS, pages 247–276. Springer, Berlin, Heidelberg, August 2016.

CCD+20. Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. A
formal security analysis of the Signal messaging protocol. Journal of Cryptology, 33(4):1914–
1983, October 2020.

CCG+19. Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, H̊akon Jacobsen, and Tibor Jager.
Highly efficient key exchange protocols with optimal tightness. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 767–797.
Springer, Cham, August 2019.

30

CHK21. Cas Cremers, Britta Hale, and Konrad Kohbrok. The complexities of healing in secure group
messaging: Why cross-group effects matter. In Michael Bailey and Rachel Greenstadt, editors,
USENIX Security 2021, pages 1847–1864. USENIX Association, August 2021.

CJN23. Cas Cremers, Charlie Jacomme, and Aurora Naska. Formal analysis of session-handling in
secure messaging: Lifting security from sessions to conversations. In Usenix Security, 2023.

CJSV22. Ran Canetti, Palak Jain, Marika Swanberg, and Mayank Varia. Universally composable end-
to-end secure messaging. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part II, volume 13508 of LNCS, pages 3–33. Springer, Cham, August 2022.

CRT24. Daniel Collins, Doreen Riepel, and Si An Oliver Tran. On the Tight Security of the Double
Ratchet. In ACM CCS 2024. ACM Press, 2024.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of
LNCS, pages 13–25. Springer, Berlin, Heidelberg, August 1998.

CZ24. Cas Cremers and Mang Zhao. Secure messaging with strong compromise resilience, temporal
privacy, and immediate decryption. In S&P. IEEE, 2024.

DDGJ22. Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager. On the concrete security of
TLS 1.3 PSK mode. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part II, volume 13276 of LNCS, pages 876–906. Springer, Cham, May / June 2022.

DG19. Nir Drucker and Shay Gueron. Continuous key agreement with reduced bandwidth. In In-
ternational Symposium on Cyber Security Cryptography and Machine Learning, pages 33–46.
Springer, 2019.

DG21. Hannah Davis and Felix Günther. Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. In Kazue Sako and Nils Ole Tippenhauer, editors, ACNS 21International Conference
on Applied Cryptography and Network Security, Part II, volume 12727 of LNCS, pages 448–479.
Springer, Cham, June 2021.

DH23. Benjamin Dowling and Britta Hale. Authenticated continuous key agreement: Active mitm
detection and prevention. Cryptology ePrint Archive, Paper 2023/228, 2023. https://eprint.
iacr.org/2023/228.

DHK+21. Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, and Gregor Seiler. Faster
lattice-based KEMs via a generic fujisaki-okamoto transform using prefix hashing. In Giovanni
Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2722–2737. ACM Press, November 2021.

DJ21. Denis Diemert and Tibor Jager. On the tight security of TLS 1.3: Theoretically sound crypto-
graphic parameters for real-world deployments. Journal of Cryptology, 34(3):30, July 2021.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Berlin, Heidelberg,
August 2013.

EM19. Ksenia Ermoshina and Francesca Musiani. “standardising by running code”: the signal protocol
and de facto standardisation in end-to-end encrypted messaging. Internet Histories, 3(3-4):343–
363, 2019.

GJ18. Kristian Gjøsteen and Tibor Jager. Practical and tightly-secure digital signatures and authen-
ticated key exchange. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 95–125. Springer, Cham, August 2018.

Goo22. Google. Messages end-to-end encryption - overview: Technical paper. version 1.2. https:

//www.gstatic.com/messages/papers/messages_e2ee.pdf, February 2022.

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume
10677 of LNCS, pages 341–371. Springer, Cham, November 2017.

HJK+21. Shuai Han, Tibor Jager, Eike Kiltz, Shengli Liu, Jiaxin Pan, Doreen Riepel, and Sven Schäge.
Authenticated key exchange and signatures with tight security in the standard model. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages
670–700, Virtual Event, August 2021. Springer, Cham.

HLG21. Shuai Han, Shengli Liu, and Dawu Gu. Key encapsulation mechanism with tight enhanced
security in the multi-user setting: Impossibility result and optimal tightness. In Mehdi Tibouchi
and Huaxiong Wang, editors, ASIACRYPT 2021, Part II, volume 13091 of LNCS, pages 483–
513. Springer, Cham, December 2021.

HLWG23. Shuai Han, Shengli Liu, Zhedong Wang, and Dawu Gu. Almost tight multi-user security un-
der adaptive corruptions from LWE in the standard model. In Helena Handschuh and Anna
Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of LNCS, pages 682–715. Springer,
Cham, August 2023.

31

https://eprint.iacr.org/2023/228
https://eprint.iacr.org/2023/228
https://www.gstatic.com/messages/papers/messages_e2ee.pdf
https://www.gstatic.com/messages/papers/messages_e2ee.pdf

HTT18. Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam. The multi-user security of
GCM, revisited: Tight bounds for nonce randomization. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1429–1440. ACM Press,
October 2018.

JKRS21. Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge. Tightly-secure authenticated
key exchange, revisited. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 117–146. Springer, Cham, October 2021.

jlu18. jlund. Technology preview: Sealed sender for signal, 2018.
JS18. Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-grained state com-

promise: The safety of messaging. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 33–62. Springer, Cham, August 2018.

JZC+18. Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure key
encapsulation mechanism in the quantum random oracle model, revisited. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
96–125. Springer, Cham, August 2018.

KPRR23. Eike Kiltz, Jiaxin Pan, Doreen Riepel, and Magnus Ringerud. Multi-user CDH problems and
the concrete security of NAXOS and HMQV. In Mike Rosulek, editor, CT-RSA 2023, volume
13871 of LNCS, pages 645–671. Springer, Cham, April 2023.

KS23. Ehren Kret and Rolfe Schmidt. The pqxdh key agreement protocol, 2023. https://signal.

org/docs/specifications/pqxdh/pqxdh.pdf.
Mar16. Moxie Marlinspike. The double ratchet algorithm. https://signal.org/docs/

specifications/doubleratchet/, November 2016.
Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P.

Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796
of LNCS, pages 1–12. Springer, Berlin, Heidelberg, December 2005.

Met17. Meta. Messenger secret conversations: Technical whitepaper. ver-
sion 2.0. https://about.fb.com/wp-content/uploads/2016/07/

messenger-secret-conversations-technical-whitepaper.pdf, May 2017.
MKA+21. Ian Martiny, Gabriel Kaptchuk, Adam J Aviv, Daniel S Roche, and Eric Wustrow. Improving

signal’s sealed sender. In NDSS, 2021.
MW96. Ueli M. Maurer and Stefan Wolf. Diffie-Hellman oracles. In Neal Koblitz, editor, CRYPTO’96,

volume 1109 of LNCS, pages 268–282. Springer, Berlin, Heidelberg, August 1996.
Nie02. Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The

non-committing encryption case. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 111–126. Springer, Berlin, Heidelberg, August 2002.

PR18. Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted key exchange. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS,
pages 3–32. Springer, Cham, August 2018.

PRZ24. Jiaxin Pan, Doreen Riepel, and Runzhi Zeng. Key exchange with tight (full) forward secrecy via
key confirmation. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part VII,
volume 14657 of LNCS, pages 59–89. Springer, Cham, May 2024.

PWZ23a. Jiaxin Pan, Benedikt Wagner, and Runzhi Zeng. Lattice-based authenticated key exchange
with tight security. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023,
Part V, volume 14085 of LNCS, pages 616–647. Springer, Cham, August 2023.

PWZ23b. Jiaxin Pan, Benedikt Wagner, and Runzhi Zeng. Tighter security for generic authenticated key
exchange in the QROM. In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part IV,
volume 14441 of LNCS, pages 401–433. Springer, Singapore, December 2023.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Berlin, Heidelberg,
May 1997.

Sig24. Signal repository, 2024. https://github.com/signalapp.
Ste24. Douglas Stebila. Security analysis of the imessage pq3 protocol. Cryptology ePrint Archive,

Paper 2024/357, 2024. https://eprint.iacr.org/2024/357.
SXY18. Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation

mechanism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 520–551. Springer, Cham,
April / May 2018.

Wha23. WhatsApp. Whatsapp encryption overview: Technical white paper. https://www.whatsapp.

com/security/WhatsApp-Security-Whitepaper.pdf, 2023.
YV20. Hailun Yan and Serge Vaudenay. Symmetric asynchronous ratcheted communication with

associated data. In Kazumaro Aoki and Akira Kanaoka, editors, IWSEC 20, volume 12231
of LNCS, pages 184–204. Springer, Cham, September 2020.

32

https://signal.org/docs/specifications/pqxdh/pqxdh.pdf
https://signal.org/docs/specifications/pqxdh/pqxdh.pdf
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-conversations-technical-whitepaper.pdf
https://github.com/signalapp
https://eprint.iacr.org/2024/357
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

	*0.3cmOn the Tight Security of the Double Ratchet

